Use I386_MAX_REGISTER_SIZE and M68K_MAX_REGISTER_SIZE
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70 #include <algorithm>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 static const char* i386_pkeys_names[] =
125 {
126 "pkru"
127 };
128
129 /* Register names for MPX pseudo-registers. */
130
131 static const char *i386_bnd_names[] =
132 {
133 "bnd0", "bnd1", "bnd2", "bnd3"
134 };
135
136 /* Register names for MMX pseudo-registers. */
137
138 static const char *i386_mmx_names[] =
139 {
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142 };
143
144 /* Register names for byte pseudo-registers. */
145
146 static const char *i386_byte_names[] =
147 {
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150 };
151
152 /* Register names for word pseudo-registers. */
153
154 static const char *i386_word_names[] =
155 {
156 "ax", "cx", "dx", "bx",
157 "", "bp", "si", "di"
158 };
159
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164 const int num_lower_zmm_regs = 16;
165
166 /* MMX register? */
167
168 static int
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
173
174 if (mm0_regnum < 0)
175 return 0;
176
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179 }
180
181 /* Byte register? */
182
183 int
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190 }
191
192 /* Word register? */
193
194 int
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196 {
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201 }
202
203 /* Dword register? */
204
205 int
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
216 }
217
218 /* AVX512 register? */
219
220 int
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231 }
232
233 int
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244 }
245
246 int
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257 }
258
259 static int
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270 }
271
272 /* AVX register? */
273
274 int
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276 {
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285 }
286
287 static int
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298 }
299
300 int
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302 {
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311 }
312
313 /* BND register? */
314
315 int
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317 {
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326 }
327
328 /* SSE register? */
329
330 int
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
335
336 if (num_xmm_regs == 0)
337 return 0;
338
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
341 }
342
343 /* XMM_512 register? */
344
345 int
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356 }
357
358 static int
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
360 {
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
363 if (I387_NUM_XMM_REGS (tdep) == 0)
364 return 0;
365
366 return (regnum == I387_MXCSR_REGNUM (tdep));
367 }
368
369 /* FP register? */
370
371 int
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
373 {
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
377 return 0;
378
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
381 }
382
383 int
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
389 return 0;
390
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
393 }
394
395 /* BNDr (raw) register? */
396
397 static int
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399 {
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407 }
408
409 /* BND control register? */
410
411 static int
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421 }
422
423 /* PKRU register? */
424
425 bool
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427 {
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436 }
437
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441 static const char *
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
456 return tdesc_register_name (gdbarch, regnum);
457 }
458
459 /* Return the name of register REGNUM. */
460
461 const char *
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
479 }
480
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
483
484 static int
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
486 {
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
492 if (reg >= 0 && reg <= 7)
493 {
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
521 return reg - 29 + I387_MM0_REGNUM (tdep);
522 }
523
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
526 }
527
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 used by GDB. */
530
531 static int
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
533 {
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
543 /* General-purpose registers. */
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
550 }
551 else if (reg >= 21 && reg <= 36)
552 {
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 }
556
557 switch (reg)
558 {
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
570 return -1;
571 }
572
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576 static int
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578 {
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
584 }
585
586 \f
587
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
593 {
594 att_flavor,
595 intel_flavor,
596 NULL
597 };
598 static const char *disassembly_flavor = att_flavor;
599 \f
600
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
606
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
609
610 This function is 64-bit safe. */
611
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
615
616 \f
617 /* Displaced instruction handling. */
618
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625 static gdb_byte *
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627 {
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653 }
654
655 static int
656 i386_absolute_jmp_p (const gdb_byte *insn)
657 {
658 /* jmp far (absolute address in operand). */
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674 }
675
676 /* Return non-zero if INSN is a jump, zero otherwise. */
677
678 static int
679 i386_jmp_p (const gdb_byte *insn)
680 {
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690 }
691
692 static int
693 i386_absolute_call_p (const gdb_byte *insn)
694 {
695 /* call far, absolute. */
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711 }
712
713 static int
714 i386_ret_p (const gdb_byte *insn)
715 {
716 switch (insn[0])
717 {
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728 }
729
730 static int
731 i386_call_p (const gdb_byte *insn)
732 {
733 if (i386_absolute_call_p (insn))
734 return 1;
735
736 /* call near, relative. */
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741 }
742
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
745
746 static int
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
748 {
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761 }
762
763 /* The gdbarch insn_is_call method. */
764
765 static int
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767 {
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774 }
775
776 /* The gdbarch insn_is_ret method. */
777
778 static int
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780 {
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787 }
788
789 /* The gdbarch insn_is_jump method. */
790
791 static int
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800 }
801
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 TRY
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 CATCH (ex, RETURN_MASK_ERROR)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
2098 END_CATCH
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 TRY
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
2278 END_CATCH
2279
2280 return cache;
2281 }
2282
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286 {
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294 }
2295
2296 static void
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2303
2304 if (!cache->base_p)
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2308 }
2309
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313 {
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318 }
2319
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2321 {
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409 };
2410 \f
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2412
2413 static void
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417 {
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425 }
2426 \f
2427
2428 /* Signal trampolines. */
2429
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2432 {
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2437 CORE_ADDR addr;
2438 gdb_byte buf[4];
2439
2440 if (*this_cache)
2441 return (struct i386_frame_cache *) *this_cache;
2442
2443 cache = i386_alloc_frame_cache ();
2444
2445 TRY
2446 {
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2449
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
2454
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
2468 }
2469 CATCH (ex, RETURN_MASK_ERROR)
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
2474 END_CATCH
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 SIGTRAMP_FRAME,
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557 };
2558 \f
2559
2560 static CORE_ADDR
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2562 {
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564
2565 return cache->base;
2566 }
2567
2568 static const struct frame_base i386_frame_base =
2569 {
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574 };
2575
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2578 {
2579 CORE_ADDR fp;
2580
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2582
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2585 }
2586
2587 /* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590 static CORE_ADDR
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592 {
2593 return sp & -(CORE_ADDR)16;
2594 }
2595 \f
2596
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2601 success. */
2602
2603 static int
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2605 {
2606 gdb_byte buf[4];
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2611
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2615 return 0;
2616
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2620 return 0;
2621
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2624 return 0;
2625
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 return 1;
2628 }
2629 \f
2630
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636 static int
2637 i386_16_byte_align_p (struct type *type)
2638 {
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657 }
2658
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2660
2661 static CORE_ADDR
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666 {
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673 }
2674
2675 static CORE_ADDR
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2680 {
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 gdb_byte buf[4];
2683 int i;
2684 int write_pass;
2685 int args_space = 0;
2686
2687 /* Determine the total space required for arguments and struct
2688 return address in a first pass (allowing for 16-byte-aligned
2689 arguments), then push arguments in a second pass. */
2690
2691 for (write_pass = 0; write_pass < 2; write_pass++)
2692 {
2693 int args_space_used = 0;
2694
2695 if (struct_return)
2696 {
2697 if (write_pass)
2698 {
2699 /* Push value address. */
2700 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2701 write_memory (sp, buf, 4);
2702 args_space_used += 4;
2703 }
2704 else
2705 args_space += 4;
2706 }
2707
2708 for (i = 0; i < nargs; i++)
2709 {
2710 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2711
2712 if (write_pass)
2713 {
2714 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2715 args_space_used = align_up (args_space_used, 16);
2716
2717 write_memory (sp + args_space_used,
2718 value_contents_all (args[i]), len);
2719 /* The System V ABI says that:
2720
2721 "An argument's size is increased, if necessary, to make it a
2722 multiple of [32-bit] words. This may require tail padding,
2723 depending on the size of the argument."
2724
2725 This makes sure the stack stays word-aligned. */
2726 args_space_used += align_up (len, 4);
2727 }
2728 else
2729 {
2730 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2731 args_space = align_up (args_space, 16);
2732 args_space += align_up (len, 4);
2733 }
2734 }
2735
2736 if (!write_pass)
2737 {
2738 sp -= args_space;
2739
2740 /* The original System V ABI only requires word alignment,
2741 but modern incarnations need 16-byte alignment in order
2742 to support SSE. Since wasting a few bytes here isn't
2743 harmful we unconditionally enforce 16-byte alignment. */
2744 sp &= ~0xf;
2745 }
2746 }
2747
2748 /* Store return address. */
2749 sp -= 4;
2750 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2751 write_memory (sp, buf, 4);
2752
2753 /* Finally, update the stack pointer... */
2754 store_unsigned_integer (buf, 4, byte_order, sp);
2755 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2756
2757 /* ...and fake a frame pointer. */
2758 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2759
2760 /* MarkK wrote: This "+ 8" is all over the place:
2761 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2762 i386_dummy_id). It's there, since all frame unwinders for
2763 a given target have to agree (within a certain margin) on the
2764 definition of the stack address of a frame. Otherwise frame id
2765 comparison might not work correctly. Since DWARF2/GCC uses the
2766 stack address *before* the function call as a frame's CFA. On
2767 the i386, when %ebp is used as a frame pointer, the offset
2768 between the contents %ebp and the CFA as defined by GCC. */
2769 return sp + 8;
2770 }
2771
2772 /* These registers are used for returning integers (and on some
2773 targets also for returning `struct' and `union' values when their
2774 size and alignment match an integer type). */
2775 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2776 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2777
2778 /* Read, for architecture GDBARCH, a function return value of TYPE
2779 from REGCACHE, and copy that into VALBUF. */
2780
2781 static void
2782 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2783 struct regcache *regcache, gdb_byte *valbuf)
2784 {
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 int len = TYPE_LENGTH (type);
2787 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2788
2789 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2790 {
2791 if (tdep->st0_regnum < 0)
2792 {
2793 warning (_("Cannot find floating-point return value."));
2794 memset (valbuf, 0, len);
2795 return;
2796 }
2797
2798 /* Floating-point return values can be found in %st(0). Convert
2799 its contents to the desired type. This is probably not
2800 exactly how it would happen on the target itself, but it is
2801 the best we can do. */
2802 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2803 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2804 }
2805 else
2806 {
2807 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2808 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2809
2810 if (len <= low_size)
2811 {
2812 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2813 memcpy (valbuf, buf, len);
2814 }
2815 else if (len <= (low_size + high_size))
2816 {
2817 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2818 memcpy (valbuf, buf, low_size);
2819 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2820 memcpy (valbuf + low_size, buf, len - low_size);
2821 }
2822 else
2823 internal_error (__FILE__, __LINE__,
2824 _("Cannot extract return value of %d bytes long."),
2825 len);
2826 }
2827 }
2828
2829 /* Write, for architecture GDBARCH, a function return value of TYPE
2830 from VALBUF into REGCACHE. */
2831
2832 static void
2833 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2834 struct regcache *regcache, const gdb_byte *valbuf)
2835 {
2836 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2837 int len = TYPE_LENGTH (type);
2838
2839 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2840 {
2841 ULONGEST fstat;
2842 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2843
2844 if (tdep->st0_regnum < 0)
2845 {
2846 warning (_("Cannot set floating-point return value."));
2847 return;
2848 }
2849
2850 /* Returning floating-point values is a bit tricky. Apart from
2851 storing the return value in %st(0), we have to simulate the
2852 state of the FPU at function return point. */
2853
2854 /* Convert the value found in VALBUF to the extended
2855 floating-point format used by the FPU. This is probably
2856 not exactly how it would happen on the target itself, but
2857 it is the best we can do. */
2858 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2859 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2860
2861 /* Set the top of the floating-point register stack to 7. The
2862 actual value doesn't really matter, but 7 is what a normal
2863 function return would end up with if the program started out
2864 with a freshly initialized FPU. */
2865 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2866 fstat |= (7 << 11);
2867 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2868
2869 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2870 the floating-point register stack to 7, the appropriate value
2871 for the tag word is 0x3fff. */
2872 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2873 }
2874 else
2875 {
2876 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2877 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2878
2879 if (len <= low_size)
2880 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2881 else if (len <= (low_size + high_size))
2882 {
2883 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2884 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2885 len - low_size, valbuf + low_size);
2886 }
2887 else
2888 internal_error (__FILE__, __LINE__,
2889 _("Cannot store return value of %d bytes long."), len);
2890 }
2891 }
2892 \f
2893
2894 /* This is the variable that is set with "set struct-convention", and
2895 its legitimate values. */
2896 static const char default_struct_convention[] = "default";
2897 static const char pcc_struct_convention[] = "pcc";
2898 static const char reg_struct_convention[] = "reg";
2899 static const char *const valid_conventions[] =
2900 {
2901 default_struct_convention,
2902 pcc_struct_convention,
2903 reg_struct_convention,
2904 NULL
2905 };
2906 static const char *struct_convention = default_struct_convention;
2907
2908 /* Return non-zero if TYPE, which is assumed to be a structure,
2909 a union type, or an array type, should be returned in registers
2910 for architecture GDBARCH. */
2911
2912 static int
2913 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2914 {
2915 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2916 enum type_code code = TYPE_CODE (type);
2917 int len = TYPE_LENGTH (type);
2918
2919 gdb_assert (code == TYPE_CODE_STRUCT
2920 || code == TYPE_CODE_UNION
2921 || code == TYPE_CODE_ARRAY);
2922
2923 if (struct_convention == pcc_struct_convention
2924 || (struct_convention == default_struct_convention
2925 && tdep->struct_return == pcc_struct_return))
2926 return 0;
2927
2928 /* Structures consisting of a single `float', `double' or 'long
2929 double' member are returned in %st(0). */
2930 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2931 {
2932 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2934 return (len == 4 || len == 8 || len == 12);
2935 }
2936
2937 return (len == 1 || len == 2 || len == 4 || len == 8);
2938 }
2939
2940 /* Determine, for architecture GDBARCH, how a return value of TYPE
2941 should be returned. If it is supposed to be returned in registers,
2942 and READBUF is non-zero, read the appropriate value from REGCACHE,
2943 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2944 from WRITEBUF into REGCACHE. */
2945
2946 static enum return_value_convention
2947 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2948 struct type *type, struct regcache *regcache,
2949 gdb_byte *readbuf, const gdb_byte *writebuf)
2950 {
2951 enum type_code code = TYPE_CODE (type);
2952
2953 if (((code == TYPE_CODE_STRUCT
2954 || code == TYPE_CODE_UNION
2955 || code == TYPE_CODE_ARRAY)
2956 && !i386_reg_struct_return_p (gdbarch, type))
2957 /* Complex double and long double uses the struct return covention. */
2958 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2959 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2960 /* 128-bit decimal float uses the struct return convention. */
2961 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2962 {
2963 /* The System V ABI says that:
2964
2965 "A function that returns a structure or union also sets %eax
2966 to the value of the original address of the caller's area
2967 before it returns. Thus when the caller receives control
2968 again, the address of the returned object resides in register
2969 %eax and can be used to access the object."
2970
2971 So the ABI guarantees that we can always find the return
2972 value just after the function has returned. */
2973
2974 /* Note that the ABI doesn't mention functions returning arrays,
2975 which is something possible in certain languages such as Ada.
2976 In this case, the value is returned as if it was wrapped in
2977 a record, so the convention applied to records also applies
2978 to arrays. */
2979
2980 if (readbuf)
2981 {
2982 ULONGEST addr;
2983
2984 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2985 read_memory (addr, readbuf, TYPE_LENGTH (type));
2986 }
2987
2988 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2989 }
2990
2991 /* This special case is for structures consisting of a single
2992 `float', `double' or 'long double' member. These structures are
2993 returned in %st(0). For these structures, we call ourselves
2994 recursively, changing TYPE into the type of the first member of
2995 the structure. Since that should work for all structures that
2996 have only one member, we don't bother to check the member's type
2997 here. */
2998 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2999 {
3000 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3001 return i386_return_value (gdbarch, function, type, regcache,
3002 readbuf, writebuf);
3003 }
3004
3005 if (readbuf)
3006 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3007 if (writebuf)
3008 i386_store_return_value (gdbarch, type, regcache, writebuf);
3009
3010 return RETURN_VALUE_REGISTER_CONVENTION;
3011 }
3012 \f
3013
3014 struct type *
3015 i387_ext_type (struct gdbarch *gdbarch)
3016 {
3017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3018
3019 if (!tdep->i387_ext_type)
3020 {
3021 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3022 gdb_assert (tdep->i387_ext_type != NULL);
3023 }
3024
3025 return tdep->i387_ext_type;
3026 }
3027
3028 /* Construct type for pseudo BND registers. We can't use
3029 tdesc_find_type since a complement of one value has to be used
3030 to describe the upper bound. */
3031
3032 static struct type *
3033 i386_bnd_type (struct gdbarch *gdbarch)
3034 {
3035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3036
3037
3038 if (!tdep->i386_bnd_type)
3039 {
3040 struct type *t;
3041 const struct builtin_type *bt = builtin_type (gdbarch);
3042
3043 /* The type we're building is described bellow: */
3044 #if 0
3045 struct __bound128
3046 {
3047 void *lbound;
3048 void *ubound; /* One complement of raw ubound field. */
3049 };
3050 #endif
3051
3052 t = arch_composite_type (gdbarch,
3053 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3054
3055 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3056 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3057
3058 TYPE_NAME (t) = "builtin_type_bound128";
3059 tdep->i386_bnd_type = t;
3060 }
3061
3062 return tdep->i386_bnd_type;
3063 }
3064
3065 /* Construct vector type for pseudo ZMM registers. We can't use
3066 tdesc_find_type since ZMM isn't described in target description. */
3067
3068 static struct type *
3069 i386_zmm_type (struct gdbarch *gdbarch)
3070 {
3071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3072
3073 if (!tdep->i386_zmm_type)
3074 {
3075 const struct builtin_type *bt = builtin_type (gdbarch);
3076
3077 /* The type we're building is this: */
3078 #if 0
3079 union __gdb_builtin_type_vec512i
3080 {
3081 int128_t uint128[4];
3082 int64_t v4_int64[8];
3083 int32_t v8_int32[16];
3084 int16_t v16_int16[32];
3085 int8_t v32_int8[64];
3086 double v4_double[8];
3087 float v8_float[16];
3088 };
3089 #endif
3090
3091 struct type *t;
3092
3093 t = arch_composite_type (gdbarch,
3094 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3095 append_composite_type_field (t, "v16_float",
3096 init_vector_type (bt->builtin_float, 16));
3097 append_composite_type_field (t, "v8_double",
3098 init_vector_type (bt->builtin_double, 8));
3099 append_composite_type_field (t, "v64_int8",
3100 init_vector_type (bt->builtin_int8, 64));
3101 append_composite_type_field (t, "v32_int16",
3102 init_vector_type (bt->builtin_int16, 32));
3103 append_composite_type_field (t, "v16_int32",
3104 init_vector_type (bt->builtin_int32, 16));
3105 append_composite_type_field (t, "v8_int64",
3106 init_vector_type (bt->builtin_int64, 8));
3107 append_composite_type_field (t, "v4_int128",
3108 init_vector_type (bt->builtin_int128, 4));
3109
3110 TYPE_VECTOR (t) = 1;
3111 TYPE_NAME (t) = "builtin_type_vec512i";
3112 tdep->i386_zmm_type = t;
3113 }
3114
3115 return tdep->i386_zmm_type;
3116 }
3117
3118 /* Construct vector type for pseudo YMM registers. We can't use
3119 tdesc_find_type since YMM isn't described in target description. */
3120
3121 static struct type *
3122 i386_ymm_type (struct gdbarch *gdbarch)
3123 {
3124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3125
3126 if (!tdep->i386_ymm_type)
3127 {
3128 const struct builtin_type *bt = builtin_type (gdbarch);
3129
3130 /* The type we're building is this: */
3131 #if 0
3132 union __gdb_builtin_type_vec256i
3133 {
3134 int128_t uint128[2];
3135 int64_t v2_int64[4];
3136 int32_t v4_int32[8];
3137 int16_t v8_int16[16];
3138 int8_t v16_int8[32];
3139 double v2_double[4];
3140 float v4_float[8];
3141 };
3142 #endif
3143
3144 struct type *t;
3145
3146 t = arch_composite_type (gdbarch,
3147 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3148 append_composite_type_field (t, "v8_float",
3149 init_vector_type (bt->builtin_float, 8));
3150 append_composite_type_field (t, "v4_double",
3151 init_vector_type (bt->builtin_double, 4));
3152 append_composite_type_field (t, "v32_int8",
3153 init_vector_type (bt->builtin_int8, 32));
3154 append_composite_type_field (t, "v16_int16",
3155 init_vector_type (bt->builtin_int16, 16));
3156 append_composite_type_field (t, "v8_int32",
3157 init_vector_type (bt->builtin_int32, 8));
3158 append_composite_type_field (t, "v4_int64",
3159 init_vector_type (bt->builtin_int64, 4));
3160 append_composite_type_field (t, "v2_int128",
3161 init_vector_type (bt->builtin_int128, 2));
3162
3163 TYPE_VECTOR (t) = 1;
3164 TYPE_NAME (t) = "builtin_type_vec256i";
3165 tdep->i386_ymm_type = t;
3166 }
3167
3168 return tdep->i386_ymm_type;
3169 }
3170
3171 /* Construct vector type for MMX registers. */
3172 static struct type *
3173 i386_mmx_type (struct gdbarch *gdbarch)
3174 {
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176
3177 if (!tdep->i386_mmx_type)
3178 {
3179 const struct builtin_type *bt = builtin_type (gdbarch);
3180
3181 /* The type we're building is this: */
3182 #if 0
3183 union __gdb_builtin_type_vec64i
3184 {
3185 int64_t uint64;
3186 int32_t v2_int32[2];
3187 int16_t v4_int16[4];
3188 int8_t v8_int8[8];
3189 };
3190 #endif
3191
3192 struct type *t;
3193
3194 t = arch_composite_type (gdbarch,
3195 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3196
3197 append_composite_type_field (t, "uint64", bt->builtin_int64);
3198 append_composite_type_field (t, "v2_int32",
3199 init_vector_type (bt->builtin_int32, 2));
3200 append_composite_type_field (t, "v4_int16",
3201 init_vector_type (bt->builtin_int16, 4));
3202 append_composite_type_field (t, "v8_int8",
3203 init_vector_type (bt->builtin_int8, 8));
3204
3205 TYPE_VECTOR (t) = 1;
3206 TYPE_NAME (t) = "builtin_type_vec64i";
3207 tdep->i386_mmx_type = t;
3208 }
3209
3210 return tdep->i386_mmx_type;
3211 }
3212
3213 /* Return the GDB type object for the "standard" data type of data in
3214 register REGNUM. */
3215
3216 struct type *
3217 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3218 {
3219 if (i386_bnd_regnum_p (gdbarch, regnum))
3220 return i386_bnd_type (gdbarch);
3221 if (i386_mmx_regnum_p (gdbarch, regnum))
3222 return i386_mmx_type (gdbarch);
3223 else if (i386_ymm_regnum_p (gdbarch, regnum))
3224 return i386_ymm_type (gdbarch);
3225 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_zmm_regnum_p (gdbarch, regnum))
3228 return i386_zmm_type (gdbarch);
3229 else
3230 {
3231 const struct builtin_type *bt = builtin_type (gdbarch);
3232 if (i386_byte_regnum_p (gdbarch, regnum))
3233 return bt->builtin_int8;
3234 else if (i386_word_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int16;
3236 else if (i386_dword_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int32;
3238 else if (i386_k_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int64;
3240 }
3241
3242 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3243 }
3244
3245 /* Map a cooked register onto a raw register or memory. For the i386,
3246 the MMX registers need to be mapped onto floating point registers. */
3247
3248 static int
3249 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3250 {
3251 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3252 int mmxreg, fpreg;
3253 ULONGEST fstat;
3254 int tos;
3255
3256 mmxreg = regnum - tdep->mm0_regnum;
3257 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3258 tos = (fstat >> 11) & 0x7;
3259 fpreg = (mmxreg + tos) % 8;
3260
3261 return (I387_ST0_REGNUM (tdep) + fpreg);
3262 }
3263
3264 /* A helper function for us by i386_pseudo_register_read_value and
3265 amd64_pseudo_register_read_value. It does all the work but reads
3266 the data into an already-allocated value. */
3267
3268 void
3269 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3270 struct regcache *regcache,
3271 int regnum,
3272 struct value *result_value)
3273 {
3274 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3275 enum register_status status;
3276 gdb_byte *buf = value_contents_raw (result_value);
3277
3278 if (i386_mmx_regnum_p (gdbarch, regnum))
3279 {
3280 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache, fpnum, raw_buf);
3284 if (status != REG_VALID)
3285 mark_value_bytes_unavailable (result_value, 0,
3286 TYPE_LENGTH (value_type (result_value)));
3287 else
3288 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3289 }
3290 else
3291 {
3292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3293 if (i386_bnd_regnum_p (gdbarch, regnum))
3294 {
3295 regnum -= tdep->bnd0_regnum;
3296
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_BND0R_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 {
3305 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3306 LONGEST upper, lower;
3307 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3308
3309 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3310 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3311 upper = ~upper;
3312
3313 memcpy (buf, &lower, size);
3314 memcpy (buf + size, &upper, size);
3315 }
3316 }
3317 else if (i386_k_regnum_p (gdbarch, regnum))
3318 {
3319 regnum -= tdep->k0_regnum;
3320
3321 /* Extract (always little endian). */
3322 status = regcache_raw_read (regcache,
3323 tdep->k0_regnum + regnum,
3324 raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3327 else
3328 memcpy (buf, raw_buf, 8);
3329 }
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 {
3332 regnum -= tdep->zmm0_regnum;
3333
3334 if (regnum < num_lower_zmm_regs)
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache_raw_read (regcache,
3338 I387_XMM0_REGNUM (tdep) + regnum,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache_raw_read (regcache,
3347 tdep->ymm0h_regnum + regnum,
3348 raw_buf);
3349 if (status != REG_VALID)
3350 mark_value_bytes_unavailable (result_value, 16, 16);
3351 else
3352 memcpy (buf + 16, raw_buf, 16);
3353 }
3354 else
3355 {
3356 /* Extract (always little endian). Read lower 128bits. */
3357 status = regcache_raw_read (regcache,
3358 I387_XMM16_REGNUM (tdep) + regnum
3359 - num_lower_zmm_regs,
3360 raw_buf);
3361 if (status != REG_VALID)
3362 mark_value_bytes_unavailable (result_value, 0, 16);
3363 else
3364 memcpy (buf, raw_buf, 16);
3365
3366 /* Extract (always little endian). Read upper 128bits. */
3367 status = regcache_raw_read (regcache,
3368 I387_YMM16H_REGNUM (tdep) + regnum
3369 - num_lower_zmm_regs,
3370 raw_buf);
3371 if (status != REG_VALID)
3372 mark_value_bytes_unavailable (result_value, 16, 16);
3373 else
3374 memcpy (buf + 16, raw_buf, 16);
3375 }
3376
3377 /* Read upper 256bits. */
3378 status = regcache_raw_read (regcache,
3379 tdep->zmm0h_regnum + regnum,
3380 raw_buf);
3381 if (status != REG_VALID)
3382 mark_value_bytes_unavailable (result_value, 32, 32);
3383 else
3384 memcpy (buf + 32, raw_buf, 32);
3385 }
3386 else if (i386_ymm_regnum_p (gdbarch, regnum))
3387 {
3388 regnum -= tdep->ymm0_regnum;
3389
3390 /* Extract (always little endian). Read lower 128bits. */
3391 status = regcache_raw_read (regcache,
3392 I387_XMM0_REGNUM (tdep) + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0, 16);
3396 else
3397 memcpy (buf, raw_buf, 16);
3398 /* Read upper 128bits. */
3399 status = regcache_raw_read (regcache,
3400 tdep->ymm0h_regnum + regnum,
3401 raw_buf);
3402 if (status != REG_VALID)
3403 mark_value_bytes_unavailable (result_value, 16, 32);
3404 else
3405 memcpy (buf + 16, raw_buf, 16);
3406 }
3407 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3408 {
3409 regnum -= tdep->ymm16_regnum;
3410 /* Extract (always little endian). Read lower 128bits. */
3411 status = regcache_raw_read (regcache,
3412 I387_XMM16_REGNUM (tdep) + regnum,
3413 raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 0, 16);
3416 else
3417 memcpy (buf, raw_buf, 16);
3418 /* Read upper 128bits. */
3419 status = regcache_raw_read (regcache,
3420 tdep->ymm16h_regnum + regnum,
3421 raw_buf);
3422 if (status != REG_VALID)
3423 mark_value_bytes_unavailable (result_value, 16, 16);
3424 else
3425 memcpy (buf + 16, raw_buf, 16);
3426 }
3427 else if (i386_word_regnum_p (gdbarch, regnum))
3428 {
3429 int gpnum = regnum - tdep->ax_regnum;
3430
3431 /* Extract (always little endian). */
3432 status = regcache_raw_read (regcache, gpnum, raw_buf);
3433 if (status != REG_VALID)
3434 mark_value_bytes_unavailable (result_value, 0,
3435 TYPE_LENGTH (value_type (result_value)));
3436 else
3437 memcpy (buf, raw_buf, 2);
3438 }
3439 else if (i386_byte_regnum_p (gdbarch, regnum))
3440 {
3441 int gpnum = regnum - tdep->al_regnum;
3442
3443 /* Extract (always little endian). We read both lower and
3444 upper registers. */
3445 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3446 if (status != REG_VALID)
3447 mark_value_bytes_unavailable (result_value, 0,
3448 TYPE_LENGTH (value_type (result_value)));
3449 else if (gpnum >= 4)
3450 memcpy (buf, raw_buf + 1, 1);
3451 else
3452 memcpy (buf, raw_buf, 1);
3453 }
3454 else
3455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3456 }
3457 }
3458
3459 static struct value *
3460 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3461 struct regcache *regcache,
3462 int regnum)
3463 {
3464 struct value *result;
3465
3466 result = allocate_value (register_type (gdbarch, regnum));
3467 VALUE_LVAL (result) = lval_register;
3468 VALUE_REGNUM (result) = regnum;
3469
3470 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3471
3472 return result;
3473 }
3474
3475 void
3476 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3477 int regnum, const gdb_byte *buf)
3478 {
3479 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3480
3481 if (i386_mmx_regnum_p (gdbarch, regnum))
3482 {
3483 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3484
3485 /* Read ... */
3486 regcache_raw_read (regcache, fpnum, raw_buf);
3487 /* ... Modify ... (always little endian). */
3488 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3489 /* ... Write. */
3490 regcache_raw_write (regcache, fpnum, raw_buf);
3491 }
3492 else
3493 {
3494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3495
3496 if (i386_bnd_regnum_p (gdbarch, regnum))
3497 {
3498 ULONGEST upper, lower;
3499 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3500 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3501
3502 /* New values from input value. */
3503 regnum -= tdep->bnd0_regnum;
3504 lower = extract_unsigned_integer (buf, size, byte_order);
3505 upper = extract_unsigned_integer (buf + size, size, byte_order);
3506
3507 /* Fetching register buffer. */
3508 regcache_raw_read (regcache,
3509 I387_BND0R_REGNUM (tdep) + regnum,
3510 raw_buf);
3511
3512 upper = ~upper;
3513
3514 /* Set register bits. */
3515 memcpy (raw_buf, &lower, 8);
3516 memcpy (raw_buf + 8, &upper, 8);
3517
3518
3519 regcache_raw_write (regcache,
3520 I387_BND0R_REGNUM (tdep) + regnum,
3521 raw_buf);
3522 }
3523 else if (i386_k_regnum_p (gdbarch, regnum))
3524 {
3525 regnum -= tdep->k0_regnum;
3526
3527 regcache_raw_write (regcache,
3528 tdep->k0_regnum + regnum,
3529 buf);
3530 }
3531 else if (i386_zmm_regnum_p (gdbarch, regnum))
3532 {
3533 regnum -= tdep->zmm0_regnum;
3534
3535 if (regnum < num_lower_zmm_regs)
3536 {
3537 /* Write lower 128bits. */
3538 regcache_raw_write (regcache,
3539 I387_XMM0_REGNUM (tdep) + regnum,
3540 buf);
3541 /* Write upper 128bits. */
3542 regcache_raw_write (regcache,
3543 I387_YMM0_REGNUM (tdep) + regnum,
3544 buf + 16);
3545 }
3546 else
3547 {
3548 /* Write lower 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_XMM16_REGNUM (tdep) + regnum
3551 - num_lower_zmm_regs,
3552 buf);
3553 /* Write upper 128bits. */
3554 regcache_raw_write (regcache,
3555 I387_YMM16H_REGNUM (tdep) + regnum
3556 - num_lower_zmm_regs,
3557 buf + 16);
3558 }
3559 /* Write upper 256bits. */
3560 regcache_raw_write (regcache,
3561 tdep->zmm0h_regnum + regnum,
3562 buf + 32);
3563 }
3564 else if (i386_ymm_regnum_p (gdbarch, regnum))
3565 {
3566 regnum -= tdep->ymm0_regnum;
3567
3568 /* ... Write lower 128bits. */
3569 regcache_raw_write (regcache,
3570 I387_XMM0_REGNUM (tdep) + regnum,
3571 buf);
3572 /* ... Write upper 128bits. */
3573 regcache_raw_write (regcache,
3574 tdep->ymm0h_regnum + regnum,
3575 buf + 16);
3576 }
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
3582 regcache_raw_write (regcache,
3583 I387_XMM16_REGNUM (tdep) + regnum,
3584 buf);
3585 /* ... Write upper 128bits. */
3586 regcache_raw_write (regcache,
3587 tdep->ymm16h_regnum + regnum,
3588 buf + 16);
3589 }
3590 else if (i386_word_regnum_p (gdbarch, regnum))
3591 {
3592 int gpnum = regnum - tdep->ax_regnum;
3593
3594 /* Read ... */
3595 regcache_raw_read (regcache, gpnum, raw_buf);
3596 /* ... Modify ... (always little endian). */
3597 memcpy (raw_buf, buf, 2);
3598 /* ... Write. */
3599 regcache_raw_write (regcache, gpnum, raw_buf);
3600 }
3601 else if (i386_byte_regnum_p (gdbarch, regnum))
3602 {
3603 int gpnum = regnum - tdep->al_regnum;
3604
3605 /* Read ... We read both lower and upper registers. */
3606 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3607 /* ... Modify ... (always little endian). */
3608 if (gpnum >= 4)
3609 memcpy (raw_buf + 1, buf, 1);
3610 else
3611 memcpy (raw_buf, buf, 1);
3612 /* ... Write. */
3613 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3614 }
3615 else
3616 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3617 }
3618 }
3619
3620 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3621
3622 int
3623 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3624 struct agent_expr *ax, int regnum)
3625 {
3626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3627
3628 if (i386_mmx_regnum_p (gdbarch, regnum))
3629 {
3630 /* MMX to FPU register mapping depends on current TOS. Let's just
3631 not care and collect everything... */
3632 int i;
3633
3634 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3635 for (i = 0; i < 8; i++)
3636 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3637 return 0;
3638 }
3639 else if (i386_bnd_regnum_p (gdbarch, regnum))
3640 {
3641 regnum -= tdep->bnd0_regnum;
3642 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3643 return 0;
3644 }
3645 else if (i386_k_regnum_p (gdbarch, regnum))
3646 {
3647 regnum -= tdep->k0_regnum;
3648 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3649 return 0;
3650 }
3651 else if (i386_zmm_regnum_p (gdbarch, regnum))
3652 {
3653 regnum -= tdep->zmm0_regnum;
3654 if (regnum < num_lower_zmm_regs)
3655 {
3656 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3657 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3658 }
3659 else
3660 {
3661 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3662 - num_lower_zmm_regs);
3663 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3664 - num_lower_zmm_regs);
3665 }
3666 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3667 return 0;
3668 }
3669 else if (i386_ymm_regnum_p (gdbarch, regnum))
3670 {
3671 regnum -= tdep->ymm0_regnum;
3672 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3673 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm16_regnum;
3679 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_word_regnum_p (gdbarch, regnum))
3684 {
3685 int gpnum = regnum - tdep->ax_regnum;
3686
3687 ax_reg_mask (ax, gpnum);
3688 return 0;
3689 }
3690 else if (i386_byte_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->al_regnum;
3693
3694 ax_reg_mask (ax, gpnum % 4);
3695 return 0;
3696 }
3697 else
3698 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3699 return 1;
3700 }
3701 \f
3702
3703 /* Return the register number of the register allocated by GCC after
3704 REGNUM, or -1 if there is no such register. */
3705
3706 static int
3707 i386_next_regnum (int regnum)
3708 {
3709 /* GCC allocates the registers in the order:
3710
3711 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3712
3713 Since storing a variable in %esp doesn't make any sense we return
3714 -1 for %ebp and for %esp itself. */
3715 static int next_regnum[] =
3716 {
3717 I386_EDX_REGNUM, /* Slot for %eax. */
3718 I386_EBX_REGNUM, /* Slot for %ecx. */
3719 I386_ECX_REGNUM, /* Slot for %edx. */
3720 I386_ESI_REGNUM, /* Slot for %ebx. */
3721 -1, -1, /* Slots for %esp and %ebp. */
3722 I386_EDI_REGNUM, /* Slot for %esi. */
3723 I386_EBP_REGNUM /* Slot for %edi. */
3724 };
3725
3726 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3727 return next_regnum[regnum];
3728
3729 return -1;
3730 }
3731
3732 /* Return nonzero if a value of type TYPE stored in register REGNUM
3733 needs any special handling. */
3734
3735 static int
3736 i386_convert_register_p (struct gdbarch *gdbarch,
3737 int regnum, struct type *type)
3738 {
3739 int len = TYPE_LENGTH (type);
3740
3741 /* Values may be spread across multiple registers. Most debugging
3742 formats aren't expressive enough to specify the locations, so
3743 some heuristics is involved. Right now we only handle types that
3744 have a length that is a multiple of the word size, since GCC
3745 doesn't seem to put any other types into registers. */
3746 if (len > 4 && len % 4 == 0)
3747 {
3748 int last_regnum = regnum;
3749
3750 while (len > 4)
3751 {
3752 last_regnum = i386_next_regnum (last_regnum);
3753 len -= 4;
3754 }
3755
3756 if (last_regnum != -1)
3757 return 1;
3758 }
3759
3760 return i387_convert_register_p (gdbarch, regnum, type);
3761 }
3762
3763 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3764 return its contents in TO. */
3765
3766 static int
3767 i386_register_to_value (struct frame_info *frame, int regnum,
3768 struct type *type, gdb_byte *to,
3769 int *optimizedp, int *unavailablep)
3770 {
3771 struct gdbarch *gdbarch = get_frame_arch (frame);
3772 int len = TYPE_LENGTH (type);
3773
3774 if (i386_fp_regnum_p (gdbarch, regnum))
3775 return i387_register_to_value (frame, regnum, type, to,
3776 optimizedp, unavailablep);
3777
3778 /* Read a value spread across multiple registers. */
3779
3780 gdb_assert (len > 4 && len % 4 == 0);
3781
3782 while (len > 0)
3783 {
3784 gdb_assert (regnum != -1);
3785 gdb_assert (register_size (gdbarch, regnum) == 4);
3786
3787 if (!get_frame_register_bytes (frame, regnum, 0,
3788 register_size (gdbarch, regnum),
3789 to, optimizedp, unavailablep))
3790 return 0;
3791
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
3794 to += 4;
3795 }
3796
3797 *optimizedp = *unavailablep = 0;
3798 return 1;
3799 }
3800
3801 /* Write the contents FROM of a value of type TYPE into register
3802 REGNUM in frame FRAME. */
3803
3804 static void
3805 i386_value_to_register (struct frame_info *frame, int regnum,
3806 struct type *type, const gdb_byte *from)
3807 {
3808 int len = TYPE_LENGTH (type);
3809
3810 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3811 {
3812 i387_value_to_register (frame, regnum, type, from);
3813 return;
3814 }
3815
3816 /* Write a value spread across multiple registers. */
3817
3818 gdb_assert (len > 4 && len % 4 == 0);
3819
3820 while (len > 0)
3821 {
3822 gdb_assert (regnum != -1);
3823 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3824
3825 put_frame_register (frame, regnum, from);
3826 regnum = i386_next_regnum (regnum);
3827 len -= 4;
3828 from += 4;
3829 }
3830 }
3831 \f
3832 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3833 in the general-purpose register set REGSET to register cache
3834 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3835
3836 void
3837 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3838 int regnum, const void *gregs, size_t len)
3839 {
3840 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3841 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3842 const gdb_byte *regs = (const gdb_byte *) gregs;
3843 int i;
3844
3845 gdb_assert (len >= tdep->sizeof_gregset);
3846
3847 for (i = 0; i < tdep->gregset_num_regs; i++)
3848 {
3849 if ((regnum == i || regnum == -1)
3850 && tdep->gregset_reg_offset[i] != -1)
3851 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3852 }
3853 }
3854
3855 /* Collect register REGNUM from the register cache REGCACHE and store
3856 it in the buffer specified by GREGS and LEN as described by the
3857 general-purpose register set REGSET. If REGNUM is -1, do this for
3858 all registers in REGSET. */
3859
3860 static void
3861 i386_collect_gregset (const struct regset *regset,
3862 const struct regcache *regcache,
3863 int regnum, void *gregs, size_t len)
3864 {
3865 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3866 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3867 gdb_byte *regs = (gdb_byte *) gregs;
3868 int i;
3869
3870 gdb_assert (len >= tdep->sizeof_gregset);
3871
3872 for (i = 0; i < tdep->gregset_num_regs; i++)
3873 {
3874 if ((regnum == i || regnum == -1)
3875 && tdep->gregset_reg_offset[i] != -1)
3876 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3877 }
3878 }
3879
3880 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3881 in the floating-point register set REGSET to register cache
3882 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3883
3884 static void
3885 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3886 int regnum, const void *fpregs, size_t len)
3887 {
3888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3889 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3890
3891 if (len == I387_SIZEOF_FXSAVE)
3892 {
3893 i387_supply_fxsave (regcache, regnum, fpregs);
3894 return;
3895 }
3896
3897 gdb_assert (len >= tdep->sizeof_fpregset);
3898 i387_supply_fsave (regcache, regnum, fpregs);
3899 }
3900
3901 /* Collect register REGNUM from the register cache REGCACHE and store
3902 it in the buffer specified by FPREGS and LEN as described by the
3903 floating-point register set REGSET. If REGNUM is -1, do this for
3904 all registers in REGSET. */
3905
3906 static void
3907 i386_collect_fpregset (const struct regset *regset,
3908 const struct regcache *regcache,
3909 int regnum, void *fpregs, size_t len)
3910 {
3911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3912 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913
3914 if (len == I387_SIZEOF_FXSAVE)
3915 {
3916 i387_collect_fxsave (regcache, regnum, fpregs);
3917 return;
3918 }
3919
3920 gdb_assert (len >= tdep->sizeof_fpregset);
3921 i387_collect_fsave (regcache, regnum, fpregs);
3922 }
3923
3924 /* Register set definitions. */
3925
3926 const struct regset i386_gregset =
3927 {
3928 NULL, i386_supply_gregset, i386_collect_gregset
3929 };
3930
3931 const struct regset i386_fpregset =
3932 {
3933 NULL, i386_supply_fpregset, i386_collect_fpregset
3934 };
3935
3936 /* Default iterator over core file register note sections. */
3937
3938 void
3939 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3940 iterate_over_regset_sections_cb *cb,
3941 void *cb_data,
3942 const struct regcache *regcache)
3943 {
3944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3945
3946 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3947 if (tdep->sizeof_fpregset)
3948 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3949 }
3950 \f
3951
3952 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3953
3954 CORE_ADDR
3955 i386_pe_skip_trampoline_code (struct frame_info *frame,
3956 CORE_ADDR pc, char *name)
3957 {
3958 struct gdbarch *gdbarch = get_frame_arch (frame);
3959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3960
3961 /* jmp *(dest) */
3962 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3963 {
3964 unsigned long indirect =
3965 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3966 struct minimal_symbol *indsym =
3967 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3968 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3969
3970 if (symname)
3971 {
3972 if (startswith (symname, "__imp_")
3973 || startswith (symname, "_imp_"))
3974 return name ? 1 :
3975 read_memory_unsigned_integer (indirect, 4, byte_order);
3976 }
3977 }
3978 return 0; /* Not a trampoline. */
3979 }
3980 \f
3981
3982 /* Return whether the THIS_FRAME corresponds to a sigtramp
3983 routine. */
3984
3985 int
3986 i386_sigtramp_p (struct frame_info *this_frame)
3987 {
3988 CORE_ADDR pc = get_frame_pc (this_frame);
3989 const char *name;
3990
3991 find_pc_partial_function (pc, &name, NULL, NULL);
3992 return (name && strcmp ("_sigtramp", name) == 0);
3993 }
3994 \f
3995
3996 /* We have two flavours of disassembly. The machinery on this page
3997 deals with switching between those. */
3998
3999 static int
4000 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4001 {
4002 gdb_assert (disassembly_flavor == att_flavor
4003 || disassembly_flavor == intel_flavor);
4004
4005 /* FIXME: kettenis/20020915: Until disassembler_options is properly
4006 constified, cast to prevent a compiler warning. */
4007 info->disassembler_options = (char *) disassembly_flavor;
4008
4009 return print_insn_i386 (pc, info);
4010 }
4011 \f
4012
4013 /* There are a few i386 architecture variants that differ only
4014 slightly from the generic i386 target. For now, we don't give them
4015 their own source file, but include them here. As a consequence,
4016 they'll always be included. */
4017
4018 /* System V Release 4 (SVR4). */
4019
4020 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4021 routine. */
4022
4023 static int
4024 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4025 {
4026 CORE_ADDR pc = get_frame_pc (this_frame);
4027 const char *name;
4028
4029 /* The origin of these symbols is currently unknown. */
4030 find_pc_partial_function (pc, &name, NULL, NULL);
4031 return (name && (strcmp ("_sigreturn", name) == 0
4032 || strcmp ("sigvechandler", name) == 0));
4033 }
4034
4035 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4036 address of the associated sigcontext (ucontext) structure. */
4037
4038 static CORE_ADDR
4039 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4040 {
4041 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4042 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4043 gdb_byte buf[4];
4044 CORE_ADDR sp;
4045
4046 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4047 sp = extract_unsigned_integer (buf, 4, byte_order);
4048
4049 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4050 }
4051
4052 \f
4053
4054 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4055 gdbarch.h. */
4056
4057 int
4058 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4059 {
4060 return (*s == '$' /* Literal number. */
4061 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4062 || (*s == '(' && s[1] == '%') /* Register indirection. */
4063 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4064 }
4065
4066 /* Helper function for i386_stap_parse_special_token.
4067
4068 This function parses operands of the form `-8+3+1(%rbp)', which
4069 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4070
4071 Return 1 if the operand was parsed successfully, zero
4072 otherwise. */
4073
4074 static int
4075 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4076 struct stap_parse_info *p)
4077 {
4078 const char *s = p->arg;
4079
4080 if (isdigit (*s) || *s == '-' || *s == '+')
4081 {
4082 int got_minus[3];
4083 int i;
4084 long displacements[3];
4085 const char *start;
4086 char *regname;
4087 int len;
4088 struct stoken str;
4089 char *endp;
4090
4091 got_minus[0] = 0;
4092 if (*s == '+')
4093 ++s;
4094 else if (*s == '-')
4095 {
4096 ++s;
4097 got_minus[0] = 1;
4098 }
4099
4100 if (!isdigit ((unsigned char) *s))
4101 return 0;
4102
4103 displacements[0] = strtol (s, &endp, 10);
4104 s = endp;
4105
4106 if (*s != '+' && *s != '-')
4107 {
4108 /* We are not dealing with a triplet. */
4109 return 0;
4110 }
4111
4112 got_minus[1] = 0;
4113 if (*s == '+')
4114 ++s;
4115 else
4116 {
4117 ++s;
4118 got_minus[1] = 1;
4119 }
4120
4121 if (!isdigit ((unsigned char) *s))
4122 return 0;
4123
4124 displacements[1] = strtol (s, &endp, 10);
4125 s = endp;
4126
4127 if (*s != '+' && *s != '-')
4128 {
4129 /* We are not dealing with a triplet. */
4130 return 0;
4131 }
4132
4133 got_minus[2] = 0;
4134 if (*s == '+')
4135 ++s;
4136 else
4137 {
4138 ++s;
4139 got_minus[2] = 1;
4140 }
4141
4142 if (!isdigit ((unsigned char) *s))
4143 return 0;
4144
4145 displacements[2] = strtol (s, &endp, 10);
4146 s = endp;
4147
4148 if (*s != '(' || s[1] != '%')
4149 return 0;
4150
4151 s += 2;
4152 start = s;
4153
4154 while (isalnum (*s))
4155 ++s;
4156
4157 if (*s++ != ')')
4158 return 0;
4159
4160 len = s - start - 1;
4161 regname = (char *) alloca (len + 1);
4162
4163 strncpy (regname, start, len);
4164 regname[len] = '\0';
4165
4166 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4167 error (_("Invalid register name `%s' on expression `%s'."),
4168 regname, p->saved_arg);
4169
4170 for (i = 0; i < 3; i++)
4171 {
4172 write_exp_elt_opcode (&p->pstate, OP_LONG);
4173 write_exp_elt_type
4174 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4175 write_exp_elt_longcst (&p->pstate, displacements[i]);
4176 write_exp_elt_opcode (&p->pstate, OP_LONG);
4177 if (got_minus[i])
4178 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4179 }
4180
4181 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4182 str.ptr = regname;
4183 str.length = len;
4184 write_exp_string (&p->pstate, str);
4185 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4186
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4188 write_exp_elt_type (&p->pstate,
4189 builtin_type (gdbarch)->builtin_data_ptr);
4190 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4191
4192 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4193 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4194 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4195
4196 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4197 write_exp_elt_type (&p->pstate,
4198 lookup_pointer_type (p->arg_type));
4199 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4200
4201 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4202
4203 p->arg = s;
4204
4205 return 1;
4206 }
4207
4208 return 0;
4209 }
4210
4211 /* Helper function for i386_stap_parse_special_token.
4212
4213 This function parses operands of the form `register base +
4214 (register index * size) + offset', as represented in
4215 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4216
4217 Return 1 if the operand was parsed successfully, zero
4218 otherwise. */
4219
4220 static int
4221 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4222 struct stap_parse_info *p)
4223 {
4224 const char *s = p->arg;
4225
4226 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4227 {
4228 int offset_minus = 0;
4229 long offset = 0;
4230 int size_minus = 0;
4231 long size = 0;
4232 const char *start;
4233 char *base;
4234 int len_base;
4235 char *index;
4236 int len_index;
4237 struct stoken base_token, index_token;
4238
4239 if (*s == '+')
4240 ++s;
4241 else if (*s == '-')
4242 {
4243 ++s;
4244 offset_minus = 1;
4245 }
4246
4247 if (offset_minus && !isdigit (*s))
4248 return 0;
4249
4250 if (isdigit (*s))
4251 {
4252 char *endp;
4253
4254 offset = strtol (s, &endp, 10);
4255 s = endp;
4256 }
4257
4258 if (*s != '(' || s[1] != '%')
4259 return 0;
4260
4261 s += 2;
4262 start = s;
4263
4264 while (isalnum (*s))
4265 ++s;
4266
4267 if (*s != ',' || s[1] != '%')
4268 return 0;
4269
4270 len_base = s - start;
4271 base = (char *) alloca (len_base + 1);
4272 strncpy (base, start, len_base);
4273 base[len_base] = '\0';
4274
4275 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4276 error (_("Invalid register name `%s' on expression `%s'."),
4277 base, p->saved_arg);
4278
4279 s += 2;
4280 start = s;
4281
4282 while (isalnum (*s))
4283 ++s;
4284
4285 len_index = s - start;
4286 index = (char *) alloca (len_index + 1);
4287 strncpy (index, start, len_index);
4288 index[len_index] = '\0';
4289
4290 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4291 error (_("Invalid register name `%s' on expression `%s'."),
4292 index, p->saved_arg);
4293
4294 if (*s != ',' && *s != ')')
4295 return 0;
4296
4297 if (*s == ',')
4298 {
4299 char *endp;
4300
4301 ++s;
4302 if (*s == '+')
4303 ++s;
4304 else if (*s == '-')
4305 {
4306 ++s;
4307 size_minus = 1;
4308 }
4309
4310 size = strtol (s, &endp, 10);
4311 s = endp;
4312
4313 if (*s != ')')
4314 return 0;
4315 }
4316
4317 ++s;
4318
4319 if (offset)
4320 {
4321 write_exp_elt_opcode (&p->pstate, OP_LONG);
4322 write_exp_elt_type (&p->pstate,
4323 builtin_type (gdbarch)->builtin_long);
4324 write_exp_elt_longcst (&p->pstate, offset);
4325 write_exp_elt_opcode (&p->pstate, OP_LONG);
4326 if (offset_minus)
4327 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4328 }
4329
4330 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4331 base_token.ptr = base;
4332 base_token.length = len_base;
4333 write_exp_string (&p->pstate, base_token);
4334 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4335
4336 if (offset)
4337 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4338
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4340 index_token.ptr = index;
4341 index_token.length = len_index;
4342 write_exp_string (&p->pstate, index_token);
4343 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4344
4345 if (size)
4346 {
4347 write_exp_elt_opcode (&p->pstate, OP_LONG);
4348 write_exp_elt_type (&p->pstate,
4349 builtin_type (gdbarch)->builtin_long);
4350 write_exp_elt_longcst (&p->pstate, size);
4351 write_exp_elt_opcode (&p->pstate, OP_LONG);
4352 if (size_minus)
4353 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4354 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4355 }
4356
4357 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4358
4359 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4360 write_exp_elt_type (&p->pstate,
4361 lookup_pointer_type (p->arg_type));
4362 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4363
4364 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4365
4366 p->arg = s;
4367
4368 return 1;
4369 }
4370
4371 return 0;
4372 }
4373
4374 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4375 gdbarch.h. */
4376
4377 int
4378 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4379 struct stap_parse_info *p)
4380 {
4381 /* In order to parse special tokens, we use a state-machine that go
4382 through every known token and try to get a match. */
4383 enum
4384 {
4385 TRIPLET,
4386 THREE_ARG_DISPLACEMENT,
4387 DONE
4388 };
4389 int current_state;
4390
4391 current_state = TRIPLET;
4392
4393 /* The special tokens to be parsed here are:
4394
4395 - `register base + (register index * size) + offset', as represented
4396 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4397
4398 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4399 `*(-8 + 3 - 1 + (void *) $eax)'. */
4400
4401 while (current_state != DONE)
4402 {
4403 switch (current_state)
4404 {
4405 case TRIPLET:
4406 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4407 return 1;
4408 break;
4409
4410 case THREE_ARG_DISPLACEMENT:
4411 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4412 return 1;
4413 break;
4414 }
4415
4416 /* Advancing to the next state. */
4417 ++current_state;
4418 }
4419
4420 return 0;
4421 }
4422
4423 \f
4424
4425 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4426 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4427
4428 static const char *
4429 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4430 {
4431 return "(x86_64|i.86)";
4432 }
4433
4434 \f
4435
4436 /* Generic ELF. */
4437
4438 void
4439 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4440 {
4441 static const char *const stap_integer_prefixes[] = { "$", NULL };
4442 static const char *const stap_register_prefixes[] = { "%", NULL };
4443 static const char *const stap_register_indirection_prefixes[] = { "(",
4444 NULL };
4445 static const char *const stap_register_indirection_suffixes[] = { ")",
4446 NULL };
4447
4448 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4449 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4450
4451 /* Registering SystemTap handlers. */
4452 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4453 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4454 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4455 stap_register_indirection_prefixes);
4456 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4457 stap_register_indirection_suffixes);
4458 set_gdbarch_stap_is_single_operand (gdbarch,
4459 i386_stap_is_single_operand);
4460 set_gdbarch_stap_parse_special_token (gdbarch,
4461 i386_stap_parse_special_token);
4462
4463 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4464 }
4465
4466 /* System V Release 4 (SVR4). */
4467
4468 void
4469 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470 {
4471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4472
4473 /* System V Release 4 uses ELF. */
4474 i386_elf_init_abi (info, gdbarch);
4475
4476 /* System V Release 4 has shared libraries. */
4477 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4478
4479 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4480 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4481 tdep->sc_pc_offset = 36 + 14 * 4;
4482 tdep->sc_sp_offset = 36 + 17 * 4;
4483
4484 tdep->jb_pc_offset = 20;
4485 }
4486
4487 /* DJGPP. */
4488
4489 static void
4490 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4491 {
4492 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4493
4494 /* DJGPP doesn't have any special frames for signal handlers. */
4495 tdep->sigtramp_p = NULL;
4496
4497 tdep->jb_pc_offset = 36;
4498
4499 /* DJGPP does not support the SSE registers. */
4500 if (! tdesc_has_registers (info.target_desc))
4501 tdep->tdesc = tdesc_i386_mmx;
4502
4503 /* Native compiler is GCC, which uses the SVR4 register numbering
4504 even in COFF and STABS. See the comment in i386_gdbarch_init,
4505 before the calls to set_gdbarch_stab_reg_to_regnum and
4506 set_gdbarch_sdb_reg_to_regnum. */
4507 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4508 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4509
4510 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4511
4512 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4513 }
4514 \f
4515
4516 /* i386 register groups. In addition to the normal groups, add "mmx"
4517 and "sse". */
4518
4519 static struct reggroup *i386_sse_reggroup;
4520 static struct reggroup *i386_mmx_reggroup;
4521
4522 static void
4523 i386_init_reggroups (void)
4524 {
4525 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4526 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4527 }
4528
4529 static void
4530 i386_add_reggroups (struct gdbarch *gdbarch)
4531 {
4532 reggroup_add (gdbarch, i386_sse_reggroup);
4533 reggroup_add (gdbarch, i386_mmx_reggroup);
4534 reggroup_add (gdbarch, general_reggroup);
4535 reggroup_add (gdbarch, float_reggroup);
4536 reggroup_add (gdbarch, all_reggroup);
4537 reggroup_add (gdbarch, save_reggroup);
4538 reggroup_add (gdbarch, restore_reggroup);
4539 reggroup_add (gdbarch, vector_reggroup);
4540 reggroup_add (gdbarch, system_reggroup);
4541 }
4542
4543 int
4544 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4545 struct reggroup *group)
4546 {
4547 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4548 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4549 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4550 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4551 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4552 avx512_p, avx_p, sse_p, pkru_regnum_p;
4553
4554 /* Don't include pseudo registers, except for MMX, in any register
4555 groups. */
4556 if (i386_byte_regnum_p (gdbarch, regnum))
4557 return 0;
4558
4559 if (i386_word_regnum_p (gdbarch, regnum))
4560 return 0;
4561
4562 if (i386_dword_regnum_p (gdbarch, regnum))
4563 return 0;
4564
4565 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4566 if (group == i386_mmx_reggroup)
4567 return mmx_regnum_p;
4568
4569 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4570 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4571 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4572 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4573 if (group == i386_sse_reggroup)
4574 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4575
4576 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4577 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4578 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4579
4580 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4581 == X86_XSTATE_AVX_AVX512_MASK);
4582 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4583 == X86_XSTATE_AVX_MASK) && !avx512_p;
4584 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4585 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4586
4587 if (group == vector_reggroup)
4588 return (mmx_regnum_p
4589 || (zmm_regnum_p && avx512_p)
4590 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4591 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4592 || mxcsr_regnum_p);
4593
4594 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4595 || i386_fpc_regnum_p (gdbarch, regnum));
4596 if (group == float_reggroup)
4597 return fp_regnum_p;
4598
4599 /* For "info reg all", don't include upper YMM registers nor XMM
4600 registers when AVX is supported. */
4601 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4602 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4603 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4604 if (group == all_reggroup
4605 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4606 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4607 || ymmh_regnum_p
4608 || ymmh_avx512_regnum_p
4609 || zmmh_regnum_p))
4610 return 0;
4611
4612 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4613 if (group == all_reggroup
4614 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4615 return bnd_regnum_p;
4616
4617 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4618 if (group == all_reggroup
4619 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4620 return 0;
4621
4622 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4623 if (group == all_reggroup
4624 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4625 return mpx_ctrl_regnum_p;
4626
4627 if (group == general_reggroup)
4628 return (!fp_regnum_p
4629 && !mmx_regnum_p
4630 && !mxcsr_regnum_p
4631 && !xmm_regnum_p
4632 && !xmm_avx512_regnum_p
4633 && !ymm_regnum_p
4634 && !ymmh_regnum_p
4635 && !ymm_avx512_regnum_p
4636 && !ymmh_avx512_regnum_p
4637 && !bndr_regnum_p
4638 && !bnd_regnum_p
4639 && !mpx_ctrl_regnum_p
4640 && !zmm_regnum_p
4641 && !zmmh_regnum_p
4642 && !pkru_regnum_p);
4643
4644 return default_register_reggroup_p (gdbarch, regnum, group);
4645 }
4646 \f
4647
4648 /* Get the ARGIth function argument for the current function. */
4649
4650 static CORE_ADDR
4651 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4652 struct type *type)
4653 {
4654 struct gdbarch *gdbarch = get_frame_arch (frame);
4655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4656 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4657 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4658 }
4659
4660 #define PREFIX_REPZ 0x01
4661 #define PREFIX_REPNZ 0x02
4662 #define PREFIX_LOCK 0x04
4663 #define PREFIX_DATA 0x08
4664 #define PREFIX_ADDR 0x10
4665
4666 /* operand size */
4667 enum
4668 {
4669 OT_BYTE = 0,
4670 OT_WORD,
4671 OT_LONG,
4672 OT_QUAD,
4673 OT_DQUAD,
4674 };
4675
4676 /* i386 arith/logic operations */
4677 enum
4678 {
4679 OP_ADDL,
4680 OP_ORL,
4681 OP_ADCL,
4682 OP_SBBL,
4683 OP_ANDL,
4684 OP_SUBL,
4685 OP_XORL,
4686 OP_CMPL,
4687 };
4688
4689 struct i386_record_s
4690 {
4691 struct gdbarch *gdbarch;
4692 struct regcache *regcache;
4693 CORE_ADDR orig_addr;
4694 CORE_ADDR addr;
4695 int aflag;
4696 int dflag;
4697 int override;
4698 uint8_t modrm;
4699 uint8_t mod, reg, rm;
4700 int ot;
4701 uint8_t rex_x;
4702 uint8_t rex_b;
4703 int rip_offset;
4704 int popl_esp_hack;
4705 const int *regmap;
4706 };
4707
4708 /* Parse the "modrm" part of the memory address irp->addr points at.
4709 Returns -1 if something goes wrong, 0 otherwise. */
4710
4711 static int
4712 i386_record_modrm (struct i386_record_s *irp)
4713 {
4714 struct gdbarch *gdbarch = irp->gdbarch;
4715
4716 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4717 return -1;
4718
4719 irp->addr++;
4720 irp->mod = (irp->modrm >> 6) & 3;
4721 irp->reg = (irp->modrm >> 3) & 7;
4722 irp->rm = irp->modrm & 7;
4723
4724 return 0;
4725 }
4726
4727 /* Extract the memory address that the current instruction writes to,
4728 and return it in *ADDR. Return -1 if something goes wrong. */
4729
4730 static int
4731 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4732 {
4733 struct gdbarch *gdbarch = irp->gdbarch;
4734 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4735 gdb_byte buf[4];
4736 ULONGEST offset64;
4737
4738 *addr = 0;
4739 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4740 {
4741 /* 32/64 bits */
4742 int havesib = 0;
4743 uint8_t scale = 0;
4744 uint8_t byte;
4745 uint8_t index = 0;
4746 uint8_t base = irp->rm;
4747
4748 if (base == 4)
4749 {
4750 havesib = 1;
4751 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4752 return -1;
4753 irp->addr++;
4754 scale = (byte >> 6) & 3;
4755 index = ((byte >> 3) & 7) | irp->rex_x;
4756 base = (byte & 7);
4757 }
4758 base |= irp->rex_b;
4759
4760 switch (irp->mod)
4761 {
4762 case 0:
4763 if ((base & 7) == 5)
4764 {
4765 base = 0xff;
4766 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4767 return -1;
4768 irp->addr += 4;
4769 *addr = extract_signed_integer (buf, 4, byte_order);
4770 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4771 *addr += irp->addr + irp->rip_offset;
4772 }
4773 break;
4774 case 1:
4775 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4776 return -1;
4777 irp->addr++;
4778 *addr = (int8_t) buf[0];
4779 break;
4780 case 2:
4781 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4782 return -1;
4783 *addr = extract_signed_integer (buf, 4, byte_order);
4784 irp->addr += 4;
4785 break;
4786 }
4787
4788 offset64 = 0;
4789 if (base != 0xff)
4790 {
4791 if (base == 4 && irp->popl_esp_hack)
4792 *addr += irp->popl_esp_hack;
4793 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4794 &offset64);
4795 }
4796 if (irp->aflag == 2)
4797 {
4798 *addr += offset64;
4799 }
4800 else
4801 *addr = (uint32_t) (offset64 + *addr);
4802
4803 if (havesib && (index != 4 || scale != 0))
4804 {
4805 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4806 &offset64);
4807 if (irp->aflag == 2)
4808 *addr += offset64 << scale;
4809 else
4810 *addr = (uint32_t) (*addr + (offset64 << scale));
4811 }
4812
4813 if (!irp->aflag)
4814 {
4815 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4816 address from 32-bit to 64-bit. */
4817 *addr = (uint32_t) *addr;
4818 }
4819 }
4820 else
4821 {
4822 /* 16 bits */
4823 switch (irp->mod)
4824 {
4825 case 0:
4826 if (irp->rm == 6)
4827 {
4828 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4829 return -1;
4830 irp->addr += 2;
4831 *addr = extract_signed_integer (buf, 2, byte_order);
4832 irp->rm = 0;
4833 goto no_rm;
4834 }
4835 break;
4836 case 1:
4837 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4838 return -1;
4839 irp->addr++;
4840 *addr = (int8_t) buf[0];
4841 break;
4842 case 2:
4843 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4844 return -1;
4845 irp->addr += 2;
4846 *addr = extract_signed_integer (buf, 2, byte_order);
4847 break;
4848 }
4849
4850 switch (irp->rm)
4851 {
4852 case 0:
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_REBX_REGNUM],
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_RESI_REGNUM],
4859 &offset64);
4860 *addr = (uint32_t) (*addr + offset64);
4861 break;
4862 case 1:
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REBX_REGNUM],
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_REDI_REGNUM],
4869 &offset64);
4870 *addr = (uint32_t) (*addr + offset64);
4871 break;
4872 case 2:
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_REBP_REGNUM],
4875 &offset64);
4876 *addr = (uint32_t) (*addr + offset64);
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_RESI_REGNUM],
4879 &offset64);
4880 *addr = (uint32_t) (*addr + offset64);
4881 break;
4882 case 3:
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REBP_REGNUM],
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REDI_REGNUM],
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
4891 break;
4892 case 4:
4893 regcache_raw_read_unsigned (irp->regcache,
4894 irp->regmap[X86_RECORD_RESI_REGNUM],
4895 &offset64);
4896 *addr = (uint32_t) (*addr + offset64);
4897 break;
4898 case 5:
4899 regcache_raw_read_unsigned (irp->regcache,
4900 irp->regmap[X86_RECORD_REDI_REGNUM],
4901 &offset64);
4902 *addr = (uint32_t) (*addr + offset64);
4903 break;
4904 case 6:
4905 regcache_raw_read_unsigned (irp->regcache,
4906 irp->regmap[X86_RECORD_REBP_REGNUM],
4907 &offset64);
4908 *addr = (uint32_t) (*addr + offset64);
4909 break;
4910 case 7:
4911 regcache_raw_read_unsigned (irp->regcache,
4912 irp->regmap[X86_RECORD_REBX_REGNUM],
4913 &offset64);
4914 *addr = (uint32_t) (*addr + offset64);
4915 break;
4916 }
4917 *addr &= 0xffff;
4918 }
4919
4920 no_rm:
4921 return 0;
4922 }
4923
4924 /* Record the address and contents of the memory that will be changed
4925 by the current instruction. Return -1 if something goes wrong, 0
4926 otherwise. */
4927
4928 static int
4929 i386_record_lea_modrm (struct i386_record_s *irp)
4930 {
4931 struct gdbarch *gdbarch = irp->gdbarch;
4932 uint64_t addr;
4933
4934 if (irp->override >= 0)
4935 {
4936 if (record_full_memory_query)
4937 {
4938 if (yquery (_("\
4939 Process record ignores the memory change of instruction at address %s\n\
4940 because it can't get the value of the segment register.\n\
4941 Do you want to stop the program?"),
4942 paddress (gdbarch, irp->orig_addr)))
4943 return -1;
4944 }
4945
4946 return 0;
4947 }
4948
4949 if (i386_record_lea_modrm_addr (irp, &addr))
4950 return -1;
4951
4952 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4953 return -1;
4954
4955 return 0;
4956 }
4957
4958 /* Record the effects of a push operation. Return -1 if something
4959 goes wrong, 0 otherwise. */
4960
4961 static int
4962 i386_record_push (struct i386_record_s *irp, int size)
4963 {
4964 ULONGEST addr;
4965
4966 if (record_full_arch_list_add_reg (irp->regcache,
4967 irp->regmap[X86_RECORD_RESP_REGNUM]))
4968 return -1;
4969 regcache_raw_read_unsigned (irp->regcache,
4970 irp->regmap[X86_RECORD_RESP_REGNUM],
4971 &addr);
4972 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4973 return -1;
4974
4975 return 0;
4976 }
4977
4978
4979 /* Defines contents to record. */
4980 #define I386_SAVE_FPU_REGS 0xfffd
4981 #define I386_SAVE_FPU_ENV 0xfffe
4982 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4983
4984 /* Record the values of the floating point registers which will be
4985 changed by the current instruction. Returns -1 if something is
4986 wrong, 0 otherwise. */
4987
4988 static int i386_record_floats (struct gdbarch *gdbarch,
4989 struct i386_record_s *ir,
4990 uint32_t iregnum)
4991 {
4992 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4993 int i;
4994
4995 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4996 happen. Currently we store st0-st7 registers, but we need not store all
4997 registers all the time, in future we use ftag register and record only
4998 those who are not marked as an empty. */
4999
5000 if (I386_SAVE_FPU_REGS == iregnum)
5001 {
5002 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5003 {
5004 if (record_full_arch_list_add_reg (ir->regcache, i))
5005 return -1;
5006 }
5007 }
5008 else if (I386_SAVE_FPU_ENV == iregnum)
5009 {
5010 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5011 {
5012 if (record_full_arch_list_add_reg (ir->regcache, i))
5013 return -1;
5014 }
5015 }
5016 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5017 {
5018 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 {
5020 if (record_full_arch_list_add_reg (ir->regcache, i))
5021 return -1;
5022 }
5023 }
5024 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5025 (iregnum <= I387_FOP_REGNUM (tdep)))
5026 {
5027 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5028 return -1;
5029 }
5030 else
5031 {
5032 /* Parameter error. */
5033 return -1;
5034 }
5035 if(I386_SAVE_FPU_ENV != iregnum)
5036 {
5037 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5038 {
5039 if (record_full_arch_list_add_reg (ir->regcache, i))
5040 return -1;
5041 }
5042 }
5043 return 0;
5044 }
5045
5046 /* Parse the current instruction, and record the values of the
5047 registers and memory that will be changed by the current
5048 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5049
5050 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5051 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5052
5053 int
5054 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5055 CORE_ADDR input_addr)
5056 {
5057 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5058 int prefixes = 0;
5059 int regnum = 0;
5060 uint32_t opcode;
5061 uint8_t opcode8;
5062 ULONGEST addr;
5063 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5064 struct i386_record_s ir;
5065 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5066 uint8_t rex_w = -1;
5067 uint8_t rex_r = 0;
5068
5069 memset (&ir, 0, sizeof (struct i386_record_s));
5070 ir.regcache = regcache;
5071 ir.addr = input_addr;
5072 ir.orig_addr = input_addr;
5073 ir.aflag = 1;
5074 ir.dflag = 1;
5075 ir.override = -1;
5076 ir.popl_esp_hack = 0;
5077 ir.regmap = tdep->record_regmap;
5078 ir.gdbarch = gdbarch;
5079
5080 if (record_debug > 1)
5081 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5082 "addr = %s\n",
5083 paddress (gdbarch, ir.addr));
5084
5085 /* prefixes */
5086 while (1)
5087 {
5088 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5089 return -1;
5090 ir.addr++;
5091 switch (opcode8) /* Instruction prefixes */
5092 {
5093 case REPE_PREFIX_OPCODE:
5094 prefixes |= PREFIX_REPZ;
5095 break;
5096 case REPNE_PREFIX_OPCODE:
5097 prefixes |= PREFIX_REPNZ;
5098 break;
5099 case LOCK_PREFIX_OPCODE:
5100 prefixes |= PREFIX_LOCK;
5101 break;
5102 case CS_PREFIX_OPCODE:
5103 ir.override = X86_RECORD_CS_REGNUM;
5104 break;
5105 case SS_PREFIX_OPCODE:
5106 ir.override = X86_RECORD_SS_REGNUM;
5107 break;
5108 case DS_PREFIX_OPCODE:
5109 ir.override = X86_RECORD_DS_REGNUM;
5110 break;
5111 case ES_PREFIX_OPCODE:
5112 ir.override = X86_RECORD_ES_REGNUM;
5113 break;
5114 case FS_PREFIX_OPCODE:
5115 ir.override = X86_RECORD_FS_REGNUM;
5116 break;
5117 case GS_PREFIX_OPCODE:
5118 ir.override = X86_RECORD_GS_REGNUM;
5119 break;
5120 case DATA_PREFIX_OPCODE:
5121 prefixes |= PREFIX_DATA;
5122 break;
5123 case ADDR_PREFIX_OPCODE:
5124 prefixes |= PREFIX_ADDR;
5125 break;
5126 case 0x40: /* i386 inc %eax */
5127 case 0x41: /* i386 inc %ecx */
5128 case 0x42: /* i386 inc %edx */
5129 case 0x43: /* i386 inc %ebx */
5130 case 0x44: /* i386 inc %esp */
5131 case 0x45: /* i386 inc %ebp */
5132 case 0x46: /* i386 inc %esi */
5133 case 0x47: /* i386 inc %edi */
5134 case 0x48: /* i386 dec %eax */
5135 case 0x49: /* i386 dec %ecx */
5136 case 0x4a: /* i386 dec %edx */
5137 case 0x4b: /* i386 dec %ebx */
5138 case 0x4c: /* i386 dec %esp */
5139 case 0x4d: /* i386 dec %ebp */
5140 case 0x4e: /* i386 dec %esi */
5141 case 0x4f: /* i386 dec %edi */
5142 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5143 {
5144 /* REX */
5145 rex_w = (opcode8 >> 3) & 1;
5146 rex_r = (opcode8 & 0x4) << 1;
5147 ir.rex_x = (opcode8 & 0x2) << 2;
5148 ir.rex_b = (opcode8 & 0x1) << 3;
5149 }
5150 else /* 32 bit target */
5151 goto out_prefixes;
5152 break;
5153 default:
5154 goto out_prefixes;
5155 break;
5156 }
5157 }
5158 out_prefixes:
5159 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5160 {
5161 ir.dflag = 2;
5162 }
5163 else
5164 {
5165 if (prefixes & PREFIX_DATA)
5166 ir.dflag ^= 1;
5167 }
5168 if (prefixes & PREFIX_ADDR)
5169 ir.aflag ^= 1;
5170 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5171 ir.aflag = 2;
5172
5173 /* Now check op code. */
5174 opcode = (uint32_t) opcode8;
5175 reswitch:
5176 switch (opcode)
5177 {
5178 case 0x0f:
5179 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5180 return -1;
5181 ir.addr++;
5182 opcode = (uint32_t) opcode8 | 0x0f00;
5183 goto reswitch;
5184 break;
5185
5186 case 0x00: /* arith & logic */
5187 case 0x01:
5188 case 0x02:
5189 case 0x03:
5190 case 0x04:
5191 case 0x05:
5192 case 0x08:
5193 case 0x09:
5194 case 0x0a:
5195 case 0x0b:
5196 case 0x0c:
5197 case 0x0d:
5198 case 0x10:
5199 case 0x11:
5200 case 0x12:
5201 case 0x13:
5202 case 0x14:
5203 case 0x15:
5204 case 0x18:
5205 case 0x19:
5206 case 0x1a:
5207 case 0x1b:
5208 case 0x1c:
5209 case 0x1d:
5210 case 0x20:
5211 case 0x21:
5212 case 0x22:
5213 case 0x23:
5214 case 0x24:
5215 case 0x25:
5216 case 0x28:
5217 case 0x29:
5218 case 0x2a:
5219 case 0x2b:
5220 case 0x2c:
5221 case 0x2d:
5222 case 0x30:
5223 case 0x31:
5224 case 0x32:
5225 case 0x33:
5226 case 0x34:
5227 case 0x35:
5228 case 0x38:
5229 case 0x39:
5230 case 0x3a:
5231 case 0x3b:
5232 case 0x3c:
5233 case 0x3d:
5234 if (((opcode >> 3) & 7) != OP_CMPL)
5235 {
5236 if ((opcode & 1) == 0)
5237 ir.ot = OT_BYTE;
5238 else
5239 ir.ot = ir.dflag + OT_WORD;
5240
5241 switch ((opcode >> 1) & 3)
5242 {
5243 case 0: /* OP Ev, Gv */
5244 if (i386_record_modrm (&ir))
5245 return -1;
5246 if (ir.mod != 3)
5247 {
5248 if (i386_record_lea_modrm (&ir))
5249 return -1;
5250 }
5251 else
5252 {
5253 ir.rm |= ir.rex_b;
5254 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5255 ir.rm &= 0x3;
5256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5257 }
5258 break;
5259 case 1: /* OP Gv, Ev */
5260 if (i386_record_modrm (&ir))
5261 return -1;
5262 ir.reg |= rex_r;
5263 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5264 ir.reg &= 0x3;
5265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5266 break;
5267 case 2: /* OP A, Iv */
5268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5269 break;
5270 }
5271 }
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5273 break;
5274
5275 case 0x80: /* GRP1 */
5276 case 0x81:
5277 case 0x82:
5278 case 0x83:
5279 if (i386_record_modrm (&ir))
5280 return -1;
5281
5282 if (ir.reg != OP_CMPL)
5283 {
5284 if ((opcode & 1) == 0)
5285 ir.ot = OT_BYTE;
5286 else
5287 ir.ot = ir.dflag + OT_WORD;
5288
5289 if (ir.mod != 3)
5290 {
5291 if (opcode == 0x83)
5292 ir.rip_offset = 1;
5293 else
5294 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5295 if (i386_record_lea_modrm (&ir))
5296 return -1;
5297 }
5298 else
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5300 }
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5302 break;
5303
5304 case 0x40: /* inc */
5305 case 0x41:
5306 case 0x42:
5307 case 0x43:
5308 case 0x44:
5309 case 0x45:
5310 case 0x46:
5311 case 0x47:
5312
5313 case 0x48: /* dec */
5314 case 0x49:
5315 case 0x4a:
5316 case 0x4b:
5317 case 0x4c:
5318 case 0x4d:
5319 case 0x4e:
5320 case 0x4f:
5321
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5324 break;
5325
5326 case 0xf6: /* GRP3 */
5327 case 0xf7:
5328 if ((opcode & 1) == 0)
5329 ir.ot = OT_BYTE;
5330 else
5331 ir.ot = ir.dflag + OT_WORD;
5332 if (i386_record_modrm (&ir))
5333 return -1;
5334
5335 if (ir.mod != 3 && ir.reg == 0)
5336 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5337
5338 switch (ir.reg)
5339 {
5340 case 0: /* test */
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5342 break;
5343 case 2: /* not */
5344 case 3: /* neg */
5345 if (ir.mod != 3)
5346 {
5347 if (i386_record_lea_modrm (&ir))
5348 return -1;
5349 }
5350 else
5351 {
5352 ir.rm |= ir.rex_b;
5353 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5354 ir.rm &= 0x3;
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5356 }
5357 if (ir.reg == 3) /* neg */
5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5359 break;
5360 case 4: /* mul */
5361 case 5: /* imul */
5362 case 6: /* div */
5363 case 7: /* idiv */
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5365 if (ir.ot != OT_BYTE)
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5368 break;
5369 default:
5370 ir.addr -= 2;
5371 opcode = opcode << 8 | ir.modrm;
5372 goto no_support;
5373 break;
5374 }
5375 break;
5376
5377 case 0xfe: /* GRP4 */
5378 case 0xff: /* GRP5 */
5379 if (i386_record_modrm (&ir))
5380 return -1;
5381 if (ir.reg >= 2 && opcode == 0xfe)
5382 {
5383 ir.addr -= 2;
5384 opcode = opcode << 8 | ir.modrm;
5385 goto no_support;
5386 }
5387 switch (ir.reg)
5388 {
5389 case 0: /* inc */
5390 case 1: /* dec */
5391 if ((opcode & 1) == 0)
5392 ir.ot = OT_BYTE;
5393 else
5394 ir.ot = ir.dflag + OT_WORD;
5395 if (ir.mod != 3)
5396 {
5397 if (i386_record_lea_modrm (&ir))
5398 return -1;
5399 }
5400 else
5401 {
5402 ir.rm |= ir.rex_b;
5403 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5404 ir.rm &= 0x3;
5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5406 }
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5408 break;
5409 case 2: /* call */
5410 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5411 ir.dflag = 2;
5412 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5413 return -1;
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5415 break;
5416 case 3: /* lcall */
5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5418 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5419 return -1;
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422 case 4: /* jmp */
5423 case 5: /* ljmp */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5425 break;
5426 case 6: /* push */
5427 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5428 ir.dflag = 2;
5429 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5430 return -1;
5431 break;
5432 default:
5433 ir.addr -= 2;
5434 opcode = opcode << 8 | ir.modrm;
5435 goto no_support;
5436 break;
5437 }
5438 break;
5439
5440 case 0x84: /* test */
5441 case 0x85:
5442 case 0xa8:
5443 case 0xa9:
5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5445 break;
5446
5447 case 0x98: /* CWDE/CBW */
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5449 break;
5450
5451 case 0x99: /* CDQ/CWD */
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5454 break;
5455
5456 case 0x0faf: /* imul */
5457 case 0x69:
5458 case 0x6b:
5459 ir.ot = ir.dflag + OT_WORD;
5460 if (i386_record_modrm (&ir))
5461 return -1;
5462 if (opcode == 0x69)
5463 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5464 else if (opcode == 0x6b)
5465 ir.rip_offset = 1;
5466 ir.reg |= rex_r;
5467 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5468 ir.reg &= 0x3;
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5471 break;
5472
5473 case 0x0fc0: /* xadd */
5474 case 0x0fc1:
5475 if ((opcode & 1) == 0)
5476 ir.ot = OT_BYTE;
5477 else
5478 ir.ot = ir.dflag + OT_WORD;
5479 if (i386_record_modrm (&ir))
5480 return -1;
5481 ir.reg |= rex_r;
5482 if (ir.mod == 3)
5483 {
5484 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5485 ir.reg &= 0x3;
5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5487 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5488 ir.rm &= 0x3;
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5490 }
5491 else
5492 {
5493 if (i386_record_lea_modrm (&ir))
5494 return -1;
5495 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5496 ir.reg &= 0x3;
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5498 }
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5500 break;
5501
5502 case 0x0fb0: /* cmpxchg */
5503 case 0x0fb1:
5504 if ((opcode & 1) == 0)
5505 ir.ot = OT_BYTE;
5506 else
5507 ir.ot = ir.dflag + OT_WORD;
5508 if (i386_record_modrm (&ir))
5509 return -1;
5510 if (ir.mod == 3)
5511 {
5512 ir.reg |= rex_r;
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5514 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5515 ir.reg &= 0x3;
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5517 }
5518 else
5519 {
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5521 if (i386_record_lea_modrm (&ir))
5522 return -1;
5523 }
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5525 break;
5526
5527 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5528 if (i386_record_modrm (&ir))
5529 return -1;
5530 if (ir.mod == 3)
5531 {
5532 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5533 an extended opcode. rdrand has bits 110 (/6) and rdseed
5534 has bits 111 (/7). */
5535 if (ir.reg == 6 || ir.reg == 7)
5536 {
5537 /* The storage register is described by the 3 R/M bits, but the
5538 REX.B prefix may be used to give access to registers
5539 R8~R15. In this case ir.rex_b + R/M will give us the register
5540 in the range R8~R15.
5541
5542 REX.W may also be used to access 64-bit registers, but we
5543 already record entire registers and not just partial bits
5544 of them. */
5545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5546 /* These instructions also set conditional bits. */
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5548 break;
5549 }
5550 else
5551 {
5552 /* We don't handle this particular instruction yet. */
5553 ir.addr -= 2;
5554 opcode = opcode << 8 | ir.modrm;
5555 goto no_support;
5556 }
5557 }
5558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5560 if (i386_record_lea_modrm (&ir))
5561 return -1;
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5563 break;
5564
5565 case 0x50: /* push */
5566 case 0x51:
5567 case 0x52:
5568 case 0x53:
5569 case 0x54:
5570 case 0x55:
5571 case 0x56:
5572 case 0x57:
5573 case 0x68:
5574 case 0x6a:
5575 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5576 ir.dflag = 2;
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5578 return -1;
5579 break;
5580
5581 case 0x06: /* push es */
5582 case 0x0e: /* push cs */
5583 case 0x16: /* push ss */
5584 case 0x1e: /* push ds */
5585 if (ir.regmap[X86_RECORD_R8_REGNUM])
5586 {
5587 ir.addr -= 1;
5588 goto no_support;
5589 }
5590 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5591 return -1;
5592 break;
5593
5594 case 0x0fa0: /* push fs */
5595 case 0x0fa8: /* push gs */
5596 if (ir.regmap[X86_RECORD_R8_REGNUM])
5597 {
5598 ir.addr -= 2;
5599 goto no_support;
5600 }
5601 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5602 return -1;
5603 break;
5604
5605 case 0x60: /* pusha */
5606 if (ir.regmap[X86_RECORD_R8_REGNUM])
5607 {
5608 ir.addr -= 1;
5609 goto no_support;
5610 }
5611 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5612 return -1;
5613 break;
5614
5615 case 0x58: /* pop */
5616 case 0x59:
5617 case 0x5a:
5618 case 0x5b:
5619 case 0x5c:
5620 case 0x5d:
5621 case 0x5e:
5622 case 0x5f:
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5625 break;
5626
5627 case 0x61: /* popa */
5628 if (ir.regmap[X86_RECORD_R8_REGNUM])
5629 {
5630 ir.addr -= 1;
5631 goto no_support;
5632 }
5633 for (regnum = X86_RECORD_REAX_REGNUM;
5634 regnum <= X86_RECORD_REDI_REGNUM;
5635 regnum++)
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5637 break;
5638
5639 case 0x8f: /* pop */
5640 if (ir.regmap[X86_RECORD_R8_REGNUM])
5641 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5642 else
5643 ir.ot = ir.dflag + OT_WORD;
5644 if (i386_record_modrm (&ir))
5645 return -1;
5646 if (ir.mod == 3)
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5648 else
5649 {
5650 ir.popl_esp_hack = 1 << ir.ot;
5651 if (i386_record_lea_modrm (&ir))
5652 return -1;
5653 }
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5655 break;
5656
5657 case 0xc8: /* enter */
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5659 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5660 ir.dflag = 2;
5661 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5662 return -1;
5663 break;
5664
5665 case 0xc9: /* leave */
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5668 break;
5669
5670 case 0x07: /* pop es */
5671 if (ir.regmap[X86_RECORD_R8_REGNUM])
5672 {
5673 ir.addr -= 1;
5674 goto no_support;
5675 }
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5679 break;
5680
5681 case 0x17: /* pop ss */
5682 if (ir.regmap[X86_RECORD_R8_REGNUM])
5683 {
5684 ir.addr -= 1;
5685 goto no_support;
5686 }
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5690 break;
5691
5692 case 0x1f: /* pop ds */
5693 if (ir.regmap[X86_RECORD_R8_REGNUM])
5694 {
5695 ir.addr -= 1;
5696 goto no_support;
5697 }
5698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5701 break;
5702
5703 case 0x0fa1: /* pop fs */
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5707 break;
5708
5709 case 0x0fa9: /* pop gs */
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5713 break;
5714
5715 case 0x88: /* mov */
5716 case 0x89:
5717 case 0xc6:
5718 case 0xc7:
5719 if ((opcode & 1) == 0)
5720 ir.ot = OT_BYTE;
5721 else
5722 ir.ot = ir.dflag + OT_WORD;
5723
5724 if (i386_record_modrm (&ir))
5725 return -1;
5726
5727 if (ir.mod != 3)
5728 {
5729 if (opcode == 0xc6 || opcode == 0xc7)
5730 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5731 if (i386_record_lea_modrm (&ir))
5732 return -1;
5733 }
5734 else
5735 {
5736 if (opcode == 0xc6 || opcode == 0xc7)
5737 ir.rm |= ir.rex_b;
5738 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5739 ir.rm &= 0x3;
5740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5741 }
5742 break;
5743
5744 case 0x8a: /* mov */
5745 case 0x8b:
5746 if ((opcode & 1) == 0)
5747 ir.ot = OT_BYTE;
5748 else
5749 ir.ot = ir.dflag + OT_WORD;
5750 if (i386_record_modrm (&ir))
5751 return -1;
5752 ir.reg |= rex_r;
5753 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5754 ir.reg &= 0x3;
5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5756 break;
5757
5758 case 0x8c: /* mov seg */
5759 if (i386_record_modrm (&ir))
5760 return -1;
5761 if (ir.reg > 5)
5762 {
5763 ir.addr -= 2;
5764 opcode = opcode << 8 | ir.modrm;
5765 goto no_support;
5766 }
5767
5768 if (ir.mod == 3)
5769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5770 else
5771 {
5772 ir.ot = OT_WORD;
5773 if (i386_record_lea_modrm (&ir))
5774 return -1;
5775 }
5776 break;
5777
5778 case 0x8e: /* mov seg */
5779 if (i386_record_modrm (&ir))
5780 return -1;
5781 switch (ir.reg)
5782 {
5783 case 0:
5784 regnum = X86_RECORD_ES_REGNUM;
5785 break;
5786 case 2:
5787 regnum = X86_RECORD_SS_REGNUM;
5788 break;
5789 case 3:
5790 regnum = X86_RECORD_DS_REGNUM;
5791 break;
5792 case 4:
5793 regnum = X86_RECORD_FS_REGNUM;
5794 break;
5795 case 5:
5796 regnum = X86_RECORD_GS_REGNUM;
5797 break;
5798 default:
5799 ir.addr -= 2;
5800 opcode = opcode << 8 | ir.modrm;
5801 goto no_support;
5802 break;
5803 }
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5806 break;
5807
5808 case 0x0fb6: /* movzbS */
5809 case 0x0fb7: /* movzwS */
5810 case 0x0fbe: /* movsbS */
5811 case 0x0fbf: /* movswS */
5812 if (i386_record_modrm (&ir))
5813 return -1;
5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5815 break;
5816
5817 case 0x8d: /* lea */
5818 if (i386_record_modrm (&ir))
5819 return -1;
5820 if (ir.mod == 3)
5821 {
5822 ir.addr -= 2;
5823 opcode = opcode << 8 | ir.modrm;
5824 goto no_support;
5825 }
5826 ir.ot = ir.dflag;
5827 ir.reg |= rex_r;
5828 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5829 ir.reg &= 0x3;
5830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5831 break;
5832
5833 case 0xa0: /* mov EAX */
5834 case 0xa1:
5835
5836 case 0xd7: /* xlat */
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5838 break;
5839
5840 case 0xa2: /* mov EAX */
5841 case 0xa3:
5842 if (ir.override >= 0)
5843 {
5844 if (record_full_memory_query)
5845 {
5846 if (yquery (_("\
5847 Process record ignores the memory change of instruction at address %s\n\
5848 because it can't get the value of the segment register.\n\
5849 Do you want to stop the program?"),
5850 paddress (gdbarch, ir.orig_addr)))
5851 return -1;
5852 }
5853 }
5854 else
5855 {
5856 if ((opcode & 1) == 0)
5857 ir.ot = OT_BYTE;
5858 else
5859 ir.ot = ir.dflag + OT_WORD;
5860 if (ir.aflag == 2)
5861 {
5862 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5863 return -1;
5864 ir.addr += 8;
5865 addr = extract_unsigned_integer (buf, 8, byte_order);
5866 }
5867 else if (ir.aflag)
5868 {
5869 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5870 return -1;
5871 ir.addr += 4;
5872 addr = extract_unsigned_integer (buf, 4, byte_order);
5873 }
5874 else
5875 {
5876 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5877 return -1;
5878 ir.addr += 2;
5879 addr = extract_unsigned_integer (buf, 2, byte_order);
5880 }
5881 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5882 return -1;
5883 }
5884 break;
5885
5886 case 0xb0: /* mov R, Ib */
5887 case 0xb1:
5888 case 0xb2:
5889 case 0xb3:
5890 case 0xb4:
5891 case 0xb5:
5892 case 0xb6:
5893 case 0xb7:
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5895 ? ((opcode & 0x7) | ir.rex_b)
5896 : ((opcode & 0x7) & 0x3));
5897 break;
5898
5899 case 0xb8: /* mov R, Iv */
5900 case 0xb9:
5901 case 0xba:
5902 case 0xbb:
5903 case 0xbc:
5904 case 0xbd:
5905 case 0xbe:
5906 case 0xbf:
5907 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5908 break;
5909
5910 case 0x91: /* xchg R, EAX */
5911 case 0x92:
5912 case 0x93:
5913 case 0x94:
5914 case 0x95:
5915 case 0x96:
5916 case 0x97:
5917 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5919 break;
5920
5921 case 0x86: /* xchg Ev, Gv */
5922 case 0x87:
5923 if ((opcode & 1) == 0)
5924 ir.ot = OT_BYTE;
5925 else
5926 ir.ot = ir.dflag + OT_WORD;
5927 if (i386_record_modrm (&ir))
5928 return -1;
5929 if (ir.mod == 3)
5930 {
5931 ir.rm |= ir.rex_b;
5932 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5933 ir.rm &= 0x3;
5934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5935 }
5936 else
5937 {
5938 if (i386_record_lea_modrm (&ir))
5939 return -1;
5940 }
5941 ir.reg |= rex_r;
5942 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5943 ir.reg &= 0x3;
5944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5945 break;
5946
5947 case 0xc4: /* les Gv */
5948 case 0xc5: /* lds Gv */
5949 if (ir.regmap[X86_RECORD_R8_REGNUM])
5950 {
5951 ir.addr -= 1;
5952 goto no_support;
5953 }
5954 /* FALLTHROUGH */
5955 case 0x0fb2: /* lss Gv */
5956 case 0x0fb4: /* lfs Gv */
5957 case 0x0fb5: /* lgs Gv */
5958 if (i386_record_modrm (&ir))
5959 return -1;
5960 if (ir.mod == 3)
5961 {
5962 if (opcode > 0xff)
5963 ir.addr -= 3;
5964 else
5965 ir.addr -= 2;
5966 opcode = opcode << 8 | ir.modrm;
5967 goto no_support;
5968 }
5969 switch (opcode)
5970 {
5971 case 0xc4: /* les Gv */
5972 regnum = X86_RECORD_ES_REGNUM;
5973 break;
5974 case 0xc5: /* lds Gv */
5975 regnum = X86_RECORD_DS_REGNUM;
5976 break;
5977 case 0x0fb2: /* lss Gv */
5978 regnum = X86_RECORD_SS_REGNUM;
5979 break;
5980 case 0x0fb4: /* lfs Gv */
5981 regnum = X86_RECORD_FS_REGNUM;
5982 break;
5983 case 0x0fb5: /* lgs Gv */
5984 regnum = X86_RECORD_GS_REGNUM;
5985 break;
5986 }
5987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5990 break;
5991
5992 case 0xc0: /* shifts */
5993 case 0xc1:
5994 case 0xd0:
5995 case 0xd1:
5996 case 0xd2:
5997 case 0xd3:
5998 if ((opcode & 1) == 0)
5999 ir.ot = OT_BYTE;
6000 else
6001 ir.ot = ir.dflag + OT_WORD;
6002 if (i386_record_modrm (&ir))
6003 return -1;
6004 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6005 {
6006 if (i386_record_lea_modrm (&ir))
6007 return -1;
6008 }
6009 else
6010 {
6011 ir.rm |= ir.rex_b;
6012 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6013 ir.rm &= 0x3;
6014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6015 }
6016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6017 break;
6018
6019 case 0x0fa4:
6020 case 0x0fa5:
6021 case 0x0fac:
6022 case 0x0fad:
6023 if (i386_record_modrm (&ir))
6024 return -1;
6025 if (ir.mod == 3)
6026 {
6027 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6028 return -1;
6029 }
6030 else
6031 {
6032 if (i386_record_lea_modrm (&ir))
6033 return -1;
6034 }
6035 break;
6036
6037 case 0xd8: /* Floats. */
6038 case 0xd9:
6039 case 0xda:
6040 case 0xdb:
6041 case 0xdc:
6042 case 0xdd:
6043 case 0xde:
6044 case 0xdf:
6045 if (i386_record_modrm (&ir))
6046 return -1;
6047 ir.reg |= ((opcode & 7) << 3);
6048 if (ir.mod != 3)
6049 {
6050 /* Memory. */
6051 uint64_t addr64;
6052
6053 if (i386_record_lea_modrm_addr (&ir, &addr64))
6054 return -1;
6055 switch (ir.reg)
6056 {
6057 case 0x02:
6058 case 0x12:
6059 case 0x22:
6060 case 0x32:
6061 /* For fcom, ficom nothing to do. */
6062 break;
6063 case 0x03:
6064 case 0x13:
6065 case 0x23:
6066 case 0x33:
6067 /* For fcomp, ficomp pop FPU stack, store all. */
6068 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6069 return -1;
6070 break;
6071 case 0x00:
6072 case 0x01:
6073 case 0x04:
6074 case 0x05:
6075 case 0x06:
6076 case 0x07:
6077 case 0x10:
6078 case 0x11:
6079 case 0x14:
6080 case 0x15:
6081 case 0x16:
6082 case 0x17:
6083 case 0x20:
6084 case 0x21:
6085 case 0x24:
6086 case 0x25:
6087 case 0x26:
6088 case 0x27:
6089 case 0x30:
6090 case 0x31:
6091 case 0x34:
6092 case 0x35:
6093 case 0x36:
6094 case 0x37:
6095 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6096 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6097 of code, always affects st(0) register. */
6098 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6099 return -1;
6100 break;
6101 case 0x08:
6102 case 0x0a:
6103 case 0x0b:
6104 case 0x18:
6105 case 0x19:
6106 case 0x1a:
6107 case 0x1b:
6108 case 0x1d:
6109 case 0x28:
6110 case 0x29:
6111 case 0x2a:
6112 case 0x2b:
6113 case 0x38:
6114 case 0x39:
6115 case 0x3a:
6116 case 0x3b:
6117 case 0x3c:
6118 case 0x3d:
6119 switch (ir.reg & 7)
6120 {
6121 case 0:
6122 /* Handling fld, fild. */
6123 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6124 return -1;
6125 break;
6126 case 1:
6127 switch (ir.reg >> 4)
6128 {
6129 case 0:
6130 if (record_full_arch_list_add_mem (addr64, 4))
6131 return -1;
6132 break;
6133 case 2:
6134 if (record_full_arch_list_add_mem (addr64, 8))
6135 return -1;
6136 break;
6137 case 3:
6138 break;
6139 default:
6140 if (record_full_arch_list_add_mem (addr64, 2))
6141 return -1;
6142 break;
6143 }
6144 break;
6145 default:
6146 switch (ir.reg >> 4)
6147 {
6148 case 0:
6149 if (record_full_arch_list_add_mem (addr64, 4))
6150 return -1;
6151 if (3 == (ir.reg & 7))
6152 {
6153 /* For fstp m32fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
6158 break;
6159 case 1:
6160 if (record_full_arch_list_add_mem (addr64, 4))
6161 return -1;
6162 if ((3 == (ir.reg & 7))
6163 || (5 == (ir.reg & 7))
6164 || (7 == (ir.reg & 7)))
6165 {
6166 /* For fstp insn. */
6167 if (i386_record_floats (gdbarch, &ir,
6168 I386_SAVE_FPU_REGS))
6169 return -1;
6170 }
6171 break;
6172 case 2:
6173 if (record_full_arch_list_add_mem (addr64, 8))
6174 return -1;
6175 if (3 == (ir.reg & 7))
6176 {
6177 /* For fstp m64fp. */
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_REGS))
6180 return -1;
6181 }
6182 break;
6183 case 3:
6184 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6185 {
6186 /* For fistp, fbld, fild, fbstp. */
6187 if (i386_record_floats (gdbarch, &ir,
6188 I386_SAVE_FPU_REGS))
6189 return -1;
6190 }
6191 /* Fall through */
6192 default:
6193 if (record_full_arch_list_add_mem (addr64, 2))
6194 return -1;
6195 break;
6196 }
6197 break;
6198 }
6199 break;
6200 case 0x0c:
6201 /* Insn fldenv. */
6202 if (i386_record_floats (gdbarch, &ir,
6203 I386_SAVE_FPU_ENV_REG_STACK))
6204 return -1;
6205 break;
6206 case 0x0d:
6207 /* Insn fldcw. */
6208 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6209 return -1;
6210 break;
6211 case 0x2c:
6212 /* Insn frstor. */
6213 if (i386_record_floats (gdbarch, &ir,
6214 I386_SAVE_FPU_ENV_REG_STACK))
6215 return -1;
6216 break;
6217 case 0x0e:
6218 if (ir.dflag)
6219 {
6220 if (record_full_arch_list_add_mem (addr64, 28))
6221 return -1;
6222 }
6223 else
6224 {
6225 if (record_full_arch_list_add_mem (addr64, 14))
6226 return -1;
6227 }
6228 break;
6229 case 0x0f:
6230 case 0x2f:
6231 if (record_full_arch_list_add_mem (addr64, 2))
6232 return -1;
6233 /* Insn fstp, fbstp. */
6234 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6235 return -1;
6236 break;
6237 case 0x1f:
6238 case 0x3e:
6239 if (record_full_arch_list_add_mem (addr64, 10))
6240 return -1;
6241 break;
6242 case 0x2e:
6243 if (ir.dflag)
6244 {
6245 if (record_full_arch_list_add_mem (addr64, 28))
6246 return -1;
6247 addr64 += 28;
6248 }
6249 else
6250 {
6251 if (record_full_arch_list_add_mem (addr64, 14))
6252 return -1;
6253 addr64 += 14;
6254 }
6255 if (record_full_arch_list_add_mem (addr64, 80))
6256 return -1;
6257 /* Insn fsave. */
6258 if (i386_record_floats (gdbarch, &ir,
6259 I386_SAVE_FPU_ENV_REG_STACK))
6260 return -1;
6261 break;
6262 case 0x3f:
6263 if (record_full_arch_list_add_mem (addr64, 8))
6264 return -1;
6265 /* Insn fistp. */
6266 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6267 return -1;
6268 break;
6269 default:
6270 ir.addr -= 2;
6271 opcode = opcode << 8 | ir.modrm;
6272 goto no_support;
6273 break;
6274 }
6275 }
6276 /* Opcode is an extension of modR/M byte. */
6277 else
6278 {
6279 switch (opcode)
6280 {
6281 case 0xd8:
6282 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6283 return -1;
6284 break;
6285 case 0xd9:
6286 if (0x0c == (ir.modrm >> 4))
6287 {
6288 if ((ir.modrm & 0x0f) <= 7)
6289 {
6290 if (i386_record_floats (gdbarch, &ir,
6291 I386_SAVE_FPU_REGS))
6292 return -1;
6293 }
6294 else
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I387_ST0_REGNUM (tdep)))
6298 return -1;
6299 /* If only st(0) is changing, then we have already
6300 recorded. */
6301 if ((ir.modrm & 0x0f) - 0x08)
6302 {
6303 if (i386_record_floats (gdbarch, &ir,
6304 I387_ST0_REGNUM (tdep) +
6305 ((ir.modrm & 0x0f) - 0x08)))
6306 return -1;
6307 }
6308 }
6309 }
6310 else
6311 {
6312 switch (ir.modrm)
6313 {
6314 case 0xe0:
6315 case 0xe1:
6316 case 0xf0:
6317 case 0xf5:
6318 case 0xf8:
6319 case 0xfa:
6320 case 0xfc:
6321 case 0xfe:
6322 case 0xff:
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6325 return -1;
6326 break;
6327 case 0xf1:
6328 case 0xf2:
6329 case 0xf3:
6330 case 0xf4:
6331 case 0xf6:
6332 case 0xf7:
6333 case 0xe8:
6334 case 0xe9:
6335 case 0xea:
6336 case 0xeb:
6337 case 0xec:
6338 case 0xed:
6339 case 0xee:
6340 case 0xf9:
6341 case 0xfb:
6342 if (i386_record_floats (gdbarch, &ir,
6343 I386_SAVE_FPU_REGS))
6344 return -1;
6345 break;
6346 case 0xfd:
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep)))
6349 return -1;
6350 if (i386_record_floats (gdbarch, &ir,
6351 I387_ST0_REGNUM (tdep) + 1))
6352 return -1;
6353 break;
6354 }
6355 }
6356 break;
6357 case 0xda:
6358 if (0xe9 == ir.modrm)
6359 {
6360 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6361 return -1;
6362 }
6363 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6364 {
6365 if (i386_record_floats (gdbarch, &ir,
6366 I387_ST0_REGNUM (tdep)))
6367 return -1;
6368 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6369 {
6370 if (i386_record_floats (gdbarch, &ir,
6371 I387_ST0_REGNUM (tdep) +
6372 (ir.modrm & 0x0f)))
6373 return -1;
6374 }
6375 else if ((ir.modrm & 0x0f) - 0x08)
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 ((ir.modrm & 0x0f) - 0x08)))
6380 return -1;
6381 }
6382 }
6383 break;
6384 case 0xdb:
6385 if (0xe3 == ir.modrm)
6386 {
6387 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6388 return -1;
6389 }
6390 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep)))
6394 return -1;
6395 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep) +
6399 (ir.modrm & 0x0f)))
6400 return -1;
6401 }
6402 else if ((ir.modrm & 0x0f) - 0x08)
6403 {
6404 if (i386_record_floats (gdbarch, &ir,
6405 I387_ST0_REGNUM (tdep) +
6406 ((ir.modrm & 0x0f) - 0x08)))
6407 return -1;
6408 }
6409 }
6410 break;
6411 case 0xdc:
6412 if ((0x0c == ir.modrm >> 4)
6413 || (0x0d == ir.modrm >> 4)
6414 || (0x0f == ir.modrm >> 4))
6415 {
6416 if ((ir.modrm & 0x0f) <= 7)
6417 {
6418 if (i386_record_floats (gdbarch, &ir,
6419 I387_ST0_REGNUM (tdep) +
6420 (ir.modrm & 0x0f)))
6421 return -1;
6422 }
6423 else
6424 {
6425 if (i386_record_floats (gdbarch, &ir,
6426 I387_ST0_REGNUM (tdep) +
6427 ((ir.modrm & 0x0f) - 0x08)))
6428 return -1;
6429 }
6430 }
6431 break;
6432 case 0xdd:
6433 if (0x0c == ir.modrm >> 4)
6434 {
6435 if (i386_record_floats (gdbarch, &ir,
6436 I387_FTAG_REGNUM (tdep)))
6437 return -1;
6438 }
6439 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6440 {
6441 if ((ir.modrm & 0x0f) <= 7)
6442 {
6443 if (i386_record_floats (gdbarch, &ir,
6444 I387_ST0_REGNUM (tdep) +
6445 (ir.modrm & 0x0f)))
6446 return -1;
6447 }
6448 else
6449 {
6450 if (i386_record_floats (gdbarch, &ir,
6451 I386_SAVE_FPU_REGS))
6452 return -1;
6453 }
6454 }
6455 break;
6456 case 0xde:
6457 if ((0x0c == ir.modrm >> 4)
6458 || (0x0e == ir.modrm >> 4)
6459 || (0x0f == ir.modrm >> 4)
6460 || (0xd9 == ir.modrm))
6461 {
6462 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6463 return -1;
6464 }
6465 break;
6466 case 0xdf:
6467 if (0xe0 == ir.modrm)
6468 {
6469 if (record_full_arch_list_add_reg (ir.regcache,
6470 I386_EAX_REGNUM))
6471 return -1;
6472 }
6473 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6474 {
6475 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6476 return -1;
6477 }
6478 break;
6479 }
6480 }
6481 break;
6482 /* string ops */
6483 case 0xa4: /* movsS */
6484 case 0xa5:
6485 case 0xaa: /* stosS */
6486 case 0xab:
6487 case 0x6c: /* insS */
6488 case 0x6d:
6489 regcache_raw_read_unsigned (ir.regcache,
6490 ir.regmap[X86_RECORD_RECX_REGNUM],
6491 &addr);
6492 if (addr)
6493 {
6494 ULONGEST es, ds;
6495
6496 if ((opcode & 1) == 0)
6497 ir.ot = OT_BYTE;
6498 else
6499 ir.ot = ir.dflag + OT_WORD;
6500 regcache_raw_read_unsigned (ir.regcache,
6501 ir.regmap[X86_RECORD_REDI_REGNUM],
6502 &addr);
6503
6504 regcache_raw_read_unsigned (ir.regcache,
6505 ir.regmap[X86_RECORD_ES_REGNUM],
6506 &es);
6507 regcache_raw_read_unsigned (ir.regcache,
6508 ir.regmap[X86_RECORD_DS_REGNUM],
6509 &ds);
6510 if (ir.aflag && (es != ds))
6511 {
6512 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6513 if (record_full_memory_query)
6514 {
6515 if (yquery (_("\
6516 Process record ignores the memory change of instruction at address %s\n\
6517 because it can't get the value of the segment register.\n\
6518 Do you want to stop the program?"),
6519 paddress (gdbarch, ir.orig_addr)))
6520 return -1;
6521 }
6522 }
6523 else
6524 {
6525 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6526 return -1;
6527 }
6528
6529 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6531 if (opcode == 0xa4 || opcode == 0xa5)
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6535 }
6536 break;
6537
6538 case 0xa6: /* cmpsS */
6539 case 0xa7:
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6542 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6545 break;
6546
6547 case 0xac: /* lodsS */
6548 case 0xad:
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6551 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 break;
6555
6556 case 0xae: /* scasS */
6557 case 0xaf:
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6559 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6562 break;
6563
6564 case 0x6e: /* outsS */
6565 case 0x6f:
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6567 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6570 break;
6571
6572 case 0xe4: /* port I/O */
6573 case 0xe5:
6574 case 0xec:
6575 case 0xed:
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6578 break;
6579
6580 case 0xe6:
6581 case 0xe7:
6582 case 0xee:
6583 case 0xef:
6584 break;
6585
6586 /* control */
6587 case 0xc2: /* ret im */
6588 case 0xc3: /* ret */
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6591 break;
6592
6593 case 0xca: /* lret im */
6594 case 0xcb: /* lret */
6595 case 0xcf: /* iret */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6599 break;
6600
6601 case 0xe8: /* call im */
6602 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6603 ir.dflag = 2;
6604 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6605 return -1;
6606 break;
6607
6608 case 0x9a: /* lcall im */
6609 if (ir.regmap[X86_RECORD_R8_REGNUM])
6610 {
6611 ir.addr -= 1;
6612 goto no_support;
6613 }
6614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6615 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6616 return -1;
6617 break;
6618
6619 case 0xe9: /* jmp im */
6620 case 0xea: /* ljmp im */
6621 case 0xeb: /* jmp Jb */
6622 case 0x70: /* jcc Jb */
6623 case 0x71:
6624 case 0x72:
6625 case 0x73:
6626 case 0x74:
6627 case 0x75:
6628 case 0x76:
6629 case 0x77:
6630 case 0x78:
6631 case 0x79:
6632 case 0x7a:
6633 case 0x7b:
6634 case 0x7c:
6635 case 0x7d:
6636 case 0x7e:
6637 case 0x7f:
6638 case 0x0f80: /* jcc Jv */
6639 case 0x0f81:
6640 case 0x0f82:
6641 case 0x0f83:
6642 case 0x0f84:
6643 case 0x0f85:
6644 case 0x0f86:
6645 case 0x0f87:
6646 case 0x0f88:
6647 case 0x0f89:
6648 case 0x0f8a:
6649 case 0x0f8b:
6650 case 0x0f8c:
6651 case 0x0f8d:
6652 case 0x0f8e:
6653 case 0x0f8f:
6654 break;
6655
6656 case 0x0f90: /* setcc Gv */
6657 case 0x0f91:
6658 case 0x0f92:
6659 case 0x0f93:
6660 case 0x0f94:
6661 case 0x0f95:
6662 case 0x0f96:
6663 case 0x0f97:
6664 case 0x0f98:
6665 case 0x0f99:
6666 case 0x0f9a:
6667 case 0x0f9b:
6668 case 0x0f9c:
6669 case 0x0f9d:
6670 case 0x0f9e:
6671 case 0x0f9f:
6672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6673 ir.ot = OT_BYTE;
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 if (ir.mod == 3)
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6678 : (ir.rm & 0x3));
6679 else
6680 {
6681 if (i386_record_lea_modrm (&ir))
6682 return -1;
6683 }
6684 break;
6685
6686 case 0x0f40: /* cmov Gv, Ev */
6687 case 0x0f41:
6688 case 0x0f42:
6689 case 0x0f43:
6690 case 0x0f44:
6691 case 0x0f45:
6692 case 0x0f46:
6693 case 0x0f47:
6694 case 0x0f48:
6695 case 0x0f49:
6696 case 0x0f4a:
6697 case 0x0f4b:
6698 case 0x0f4c:
6699 case 0x0f4d:
6700 case 0x0f4e:
6701 case 0x0f4f:
6702 if (i386_record_modrm (&ir))
6703 return -1;
6704 ir.reg |= rex_r;
6705 if (ir.dflag == OT_BYTE)
6706 ir.reg &= 0x3;
6707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6708 break;
6709
6710 /* flags */
6711 case 0x9c: /* pushf */
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6713 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6714 ir.dflag = 2;
6715 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6716 return -1;
6717 break;
6718
6719 case 0x9d: /* popf */
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 break;
6723
6724 case 0x9e: /* sahf */
6725 if (ir.regmap[X86_RECORD_R8_REGNUM])
6726 {
6727 ir.addr -= 1;
6728 goto no_support;
6729 }
6730 /* FALLTHROUGH */
6731 case 0xf5: /* cmc */
6732 case 0xf8: /* clc */
6733 case 0xf9: /* stc */
6734 case 0xfc: /* cld */
6735 case 0xfd: /* std */
6736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6737 break;
6738
6739 case 0x9f: /* lahf */
6740 if (ir.regmap[X86_RECORD_R8_REGNUM])
6741 {
6742 ir.addr -= 1;
6743 goto no_support;
6744 }
6745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6747 break;
6748
6749 /* bit operations */
6750 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6751 ir.ot = ir.dflag + OT_WORD;
6752 if (i386_record_modrm (&ir))
6753 return -1;
6754 if (ir.reg < 4)
6755 {
6756 ir.addr -= 2;
6757 opcode = opcode << 8 | ir.modrm;
6758 goto no_support;
6759 }
6760 if (ir.reg != 4)
6761 {
6762 if (ir.mod == 3)
6763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6764 else
6765 {
6766 if (i386_record_lea_modrm (&ir))
6767 return -1;
6768 }
6769 }
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6771 break;
6772
6773 case 0x0fa3: /* bt Gv, Ev */
6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6775 break;
6776
6777 case 0x0fab: /* bts */
6778 case 0x0fb3: /* btr */
6779 case 0x0fbb: /* btc */
6780 ir.ot = ir.dflag + OT_WORD;
6781 if (i386_record_modrm (&ir))
6782 return -1;
6783 if (ir.mod == 3)
6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6785 else
6786 {
6787 uint64_t addr64;
6788 if (i386_record_lea_modrm_addr (&ir, &addr64))
6789 return -1;
6790 regcache_raw_read_unsigned (ir.regcache,
6791 ir.regmap[ir.reg | rex_r],
6792 &addr);
6793 switch (ir.dflag)
6794 {
6795 case 0:
6796 addr64 += ((int16_t) addr >> 4) << 4;
6797 break;
6798 case 1:
6799 addr64 += ((int32_t) addr >> 5) << 5;
6800 break;
6801 case 2:
6802 addr64 += ((int64_t) addr >> 6) << 6;
6803 break;
6804 }
6805 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6806 return -1;
6807 if (i386_record_lea_modrm (&ir))
6808 return -1;
6809 }
6810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6811 break;
6812
6813 case 0x0fbc: /* bsf */
6814 case 0x0fbd: /* bsr */
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6817 break;
6818
6819 /* bcd */
6820 case 0x27: /* daa */
6821 case 0x2f: /* das */
6822 case 0x37: /* aaa */
6823 case 0x3f: /* aas */
6824 case 0xd4: /* aam */
6825 case 0xd5: /* aad */
6826 if (ir.regmap[X86_RECORD_R8_REGNUM])
6827 {
6828 ir.addr -= 1;
6829 goto no_support;
6830 }
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6833 break;
6834
6835 /* misc */
6836 case 0x90: /* nop */
6837 if (prefixes & PREFIX_LOCK)
6838 {
6839 ir.addr -= 1;
6840 goto no_support;
6841 }
6842 break;
6843
6844 case 0x9b: /* fwait */
6845 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6846 return -1;
6847 opcode = (uint32_t) opcode8;
6848 ir.addr++;
6849 goto reswitch;
6850 break;
6851
6852 /* XXX */
6853 case 0xcc: /* int3 */
6854 printf_unfiltered (_("Process record does not support instruction "
6855 "int3.\n"));
6856 ir.addr -= 1;
6857 goto no_support;
6858 break;
6859
6860 /* XXX */
6861 case 0xcd: /* int */
6862 {
6863 int ret;
6864 uint8_t interrupt;
6865 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6866 return -1;
6867 ir.addr++;
6868 if (interrupt != 0x80
6869 || tdep->i386_intx80_record == NULL)
6870 {
6871 printf_unfiltered (_("Process record does not support "
6872 "instruction int 0x%02x.\n"),
6873 interrupt);
6874 ir.addr -= 2;
6875 goto no_support;
6876 }
6877 ret = tdep->i386_intx80_record (ir.regcache);
6878 if (ret)
6879 return ret;
6880 }
6881 break;
6882
6883 /* XXX */
6884 case 0xce: /* into */
6885 printf_unfiltered (_("Process record does not support "
6886 "instruction into.\n"));
6887 ir.addr -= 1;
6888 goto no_support;
6889 break;
6890
6891 case 0xfa: /* cli */
6892 case 0xfb: /* sti */
6893 break;
6894
6895 case 0x62: /* bound */
6896 printf_unfiltered (_("Process record does not support "
6897 "instruction bound.\n"));
6898 ir.addr -= 1;
6899 goto no_support;
6900 break;
6901
6902 case 0x0fc8: /* bswap reg */
6903 case 0x0fc9:
6904 case 0x0fca:
6905 case 0x0fcb:
6906 case 0x0fcc:
6907 case 0x0fcd:
6908 case 0x0fce:
6909 case 0x0fcf:
6910 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6911 break;
6912
6913 case 0xd6: /* salc */
6914 if (ir.regmap[X86_RECORD_R8_REGNUM])
6915 {
6916 ir.addr -= 1;
6917 goto no_support;
6918 }
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6921 break;
6922
6923 case 0xe0: /* loopnz */
6924 case 0xe1: /* loopz */
6925 case 0xe2: /* loop */
6926 case 0xe3: /* jecxz */
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6929 break;
6930
6931 case 0x0f30: /* wrmsr */
6932 printf_unfiltered (_("Process record does not support "
6933 "instruction wrmsr.\n"));
6934 ir.addr -= 2;
6935 goto no_support;
6936 break;
6937
6938 case 0x0f32: /* rdmsr */
6939 printf_unfiltered (_("Process record does not support "
6940 "instruction rdmsr.\n"));
6941 ir.addr -= 2;
6942 goto no_support;
6943 break;
6944
6945 case 0x0f31: /* rdtsc */
6946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6948 break;
6949
6950 case 0x0f34: /* sysenter */
6951 {
6952 int ret;
6953 if (ir.regmap[X86_RECORD_R8_REGNUM])
6954 {
6955 ir.addr -= 2;
6956 goto no_support;
6957 }
6958 if (tdep->i386_sysenter_record == NULL)
6959 {
6960 printf_unfiltered (_("Process record does not support "
6961 "instruction sysenter.\n"));
6962 ir.addr -= 2;
6963 goto no_support;
6964 }
6965 ret = tdep->i386_sysenter_record (ir.regcache);
6966 if (ret)
6967 return ret;
6968 }
6969 break;
6970
6971 case 0x0f35: /* sysexit */
6972 printf_unfiltered (_("Process record does not support "
6973 "instruction sysexit.\n"));
6974 ir.addr -= 2;
6975 goto no_support;
6976 break;
6977
6978 case 0x0f05: /* syscall */
6979 {
6980 int ret;
6981 if (tdep->i386_syscall_record == NULL)
6982 {
6983 printf_unfiltered (_("Process record does not support "
6984 "instruction syscall.\n"));
6985 ir.addr -= 2;
6986 goto no_support;
6987 }
6988 ret = tdep->i386_syscall_record (ir.regcache);
6989 if (ret)
6990 return ret;
6991 }
6992 break;
6993
6994 case 0x0f07: /* sysret */
6995 printf_unfiltered (_("Process record does not support "
6996 "instruction sysret.\n"));
6997 ir.addr -= 2;
6998 goto no_support;
6999 break;
7000
7001 case 0x0fa2: /* cpuid */
7002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7006 break;
7007
7008 case 0xf4: /* hlt */
7009 printf_unfiltered (_("Process record does not support "
7010 "instruction hlt.\n"));
7011 ir.addr -= 1;
7012 goto no_support;
7013 break;
7014
7015 case 0x0f00:
7016 if (i386_record_modrm (&ir))
7017 return -1;
7018 switch (ir.reg)
7019 {
7020 case 0: /* sldt */
7021 case 1: /* str */
7022 if (ir.mod == 3)
7023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7024 else
7025 {
7026 ir.ot = OT_WORD;
7027 if (i386_record_lea_modrm (&ir))
7028 return -1;
7029 }
7030 break;
7031 case 2: /* lldt */
7032 case 3: /* ltr */
7033 break;
7034 case 4: /* verr */
7035 case 5: /* verw */
7036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7037 break;
7038 default:
7039 ir.addr -= 3;
7040 opcode = opcode << 8 | ir.modrm;
7041 goto no_support;
7042 break;
7043 }
7044 break;
7045
7046 case 0x0f01:
7047 if (i386_record_modrm (&ir))
7048 return -1;
7049 switch (ir.reg)
7050 {
7051 case 0: /* sgdt */
7052 {
7053 uint64_t addr64;
7054
7055 if (ir.mod == 3)
7056 {
7057 ir.addr -= 3;
7058 opcode = opcode << 8 | ir.modrm;
7059 goto no_support;
7060 }
7061 if (ir.override >= 0)
7062 {
7063 if (record_full_memory_query)
7064 {
7065 if (yquery (_("\
7066 Process record ignores the memory change of instruction at address %s\n\
7067 because it can't get the value of the segment register.\n\
7068 Do you want to stop the program?"),
7069 paddress (gdbarch, ir.orig_addr)))
7070 return -1;
7071 }
7072 }
7073 else
7074 {
7075 if (i386_record_lea_modrm_addr (&ir, &addr64))
7076 return -1;
7077 if (record_full_arch_list_add_mem (addr64, 2))
7078 return -1;
7079 addr64 += 2;
7080 if (ir.regmap[X86_RECORD_R8_REGNUM])
7081 {
7082 if (record_full_arch_list_add_mem (addr64, 8))
7083 return -1;
7084 }
7085 else
7086 {
7087 if (record_full_arch_list_add_mem (addr64, 4))
7088 return -1;
7089 }
7090 }
7091 }
7092 break;
7093 case 1:
7094 if (ir.mod == 3)
7095 {
7096 switch (ir.rm)
7097 {
7098 case 0: /* monitor */
7099 break;
7100 case 1: /* mwait */
7101 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7102 break;
7103 default:
7104 ir.addr -= 3;
7105 opcode = opcode << 8 | ir.modrm;
7106 goto no_support;
7107 break;
7108 }
7109 }
7110 else
7111 {
7112 /* sidt */
7113 if (ir.override >= 0)
7114 {
7115 if (record_full_memory_query)
7116 {
7117 if (yquery (_("\
7118 Process record ignores the memory change of instruction at address %s\n\
7119 because it can't get the value of the segment register.\n\
7120 Do you want to stop the program?"),
7121 paddress (gdbarch, ir.orig_addr)))
7122 return -1;
7123 }
7124 }
7125 else
7126 {
7127 uint64_t addr64;
7128
7129 if (i386_record_lea_modrm_addr (&ir, &addr64))
7130 return -1;
7131 if (record_full_arch_list_add_mem (addr64, 2))
7132 return -1;
7133 addr64 += 2;
7134 if (ir.regmap[X86_RECORD_R8_REGNUM])
7135 {
7136 if (record_full_arch_list_add_mem (addr64, 8))
7137 return -1;
7138 }
7139 else
7140 {
7141 if (record_full_arch_list_add_mem (addr64, 4))
7142 return -1;
7143 }
7144 }
7145 }
7146 break;
7147 case 2: /* lgdt */
7148 if (ir.mod == 3)
7149 {
7150 /* xgetbv */
7151 if (ir.rm == 0)
7152 {
7153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7155 break;
7156 }
7157 /* xsetbv */
7158 else if (ir.rm == 1)
7159 break;
7160 }
7161 case 3: /* lidt */
7162 if (ir.mod == 3)
7163 {
7164 ir.addr -= 3;
7165 opcode = opcode << 8 | ir.modrm;
7166 goto no_support;
7167 }
7168 break;
7169 case 4: /* smsw */
7170 if (ir.mod == 3)
7171 {
7172 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7173 return -1;
7174 }
7175 else
7176 {
7177 ir.ot = OT_WORD;
7178 if (i386_record_lea_modrm (&ir))
7179 return -1;
7180 }
7181 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7182 break;
7183 case 6: /* lmsw */
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7185 break;
7186 case 7: /* invlpg */
7187 if (ir.mod == 3)
7188 {
7189 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7191 else
7192 {
7193 ir.addr -= 3;
7194 opcode = opcode << 8 | ir.modrm;
7195 goto no_support;
7196 }
7197 }
7198 else
7199 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7200 break;
7201 default:
7202 ir.addr -= 3;
7203 opcode = opcode << 8 | ir.modrm;
7204 goto no_support;
7205 break;
7206 }
7207 break;
7208
7209 case 0x0f08: /* invd */
7210 case 0x0f09: /* wbinvd */
7211 break;
7212
7213 case 0x63: /* arpl */
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7217 {
7218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7219 ? (ir.reg | rex_r) : ir.rm);
7220 }
7221 else
7222 {
7223 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7224 if (i386_record_lea_modrm (&ir))
7225 return -1;
7226 }
7227 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7229 break;
7230
7231 case 0x0f02: /* lar */
7232 case 0x0f03: /* lsl */
7233 if (i386_record_modrm (&ir))
7234 return -1;
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7237 break;
7238
7239 case 0x0f18:
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 if (ir.mod == 3 && ir.reg == 3)
7243 {
7244 ir.addr -= 3;
7245 opcode = opcode << 8 | ir.modrm;
7246 goto no_support;
7247 }
7248 break;
7249
7250 case 0x0f19:
7251 case 0x0f1a:
7252 case 0x0f1b:
7253 case 0x0f1c:
7254 case 0x0f1d:
7255 case 0x0f1e:
7256 case 0x0f1f:
7257 /* nop (multi byte) */
7258 break;
7259
7260 case 0x0f20: /* mov reg, crN */
7261 case 0x0f22: /* mov crN, reg */
7262 if (i386_record_modrm (&ir))
7263 return -1;
7264 if ((ir.modrm & 0xc0) != 0xc0)
7265 {
7266 ir.addr -= 3;
7267 opcode = opcode << 8 | ir.modrm;
7268 goto no_support;
7269 }
7270 switch (ir.reg)
7271 {
7272 case 0:
7273 case 2:
7274 case 3:
7275 case 4:
7276 case 8:
7277 if (opcode & 2)
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7279 else
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7281 break;
7282 default:
7283 ir.addr -= 3;
7284 opcode = opcode << 8 | ir.modrm;
7285 goto no_support;
7286 break;
7287 }
7288 break;
7289
7290 case 0x0f21: /* mov reg, drN */
7291 case 0x0f23: /* mov drN, reg */
7292 if (i386_record_modrm (&ir))
7293 return -1;
7294 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7295 || ir.reg == 5 || ir.reg >= 8)
7296 {
7297 ir.addr -= 3;
7298 opcode = opcode << 8 | ir.modrm;
7299 goto no_support;
7300 }
7301 if (opcode & 2)
7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7303 else
7304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7305 break;
7306
7307 case 0x0f06: /* clts */
7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7309 break;
7310
7311 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7312
7313 case 0x0f0d: /* 3DNow! prefetch */
7314 break;
7315
7316 case 0x0f0e: /* 3DNow! femms */
7317 case 0x0f77: /* emms */
7318 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7319 goto no_support;
7320 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7321 break;
7322
7323 case 0x0f0f: /* 3DNow! data */
7324 if (i386_record_modrm (&ir))
7325 return -1;
7326 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7327 return -1;
7328 ir.addr++;
7329 switch (opcode8)
7330 {
7331 case 0x0c: /* 3DNow! pi2fw */
7332 case 0x0d: /* 3DNow! pi2fd */
7333 case 0x1c: /* 3DNow! pf2iw */
7334 case 0x1d: /* 3DNow! pf2id */
7335 case 0x8a: /* 3DNow! pfnacc */
7336 case 0x8e: /* 3DNow! pfpnacc */
7337 case 0x90: /* 3DNow! pfcmpge */
7338 case 0x94: /* 3DNow! pfmin */
7339 case 0x96: /* 3DNow! pfrcp */
7340 case 0x97: /* 3DNow! pfrsqrt */
7341 case 0x9a: /* 3DNow! pfsub */
7342 case 0x9e: /* 3DNow! pfadd */
7343 case 0xa0: /* 3DNow! pfcmpgt */
7344 case 0xa4: /* 3DNow! pfmax */
7345 case 0xa6: /* 3DNow! pfrcpit1 */
7346 case 0xa7: /* 3DNow! pfrsqit1 */
7347 case 0xaa: /* 3DNow! pfsubr */
7348 case 0xae: /* 3DNow! pfacc */
7349 case 0xb0: /* 3DNow! pfcmpeq */
7350 case 0xb4: /* 3DNow! pfmul */
7351 case 0xb6: /* 3DNow! pfrcpit2 */
7352 case 0xb7: /* 3DNow! pmulhrw */
7353 case 0xbb: /* 3DNow! pswapd */
7354 case 0xbf: /* 3DNow! pavgusb */
7355 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7356 goto no_support_3dnow_data;
7357 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7358 break;
7359
7360 default:
7361 no_support_3dnow_data:
7362 opcode = (opcode << 8) | opcode8;
7363 goto no_support;
7364 break;
7365 }
7366 break;
7367
7368 case 0x0faa: /* rsm */
7369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7378 break;
7379
7380 case 0x0fae:
7381 if (i386_record_modrm (&ir))
7382 return -1;
7383 switch(ir.reg)
7384 {
7385 case 0: /* fxsave */
7386 {
7387 uint64_t tmpu64;
7388
7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7390 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7391 return -1;
7392 if (record_full_arch_list_add_mem (tmpu64, 512))
7393 return -1;
7394 }
7395 break;
7396
7397 case 1: /* fxrstor */
7398 {
7399 int i;
7400
7401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7402
7403 for (i = I387_MM0_REGNUM (tdep);
7404 i386_mmx_regnum_p (gdbarch, i); i++)
7405 record_full_arch_list_add_reg (ir.regcache, i);
7406
7407 for (i = I387_XMM0_REGNUM (tdep);
7408 i386_xmm_regnum_p (gdbarch, i); i++)
7409 record_full_arch_list_add_reg (ir.regcache, i);
7410
7411 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7412 record_full_arch_list_add_reg (ir.regcache,
7413 I387_MXCSR_REGNUM(tdep));
7414
7415 for (i = I387_ST0_REGNUM (tdep);
7416 i386_fp_regnum_p (gdbarch, i); i++)
7417 record_full_arch_list_add_reg (ir.regcache, i);
7418
7419 for (i = I387_FCTRL_REGNUM (tdep);
7420 i386_fpc_regnum_p (gdbarch, i); i++)
7421 record_full_arch_list_add_reg (ir.regcache, i);
7422 }
7423 break;
7424
7425 case 2: /* ldmxcsr */
7426 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7427 goto no_support;
7428 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7429 break;
7430
7431 case 3: /* stmxcsr */
7432 ir.ot = OT_LONG;
7433 if (i386_record_lea_modrm (&ir))
7434 return -1;
7435 break;
7436
7437 case 5: /* lfence */
7438 case 6: /* mfence */
7439 case 7: /* sfence clflush */
7440 break;
7441
7442 default:
7443 opcode = (opcode << 8) | ir.modrm;
7444 goto no_support;
7445 break;
7446 }
7447 break;
7448
7449 case 0x0fc3: /* movnti */
7450 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7451 if (i386_record_modrm (&ir))
7452 return -1;
7453 if (ir.mod == 3)
7454 goto no_support;
7455 ir.reg |= rex_r;
7456 if (i386_record_lea_modrm (&ir))
7457 return -1;
7458 break;
7459
7460 /* Add prefix to opcode. */
7461 case 0x0f10:
7462 case 0x0f11:
7463 case 0x0f12:
7464 case 0x0f13:
7465 case 0x0f14:
7466 case 0x0f15:
7467 case 0x0f16:
7468 case 0x0f17:
7469 case 0x0f28:
7470 case 0x0f29:
7471 case 0x0f2a:
7472 case 0x0f2b:
7473 case 0x0f2c:
7474 case 0x0f2d:
7475 case 0x0f2e:
7476 case 0x0f2f:
7477 case 0x0f38:
7478 case 0x0f39:
7479 case 0x0f3a:
7480 case 0x0f50:
7481 case 0x0f51:
7482 case 0x0f52:
7483 case 0x0f53:
7484 case 0x0f54:
7485 case 0x0f55:
7486 case 0x0f56:
7487 case 0x0f57:
7488 case 0x0f58:
7489 case 0x0f59:
7490 case 0x0f5a:
7491 case 0x0f5b:
7492 case 0x0f5c:
7493 case 0x0f5d:
7494 case 0x0f5e:
7495 case 0x0f5f:
7496 case 0x0f60:
7497 case 0x0f61:
7498 case 0x0f62:
7499 case 0x0f63:
7500 case 0x0f64:
7501 case 0x0f65:
7502 case 0x0f66:
7503 case 0x0f67:
7504 case 0x0f68:
7505 case 0x0f69:
7506 case 0x0f6a:
7507 case 0x0f6b:
7508 case 0x0f6c:
7509 case 0x0f6d:
7510 case 0x0f6e:
7511 case 0x0f6f:
7512 case 0x0f70:
7513 case 0x0f71:
7514 case 0x0f72:
7515 case 0x0f73:
7516 case 0x0f74:
7517 case 0x0f75:
7518 case 0x0f76:
7519 case 0x0f7c:
7520 case 0x0f7d:
7521 case 0x0f7e:
7522 case 0x0f7f:
7523 case 0x0fb8:
7524 case 0x0fc2:
7525 case 0x0fc4:
7526 case 0x0fc5:
7527 case 0x0fc6:
7528 case 0x0fd0:
7529 case 0x0fd1:
7530 case 0x0fd2:
7531 case 0x0fd3:
7532 case 0x0fd4:
7533 case 0x0fd5:
7534 case 0x0fd6:
7535 case 0x0fd7:
7536 case 0x0fd8:
7537 case 0x0fd9:
7538 case 0x0fda:
7539 case 0x0fdb:
7540 case 0x0fdc:
7541 case 0x0fdd:
7542 case 0x0fde:
7543 case 0x0fdf:
7544 case 0x0fe0:
7545 case 0x0fe1:
7546 case 0x0fe2:
7547 case 0x0fe3:
7548 case 0x0fe4:
7549 case 0x0fe5:
7550 case 0x0fe6:
7551 case 0x0fe7:
7552 case 0x0fe8:
7553 case 0x0fe9:
7554 case 0x0fea:
7555 case 0x0feb:
7556 case 0x0fec:
7557 case 0x0fed:
7558 case 0x0fee:
7559 case 0x0fef:
7560 case 0x0ff0:
7561 case 0x0ff1:
7562 case 0x0ff2:
7563 case 0x0ff3:
7564 case 0x0ff4:
7565 case 0x0ff5:
7566 case 0x0ff6:
7567 case 0x0ff7:
7568 case 0x0ff8:
7569 case 0x0ff9:
7570 case 0x0ffa:
7571 case 0x0ffb:
7572 case 0x0ffc:
7573 case 0x0ffd:
7574 case 0x0ffe:
7575 /* Mask out PREFIX_ADDR. */
7576 switch ((prefixes & ~PREFIX_ADDR))
7577 {
7578 case PREFIX_REPNZ:
7579 opcode |= 0xf20000;
7580 break;
7581 case PREFIX_DATA:
7582 opcode |= 0x660000;
7583 break;
7584 case PREFIX_REPZ:
7585 opcode |= 0xf30000;
7586 break;
7587 }
7588 reswitch_prefix_add:
7589 switch (opcode)
7590 {
7591 case 0x0f38:
7592 case 0x660f38:
7593 case 0xf20f38:
7594 case 0x0f3a:
7595 case 0x660f3a:
7596 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7597 return -1;
7598 ir.addr++;
7599 opcode = (uint32_t) opcode8 | opcode << 8;
7600 goto reswitch_prefix_add;
7601 break;
7602
7603 case 0x0f10: /* movups */
7604 case 0x660f10: /* movupd */
7605 case 0xf30f10: /* movss */
7606 case 0xf20f10: /* movsd */
7607 case 0x0f12: /* movlps */
7608 case 0x660f12: /* movlpd */
7609 case 0xf30f12: /* movsldup */
7610 case 0xf20f12: /* movddup */
7611 case 0x0f14: /* unpcklps */
7612 case 0x660f14: /* unpcklpd */
7613 case 0x0f15: /* unpckhps */
7614 case 0x660f15: /* unpckhpd */
7615 case 0x0f16: /* movhps */
7616 case 0x660f16: /* movhpd */
7617 case 0xf30f16: /* movshdup */
7618 case 0x0f28: /* movaps */
7619 case 0x660f28: /* movapd */
7620 case 0x0f2a: /* cvtpi2ps */
7621 case 0x660f2a: /* cvtpi2pd */
7622 case 0xf30f2a: /* cvtsi2ss */
7623 case 0xf20f2a: /* cvtsi2sd */
7624 case 0x0f2c: /* cvttps2pi */
7625 case 0x660f2c: /* cvttpd2pi */
7626 case 0x0f2d: /* cvtps2pi */
7627 case 0x660f2d: /* cvtpd2pi */
7628 case 0x660f3800: /* pshufb */
7629 case 0x660f3801: /* phaddw */
7630 case 0x660f3802: /* phaddd */
7631 case 0x660f3803: /* phaddsw */
7632 case 0x660f3804: /* pmaddubsw */
7633 case 0x660f3805: /* phsubw */
7634 case 0x660f3806: /* phsubd */
7635 case 0x660f3807: /* phsubsw */
7636 case 0x660f3808: /* psignb */
7637 case 0x660f3809: /* psignw */
7638 case 0x660f380a: /* psignd */
7639 case 0x660f380b: /* pmulhrsw */
7640 case 0x660f3810: /* pblendvb */
7641 case 0x660f3814: /* blendvps */
7642 case 0x660f3815: /* blendvpd */
7643 case 0x660f381c: /* pabsb */
7644 case 0x660f381d: /* pabsw */
7645 case 0x660f381e: /* pabsd */
7646 case 0x660f3820: /* pmovsxbw */
7647 case 0x660f3821: /* pmovsxbd */
7648 case 0x660f3822: /* pmovsxbq */
7649 case 0x660f3823: /* pmovsxwd */
7650 case 0x660f3824: /* pmovsxwq */
7651 case 0x660f3825: /* pmovsxdq */
7652 case 0x660f3828: /* pmuldq */
7653 case 0x660f3829: /* pcmpeqq */
7654 case 0x660f382a: /* movntdqa */
7655 case 0x660f3a08: /* roundps */
7656 case 0x660f3a09: /* roundpd */
7657 case 0x660f3a0a: /* roundss */
7658 case 0x660f3a0b: /* roundsd */
7659 case 0x660f3a0c: /* blendps */
7660 case 0x660f3a0d: /* blendpd */
7661 case 0x660f3a0e: /* pblendw */
7662 case 0x660f3a0f: /* palignr */
7663 case 0x660f3a20: /* pinsrb */
7664 case 0x660f3a21: /* insertps */
7665 case 0x660f3a22: /* pinsrd pinsrq */
7666 case 0x660f3a40: /* dpps */
7667 case 0x660f3a41: /* dppd */
7668 case 0x660f3a42: /* mpsadbw */
7669 case 0x660f3a60: /* pcmpestrm */
7670 case 0x660f3a61: /* pcmpestri */
7671 case 0x660f3a62: /* pcmpistrm */
7672 case 0x660f3a63: /* pcmpistri */
7673 case 0x0f51: /* sqrtps */
7674 case 0x660f51: /* sqrtpd */
7675 case 0xf20f51: /* sqrtsd */
7676 case 0xf30f51: /* sqrtss */
7677 case 0x0f52: /* rsqrtps */
7678 case 0xf30f52: /* rsqrtss */
7679 case 0x0f53: /* rcpps */
7680 case 0xf30f53: /* rcpss */
7681 case 0x0f54: /* andps */
7682 case 0x660f54: /* andpd */
7683 case 0x0f55: /* andnps */
7684 case 0x660f55: /* andnpd */
7685 case 0x0f56: /* orps */
7686 case 0x660f56: /* orpd */
7687 case 0x0f57: /* xorps */
7688 case 0x660f57: /* xorpd */
7689 case 0x0f58: /* addps */
7690 case 0x660f58: /* addpd */
7691 case 0xf20f58: /* addsd */
7692 case 0xf30f58: /* addss */
7693 case 0x0f59: /* mulps */
7694 case 0x660f59: /* mulpd */
7695 case 0xf20f59: /* mulsd */
7696 case 0xf30f59: /* mulss */
7697 case 0x0f5a: /* cvtps2pd */
7698 case 0x660f5a: /* cvtpd2ps */
7699 case 0xf20f5a: /* cvtsd2ss */
7700 case 0xf30f5a: /* cvtss2sd */
7701 case 0x0f5b: /* cvtdq2ps */
7702 case 0x660f5b: /* cvtps2dq */
7703 case 0xf30f5b: /* cvttps2dq */
7704 case 0x0f5c: /* subps */
7705 case 0x660f5c: /* subpd */
7706 case 0xf20f5c: /* subsd */
7707 case 0xf30f5c: /* subss */
7708 case 0x0f5d: /* minps */
7709 case 0x660f5d: /* minpd */
7710 case 0xf20f5d: /* minsd */
7711 case 0xf30f5d: /* minss */
7712 case 0x0f5e: /* divps */
7713 case 0x660f5e: /* divpd */
7714 case 0xf20f5e: /* divsd */
7715 case 0xf30f5e: /* divss */
7716 case 0x0f5f: /* maxps */
7717 case 0x660f5f: /* maxpd */
7718 case 0xf20f5f: /* maxsd */
7719 case 0xf30f5f: /* maxss */
7720 case 0x660f60: /* punpcklbw */
7721 case 0x660f61: /* punpcklwd */
7722 case 0x660f62: /* punpckldq */
7723 case 0x660f63: /* packsswb */
7724 case 0x660f64: /* pcmpgtb */
7725 case 0x660f65: /* pcmpgtw */
7726 case 0x660f66: /* pcmpgtd */
7727 case 0x660f67: /* packuswb */
7728 case 0x660f68: /* punpckhbw */
7729 case 0x660f69: /* punpckhwd */
7730 case 0x660f6a: /* punpckhdq */
7731 case 0x660f6b: /* packssdw */
7732 case 0x660f6c: /* punpcklqdq */
7733 case 0x660f6d: /* punpckhqdq */
7734 case 0x660f6e: /* movd */
7735 case 0x660f6f: /* movdqa */
7736 case 0xf30f6f: /* movdqu */
7737 case 0x660f70: /* pshufd */
7738 case 0xf20f70: /* pshuflw */
7739 case 0xf30f70: /* pshufhw */
7740 case 0x660f74: /* pcmpeqb */
7741 case 0x660f75: /* pcmpeqw */
7742 case 0x660f76: /* pcmpeqd */
7743 case 0x660f7c: /* haddpd */
7744 case 0xf20f7c: /* haddps */
7745 case 0x660f7d: /* hsubpd */
7746 case 0xf20f7d: /* hsubps */
7747 case 0xf30f7e: /* movq */
7748 case 0x0fc2: /* cmpps */
7749 case 0x660fc2: /* cmppd */
7750 case 0xf20fc2: /* cmpsd */
7751 case 0xf30fc2: /* cmpss */
7752 case 0x660fc4: /* pinsrw */
7753 case 0x0fc6: /* shufps */
7754 case 0x660fc6: /* shufpd */
7755 case 0x660fd0: /* addsubpd */
7756 case 0xf20fd0: /* addsubps */
7757 case 0x660fd1: /* psrlw */
7758 case 0x660fd2: /* psrld */
7759 case 0x660fd3: /* psrlq */
7760 case 0x660fd4: /* paddq */
7761 case 0x660fd5: /* pmullw */
7762 case 0xf30fd6: /* movq2dq */
7763 case 0x660fd8: /* psubusb */
7764 case 0x660fd9: /* psubusw */
7765 case 0x660fda: /* pminub */
7766 case 0x660fdb: /* pand */
7767 case 0x660fdc: /* paddusb */
7768 case 0x660fdd: /* paddusw */
7769 case 0x660fde: /* pmaxub */
7770 case 0x660fdf: /* pandn */
7771 case 0x660fe0: /* pavgb */
7772 case 0x660fe1: /* psraw */
7773 case 0x660fe2: /* psrad */
7774 case 0x660fe3: /* pavgw */
7775 case 0x660fe4: /* pmulhuw */
7776 case 0x660fe5: /* pmulhw */
7777 case 0x660fe6: /* cvttpd2dq */
7778 case 0xf20fe6: /* cvtpd2dq */
7779 case 0xf30fe6: /* cvtdq2pd */
7780 case 0x660fe8: /* psubsb */
7781 case 0x660fe9: /* psubsw */
7782 case 0x660fea: /* pminsw */
7783 case 0x660feb: /* por */
7784 case 0x660fec: /* paddsb */
7785 case 0x660fed: /* paddsw */
7786 case 0x660fee: /* pmaxsw */
7787 case 0x660fef: /* pxor */
7788 case 0xf20ff0: /* lddqu */
7789 case 0x660ff1: /* psllw */
7790 case 0x660ff2: /* pslld */
7791 case 0x660ff3: /* psllq */
7792 case 0x660ff4: /* pmuludq */
7793 case 0x660ff5: /* pmaddwd */
7794 case 0x660ff6: /* psadbw */
7795 case 0x660ff8: /* psubb */
7796 case 0x660ff9: /* psubw */
7797 case 0x660ffa: /* psubd */
7798 case 0x660ffb: /* psubq */
7799 case 0x660ffc: /* paddb */
7800 case 0x660ffd: /* paddw */
7801 case 0x660ffe: /* paddd */
7802 if (i386_record_modrm (&ir))
7803 return -1;
7804 ir.reg |= rex_r;
7805 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7806 goto no_support;
7807 record_full_arch_list_add_reg (ir.regcache,
7808 I387_XMM0_REGNUM (tdep) + ir.reg);
7809 if ((opcode & 0xfffffffc) == 0x660f3a60)
7810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7811 break;
7812
7813 case 0x0f11: /* movups */
7814 case 0x660f11: /* movupd */
7815 case 0xf30f11: /* movss */
7816 case 0xf20f11: /* movsd */
7817 case 0x0f13: /* movlps */
7818 case 0x660f13: /* movlpd */
7819 case 0x0f17: /* movhps */
7820 case 0x660f17: /* movhpd */
7821 case 0x0f29: /* movaps */
7822 case 0x660f29: /* movapd */
7823 case 0x660f3a14: /* pextrb */
7824 case 0x660f3a15: /* pextrw */
7825 case 0x660f3a16: /* pextrd pextrq */
7826 case 0x660f3a17: /* extractps */
7827 case 0x660f7f: /* movdqa */
7828 case 0xf30f7f: /* movdqu */
7829 if (i386_record_modrm (&ir))
7830 return -1;
7831 if (ir.mod == 3)
7832 {
7833 if (opcode == 0x0f13 || opcode == 0x660f13
7834 || opcode == 0x0f17 || opcode == 0x660f17)
7835 goto no_support;
7836 ir.rm |= ir.rex_b;
7837 if (!i386_xmm_regnum_p (gdbarch,
7838 I387_XMM0_REGNUM (tdep) + ir.rm))
7839 goto no_support;
7840 record_full_arch_list_add_reg (ir.regcache,
7841 I387_XMM0_REGNUM (tdep) + ir.rm);
7842 }
7843 else
7844 {
7845 switch (opcode)
7846 {
7847 case 0x660f3a14:
7848 ir.ot = OT_BYTE;
7849 break;
7850 case 0x660f3a15:
7851 ir.ot = OT_WORD;
7852 break;
7853 case 0x660f3a16:
7854 ir.ot = OT_LONG;
7855 break;
7856 case 0x660f3a17:
7857 ir.ot = OT_QUAD;
7858 break;
7859 default:
7860 ir.ot = OT_DQUAD;
7861 break;
7862 }
7863 if (i386_record_lea_modrm (&ir))
7864 return -1;
7865 }
7866 break;
7867
7868 case 0x0f2b: /* movntps */
7869 case 0x660f2b: /* movntpd */
7870 case 0x0fe7: /* movntq */
7871 case 0x660fe7: /* movntdq */
7872 if (ir.mod == 3)
7873 goto no_support;
7874 if (opcode == 0x0fe7)
7875 ir.ot = OT_QUAD;
7876 else
7877 ir.ot = OT_DQUAD;
7878 if (i386_record_lea_modrm (&ir))
7879 return -1;
7880 break;
7881
7882 case 0xf30f2c: /* cvttss2si */
7883 case 0xf20f2c: /* cvttsd2si */
7884 case 0xf30f2d: /* cvtss2si */
7885 case 0xf20f2d: /* cvtsd2si */
7886 case 0xf20f38f0: /* crc32 */
7887 case 0xf20f38f1: /* crc32 */
7888 case 0x0f50: /* movmskps */
7889 case 0x660f50: /* movmskpd */
7890 case 0x0fc5: /* pextrw */
7891 case 0x660fc5: /* pextrw */
7892 case 0x0fd7: /* pmovmskb */
7893 case 0x660fd7: /* pmovmskb */
7894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7895 break;
7896
7897 case 0x0f3800: /* pshufb */
7898 case 0x0f3801: /* phaddw */
7899 case 0x0f3802: /* phaddd */
7900 case 0x0f3803: /* phaddsw */
7901 case 0x0f3804: /* pmaddubsw */
7902 case 0x0f3805: /* phsubw */
7903 case 0x0f3806: /* phsubd */
7904 case 0x0f3807: /* phsubsw */
7905 case 0x0f3808: /* psignb */
7906 case 0x0f3809: /* psignw */
7907 case 0x0f380a: /* psignd */
7908 case 0x0f380b: /* pmulhrsw */
7909 case 0x0f381c: /* pabsb */
7910 case 0x0f381d: /* pabsw */
7911 case 0x0f381e: /* pabsd */
7912 case 0x0f382b: /* packusdw */
7913 case 0x0f3830: /* pmovzxbw */
7914 case 0x0f3831: /* pmovzxbd */
7915 case 0x0f3832: /* pmovzxbq */
7916 case 0x0f3833: /* pmovzxwd */
7917 case 0x0f3834: /* pmovzxwq */
7918 case 0x0f3835: /* pmovzxdq */
7919 case 0x0f3837: /* pcmpgtq */
7920 case 0x0f3838: /* pminsb */
7921 case 0x0f3839: /* pminsd */
7922 case 0x0f383a: /* pminuw */
7923 case 0x0f383b: /* pminud */
7924 case 0x0f383c: /* pmaxsb */
7925 case 0x0f383d: /* pmaxsd */
7926 case 0x0f383e: /* pmaxuw */
7927 case 0x0f383f: /* pmaxud */
7928 case 0x0f3840: /* pmulld */
7929 case 0x0f3841: /* phminposuw */
7930 case 0x0f3a0f: /* palignr */
7931 case 0x0f60: /* punpcklbw */
7932 case 0x0f61: /* punpcklwd */
7933 case 0x0f62: /* punpckldq */
7934 case 0x0f63: /* packsswb */
7935 case 0x0f64: /* pcmpgtb */
7936 case 0x0f65: /* pcmpgtw */
7937 case 0x0f66: /* pcmpgtd */
7938 case 0x0f67: /* packuswb */
7939 case 0x0f68: /* punpckhbw */
7940 case 0x0f69: /* punpckhwd */
7941 case 0x0f6a: /* punpckhdq */
7942 case 0x0f6b: /* packssdw */
7943 case 0x0f6e: /* movd */
7944 case 0x0f6f: /* movq */
7945 case 0x0f70: /* pshufw */
7946 case 0x0f74: /* pcmpeqb */
7947 case 0x0f75: /* pcmpeqw */
7948 case 0x0f76: /* pcmpeqd */
7949 case 0x0fc4: /* pinsrw */
7950 case 0x0fd1: /* psrlw */
7951 case 0x0fd2: /* psrld */
7952 case 0x0fd3: /* psrlq */
7953 case 0x0fd4: /* paddq */
7954 case 0x0fd5: /* pmullw */
7955 case 0xf20fd6: /* movdq2q */
7956 case 0x0fd8: /* psubusb */
7957 case 0x0fd9: /* psubusw */
7958 case 0x0fda: /* pminub */
7959 case 0x0fdb: /* pand */
7960 case 0x0fdc: /* paddusb */
7961 case 0x0fdd: /* paddusw */
7962 case 0x0fde: /* pmaxub */
7963 case 0x0fdf: /* pandn */
7964 case 0x0fe0: /* pavgb */
7965 case 0x0fe1: /* psraw */
7966 case 0x0fe2: /* psrad */
7967 case 0x0fe3: /* pavgw */
7968 case 0x0fe4: /* pmulhuw */
7969 case 0x0fe5: /* pmulhw */
7970 case 0x0fe8: /* psubsb */
7971 case 0x0fe9: /* psubsw */
7972 case 0x0fea: /* pminsw */
7973 case 0x0feb: /* por */
7974 case 0x0fec: /* paddsb */
7975 case 0x0fed: /* paddsw */
7976 case 0x0fee: /* pmaxsw */
7977 case 0x0fef: /* pxor */
7978 case 0x0ff1: /* psllw */
7979 case 0x0ff2: /* pslld */
7980 case 0x0ff3: /* psllq */
7981 case 0x0ff4: /* pmuludq */
7982 case 0x0ff5: /* pmaddwd */
7983 case 0x0ff6: /* psadbw */
7984 case 0x0ff8: /* psubb */
7985 case 0x0ff9: /* psubw */
7986 case 0x0ffa: /* psubd */
7987 case 0x0ffb: /* psubq */
7988 case 0x0ffc: /* paddb */
7989 case 0x0ffd: /* paddw */
7990 case 0x0ffe: /* paddd */
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7994 goto no_support;
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_MM0_REGNUM (tdep) + ir.reg);
7997 break;
7998
7999 case 0x0f71: /* psllw */
8000 case 0x0f72: /* pslld */
8001 case 0x0f73: /* psllq */
8002 if (i386_record_modrm (&ir))
8003 return -1;
8004 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8005 goto no_support;
8006 record_full_arch_list_add_reg (ir.regcache,
8007 I387_MM0_REGNUM (tdep) + ir.rm);
8008 break;
8009
8010 case 0x660f71: /* psllw */
8011 case 0x660f72: /* pslld */
8012 case 0x660f73: /* psllq */
8013 if (i386_record_modrm (&ir))
8014 return -1;
8015 ir.rm |= ir.rex_b;
8016 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8017 goto no_support;
8018 record_full_arch_list_add_reg (ir.regcache,
8019 I387_XMM0_REGNUM (tdep) + ir.rm);
8020 break;
8021
8022 case 0x0f7e: /* movd */
8023 case 0x660f7e: /* movd */
8024 if (i386_record_modrm (&ir))
8025 return -1;
8026 if (ir.mod == 3)
8027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8028 else
8029 {
8030 if (ir.dflag == 2)
8031 ir.ot = OT_QUAD;
8032 else
8033 ir.ot = OT_LONG;
8034 if (i386_record_lea_modrm (&ir))
8035 return -1;
8036 }
8037 break;
8038
8039 case 0x0f7f: /* movq */
8040 if (i386_record_modrm (&ir))
8041 return -1;
8042 if (ir.mod == 3)
8043 {
8044 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8045 goto no_support;
8046 record_full_arch_list_add_reg (ir.regcache,
8047 I387_MM0_REGNUM (tdep) + ir.rm);
8048 }
8049 else
8050 {
8051 ir.ot = OT_QUAD;
8052 if (i386_record_lea_modrm (&ir))
8053 return -1;
8054 }
8055 break;
8056
8057 case 0xf30fb8: /* popcnt */
8058 if (i386_record_modrm (&ir))
8059 return -1;
8060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8062 break;
8063
8064 case 0x660fd6: /* movq */
8065 if (i386_record_modrm (&ir))
8066 return -1;
8067 if (ir.mod == 3)
8068 {
8069 ir.rm |= ir.rex_b;
8070 if (!i386_xmm_regnum_p (gdbarch,
8071 I387_XMM0_REGNUM (tdep) + ir.rm))
8072 goto no_support;
8073 record_full_arch_list_add_reg (ir.regcache,
8074 I387_XMM0_REGNUM (tdep) + ir.rm);
8075 }
8076 else
8077 {
8078 ir.ot = OT_QUAD;
8079 if (i386_record_lea_modrm (&ir))
8080 return -1;
8081 }
8082 break;
8083
8084 case 0x660f3817: /* ptest */
8085 case 0x0f2e: /* ucomiss */
8086 case 0x660f2e: /* ucomisd */
8087 case 0x0f2f: /* comiss */
8088 case 0x660f2f: /* comisd */
8089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8090 break;
8091
8092 case 0x0ff7: /* maskmovq */
8093 regcache_raw_read_unsigned (ir.regcache,
8094 ir.regmap[X86_RECORD_REDI_REGNUM],
8095 &addr);
8096 if (record_full_arch_list_add_mem (addr, 64))
8097 return -1;
8098 break;
8099
8100 case 0x660ff7: /* maskmovdqu */
8101 regcache_raw_read_unsigned (ir.regcache,
8102 ir.regmap[X86_RECORD_REDI_REGNUM],
8103 &addr);
8104 if (record_full_arch_list_add_mem (addr, 128))
8105 return -1;
8106 break;
8107
8108 default:
8109 goto no_support;
8110 break;
8111 }
8112 break;
8113
8114 default:
8115 goto no_support;
8116 break;
8117 }
8118
8119 /* In the future, maybe still need to deal with need_dasm. */
8120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8121 if (record_full_arch_list_add_end ())
8122 return -1;
8123
8124 return 0;
8125
8126 no_support:
8127 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8128 "at address %s.\n"),
8129 (unsigned int) (opcode),
8130 paddress (gdbarch, ir.orig_addr));
8131 return -1;
8132 }
8133
8134 static const int i386_record_regmap[] =
8135 {
8136 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8137 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8138 0, 0, 0, 0, 0, 0, 0, 0,
8139 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8140 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8141 };
8142
8143 /* Check that the given address appears suitable for a fast
8144 tracepoint, which on x86-64 means that we need an instruction of at
8145 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8146 jump and not have to worry about program jumps to an address in the
8147 middle of the tracepoint jump. On x86, it may be possible to use
8148 4-byte jumps with a 2-byte offset to a trampoline located in the
8149 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8150 of instruction to replace, and 0 if not, plus an explanatory
8151 string. */
8152
8153 static int
8154 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8155 char **msg)
8156 {
8157 int len, jumplen;
8158
8159 /* Ask the target for the minimum instruction length supported. */
8160 jumplen = target_get_min_fast_tracepoint_insn_len ();
8161
8162 if (jumplen < 0)
8163 {
8164 /* If the target does not support the get_min_fast_tracepoint_insn_len
8165 operation, assume that fast tracepoints will always be implemented
8166 using 4-byte relative jumps on both x86 and x86-64. */
8167 jumplen = 5;
8168 }
8169 else if (jumplen == 0)
8170 {
8171 /* If the target does support get_min_fast_tracepoint_insn_len but
8172 returns zero, then the IPA has not loaded yet. In this case,
8173 we optimistically assume that truncated 2-byte relative jumps
8174 will be available on x86, and compensate later if this assumption
8175 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8176 jumps will always be used. */
8177 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8178 }
8179
8180 /* Check for fit. */
8181 len = gdb_insn_length (gdbarch, addr);
8182
8183 if (len < jumplen)
8184 {
8185 /* Return a bit of target-specific detail to add to the caller's
8186 generic failure message. */
8187 if (msg)
8188 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8189 "need at least %d bytes for the jump"),
8190 len, jumplen);
8191 return 0;
8192 }
8193 else
8194 {
8195 if (msg)
8196 *msg = NULL;
8197 return 1;
8198 }
8199 }
8200
8201 /* Return a floating-point format for a floating-point variable of
8202 length LEN in bits. If non-NULL, NAME is the name of its type.
8203 If no suitable type is found, return NULL. */
8204
8205 const struct floatformat **
8206 i386_floatformat_for_type (struct gdbarch *gdbarch,
8207 const char *name, int len)
8208 {
8209 if (len == 128 && name)
8210 if (strcmp (name, "__float128") == 0
8211 || strcmp (name, "_Float128") == 0
8212 || strcmp (name, "complex _Float128") == 0)
8213 return floatformats_ia64_quad;
8214
8215 return default_floatformat_for_type (gdbarch, name, len);
8216 }
8217
8218 static int
8219 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8220 struct tdesc_arch_data *tdesc_data)
8221 {
8222 const struct target_desc *tdesc = tdep->tdesc;
8223 const struct tdesc_feature *feature_core;
8224
8225 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8226 *feature_avx512, *feature_pkeys;
8227 int i, num_regs, valid_p;
8228
8229 if (! tdesc_has_registers (tdesc))
8230 return 0;
8231
8232 /* Get core registers. */
8233 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8234 if (feature_core == NULL)
8235 return 0;
8236
8237 /* Get SSE registers. */
8238 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8239
8240 /* Try AVX registers. */
8241 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8242
8243 /* Try MPX registers. */
8244 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8245
8246 /* Try AVX512 registers. */
8247 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8248
8249 /* Try PKEYS */
8250 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8251
8252 valid_p = 1;
8253
8254 /* The XCR0 bits. */
8255 if (feature_avx512)
8256 {
8257 /* AVX512 register description requires AVX register description. */
8258 if (!feature_avx)
8259 return 0;
8260
8261 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8262
8263 /* It may have been set by OSABI initialization function. */
8264 if (tdep->k0_regnum < 0)
8265 {
8266 tdep->k_register_names = i386_k_names;
8267 tdep->k0_regnum = I386_K0_REGNUM;
8268 }
8269
8270 for (i = 0; i < I387_NUM_K_REGS; i++)
8271 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8272 tdep->k0_regnum + i,
8273 i386_k_names[i]);
8274
8275 if (tdep->num_zmm_regs == 0)
8276 {
8277 tdep->zmmh_register_names = i386_zmmh_names;
8278 tdep->num_zmm_regs = 8;
8279 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8280 }
8281
8282 for (i = 0; i < tdep->num_zmm_regs; i++)
8283 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8284 tdep->zmm0h_regnum + i,
8285 tdep->zmmh_register_names[i]);
8286
8287 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8289 tdep->xmm16_regnum + i,
8290 tdep->xmm_avx512_register_names[i]);
8291
8292 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8293 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8294 tdep->ymm16h_regnum + i,
8295 tdep->ymm16h_register_names[i]);
8296 }
8297 if (feature_avx)
8298 {
8299 /* AVX register description requires SSE register description. */
8300 if (!feature_sse)
8301 return 0;
8302
8303 if (!feature_avx512)
8304 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8305
8306 /* It may have been set by OSABI initialization function. */
8307 if (tdep->num_ymm_regs == 0)
8308 {
8309 tdep->ymmh_register_names = i386_ymmh_names;
8310 tdep->num_ymm_regs = 8;
8311 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8312 }
8313
8314 for (i = 0; i < tdep->num_ymm_regs; i++)
8315 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8316 tdep->ymm0h_regnum + i,
8317 tdep->ymmh_register_names[i]);
8318 }
8319 else if (feature_sse)
8320 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8321 else
8322 {
8323 tdep->xcr0 = X86_XSTATE_X87_MASK;
8324 tdep->num_xmm_regs = 0;
8325 }
8326
8327 num_regs = tdep->num_core_regs;
8328 for (i = 0; i < num_regs; i++)
8329 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8330 tdep->register_names[i]);
8331
8332 if (feature_sse)
8333 {
8334 /* Need to include %mxcsr, so add one. */
8335 num_regs += tdep->num_xmm_regs + 1;
8336 for (; i < num_regs; i++)
8337 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8338 tdep->register_names[i]);
8339 }
8340
8341 if (feature_mpx)
8342 {
8343 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8344
8345 if (tdep->bnd0r_regnum < 0)
8346 {
8347 tdep->mpx_register_names = i386_mpx_names;
8348 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8349 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8350 }
8351
8352 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8353 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8354 I387_BND0R_REGNUM (tdep) + i,
8355 tdep->mpx_register_names[i]);
8356 }
8357
8358 if (feature_pkeys)
8359 {
8360 tdep->xcr0 |= X86_XSTATE_PKRU;
8361 if (tdep->pkru_regnum < 0)
8362 {
8363 tdep->pkeys_register_names = i386_pkeys_names;
8364 tdep->pkru_regnum = I386_PKRU_REGNUM;
8365 tdep->num_pkeys_regs = 1;
8366 }
8367
8368 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8369 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8370 I387_PKRU_REGNUM (tdep) + i,
8371 tdep->pkeys_register_names[i]);
8372 }
8373
8374 return valid_p;
8375 }
8376
8377 \f
8378 /* Note: This is called for both i386 and amd64. */
8379
8380 static struct gdbarch *
8381 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8382 {
8383 struct gdbarch_tdep *tdep;
8384 struct gdbarch *gdbarch;
8385 struct tdesc_arch_data *tdesc_data;
8386 const struct target_desc *tdesc;
8387 int mm0_regnum;
8388 int ymm0_regnum;
8389 int bnd0_regnum;
8390 int num_bnd_cooked;
8391
8392 /* If there is already a candidate, use it. */
8393 arches = gdbarch_list_lookup_by_info (arches, &info);
8394 if (arches != NULL)
8395 return arches->gdbarch;
8396
8397 /* Allocate space for the new architecture. Assume i386 for now. */
8398 tdep = XCNEW (struct gdbarch_tdep);
8399 gdbarch = gdbarch_alloc (&info, tdep);
8400
8401 /* General-purpose registers. */
8402 tdep->gregset_reg_offset = NULL;
8403 tdep->gregset_num_regs = I386_NUM_GREGS;
8404 tdep->sizeof_gregset = 0;
8405
8406 /* Floating-point registers. */
8407 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8408 tdep->fpregset = &i386_fpregset;
8409
8410 /* The default settings include the FPU registers, the MMX registers
8411 and the SSE registers. This can be overridden for a specific ABI
8412 by adjusting the members `st0_regnum', `mm0_regnum' and
8413 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8414 will show up in the output of "info all-registers". */
8415
8416 tdep->st0_regnum = I386_ST0_REGNUM;
8417
8418 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8419 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8420
8421 tdep->jb_pc_offset = -1;
8422 tdep->struct_return = pcc_struct_return;
8423 tdep->sigtramp_start = 0;
8424 tdep->sigtramp_end = 0;
8425 tdep->sigtramp_p = i386_sigtramp_p;
8426 tdep->sigcontext_addr = NULL;
8427 tdep->sc_reg_offset = NULL;
8428 tdep->sc_pc_offset = -1;
8429 tdep->sc_sp_offset = -1;
8430
8431 tdep->xsave_xcr0_offset = -1;
8432
8433 tdep->record_regmap = i386_record_regmap;
8434
8435 set_gdbarch_long_long_align_bit (gdbarch, 32);
8436
8437 /* The format used for `long double' on almost all i386 targets is
8438 the i387 extended floating-point format. In fact, of all targets
8439 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8440 on having a `long double' that's not `long' at all. */
8441 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8442
8443 /* Although the i387 extended floating-point has only 80 significant
8444 bits, a `long double' actually takes up 96, probably to enforce
8445 alignment. */
8446 set_gdbarch_long_double_bit (gdbarch, 96);
8447
8448 /* Support for floating-point data type variants. */
8449 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8450
8451 /* Register numbers of various important registers. */
8452 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8453 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8454 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8455 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8456
8457 /* NOTE: kettenis/20040418: GCC does have two possible register
8458 numbering schemes on the i386: dbx and SVR4. These schemes
8459 differ in how they number %ebp, %esp, %eflags, and the
8460 floating-point registers, and are implemented by the arrays
8461 dbx_register_map[] and svr4_dbx_register_map in
8462 gcc/config/i386.c. GCC also defines a third numbering scheme in
8463 gcc/config/i386.c, which it designates as the "default" register
8464 map used in 64bit mode. This last register numbering scheme is
8465 implemented in dbx64_register_map, and is used for AMD64; see
8466 amd64-tdep.c.
8467
8468 Currently, each GCC i386 target always uses the same register
8469 numbering scheme across all its supported debugging formats
8470 i.e. SDB (COFF), stabs and DWARF 2. This is because
8471 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8472 DBX_REGISTER_NUMBER macro which is defined by each target's
8473 respective config header in a manner independent of the requested
8474 output debugging format.
8475
8476 This does not match the arrangement below, which presumes that
8477 the SDB and stabs numbering schemes differ from the DWARF and
8478 DWARF 2 ones. The reason for this arrangement is that it is
8479 likely to get the numbering scheme for the target's
8480 default/native debug format right. For targets where GCC is the
8481 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8482 targets where the native toolchain uses a different numbering
8483 scheme for a particular debug format (stabs-in-ELF on Solaris)
8484 the defaults below will have to be overridden, like
8485 i386_elf_init_abi() does. */
8486
8487 /* Use the dbx register numbering scheme for stabs and COFF. */
8488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8489 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8490
8491 /* Use the SVR4 register numbering scheme for DWARF 2. */
8492 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8493
8494 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8495 be in use on any of the supported i386 targets. */
8496
8497 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8498
8499 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8500
8501 /* Call dummy code. */
8502 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8503 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8504 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8505 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8506
8507 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8508 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8509 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8510
8511 set_gdbarch_return_value (gdbarch, i386_return_value);
8512
8513 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8514
8515 /* Stack grows downward. */
8516 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8517
8518 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8519 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8520
8521 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8522 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8523
8524 set_gdbarch_frame_args_skip (gdbarch, 8);
8525
8526 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8527
8528 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8529
8530 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8531
8532 /* Add the i386 register groups. */
8533 i386_add_reggroups (gdbarch);
8534 tdep->register_reggroup_p = i386_register_reggroup_p;
8535
8536 /* Helper for function argument information. */
8537 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8538
8539 /* Hook the function epilogue frame unwinder. This unwinder is
8540 appended to the list first, so that it supercedes the DWARF
8541 unwinder in function epilogues (where the DWARF unwinder
8542 currently fails). */
8543 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8544
8545 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8546 to the list before the prologue-based unwinders, so that DWARF
8547 CFI info will be used if it is available. */
8548 dwarf2_append_unwinders (gdbarch);
8549
8550 frame_base_set_default (gdbarch, &i386_frame_base);
8551
8552 /* Pseudo registers may be changed by amd64_init_abi. */
8553 set_gdbarch_pseudo_register_read_value (gdbarch,
8554 i386_pseudo_register_read_value);
8555 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8556 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8557 i386_ax_pseudo_register_collect);
8558
8559 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8560 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8561
8562 /* Override the normal target description method to make the AVX
8563 upper halves anonymous. */
8564 set_gdbarch_register_name (gdbarch, i386_register_name);
8565
8566 /* Even though the default ABI only includes general-purpose registers,
8567 floating-point registers and the SSE registers, we have to leave a
8568 gap for the upper AVX, MPX and AVX512 registers. */
8569 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8570
8571 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8572
8573 /* Get the x86 target description from INFO. */
8574 tdesc = info.target_desc;
8575 if (! tdesc_has_registers (tdesc))
8576 tdesc = tdesc_i386;
8577 tdep->tdesc = tdesc;
8578
8579 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8580 tdep->register_names = i386_register_names;
8581
8582 /* No upper YMM registers. */
8583 tdep->ymmh_register_names = NULL;
8584 tdep->ymm0h_regnum = -1;
8585
8586 /* No upper ZMM registers. */
8587 tdep->zmmh_register_names = NULL;
8588 tdep->zmm0h_regnum = -1;
8589
8590 /* No high XMM registers. */
8591 tdep->xmm_avx512_register_names = NULL;
8592 tdep->xmm16_regnum = -1;
8593
8594 /* No upper YMM16-31 registers. */
8595 tdep->ymm16h_register_names = NULL;
8596 tdep->ymm16h_regnum = -1;
8597
8598 tdep->num_byte_regs = 8;
8599 tdep->num_word_regs = 8;
8600 tdep->num_dword_regs = 0;
8601 tdep->num_mmx_regs = 8;
8602 tdep->num_ymm_regs = 0;
8603
8604 /* No MPX registers. */
8605 tdep->bnd0r_regnum = -1;
8606 tdep->bndcfgu_regnum = -1;
8607
8608 /* No AVX512 registers. */
8609 tdep->k0_regnum = -1;
8610 tdep->num_zmm_regs = 0;
8611 tdep->num_ymm_avx512_regs = 0;
8612 tdep->num_xmm_avx512_regs = 0;
8613
8614 /* No PKEYS registers */
8615 tdep->pkru_regnum = -1;
8616 tdep->num_pkeys_regs = 0;
8617
8618 tdesc_data = tdesc_data_alloc ();
8619
8620 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8621
8622 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8623
8624 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8625 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8626 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8627
8628 /* Hook in ABI-specific overrides, if they have been registered.
8629 Note: If INFO specifies a 64 bit arch, this is where we turn
8630 a 32-bit i386 into a 64-bit amd64. */
8631 info.tdep_info = tdesc_data;
8632 gdbarch_init_osabi (info, gdbarch);
8633
8634 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8635 {
8636 tdesc_data_cleanup (tdesc_data);
8637 xfree (tdep);
8638 gdbarch_free (gdbarch);
8639 return NULL;
8640 }
8641
8642 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8643
8644 /* Wire in pseudo registers. Number of pseudo registers may be
8645 changed. */
8646 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8647 + tdep->num_word_regs
8648 + tdep->num_dword_regs
8649 + tdep->num_mmx_regs
8650 + tdep->num_ymm_regs
8651 + num_bnd_cooked
8652 + tdep->num_ymm_avx512_regs
8653 + tdep->num_zmm_regs));
8654
8655 /* Target description may be changed. */
8656 tdesc = tdep->tdesc;
8657
8658 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8659
8660 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8661 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8662
8663 /* Make %al the first pseudo-register. */
8664 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8665 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8666
8667 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8668 if (tdep->num_dword_regs)
8669 {
8670 /* Support dword pseudo-register if it hasn't been disabled. */
8671 tdep->eax_regnum = ymm0_regnum;
8672 ymm0_regnum += tdep->num_dword_regs;
8673 }
8674 else
8675 tdep->eax_regnum = -1;
8676
8677 mm0_regnum = ymm0_regnum;
8678 if (tdep->num_ymm_regs)
8679 {
8680 /* Support YMM pseudo-register if it is available. */
8681 tdep->ymm0_regnum = ymm0_regnum;
8682 mm0_regnum += tdep->num_ymm_regs;
8683 }
8684 else
8685 tdep->ymm0_regnum = -1;
8686
8687 if (tdep->num_ymm_avx512_regs)
8688 {
8689 /* Support YMM16-31 pseudo registers if available. */
8690 tdep->ymm16_regnum = mm0_regnum;
8691 mm0_regnum += tdep->num_ymm_avx512_regs;
8692 }
8693 else
8694 tdep->ymm16_regnum = -1;
8695
8696 if (tdep->num_zmm_regs)
8697 {
8698 /* Support ZMM pseudo-register if it is available. */
8699 tdep->zmm0_regnum = mm0_regnum;
8700 mm0_regnum += tdep->num_zmm_regs;
8701 }
8702 else
8703 tdep->zmm0_regnum = -1;
8704
8705 bnd0_regnum = mm0_regnum;
8706 if (tdep->num_mmx_regs != 0)
8707 {
8708 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8709 tdep->mm0_regnum = mm0_regnum;
8710 bnd0_regnum += tdep->num_mmx_regs;
8711 }
8712 else
8713 tdep->mm0_regnum = -1;
8714
8715 if (tdep->bnd0r_regnum > 0)
8716 tdep->bnd0_regnum = bnd0_regnum;
8717 else
8718 tdep-> bnd0_regnum = -1;
8719
8720 /* Hook in the legacy prologue-based unwinders last (fallback). */
8721 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8722 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8723 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8724
8725 /* If we have a register mapping, enable the generic core file
8726 support, unless it has already been enabled. */
8727 if (tdep->gregset_reg_offset
8728 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8729 set_gdbarch_iterate_over_regset_sections
8730 (gdbarch, i386_iterate_over_regset_sections);
8731
8732 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8733 i386_fast_tracepoint_valid_at);
8734
8735 return gdbarch;
8736 }
8737
8738 static enum gdb_osabi
8739 i386_coff_osabi_sniffer (bfd *abfd)
8740 {
8741 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8742 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8743 return GDB_OSABI_GO32;
8744
8745 return GDB_OSABI_UNKNOWN;
8746 }
8747 \f
8748
8749 /* Return the target description for a specified XSAVE feature mask. */
8750
8751 const struct target_desc *
8752 i386_target_description (uint64_t xcr0)
8753 {
8754 switch (xcr0 & X86_XSTATE_ALL_MASK)
8755 {
8756 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8757 return tdesc_i386_avx_mpx_avx512_pku;
8758 case X86_XSTATE_AVX_AVX512_MASK:
8759 return tdesc_i386_avx_avx512;
8760 case X86_XSTATE_AVX_MPX_MASK:
8761 return tdesc_i386_avx_mpx;
8762 case X86_XSTATE_MPX_MASK:
8763 return tdesc_i386_mpx;
8764 case X86_XSTATE_AVX_MASK:
8765 return tdesc_i386_avx;
8766 default:
8767 return tdesc_i386;
8768 }
8769 }
8770
8771 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8772
8773 /* Find the bound directory base address. */
8774
8775 static unsigned long
8776 i386_mpx_bd_base (void)
8777 {
8778 struct regcache *rcache;
8779 struct gdbarch_tdep *tdep;
8780 ULONGEST ret;
8781 enum register_status regstatus;
8782
8783 rcache = get_current_regcache ();
8784 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8785
8786 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8787
8788 if (regstatus != REG_VALID)
8789 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8790
8791 return ret & MPX_BASE_MASK;
8792 }
8793
8794 int
8795 i386_mpx_enabled (void)
8796 {
8797 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8798 const struct target_desc *tdesc = tdep->tdesc;
8799
8800 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8801 }
8802
8803 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8804 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8805 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8806 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8807
8808 /* Find the bound table entry given the pointer location and the base
8809 address of the table. */
8810
8811 static CORE_ADDR
8812 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8813 {
8814 CORE_ADDR offset1;
8815 CORE_ADDR offset2;
8816 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8817 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8818 CORE_ADDR bd_entry_addr;
8819 CORE_ADDR bt_addr;
8820 CORE_ADDR bd_entry;
8821 struct gdbarch *gdbarch = get_current_arch ();
8822 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8823
8824
8825 if (gdbarch_ptr_bit (gdbarch) == 64)
8826 {
8827 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8828 bd_ptr_r_shift = 20;
8829 bd_ptr_l_shift = 3;
8830 bt_select_r_shift = 3;
8831 bt_select_l_shift = 5;
8832 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8833
8834 if ( sizeof (CORE_ADDR) == 4)
8835 error (_("bound table examination not supported\
8836 for 64-bit process with 32-bit GDB"));
8837 }
8838 else
8839 {
8840 mpx_bd_mask = MPX_BD_MASK_32;
8841 bd_ptr_r_shift = 12;
8842 bd_ptr_l_shift = 2;
8843 bt_select_r_shift = 2;
8844 bt_select_l_shift = 4;
8845 bt_mask = MPX_BT_MASK_32;
8846 }
8847
8848 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8849 bd_entry_addr = bd_base + offset1;
8850 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8851
8852 if ((bd_entry & 0x1) == 0)
8853 error (_("Invalid bounds directory entry at %s."),
8854 paddress (get_current_arch (), bd_entry_addr));
8855
8856 /* Clearing status bit. */
8857 bd_entry--;
8858 bt_addr = bd_entry & ~bt_select_r_shift;
8859 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8860
8861 return bt_addr + offset2;
8862 }
8863
8864 /* Print routine for the mpx bounds. */
8865
8866 static void
8867 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8868 {
8869 struct ui_out *uiout = current_uiout;
8870 LONGEST size;
8871 struct gdbarch *gdbarch = get_current_arch ();
8872 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8873 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8874
8875 if (bounds_in_map == 1)
8876 {
8877 uiout->text ("Null bounds on map:");
8878 uiout->text (" pointer value = ");
8879 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8880 uiout->text (".");
8881 uiout->text ("\n");
8882 }
8883 else
8884 {
8885 uiout->text ("{lbound = ");
8886 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8887 uiout->text (", ubound = ");
8888
8889 /* The upper bound is stored in 1's complement. */
8890 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8891 uiout->text ("}: pointer value = ");
8892 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8893
8894 if (gdbarch_ptr_bit (gdbarch) == 64)
8895 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8896 else
8897 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8898
8899 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8900 -1 represents in this sense full memory access, and there is no need
8901 one to the size. */
8902
8903 size = (size > -1 ? size + 1 : size);
8904 uiout->text (", size = ");
8905 uiout->field_fmt ("size", "%s", plongest (size));
8906
8907 uiout->text (", metadata = ");
8908 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8909 uiout->text ("\n");
8910 }
8911 }
8912
8913 /* Implement the command "show mpx bound". */
8914
8915 static void
8916 i386_mpx_info_bounds (char *args, int from_tty)
8917 {
8918 CORE_ADDR bd_base = 0;
8919 CORE_ADDR addr;
8920 CORE_ADDR bt_entry_addr = 0;
8921 CORE_ADDR bt_entry[4];
8922 int i;
8923 struct gdbarch *gdbarch = get_current_arch ();
8924 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8925
8926 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8927 || !i386_mpx_enabled ())
8928 {
8929 printf_unfiltered (_("Intel Memory Protection Extensions not "
8930 "supported on this target.\n"));
8931 return;
8932 }
8933
8934 if (args == NULL)
8935 {
8936 printf_unfiltered (_("Address of pointer variable expected.\n"));
8937 return;
8938 }
8939
8940 addr = parse_and_eval_address (args);
8941
8942 bd_base = i386_mpx_bd_base ();
8943 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8944
8945 memset (bt_entry, 0, sizeof (bt_entry));
8946
8947 for (i = 0; i < 4; i++)
8948 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8949 + i * TYPE_LENGTH (data_ptr_type),
8950 data_ptr_type);
8951
8952 i386_mpx_print_bounds (bt_entry);
8953 }
8954
8955 /* Implement the command "set mpx bound". */
8956
8957 static void
8958 i386_mpx_set_bounds (char *args, int from_tty)
8959 {
8960 CORE_ADDR bd_base = 0;
8961 CORE_ADDR addr, lower, upper;
8962 CORE_ADDR bt_entry_addr = 0;
8963 CORE_ADDR bt_entry[2];
8964 const char *input = args;
8965 int i;
8966 struct gdbarch *gdbarch = get_current_arch ();
8967 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8968 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8969
8970 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8971 || !i386_mpx_enabled ())
8972 error (_("Intel Memory Protection Extensions not supported\
8973 on this target."));
8974
8975 if (args == NULL)
8976 error (_("Pointer value expected."));
8977
8978 addr = value_as_address (parse_to_comma_and_eval (&input));
8979
8980 if (input[0] == ',')
8981 ++input;
8982 if (input[0] == '\0')
8983 error (_("wrong number of arguments: missing lower and upper bound."));
8984 lower = value_as_address (parse_to_comma_and_eval (&input));
8985
8986 if (input[0] == ',')
8987 ++input;
8988 if (input[0] == '\0')
8989 error (_("Wrong number of arguments; Missing upper bound."));
8990 upper = value_as_address (parse_to_comma_and_eval (&input));
8991
8992 bd_base = i386_mpx_bd_base ();
8993 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8994 for (i = 0; i < 2; i++)
8995 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8996 + i * TYPE_LENGTH (data_ptr_type),
8997 data_ptr_type);
8998 bt_entry[0] = (uint64_t) lower;
8999 bt_entry[1] = ~(uint64_t) upper;
9000
9001 for (i = 0; i < 2; i++)
9002 write_memory_unsigned_integer (bt_entry_addr
9003 + i * TYPE_LENGTH (data_ptr_type),
9004 TYPE_LENGTH (data_ptr_type), byte_order,
9005 bt_entry[i]);
9006 }
9007
9008 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9009
9010 /* Helper function for the CLI commands. */
9011
9012 static void
9013 set_mpx_cmd (char *args, int from_tty)
9014 {
9015 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9016 }
9017
9018 /* Helper function for the CLI commands. */
9019
9020 static void
9021 show_mpx_cmd (char *args, int from_tty)
9022 {
9023 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9024 }
9025
9026 /* Provide a prototype to silence -Wmissing-prototypes. */
9027 void _initialize_i386_tdep (void);
9028
9029 void
9030 _initialize_i386_tdep (void)
9031 {
9032 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9033
9034 /* Add the variable that controls the disassembly flavor. */
9035 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9036 &disassembly_flavor, _("\
9037 Set the disassembly flavor."), _("\
9038 Show the disassembly flavor."), _("\
9039 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9040 NULL,
9041 NULL, /* FIXME: i18n: */
9042 &setlist, &showlist);
9043
9044 /* Add the variable that controls the convention for returning
9045 structs. */
9046 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9047 &struct_convention, _("\
9048 Set the convention for returning small structs."), _("\
9049 Show the convention for returning small structs."), _("\
9050 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9051 is \"default\"."),
9052 NULL,
9053 NULL, /* FIXME: i18n: */
9054 &setlist, &showlist);
9055
9056 /* Add "mpx" prefix for the set commands. */
9057
9058 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9059 Set Intel Memory Protection Extensions specific variables."),
9060 &mpx_set_cmdlist, "set mpx ",
9061 0 /* allow-unknown */, &setlist);
9062
9063 /* Add "mpx" prefix for the show commands. */
9064
9065 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9066 Show Intel Memory Protection Extensions specific variables."),
9067 &mpx_show_cmdlist, "show mpx ",
9068 0 /* allow-unknown */, &showlist);
9069
9070 /* Add "bound" command for the show mpx commands list. */
9071
9072 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9073 "Show the memory bounds for a given array/pointer storage\
9074 in the bound table.",
9075 &mpx_show_cmdlist);
9076
9077 /* Add "bound" command for the set mpx commands list. */
9078
9079 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9080 "Set the memory bounds for a given array/pointer storage\
9081 in the bound table.",
9082 &mpx_set_cmdlist);
9083
9084 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9085 i386_coff_osabi_sniffer);
9086
9087 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9088 i386_svr4_init_abi);
9089 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9090 i386_go32_init_abi);
9091
9092 /* Initialize the i386-specific register groups. */
9093 i386_init_reggroups ();
9094
9095 /* Initialize the standard target descriptions. */
9096 initialize_tdesc_i386 ();
9097 initialize_tdesc_i386_mmx ();
9098 initialize_tdesc_i386_avx ();
9099 initialize_tdesc_i386_mpx ();
9100 initialize_tdesc_i386_avx_mpx ();
9101 initialize_tdesc_i386_avx_avx512 ();
9102 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9103
9104 /* Tell remote stub that we support XML target description. */
9105 register_remote_support_xml ("i386");
9106 }
This page took 0.289267 seconds and 5 git commands to generate.