Remove spurious exceptions.h inclusions
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include <stdint.h>
54
55 #include "features/i386/i386.c"
56 #include "features/i386/i386-avx.c"
57 #include "features/i386/i386-mpx.c"
58 #include "features/i386/i386-avx512.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 /* This will hopefully provoke a warning. */
550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
551 }
552
553 \f
554
555 /* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
557 static const char att_flavor[] = "att";
558 static const char intel_flavor[] = "intel";
559 static const char *const valid_flavors[] =
560 {
561 att_flavor,
562 intel_flavor,
563 NULL
564 };
565 static const char *disassembly_flavor = att_flavor;
566 \f
567
568 /* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
573
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
576
577 This function is 64-bit safe. */
578
579 static const gdb_byte *
580 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
581 {
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
584 *len = sizeof (break_insn);
585 return break_insn;
586 }
587 \f
588 /* Displaced instruction handling. */
589
590 /* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596 static gdb_byte *
597 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598 {
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624 }
625
626 static int
627 i386_absolute_jmp_p (const gdb_byte *insn)
628 {
629 /* jmp far (absolute address in operand). */
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
635 /* jump near, absolute indirect (/4). */
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
639 /* jump far, absolute indirect (/5). */
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645 }
646
647 /* Return non-zero if INSN is a jump, zero otherwise. */
648
649 static int
650 i386_jmp_p (const gdb_byte *insn)
651 {
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661 }
662
663 static int
664 i386_absolute_call_p (const gdb_byte *insn)
665 {
666 /* call far, absolute. */
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
672 /* Call near, absolute indirect (/2). */
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
676 /* Call far, absolute indirect (/3). */
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682 }
683
684 static int
685 i386_ret_p (const gdb_byte *insn)
686 {
687 switch (insn[0])
688 {
689 case 0xc2: /* ret near, pop N bytes. */
690 case 0xc3: /* ret near */
691 case 0xca: /* ret far, pop N bytes. */
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699 }
700
701 static int
702 i386_call_p (const gdb_byte *insn)
703 {
704 if (i386_absolute_call_p (insn))
705 return 1;
706
707 /* call near, relative. */
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712 }
713
714 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
716
717 static int
718 i386_syscall_p (const gdb_byte *insn, int *lengthp)
719 {
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732 }
733
734 /* The gdbarch insn_is_call method. */
735
736 static int
737 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738 {
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745 }
746
747 /* The gdbarch insn_is_ret method. */
748
749 static int
750 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751 {
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758 }
759
760 /* The gdbarch insn_is_jump method. */
761
762 static int
763 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771 }
772
773 /* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776 struct displaced_step_closure *
777 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780 {
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808 }
809
810 /* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
812
813 void
814 i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818 {
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
835 "displaced: fixup (%s, %s), "
836 "insn = 0x%02x 0x%02x ...\n",
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
868 int insn_len;
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
942 }
943 }
944
945 static void
946 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947 {
948 target_write_memory (*to, buf, len);
949 *to += len;
950 }
951
952 static void
953 i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955 {
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
980 push_buf[0] = 0x68; /* pushq $... */
981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029 }
1030
1031 \f
1032 #ifdef I386_REGNO_TO_SYMMETRY
1033 #error "The Sequent Symmetry is no longer supported."
1034 #endif
1035
1036 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
1039
1040 /* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
1042 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1043
1044 struct i386_frame_cache
1045 {
1046 /* Base address. */
1047 CORE_ADDR base;
1048 int base_p;
1049 LONGEST sp_offset;
1050 CORE_ADDR pc;
1051
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1054 CORE_ADDR saved_sp;
1055 int saved_sp_reg;
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060 };
1061
1062 /* Allocate and initialize a frame cache. */
1063
1064 static struct i386_frame_cache *
1065 i386_alloc_frame_cache (void)
1066 {
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
1073 cache->base_p = 0;
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
1082 cache->saved_sp = 0;
1083 cache->saved_sp_reg = -1;
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090 }
1091
1092 /* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
1094
1095 static CORE_ADDR
1096 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1097 {
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 gdb_byte op;
1100 long delta = 0;
1101 int data16 = 0;
1102
1103 if (target_read_code (pc, &op, 1))
1104 return pc;
1105
1106 if (op == 0x66)
1107 {
1108 data16 = 1;
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1111 }
1112
1113 switch (op)
1114 {
1115 case 0xe9:
1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
1117 if (data16)
1118 {
1119 delta = read_memory_integer (pc + 2, 2, byte_order);
1120
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
1123 delta += 4;
1124 }
1125 else
1126 {
1127 delta = read_memory_integer (pc + 1, 4, byte_order);
1128
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
1131 }
1132 break;
1133 case 0xeb:
1134 /* Relative jump, disp8 (ignore data16). */
1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1136
1137 delta += data16 + 2;
1138 break;
1139 }
1140
1141 return pc + delta;
1142 }
1143
1144 /* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
1149
1150 static CORE_ADDR
1151 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
1153 {
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
1168
1169 if (current_pc <= pc)
1170 return pc;
1171
1172 if (target_read_code (pc, &op, 1))
1173 return pc;
1174
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
1177
1178 if (target_read_code (pc + 1, buf, 4))
1179 return pc;
1180
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
1183
1184 if (current_pc == pc)
1185 {
1186 cache->sp_offset += 4;
1187 return current_pc;
1188 }
1189
1190 if (current_pc == pc + 1)
1191 {
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200 }
1201
1202 static CORE_ADDR
1203 i386_skip_probe (CORE_ADDR pc)
1204 {
1205 /* A function may start with
1206
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
1210
1211 followed by
1212
1213 pushl %ebp
1214
1215 etc. */
1216 gdb_byte buf[8];
1217 gdb_byte op;
1218
1219 if (target_read_code (pc, &op, 1))
1220 return pc;
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
1225
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
1228 if (op == 0x68)
1229 delta = 5;
1230 else
1231 delta = 2;
1232
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1237 pc += delta + sizeof (buf);
1238 }
1239
1240 return pc;
1241 }
1242
1243 /* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249 static CORE_ADDR
1250 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252 {
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
1287 };
1288
1289 if (target_read_code (pc, buf, sizeof buf))
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
1352 return pc;
1353
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
1356
1357 return min (pc + offset + 3, current_pc);
1358 }
1359
1360 /* Maximum instruction length we need to handle. */
1361 #define I386_MAX_MATCHED_INSN_LEN 6
1362
1363 /* Instruction description. */
1364 struct i386_insn
1365 {
1366 size_t len;
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1369 };
1370
1371 /* Return whether instruction at PC matches PATTERN. */
1372
1373 static int
1374 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1375 {
1376 gdb_byte op;
1377
1378 if (target_read_code (pc, &op, 1))
1379 return 0;
1380
1381 if ((op & pattern.mask[0]) == pattern.insn[0])
1382 {
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
1386
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1389
1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
1391 return 0;
1392
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
1397 }
1398 return insn_matched;
1399 }
1400 return 0;
1401 }
1402
1403 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407 static struct i386_insn *
1408 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409 {
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
1416 }
1417
1418 return NULL;
1419 }
1420
1421 /* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424 static int
1425 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426 {
1427 CORE_ADDR current_pc;
1428 int ix, i;
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
1435 current_pc = pc;
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
1439 current_pc -= insn_patterns[i].len;
1440
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455 }
1456
1457 /* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463 struct i386_insn i386_frame_setup_skip_insns[] =
1464 {
1465 /* Check for `movb imm8, r' and `movl imm32, r'.
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510 };
1511
1512
1513 /* Check whether PC points to a no-op instruction. */
1514 static CORE_ADDR
1515 i386_skip_noop (CORE_ADDR pc)
1516 {
1517 gdb_byte op;
1518 int check = 1;
1519
1520 if (target_read_code (pc, &op, 1))
1521 return pc;
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
1530 if (target_read_code (pc, &op, 1))
1531 return pc;
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
1547 if (target_read_code (pc + 1, &op, 1))
1548 return pc;
1549
1550 if (op == 0xff)
1551 {
1552 pc += 2;
1553 if (target_read_code (pc, &op, 1))
1554 return pc;
1555
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561 }
1562
1563 /* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
1567
1568 static CORE_ADDR
1569 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
1571 struct i386_frame_cache *cache)
1572 {
1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1574 struct i386_insn *insn;
1575 gdb_byte op;
1576 int skip = 0;
1577
1578 if (limit <= pc)
1579 return limit;
1580
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 if (op == 0x55) /* pushl %ebp */
1585 {
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
1589 cache->sp_offset += 4;
1590 pc++;
1591
1592 /* If that's all, return now. */
1593 if (limit <= pc)
1594 return limit;
1595
1596 /* Check for some special instructions that might be migrated by
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
1601
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
1604 while (pc + skip < limit)
1605 {
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
1609
1610 skip += insn->len;
1611 }
1612
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
1617 if (target_read_code (pc + skip, &op, 1))
1618 return pc + skip;
1619
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
1634 switch (op)
1635 {
1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1637 case 0x8b:
1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1639 != 0xec)
1640 return pc;
1641 pc += (skip + 2);
1642 break;
1643 case 0x89:
1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1645 != 0xe5)
1646 return pc;
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
1654 break;
1655 default:
1656 return pc;
1657 }
1658
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
1666 if (limit <= pc)
1667 return limit;
1668
1669 /* Check for stack adjustment
1670
1671 subl $XXX, %esp
1672 or
1673 lea -XXX(%esp),%esp
1674
1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1676 reg, so we don't have to worry about a data16 prefix. */
1677 if (target_read_code (pc, &op, 1))
1678 return pc;
1679 if (op == 0x83)
1680 {
1681 /* `subl' with 8-bit immediate. */
1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1683 /* Some instruction starting with 0x83 other than `subl'. */
1684 return pc;
1685
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1689 return pc + 3;
1690 }
1691 else if (op == 0x81)
1692 {
1693 /* Maybe it is `subl' with a 32-bit immediate. */
1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1695 /* Some instruction starting with 0x81 other than `subl'. */
1696 return pc;
1697
1698 /* It is `subl' with a 32-bit immediate. */
1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1700 return pc + 6;
1701 }
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1709 return pc + 4;
1710 }
1711 else
1712 {
1713 /* Some instruction other than `subl' nor 'lea'. */
1714 return pc;
1715 }
1716 }
1717 else if (op == 0xc8) /* enter */
1718 {
1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1720 return pc + 4;
1721 }
1722
1723 return pc;
1724 }
1725
1726 /* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
1730
1731 static CORE_ADDR
1732 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
1734 {
1735 CORE_ADDR offset = 0;
1736 gdb_byte op;
1737 int i;
1738
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
1743 if (target_read_code (pc, &op, 1))
1744 return pc;
1745 if (op < 0x50 || op > 0x57)
1746 break;
1747
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
1752 }
1753
1754 return pc;
1755 }
1756
1757 /* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
1760
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
1783
1784 static CORE_ADDR
1785 i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
1787 struct i386_frame_cache *cache)
1788 {
1789 pc = i386_skip_noop (pc);
1790 pc = i386_follow_jump (gdbarch, pc);
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1795 return i386_analyze_register_saves (pc, current_pc, cache);
1796 }
1797
1798 /* Return PC of first real instruction. */
1799
1800 static CORE_ADDR
1801 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1802 {
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
1805 static gdb_byte pic_pat[6] =
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
1809 };
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
1812 gdb_byte op;
1813 int i;
1814 CORE_ADDR func_addr;
1815
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
1820 struct symtab *s = find_pc_symtab (func_addr);
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
1825 && (s != NULL
1826 && s->producer != NULL
1827 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1828 return max (start_pc, post_prologue_pc);
1829 }
1830
1831 cache.locals = -1;
1832 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1833 if (cache.locals < 0)
1834 return start_pc;
1835
1836 /* Found valid frame setup. */
1837
1838 /* The native cc on SVR4 in -K PIC mode inserts the following code
1839 to get the address of the global offset table (GOT) into register
1840 %ebx:
1841
1842 call 0x0
1843 popl %ebx
1844 movl %ebx,x(%ebp) (optional)
1845 addl y,%ebx
1846
1847 This code is with the rest of the prologue (at the end of the
1848 function), so we have to skip it to get to the first real
1849 instruction at the start of the function. */
1850
1851 for (i = 0; i < 6; i++)
1852 {
1853 if (target_read_code (pc + i, &op, 1))
1854 return pc;
1855
1856 if (pic_pat[i] != op)
1857 break;
1858 }
1859 if (i == 6)
1860 {
1861 int delta = 6;
1862
1863 if (target_read_code (pc + delta, &op, 1))
1864 return pc;
1865
1866 if (op == 0x89) /* movl %ebx, x(%ebp) */
1867 {
1868 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1869
1870 if (op == 0x5d) /* One byte offset from %ebp. */
1871 delta += 3;
1872 else if (op == 0x9d) /* Four byte offset from %ebp. */
1873 delta += 6;
1874 else /* Unexpected instruction. */
1875 delta = 0;
1876
1877 if (target_read_code (pc + delta, &op, 1))
1878 return pc;
1879 }
1880
1881 /* addl y,%ebx */
1882 if (delta > 0 && op == 0x81
1883 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1884 == 0xc3)
1885 {
1886 pc += delta + 6;
1887 }
1888 }
1889
1890 /* If the function starts with a branch (to startup code at the end)
1891 the last instruction should bring us back to the first
1892 instruction of the real code. */
1893 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1894 pc = i386_follow_jump (gdbarch, pc);
1895
1896 return pc;
1897 }
1898
1899 /* Check that the code pointed to by PC corresponds to a call to
1900 __main, skip it if so. Return PC otherwise. */
1901
1902 CORE_ADDR
1903 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1904 {
1905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1906 gdb_byte op;
1907
1908 if (target_read_code (pc, &op, 1))
1909 return pc;
1910 if (op == 0xe8)
1911 {
1912 gdb_byte buf[4];
1913
1914 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1915 {
1916 /* Make sure address is computed correctly as a 32bit
1917 integer even if CORE_ADDR is 64 bit wide. */
1918 struct bound_minimal_symbol s;
1919 CORE_ADDR call_dest;
1920
1921 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1922 call_dest = call_dest & 0xffffffffU;
1923 s = lookup_minimal_symbol_by_pc (call_dest);
1924 if (s.minsym != NULL
1925 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1926 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1927 pc += 5;
1928 }
1929 }
1930
1931 return pc;
1932 }
1933
1934 /* This function is 64-bit safe. */
1935
1936 static CORE_ADDR
1937 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1938 {
1939 gdb_byte buf[8];
1940
1941 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1942 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1943 }
1944 \f
1945
1946 /* Normal frames. */
1947
1948 static void
1949 i386_frame_cache_1 (struct frame_info *this_frame,
1950 struct i386_frame_cache *cache)
1951 {
1952 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1954 gdb_byte buf[4];
1955 int i;
1956
1957 cache->pc = get_frame_func (this_frame);
1958
1959 /* In principle, for normal frames, %ebp holds the frame pointer,
1960 which holds the base address for the current stack frame.
1961 However, for functions that don't need it, the frame pointer is
1962 optional. For these "frameless" functions the frame pointer is
1963 actually the frame pointer of the calling frame. Signal
1964 trampolines are just a special case of a "frameless" function.
1965 They (usually) share their frame pointer with the frame that was
1966 in progress when the signal occurred. */
1967
1968 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1969 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1970 if (cache->base == 0)
1971 {
1972 cache->base_p = 1;
1973 return;
1974 }
1975
1976 /* For normal frames, %eip is stored at 4(%ebp). */
1977 cache->saved_regs[I386_EIP_REGNUM] = 4;
1978
1979 if (cache->pc != 0)
1980 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1981 cache);
1982
1983 if (cache->locals < 0)
1984 {
1985 /* We didn't find a valid frame, which means that CACHE->base
1986 currently holds the frame pointer for our calling frame. If
1987 we're at the start of a function, or somewhere half-way its
1988 prologue, the function's frame probably hasn't been fully
1989 setup yet. Try to reconstruct the base address for the stack
1990 frame by looking at the stack pointer. For truly "frameless"
1991 functions this might work too. */
1992
1993 if (cache->saved_sp_reg != -1)
1994 {
1995 /* Saved stack pointer has been saved. */
1996 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1997 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1998
1999 /* We're halfway aligning the stack. */
2000 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2001 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2002
2003 /* This will be added back below. */
2004 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2005 }
2006 else if (cache->pc != 0
2007 || target_read_code (get_frame_pc (this_frame), buf, 1))
2008 {
2009 /* We're in a known function, but did not find a frame
2010 setup. Assume that the function does not use %ebp.
2011 Alternatively, we may have jumped to an invalid
2012 address; in that case there is definitely no new
2013 frame in %ebp. */
2014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2015 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2016 + cache->sp_offset;
2017 }
2018 else
2019 /* We're in an unknown function. We could not find the start
2020 of the function to analyze the prologue; our best option is
2021 to assume a typical frame layout with the caller's %ebp
2022 saved. */
2023 cache->saved_regs[I386_EBP_REGNUM] = 0;
2024 }
2025
2026 if (cache->saved_sp_reg != -1)
2027 {
2028 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2029 register may be unavailable). */
2030 if (cache->saved_sp == 0
2031 && deprecated_frame_register_read (this_frame,
2032 cache->saved_sp_reg, buf))
2033 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2034 }
2035 /* Now that we have the base address for the stack frame we can
2036 calculate the value of %esp in the calling frame. */
2037 else if (cache->saved_sp == 0)
2038 cache->saved_sp = cache->base + 8;
2039
2040 /* Adjust all the saved registers such that they contain addresses
2041 instead of offsets. */
2042 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2043 if (cache->saved_regs[i] != -1)
2044 cache->saved_regs[i] += cache->base;
2045
2046 cache->base_p = 1;
2047 }
2048
2049 static struct i386_frame_cache *
2050 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2051 {
2052 volatile struct gdb_exception ex;
2053 struct i386_frame_cache *cache;
2054
2055 if (*this_cache)
2056 return *this_cache;
2057
2058 cache = i386_alloc_frame_cache ();
2059 *this_cache = cache;
2060
2061 TRY_CATCH (ex, RETURN_MASK_ERROR)
2062 {
2063 i386_frame_cache_1 (this_frame, cache);
2064 }
2065 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2066 throw_exception (ex);
2067
2068 return cache;
2069 }
2070
2071 static void
2072 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2073 struct frame_id *this_id)
2074 {
2075 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2076
2077 if (!cache->base_p)
2078 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2079 else if (cache->base == 0)
2080 {
2081 /* This marks the outermost frame. */
2082 }
2083 else
2084 {
2085 /* See the end of i386_push_dummy_call. */
2086 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2087 }
2088 }
2089
2090 static enum unwind_stop_reason
2091 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2092 void **this_cache)
2093 {
2094 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2095
2096 if (!cache->base_p)
2097 return UNWIND_UNAVAILABLE;
2098
2099 /* This marks the outermost frame. */
2100 if (cache->base == 0)
2101 return UNWIND_OUTERMOST;
2102
2103 return UNWIND_NO_REASON;
2104 }
2105
2106 static struct value *
2107 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2108 int regnum)
2109 {
2110 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2111
2112 gdb_assert (regnum >= 0);
2113
2114 /* The System V ABI says that:
2115
2116 "The flags register contains the system flags, such as the
2117 direction flag and the carry flag. The direction flag must be
2118 set to the forward (that is, zero) direction before entry and
2119 upon exit from a function. Other user flags have no specified
2120 role in the standard calling sequence and are not preserved."
2121
2122 To guarantee the "upon exit" part of that statement we fake a
2123 saved flags register that has its direction flag cleared.
2124
2125 Note that GCC doesn't seem to rely on the fact that the direction
2126 flag is cleared after a function return; it always explicitly
2127 clears the flag before operations where it matters.
2128
2129 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2130 right thing to do. The way we fake the flags register here makes
2131 it impossible to change it. */
2132
2133 if (regnum == I386_EFLAGS_REGNUM)
2134 {
2135 ULONGEST val;
2136
2137 val = get_frame_register_unsigned (this_frame, regnum);
2138 val &= ~(1 << 10);
2139 return frame_unwind_got_constant (this_frame, regnum, val);
2140 }
2141
2142 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2143 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2144
2145 if (regnum == I386_ESP_REGNUM
2146 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2147 {
2148 /* If the SP has been saved, but we don't know where, then this
2149 means that SAVED_SP_REG register was found unavailable back
2150 when we built the cache. */
2151 if (cache->saved_sp == 0)
2152 return frame_unwind_got_register (this_frame, regnum,
2153 cache->saved_sp_reg);
2154 else
2155 return frame_unwind_got_constant (this_frame, regnum,
2156 cache->saved_sp);
2157 }
2158
2159 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2160 return frame_unwind_got_memory (this_frame, regnum,
2161 cache->saved_regs[regnum]);
2162
2163 return frame_unwind_got_register (this_frame, regnum, regnum);
2164 }
2165
2166 static const struct frame_unwind i386_frame_unwind =
2167 {
2168 NORMAL_FRAME,
2169 i386_frame_unwind_stop_reason,
2170 i386_frame_this_id,
2171 i386_frame_prev_register,
2172 NULL,
2173 default_frame_sniffer
2174 };
2175
2176 /* Normal frames, but in a function epilogue. */
2177
2178 /* The epilogue is defined here as the 'ret' instruction, which will
2179 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2180 the function's stack frame. */
2181
2182 static int
2183 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2184 {
2185 gdb_byte insn;
2186 struct symtab *symtab;
2187
2188 symtab = find_pc_symtab (pc);
2189 if (symtab && symtab->epilogue_unwind_valid)
2190 return 0;
2191
2192 if (target_read_memory (pc, &insn, 1))
2193 return 0; /* Can't read memory at pc. */
2194
2195 if (insn != 0xc3) /* 'ret' instruction. */
2196 return 0;
2197
2198 return 1;
2199 }
2200
2201 static int
2202 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2203 struct frame_info *this_frame,
2204 void **this_prologue_cache)
2205 {
2206 if (frame_relative_level (this_frame) == 0)
2207 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2208 get_frame_pc (this_frame));
2209 else
2210 return 0;
2211 }
2212
2213 static struct i386_frame_cache *
2214 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2215 {
2216 volatile struct gdb_exception ex;
2217 struct i386_frame_cache *cache;
2218 CORE_ADDR sp;
2219
2220 if (*this_cache)
2221 return *this_cache;
2222
2223 cache = i386_alloc_frame_cache ();
2224 *this_cache = cache;
2225
2226 TRY_CATCH (ex, RETURN_MASK_ERROR)
2227 {
2228 cache->pc = get_frame_func (this_frame);
2229
2230 /* At this point the stack looks as if we just entered the
2231 function, with the return address at the top of the
2232 stack. */
2233 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2234 cache->base = sp + cache->sp_offset;
2235 cache->saved_sp = cache->base + 8;
2236 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2237
2238 cache->base_p = 1;
2239 }
2240 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2241 throw_exception (ex);
2242
2243 return cache;
2244 }
2245
2246 static enum unwind_stop_reason
2247 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2248 void **this_cache)
2249 {
2250 struct i386_frame_cache *cache =
2251 i386_epilogue_frame_cache (this_frame, this_cache);
2252
2253 if (!cache->base_p)
2254 return UNWIND_UNAVAILABLE;
2255
2256 return UNWIND_NO_REASON;
2257 }
2258
2259 static void
2260 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2261 void **this_cache,
2262 struct frame_id *this_id)
2263 {
2264 struct i386_frame_cache *cache =
2265 i386_epilogue_frame_cache (this_frame, this_cache);
2266
2267 if (!cache->base_p)
2268 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2269 else
2270 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2271 }
2272
2273 static struct value *
2274 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2275 void **this_cache, int regnum)
2276 {
2277 /* Make sure we've initialized the cache. */
2278 i386_epilogue_frame_cache (this_frame, this_cache);
2279
2280 return i386_frame_prev_register (this_frame, this_cache, regnum);
2281 }
2282
2283 static const struct frame_unwind i386_epilogue_frame_unwind =
2284 {
2285 NORMAL_FRAME,
2286 i386_epilogue_frame_unwind_stop_reason,
2287 i386_epilogue_frame_this_id,
2288 i386_epilogue_frame_prev_register,
2289 NULL,
2290 i386_epilogue_frame_sniffer
2291 };
2292 \f
2293
2294 /* Stack-based trampolines. */
2295
2296 /* These trampolines are used on cross x86 targets, when taking the
2297 address of a nested function. When executing these trampolines,
2298 no stack frame is set up, so we are in a similar situation as in
2299 epilogues and i386_epilogue_frame_this_id can be re-used. */
2300
2301 /* Static chain passed in register. */
2302
2303 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2304 {
2305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2306 { 5, { 0xb8 }, { 0xfe } },
2307
2308 /* `jmp imm32' */
2309 { 5, { 0xe9 }, { 0xff } },
2310
2311 {0}
2312 };
2313
2314 /* Static chain passed on stack (when regparm=3). */
2315
2316 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2317 {
2318 /* `push imm32' */
2319 { 5, { 0x68 }, { 0xff } },
2320
2321 /* `jmp imm32' */
2322 { 5, { 0xe9 }, { 0xff } },
2323
2324 {0}
2325 };
2326
2327 /* Return whether PC points inside a stack trampoline. */
2328
2329 static int
2330 i386_in_stack_tramp_p (CORE_ADDR pc)
2331 {
2332 gdb_byte insn;
2333 const char *name;
2334
2335 /* A stack trampoline is detected if no name is associated
2336 to the current pc and if it points inside a trampoline
2337 sequence. */
2338
2339 find_pc_partial_function (pc, &name, NULL, NULL);
2340 if (name)
2341 return 0;
2342
2343 if (target_read_memory (pc, &insn, 1))
2344 return 0;
2345
2346 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2347 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2348 return 0;
2349
2350 return 1;
2351 }
2352
2353 static int
2354 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2355 struct frame_info *this_frame,
2356 void **this_cache)
2357 {
2358 if (frame_relative_level (this_frame) == 0)
2359 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2360 else
2361 return 0;
2362 }
2363
2364 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2365 {
2366 NORMAL_FRAME,
2367 i386_epilogue_frame_unwind_stop_reason,
2368 i386_epilogue_frame_this_id,
2369 i386_epilogue_frame_prev_register,
2370 NULL,
2371 i386_stack_tramp_frame_sniffer
2372 };
2373 \f
2374 /* Generate a bytecode expression to get the value of the saved PC. */
2375
2376 static void
2377 i386_gen_return_address (struct gdbarch *gdbarch,
2378 struct agent_expr *ax, struct axs_value *value,
2379 CORE_ADDR scope)
2380 {
2381 /* The following sequence assumes the traditional use of the base
2382 register. */
2383 ax_reg (ax, I386_EBP_REGNUM);
2384 ax_const_l (ax, 4);
2385 ax_simple (ax, aop_add);
2386 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2387 value->kind = axs_lvalue_memory;
2388 }
2389 \f
2390
2391 /* Signal trampolines. */
2392
2393 static struct i386_frame_cache *
2394 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2395 {
2396 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2399 volatile struct gdb_exception ex;
2400 struct i386_frame_cache *cache;
2401 CORE_ADDR addr;
2402 gdb_byte buf[4];
2403
2404 if (*this_cache)
2405 return *this_cache;
2406
2407 cache = i386_alloc_frame_cache ();
2408
2409 TRY_CATCH (ex, RETURN_MASK_ERROR)
2410 {
2411 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2412 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2413
2414 addr = tdep->sigcontext_addr (this_frame);
2415 if (tdep->sc_reg_offset)
2416 {
2417 int i;
2418
2419 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2420
2421 for (i = 0; i < tdep->sc_num_regs; i++)
2422 if (tdep->sc_reg_offset[i] != -1)
2423 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2424 }
2425 else
2426 {
2427 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2428 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2429 }
2430
2431 cache->base_p = 1;
2432 }
2433 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2434 throw_exception (ex);
2435
2436 *this_cache = cache;
2437 return cache;
2438 }
2439
2440 static enum unwind_stop_reason
2441 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2442 void **this_cache)
2443 {
2444 struct i386_frame_cache *cache =
2445 i386_sigtramp_frame_cache (this_frame, this_cache);
2446
2447 if (!cache->base_p)
2448 return UNWIND_UNAVAILABLE;
2449
2450 return UNWIND_NO_REASON;
2451 }
2452
2453 static void
2454 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2455 struct frame_id *this_id)
2456 {
2457 struct i386_frame_cache *cache =
2458 i386_sigtramp_frame_cache (this_frame, this_cache);
2459
2460 if (!cache->base_p)
2461 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2462 else
2463 {
2464 /* See the end of i386_push_dummy_call. */
2465 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2466 }
2467 }
2468
2469 static struct value *
2470 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2471 void **this_cache, int regnum)
2472 {
2473 /* Make sure we've initialized the cache. */
2474 i386_sigtramp_frame_cache (this_frame, this_cache);
2475
2476 return i386_frame_prev_register (this_frame, this_cache, regnum);
2477 }
2478
2479 static int
2480 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2481 struct frame_info *this_frame,
2482 void **this_prologue_cache)
2483 {
2484 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2485
2486 /* We shouldn't even bother if we don't have a sigcontext_addr
2487 handler. */
2488 if (tdep->sigcontext_addr == NULL)
2489 return 0;
2490
2491 if (tdep->sigtramp_p != NULL)
2492 {
2493 if (tdep->sigtramp_p (this_frame))
2494 return 1;
2495 }
2496
2497 if (tdep->sigtramp_start != 0)
2498 {
2499 CORE_ADDR pc = get_frame_pc (this_frame);
2500
2501 gdb_assert (tdep->sigtramp_end != 0);
2502 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2503 return 1;
2504 }
2505
2506 return 0;
2507 }
2508
2509 static const struct frame_unwind i386_sigtramp_frame_unwind =
2510 {
2511 SIGTRAMP_FRAME,
2512 i386_sigtramp_frame_unwind_stop_reason,
2513 i386_sigtramp_frame_this_id,
2514 i386_sigtramp_frame_prev_register,
2515 NULL,
2516 i386_sigtramp_frame_sniffer
2517 };
2518 \f
2519
2520 static CORE_ADDR
2521 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2522 {
2523 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2524
2525 return cache->base;
2526 }
2527
2528 static const struct frame_base i386_frame_base =
2529 {
2530 &i386_frame_unwind,
2531 i386_frame_base_address,
2532 i386_frame_base_address,
2533 i386_frame_base_address
2534 };
2535
2536 static struct frame_id
2537 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2538 {
2539 CORE_ADDR fp;
2540
2541 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2542
2543 /* See the end of i386_push_dummy_call. */
2544 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2545 }
2546
2547 /* _Decimal128 function return values need 16-byte alignment on the
2548 stack. */
2549
2550 static CORE_ADDR
2551 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2552 {
2553 return sp & -(CORE_ADDR)16;
2554 }
2555 \f
2556
2557 /* Figure out where the longjmp will land. Slurp the args out of the
2558 stack. We expect the first arg to be a pointer to the jmp_buf
2559 structure from which we extract the address that we will land at.
2560 This address is copied into PC. This routine returns non-zero on
2561 success. */
2562
2563 static int
2564 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2565 {
2566 gdb_byte buf[4];
2567 CORE_ADDR sp, jb_addr;
2568 struct gdbarch *gdbarch = get_frame_arch (frame);
2569 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2570 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2571
2572 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2573 longjmp will land. */
2574 if (jb_pc_offset == -1)
2575 return 0;
2576
2577 get_frame_register (frame, I386_ESP_REGNUM, buf);
2578 sp = extract_unsigned_integer (buf, 4, byte_order);
2579 if (target_read_memory (sp + 4, buf, 4))
2580 return 0;
2581
2582 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2583 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2584 return 0;
2585
2586 *pc = extract_unsigned_integer (buf, 4, byte_order);
2587 return 1;
2588 }
2589 \f
2590
2591 /* Check whether TYPE must be 16-byte-aligned when passed as a
2592 function argument. 16-byte vectors, _Decimal128 and structures or
2593 unions containing such types must be 16-byte-aligned; other
2594 arguments are 4-byte-aligned. */
2595
2596 static int
2597 i386_16_byte_align_p (struct type *type)
2598 {
2599 type = check_typedef (type);
2600 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2601 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2602 && TYPE_LENGTH (type) == 16)
2603 return 1;
2604 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2605 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2606 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2607 || TYPE_CODE (type) == TYPE_CODE_UNION)
2608 {
2609 int i;
2610 for (i = 0; i < TYPE_NFIELDS (type); i++)
2611 {
2612 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2613 return 1;
2614 }
2615 }
2616 return 0;
2617 }
2618
2619 /* Implementation for set_gdbarch_push_dummy_code. */
2620
2621 static CORE_ADDR
2622 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2623 struct value **args, int nargs, struct type *value_type,
2624 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2625 struct regcache *regcache)
2626 {
2627 /* Use 0xcc breakpoint - 1 byte. */
2628 *bp_addr = sp - 1;
2629 *real_pc = funaddr;
2630
2631 /* Keep the stack aligned. */
2632 return sp - 16;
2633 }
2634
2635 static CORE_ADDR
2636 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2637 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2638 struct value **args, CORE_ADDR sp, int struct_return,
2639 CORE_ADDR struct_addr)
2640 {
2641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2642 gdb_byte buf[4];
2643 int i;
2644 int write_pass;
2645 int args_space = 0;
2646
2647 /* Determine the total space required for arguments and struct
2648 return address in a first pass (allowing for 16-byte-aligned
2649 arguments), then push arguments in a second pass. */
2650
2651 for (write_pass = 0; write_pass < 2; write_pass++)
2652 {
2653 int args_space_used = 0;
2654
2655 if (struct_return)
2656 {
2657 if (write_pass)
2658 {
2659 /* Push value address. */
2660 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2661 write_memory (sp, buf, 4);
2662 args_space_used += 4;
2663 }
2664 else
2665 args_space += 4;
2666 }
2667
2668 for (i = 0; i < nargs; i++)
2669 {
2670 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2671
2672 if (write_pass)
2673 {
2674 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2675 args_space_used = align_up (args_space_used, 16);
2676
2677 write_memory (sp + args_space_used,
2678 value_contents_all (args[i]), len);
2679 /* The System V ABI says that:
2680
2681 "An argument's size is increased, if necessary, to make it a
2682 multiple of [32-bit] words. This may require tail padding,
2683 depending on the size of the argument."
2684
2685 This makes sure the stack stays word-aligned. */
2686 args_space_used += align_up (len, 4);
2687 }
2688 else
2689 {
2690 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2691 args_space = align_up (args_space, 16);
2692 args_space += align_up (len, 4);
2693 }
2694 }
2695
2696 if (!write_pass)
2697 {
2698 sp -= args_space;
2699
2700 /* The original System V ABI only requires word alignment,
2701 but modern incarnations need 16-byte alignment in order
2702 to support SSE. Since wasting a few bytes here isn't
2703 harmful we unconditionally enforce 16-byte alignment. */
2704 sp &= ~0xf;
2705 }
2706 }
2707
2708 /* Store return address. */
2709 sp -= 4;
2710 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2711 write_memory (sp, buf, 4);
2712
2713 /* Finally, update the stack pointer... */
2714 store_unsigned_integer (buf, 4, byte_order, sp);
2715 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2716
2717 /* ...and fake a frame pointer. */
2718 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2719
2720 /* MarkK wrote: This "+ 8" is all over the place:
2721 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2722 i386_dummy_id). It's there, since all frame unwinders for
2723 a given target have to agree (within a certain margin) on the
2724 definition of the stack address of a frame. Otherwise frame id
2725 comparison might not work correctly. Since DWARF2/GCC uses the
2726 stack address *before* the function call as a frame's CFA. On
2727 the i386, when %ebp is used as a frame pointer, the offset
2728 between the contents %ebp and the CFA as defined by GCC. */
2729 return sp + 8;
2730 }
2731
2732 /* These registers are used for returning integers (and on some
2733 targets also for returning `struct' and `union' values when their
2734 size and alignment match an integer type). */
2735 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2736 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2737
2738 /* Read, for architecture GDBARCH, a function return value of TYPE
2739 from REGCACHE, and copy that into VALBUF. */
2740
2741 static void
2742 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2743 struct regcache *regcache, gdb_byte *valbuf)
2744 {
2745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2746 int len = TYPE_LENGTH (type);
2747 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2748
2749 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2750 {
2751 if (tdep->st0_regnum < 0)
2752 {
2753 warning (_("Cannot find floating-point return value."));
2754 memset (valbuf, 0, len);
2755 return;
2756 }
2757
2758 /* Floating-point return values can be found in %st(0). Convert
2759 its contents to the desired type. This is probably not
2760 exactly how it would happen on the target itself, but it is
2761 the best we can do. */
2762 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2763 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2764 }
2765 else
2766 {
2767 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2768 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2769
2770 if (len <= low_size)
2771 {
2772 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2773 memcpy (valbuf, buf, len);
2774 }
2775 else if (len <= (low_size + high_size))
2776 {
2777 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2778 memcpy (valbuf, buf, low_size);
2779 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2780 memcpy (valbuf + low_size, buf, len - low_size);
2781 }
2782 else
2783 internal_error (__FILE__, __LINE__,
2784 _("Cannot extract return value of %d bytes long."),
2785 len);
2786 }
2787 }
2788
2789 /* Write, for architecture GDBARCH, a function return value of TYPE
2790 from VALBUF into REGCACHE. */
2791
2792 static void
2793 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2794 struct regcache *regcache, const gdb_byte *valbuf)
2795 {
2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2797 int len = TYPE_LENGTH (type);
2798
2799 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2800 {
2801 ULONGEST fstat;
2802 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2803
2804 if (tdep->st0_regnum < 0)
2805 {
2806 warning (_("Cannot set floating-point return value."));
2807 return;
2808 }
2809
2810 /* Returning floating-point values is a bit tricky. Apart from
2811 storing the return value in %st(0), we have to simulate the
2812 state of the FPU at function return point. */
2813
2814 /* Convert the value found in VALBUF to the extended
2815 floating-point format used by the FPU. This is probably
2816 not exactly how it would happen on the target itself, but
2817 it is the best we can do. */
2818 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2819 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2820
2821 /* Set the top of the floating-point register stack to 7. The
2822 actual value doesn't really matter, but 7 is what a normal
2823 function return would end up with if the program started out
2824 with a freshly initialized FPU. */
2825 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2826 fstat |= (7 << 11);
2827 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2828
2829 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2830 the floating-point register stack to 7, the appropriate value
2831 for the tag word is 0x3fff. */
2832 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2833 }
2834 else
2835 {
2836 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2837 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2838
2839 if (len <= low_size)
2840 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2841 else if (len <= (low_size + high_size))
2842 {
2843 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2844 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2845 len - low_size, valbuf + low_size);
2846 }
2847 else
2848 internal_error (__FILE__, __LINE__,
2849 _("Cannot store return value of %d bytes long."), len);
2850 }
2851 }
2852 \f
2853
2854 /* This is the variable that is set with "set struct-convention", and
2855 its legitimate values. */
2856 static const char default_struct_convention[] = "default";
2857 static const char pcc_struct_convention[] = "pcc";
2858 static const char reg_struct_convention[] = "reg";
2859 static const char *const valid_conventions[] =
2860 {
2861 default_struct_convention,
2862 pcc_struct_convention,
2863 reg_struct_convention,
2864 NULL
2865 };
2866 static const char *struct_convention = default_struct_convention;
2867
2868 /* Return non-zero if TYPE, which is assumed to be a structure,
2869 a union type, or an array type, should be returned in registers
2870 for architecture GDBARCH. */
2871
2872 static int
2873 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2874 {
2875 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2876 enum type_code code = TYPE_CODE (type);
2877 int len = TYPE_LENGTH (type);
2878
2879 gdb_assert (code == TYPE_CODE_STRUCT
2880 || code == TYPE_CODE_UNION
2881 || code == TYPE_CODE_ARRAY);
2882
2883 if (struct_convention == pcc_struct_convention
2884 || (struct_convention == default_struct_convention
2885 && tdep->struct_return == pcc_struct_return))
2886 return 0;
2887
2888 /* Structures consisting of a single `float', `double' or 'long
2889 double' member are returned in %st(0). */
2890 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2891 {
2892 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2893 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2894 return (len == 4 || len == 8 || len == 12);
2895 }
2896
2897 return (len == 1 || len == 2 || len == 4 || len == 8);
2898 }
2899
2900 /* Determine, for architecture GDBARCH, how a return value of TYPE
2901 should be returned. If it is supposed to be returned in registers,
2902 and READBUF is non-zero, read the appropriate value from REGCACHE,
2903 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2904 from WRITEBUF into REGCACHE. */
2905
2906 static enum return_value_convention
2907 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2908 struct type *type, struct regcache *regcache,
2909 gdb_byte *readbuf, const gdb_byte *writebuf)
2910 {
2911 enum type_code code = TYPE_CODE (type);
2912
2913 if (((code == TYPE_CODE_STRUCT
2914 || code == TYPE_CODE_UNION
2915 || code == TYPE_CODE_ARRAY)
2916 && !i386_reg_struct_return_p (gdbarch, type))
2917 /* Complex double and long double uses the struct return covention. */
2918 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2920 /* 128-bit decimal float uses the struct return convention. */
2921 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2922 {
2923 /* The System V ABI says that:
2924
2925 "A function that returns a structure or union also sets %eax
2926 to the value of the original address of the caller's area
2927 before it returns. Thus when the caller receives control
2928 again, the address of the returned object resides in register
2929 %eax and can be used to access the object."
2930
2931 So the ABI guarantees that we can always find the return
2932 value just after the function has returned. */
2933
2934 /* Note that the ABI doesn't mention functions returning arrays,
2935 which is something possible in certain languages such as Ada.
2936 In this case, the value is returned as if it was wrapped in
2937 a record, so the convention applied to records also applies
2938 to arrays. */
2939
2940 if (readbuf)
2941 {
2942 ULONGEST addr;
2943
2944 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2945 read_memory (addr, readbuf, TYPE_LENGTH (type));
2946 }
2947
2948 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2949 }
2950
2951 /* This special case is for structures consisting of a single
2952 `float', `double' or 'long double' member. These structures are
2953 returned in %st(0). For these structures, we call ourselves
2954 recursively, changing TYPE into the type of the first member of
2955 the structure. Since that should work for all structures that
2956 have only one member, we don't bother to check the member's type
2957 here. */
2958 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2959 {
2960 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2961 return i386_return_value (gdbarch, function, type, regcache,
2962 readbuf, writebuf);
2963 }
2964
2965 if (readbuf)
2966 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2967 if (writebuf)
2968 i386_store_return_value (gdbarch, type, regcache, writebuf);
2969
2970 return RETURN_VALUE_REGISTER_CONVENTION;
2971 }
2972 \f
2973
2974 struct type *
2975 i387_ext_type (struct gdbarch *gdbarch)
2976 {
2977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2978
2979 if (!tdep->i387_ext_type)
2980 {
2981 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2982 gdb_assert (tdep->i387_ext_type != NULL);
2983 }
2984
2985 return tdep->i387_ext_type;
2986 }
2987
2988 /* Construct type for pseudo BND registers. We can't use
2989 tdesc_find_type since a complement of one value has to be used
2990 to describe the upper bound. */
2991
2992 static struct type *
2993 i386_bnd_type (struct gdbarch *gdbarch)
2994 {
2995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2996
2997
2998 if (!tdep->i386_bnd_type)
2999 {
3000 struct type *t, *bound_t;
3001 const struct builtin_type *bt = builtin_type (gdbarch);
3002
3003 /* The type we're building is described bellow: */
3004 #if 0
3005 struct __bound128
3006 {
3007 void *lbound;
3008 void *ubound; /* One complement of raw ubound field. */
3009 };
3010 #endif
3011
3012 t = arch_composite_type (gdbarch,
3013 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3014
3015 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3016 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3017
3018 TYPE_NAME (t) = "builtin_type_bound128";
3019 tdep->i386_bnd_type = t;
3020 }
3021
3022 return tdep->i386_bnd_type;
3023 }
3024
3025 /* Construct vector type for pseudo ZMM registers. We can't use
3026 tdesc_find_type since ZMM isn't described in target description. */
3027
3028 static struct type *
3029 i386_zmm_type (struct gdbarch *gdbarch)
3030 {
3031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3032
3033 if (!tdep->i386_zmm_type)
3034 {
3035 const struct builtin_type *bt = builtin_type (gdbarch);
3036
3037 /* The type we're building is this: */
3038 #if 0
3039 union __gdb_builtin_type_vec512i
3040 {
3041 int128_t uint128[4];
3042 int64_t v4_int64[8];
3043 int32_t v8_int32[16];
3044 int16_t v16_int16[32];
3045 int8_t v32_int8[64];
3046 double v4_double[8];
3047 float v8_float[16];
3048 };
3049 #endif
3050
3051 struct type *t;
3052
3053 t = arch_composite_type (gdbarch,
3054 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3055 append_composite_type_field (t, "v16_float",
3056 init_vector_type (bt->builtin_float, 16));
3057 append_composite_type_field (t, "v8_double",
3058 init_vector_type (bt->builtin_double, 8));
3059 append_composite_type_field (t, "v64_int8",
3060 init_vector_type (bt->builtin_int8, 64));
3061 append_composite_type_field (t, "v32_int16",
3062 init_vector_type (bt->builtin_int16, 32));
3063 append_composite_type_field (t, "v16_int32",
3064 init_vector_type (bt->builtin_int32, 16));
3065 append_composite_type_field (t, "v8_int64",
3066 init_vector_type (bt->builtin_int64, 8));
3067 append_composite_type_field (t, "v4_int128",
3068 init_vector_type (bt->builtin_int128, 4));
3069
3070 TYPE_VECTOR (t) = 1;
3071 TYPE_NAME (t) = "builtin_type_vec512i";
3072 tdep->i386_zmm_type = t;
3073 }
3074
3075 return tdep->i386_zmm_type;
3076 }
3077
3078 /* Construct vector type for pseudo YMM registers. We can't use
3079 tdesc_find_type since YMM isn't described in target description. */
3080
3081 static struct type *
3082 i386_ymm_type (struct gdbarch *gdbarch)
3083 {
3084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3085
3086 if (!tdep->i386_ymm_type)
3087 {
3088 const struct builtin_type *bt = builtin_type (gdbarch);
3089
3090 /* The type we're building is this: */
3091 #if 0
3092 union __gdb_builtin_type_vec256i
3093 {
3094 int128_t uint128[2];
3095 int64_t v2_int64[4];
3096 int32_t v4_int32[8];
3097 int16_t v8_int16[16];
3098 int8_t v16_int8[32];
3099 double v2_double[4];
3100 float v4_float[8];
3101 };
3102 #endif
3103
3104 struct type *t;
3105
3106 t = arch_composite_type (gdbarch,
3107 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3108 append_composite_type_field (t, "v8_float",
3109 init_vector_type (bt->builtin_float, 8));
3110 append_composite_type_field (t, "v4_double",
3111 init_vector_type (bt->builtin_double, 4));
3112 append_composite_type_field (t, "v32_int8",
3113 init_vector_type (bt->builtin_int8, 32));
3114 append_composite_type_field (t, "v16_int16",
3115 init_vector_type (bt->builtin_int16, 16));
3116 append_composite_type_field (t, "v8_int32",
3117 init_vector_type (bt->builtin_int32, 8));
3118 append_composite_type_field (t, "v4_int64",
3119 init_vector_type (bt->builtin_int64, 4));
3120 append_composite_type_field (t, "v2_int128",
3121 init_vector_type (bt->builtin_int128, 2));
3122
3123 TYPE_VECTOR (t) = 1;
3124 TYPE_NAME (t) = "builtin_type_vec256i";
3125 tdep->i386_ymm_type = t;
3126 }
3127
3128 return tdep->i386_ymm_type;
3129 }
3130
3131 /* Construct vector type for MMX registers. */
3132 static struct type *
3133 i386_mmx_type (struct gdbarch *gdbarch)
3134 {
3135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3136
3137 if (!tdep->i386_mmx_type)
3138 {
3139 const struct builtin_type *bt = builtin_type (gdbarch);
3140
3141 /* The type we're building is this: */
3142 #if 0
3143 union __gdb_builtin_type_vec64i
3144 {
3145 int64_t uint64;
3146 int32_t v2_int32[2];
3147 int16_t v4_int16[4];
3148 int8_t v8_int8[8];
3149 };
3150 #endif
3151
3152 struct type *t;
3153
3154 t = arch_composite_type (gdbarch,
3155 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3156
3157 append_composite_type_field (t, "uint64", bt->builtin_int64);
3158 append_composite_type_field (t, "v2_int32",
3159 init_vector_type (bt->builtin_int32, 2));
3160 append_composite_type_field (t, "v4_int16",
3161 init_vector_type (bt->builtin_int16, 4));
3162 append_composite_type_field (t, "v8_int8",
3163 init_vector_type (bt->builtin_int8, 8));
3164
3165 TYPE_VECTOR (t) = 1;
3166 TYPE_NAME (t) = "builtin_type_vec64i";
3167 tdep->i386_mmx_type = t;
3168 }
3169
3170 return tdep->i386_mmx_type;
3171 }
3172
3173 /* Return the GDB type object for the "standard" data type of data in
3174 register REGNUM. */
3175
3176 struct type *
3177 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3178 {
3179 if (i386_bnd_regnum_p (gdbarch, regnum))
3180 return i386_bnd_type (gdbarch);
3181 if (i386_mmx_regnum_p (gdbarch, regnum))
3182 return i386_mmx_type (gdbarch);
3183 else if (i386_ymm_regnum_p (gdbarch, regnum))
3184 return i386_ymm_type (gdbarch);
3185 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3186 return i386_ymm_type (gdbarch);
3187 else if (i386_zmm_regnum_p (gdbarch, regnum))
3188 return i386_zmm_type (gdbarch);
3189 else
3190 {
3191 const struct builtin_type *bt = builtin_type (gdbarch);
3192 if (i386_byte_regnum_p (gdbarch, regnum))
3193 return bt->builtin_int8;
3194 else if (i386_word_regnum_p (gdbarch, regnum))
3195 return bt->builtin_int16;
3196 else if (i386_dword_regnum_p (gdbarch, regnum))
3197 return bt->builtin_int32;
3198 else if (i386_k_regnum_p (gdbarch, regnum))
3199 return bt->builtin_int64;
3200 }
3201
3202 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3203 }
3204
3205 /* Map a cooked register onto a raw register or memory. For the i386,
3206 the MMX registers need to be mapped onto floating point registers. */
3207
3208 static int
3209 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3210 {
3211 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3212 int mmxreg, fpreg;
3213 ULONGEST fstat;
3214 int tos;
3215
3216 mmxreg = regnum - tdep->mm0_regnum;
3217 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3218 tos = (fstat >> 11) & 0x7;
3219 fpreg = (mmxreg + tos) % 8;
3220
3221 return (I387_ST0_REGNUM (tdep) + fpreg);
3222 }
3223
3224 /* A helper function for us by i386_pseudo_register_read_value and
3225 amd64_pseudo_register_read_value. It does all the work but reads
3226 the data into an already-allocated value. */
3227
3228 void
3229 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3230 struct regcache *regcache,
3231 int regnum,
3232 struct value *result_value)
3233 {
3234 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3235 enum register_status status;
3236 gdb_byte *buf = value_contents_raw (result_value);
3237
3238 if (i386_mmx_regnum_p (gdbarch, regnum))
3239 {
3240 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3241
3242 /* Extract (always little endian). */
3243 status = regcache_raw_read (regcache, fpnum, raw_buf);
3244 if (status != REG_VALID)
3245 mark_value_bytes_unavailable (result_value, 0,
3246 TYPE_LENGTH (value_type (result_value)));
3247 else
3248 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3249 }
3250 else
3251 {
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3253 if (i386_bnd_regnum_p (gdbarch, regnum))
3254 {
3255 regnum -= tdep->bnd0_regnum;
3256
3257 /* Extract (always little endian). Read lower 128bits. */
3258 status = regcache_raw_read (regcache,
3259 I387_BND0R_REGNUM (tdep) + regnum,
3260 raw_buf);
3261 if (status != REG_VALID)
3262 mark_value_bytes_unavailable (result_value, 0, 16);
3263 else
3264 {
3265 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3266 LONGEST upper, lower;
3267 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3268
3269 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3270 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3271 upper = ~upper;
3272
3273 memcpy (buf, &lower, size);
3274 memcpy (buf + size, &upper, size);
3275 }
3276 }
3277 else if (i386_k_regnum_p (gdbarch, regnum))
3278 {
3279 regnum -= tdep->k0_regnum;
3280
3281 /* Extract (always little endian). */
3282 status = regcache_raw_read (regcache,
3283 tdep->k0_regnum + regnum,
3284 raw_buf);
3285 if (status != REG_VALID)
3286 mark_value_bytes_unavailable (result_value, 0, 8);
3287 else
3288 memcpy (buf, raw_buf, 8);
3289 }
3290 else if (i386_zmm_regnum_p (gdbarch, regnum))
3291 {
3292 regnum -= tdep->zmm0_regnum;
3293
3294 if (regnum < num_lower_zmm_regs)
3295 {
3296 /* Extract (always little endian). Read lower 128bits. */
3297 status = regcache_raw_read (regcache,
3298 I387_XMM0_REGNUM (tdep) + regnum,
3299 raw_buf);
3300 if (status != REG_VALID)
3301 mark_value_bytes_unavailable (result_value, 0, 16);
3302 else
3303 memcpy (buf, raw_buf, 16);
3304
3305 /* Extract (always little endian). Read upper 128bits. */
3306 status = regcache_raw_read (regcache,
3307 tdep->ymm0h_regnum + regnum,
3308 raw_buf);
3309 if (status != REG_VALID)
3310 mark_value_bytes_unavailable (result_value, 16, 16);
3311 else
3312 memcpy (buf + 16, raw_buf, 16);
3313 }
3314 else
3315 {
3316 /* Extract (always little endian). Read lower 128bits. */
3317 status = regcache_raw_read (regcache,
3318 I387_XMM16_REGNUM (tdep) + regnum
3319 - num_lower_zmm_regs,
3320 raw_buf);
3321 if (status != REG_VALID)
3322 mark_value_bytes_unavailable (result_value, 0, 16);
3323 else
3324 memcpy (buf, raw_buf, 16);
3325
3326 /* Extract (always little endian). Read upper 128bits. */
3327 status = regcache_raw_read (regcache,
3328 I387_YMM16H_REGNUM (tdep) + regnum
3329 - num_lower_zmm_regs,
3330 raw_buf);
3331 if (status != REG_VALID)
3332 mark_value_bytes_unavailable (result_value, 16, 16);
3333 else
3334 memcpy (buf + 16, raw_buf, 16);
3335 }
3336
3337 /* Read upper 256bits. */
3338 status = regcache_raw_read (regcache,
3339 tdep->zmm0h_regnum + regnum,
3340 raw_buf);
3341 if (status != REG_VALID)
3342 mark_value_bytes_unavailable (result_value, 32, 32);
3343 else
3344 memcpy (buf + 32, raw_buf, 32);
3345 }
3346 else if (i386_ymm_regnum_p (gdbarch, regnum))
3347 {
3348 regnum -= tdep->ymm0_regnum;
3349
3350 /* Extract (always little endian). Read lower 128bits. */
3351 status = regcache_raw_read (regcache,
3352 I387_XMM0_REGNUM (tdep) + regnum,
3353 raw_buf);
3354 if (status != REG_VALID)
3355 mark_value_bytes_unavailable (result_value, 0, 16);
3356 else
3357 memcpy (buf, raw_buf, 16);
3358 /* Read upper 128bits. */
3359 status = regcache_raw_read (regcache,
3360 tdep->ymm0h_regnum + regnum,
3361 raw_buf);
3362 if (status != REG_VALID)
3363 mark_value_bytes_unavailable (result_value, 16, 32);
3364 else
3365 memcpy (buf + 16, raw_buf, 16);
3366 }
3367 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3368 {
3369 regnum -= tdep->ymm16_regnum;
3370 /* Extract (always little endian). Read lower 128bits. */
3371 status = regcache_raw_read (regcache,
3372 I387_XMM16_REGNUM (tdep) + regnum,
3373 raw_buf);
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 0, 16);
3376 else
3377 memcpy (buf, raw_buf, 16);
3378 /* Read upper 128bits. */
3379 status = regcache_raw_read (regcache,
3380 tdep->ymm16h_regnum + regnum,
3381 raw_buf);
3382 if (status != REG_VALID)
3383 mark_value_bytes_unavailable (result_value, 16, 16);
3384 else
3385 memcpy (buf + 16, raw_buf, 16);
3386 }
3387 else if (i386_word_regnum_p (gdbarch, regnum))
3388 {
3389 int gpnum = regnum - tdep->ax_regnum;
3390
3391 /* Extract (always little endian). */
3392 status = regcache_raw_read (regcache, gpnum, raw_buf);
3393 if (status != REG_VALID)
3394 mark_value_bytes_unavailable (result_value, 0,
3395 TYPE_LENGTH (value_type (result_value)));
3396 else
3397 memcpy (buf, raw_buf, 2);
3398 }
3399 else if (i386_byte_regnum_p (gdbarch, regnum))
3400 {
3401 /* Check byte pseudo registers last since this function will
3402 be called from amd64_pseudo_register_read, which handles
3403 byte pseudo registers differently. */
3404 int gpnum = regnum - tdep->al_regnum;
3405
3406 /* Extract (always little endian). We read both lower and
3407 upper registers. */
3408 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 0,
3411 TYPE_LENGTH (value_type (result_value)));
3412 else if (gpnum >= 4)
3413 memcpy (buf, raw_buf + 1, 1);
3414 else
3415 memcpy (buf, raw_buf, 1);
3416 }
3417 else
3418 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3419 }
3420 }
3421
3422 static struct value *
3423 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3424 struct regcache *regcache,
3425 int regnum)
3426 {
3427 struct value *result;
3428
3429 result = allocate_value (register_type (gdbarch, regnum));
3430 VALUE_LVAL (result) = lval_register;
3431 VALUE_REGNUM (result) = regnum;
3432
3433 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3434
3435 return result;
3436 }
3437
3438 void
3439 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3440 int regnum, const gdb_byte *buf)
3441 {
3442 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3443
3444 if (i386_mmx_regnum_p (gdbarch, regnum))
3445 {
3446 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3447
3448 /* Read ... */
3449 regcache_raw_read (regcache, fpnum, raw_buf);
3450 /* ... Modify ... (always little endian). */
3451 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3452 /* ... Write. */
3453 regcache_raw_write (regcache, fpnum, raw_buf);
3454 }
3455 else
3456 {
3457 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3458
3459 if (i386_bnd_regnum_p (gdbarch, regnum))
3460 {
3461 ULONGEST upper, lower;
3462 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3463 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3464
3465 /* New values from input value. */
3466 regnum -= tdep->bnd0_regnum;
3467 lower = extract_unsigned_integer (buf, size, byte_order);
3468 upper = extract_unsigned_integer (buf + size, size, byte_order);
3469
3470 /* Fetching register buffer. */
3471 regcache_raw_read (regcache,
3472 I387_BND0R_REGNUM (tdep) + regnum,
3473 raw_buf);
3474
3475 upper = ~upper;
3476
3477 /* Set register bits. */
3478 memcpy (raw_buf, &lower, 8);
3479 memcpy (raw_buf + 8, &upper, 8);
3480
3481
3482 regcache_raw_write (regcache,
3483 I387_BND0R_REGNUM (tdep) + regnum,
3484 raw_buf);
3485 }
3486 else if (i386_k_regnum_p (gdbarch, regnum))
3487 {
3488 regnum -= tdep->k0_regnum;
3489
3490 regcache_raw_write (regcache,
3491 tdep->k0_regnum + regnum,
3492 buf);
3493 }
3494 else if (i386_zmm_regnum_p (gdbarch, regnum))
3495 {
3496 regnum -= tdep->zmm0_regnum;
3497
3498 if (regnum < num_lower_zmm_regs)
3499 {
3500 /* Write lower 128bits. */
3501 regcache_raw_write (regcache,
3502 I387_XMM0_REGNUM (tdep) + regnum,
3503 buf);
3504 /* Write upper 128bits. */
3505 regcache_raw_write (regcache,
3506 I387_YMM0_REGNUM (tdep) + regnum,
3507 buf + 16);
3508 }
3509 else
3510 {
3511 /* Write lower 128bits. */
3512 regcache_raw_write (regcache,
3513 I387_XMM16_REGNUM (tdep) + regnum
3514 - num_lower_zmm_regs,
3515 buf);
3516 /* Write upper 128bits. */
3517 regcache_raw_write (regcache,
3518 I387_YMM16H_REGNUM (tdep) + regnum
3519 - num_lower_zmm_regs,
3520 buf + 16);
3521 }
3522 /* Write upper 256bits. */
3523 regcache_raw_write (regcache,
3524 tdep->zmm0h_regnum + regnum,
3525 buf + 32);
3526 }
3527 else if (i386_ymm_regnum_p (gdbarch, regnum))
3528 {
3529 regnum -= tdep->ymm0_regnum;
3530
3531 /* ... Write lower 128bits. */
3532 regcache_raw_write (regcache,
3533 I387_XMM0_REGNUM (tdep) + regnum,
3534 buf);
3535 /* ... Write upper 128bits. */
3536 regcache_raw_write (regcache,
3537 tdep->ymm0h_regnum + regnum,
3538 buf + 16);
3539 }
3540 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->ymm16_regnum;
3543
3544 /* ... Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM16_REGNUM (tdep) + regnum,
3547 buf);
3548 /* ... Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 tdep->ymm16h_regnum + regnum,
3551 buf + 16);
3552 }
3553 else if (i386_word_regnum_p (gdbarch, regnum))
3554 {
3555 int gpnum = regnum - tdep->ax_regnum;
3556
3557 /* Read ... */
3558 regcache_raw_read (regcache, gpnum, raw_buf);
3559 /* ... Modify ... (always little endian). */
3560 memcpy (raw_buf, buf, 2);
3561 /* ... Write. */
3562 regcache_raw_write (regcache, gpnum, raw_buf);
3563 }
3564 else if (i386_byte_regnum_p (gdbarch, regnum))
3565 {
3566 /* Check byte pseudo registers last since this function will
3567 be called from amd64_pseudo_register_read, which handles
3568 byte pseudo registers differently. */
3569 int gpnum = regnum - tdep->al_regnum;
3570
3571 /* Read ... We read both lower and upper registers. */
3572 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3573 /* ... Modify ... (always little endian). */
3574 if (gpnum >= 4)
3575 memcpy (raw_buf + 1, buf, 1);
3576 else
3577 memcpy (raw_buf, buf, 1);
3578 /* ... Write. */
3579 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3580 }
3581 else
3582 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3583 }
3584 }
3585 \f
3586
3587 /* Return the register number of the register allocated by GCC after
3588 REGNUM, or -1 if there is no such register. */
3589
3590 static int
3591 i386_next_regnum (int regnum)
3592 {
3593 /* GCC allocates the registers in the order:
3594
3595 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3596
3597 Since storing a variable in %esp doesn't make any sense we return
3598 -1 for %ebp and for %esp itself. */
3599 static int next_regnum[] =
3600 {
3601 I386_EDX_REGNUM, /* Slot for %eax. */
3602 I386_EBX_REGNUM, /* Slot for %ecx. */
3603 I386_ECX_REGNUM, /* Slot for %edx. */
3604 I386_ESI_REGNUM, /* Slot for %ebx. */
3605 -1, -1, /* Slots for %esp and %ebp. */
3606 I386_EDI_REGNUM, /* Slot for %esi. */
3607 I386_EBP_REGNUM /* Slot for %edi. */
3608 };
3609
3610 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3611 return next_regnum[regnum];
3612
3613 return -1;
3614 }
3615
3616 /* Return nonzero if a value of type TYPE stored in register REGNUM
3617 needs any special handling. */
3618
3619 static int
3620 i386_convert_register_p (struct gdbarch *gdbarch,
3621 int regnum, struct type *type)
3622 {
3623 int len = TYPE_LENGTH (type);
3624
3625 /* Values may be spread across multiple registers. Most debugging
3626 formats aren't expressive enough to specify the locations, so
3627 some heuristics is involved. Right now we only handle types that
3628 have a length that is a multiple of the word size, since GCC
3629 doesn't seem to put any other types into registers. */
3630 if (len > 4 && len % 4 == 0)
3631 {
3632 int last_regnum = regnum;
3633
3634 while (len > 4)
3635 {
3636 last_regnum = i386_next_regnum (last_regnum);
3637 len -= 4;
3638 }
3639
3640 if (last_regnum != -1)
3641 return 1;
3642 }
3643
3644 return i387_convert_register_p (gdbarch, regnum, type);
3645 }
3646
3647 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3648 return its contents in TO. */
3649
3650 static int
3651 i386_register_to_value (struct frame_info *frame, int regnum,
3652 struct type *type, gdb_byte *to,
3653 int *optimizedp, int *unavailablep)
3654 {
3655 struct gdbarch *gdbarch = get_frame_arch (frame);
3656 int len = TYPE_LENGTH (type);
3657
3658 if (i386_fp_regnum_p (gdbarch, regnum))
3659 return i387_register_to_value (frame, regnum, type, to,
3660 optimizedp, unavailablep);
3661
3662 /* Read a value spread across multiple registers. */
3663
3664 gdb_assert (len > 4 && len % 4 == 0);
3665
3666 while (len > 0)
3667 {
3668 gdb_assert (regnum != -1);
3669 gdb_assert (register_size (gdbarch, regnum) == 4);
3670
3671 if (!get_frame_register_bytes (frame, regnum, 0,
3672 register_size (gdbarch, regnum),
3673 to, optimizedp, unavailablep))
3674 return 0;
3675
3676 regnum = i386_next_regnum (regnum);
3677 len -= 4;
3678 to += 4;
3679 }
3680
3681 *optimizedp = *unavailablep = 0;
3682 return 1;
3683 }
3684
3685 /* Write the contents FROM of a value of type TYPE into register
3686 REGNUM in frame FRAME. */
3687
3688 static void
3689 i386_value_to_register (struct frame_info *frame, int regnum,
3690 struct type *type, const gdb_byte *from)
3691 {
3692 int len = TYPE_LENGTH (type);
3693
3694 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3695 {
3696 i387_value_to_register (frame, regnum, type, from);
3697 return;
3698 }
3699
3700 /* Write a value spread across multiple registers. */
3701
3702 gdb_assert (len > 4 && len % 4 == 0);
3703
3704 while (len > 0)
3705 {
3706 gdb_assert (regnum != -1);
3707 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3708
3709 put_frame_register (frame, regnum, from);
3710 regnum = i386_next_regnum (regnum);
3711 len -= 4;
3712 from += 4;
3713 }
3714 }
3715 \f
3716 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3717 in the general-purpose register set REGSET to register cache
3718 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3719
3720 void
3721 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3722 int regnum, const void *gregs, size_t len)
3723 {
3724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3725 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3726 const gdb_byte *regs = gregs;
3727 int i;
3728
3729 gdb_assert (len == tdep->sizeof_gregset);
3730
3731 for (i = 0; i < tdep->gregset_num_regs; i++)
3732 {
3733 if ((regnum == i || regnum == -1)
3734 && tdep->gregset_reg_offset[i] != -1)
3735 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3736 }
3737 }
3738
3739 /* Collect register REGNUM from the register cache REGCACHE and store
3740 it in the buffer specified by GREGS and LEN as described by the
3741 general-purpose register set REGSET. If REGNUM is -1, do this for
3742 all registers in REGSET. */
3743
3744 static void
3745 i386_collect_gregset (const struct regset *regset,
3746 const struct regcache *regcache,
3747 int regnum, void *gregs, size_t len)
3748 {
3749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3750 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3751 gdb_byte *regs = gregs;
3752 int i;
3753
3754 gdb_assert (len == tdep->sizeof_gregset);
3755
3756 for (i = 0; i < tdep->gregset_num_regs; i++)
3757 {
3758 if ((regnum == i || regnum == -1)
3759 && tdep->gregset_reg_offset[i] != -1)
3760 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3761 }
3762 }
3763
3764 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3765 in the floating-point register set REGSET to register cache
3766 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3767
3768 static void
3769 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3770 int regnum, const void *fpregs, size_t len)
3771 {
3772 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3773 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3774
3775 if (len == I387_SIZEOF_FXSAVE)
3776 {
3777 i387_supply_fxsave (regcache, regnum, fpregs);
3778 return;
3779 }
3780
3781 gdb_assert (len == tdep->sizeof_fpregset);
3782 i387_supply_fsave (regcache, regnum, fpregs);
3783 }
3784
3785 /* Collect register REGNUM from the register cache REGCACHE and store
3786 it in the buffer specified by FPREGS and LEN as described by the
3787 floating-point register set REGSET. If REGNUM is -1, do this for
3788 all registers in REGSET. */
3789
3790 static void
3791 i386_collect_fpregset (const struct regset *regset,
3792 const struct regcache *regcache,
3793 int regnum, void *fpregs, size_t len)
3794 {
3795 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3796 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3797
3798 if (len == I387_SIZEOF_FXSAVE)
3799 {
3800 i387_collect_fxsave (regcache, regnum, fpregs);
3801 return;
3802 }
3803
3804 gdb_assert (len == tdep->sizeof_fpregset);
3805 i387_collect_fsave (regcache, regnum, fpregs);
3806 }
3807
3808 /* Register set definitions. */
3809
3810 const struct regset i386_gregset =
3811 {
3812 NULL, i386_supply_gregset, i386_collect_gregset
3813 };
3814
3815 const struct regset i386_fpregset =
3816 {
3817 NULL, i386_supply_fpregset, i386_collect_fpregset
3818 };
3819
3820 /* Default iterator over core file register note sections. */
3821
3822 void
3823 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3824 iterate_over_regset_sections_cb *cb,
3825 void *cb_data,
3826 const struct regcache *regcache)
3827 {
3828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3829
3830 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3831 if (tdep->sizeof_fpregset)
3832 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3833 }
3834 \f
3835
3836 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3837
3838 CORE_ADDR
3839 i386_pe_skip_trampoline_code (struct frame_info *frame,
3840 CORE_ADDR pc, char *name)
3841 {
3842 struct gdbarch *gdbarch = get_frame_arch (frame);
3843 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3844
3845 /* jmp *(dest) */
3846 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3847 {
3848 unsigned long indirect =
3849 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3850 struct minimal_symbol *indsym =
3851 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3852 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3853
3854 if (symname)
3855 {
3856 if (strncmp (symname, "__imp_", 6) == 0
3857 || strncmp (symname, "_imp_", 5) == 0)
3858 return name ? 1 :
3859 read_memory_unsigned_integer (indirect, 4, byte_order);
3860 }
3861 }
3862 return 0; /* Not a trampoline. */
3863 }
3864 \f
3865
3866 /* Return whether the THIS_FRAME corresponds to a sigtramp
3867 routine. */
3868
3869 int
3870 i386_sigtramp_p (struct frame_info *this_frame)
3871 {
3872 CORE_ADDR pc = get_frame_pc (this_frame);
3873 const char *name;
3874
3875 find_pc_partial_function (pc, &name, NULL, NULL);
3876 return (name && strcmp ("_sigtramp", name) == 0);
3877 }
3878 \f
3879
3880 /* We have two flavours of disassembly. The machinery on this page
3881 deals with switching between those. */
3882
3883 static int
3884 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3885 {
3886 gdb_assert (disassembly_flavor == att_flavor
3887 || disassembly_flavor == intel_flavor);
3888
3889 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3890 constified, cast to prevent a compiler warning. */
3891 info->disassembler_options = (char *) disassembly_flavor;
3892
3893 return print_insn_i386 (pc, info);
3894 }
3895 \f
3896
3897 /* There are a few i386 architecture variants that differ only
3898 slightly from the generic i386 target. For now, we don't give them
3899 their own source file, but include them here. As a consequence,
3900 they'll always be included. */
3901
3902 /* System V Release 4 (SVR4). */
3903
3904 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3905 routine. */
3906
3907 static int
3908 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3909 {
3910 CORE_ADDR pc = get_frame_pc (this_frame);
3911 const char *name;
3912
3913 /* The origin of these symbols is currently unknown. */
3914 find_pc_partial_function (pc, &name, NULL, NULL);
3915 return (name && (strcmp ("_sigreturn", name) == 0
3916 || strcmp ("sigvechandler", name) == 0));
3917 }
3918
3919 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3920 address of the associated sigcontext (ucontext) structure. */
3921
3922 static CORE_ADDR
3923 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3924 {
3925 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3927 gdb_byte buf[4];
3928 CORE_ADDR sp;
3929
3930 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3931 sp = extract_unsigned_integer (buf, 4, byte_order);
3932
3933 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3934 }
3935
3936 \f
3937
3938 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3939 gdbarch.h. */
3940
3941 int
3942 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3943 {
3944 return (*s == '$' /* Literal number. */
3945 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3946 || (*s == '(' && s[1] == '%') /* Register indirection. */
3947 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3948 }
3949
3950 /* Helper function for i386_stap_parse_special_token.
3951
3952 This function parses operands of the form `-8+3+1(%rbp)', which
3953 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3954
3955 Return 1 if the operand was parsed successfully, zero
3956 otherwise. */
3957
3958 static int
3959 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3960 struct stap_parse_info *p)
3961 {
3962 const char *s = p->arg;
3963
3964 if (isdigit (*s) || *s == '-' || *s == '+')
3965 {
3966 int got_minus[3];
3967 int i;
3968 long displacements[3];
3969 const char *start;
3970 char *regname;
3971 int len;
3972 struct stoken str;
3973 char *endp;
3974
3975 got_minus[0] = 0;
3976 if (*s == '+')
3977 ++s;
3978 else if (*s == '-')
3979 {
3980 ++s;
3981 got_minus[0] = 1;
3982 }
3983
3984 if (!isdigit ((unsigned char) *s))
3985 return 0;
3986
3987 displacements[0] = strtol (s, &endp, 10);
3988 s = endp;
3989
3990 if (*s != '+' && *s != '-')
3991 {
3992 /* We are not dealing with a triplet. */
3993 return 0;
3994 }
3995
3996 got_minus[1] = 0;
3997 if (*s == '+')
3998 ++s;
3999 else
4000 {
4001 ++s;
4002 got_minus[1] = 1;
4003 }
4004
4005 if (!isdigit ((unsigned char) *s))
4006 return 0;
4007
4008 displacements[1] = strtol (s, &endp, 10);
4009 s = endp;
4010
4011 if (*s != '+' && *s != '-')
4012 {
4013 /* We are not dealing with a triplet. */
4014 return 0;
4015 }
4016
4017 got_minus[2] = 0;
4018 if (*s == '+')
4019 ++s;
4020 else
4021 {
4022 ++s;
4023 got_minus[2] = 1;
4024 }
4025
4026 if (!isdigit ((unsigned char) *s))
4027 return 0;
4028
4029 displacements[2] = strtol (s, &endp, 10);
4030 s = endp;
4031
4032 if (*s != '(' || s[1] != '%')
4033 return 0;
4034
4035 s += 2;
4036 start = s;
4037
4038 while (isalnum (*s))
4039 ++s;
4040
4041 if (*s++ != ')')
4042 return 0;
4043
4044 len = s - start - 1;
4045 regname = alloca (len + 1);
4046
4047 strncpy (regname, start, len);
4048 regname[len] = '\0';
4049
4050 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4051 error (_("Invalid register name `%s' on expression `%s'."),
4052 regname, p->saved_arg);
4053
4054 for (i = 0; i < 3; i++)
4055 {
4056 write_exp_elt_opcode (&p->pstate, OP_LONG);
4057 write_exp_elt_type
4058 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4059 write_exp_elt_longcst (&p->pstate, displacements[i]);
4060 write_exp_elt_opcode (&p->pstate, OP_LONG);
4061 if (got_minus[i])
4062 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4063 }
4064
4065 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4066 str.ptr = regname;
4067 str.length = len;
4068 write_exp_string (&p->pstate, str);
4069 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4070
4071 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4072 write_exp_elt_type (&p->pstate,
4073 builtin_type (gdbarch)->builtin_data_ptr);
4074 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4075
4076 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079
4080 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4081 write_exp_elt_type (&p->pstate,
4082 lookup_pointer_type (p->arg_type));
4083 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4084
4085 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4086
4087 p->arg = s;
4088
4089 return 1;
4090 }
4091
4092 return 0;
4093 }
4094
4095 /* Helper function for i386_stap_parse_special_token.
4096
4097 This function parses operands of the form `register base +
4098 (register index * size) + offset', as represented in
4099 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4100
4101 Return 1 if the operand was parsed successfully, zero
4102 otherwise. */
4103
4104 static int
4105 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4106 struct stap_parse_info *p)
4107 {
4108 const char *s = p->arg;
4109
4110 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4111 {
4112 int offset_minus = 0;
4113 long offset = 0;
4114 int size_minus = 0;
4115 long size = 0;
4116 const char *start;
4117 char *base;
4118 int len_base;
4119 char *index;
4120 int len_index;
4121 struct stoken base_token, index_token;
4122
4123 if (*s == '+')
4124 ++s;
4125 else if (*s == '-')
4126 {
4127 ++s;
4128 offset_minus = 1;
4129 }
4130
4131 if (offset_minus && !isdigit (*s))
4132 return 0;
4133
4134 if (isdigit (*s))
4135 {
4136 char *endp;
4137
4138 offset = strtol (s, &endp, 10);
4139 s = endp;
4140 }
4141
4142 if (*s != '(' || s[1] != '%')
4143 return 0;
4144
4145 s += 2;
4146 start = s;
4147
4148 while (isalnum (*s))
4149 ++s;
4150
4151 if (*s != ',' || s[1] != '%')
4152 return 0;
4153
4154 len_base = s - start;
4155 base = alloca (len_base + 1);
4156 strncpy (base, start, len_base);
4157 base[len_base] = '\0';
4158
4159 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4160 error (_("Invalid register name `%s' on expression `%s'."),
4161 base, p->saved_arg);
4162
4163 s += 2;
4164 start = s;
4165
4166 while (isalnum (*s))
4167 ++s;
4168
4169 len_index = s - start;
4170 index = alloca (len_index + 1);
4171 strncpy (index, start, len_index);
4172 index[len_index] = '\0';
4173
4174 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4175 error (_("Invalid register name `%s' on expression `%s'."),
4176 index, p->saved_arg);
4177
4178 if (*s != ',' && *s != ')')
4179 return 0;
4180
4181 if (*s == ',')
4182 {
4183 char *endp;
4184
4185 ++s;
4186 if (*s == '+')
4187 ++s;
4188 else if (*s == '-')
4189 {
4190 ++s;
4191 size_minus = 1;
4192 }
4193
4194 size = strtol (s, &endp, 10);
4195 s = endp;
4196
4197 if (*s != ')')
4198 return 0;
4199 }
4200
4201 ++s;
4202
4203 if (offset)
4204 {
4205 write_exp_elt_opcode (&p->pstate, OP_LONG);
4206 write_exp_elt_type (&p->pstate,
4207 builtin_type (gdbarch)->builtin_long);
4208 write_exp_elt_longcst (&p->pstate, offset);
4209 write_exp_elt_opcode (&p->pstate, OP_LONG);
4210 if (offset_minus)
4211 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4212 }
4213
4214 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4215 base_token.ptr = base;
4216 base_token.length = len_base;
4217 write_exp_string (&p->pstate, base_token);
4218 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4219
4220 if (offset)
4221 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4222
4223 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4224 index_token.ptr = index;
4225 index_token.length = len_index;
4226 write_exp_string (&p->pstate, index_token);
4227 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4228
4229 if (size)
4230 {
4231 write_exp_elt_opcode (&p->pstate, OP_LONG);
4232 write_exp_elt_type (&p->pstate,
4233 builtin_type (gdbarch)->builtin_long);
4234 write_exp_elt_longcst (&p->pstate, size);
4235 write_exp_elt_opcode (&p->pstate, OP_LONG);
4236 if (size_minus)
4237 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4238 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4239 }
4240
4241 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4242
4243 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4244 write_exp_elt_type (&p->pstate,
4245 lookup_pointer_type (p->arg_type));
4246 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4247
4248 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4249
4250 p->arg = s;
4251
4252 return 1;
4253 }
4254
4255 return 0;
4256 }
4257
4258 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4259 gdbarch.h. */
4260
4261 int
4262 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4263 struct stap_parse_info *p)
4264 {
4265 /* In order to parse special tokens, we use a state-machine that go
4266 through every known token and try to get a match. */
4267 enum
4268 {
4269 TRIPLET,
4270 THREE_ARG_DISPLACEMENT,
4271 DONE
4272 } current_state;
4273
4274 current_state = TRIPLET;
4275
4276 /* The special tokens to be parsed here are:
4277
4278 - `register base + (register index * size) + offset', as represented
4279 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4280
4281 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4282 `*(-8 + 3 - 1 + (void *) $eax)'. */
4283
4284 while (current_state != DONE)
4285 {
4286 switch (current_state)
4287 {
4288 case TRIPLET:
4289 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4290 return 1;
4291 break;
4292
4293 case THREE_ARG_DISPLACEMENT:
4294 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4295 return 1;
4296 break;
4297 }
4298
4299 /* Advancing to the next state. */
4300 ++current_state;
4301 }
4302
4303 return 0;
4304 }
4305
4306 \f
4307
4308 /* Generic ELF. */
4309
4310 void
4311 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4312 {
4313 static const char *const stap_integer_prefixes[] = { "$", NULL };
4314 static const char *const stap_register_prefixes[] = { "%", NULL };
4315 static const char *const stap_register_indirection_prefixes[] = { "(",
4316 NULL };
4317 static const char *const stap_register_indirection_suffixes[] = { ")",
4318 NULL };
4319
4320 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4321 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4322
4323 /* Registering SystemTap handlers. */
4324 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4325 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4326 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4327 stap_register_indirection_prefixes);
4328 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4329 stap_register_indirection_suffixes);
4330 set_gdbarch_stap_is_single_operand (gdbarch,
4331 i386_stap_is_single_operand);
4332 set_gdbarch_stap_parse_special_token (gdbarch,
4333 i386_stap_parse_special_token);
4334 }
4335
4336 /* System V Release 4 (SVR4). */
4337
4338 void
4339 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4340 {
4341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4342
4343 /* System V Release 4 uses ELF. */
4344 i386_elf_init_abi (info, gdbarch);
4345
4346 /* System V Release 4 has shared libraries. */
4347 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4348
4349 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4350 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4351 tdep->sc_pc_offset = 36 + 14 * 4;
4352 tdep->sc_sp_offset = 36 + 17 * 4;
4353
4354 tdep->jb_pc_offset = 20;
4355 }
4356
4357 /* DJGPP. */
4358
4359 static void
4360 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4361 {
4362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4363
4364 /* DJGPP doesn't have any special frames for signal handlers. */
4365 tdep->sigtramp_p = NULL;
4366
4367 tdep->jb_pc_offset = 36;
4368
4369 /* DJGPP does not support the SSE registers. */
4370 if (! tdesc_has_registers (info.target_desc))
4371 tdep->tdesc = tdesc_i386_mmx;
4372
4373 /* Native compiler is GCC, which uses the SVR4 register numbering
4374 even in COFF and STABS. See the comment in i386_gdbarch_init,
4375 before the calls to set_gdbarch_stab_reg_to_regnum and
4376 set_gdbarch_sdb_reg_to_regnum. */
4377 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4378 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4379
4380 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4381 }
4382 \f
4383
4384 /* i386 register groups. In addition to the normal groups, add "mmx"
4385 and "sse". */
4386
4387 static struct reggroup *i386_sse_reggroup;
4388 static struct reggroup *i386_mmx_reggroup;
4389
4390 static void
4391 i386_init_reggroups (void)
4392 {
4393 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4394 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4395 }
4396
4397 static void
4398 i386_add_reggroups (struct gdbarch *gdbarch)
4399 {
4400 reggroup_add (gdbarch, i386_sse_reggroup);
4401 reggroup_add (gdbarch, i386_mmx_reggroup);
4402 reggroup_add (gdbarch, general_reggroup);
4403 reggroup_add (gdbarch, float_reggroup);
4404 reggroup_add (gdbarch, all_reggroup);
4405 reggroup_add (gdbarch, save_reggroup);
4406 reggroup_add (gdbarch, restore_reggroup);
4407 reggroup_add (gdbarch, vector_reggroup);
4408 reggroup_add (gdbarch, system_reggroup);
4409 }
4410
4411 int
4412 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4413 struct reggroup *group)
4414 {
4415 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4416 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4417 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4418 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4419 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4420 avx512_p, avx_p, sse_p;
4421
4422 /* Don't include pseudo registers, except for MMX, in any register
4423 groups. */
4424 if (i386_byte_regnum_p (gdbarch, regnum))
4425 return 0;
4426
4427 if (i386_word_regnum_p (gdbarch, regnum))
4428 return 0;
4429
4430 if (i386_dword_regnum_p (gdbarch, regnum))
4431 return 0;
4432
4433 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4434 if (group == i386_mmx_reggroup)
4435 return mmx_regnum_p;
4436
4437 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4438 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4439 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4440 if (group == i386_sse_reggroup)
4441 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4442
4443 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4444 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4445 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4446
4447 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4448 == X86_XSTATE_AVX512_MASK);
4449 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4450 == X86_XSTATE_AVX_MASK) && !avx512_p;
4451 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4452 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4453
4454 if (group == vector_reggroup)
4455 return (mmx_regnum_p
4456 || (zmm_regnum_p && avx512_p)
4457 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4458 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4459 || mxcsr_regnum_p);
4460
4461 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4462 || i386_fpc_regnum_p (gdbarch, regnum));
4463 if (group == float_reggroup)
4464 return fp_regnum_p;
4465
4466 /* For "info reg all", don't include upper YMM registers nor XMM
4467 registers when AVX is supported. */
4468 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4469 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4470 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4471 if (group == all_reggroup
4472 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4473 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4474 || ymmh_regnum_p
4475 || ymmh_avx512_regnum_p
4476 || zmmh_regnum_p))
4477 return 0;
4478
4479 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4480 if (group == all_reggroup
4481 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4482 return bnd_regnum_p;
4483
4484 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4485 if (group == all_reggroup
4486 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4487 return 0;
4488
4489 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4490 if (group == all_reggroup
4491 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4492 return mpx_ctrl_regnum_p;
4493
4494 if (group == general_reggroup)
4495 return (!fp_regnum_p
4496 && !mmx_regnum_p
4497 && !mxcsr_regnum_p
4498 && !xmm_regnum_p
4499 && !xmm_avx512_regnum_p
4500 && !ymm_regnum_p
4501 && !ymmh_regnum_p
4502 && !ymm_avx512_regnum_p
4503 && !ymmh_avx512_regnum_p
4504 && !bndr_regnum_p
4505 && !bnd_regnum_p
4506 && !mpx_ctrl_regnum_p
4507 && !zmm_regnum_p
4508 && !zmmh_regnum_p);
4509
4510 return default_register_reggroup_p (gdbarch, regnum, group);
4511 }
4512 \f
4513
4514 /* Get the ARGIth function argument for the current function. */
4515
4516 static CORE_ADDR
4517 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4518 struct type *type)
4519 {
4520 struct gdbarch *gdbarch = get_frame_arch (frame);
4521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4522 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4523 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4524 }
4525
4526 static void
4527 i386_skip_permanent_breakpoint (struct regcache *regcache)
4528 {
4529 CORE_ADDR current_pc = regcache_read_pc (regcache);
4530
4531 /* On i386, breakpoint is exactly 1 byte long, so we just
4532 adjust the PC in the regcache. */
4533 current_pc += 1;
4534 regcache_write_pc (regcache, current_pc);
4535 }
4536
4537
4538 #define PREFIX_REPZ 0x01
4539 #define PREFIX_REPNZ 0x02
4540 #define PREFIX_LOCK 0x04
4541 #define PREFIX_DATA 0x08
4542 #define PREFIX_ADDR 0x10
4543
4544 /* operand size */
4545 enum
4546 {
4547 OT_BYTE = 0,
4548 OT_WORD,
4549 OT_LONG,
4550 OT_QUAD,
4551 OT_DQUAD,
4552 };
4553
4554 /* i386 arith/logic operations */
4555 enum
4556 {
4557 OP_ADDL,
4558 OP_ORL,
4559 OP_ADCL,
4560 OP_SBBL,
4561 OP_ANDL,
4562 OP_SUBL,
4563 OP_XORL,
4564 OP_CMPL,
4565 };
4566
4567 struct i386_record_s
4568 {
4569 struct gdbarch *gdbarch;
4570 struct regcache *regcache;
4571 CORE_ADDR orig_addr;
4572 CORE_ADDR addr;
4573 int aflag;
4574 int dflag;
4575 int override;
4576 uint8_t modrm;
4577 uint8_t mod, reg, rm;
4578 int ot;
4579 uint8_t rex_x;
4580 uint8_t rex_b;
4581 int rip_offset;
4582 int popl_esp_hack;
4583 const int *regmap;
4584 };
4585
4586 /* Parse the "modrm" part of the memory address irp->addr points at.
4587 Returns -1 if something goes wrong, 0 otherwise. */
4588
4589 static int
4590 i386_record_modrm (struct i386_record_s *irp)
4591 {
4592 struct gdbarch *gdbarch = irp->gdbarch;
4593
4594 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4595 return -1;
4596
4597 irp->addr++;
4598 irp->mod = (irp->modrm >> 6) & 3;
4599 irp->reg = (irp->modrm >> 3) & 7;
4600 irp->rm = irp->modrm & 7;
4601
4602 return 0;
4603 }
4604
4605 /* Extract the memory address that the current instruction writes to,
4606 and return it in *ADDR. Return -1 if something goes wrong. */
4607
4608 static int
4609 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4610 {
4611 struct gdbarch *gdbarch = irp->gdbarch;
4612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4613 gdb_byte buf[4];
4614 ULONGEST offset64;
4615
4616 *addr = 0;
4617 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4618 {
4619 /* 32/64 bits */
4620 int havesib = 0;
4621 uint8_t scale = 0;
4622 uint8_t byte;
4623 uint8_t index = 0;
4624 uint8_t base = irp->rm;
4625
4626 if (base == 4)
4627 {
4628 havesib = 1;
4629 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4630 return -1;
4631 irp->addr++;
4632 scale = (byte >> 6) & 3;
4633 index = ((byte >> 3) & 7) | irp->rex_x;
4634 base = (byte & 7);
4635 }
4636 base |= irp->rex_b;
4637
4638 switch (irp->mod)
4639 {
4640 case 0:
4641 if ((base & 7) == 5)
4642 {
4643 base = 0xff;
4644 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4645 return -1;
4646 irp->addr += 4;
4647 *addr = extract_signed_integer (buf, 4, byte_order);
4648 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4649 *addr += irp->addr + irp->rip_offset;
4650 }
4651 break;
4652 case 1:
4653 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4654 return -1;
4655 irp->addr++;
4656 *addr = (int8_t) buf[0];
4657 break;
4658 case 2:
4659 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4660 return -1;
4661 *addr = extract_signed_integer (buf, 4, byte_order);
4662 irp->addr += 4;
4663 break;
4664 }
4665
4666 offset64 = 0;
4667 if (base != 0xff)
4668 {
4669 if (base == 4 && irp->popl_esp_hack)
4670 *addr += irp->popl_esp_hack;
4671 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4672 &offset64);
4673 }
4674 if (irp->aflag == 2)
4675 {
4676 *addr += offset64;
4677 }
4678 else
4679 *addr = (uint32_t) (offset64 + *addr);
4680
4681 if (havesib && (index != 4 || scale != 0))
4682 {
4683 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4684 &offset64);
4685 if (irp->aflag == 2)
4686 *addr += offset64 << scale;
4687 else
4688 *addr = (uint32_t) (*addr + (offset64 << scale));
4689 }
4690
4691 if (!irp->aflag)
4692 {
4693 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4694 address from 32-bit to 64-bit. */
4695 *addr = (uint32_t) *addr;
4696 }
4697 }
4698 else
4699 {
4700 /* 16 bits */
4701 switch (irp->mod)
4702 {
4703 case 0:
4704 if (irp->rm == 6)
4705 {
4706 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4707 return -1;
4708 irp->addr += 2;
4709 *addr = extract_signed_integer (buf, 2, byte_order);
4710 irp->rm = 0;
4711 goto no_rm;
4712 }
4713 break;
4714 case 1:
4715 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4716 return -1;
4717 irp->addr++;
4718 *addr = (int8_t) buf[0];
4719 break;
4720 case 2:
4721 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4722 return -1;
4723 irp->addr += 2;
4724 *addr = extract_signed_integer (buf, 2, byte_order);
4725 break;
4726 }
4727
4728 switch (irp->rm)
4729 {
4730 case 0:
4731 regcache_raw_read_unsigned (irp->regcache,
4732 irp->regmap[X86_RECORD_REBX_REGNUM],
4733 &offset64);
4734 *addr = (uint32_t) (*addr + offset64);
4735 regcache_raw_read_unsigned (irp->regcache,
4736 irp->regmap[X86_RECORD_RESI_REGNUM],
4737 &offset64);
4738 *addr = (uint32_t) (*addr + offset64);
4739 break;
4740 case 1:
4741 regcache_raw_read_unsigned (irp->regcache,
4742 irp->regmap[X86_RECORD_REBX_REGNUM],
4743 &offset64);
4744 *addr = (uint32_t) (*addr + offset64);
4745 regcache_raw_read_unsigned (irp->regcache,
4746 irp->regmap[X86_RECORD_REDI_REGNUM],
4747 &offset64);
4748 *addr = (uint32_t) (*addr + offset64);
4749 break;
4750 case 2:
4751 regcache_raw_read_unsigned (irp->regcache,
4752 irp->regmap[X86_RECORD_REBP_REGNUM],
4753 &offset64);
4754 *addr = (uint32_t) (*addr + offset64);
4755 regcache_raw_read_unsigned (irp->regcache,
4756 irp->regmap[X86_RECORD_RESI_REGNUM],
4757 &offset64);
4758 *addr = (uint32_t) (*addr + offset64);
4759 break;
4760 case 3:
4761 regcache_raw_read_unsigned (irp->regcache,
4762 irp->regmap[X86_RECORD_REBP_REGNUM],
4763 &offset64);
4764 *addr = (uint32_t) (*addr + offset64);
4765 regcache_raw_read_unsigned (irp->regcache,
4766 irp->regmap[X86_RECORD_REDI_REGNUM],
4767 &offset64);
4768 *addr = (uint32_t) (*addr + offset64);
4769 break;
4770 case 4:
4771 regcache_raw_read_unsigned (irp->regcache,
4772 irp->regmap[X86_RECORD_RESI_REGNUM],
4773 &offset64);
4774 *addr = (uint32_t) (*addr + offset64);
4775 break;
4776 case 5:
4777 regcache_raw_read_unsigned (irp->regcache,
4778 irp->regmap[X86_RECORD_REDI_REGNUM],
4779 &offset64);
4780 *addr = (uint32_t) (*addr + offset64);
4781 break;
4782 case 6:
4783 regcache_raw_read_unsigned (irp->regcache,
4784 irp->regmap[X86_RECORD_REBP_REGNUM],
4785 &offset64);
4786 *addr = (uint32_t) (*addr + offset64);
4787 break;
4788 case 7:
4789 regcache_raw_read_unsigned (irp->regcache,
4790 irp->regmap[X86_RECORD_REBX_REGNUM],
4791 &offset64);
4792 *addr = (uint32_t) (*addr + offset64);
4793 break;
4794 }
4795 *addr &= 0xffff;
4796 }
4797
4798 no_rm:
4799 return 0;
4800 }
4801
4802 /* Record the address and contents of the memory that will be changed
4803 by the current instruction. Return -1 if something goes wrong, 0
4804 otherwise. */
4805
4806 static int
4807 i386_record_lea_modrm (struct i386_record_s *irp)
4808 {
4809 struct gdbarch *gdbarch = irp->gdbarch;
4810 uint64_t addr;
4811
4812 if (irp->override >= 0)
4813 {
4814 if (record_full_memory_query)
4815 {
4816 int q;
4817
4818 target_terminal_ours ();
4819 q = yquery (_("\
4820 Process record ignores the memory change of instruction at address %s\n\
4821 because it can't get the value of the segment register.\n\
4822 Do you want to stop the program?"),
4823 paddress (gdbarch, irp->orig_addr));
4824 target_terminal_inferior ();
4825 if (q)
4826 return -1;
4827 }
4828
4829 return 0;
4830 }
4831
4832 if (i386_record_lea_modrm_addr (irp, &addr))
4833 return -1;
4834
4835 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4836 return -1;
4837
4838 return 0;
4839 }
4840
4841 /* Record the effects of a push operation. Return -1 if something
4842 goes wrong, 0 otherwise. */
4843
4844 static int
4845 i386_record_push (struct i386_record_s *irp, int size)
4846 {
4847 ULONGEST addr;
4848
4849 if (record_full_arch_list_add_reg (irp->regcache,
4850 irp->regmap[X86_RECORD_RESP_REGNUM]))
4851 return -1;
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_RESP_REGNUM],
4854 &addr);
4855 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4856 return -1;
4857
4858 return 0;
4859 }
4860
4861
4862 /* Defines contents to record. */
4863 #define I386_SAVE_FPU_REGS 0xfffd
4864 #define I386_SAVE_FPU_ENV 0xfffe
4865 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4866
4867 /* Record the values of the floating point registers which will be
4868 changed by the current instruction. Returns -1 if something is
4869 wrong, 0 otherwise. */
4870
4871 static int i386_record_floats (struct gdbarch *gdbarch,
4872 struct i386_record_s *ir,
4873 uint32_t iregnum)
4874 {
4875 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4876 int i;
4877
4878 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4879 happen. Currently we store st0-st7 registers, but we need not store all
4880 registers all the time, in future we use ftag register and record only
4881 those who are not marked as an empty. */
4882
4883 if (I386_SAVE_FPU_REGS == iregnum)
4884 {
4885 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4886 {
4887 if (record_full_arch_list_add_reg (ir->regcache, i))
4888 return -1;
4889 }
4890 }
4891 else if (I386_SAVE_FPU_ENV == iregnum)
4892 {
4893 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4894 {
4895 if (record_full_arch_list_add_reg (ir->regcache, i))
4896 return -1;
4897 }
4898 }
4899 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4900 {
4901 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4902 {
4903 if (record_full_arch_list_add_reg (ir->regcache, i))
4904 return -1;
4905 }
4906 }
4907 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4908 (iregnum <= I387_FOP_REGNUM (tdep)))
4909 {
4910 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4911 return -1;
4912 }
4913 else
4914 {
4915 /* Parameter error. */
4916 return -1;
4917 }
4918 if(I386_SAVE_FPU_ENV != iregnum)
4919 {
4920 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4921 {
4922 if (record_full_arch_list_add_reg (ir->regcache, i))
4923 return -1;
4924 }
4925 }
4926 return 0;
4927 }
4928
4929 /* Parse the current instruction, and record the values of the
4930 registers and memory that will be changed by the current
4931 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4932
4933 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4934 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4935
4936 int
4937 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4938 CORE_ADDR input_addr)
4939 {
4940 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4941 int prefixes = 0;
4942 int regnum = 0;
4943 uint32_t opcode;
4944 uint8_t opcode8;
4945 ULONGEST addr;
4946 gdb_byte buf[MAX_REGISTER_SIZE];
4947 struct i386_record_s ir;
4948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4949 uint8_t rex_w = -1;
4950 uint8_t rex_r = 0;
4951
4952 memset (&ir, 0, sizeof (struct i386_record_s));
4953 ir.regcache = regcache;
4954 ir.addr = input_addr;
4955 ir.orig_addr = input_addr;
4956 ir.aflag = 1;
4957 ir.dflag = 1;
4958 ir.override = -1;
4959 ir.popl_esp_hack = 0;
4960 ir.regmap = tdep->record_regmap;
4961 ir.gdbarch = gdbarch;
4962
4963 if (record_debug > 1)
4964 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4965 "addr = %s\n",
4966 paddress (gdbarch, ir.addr));
4967
4968 /* prefixes */
4969 while (1)
4970 {
4971 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4972 return -1;
4973 ir.addr++;
4974 switch (opcode8) /* Instruction prefixes */
4975 {
4976 case REPE_PREFIX_OPCODE:
4977 prefixes |= PREFIX_REPZ;
4978 break;
4979 case REPNE_PREFIX_OPCODE:
4980 prefixes |= PREFIX_REPNZ;
4981 break;
4982 case LOCK_PREFIX_OPCODE:
4983 prefixes |= PREFIX_LOCK;
4984 break;
4985 case CS_PREFIX_OPCODE:
4986 ir.override = X86_RECORD_CS_REGNUM;
4987 break;
4988 case SS_PREFIX_OPCODE:
4989 ir.override = X86_RECORD_SS_REGNUM;
4990 break;
4991 case DS_PREFIX_OPCODE:
4992 ir.override = X86_RECORD_DS_REGNUM;
4993 break;
4994 case ES_PREFIX_OPCODE:
4995 ir.override = X86_RECORD_ES_REGNUM;
4996 break;
4997 case FS_PREFIX_OPCODE:
4998 ir.override = X86_RECORD_FS_REGNUM;
4999 break;
5000 case GS_PREFIX_OPCODE:
5001 ir.override = X86_RECORD_GS_REGNUM;
5002 break;
5003 case DATA_PREFIX_OPCODE:
5004 prefixes |= PREFIX_DATA;
5005 break;
5006 case ADDR_PREFIX_OPCODE:
5007 prefixes |= PREFIX_ADDR;
5008 break;
5009 case 0x40: /* i386 inc %eax */
5010 case 0x41: /* i386 inc %ecx */
5011 case 0x42: /* i386 inc %edx */
5012 case 0x43: /* i386 inc %ebx */
5013 case 0x44: /* i386 inc %esp */
5014 case 0x45: /* i386 inc %ebp */
5015 case 0x46: /* i386 inc %esi */
5016 case 0x47: /* i386 inc %edi */
5017 case 0x48: /* i386 dec %eax */
5018 case 0x49: /* i386 dec %ecx */
5019 case 0x4a: /* i386 dec %edx */
5020 case 0x4b: /* i386 dec %ebx */
5021 case 0x4c: /* i386 dec %esp */
5022 case 0x4d: /* i386 dec %ebp */
5023 case 0x4e: /* i386 dec %esi */
5024 case 0x4f: /* i386 dec %edi */
5025 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5026 {
5027 /* REX */
5028 rex_w = (opcode8 >> 3) & 1;
5029 rex_r = (opcode8 & 0x4) << 1;
5030 ir.rex_x = (opcode8 & 0x2) << 2;
5031 ir.rex_b = (opcode8 & 0x1) << 3;
5032 }
5033 else /* 32 bit target */
5034 goto out_prefixes;
5035 break;
5036 default:
5037 goto out_prefixes;
5038 break;
5039 }
5040 }
5041 out_prefixes:
5042 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5043 {
5044 ir.dflag = 2;
5045 }
5046 else
5047 {
5048 if (prefixes & PREFIX_DATA)
5049 ir.dflag ^= 1;
5050 }
5051 if (prefixes & PREFIX_ADDR)
5052 ir.aflag ^= 1;
5053 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5054 ir.aflag = 2;
5055
5056 /* Now check op code. */
5057 opcode = (uint32_t) opcode8;
5058 reswitch:
5059 switch (opcode)
5060 {
5061 case 0x0f:
5062 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5063 return -1;
5064 ir.addr++;
5065 opcode = (uint32_t) opcode8 | 0x0f00;
5066 goto reswitch;
5067 break;
5068
5069 case 0x00: /* arith & logic */
5070 case 0x01:
5071 case 0x02:
5072 case 0x03:
5073 case 0x04:
5074 case 0x05:
5075 case 0x08:
5076 case 0x09:
5077 case 0x0a:
5078 case 0x0b:
5079 case 0x0c:
5080 case 0x0d:
5081 case 0x10:
5082 case 0x11:
5083 case 0x12:
5084 case 0x13:
5085 case 0x14:
5086 case 0x15:
5087 case 0x18:
5088 case 0x19:
5089 case 0x1a:
5090 case 0x1b:
5091 case 0x1c:
5092 case 0x1d:
5093 case 0x20:
5094 case 0x21:
5095 case 0x22:
5096 case 0x23:
5097 case 0x24:
5098 case 0x25:
5099 case 0x28:
5100 case 0x29:
5101 case 0x2a:
5102 case 0x2b:
5103 case 0x2c:
5104 case 0x2d:
5105 case 0x30:
5106 case 0x31:
5107 case 0x32:
5108 case 0x33:
5109 case 0x34:
5110 case 0x35:
5111 case 0x38:
5112 case 0x39:
5113 case 0x3a:
5114 case 0x3b:
5115 case 0x3c:
5116 case 0x3d:
5117 if (((opcode >> 3) & 7) != OP_CMPL)
5118 {
5119 if ((opcode & 1) == 0)
5120 ir.ot = OT_BYTE;
5121 else
5122 ir.ot = ir.dflag + OT_WORD;
5123
5124 switch ((opcode >> 1) & 3)
5125 {
5126 case 0: /* OP Ev, Gv */
5127 if (i386_record_modrm (&ir))
5128 return -1;
5129 if (ir.mod != 3)
5130 {
5131 if (i386_record_lea_modrm (&ir))
5132 return -1;
5133 }
5134 else
5135 {
5136 ir.rm |= ir.rex_b;
5137 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5138 ir.rm &= 0x3;
5139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5140 }
5141 break;
5142 case 1: /* OP Gv, Ev */
5143 if (i386_record_modrm (&ir))
5144 return -1;
5145 ir.reg |= rex_r;
5146 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.reg &= 0x3;
5148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5149 break;
5150 case 2: /* OP A, Iv */
5151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5152 break;
5153 }
5154 }
5155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5156 break;
5157
5158 case 0x80: /* GRP1 */
5159 case 0x81:
5160 case 0x82:
5161 case 0x83:
5162 if (i386_record_modrm (&ir))
5163 return -1;
5164
5165 if (ir.reg != OP_CMPL)
5166 {
5167 if ((opcode & 1) == 0)
5168 ir.ot = OT_BYTE;
5169 else
5170 ir.ot = ir.dflag + OT_WORD;
5171
5172 if (ir.mod != 3)
5173 {
5174 if (opcode == 0x83)
5175 ir.rip_offset = 1;
5176 else
5177 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5178 if (i386_record_lea_modrm (&ir))
5179 return -1;
5180 }
5181 else
5182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5183 }
5184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5185 break;
5186
5187 case 0x40: /* inc */
5188 case 0x41:
5189 case 0x42:
5190 case 0x43:
5191 case 0x44:
5192 case 0x45:
5193 case 0x46:
5194 case 0x47:
5195
5196 case 0x48: /* dec */
5197 case 0x49:
5198 case 0x4a:
5199 case 0x4b:
5200 case 0x4c:
5201 case 0x4d:
5202 case 0x4e:
5203 case 0x4f:
5204
5205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5207 break;
5208
5209 case 0xf6: /* GRP3 */
5210 case 0xf7:
5211 if ((opcode & 1) == 0)
5212 ir.ot = OT_BYTE;
5213 else
5214 ir.ot = ir.dflag + OT_WORD;
5215 if (i386_record_modrm (&ir))
5216 return -1;
5217
5218 if (ir.mod != 3 && ir.reg == 0)
5219 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5220
5221 switch (ir.reg)
5222 {
5223 case 0: /* test */
5224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5225 break;
5226 case 2: /* not */
5227 case 3: /* neg */
5228 if (ir.mod != 3)
5229 {
5230 if (i386_record_lea_modrm (&ir))
5231 return -1;
5232 }
5233 else
5234 {
5235 ir.rm |= ir.rex_b;
5236 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5237 ir.rm &= 0x3;
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5239 }
5240 if (ir.reg == 3) /* neg */
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5242 break;
5243 case 4: /* mul */
5244 case 5: /* imul */
5245 case 6: /* div */
5246 case 7: /* idiv */
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5248 if (ir.ot != OT_BYTE)
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5251 break;
5252 default:
5253 ir.addr -= 2;
5254 opcode = opcode << 8 | ir.modrm;
5255 goto no_support;
5256 break;
5257 }
5258 break;
5259
5260 case 0xfe: /* GRP4 */
5261 case 0xff: /* GRP5 */
5262 if (i386_record_modrm (&ir))
5263 return -1;
5264 if (ir.reg >= 2 && opcode == 0xfe)
5265 {
5266 ir.addr -= 2;
5267 opcode = opcode << 8 | ir.modrm;
5268 goto no_support;
5269 }
5270 switch (ir.reg)
5271 {
5272 case 0: /* inc */
5273 case 1: /* dec */
5274 if ((opcode & 1) == 0)
5275 ir.ot = OT_BYTE;
5276 else
5277 ir.ot = ir.dflag + OT_WORD;
5278 if (ir.mod != 3)
5279 {
5280 if (i386_record_lea_modrm (&ir))
5281 return -1;
5282 }
5283 else
5284 {
5285 ir.rm |= ir.rex_b;
5286 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5287 ir.rm &= 0x3;
5288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5289 }
5290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5291 break;
5292 case 2: /* call */
5293 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5294 ir.dflag = 2;
5295 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5296 return -1;
5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5298 break;
5299 case 3: /* lcall */
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5301 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5302 return -1;
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5304 break;
5305 case 4: /* jmp */
5306 case 5: /* ljmp */
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 break;
5309 case 6: /* push */
5310 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5311 ir.dflag = 2;
5312 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5313 return -1;
5314 break;
5315 default:
5316 ir.addr -= 2;
5317 opcode = opcode << 8 | ir.modrm;
5318 goto no_support;
5319 break;
5320 }
5321 break;
5322
5323 case 0x84: /* test */
5324 case 0x85:
5325 case 0xa8:
5326 case 0xa9:
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5328 break;
5329
5330 case 0x98: /* CWDE/CBW */
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5332 break;
5333
5334 case 0x99: /* CDQ/CWD */
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5337 break;
5338
5339 case 0x0faf: /* imul */
5340 case 0x69:
5341 case 0x6b:
5342 ir.ot = ir.dflag + OT_WORD;
5343 if (i386_record_modrm (&ir))
5344 return -1;
5345 if (opcode == 0x69)
5346 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5347 else if (opcode == 0x6b)
5348 ir.rip_offset = 1;
5349 ir.reg |= rex_r;
5350 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5351 ir.reg &= 0x3;
5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5354 break;
5355
5356 case 0x0fc0: /* xadd */
5357 case 0x0fc1:
5358 if ((opcode & 1) == 0)
5359 ir.ot = OT_BYTE;
5360 else
5361 ir.ot = ir.dflag + OT_WORD;
5362 if (i386_record_modrm (&ir))
5363 return -1;
5364 ir.reg |= rex_r;
5365 if (ir.mod == 3)
5366 {
5367 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5368 ir.reg &= 0x3;
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5370 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5371 ir.rm &= 0x3;
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5373 }
5374 else
5375 {
5376 if (i386_record_lea_modrm (&ir))
5377 return -1;
5378 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5379 ir.reg &= 0x3;
5380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5381 }
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5383 break;
5384
5385 case 0x0fb0: /* cmpxchg */
5386 case 0x0fb1:
5387 if ((opcode & 1) == 0)
5388 ir.ot = OT_BYTE;
5389 else
5390 ir.ot = ir.dflag + OT_WORD;
5391 if (i386_record_modrm (&ir))
5392 return -1;
5393 if (ir.mod == 3)
5394 {
5395 ir.reg |= rex_r;
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5397 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5398 ir.reg &= 0x3;
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5400 }
5401 else
5402 {
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5404 if (i386_record_lea_modrm (&ir))
5405 return -1;
5406 }
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5408 break;
5409
5410 case 0x0fc7: /* cmpxchg8b */
5411 if (i386_record_modrm (&ir))
5412 return -1;
5413 if (ir.mod == 3)
5414 {
5415 ir.addr -= 2;
5416 opcode = opcode << 8 | ir.modrm;
5417 goto no_support;
5418 }
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5421 if (i386_record_lea_modrm (&ir))
5422 return -1;
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5424 break;
5425
5426 case 0x50: /* push */
5427 case 0x51:
5428 case 0x52:
5429 case 0x53:
5430 case 0x54:
5431 case 0x55:
5432 case 0x56:
5433 case 0x57:
5434 case 0x68:
5435 case 0x6a:
5436 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5437 ir.dflag = 2;
5438 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5439 return -1;
5440 break;
5441
5442 case 0x06: /* push es */
5443 case 0x0e: /* push cs */
5444 case 0x16: /* push ss */
5445 case 0x1e: /* push ds */
5446 if (ir.regmap[X86_RECORD_R8_REGNUM])
5447 {
5448 ir.addr -= 1;
5449 goto no_support;
5450 }
5451 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5452 return -1;
5453 break;
5454
5455 case 0x0fa0: /* push fs */
5456 case 0x0fa8: /* push gs */
5457 if (ir.regmap[X86_RECORD_R8_REGNUM])
5458 {
5459 ir.addr -= 2;
5460 goto no_support;
5461 }
5462 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5463 return -1;
5464 break;
5465
5466 case 0x60: /* pusha */
5467 if (ir.regmap[X86_RECORD_R8_REGNUM])
5468 {
5469 ir.addr -= 1;
5470 goto no_support;
5471 }
5472 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5473 return -1;
5474 break;
5475
5476 case 0x58: /* pop */
5477 case 0x59:
5478 case 0x5a:
5479 case 0x5b:
5480 case 0x5c:
5481 case 0x5d:
5482 case 0x5e:
5483 case 0x5f:
5484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5486 break;
5487
5488 case 0x61: /* popa */
5489 if (ir.regmap[X86_RECORD_R8_REGNUM])
5490 {
5491 ir.addr -= 1;
5492 goto no_support;
5493 }
5494 for (regnum = X86_RECORD_REAX_REGNUM;
5495 regnum <= X86_RECORD_REDI_REGNUM;
5496 regnum++)
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5498 break;
5499
5500 case 0x8f: /* pop */
5501 if (ir.regmap[X86_RECORD_R8_REGNUM])
5502 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5503 else
5504 ir.ot = ir.dflag + OT_WORD;
5505 if (i386_record_modrm (&ir))
5506 return -1;
5507 if (ir.mod == 3)
5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5509 else
5510 {
5511 ir.popl_esp_hack = 1 << ir.ot;
5512 if (i386_record_lea_modrm (&ir))
5513 return -1;
5514 }
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5516 break;
5517
5518 case 0xc8: /* enter */
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5520 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5521 ir.dflag = 2;
5522 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5523 return -1;
5524 break;
5525
5526 case 0xc9: /* leave */
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5529 break;
5530
5531 case 0x07: /* pop es */
5532 if (ir.regmap[X86_RECORD_R8_REGNUM])
5533 {
5534 ir.addr -= 1;
5535 goto no_support;
5536 }
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5540 break;
5541
5542 case 0x17: /* pop ss */
5543 if (ir.regmap[X86_RECORD_R8_REGNUM])
5544 {
5545 ir.addr -= 1;
5546 goto no_support;
5547 }
5548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5551 break;
5552
5553 case 0x1f: /* pop ds */
5554 if (ir.regmap[X86_RECORD_R8_REGNUM])
5555 {
5556 ir.addr -= 1;
5557 goto no_support;
5558 }
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5562 break;
5563
5564 case 0x0fa1: /* pop fs */
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5568 break;
5569
5570 case 0x0fa9: /* pop gs */
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5574 break;
5575
5576 case 0x88: /* mov */
5577 case 0x89:
5578 case 0xc6:
5579 case 0xc7:
5580 if ((opcode & 1) == 0)
5581 ir.ot = OT_BYTE;
5582 else
5583 ir.ot = ir.dflag + OT_WORD;
5584
5585 if (i386_record_modrm (&ir))
5586 return -1;
5587
5588 if (ir.mod != 3)
5589 {
5590 if (opcode == 0xc6 || opcode == 0xc7)
5591 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5592 if (i386_record_lea_modrm (&ir))
5593 return -1;
5594 }
5595 else
5596 {
5597 if (opcode == 0xc6 || opcode == 0xc7)
5598 ir.rm |= ir.rex_b;
5599 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5600 ir.rm &= 0x3;
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5602 }
5603 break;
5604
5605 case 0x8a: /* mov */
5606 case 0x8b:
5607 if ((opcode & 1) == 0)
5608 ir.ot = OT_BYTE;
5609 else
5610 ir.ot = ir.dflag + OT_WORD;
5611 if (i386_record_modrm (&ir))
5612 return -1;
5613 ir.reg |= rex_r;
5614 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5615 ir.reg &= 0x3;
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5617 break;
5618
5619 case 0x8c: /* mov seg */
5620 if (i386_record_modrm (&ir))
5621 return -1;
5622 if (ir.reg > 5)
5623 {
5624 ir.addr -= 2;
5625 opcode = opcode << 8 | ir.modrm;
5626 goto no_support;
5627 }
5628
5629 if (ir.mod == 3)
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5631 else
5632 {
5633 ir.ot = OT_WORD;
5634 if (i386_record_lea_modrm (&ir))
5635 return -1;
5636 }
5637 break;
5638
5639 case 0x8e: /* mov seg */
5640 if (i386_record_modrm (&ir))
5641 return -1;
5642 switch (ir.reg)
5643 {
5644 case 0:
5645 regnum = X86_RECORD_ES_REGNUM;
5646 break;
5647 case 2:
5648 regnum = X86_RECORD_SS_REGNUM;
5649 break;
5650 case 3:
5651 regnum = X86_RECORD_DS_REGNUM;
5652 break;
5653 case 4:
5654 regnum = X86_RECORD_FS_REGNUM;
5655 break;
5656 case 5:
5657 regnum = X86_RECORD_GS_REGNUM;
5658 break;
5659 default:
5660 ir.addr -= 2;
5661 opcode = opcode << 8 | ir.modrm;
5662 goto no_support;
5663 break;
5664 }
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5667 break;
5668
5669 case 0x0fb6: /* movzbS */
5670 case 0x0fb7: /* movzwS */
5671 case 0x0fbe: /* movsbS */
5672 case 0x0fbf: /* movswS */
5673 if (i386_record_modrm (&ir))
5674 return -1;
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5676 break;
5677
5678 case 0x8d: /* lea */
5679 if (i386_record_modrm (&ir))
5680 return -1;
5681 if (ir.mod == 3)
5682 {
5683 ir.addr -= 2;
5684 opcode = opcode << 8 | ir.modrm;
5685 goto no_support;
5686 }
5687 ir.ot = ir.dflag;
5688 ir.reg |= rex_r;
5689 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5690 ir.reg &= 0x3;
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5692 break;
5693
5694 case 0xa0: /* mov EAX */
5695 case 0xa1:
5696
5697 case 0xd7: /* xlat */
5698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5699 break;
5700
5701 case 0xa2: /* mov EAX */
5702 case 0xa3:
5703 if (ir.override >= 0)
5704 {
5705 if (record_full_memory_query)
5706 {
5707 int q;
5708
5709 target_terminal_ours ();
5710 q = yquery (_("\
5711 Process record ignores the memory change of instruction at address %s\n\
5712 because it can't get the value of the segment register.\n\
5713 Do you want to stop the program?"),
5714 paddress (gdbarch, ir.orig_addr));
5715 target_terminal_inferior ();
5716 if (q)
5717 return -1;
5718 }
5719 }
5720 else
5721 {
5722 if ((opcode & 1) == 0)
5723 ir.ot = OT_BYTE;
5724 else
5725 ir.ot = ir.dflag + OT_WORD;
5726 if (ir.aflag == 2)
5727 {
5728 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5729 return -1;
5730 ir.addr += 8;
5731 addr = extract_unsigned_integer (buf, 8, byte_order);
5732 }
5733 else if (ir.aflag)
5734 {
5735 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5736 return -1;
5737 ir.addr += 4;
5738 addr = extract_unsigned_integer (buf, 4, byte_order);
5739 }
5740 else
5741 {
5742 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5743 return -1;
5744 ir.addr += 2;
5745 addr = extract_unsigned_integer (buf, 2, byte_order);
5746 }
5747 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5748 return -1;
5749 }
5750 break;
5751
5752 case 0xb0: /* mov R, Ib */
5753 case 0xb1:
5754 case 0xb2:
5755 case 0xb3:
5756 case 0xb4:
5757 case 0xb5:
5758 case 0xb6:
5759 case 0xb7:
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5761 ? ((opcode & 0x7) | ir.rex_b)
5762 : ((opcode & 0x7) & 0x3));
5763 break;
5764
5765 case 0xb8: /* mov R, Iv */
5766 case 0xb9:
5767 case 0xba:
5768 case 0xbb:
5769 case 0xbc:
5770 case 0xbd:
5771 case 0xbe:
5772 case 0xbf:
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5774 break;
5775
5776 case 0x91: /* xchg R, EAX */
5777 case 0x92:
5778 case 0x93:
5779 case 0x94:
5780 case 0x95:
5781 case 0x96:
5782 case 0x97:
5783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5785 break;
5786
5787 case 0x86: /* xchg Ev, Gv */
5788 case 0x87:
5789 if ((opcode & 1) == 0)
5790 ir.ot = OT_BYTE;
5791 else
5792 ir.ot = ir.dflag + OT_WORD;
5793 if (i386_record_modrm (&ir))
5794 return -1;
5795 if (ir.mod == 3)
5796 {
5797 ir.rm |= ir.rex_b;
5798 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5799 ir.rm &= 0x3;
5800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5801 }
5802 else
5803 {
5804 if (i386_record_lea_modrm (&ir))
5805 return -1;
5806 }
5807 ir.reg |= rex_r;
5808 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5809 ir.reg &= 0x3;
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5811 break;
5812
5813 case 0xc4: /* les Gv */
5814 case 0xc5: /* lds Gv */
5815 if (ir.regmap[X86_RECORD_R8_REGNUM])
5816 {
5817 ir.addr -= 1;
5818 goto no_support;
5819 }
5820 /* FALLTHROUGH */
5821 case 0x0fb2: /* lss Gv */
5822 case 0x0fb4: /* lfs Gv */
5823 case 0x0fb5: /* lgs Gv */
5824 if (i386_record_modrm (&ir))
5825 return -1;
5826 if (ir.mod == 3)
5827 {
5828 if (opcode > 0xff)
5829 ir.addr -= 3;
5830 else
5831 ir.addr -= 2;
5832 opcode = opcode << 8 | ir.modrm;
5833 goto no_support;
5834 }
5835 switch (opcode)
5836 {
5837 case 0xc4: /* les Gv */
5838 regnum = X86_RECORD_ES_REGNUM;
5839 break;
5840 case 0xc5: /* lds Gv */
5841 regnum = X86_RECORD_DS_REGNUM;
5842 break;
5843 case 0x0fb2: /* lss Gv */
5844 regnum = X86_RECORD_SS_REGNUM;
5845 break;
5846 case 0x0fb4: /* lfs Gv */
5847 regnum = X86_RECORD_FS_REGNUM;
5848 break;
5849 case 0x0fb5: /* lgs Gv */
5850 regnum = X86_RECORD_GS_REGNUM;
5851 break;
5852 }
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5855 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5856 break;
5857
5858 case 0xc0: /* shifts */
5859 case 0xc1:
5860 case 0xd0:
5861 case 0xd1:
5862 case 0xd2:
5863 case 0xd3:
5864 if ((opcode & 1) == 0)
5865 ir.ot = OT_BYTE;
5866 else
5867 ir.ot = ir.dflag + OT_WORD;
5868 if (i386_record_modrm (&ir))
5869 return -1;
5870 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5871 {
5872 if (i386_record_lea_modrm (&ir))
5873 return -1;
5874 }
5875 else
5876 {
5877 ir.rm |= ir.rex_b;
5878 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5879 ir.rm &= 0x3;
5880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5881 }
5882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5883 break;
5884
5885 case 0x0fa4:
5886 case 0x0fa5:
5887 case 0x0fac:
5888 case 0x0fad:
5889 if (i386_record_modrm (&ir))
5890 return -1;
5891 if (ir.mod == 3)
5892 {
5893 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5894 return -1;
5895 }
5896 else
5897 {
5898 if (i386_record_lea_modrm (&ir))
5899 return -1;
5900 }
5901 break;
5902
5903 case 0xd8: /* Floats. */
5904 case 0xd9:
5905 case 0xda:
5906 case 0xdb:
5907 case 0xdc:
5908 case 0xdd:
5909 case 0xde:
5910 case 0xdf:
5911 if (i386_record_modrm (&ir))
5912 return -1;
5913 ir.reg |= ((opcode & 7) << 3);
5914 if (ir.mod != 3)
5915 {
5916 /* Memory. */
5917 uint64_t addr64;
5918
5919 if (i386_record_lea_modrm_addr (&ir, &addr64))
5920 return -1;
5921 switch (ir.reg)
5922 {
5923 case 0x02:
5924 case 0x12:
5925 case 0x22:
5926 case 0x32:
5927 /* For fcom, ficom nothing to do. */
5928 break;
5929 case 0x03:
5930 case 0x13:
5931 case 0x23:
5932 case 0x33:
5933 /* For fcomp, ficomp pop FPU stack, store all. */
5934 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5935 return -1;
5936 break;
5937 case 0x00:
5938 case 0x01:
5939 case 0x04:
5940 case 0x05:
5941 case 0x06:
5942 case 0x07:
5943 case 0x10:
5944 case 0x11:
5945 case 0x14:
5946 case 0x15:
5947 case 0x16:
5948 case 0x17:
5949 case 0x20:
5950 case 0x21:
5951 case 0x24:
5952 case 0x25:
5953 case 0x26:
5954 case 0x27:
5955 case 0x30:
5956 case 0x31:
5957 case 0x34:
5958 case 0x35:
5959 case 0x36:
5960 case 0x37:
5961 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5962 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5963 of code, always affects st(0) register. */
5964 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5965 return -1;
5966 break;
5967 case 0x08:
5968 case 0x0a:
5969 case 0x0b:
5970 case 0x18:
5971 case 0x19:
5972 case 0x1a:
5973 case 0x1b:
5974 case 0x1d:
5975 case 0x28:
5976 case 0x29:
5977 case 0x2a:
5978 case 0x2b:
5979 case 0x38:
5980 case 0x39:
5981 case 0x3a:
5982 case 0x3b:
5983 case 0x3c:
5984 case 0x3d:
5985 switch (ir.reg & 7)
5986 {
5987 case 0:
5988 /* Handling fld, fild. */
5989 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5990 return -1;
5991 break;
5992 case 1:
5993 switch (ir.reg >> 4)
5994 {
5995 case 0:
5996 if (record_full_arch_list_add_mem (addr64, 4))
5997 return -1;
5998 break;
5999 case 2:
6000 if (record_full_arch_list_add_mem (addr64, 8))
6001 return -1;
6002 break;
6003 case 3:
6004 break;
6005 default:
6006 if (record_full_arch_list_add_mem (addr64, 2))
6007 return -1;
6008 break;
6009 }
6010 break;
6011 default:
6012 switch (ir.reg >> 4)
6013 {
6014 case 0:
6015 if (record_full_arch_list_add_mem (addr64, 4))
6016 return -1;
6017 if (3 == (ir.reg & 7))
6018 {
6019 /* For fstp m32fp. */
6020 if (i386_record_floats (gdbarch, &ir,
6021 I386_SAVE_FPU_REGS))
6022 return -1;
6023 }
6024 break;
6025 case 1:
6026 if (record_full_arch_list_add_mem (addr64, 4))
6027 return -1;
6028 if ((3 == (ir.reg & 7))
6029 || (5 == (ir.reg & 7))
6030 || (7 == (ir.reg & 7)))
6031 {
6032 /* For fstp insn. */
6033 if (i386_record_floats (gdbarch, &ir,
6034 I386_SAVE_FPU_REGS))
6035 return -1;
6036 }
6037 break;
6038 case 2:
6039 if (record_full_arch_list_add_mem (addr64, 8))
6040 return -1;
6041 if (3 == (ir.reg & 7))
6042 {
6043 /* For fstp m64fp. */
6044 if (i386_record_floats (gdbarch, &ir,
6045 I386_SAVE_FPU_REGS))
6046 return -1;
6047 }
6048 break;
6049 case 3:
6050 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6051 {
6052 /* For fistp, fbld, fild, fbstp. */
6053 if (i386_record_floats (gdbarch, &ir,
6054 I386_SAVE_FPU_REGS))
6055 return -1;
6056 }
6057 /* Fall through */
6058 default:
6059 if (record_full_arch_list_add_mem (addr64, 2))
6060 return -1;
6061 break;
6062 }
6063 break;
6064 }
6065 break;
6066 case 0x0c:
6067 /* Insn fldenv. */
6068 if (i386_record_floats (gdbarch, &ir,
6069 I386_SAVE_FPU_ENV_REG_STACK))
6070 return -1;
6071 break;
6072 case 0x0d:
6073 /* Insn fldcw. */
6074 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6075 return -1;
6076 break;
6077 case 0x2c:
6078 /* Insn frstor. */
6079 if (i386_record_floats (gdbarch, &ir,
6080 I386_SAVE_FPU_ENV_REG_STACK))
6081 return -1;
6082 break;
6083 case 0x0e:
6084 if (ir.dflag)
6085 {
6086 if (record_full_arch_list_add_mem (addr64, 28))
6087 return -1;
6088 }
6089 else
6090 {
6091 if (record_full_arch_list_add_mem (addr64, 14))
6092 return -1;
6093 }
6094 break;
6095 case 0x0f:
6096 case 0x2f:
6097 if (record_full_arch_list_add_mem (addr64, 2))
6098 return -1;
6099 /* Insn fstp, fbstp. */
6100 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6101 return -1;
6102 break;
6103 case 0x1f:
6104 case 0x3e:
6105 if (record_full_arch_list_add_mem (addr64, 10))
6106 return -1;
6107 break;
6108 case 0x2e:
6109 if (ir.dflag)
6110 {
6111 if (record_full_arch_list_add_mem (addr64, 28))
6112 return -1;
6113 addr64 += 28;
6114 }
6115 else
6116 {
6117 if (record_full_arch_list_add_mem (addr64, 14))
6118 return -1;
6119 addr64 += 14;
6120 }
6121 if (record_full_arch_list_add_mem (addr64, 80))
6122 return -1;
6123 /* Insn fsave. */
6124 if (i386_record_floats (gdbarch, &ir,
6125 I386_SAVE_FPU_ENV_REG_STACK))
6126 return -1;
6127 break;
6128 case 0x3f:
6129 if (record_full_arch_list_add_mem (addr64, 8))
6130 return -1;
6131 /* Insn fistp. */
6132 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6133 return -1;
6134 break;
6135 default:
6136 ir.addr -= 2;
6137 opcode = opcode << 8 | ir.modrm;
6138 goto no_support;
6139 break;
6140 }
6141 }
6142 /* Opcode is an extension of modR/M byte. */
6143 else
6144 {
6145 switch (opcode)
6146 {
6147 case 0xd8:
6148 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6149 return -1;
6150 break;
6151 case 0xd9:
6152 if (0x0c == (ir.modrm >> 4))
6153 {
6154 if ((ir.modrm & 0x0f) <= 7)
6155 {
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_REGS))
6158 return -1;
6159 }
6160 else
6161 {
6162 if (i386_record_floats (gdbarch, &ir,
6163 I387_ST0_REGNUM (tdep)))
6164 return -1;
6165 /* If only st(0) is changing, then we have already
6166 recorded. */
6167 if ((ir.modrm & 0x0f) - 0x08)
6168 {
6169 if (i386_record_floats (gdbarch, &ir,
6170 I387_ST0_REGNUM (tdep) +
6171 ((ir.modrm & 0x0f) - 0x08)))
6172 return -1;
6173 }
6174 }
6175 }
6176 else
6177 {
6178 switch (ir.modrm)
6179 {
6180 case 0xe0:
6181 case 0xe1:
6182 case 0xf0:
6183 case 0xf5:
6184 case 0xf8:
6185 case 0xfa:
6186 case 0xfc:
6187 case 0xfe:
6188 case 0xff:
6189 if (i386_record_floats (gdbarch, &ir,
6190 I387_ST0_REGNUM (tdep)))
6191 return -1;
6192 break;
6193 case 0xf1:
6194 case 0xf2:
6195 case 0xf3:
6196 case 0xf4:
6197 case 0xf6:
6198 case 0xf7:
6199 case 0xe8:
6200 case 0xe9:
6201 case 0xea:
6202 case 0xeb:
6203 case 0xec:
6204 case 0xed:
6205 case 0xee:
6206 case 0xf9:
6207 case 0xfb:
6208 if (i386_record_floats (gdbarch, &ir,
6209 I386_SAVE_FPU_REGS))
6210 return -1;
6211 break;
6212 case 0xfd:
6213 if (i386_record_floats (gdbarch, &ir,
6214 I387_ST0_REGNUM (tdep)))
6215 return -1;
6216 if (i386_record_floats (gdbarch, &ir,
6217 I387_ST0_REGNUM (tdep) + 1))
6218 return -1;
6219 break;
6220 }
6221 }
6222 break;
6223 case 0xda:
6224 if (0xe9 == ir.modrm)
6225 {
6226 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6227 return -1;
6228 }
6229 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6230 {
6231 if (i386_record_floats (gdbarch, &ir,
6232 I387_ST0_REGNUM (tdep)))
6233 return -1;
6234 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6235 {
6236 if (i386_record_floats (gdbarch, &ir,
6237 I387_ST0_REGNUM (tdep) +
6238 (ir.modrm & 0x0f)))
6239 return -1;
6240 }
6241 else if ((ir.modrm & 0x0f) - 0x08)
6242 {
6243 if (i386_record_floats (gdbarch, &ir,
6244 I387_ST0_REGNUM (tdep) +
6245 ((ir.modrm & 0x0f) - 0x08)))
6246 return -1;
6247 }
6248 }
6249 break;
6250 case 0xdb:
6251 if (0xe3 == ir.modrm)
6252 {
6253 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6254 return -1;
6255 }
6256 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6257 {
6258 if (i386_record_floats (gdbarch, &ir,
6259 I387_ST0_REGNUM (tdep)))
6260 return -1;
6261 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep) +
6265 (ir.modrm & 0x0f)))
6266 return -1;
6267 }
6268 else if ((ir.modrm & 0x0f) - 0x08)
6269 {
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep) +
6272 ((ir.modrm & 0x0f) - 0x08)))
6273 return -1;
6274 }
6275 }
6276 break;
6277 case 0xdc:
6278 if ((0x0c == ir.modrm >> 4)
6279 || (0x0d == ir.modrm >> 4)
6280 || (0x0f == ir.modrm >> 4))
6281 {
6282 if ((ir.modrm & 0x0f) <= 7)
6283 {
6284 if (i386_record_floats (gdbarch, &ir,
6285 I387_ST0_REGNUM (tdep) +
6286 (ir.modrm & 0x0f)))
6287 return -1;
6288 }
6289 else
6290 {
6291 if (i386_record_floats (gdbarch, &ir,
6292 I387_ST0_REGNUM (tdep) +
6293 ((ir.modrm & 0x0f) - 0x08)))
6294 return -1;
6295 }
6296 }
6297 break;
6298 case 0xdd:
6299 if (0x0c == ir.modrm >> 4)
6300 {
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_FTAG_REGNUM (tdep)))
6303 return -1;
6304 }
6305 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6306 {
6307 if ((ir.modrm & 0x0f) <= 7)
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) +
6311 (ir.modrm & 0x0f)))
6312 return -1;
6313 }
6314 else
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I386_SAVE_FPU_REGS))
6318 return -1;
6319 }
6320 }
6321 break;
6322 case 0xde:
6323 if ((0x0c == ir.modrm >> 4)
6324 || (0x0e == ir.modrm >> 4)
6325 || (0x0f == ir.modrm >> 4)
6326 || (0xd9 == ir.modrm))
6327 {
6328 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6329 return -1;
6330 }
6331 break;
6332 case 0xdf:
6333 if (0xe0 == ir.modrm)
6334 {
6335 if (record_full_arch_list_add_reg (ir.regcache,
6336 I386_EAX_REGNUM))
6337 return -1;
6338 }
6339 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6340 {
6341 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6342 return -1;
6343 }
6344 break;
6345 }
6346 }
6347 break;
6348 /* string ops */
6349 case 0xa4: /* movsS */
6350 case 0xa5:
6351 case 0xaa: /* stosS */
6352 case 0xab:
6353 case 0x6c: /* insS */
6354 case 0x6d:
6355 regcache_raw_read_unsigned (ir.regcache,
6356 ir.regmap[X86_RECORD_RECX_REGNUM],
6357 &addr);
6358 if (addr)
6359 {
6360 ULONGEST es, ds;
6361
6362 if ((opcode & 1) == 0)
6363 ir.ot = OT_BYTE;
6364 else
6365 ir.ot = ir.dflag + OT_WORD;
6366 regcache_raw_read_unsigned (ir.regcache,
6367 ir.regmap[X86_RECORD_REDI_REGNUM],
6368 &addr);
6369
6370 regcache_raw_read_unsigned (ir.regcache,
6371 ir.regmap[X86_RECORD_ES_REGNUM],
6372 &es);
6373 regcache_raw_read_unsigned (ir.regcache,
6374 ir.regmap[X86_RECORD_DS_REGNUM],
6375 &ds);
6376 if (ir.aflag && (es != ds))
6377 {
6378 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6379 if (record_full_memory_query)
6380 {
6381 int q;
6382
6383 target_terminal_ours ();
6384 q = yquery (_("\
6385 Process record ignores the memory change of instruction at address %s\n\
6386 because it can't get the value of the segment register.\n\
6387 Do you want to stop the program?"),
6388 paddress (gdbarch, ir.orig_addr));
6389 target_terminal_inferior ();
6390 if (q)
6391 return -1;
6392 }
6393 }
6394 else
6395 {
6396 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6397 return -1;
6398 }
6399
6400 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6402 if (opcode == 0xa4 || opcode == 0xa5)
6403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6406 }
6407 break;
6408
6409 case 0xa6: /* cmpsS */
6410 case 0xa7:
6411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6413 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6416 break;
6417
6418 case 0xac: /* lodsS */
6419 case 0xad:
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6422 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6425 break;
6426
6427 case 0xae: /* scasS */
6428 case 0xaf:
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6430 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6433 break;
6434
6435 case 0x6e: /* outsS */
6436 case 0x6f:
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6438 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6441 break;
6442
6443 case 0xe4: /* port I/O */
6444 case 0xe5:
6445 case 0xec:
6446 case 0xed:
6447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6449 break;
6450
6451 case 0xe6:
6452 case 0xe7:
6453 case 0xee:
6454 case 0xef:
6455 break;
6456
6457 /* control */
6458 case 0xc2: /* ret im */
6459 case 0xc3: /* ret */
6460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6462 break;
6463
6464 case 0xca: /* lret im */
6465 case 0xcb: /* lret */
6466 case 0xcf: /* iret */
6467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6470 break;
6471
6472 case 0xe8: /* call im */
6473 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6474 ir.dflag = 2;
6475 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6476 return -1;
6477 break;
6478
6479 case 0x9a: /* lcall im */
6480 if (ir.regmap[X86_RECORD_R8_REGNUM])
6481 {
6482 ir.addr -= 1;
6483 goto no_support;
6484 }
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6486 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6487 return -1;
6488 break;
6489
6490 case 0xe9: /* jmp im */
6491 case 0xea: /* ljmp im */
6492 case 0xeb: /* jmp Jb */
6493 case 0x70: /* jcc Jb */
6494 case 0x71:
6495 case 0x72:
6496 case 0x73:
6497 case 0x74:
6498 case 0x75:
6499 case 0x76:
6500 case 0x77:
6501 case 0x78:
6502 case 0x79:
6503 case 0x7a:
6504 case 0x7b:
6505 case 0x7c:
6506 case 0x7d:
6507 case 0x7e:
6508 case 0x7f:
6509 case 0x0f80: /* jcc Jv */
6510 case 0x0f81:
6511 case 0x0f82:
6512 case 0x0f83:
6513 case 0x0f84:
6514 case 0x0f85:
6515 case 0x0f86:
6516 case 0x0f87:
6517 case 0x0f88:
6518 case 0x0f89:
6519 case 0x0f8a:
6520 case 0x0f8b:
6521 case 0x0f8c:
6522 case 0x0f8d:
6523 case 0x0f8e:
6524 case 0x0f8f:
6525 break;
6526
6527 case 0x0f90: /* setcc Gv */
6528 case 0x0f91:
6529 case 0x0f92:
6530 case 0x0f93:
6531 case 0x0f94:
6532 case 0x0f95:
6533 case 0x0f96:
6534 case 0x0f97:
6535 case 0x0f98:
6536 case 0x0f99:
6537 case 0x0f9a:
6538 case 0x0f9b:
6539 case 0x0f9c:
6540 case 0x0f9d:
6541 case 0x0f9e:
6542 case 0x0f9f:
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 ir.ot = OT_BYTE;
6545 if (i386_record_modrm (&ir))
6546 return -1;
6547 if (ir.mod == 3)
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6549 : (ir.rm & 0x3));
6550 else
6551 {
6552 if (i386_record_lea_modrm (&ir))
6553 return -1;
6554 }
6555 break;
6556
6557 case 0x0f40: /* cmov Gv, Ev */
6558 case 0x0f41:
6559 case 0x0f42:
6560 case 0x0f43:
6561 case 0x0f44:
6562 case 0x0f45:
6563 case 0x0f46:
6564 case 0x0f47:
6565 case 0x0f48:
6566 case 0x0f49:
6567 case 0x0f4a:
6568 case 0x0f4b:
6569 case 0x0f4c:
6570 case 0x0f4d:
6571 case 0x0f4e:
6572 case 0x0f4f:
6573 if (i386_record_modrm (&ir))
6574 return -1;
6575 ir.reg |= rex_r;
6576 if (ir.dflag == OT_BYTE)
6577 ir.reg &= 0x3;
6578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6579 break;
6580
6581 /* flags */
6582 case 0x9c: /* pushf */
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6585 ir.dflag = 2;
6586 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6587 return -1;
6588 break;
6589
6590 case 0x9d: /* popf */
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6593 break;
6594
6595 case 0x9e: /* sahf */
6596 if (ir.regmap[X86_RECORD_R8_REGNUM])
6597 {
6598 ir.addr -= 1;
6599 goto no_support;
6600 }
6601 /* FALLTHROUGH */
6602 case 0xf5: /* cmc */
6603 case 0xf8: /* clc */
6604 case 0xf9: /* stc */
6605 case 0xfc: /* cld */
6606 case 0xfd: /* std */
6607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6608 break;
6609
6610 case 0x9f: /* lahf */
6611 if (ir.regmap[X86_RECORD_R8_REGNUM])
6612 {
6613 ir.addr -= 1;
6614 goto no_support;
6615 }
6616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6618 break;
6619
6620 /* bit operations */
6621 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6622 ir.ot = ir.dflag + OT_WORD;
6623 if (i386_record_modrm (&ir))
6624 return -1;
6625 if (ir.reg < 4)
6626 {
6627 ir.addr -= 2;
6628 opcode = opcode << 8 | ir.modrm;
6629 goto no_support;
6630 }
6631 if (ir.reg != 4)
6632 {
6633 if (ir.mod == 3)
6634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6635 else
6636 {
6637 if (i386_record_lea_modrm (&ir))
6638 return -1;
6639 }
6640 }
6641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6642 break;
6643
6644 case 0x0fa3: /* bt Gv, Ev */
6645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6646 break;
6647
6648 case 0x0fab: /* bts */
6649 case 0x0fb3: /* btr */
6650 case 0x0fbb: /* btc */
6651 ir.ot = ir.dflag + OT_WORD;
6652 if (i386_record_modrm (&ir))
6653 return -1;
6654 if (ir.mod == 3)
6655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6656 else
6657 {
6658 uint64_t addr64;
6659 if (i386_record_lea_modrm_addr (&ir, &addr64))
6660 return -1;
6661 regcache_raw_read_unsigned (ir.regcache,
6662 ir.regmap[ir.reg | rex_r],
6663 &addr);
6664 switch (ir.dflag)
6665 {
6666 case 0:
6667 addr64 += ((int16_t) addr >> 4) << 4;
6668 break;
6669 case 1:
6670 addr64 += ((int32_t) addr >> 5) << 5;
6671 break;
6672 case 2:
6673 addr64 += ((int64_t) addr >> 6) << 6;
6674 break;
6675 }
6676 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6677 return -1;
6678 if (i386_record_lea_modrm (&ir))
6679 return -1;
6680 }
6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6682 break;
6683
6684 case 0x0fbc: /* bsf */
6685 case 0x0fbd: /* bsr */
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6688 break;
6689
6690 /* bcd */
6691 case 0x27: /* daa */
6692 case 0x2f: /* das */
6693 case 0x37: /* aaa */
6694 case 0x3f: /* aas */
6695 case 0xd4: /* aam */
6696 case 0xd5: /* aad */
6697 if (ir.regmap[X86_RECORD_R8_REGNUM])
6698 {
6699 ir.addr -= 1;
6700 goto no_support;
6701 }
6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6704 break;
6705
6706 /* misc */
6707 case 0x90: /* nop */
6708 if (prefixes & PREFIX_LOCK)
6709 {
6710 ir.addr -= 1;
6711 goto no_support;
6712 }
6713 break;
6714
6715 case 0x9b: /* fwait */
6716 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6717 return -1;
6718 opcode = (uint32_t) opcode8;
6719 ir.addr++;
6720 goto reswitch;
6721 break;
6722
6723 /* XXX */
6724 case 0xcc: /* int3 */
6725 printf_unfiltered (_("Process record does not support instruction "
6726 "int3.\n"));
6727 ir.addr -= 1;
6728 goto no_support;
6729 break;
6730
6731 /* XXX */
6732 case 0xcd: /* int */
6733 {
6734 int ret;
6735 uint8_t interrupt;
6736 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6737 return -1;
6738 ir.addr++;
6739 if (interrupt != 0x80
6740 || tdep->i386_intx80_record == NULL)
6741 {
6742 printf_unfiltered (_("Process record does not support "
6743 "instruction int 0x%02x.\n"),
6744 interrupt);
6745 ir.addr -= 2;
6746 goto no_support;
6747 }
6748 ret = tdep->i386_intx80_record (ir.regcache);
6749 if (ret)
6750 return ret;
6751 }
6752 break;
6753
6754 /* XXX */
6755 case 0xce: /* into */
6756 printf_unfiltered (_("Process record does not support "
6757 "instruction into.\n"));
6758 ir.addr -= 1;
6759 goto no_support;
6760 break;
6761
6762 case 0xfa: /* cli */
6763 case 0xfb: /* sti */
6764 break;
6765
6766 case 0x62: /* bound */
6767 printf_unfiltered (_("Process record does not support "
6768 "instruction bound.\n"));
6769 ir.addr -= 1;
6770 goto no_support;
6771 break;
6772
6773 case 0x0fc8: /* bswap reg */
6774 case 0x0fc9:
6775 case 0x0fca:
6776 case 0x0fcb:
6777 case 0x0fcc:
6778 case 0x0fcd:
6779 case 0x0fce:
6780 case 0x0fcf:
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6782 break;
6783
6784 case 0xd6: /* salc */
6785 if (ir.regmap[X86_RECORD_R8_REGNUM])
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6792 break;
6793
6794 case 0xe0: /* loopnz */
6795 case 0xe1: /* loopz */
6796 case 0xe2: /* loop */
6797 case 0xe3: /* jecxz */
6798 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6800 break;
6801
6802 case 0x0f30: /* wrmsr */
6803 printf_unfiltered (_("Process record does not support "
6804 "instruction wrmsr.\n"));
6805 ir.addr -= 2;
6806 goto no_support;
6807 break;
6808
6809 case 0x0f32: /* rdmsr */
6810 printf_unfiltered (_("Process record does not support "
6811 "instruction rdmsr.\n"));
6812 ir.addr -= 2;
6813 goto no_support;
6814 break;
6815
6816 case 0x0f31: /* rdtsc */
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6819 break;
6820
6821 case 0x0f34: /* sysenter */
6822 {
6823 int ret;
6824 if (ir.regmap[X86_RECORD_R8_REGNUM])
6825 {
6826 ir.addr -= 2;
6827 goto no_support;
6828 }
6829 if (tdep->i386_sysenter_record == NULL)
6830 {
6831 printf_unfiltered (_("Process record does not support "
6832 "instruction sysenter.\n"));
6833 ir.addr -= 2;
6834 goto no_support;
6835 }
6836 ret = tdep->i386_sysenter_record (ir.regcache);
6837 if (ret)
6838 return ret;
6839 }
6840 break;
6841
6842 case 0x0f35: /* sysexit */
6843 printf_unfiltered (_("Process record does not support "
6844 "instruction sysexit.\n"));
6845 ir.addr -= 2;
6846 goto no_support;
6847 break;
6848
6849 case 0x0f05: /* syscall */
6850 {
6851 int ret;
6852 if (tdep->i386_syscall_record == NULL)
6853 {
6854 printf_unfiltered (_("Process record does not support "
6855 "instruction syscall.\n"));
6856 ir.addr -= 2;
6857 goto no_support;
6858 }
6859 ret = tdep->i386_syscall_record (ir.regcache);
6860 if (ret)
6861 return ret;
6862 }
6863 break;
6864
6865 case 0x0f07: /* sysret */
6866 printf_unfiltered (_("Process record does not support "
6867 "instruction sysret.\n"));
6868 ir.addr -= 2;
6869 goto no_support;
6870 break;
6871
6872 case 0x0fa2: /* cpuid */
6873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6877 break;
6878
6879 case 0xf4: /* hlt */
6880 printf_unfiltered (_("Process record does not support "
6881 "instruction hlt.\n"));
6882 ir.addr -= 1;
6883 goto no_support;
6884 break;
6885
6886 case 0x0f00:
6887 if (i386_record_modrm (&ir))
6888 return -1;
6889 switch (ir.reg)
6890 {
6891 case 0: /* sldt */
6892 case 1: /* str */
6893 if (ir.mod == 3)
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6895 else
6896 {
6897 ir.ot = OT_WORD;
6898 if (i386_record_lea_modrm (&ir))
6899 return -1;
6900 }
6901 break;
6902 case 2: /* lldt */
6903 case 3: /* ltr */
6904 break;
6905 case 4: /* verr */
6906 case 5: /* verw */
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6908 break;
6909 default:
6910 ir.addr -= 3;
6911 opcode = opcode << 8 | ir.modrm;
6912 goto no_support;
6913 break;
6914 }
6915 break;
6916
6917 case 0x0f01:
6918 if (i386_record_modrm (&ir))
6919 return -1;
6920 switch (ir.reg)
6921 {
6922 case 0: /* sgdt */
6923 {
6924 uint64_t addr64;
6925
6926 if (ir.mod == 3)
6927 {
6928 ir.addr -= 3;
6929 opcode = opcode << 8 | ir.modrm;
6930 goto no_support;
6931 }
6932 if (ir.override >= 0)
6933 {
6934 if (record_full_memory_query)
6935 {
6936 int q;
6937
6938 target_terminal_ours ();
6939 q = yquery (_("\
6940 Process record ignores the memory change of instruction at address %s\n\
6941 because it can't get the value of the segment register.\n\
6942 Do you want to stop the program?"),
6943 paddress (gdbarch, ir.orig_addr));
6944 target_terminal_inferior ();
6945 if (q)
6946 return -1;
6947 }
6948 }
6949 else
6950 {
6951 if (i386_record_lea_modrm_addr (&ir, &addr64))
6952 return -1;
6953 if (record_full_arch_list_add_mem (addr64, 2))
6954 return -1;
6955 addr64 += 2;
6956 if (ir.regmap[X86_RECORD_R8_REGNUM])
6957 {
6958 if (record_full_arch_list_add_mem (addr64, 8))
6959 return -1;
6960 }
6961 else
6962 {
6963 if (record_full_arch_list_add_mem (addr64, 4))
6964 return -1;
6965 }
6966 }
6967 }
6968 break;
6969 case 1:
6970 if (ir.mod == 3)
6971 {
6972 switch (ir.rm)
6973 {
6974 case 0: /* monitor */
6975 break;
6976 case 1: /* mwait */
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6978 break;
6979 default:
6980 ir.addr -= 3;
6981 opcode = opcode << 8 | ir.modrm;
6982 goto no_support;
6983 break;
6984 }
6985 }
6986 else
6987 {
6988 /* sidt */
6989 if (ir.override >= 0)
6990 {
6991 if (record_full_memory_query)
6992 {
6993 int q;
6994
6995 target_terminal_ours ();
6996 q = yquery (_("\
6997 Process record ignores the memory change of instruction at address %s\n\
6998 because it can't get the value of the segment register.\n\
6999 Do you want to stop the program?"),
7000 paddress (gdbarch, ir.orig_addr));
7001 target_terminal_inferior ();
7002 if (q)
7003 return -1;
7004 }
7005 }
7006 else
7007 {
7008 uint64_t addr64;
7009
7010 if (i386_record_lea_modrm_addr (&ir, &addr64))
7011 return -1;
7012 if (record_full_arch_list_add_mem (addr64, 2))
7013 return -1;
7014 addr64 += 2;
7015 if (ir.regmap[X86_RECORD_R8_REGNUM])
7016 {
7017 if (record_full_arch_list_add_mem (addr64, 8))
7018 return -1;
7019 }
7020 else
7021 {
7022 if (record_full_arch_list_add_mem (addr64, 4))
7023 return -1;
7024 }
7025 }
7026 }
7027 break;
7028 case 2: /* lgdt */
7029 if (ir.mod == 3)
7030 {
7031 /* xgetbv */
7032 if (ir.rm == 0)
7033 {
7034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7036 break;
7037 }
7038 /* xsetbv */
7039 else if (ir.rm == 1)
7040 break;
7041 }
7042 case 3: /* lidt */
7043 if (ir.mod == 3)
7044 {
7045 ir.addr -= 3;
7046 opcode = opcode << 8 | ir.modrm;
7047 goto no_support;
7048 }
7049 break;
7050 case 4: /* smsw */
7051 if (ir.mod == 3)
7052 {
7053 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7054 return -1;
7055 }
7056 else
7057 {
7058 ir.ot = OT_WORD;
7059 if (i386_record_lea_modrm (&ir))
7060 return -1;
7061 }
7062 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7063 break;
7064 case 6: /* lmsw */
7065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7066 break;
7067 case 7: /* invlpg */
7068 if (ir.mod == 3)
7069 {
7070 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7072 else
7073 {
7074 ir.addr -= 3;
7075 opcode = opcode << 8 | ir.modrm;
7076 goto no_support;
7077 }
7078 }
7079 else
7080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7081 break;
7082 default:
7083 ir.addr -= 3;
7084 opcode = opcode << 8 | ir.modrm;
7085 goto no_support;
7086 break;
7087 }
7088 break;
7089
7090 case 0x0f08: /* invd */
7091 case 0x0f09: /* wbinvd */
7092 break;
7093
7094 case 0x63: /* arpl */
7095 if (i386_record_modrm (&ir))
7096 return -1;
7097 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7098 {
7099 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7100 ? (ir.reg | rex_r) : ir.rm);
7101 }
7102 else
7103 {
7104 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7105 if (i386_record_lea_modrm (&ir))
7106 return -1;
7107 }
7108 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7110 break;
7111
7112 case 0x0f02: /* lar */
7113 case 0x0f03: /* lsl */
7114 if (i386_record_modrm (&ir))
7115 return -1;
7116 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7118 break;
7119
7120 case 0x0f18:
7121 if (i386_record_modrm (&ir))
7122 return -1;
7123 if (ir.mod == 3 && ir.reg == 3)
7124 {
7125 ir.addr -= 3;
7126 opcode = opcode << 8 | ir.modrm;
7127 goto no_support;
7128 }
7129 break;
7130
7131 case 0x0f19:
7132 case 0x0f1a:
7133 case 0x0f1b:
7134 case 0x0f1c:
7135 case 0x0f1d:
7136 case 0x0f1e:
7137 case 0x0f1f:
7138 /* nop (multi byte) */
7139 break;
7140
7141 case 0x0f20: /* mov reg, crN */
7142 case 0x0f22: /* mov crN, reg */
7143 if (i386_record_modrm (&ir))
7144 return -1;
7145 if ((ir.modrm & 0xc0) != 0xc0)
7146 {
7147 ir.addr -= 3;
7148 opcode = opcode << 8 | ir.modrm;
7149 goto no_support;
7150 }
7151 switch (ir.reg)
7152 {
7153 case 0:
7154 case 2:
7155 case 3:
7156 case 4:
7157 case 8:
7158 if (opcode & 2)
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 else
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7162 break;
7163 default:
7164 ir.addr -= 3;
7165 opcode = opcode << 8 | ir.modrm;
7166 goto no_support;
7167 break;
7168 }
7169 break;
7170
7171 case 0x0f21: /* mov reg, drN */
7172 case 0x0f23: /* mov drN, reg */
7173 if (i386_record_modrm (&ir))
7174 return -1;
7175 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7176 || ir.reg == 5 || ir.reg >= 8)
7177 {
7178 ir.addr -= 3;
7179 opcode = opcode << 8 | ir.modrm;
7180 goto no_support;
7181 }
7182 if (opcode & 2)
7183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7184 else
7185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7186 break;
7187
7188 case 0x0f06: /* clts */
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7190 break;
7191
7192 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7193
7194 case 0x0f0d: /* 3DNow! prefetch */
7195 break;
7196
7197 case 0x0f0e: /* 3DNow! femms */
7198 case 0x0f77: /* emms */
7199 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7200 goto no_support;
7201 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7202 break;
7203
7204 case 0x0f0f: /* 3DNow! data */
7205 if (i386_record_modrm (&ir))
7206 return -1;
7207 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7208 return -1;
7209 ir.addr++;
7210 switch (opcode8)
7211 {
7212 case 0x0c: /* 3DNow! pi2fw */
7213 case 0x0d: /* 3DNow! pi2fd */
7214 case 0x1c: /* 3DNow! pf2iw */
7215 case 0x1d: /* 3DNow! pf2id */
7216 case 0x8a: /* 3DNow! pfnacc */
7217 case 0x8e: /* 3DNow! pfpnacc */
7218 case 0x90: /* 3DNow! pfcmpge */
7219 case 0x94: /* 3DNow! pfmin */
7220 case 0x96: /* 3DNow! pfrcp */
7221 case 0x97: /* 3DNow! pfrsqrt */
7222 case 0x9a: /* 3DNow! pfsub */
7223 case 0x9e: /* 3DNow! pfadd */
7224 case 0xa0: /* 3DNow! pfcmpgt */
7225 case 0xa4: /* 3DNow! pfmax */
7226 case 0xa6: /* 3DNow! pfrcpit1 */
7227 case 0xa7: /* 3DNow! pfrsqit1 */
7228 case 0xaa: /* 3DNow! pfsubr */
7229 case 0xae: /* 3DNow! pfacc */
7230 case 0xb0: /* 3DNow! pfcmpeq */
7231 case 0xb4: /* 3DNow! pfmul */
7232 case 0xb6: /* 3DNow! pfrcpit2 */
7233 case 0xb7: /* 3DNow! pmulhrw */
7234 case 0xbb: /* 3DNow! pswapd */
7235 case 0xbf: /* 3DNow! pavgusb */
7236 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7237 goto no_support_3dnow_data;
7238 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7239 break;
7240
7241 default:
7242 no_support_3dnow_data:
7243 opcode = (opcode << 8) | opcode8;
7244 goto no_support;
7245 break;
7246 }
7247 break;
7248
7249 case 0x0faa: /* rsm */
7250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7259 break;
7260
7261 case 0x0fae:
7262 if (i386_record_modrm (&ir))
7263 return -1;
7264 switch(ir.reg)
7265 {
7266 case 0: /* fxsave */
7267 {
7268 uint64_t tmpu64;
7269
7270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7271 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7272 return -1;
7273 if (record_full_arch_list_add_mem (tmpu64, 512))
7274 return -1;
7275 }
7276 break;
7277
7278 case 1: /* fxrstor */
7279 {
7280 int i;
7281
7282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7283
7284 for (i = I387_MM0_REGNUM (tdep);
7285 i386_mmx_regnum_p (gdbarch, i); i++)
7286 record_full_arch_list_add_reg (ir.regcache, i);
7287
7288 for (i = I387_XMM0_REGNUM (tdep);
7289 i386_xmm_regnum_p (gdbarch, i); i++)
7290 record_full_arch_list_add_reg (ir.regcache, i);
7291
7292 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7293 record_full_arch_list_add_reg (ir.regcache,
7294 I387_MXCSR_REGNUM(tdep));
7295
7296 for (i = I387_ST0_REGNUM (tdep);
7297 i386_fp_regnum_p (gdbarch, i); i++)
7298 record_full_arch_list_add_reg (ir.regcache, i);
7299
7300 for (i = I387_FCTRL_REGNUM (tdep);
7301 i386_fpc_regnum_p (gdbarch, i); i++)
7302 record_full_arch_list_add_reg (ir.regcache, i);
7303 }
7304 break;
7305
7306 case 2: /* ldmxcsr */
7307 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7308 goto no_support;
7309 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7310 break;
7311
7312 case 3: /* stmxcsr */
7313 ir.ot = OT_LONG;
7314 if (i386_record_lea_modrm (&ir))
7315 return -1;
7316 break;
7317
7318 case 5: /* lfence */
7319 case 6: /* mfence */
7320 case 7: /* sfence clflush */
7321 break;
7322
7323 default:
7324 opcode = (opcode << 8) | ir.modrm;
7325 goto no_support;
7326 break;
7327 }
7328 break;
7329
7330 case 0x0fc3: /* movnti */
7331 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 if (ir.mod == 3)
7335 goto no_support;
7336 ir.reg |= rex_r;
7337 if (i386_record_lea_modrm (&ir))
7338 return -1;
7339 break;
7340
7341 /* Add prefix to opcode. */
7342 case 0x0f10:
7343 case 0x0f11:
7344 case 0x0f12:
7345 case 0x0f13:
7346 case 0x0f14:
7347 case 0x0f15:
7348 case 0x0f16:
7349 case 0x0f17:
7350 case 0x0f28:
7351 case 0x0f29:
7352 case 0x0f2a:
7353 case 0x0f2b:
7354 case 0x0f2c:
7355 case 0x0f2d:
7356 case 0x0f2e:
7357 case 0x0f2f:
7358 case 0x0f38:
7359 case 0x0f39:
7360 case 0x0f3a:
7361 case 0x0f50:
7362 case 0x0f51:
7363 case 0x0f52:
7364 case 0x0f53:
7365 case 0x0f54:
7366 case 0x0f55:
7367 case 0x0f56:
7368 case 0x0f57:
7369 case 0x0f58:
7370 case 0x0f59:
7371 case 0x0f5a:
7372 case 0x0f5b:
7373 case 0x0f5c:
7374 case 0x0f5d:
7375 case 0x0f5e:
7376 case 0x0f5f:
7377 case 0x0f60:
7378 case 0x0f61:
7379 case 0x0f62:
7380 case 0x0f63:
7381 case 0x0f64:
7382 case 0x0f65:
7383 case 0x0f66:
7384 case 0x0f67:
7385 case 0x0f68:
7386 case 0x0f69:
7387 case 0x0f6a:
7388 case 0x0f6b:
7389 case 0x0f6c:
7390 case 0x0f6d:
7391 case 0x0f6e:
7392 case 0x0f6f:
7393 case 0x0f70:
7394 case 0x0f71:
7395 case 0x0f72:
7396 case 0x0f73:
7397 case 0x0f74:
7398 case 0x0f75:
7399 case 0x0f76:
7400 case 0x0f7c:
7401 case 0x0f7d:
7402 case 0x0f7e:
7403 case 0x0f7f:
7404 case 0x0fb8:
7405 case 0x0fc2:
7406 case 0x0fc4:
7407 case 0x0fc5:
7408 case 0x0fc6:
7409 case 0x0fd0:
7410 case 0x0fd1:
7411 case 0x0fd2:
7412 case 0x0fd3:
7413 case 0x0fd4:
7414 case 0x0fd5:
7415 case 0x0fd6:
7416 case 0x0fd7:
7417 case 0x0fd8:
7418 case 0x0fd9:
7419 case 0x0fda:
7420 case 0x0fdb:
7421 case 0x0fdc:
7422 case 0x0fdd:
7423 case 0x0fde:
7424 case 0x0fdf:
7425 case 0x0fe0:
7426 case 0x0fe1:
7427 case 0x0fe2:
7428 case 0x0fe3:
7429 case 0x0fe4:
7430 case 0x0fe5:
7431 case 0x0fe6:
7432 case 0x0fe7:
7433 case 0x0fe8:
7434 case 0x0fe9:
7435 case 0x0fea:
7436 case 0x0feb:
7437 case 0x0fec:
7438 case 0x0fed:
7439 case 0x0fee:
7440 case 0x0fef:
7441 case 0x0ff0:
7442 case 0x0ff1:
7443 case 0x0ff2:
7444 case 0x0ff3:
7445 case 0x0ff4:
7446 case 0x0ff5:
7447 case 0x0ff6:
7448 case 0x0ff7:
7449 case 0x0ff8:
7450 case 0x0ff9:
7451 case 0x0ffa:
7452 case 0x0ffb:
7453 case 0x0ffc:
7454 case 0x0ffd:
7455 case 0x0ffe:
7456 /* Mask out PREFIX_ADDR. */
7457 switch ((prefixes & ~PREFIX_ADDR))
7458 {
7459 case PREFIX_REPNZ:
7460 opcode |= 0xf20000;
7461 break;
7462 case PREFIX_DATA:
7463 opcode |= 0x660000;
7464 break;
7465 case PREFIX_REPZ:
7466 opcode |= 0xf30000;
7467 break;
7468 }
7469 reswitch_prefix_add:
7470 switch (opcode)
7471 {
7472 case 0x0f38:
7473 case 0x660f38:
7474 case 0xf20f38:
7475 case 0x0f3a:
7476 case 0x660f3a:
7477 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7478 return -1;
7479 ir.addr++;
7480 opcode = (uint32_t) opcode8 | opcode << 8;
7481 goto reswitch_prefix_add;
7482 break;
7483
7484 case 0x0f10: /* movups */
7485 case 0x660f10: /* movupd */
7486 case 0xf30f10: /* movss */
7487 case 0xf20f10: /* movsd */
7488 case 0x0f12: /* movlps */
7489 case 0x660f12: /* movlpd */
7490 case 0xf30f12: /* movsldup */
7491 case 0xf20f12: /* movddup */
7492 case 0x0f14: /* unpcklps */
7493 case 0x660f14: /* unpcklpd */
7494 case 0x0f15: /* unpckhps */
7495 case 0x660f15: /* unpckhpd */
7496 case 0x0f16: /* movhps */
7497 case 0x660f16: /* movhpd */
7498 case 0xf30f16: /* movshdup */
7499 case 0x0f28: /* movaps */
7500 case 0x660f28: /* movapd */
7501 case 0x0f2a: /* cvtpi2ps */
7502 case 0x660f2a: /* cvtpi2pd */
7503 case 0xf30f2a: /* cvtsi2ss */
7504 case 0xf20f2a: /* cvtsi2sd */
7505 case 0x0f2c: /* cvttps2pi */
7506 case 0x660f2c: /* cvttpd2pi */
7507 case 0x0f2d: /* cvtps2pi */
7508 case 0x660f2d: /* cvtpd2pi */
7509 case 0x660f3800: /* pshufb */
7510 case 0x660f3801: /* phaddw */
7511 case 0x660f3802: /* phaddd */
7512 case 0x660f3803: /* phaddsw */
7513 case 0x660f3804: /* pmaddubsw */
7514 case 0x660f3805: /* phsubw */
7515 case 0x660f3806: /* phsubd */
7516 case 0x660f3807: /* phsubsw */
7517 case 0x660f3808: /* psignb */
7518 case 0x660f3809: /* psignw */
7519 case 0x660f380a: /* psignd */
7520 case 0x660f380b: /* pmulhrsw */
7521 case 0x660f3810: /* pblendvb */
7522 case 0x660f3814: /* blendvps */
7523 case 0x660f3815: /* blendvpd */
7524 case 0x660f381c: /* pabsb */
7525 case 0x660f381d: /* pabsw */
7526 case 0x660f381e: /* pabsd */
7527 case 0x660f3820: /* pmovsxbw */
7528 case 0x660f3821: /* pmovsxbd */
7529 case 0x660f3822: /* pmovsxbq */
7530 case 0x660f3823: /* pmovsxwd */
7531 case 0x660f3824: /* pmovsxwq */
7532 case 0x660f3825: /* pmovsxdq */
7533 case 0x660f3828: /* pmuldq */
7534 case 0x660f3829: /* pcmpeqq */
7535 case 0x660f382a: /* movntdqa */
7536 case 0x660f3a08: /* roundps */
7537 case 0x660f3a09: /* roundpd */
7538 case 0x660f3a0a: /* roundss */
7539 case 0x660f3a0b: /* roundsd */
7540 case 0x660f3a0c: /* blendps */
7541 case 0x660f3a0d: /* blendpd */
7542 case 0x660f3a0e: /* pblendw */
7543 case 0x660f3a0f: /* palignr */
7544 case 0x660f3a20: /* pinsrb */
7545 case 0x660f3a21: /* insertps */
7546 case 0x660f3a22: /* pinsrd pinsrq */
7547 case 0x660f3a40: /* dpps */
7548 case 0x660f3a41: /* dppd */
7549 case 0x660f3a42: /* mpsadbw */
7550 case 0x660f3a60: /* pcmpestrm */
7551 case 0x660f3a61: /* pcmpestri */
7552 case 0x660f3a62: /* pcmpistrm */
7553 case 0x660f3a63: /* pcmpistri */
7554 case 0x0f51: /* sqrtps */
7555 case 0x660f51: /* sqrtpd */
7556 case 0xf20f51: /* sqrtsd */
7557 case 0xf30f51: /* sqrtss */
7558 case 0x0f52: /* rsqrtps */
7559 case 0xf30f52: /* rsqrtss */
7560 case 0x0f53: /* rcpps */
7561 case 0xf30f53: /* rcpss */
7562 case 0x0f54: /* andps */
7563 case 0x660f54: /* andpd */
7564 case 0x0f55: /* andnps */
7565 case 0x660f55: /* andnpd */
7566 case 0x0f56: /* orps */
7567 case 0x660f56: /* orpd */
7568 case 0x0f57: /* xorps */
7569 case 0x660f57: /* xorpd */
7570 case 0x0f58: /* addps */
7571 case 0x660f58: /* addpd */
7572 case 0xf20f58: /* addsd */
7573 case 0xf30f58: /* addss */
7574 case 0x0f59: /* mulps */
7575 case 0x660f59: /* mulpd */
7576 case 0xf20f59: /* mulsd */
7577 case 0xf30f59: /* mulss */
7578 case 0x0f5a: /* cvtps2pd */
7579 case 0x660f5a: /* cvtpd2ps */
7580 case 0xf20f5a: /* cvtsd2ss */
7581 case 0xf30f5a: /* cvtss2sd */
7582 case 0x0f5b: /* cvtdq2ps */
7583 case 0x660f5b: /* cvtps2dq */
7584 case 0xf30f5b: /* cvttps2dq */
7585 case 0x0f5c: /* subps */
7586 case 0x660f5c: /* subpd */
7587 case 0xf20f5c: /* subsd */
7588 case 0xf30f5c: /* subss */
7589 case 0x0f5d: /* minps */
7590 case 0x660f5d: /* minpd */
7591 case 0xf20f5d: /* minsd */
7592 case 0xf30f5d: /* minss */
7593 case 0x0f5e: /* divps */
7594 case 0x660f5e: /* divpd */
7595 case 0xf20f5e: /* divsd */
7596 case 0xf30f5e: /* divss */
7597 case 0x0f5f: /* maxps */
7598 case 0x660f5f: /* maxpd */
7599 case 0xf20f5f: /* maxsd */
7600 case 0xf30f5f: /* maxss */
7601 case 0x660f60: /* punpcklbw */
7602 case 0x660f61: /* punpcklwd */
7603 case 0x660f62: /* punpckldq */
7604 case 0x660f63: /* packsswb */
7605 case 0x660f64: /* pcmpgtb */
7606 case 0x660f65: /* pcmpgtw */
7607 case 0x660f66: /* pcmpgtd */
7608 case 0x660f67: /* packuswb */
7609 case 0x660f68: /* punpckhbw */
7610 case 0x660f69: /* punpckhwd */
7611 case 0x660f6a: /* punpckhdq */
7612 case 0x660f6b: /* packssdw */
7613 case 0x660f6c: /* punpcklqdq */
7614 case 0x660f6d: /* punpckhqdq */
7615 case 0x660f6e: /* movd */
7616 case 0x660f6f: /* movdqa */
7617 case 0xf30f6f: /* movdqu */
7618 case 0x660f70: /* pshufd */
7619 case 0xf20f70: /* pshuflw */
7620 case 0xf30f70: /* pshufhw */
7621 case 0x660f74: /* pcmpeqb */
7622 case 0x660f75: /* pcmpeqw */
7623 case 0x660f76: /* pcmpeqd */
7624 case 0x660f7c: /* haddpd */
7625 case 0xf20f7c: /* haddps */
7626 case 0x660f7d: /* hsubpd */
7627 case 0xf20f7d: /* hsubps */
7628 case 0xf30f7e: /* movq */
7629 case 0x0fc2: /* cmpps */
7630 case 0x660fc2: /* cmppd */
7631 case 0xf20fc2: /* cmpsd */
7632 case 0xf30fc2: /* cmpss */
7633 case 0x660fc4: /* pinsrw */
7634 case 0x0fc6: /* shufps */
7635 case 0x660fc6: /* shufpd */
7636 case 0x660fd0: /* addsubpd */
7637 case 0xf20fd0: /* addsubps */
7638 case 0x660fd1: /* psrlw */
7639 case 0x660fd2: /* psrld */
7640 case 0x660fd3: /* psrlq */
7641 case 0x660fd4: /* paddq */
7642 case 0x660fd5: /* pmullw */
7643 case 0xf30fd6: /* movq2dq */
7644 case 0x660fd8: /* psubusb */
7645 case 0x660fd9: /* psubusw */
7646 case 0x660fda: /* pminub */
7647 case 0x660fdb: /* pand */
7648 case 0x660fdc: /* paddusb */
7649 case 0x660fdd: /* paddusw */
7650 case 0x660fde: /* pmaxub */
7651 case 0x660fdf: /* pandn */
7652 case 0x660fe0: /* pavgb */
7653 case 0x660fe1: /* psraw */
7654 case 0x660fe2: /* psrad */
7655 case 0x660fe3: /* pavgw */
7656 case 0x660fe4: /* pmulhuw */
7657 case 0x660fe5: /* pmulhw */
7658 case 0x660fe6: /* cvttpd2dq */
7659 case 0xf20fe6: /* cvtpd2dq */
7660 case 0xf30fe6: /* cvtdq2pd */
7661 case 0x660fe8: /* psubsb */
7662 case 0x660fe9: /* psubsw */
7663 case 0x660fea: /* pminsw */
7664 case 0x660feb: /* por */
7665 case 0x660fec: /* paddsb */
7666 case 0x660fed: /* paddsw */
7667 case 0x660fee: /* pmaxsw */
7668 case 0x660fef: /* pxor */
7669 case 0xf20ff0: /* lddqu */
7670 case 0x660ff1: /* psllw */
7671 case 0x660ff2: /* pslld */
7672 case 0x660ff3: /* psllq */
7673 case 0x660ff4: /* pmuludq */
7674 case 0x660ff5: /* pmaddwd */
7675 case 0x660ff6: /* psadbw */
7676 case 0x660ff8: /* psubb */
7677 case 0x660ff9: /* psubw */
7678 case 0x660ffa: /* psubd */
7679 case 0x660ffb: /* psubq */
7680 case 0x660ffc: /* paddb */
7681 case 0x660ffd: /* paddw */
7682 case 0x660ffe: /* paddd */
7683 if (i386_record_modrm (&ir))
7684 return -1;
7685 ir.reg |= rex_r;
7686 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7687 goto no_support;
7688 record_full_arch_list_add_reg (ir.regcache,
7689 I387_XMM0_REGNUM (tdep) + ir.reg);
7690 if ((opcode & 0xfffffffc) == 0x660f3a60)
7691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7692 break;
7693
7694 case 0x0f11: /* movups */
7695 case 0x660f11: /* movupd */
7696 case 0xf30f11: /* movss */
7697 case 0xf20f11: /* movsd */
7698 case 0x0f13: /* movlps */
7699 case 0x660f13: /* movlpd */
7700 case 0x0f17: /* movhps */
7701 case 0x660f17: /* movhpd */
7702 case 0x0f29: /* movaps */
7703 case 0x660f29: /* movapd */
7704 case 0x660f3a14: /* pextrb */
7705 case 0x660f3a15: /* pextrw */
7706 case 0x660f3a16: /* pextrd pextrq */
7707 case 0x660f3a17: /* extractps */
7708 case 0x660f7f: /* movdqa */
7709 case 0xf30f7f: /* movdqu */
7710 if (i386_record_modrm (&ir))
7711 return -1;
7712 if (ir.mod == 3)
7713 {
7714 if (opcode == 0x0f13 || opcode == 0x660f13
7715 || opcode == 0x0f17 || opcode == 0x660f17)
7716 goto no_support;
7717 ir.rm |= ir.rex_b;
7718 if (!i386_xmm_regnum_p (gdbarch,
7719 I387_XMM0_REGNUM (tdep) + ir.rm))
7720 goto no_support;
7721 record_full_arch_list_add_reg (ir.regcache,
7722 I387_XMM0_REGNUM (tdep) + ir.rm);
7723 }
7724 else
7725 {
7726 switch (opcode)
7727 {
7728 case 0x660f3a14:
7729 ir.ot = OT_BYTE;
7730 break;
7731 case 0x660f3a15:
7732 ir.ot = OT_WORD;
7733 break;
7734 case 0x660f3a16:
7735 ir.ot = OT_LONG;
7736 break;
7737 case 0x660f3a17:
7738 ir.ot = OT_QUAD;
7739 break;
7740 default:
7741 ir.ot = OT_DQUAD;
7742 break;
7743 }
7744 if (i386_record_lea_modrm (&ir))
7745 return -1;
7746 }
7747 break;
7748
7749 case 0x0f2b: /* movntps */
7750 case 0x660f2b: /* movntpd */
7751 case 0x0fe7: /* movntq */
7752 case 0x660fe7: /* movntdq */
7753 if (ir.mod == 3)
7754 goto no_support;
7755 if (opcode == 0x0fe7)
7756 ir.ot = OT_QUAD;
7757 else
7758 ir.ot = OT_DQUAD;
7759 if (i386_record_lea_modrm (&ir))
7760 return -1;
7761 break;
7762
7763 case 0xf30f2c: /* cvttss2si */
7764 case 0xf20f2c: /* cvttsd2si */
7765 case 0xf30f2d: /* cvtss2si */
7766 case 0xf20f2d: /* cvtsd2si */
7767 case 0xf20f38f0: /* crc32 */
7768 case 0xf20f38f1: /* crc32 */
7769 case 0x0f50: /* movmskps */
7770 case 0x660f50: /* movmskpd */
7771 case 0x0fc5: /* pextrw */
7772 case 0x660fc5: /* pextrw */
7773 case 0x0fd7: /* pmovmskb */
7774 case 0x660fd7: /* pmovmskb */
7775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7776 break;
7777
7778 case 0x0f3800: /* pshufb */
7779 case 0x0f3801: /* phaddw */
7780 case 0x0f3802: /* phaddd */
7781 case 0x0f3803: /* phaddsw */
7782 case 0x0f3804: /* pmaddubsw */
7783 case 0x0f3805: /* phsubw */
7784 case 0x0f3806: /* phsubd */
7785 case 0x0f3807: /* phsubsw */
7786 case 0x0f3808: /* psignb */
7787 case 0x0f3809: /* psignw */
7788 case 0x0f380a: /* psignd */
7789 case 0x0f380b: /* pmulhrsw */
7790 case 0x0f381c: /* pabsb */
7791 case 0x0f381d: /* pabsw */
7792 case 0x0f381e: /* pabsd */
7793 case 0x0f382b: /* packusdw */
7794 case 0x0f3830: /* pmovzxbw */
7795 case 0x0f3831: /* pmovzxbd */
7796 case 0x0f3832: /* pmovzxbq */
7797 case 0x0f3833: /* pmovzxwd */
7798 case 0x0f3834: /* pmovzxwq */
7799 case 0x0f3835: /* pmovzxdq */
7800 case 0x0f3837: /* pcmpgtq */
7801 case 0x0f3838: /* pminsb */
7802 case 0x0f3839: /* pminsd */
7803 case 0x0f383a: /* pminuw */
7804 case 0x0f383b: /* pminud */
7805 case 0x0f383c: /* pmaxsb */
7806 case 0x0f383d: /* pmaxsd */
7807 case 0x0f383e: /* pmaxuw */
7808 case 0x0f383f: /* pmaxud */
7809 case 0x0f3840: /* pmulld */
7810 case 0x0f3841: /* phminposuw */
7811 case 0x0f3a0f: /* palignr */
7812 case 0x0f60: /* punpcklbw */
7813 case 0x0f61: /* punpcklwd */
7814 case 0x0f62: /* punpckldq */
7815 case 0x0f63: /* packsswb */
7816 case 0x0f64: /* pcmpgtb */
7817 case 0x0f65: /* pcmpgtw */
7818 case 0x0f66: /* pcmpgtd */
7819 case 0x0f67: /* packuswb */
7820 case 0x0f68: /* punpckhbw */
7821 case 0x0f69: /* punpckhwd */
7822 case 0x0f6a: /* punpckhdq */
7823 case 0x0f6b: /* packssdw */
7824 case 0x0f6e: /* movd */
7825 case 0x0f6f: /* movq */
7826 case 0x0f70: /* pshufw */
7827 case 0x0f74: /* pcmpeqb */
7828 case 0x0f75: /* pcmpeqw */
7829 case 0x0f76: /* pcmpeqd */
7830 case 0x0fc4: /* pinsrw */
7831 case 0x0fd1: /* psrlw */
7832 case 0x0fd2: /* psrld */
7833 case 0x0fd3: /* psrlq */
7834 case 0x0fd4: /* paddq */
7835 case 0x0fd5: /* pmullw */
7836 case 0xf20fd6: /* movdq2q */
7837 case 0x0fd8: /* psubusb */
7838 case 0x0fd9: /* psubusw */
7839 case 0x0fda: /* pminub */
7840 case 0x0fdb: /* pand */
7841 case 0x0fdc: /* paddusb */
7842 case 0x0fdd: /* paddusw */
7843 case 0x0fde: /* pmaxub */
7844 case 0x0fdf: /* pandn */
7845 case 0x0fe0: /* pavgb */
7846 case 0x0fe1: /* psraw */
7847 case 0x0fe2: /* psrad */
7848 case 0x0fe3: /* pavgw */
7849 case 0x0fe4: /* pmulhuw */
7850 case 0x0fe5: /* pmulhw */
7851 case 0x0fe8: /* psubsb */
7852 case 0x0fe9: /* psubsw */
7853 case 0x0fea: /* pminsw */
7854 case 0x0feb: /* por */
7855 case 0x0fec: /* paddsb */
7856 case 0x0fed: /* paddsw */
7857 case 0x0fee: /* pmaxsw */
7858 case 0x0fef: /* pxor */
7859 case 0x0ff1: /* psllw */
7860 case 0x0ff2: /* pslld */
7861 case 0x0ff3: /* psllq */
7862 case 0x0ff4: /* pmuludq */
7863 case 0x0ff5: /* pmaddwd */
7864 case 0x0ff6: /* psadbw */
7865 case 0x0ff8: /* psubb */
7866 case 0x0ff9: /* psubw */
7867 case 0x0ffa: /* psubd */
7868 case 0x0ffb: /* psubq */
7869 case 0x0ffc: /* paddb */
7870 case 0x0ffd: /* paddw */
7871 case 0x0ffe: /* paddd */
7872 if (i386_record_modrm (&ir))
7873 return -1;
7874 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7875 goto no_support;
7876 record_full_arch_list_add_reg (ir.regcache,
7877 I387_MM0_REGNUM (tdep) + ir.reg);
7878 break;
7879
7880 case 0x0f71: /* psllw */
7881 case 0x0f72: /* pslld */
7882 case 0x0f73: /* psllq */
7883 if (i386_record_modrm (&ir))
7884 return -1;
7885 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7886 goto no_support;
7887 record_full_arch_list_add_reg (ir.regcache,
7888 I387_MM0_REGNUM (tdep) + ir.rm);
7889 break;
7890
7891 case 0x660f71: /* psllw */
7892 case 0x660f72: /* pslld */
7893 case 0x660f73: /* psllq */
7894 if (i386_record_modrm (&ir))
7895 return -1;
7896 ir.rm |= ir.rex_b;
7897 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7898 goto no_support;
7899 record_full_arch_list_add_reg (ir.regcache,
7900 I387_XMM0_REGNUM (tdep) + ir.rm);
7901 break;
7902
7903 case 0x0f7e: /* movd */
7904 case 0x660f7e: /* movd */
7905 if (i386_record_modrm (&ir))
7906 return -1;
7907 if (ir.mod == 3)
7908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7909 else
7910 {
7911 if (ir.dflag == 2)
7912 ir.ot = OT_QUAD;
7913 else
7914 ir.ot = OT_LONG;
7915 if (i386_record_lea_modrm (&ir))
7916 return -1;
7917 }
7918 break;
7919
7920 case 0x0f7f: /* movq */
7921 if (i386_record_modrm (&ir))
7922 return -1;
7923 if (ir.mod == 3)
7924 {
7925 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7926 goto no_support;
7927 record_full_arch_list_add_reg (ir.regcache,
7928 I387_MM0_REGNUM (tdep) + ir.rm);
7929 }
7930 else
7931 {
7932 ir.ot = OT_QUAD;
7933 if (i386_record_lea_modrm (&ir))
7934 return -1;
7935 }
7936 break;
7937
7938 case 0xf30fb8: /* popcnt */
7939 if (i386_record_modrm (&ir))
7940 return -1;
7941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7943 break;
7944
7945 case 0x660fd6: /* movq */
7946 if (i386_record_modrm (&ir))
7947 return -1;
7948 if (ir.mod == 3)
7949 {
7950 ir.rm |= ir.rex_b;
7951 if (!i386_xmm_regnum_p (gdbarch,
7952 I387_XMM0_REGNUM (tdep) + ir.rm))
7953 goto no_support;
7954 record_full_arch_list_add_reg (ir.regcache,
7955 I387_XMM0_REGNUM (tdep) + ir.rm);
7956 }
7957 else
7958 {
7959 ir.ot = OT_QUAD;
7960 if (i386_record_lea_modrm (&ir))
7961 return -1;
7962 }
7963 break;
7964
7965 case 0x660f3817: /* ptest */
7966 case 0x0f2e: /* ucomiss */
7967 case 0x660f2e: /* ucomisd */
7968 case 0x0f2f: /* comiss */
7969 case 0x660f2f: /* comisd */
7970 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7971 break;
7972
7973 case 0x0ff7: /* maskmovq */
7974 regcache_raw_read_unsigned (ir.regcache,
7975 ir.regmap[X86_RECORD_REDI_REGNUM],
7976 &addr);
7977 if (record_full_arch_list_add_mem (addr, 64))
7978 return -1;
7979 break;
7980
7981 case 0x660ff7: /* maskmovdqu */
7982 regcache_raw_read_unsigned (ir.regcache,
7983 ir.regmap[X86_RECORD_REDI_REGNUM],
7984 &addr);
7985 if (record_full_arch_list_add_mem (addr, 128))
7986 return -1;
7987 break;
7988
7989 default:
7990 goto no_support;
7991 break;
7992 }
7993 break;
7994
7995 default:
7996 goto no_support;
7997 break;
7998 }
7999
8000 /* In the future, maybe still need to deal with need_dasm. */
8001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8002 if (record_full_arch_list_add_end ())
8003 return -1;
8004
8005 return 0;
8006
8007 no_support:
8008 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8009 "at address %s.\n"),
8010 (unsigned int) (opcode),
8011 paddress (gdbarch, ir.orig_addr));
8012 return -1;
8013 }
8014
8015 static const int i386_record_regmap[] =
8016 {
8017 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8018 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8019 0, 0, 0, 0, 0, 0, 0, 0,
8020 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8021 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8022 };
8023
8024 /* Check that the given address appears suitable for a fast
8025 tracepoint, which on x86-64 means that we need an instruction of at
8026 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8027 jump and not have to worry about program jumps to an address in the
8028 middle of the tracepoint jump. On x86, it may be possible to use
8029 4-byte jumps with a 2-byte offset to a trampoline located in the
8030 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8031 of instruction to replace, and 0 if not, plus an explanatory
8032 string. */
8033
8034 static int
8035 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8036 CORE_ADDR addr, int *isize, char **msg)
8037 {
8038 int len, jumplen;
8039 static struct ui_file *gdb_null = NULL;
8040
8041 /* Ask the target for the minimum instruction length supported. */
8042 jumplen = target_get_min_fast_tracepoint_insn_len ();
8043
8044 if (jumplen < 0)
8045 {
8046 /* If the target does not support the get_min_fast_tracepoint_insn_len
8047 operation, assume that fast tracepoints will always be implemented
8048 using 4-byte relative jumps on both x86 and x86-64. */
8049 jumplen = 5;
8050 }
8051 else if (jumplen == 0)
8052 {
8053 /* If the target does support get_min_fast_tracepoint_insn_len but
8054 returns zero, then the IPA has not loaded yet. In this case,
8055 we optimistically assume that truncated 2-byte relative jumps
8056 will be available on x86, and compensate later if this assumption
8057 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8058 jumps will always be used. */
8059 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8060 }
8061
8062 /* Dummy file descriptor for the disassembler. */
8063 if (!gdb_null)
8064 gdb_null = ui_file_new ();
8065
8066 /* Check for fit. */
8067 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8068 if (isize)
8069 *isize = len;
8070
8071 if (len < jumplen)
8072 {
8073 /* Return a bit of target-specific detail to add to the caller's
8074 generic failure message. */
8075 if (msg)
8076 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8077 "need at least %d bytes for the jump"),
8078 len, jumplen);
8079 return 0;
8080 }
8081 else
8082 {
8083 if (msg)
8084 *msg = NULL;
8085 return 1;
8086 }
8087 }
8088
8089 static int
8090 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8091 struct tdesc_arch_data *tdesc_data)
8092 {
8093 const struct target_desc *tdesc = tdep->tdesc;
8094 const struct tdesc_feature *feature_core;
8095
8096 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8097 *feature_avx512;
8098 int i, num_regs, valid_p;
8099
8100 if (! tdesc_has_registers (tdesc))
8101 return 0;
8102
8103 /* Get core registers. */
8104 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8105 if (feature_core == NULL)
8106 return 0;
8107
8108 /* Get SSE registers. */
8109 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8110
8111 /* Try AVX registers. */
8112 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8113
8114 /* Try MPX registers. */
8115 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8116
8117 /* Try AVX512 registers. */
8118 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8119
8120 valid_p = 1;
8121
8122 /* The XCR0 bits. */
8123 if (feature_avx512)
8124 {
8125 /* AVX512 register description requires AVX register description. */
8126 if (!feature_avx)
8127 return 0;
8128
8129 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8130
8131 /* It may have been set by OSABI initialization function. */
8132 if (tdep->k0_regnum < 0)
8133 {
8134 tdep->k_register_names = i386_k_names;
8135 tdep->k0_regnum = I386_K0_REGNUM;
8136 }
8137
8138 for (i = 0; i < I387_NUM_K_REGS; i++)
8139 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8140 tdep->k0_regnum + i,
8141 i386_k_names[i]);
8142
8143 if (tdep->num_zmm_regs == 0)
8144 {
8145 tdep->zmmh_register_names = i386_zmmh_names;
8146 tdep->num_zmm_regs = 8;
8147 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8148 }
8149
8150 for (i = 0; i < tdep->num_zmm_regs; i++)
8151 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8152 tdep->zmm0h_regnum + i,
8153 tdep->zmmh_register_names[i]);
8154
8155 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8156 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8157 tdep->xmm16_regnum + i,
8158 tdep->xmm_avx512_register_names[i]);
8159
8160 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8161 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8162 tdep->ymm16h_regnum + i,
8163 tdep->ymm16h_register_names[i]);
8164 }
8165 if (feature_avx)
8166 {
8167 /* AVX register description requires SSE register description. */
8168 if (!feature_sse)
8169 return 0;
8170
8171 if (!feature_avx512)
8172 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8173
8174 /* It may have been set by OSABI initialization function. */
8175 if (tdep->num_ymm_regs == 0)
8176 {
8177 tdep->ymmh_register_names = i386_ymmh_names;
8178 tdep->num_ymm_regs = 8;
8179 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8180 }
8181
8182 for (i = 0; i < tdep->num_ymm_regs; i++)
8183 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8184 tdep->ymm0h_regnum + i,
8185 tdep->ymmh_register_names[i]);
8186 }
8187 else if (feature_sse)
8188 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8189 else
8190 {
8191 tdep->xcr0 = X86_XSTATE_X87_MASK;
8192 tdep->num_xmm_regs = 0;
8193 }
8194
8195 num_regs = tdep->num_core_regs;
8196 for (i = 0; i < num_regs; i++)
8197 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8198 tdep->register_names[i]);
8199
8200 if (feature_sse)
8201 {
8202 /* Need to include %mxcsr, so add one. */
8203 num_regs += tdep->num_xmm_regs + 1;
8204 for (; i < num_regs; i++)
8205 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8206 tdep->register_names[i]);
8207 }
8208
8209 if (feature_mpx)
8210 {
8211 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8212
8213 if (tdep->bnd0r_regnum < 0)
8214 {
8215 tdep->mpx_register_names = i386_mpx_names;
8216 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8217 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8218 }
8219
8220 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8221 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8222 I387_BND0R_REGNUM (tdep) + i,
8223 tdep->mpx_register_names[i]);
8224 }
8225
8226 return valid_p;
8227 }
8228
8229 \f
8230 static struct gdbarch *
8231 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8232 {
8233 struct gdbarch_tdep *tdep;
8234 struct gdbarch *gdbarch;
8235 struct tdesc_arch_data *tdesc_data;
8236 const struct target_desc *tdesc;
8237 int mm0_regnum;
8238 int ymm0_regnum;
8239 int bnd0_regnum;
8240 int num_bnd_cooked;
8241 int k0_regnum;
8242 int zmm0_regnum;
8243
8244 /* If there is already a candidate, use it. */
8245 arches = gdbarch_list_lookup_by_info (arches, &info);
8246 if (arches != NULL)
8247 return arches->gdbarch;
8248
8249 /* Allocate space for the new architecture. */
8250 tdep = XCNEW (struct gdbarch_tdep);
8251 gdbarch = gdbarch_alloc (&info, tdep);
8252
8253 /* General-purpose registers. */
8254 tdep->gregset_reg_offset = NULL;
8255 tdep->gregset_num_regs = I386_NUM_GREGS;
8256 tdep->sizeof_gregset = 0;
8257
8258 /* Floating-point registers. */
8259 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8260 tdep->fpregset = &i386_fpregset;
8261
8262 /* The default settings include the FPU registers, the MMX registers
8263 and the SSE registers. This can be overridden for a specific ABI
8264 by adjusting the members `st0_regnum', `mm0_regnum' and
8265 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8266 will show up in the output of "info all-registers". */
8267
8268 tdep->st0_regnum = I386_ST0_REGNUM;
8269
8270 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8271 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8272
8273 tdep->jb_pc_offset = -1;
8274 tdep->struct_return = pcc_struct_return;
8275 tdep->sigtramp_start = 0;
8276 tdep->sigtramp_end = 0;
8277 tdep->sigtramp_p = i386_sigtramp_p;
8278 tdep->sigcontext_addr = NULL;
8279 tdep->sc_reg_offset = NULL;
8280 tdep->sc_pc_offset = -1;
8281 tdep->sc_sp_offset = -1;
8282
8283 tdep->xsave_xcr0_offset = -1;
8284
8285 tdep->record_regmap = i386_record_regmap;
8286
8287 set_gdbarch_long_long_align_bit (gdbarch, 32);
8288
8289 /* The format used for `long double' on almost all i386 targets is
8290 the i387 extended floating-point format. In fact, of all targets
8291 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8292 on having a `long double' that's not `long' at all. */
8293 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8294
8295 /* Although the i387 extended floating-point has only 80 significant
8296 bits, a `long double' actually takes up 96, probably to enforce
8297 alignment. */
8298 set_gdbarch_long_double_bit (gdbarch, 96);
8299
8300 /* Register numbers of various important registers. */
8301 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8302 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8303 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8304 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8305
8306 /* NOTE: kettenis/20040418: GCC does have two possible register
8307 numbering schemes on the i386: dbx and SVR4. These schemes
8308 differ in how they number %ebp, %esp, %eflags, and the
8309 floating-point registers, and are implemented by the arrays
8310 dbx_register_map[] and svr4_dbx_register_map in
8311 gcc/config/i386.c. GCC also defines a third numbering scheme in
8312 gcc/config/i386.c, which it designates as the "default" register
8313 map used in 64bit mode. This last register numbering scheme is
8314 implemented in dbx64_register_map, and is used for AMD64; see
8315 amd64-tdep.c.
8316
8317 Currently, each GCC i386 target always uses the same register
8318 numbering scheme across all its supported debugging formats
8319 i.e. SDB (COFF), stabs and DWARF 2. This is because
8320 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8321 DBX_REGISTER_NUMBER macro which is defined by each target's
8322 respective config header in a manner independent of the requested
8323 output debugging format.
8324
8325 This does not match the arrangement below, which presumes that
8326 the SDB and stabs numbering schemes differ from the DWARF and
8327 DWARF 2 ones. The reason for this arrangement is that it is
8328 likely to get the numbering scheme for the target's
8329 default/native debug format right. For targets where GCC is the
8330 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8331 targets where the native toolchain uses a different numbering
8332 scheme for a particular debug format (stabs-in-ELF on Solaris)
8333 the defaults below will have to be overridden, like
8334 i386_elf_init_abi() does. */
8335
8336 /* Use the dbx register numbering scheme for stabs and COFF. */
8337 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8338 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8339
8340 /* Use the SVR4 register numbering scheme for DWARF 2. */
8341 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8342
8343 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8344 be in use on any of the supported i386 targets. */
8345
8346 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8347
8348 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8349
8350 /* Call dummy code. */
8351 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8352 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8353 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8354 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8355
8356 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8357 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8358 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8359
8360 set_gdbarch_return_value (gdbarch, i386_return_value);
8361
8362 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8363
8364 /* Stack grows downward. */
8365 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8366
8367 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8368 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8369 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8370
8371 set_gdbarch_frame_args_skip (gdbarch, 8);
8372
8373 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8374
8375 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8376
8377 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8378
8379 /* Add the i386 register groups. */
8380 i386_add_reggroups (gdbarch);
8381 tdep->register_reggroup_p = i386_register_reggroup_p;
8382
8383 /* Helper for function argument information. */
8384 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8385
8386 /* Hook the function epilogue frame unwinder. This unwinder is
8387 appended to the list first, so that it supercedes the DWARF
8388 unwinder in function epilogues (where the DWARF unwinder
8389 currently fails). */
8390 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8391
8392 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8393 to the list before the prologue-based unwinders, so that DWARF
8394 CFI info will be used if it is available. */
8395 dwarf2_append_unwinders (gdbarch);
8396
8397 frame_base_set_default (gdbarch, &i386_frame_base);
8398
8399 /* Pseudo registers may be changed by amd64_init_abi. */
8400 set_gdbarch_pseudo_register_read_value (gdbarch,
8401 i386_pseudo_register_read_value);
8402 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8403
8404 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8405 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8406
8407 /* Override the normal target description method to make the AVX
8408 upper halves anonymous. */
8409 set_gdbarch_register_name (gdbarch, i386_register_name);
8410
8411 /* Even though the default ABI only includes general-purpose registers,
8412 floating-point registers and the SSE registers, we have to leave a
8413 gap for the upper AVX, MPX and AVX512 registers. */
8414 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8415
8416 /* Get the x86 target description from INFO. */
8417 tdesc = info.target_desc;
8418 if (! tdesc_has_registers (tdesc))
8419 tdesc = tdesc_i386;
8420 tdep->tdesc = tdesc;
8421
8422 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8423 tdep->register_names = i386_register_names;
8424
8425 /* No upper YMM registers. */
8426 tdep->ymmh_register_names = NULL;
8427 tdep->ymm0h_regnum = -1;
8428
8429 /* No upper ZMM registers. */
8430 tdep->zmmh_register_names = NULL;
8431 tdep->zmm0h_regnum = -1;
8432
8433 /* No high XMM registers. */
8434 tdep->xmm_avx512_register_names = NULL;
8435 tdep->xmm16_regnum = -1;
8436
8437 /* No upper YMM16-31 registers. */
8438 tdep->ymm16h_register_names = NULL;
8439 tdep->ymm16h_regnum = -1;
8440
8441 tdep->num_byte_regs = 8;
8442 tdep->num_word_regs = 8;
8443 tdep->num_dword_regs = 0;
8444 tdep->num_mmx_regs = 8;
8445 tdep->num_ymm_regs = 0;
8446
8447 /* No MPX registers. */
8448 tdep->bnd0r_regnum = -1;
8449 tdep->bndcfgu_regnum = -1;
8450
8451 /* No AVX512 registers. */
8452 tdep->k0_regnum = -1;
8453 tdep->num_zmm_regs = 0;
8454 tdep->num_ymm_avx512_regs = 0;
8455 tdep->num_xmm_avx512_regs = 0;
8456
8457 tdesc_data = tdesc_data_alloc ();
8458
8459 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8460
8461 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8462
8463 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8464 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8465 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8466
8467 /* Hook in ABI-specific overrides, if they have been registered. */
8468 info.tdep_info = (void *) tdesc_data;
8469 gdbarch_init_osabi (info, gdbarch);
8470
8471 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8472 {
8473 tdesc_data_cleanup (tdesc_data);
8474 xfree (tdep);
8475 gdbarch_free (gdbarch);
8476 return NULL;
8477 }
8478
8479 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8480
8481 /* Wire in pseudo registers. Number of pseudo registers may be
8482 changed. */
8483 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8484 + tdep->num_word_regs
8485 + tdep->num_dword_regs
8486 + tdep->num_mmx_regs
8487 + tdep->num_ymm_regs
8488 + num_bnd_cooked
8489 + tdep->num_ymm_avx512_regs
8490 + tdep->num_zmm_regs));
8491
8492 /* Target description may be changed. */
8493 tdesc = tdep->tdesc;
8494
8495 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8496
8497 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8498 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8499
8500 /* Make %al the first pseudo-register. */
8501 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8502 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8503
8504 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8505 if (tdep->num_dword_regs)
8506 {
8507 /* Support dword pseudo-register if it hasn't been disabled. */
8508 tdep->eax_regnum = ymm0_regnum;
8509 ymm0_regnum += tdep->num_dword_regs;
8510 }
8511 else
8512 tdep->eax_regnum = -1;
8513
8514 mm0_regnum = ymm0_regnum;
8515 if (tdep->num_ymm_regs)
8516 {
8517 /* Support YMM pseudo-register if it is available. */
8518 tdep->ymm0_regnum = ymm0_regnum;
8519 mm0_regnum += tdep->num_ymm_regs;
8520 }
8521 else
8522 tdep->ymm0_regnum = -1;
8523
8524 if (tdep->num_ymm_avx512_regs)
8525 {
8526 /* Support YMM16-31 pseudo registers if available. */
8527 tdep->ymm16_regnum = mm0_regnum;
8528 mm0_regnum += tdep->num_ymm_avx512_regs;
8529 }
8530 else
8531 tdep->ymm16_regnum = -1;
8532
8533 if (tdep->num_zmm_regs)
8534 {
8535 /* Support ZMM pseudo-register if it is available. */
8536 tdep->zmm0_regnum = mm0_regnum;
8537 mm0_regnum += tdep->num_zmm_regs;
8538 }
8539 else
8540 tdep->zmm0_regnum = -1;
8541
8542 bnd0_regnum = mm0_regnum;
8543 if (tdep->num_mmx_regs != 0)
8544 {
8545 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8546 tdep->mm0_regnum = mm0_regnum;
8547 bnd0_regnum += tdep->num_mmx_regs;
8548 }
8549 else
8550 tdep->mm0_regnum = -1;
8551
8552 if (tdep->bnd0r_regnum > 0)
8553 tdep->bnd0_regnum = bnd0_regnum;
8554 else
8555 tdep-> bnd0_regnum = -1;
8556
8557 /* Hook in the legacy prologue-based unwinders last (fallback). */
8558 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8559 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8560 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8561
8562 /* If we have a register mapping, enable the generic core file
8563 support, unless it has already been enabled. */
8564 if (tdep->gregset_reg_offset
8565 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8566 set_gdbarch_iterate_over_regset_sections
8567 (gdbarch, i386_iterate_over_regset_sections);
8568
8569 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8570 i386_skip_permanent_breakpoint);
8571
8572 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8573 i386_fast_tracepoint_valid_at);
8574
8575 return gdbarch;
8576 }
8577
8578 static enum gdb_osabi
8579 i386_coff_osabi_sniffer (bfd *abfd)
8580 {
8581 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8582 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8583 return GDB_OSABI_GO32;
8584
8585 return GDB_OSABI_UNKNOWN;
8586 }
8587 \f
8588
8589 /* Provide a prototype to silence -Wmissing-prototypes. */
8590 void _initialize_i386_tdep (void);
8591
8592 void
8593 _initialize_i386_tdep (void)
8594 {
8595 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8596
8597 /* Add the variable that controls the disassembly flavor. */
8598 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8599 &disassembly_flavor, _("\
8600 Set the disassembly flavor."), _("\
8601 Show the disassembly flavor."), _("\
8602 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8603 NULL,
8604 NULL, /* FIXME: i18n: */
8605 &setlist, &showlist);
8606
8607 /* Add the variable that controls the convention for returning
8608 structs. */
8609 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8610 &struct_convention, _("\
8611 Set the convention for returning small structs."), _("\
8612 Show the convention for returning small structs."), _("\
8613 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8614 is \"default\"."),
8615 NULL,
8616 NULL, /* FIXME: i18n: */
8617 &setlist, &showlist);
8618
8619 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8620 i386_coff_osabi_sniffer);
8621
8622 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8623 i386_svr4_init_abi);
8624 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8625 i386_go32_init_abi);
8626
8627 /* Initialize the i386-specific register groups. */
8628 i386_init_reggroups ();
8629
8630 /* Initialize the standard target descriptions. */
8631 initialize_tdesc_i386 ();
8632 initialize_tdesc_i386_mmx ();
8633 initialize_tdesc_i386_avx ();
8634 initialize_tdesc_i386_mpx ();
8635 initialize_tdesc_i386_avx512 ();
8636
8637 /* Tell remote stub that we support XML target description. */
8638 register_remote_support_xml ("i386");
8639 }
This page took 0.387431 seconds and 5 git commands to generate.