1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
67 #include <unordered_set>
71 static const char *i386_register_names
[] =
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
86 static const char *i386_zmm_names
[] =
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
92 static const char *i386_zmmh_names
[] =
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 static const char *i386_k_names
[] =
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
104 static const char *i386_ymm_names
[] =
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
110 static const char *i386_ymmh_names
[] =
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 static const char *i386_mpx_names
[] =
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 static const char* i386_pkeys_names
[] =
126 /* Register names for MPX pseudo-registers. */
128 static const char *i386_bnd_names
[] =
130 "bnd0", "bnd1", "bnd2", "bnd3"
133 /* Register names for MMX pseudo-registers. */
135 static const char *i386_mmx_names
[] =
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
141 /* Register names for byte pseudo-registers. */
143 static const char *i386_byte_names
[] =
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
149 /* Register names for word pseudo-registers. */
151 static const char *i386_word_names
[] =
153 "ax", "cx", "dx", "bx",
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
161 const int num_lower_zmm_regs
= 16;
166 i386_mmx_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
168 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
169 int mm0_regnum
= tdep
->mm0_regnum
;
174 regnum
-= mm0_regnum
;
175 return regnum
>= 0 && regnum
< tdep
->num_mmx_regs
;
181 i386_byte_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
183 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
185 regnum
-= tdep
->al_regnum
;
186 return regnum
>= 0 && regnum
< tdep
->num_byte_regs
;
192 i386_word_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
194 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
196 regnum
-= tdep
->ax_regnum
;
197 return regnum
>= 0 && regnum
< tdep
->num_word_regs
;
200 /* Dword register? */
203 i386_dword_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
205 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
206 int eax_regnum
= tdep
->eax_regnum
;
211 regnum
-= eax_regnum
;
212 return regnum
>= 0 && regnum
< tdep
->num_dword_regs
;
215 /* AVX512 register? */
218 i386_zmmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
220 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
221 int zmm0h_regnum
= tdep
->zmm0h_regnum
;
223 if (zmm0h_regnum
< 0)
226 regnum
-= zmm0h_regnum
;
227 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
231 i386_zmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
233 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
234 int zmm0_regnum
= tdep
->zmm0_regnum
;
239 regnum
-= zmm0_regnum
;
240 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
244 i386_k_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
246 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
247 int k0_regnum
= tdep
->k0_regnum
;
253 return regnum
>= 0 && regnum
< I387_NUM_K_REGS
;
257 i386_ymmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
259 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
260 int ymm0h_regnum
= tdep
->ymm0h_regnum
;
262 if (ymm0h_regnum
< 0)
265 regnum
-= ymm0h_regnum
;
266 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
272 i386_ymm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
274 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
275 int ymm0_regnum
= tdep
->ymm0_regnum
;
280 regnum
-= ymm0_regnum
;
281 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
285 i386_ymmh_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
287 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
288 int ymm16h_regnum
= tdep
->ymm16h_regnum
;
290 if (ymm16h_regnum
< 0)
293 regnum
-= ymm16h_regnum
;
294 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
298 i386_ymm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
300 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
301 int ymm16_regnum
= tdep
->ymm16_regnum
;
303 if (ymm16_regnum
< 0)
306 regnum
-= ymm16_regnum
;
307 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
313 i386_bnd_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
315 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
316 int bnd0_regnum
= tdep
->bnd0_regnum
;
321 regnum
-= bnd0_regnum
;
322 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
328 i386_xmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
330 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
331 int num_xmm_regs
= I387_NUM_XMM_REGS (tdep
);
333 if (num_xmm_regs
== 0)
336 regnum
-= I387_XMM0_REGNUM (tdep
);
337 return regnum
>= 0 && regnum
< num_xmm_regs
;
340 /* XMM_512 register? */
343 i386_xmm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
345 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
346 int num_xmm_avx512_regs
= I387_NUM_XMM_AVX512_REGS (tdep
);
348 if (num_xmm_avx512_regs
== 0)
351 regnum
-= I387_XMM16_REGNUM (tdep
);
352 return regnum
>= 0 && regnum
< num_xmm_avx512_regs
;
356 i386_mxcsr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
358 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
360 if (I387_NUM_XMM_REGS (tdep
) == 0)
363 return (regnum
== I387_MXCSR_REGNUM (tdep
));
369 i386_fp_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
371 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
373 if (I387_ST0_REGNUM (tdep
) < 0)
376 return (I387_ST0_REGNUM (tdep
) <= regnum
377 && regnum
< I387_FCTRL_REGNUM (tdep
));
381 i386_fpc_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
383 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
385 if (I387_ST0_REGNUM (tdep
) < 0)
388 return (I387_FCTRL_REGNUM (tdep
) <= regnum
389 && regnum
< I387_XMM0_REGNUM (tdep
));
392 /* BNDr (raw) register? */
395 i386_bndr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
397 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
399 if (I387_BND0R_REGNUM (tdep
) < 0)
402 regnum
-= tdep
->bnd0r_regnum
;
403 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
406 /* BND control register? */
409 i386_mpx_ctrl_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
411 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
413 if (I387_BNDCFGU_REGNUM (tdep
) < 0)
416 regnum
-= I387_BNDCFGU_REGNUM (tdep
);
417 return regnum
>= 0 && regnum
< I387_NUM_MPX_CTRL_REGS
;
423 i386_pkru_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
425 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
426 int pkru_regnum
= tdep
->pkru_regnum
;
431 regnum
-= pkru_regnum
;
432 return regnum
>= 0 && regnum
< I387_NUM_PKEYS_REGS
;
435 /* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
439 i386_register_name (struct gdbarch
*gdbarch
, int regnum
)
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch
, regnum
))
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch
, regnum
))
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch
, regnum
))
453 return tdesc_register_name (gdbarch
, regnum
);
456 /* Return the name of register REGNUM. */
459 i386_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
461 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
462 if (i386_bnd_regnum_p (gdbarch
, regnum
))
463 return i386_bnd_names
[regnum
- tdep
->bnd0_regnum
];
464 if (i386_mmx_regnum_p (gdbarch
, regnum
))
465 return i386_mmx_names
[regnum
- I387_MM0_REGNUM (tdep
)];
466 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
467 return i386_ymm_names
[regnum
- tdep
->ymm0_regnum
];
468 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
469 return i386_zmm_names
[regnum
- tdep
->zmm0_regnum
];
470 else if (i386_byte_regnum_p (gdbarch
, regnum
))
471 return i386_byte_names
[regnum
- tdep
->al_regnum
];
472 else if (i386_word_regnum_p (gdbarch
, regnum
))
473 return i386_word_names
[regnum
- tdep
->ax_regnum
];
475 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
478 /* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
482 i386_dbx_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
484 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
489 if (reg
>= 0 && reg
<= 7)
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
499 else if (reg
>= 12 && reg
<= 19)
501 /* Floating-point registers. */
502 return reg
- 12 + I387_ST0_REGNUM (tdep
);
504 else if (reg
>= 21 && reg
<= 28)
507 int ymm0_regnum
= tdep
->ymm0_regnum
;
510 && i386_xmm_regnum_p (gdbarch
, reg
))
511 return reg
- 21 + ymm0_regnum
;
513 return reg
- 21 + I387_XMM0_REGNUM (tdep
);
515 else if (reg
>= 29 && reg
<= 36)
518 return reg
- 29 + I387_MM0_REGNUM (tdep
);
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch
);
525 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 i386_svr4_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
531 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg
>= 0 && reg
<= 9)
540 /* General-purpose registers. */
543 else if (reg
>= 11 && reg
<= 18)
545 /* Floating-point registers. */
546 return reg
- 11 + I387_ST0_REGNUM (tdep
);
548 else if (reg
>= 21 && reg
<= 36)
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch
, reg
);
556 case 37: return I387_FCTRL_REGNUM (tdep
);
557 case 38: return I387_FSTAT_REGNUM (tdep
);
558 case 39: return I387_MXCSR_REGNUM (tdep
);
559 case 40: return I386_ES_REGNUM
;
560 case 41: return I386_CS_REGNUM
;
561 case 42: return I386_SS_REGNUM
;
562 case 43: return I386_DS_REGNUM
;
563 case 44: return I386_FS_REGNUM
;
564 case 45: return I386_GS_REGNUM
;
570 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
574 i386_svr4_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
576 int regnum
= i386_svr4_dwarf_reg_to_regnum (gdbarch
, reg
);
579 return gdbarch_num_cooked_regs (gdbarch
);
585 /* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587 static const char att_flavor
[] = "att";
588 static const char intel_flavor
[] = "intel";
589 static const char *const valid_flavors
[] =
595 static const char *disassembly_flavor
= att_flavor
;
598 /* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
607 This function is 64-bit safe. */
609 constexpr gdb_byte i386_break_insn
[] = { 0xcc }; /* int 3 */
611 typedef BP_MANIPULATION (i386_break_insn
) i386_breakpoint
;
614 /* Displaced instruction handling. */
616 /* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
623 i386_skip_prefixes (gdb_byte
*insn
, size_t max_len
)
625 gdb_byte
*end
= insn
+ max_len
;
631 case DATA_PREFIX_OPCODE
:
632 case ADDR_PREFIX_OPCODE
:
633 case CS_PREFIX_OPCODE
:
634 case DS_PREFIX_OPCODE
:
635 case ES_PREFIX_OPCODE
:
636 case FS_PREFIX_OPCODE
:
637 case GS_PREFIX_OPCODE
:
638 case SS_PREFIX_OPCODE
:
639 case LOCK_PREFIX_OPCODE
:
640 case REPE_PREFIX_OPCODE
:
641 case REPNE_PREFIX_OPCODE
:
653 i386_absolute_jmp_p (const gdb_byte
*insn
)
655 /* jmp far (absolute address in operand). */
661 /* jump near, absolute indirect (/4). */
662 if ((insn
[1] & 0x38) == 0x20)
665 /* jump far, absolute indirect (/5). */
666 if ((insn
[1] & 0x38) == 0x28)
673 /* Return non-zero if INSN is a jump, zero otherwise. */
676 i386_jmp_p (const gdb_byte
*insn
)
678 /* jump short, relative. */
682 /* jump near, relative. */
686 return i386_absolute_jmp_p (insn
);
690 i386_absolute_call_p (const gdb_byte
*insn
)
692 /* call far, absolute. */
698 /* Call near, absolute indirect (/2). */
699 if ((insn
[1] & 0x38) == 0x10)
702 /* Call far, absolute indirect (/3). */
703 if ((insn
[1] & 0x38) == 0x18)
711 i386_ret_p (const gdb_byte
*insn
)
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
728 i386_call_p (const gdb_byte
*insn
)
730 if (i386_absolute_call_p (insn
))
733 /* call near, relative. */
740 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
744 i386_syscall_p (const gdb_byte
*insn
, int *lengthp
)
746 /* Is it 'int $0x80'? */
747 if ((insn
[0] == 0xcd && insn
[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn
[0] == 0x0f && insn
[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn
[0] == 0x0f && insn
[1] == 0x05))
760 /* The gdbarch insn_is_call method. */
763 i386_insn_is_call (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
765 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
767 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
768 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
770 return i386_call_p (insn
);
773 /* The gdbarch insn_is_ret method. */
776 i386_insn_is_ret (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
778 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
780 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
781 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
783 return i386_ret_p (insn
);
786 /* The gdbarch insn_is_jump method. */
789 i386_insn_is_jump (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
791 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
793 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
794 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
796 return i386_jmp_p (insn
);
799 /* Some kernels may run one past a syscall insn, so we have to cope. */
801 std::unique_ptr
<displaced_step_closure
>
802 i386_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
803 CORE_ADDR from
, CORE_ADDR to
,
804 struct regcache
*regs
)
806 size_t len
= gdbarch_max_insn_length (gdbarch
);
807 std::unique_ptr
<i386_displaced_step_closure
> closure
808 (new i386_displaced_step_closure (len
));
809 gdb_byte
*buf
= closure
->buf
.data ();
811 read_memory (from
, buf
, len
);
813 /* GDB may get control back after the insn after the syscall.
814 Presumably this is a kernel bug.
815 If this is a syscall, make sure there's a nop afterwards. */
820 insn
= i386_skip_prefixes (buf
, len
);
821 if (insn
!= NULL
&& i386_syscall_p (insn
, &syscall_length
))
822 insn
[syscall_length
] = NOP_OPCODE
;
825 write_memory (to
, buf
, len
);
829 fprintf_unfiltered (gdb_stdlog
, "displaced: copy %s->%s: ",
830 paddress (gdbarch
, from
), paddress (gdbarch
, to
));
831 displaced_step_dump_bytes (gdb_stdlog
, buf
, len
);
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
841 i386_displaced_step_fixup (struct gdbarch
*gdbarch
,
842 struct displaced_step_closure
*closure_
,
843 CORE_ADDR from
, CORE_ADDR to
,
844 struct regcache
*regs
)
846 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
852 ULONGEST insn_offset
= to
- from
;
854 i386_displaced_step_closure
*closure
855 = (i386_displaced_step_closure
*) closure_
;
856 gdb_byte
*insn
= closure
->buf
.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte
*insn_start
= insn
;
861 fprintf_unfiltered (gdb_stdlog
,
862 "displaced: fixup (%s, %s), "
863 "insn = 0x%02x 0x%02x ...\n",
864 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
867 /* The list of issues to contend with here is taken from
868 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
869 Yay for Free Software! */
871 /* Relocate the %eip, if necessary. */
873 /* The instruction recognizers we use assume any leading prefixes
874 have been skipped. */
876 /* This is the size of the buffer in closure. */
877 size_t max_insn_len
= gdbarch_max_insn_length (gdbarch
);
878 gdb_byte
*opcode
= i386_skip_prefixes (insn
, max_insn_len
);
879 /* If there are too many prefixes, just ignore the insn.
880 It will fault when run. */
885 /* Except in the case of absolute or indirect jump or call
886 instructions, or a return instruction, the new eip is relative to
887 the displaced instruction; make it relative. Well, signal
888 handler returns don't need relocation either, but we use the
889 value of %eip to recognize those; see below. */
890 if (! i386_absolute_jmp_p (insn
)
891 && ! i386_absolute_call_p (insn
)
892 && ! i386_ret_p (insn
))
897 regcache_cooked_read_unsigned (regs
, I386_EIP_REGNUM
, &orig_eip
);
899 /* A signal trampoline system call changes the %eip, resuming
900 execution of the main program after the signal handler has
901 returned. That makes them like 'return' instructions; we
902 shouldn't relocate %eip.
904 But most system calls don't, and we do need to relocate %eip.
906 Our heuristic for distinguishing these cases: if stepping
907 over the system call instruction left control directly after
908 the instruction, the we relocate --- control almost certainly
909 doesn't belong in the displaced copy. Otherwise, we assume
910 the instruction has put control where it belongs, and leave
911 it unrelocated. Goodness help us if there are PC-relative
913 if (i386_syscall_p (insn
, &insn_len
)
914 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
915 /* GDB can get control back after the insn after the syscall.
916 Presumably this is a kernel bug.
917 i386_displaced_step_copy_insn ensures its a nop,
918 we add one to the length for it. */
919 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
+ 1)
922 fprintf_unfiltered (gdb_stdlog
,
923 "displaced: syscall changed %%eip; "
928 ULONGEST eip
= (orig_eip
- insn_offset
) & 0xffffffffUL
;
930 /* If we just stepped over a breakpoint insn, we don't backup
931 the pc on purpose; this is to match behaviour without
934 regcache_cooked_write_unsigned (regs
, I386_EIP_REGNUM
, eip
);
937 fprintf_unfiltered (gdb_stdlog
,
939 "relocated %%eip from %s to %s\n",
940 paddress (gdbarch
, orig_eip
),
941 paddress (gdbarch
, eip
));
945 /* If the instruction was PUSHFL, then the TF bit will be set in the
946 pushed value, and should be cleared. We'll leave this for later,
947 since GDB already messes up the TF flag when stepping over a
950 /* If the instruction was a call, the return address now atop the
951 stack is the address following the copied instruction. We need
952 to make it the address following the original instruction. */
953 if (i386_call_p (insn
))
957 const ULONGEST retaddr_len
= 4;
959 regcache_cooked_read_unsigned (regs
, I386_ESP_REGNUM
, &esp
);
960 retaddr
= read_memory_unsigned_integer (esp
, retaddr_len
, byte_order
);
961 retaddr
= (retaddr
- insn_offset
) & 0xffffffffUL
;
962 write_memory_unsigned_integer (esp
, retaddr_len
, byte_order
, retaddr
);
965 fprintf_unfiltered (gdb_stdlog
,
966 "displaced: relocated return addr at %s to %s\n",
967 paddress (gdbarch
, esp
),
968 paddress (gdbarch
, retaddr
));
973 append_insns (CORE_ADDR
*to
, ULONGEST len
, const gdb_byte
*buf
)
975 target_write_memory (*to
, buf
, len
);
980 i386_relocate_instruction (struct gdbarch
*gdbarch
,
981 CORE_ADDR
*to
, CORE_ADDR oldloc
)
983 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
984 gdb_byte buf
[I386_MAX_INSN_LEN
];
985 int offset
= 0, rel32
, newrel
;
987 gdb_byte
*insn
= buf
;
989 read_memory (oldloc
, buf
, I386_MAX_INSN_LEN
);
991 insn_length
= gdb_buffered_insn_length (gdbarch
, insn
,
992 I386_MAX_INSN_LEN
, oldloc
);
994 /* Get past the prefixes. */
995 insn
= i386_skip_prefixes (insn
, I386_MAX_INSN_LEN
);
997 /* Adjust calls with 32-bit relative addresses as push/jump, with
998 the address pushed being the location where the original call in
999 the user program would return to. */
1000 if (insn
[0] == 0xe8)
1002 gdb_byte push_buf
[16];
1003 unsigned int ret_addr
;
1005 /* Where "ret" in the original code will return to. */
1006 ret_addr
= oldloc
+ insn_length
;
1007 push_buf
[0] = 0x68; /* pushq $... */
1008 store_unsigned_integer (&push_buf
[1], 4, byte_order
, ret_addr
);
1009 /* Push the push. */
1010 append_insns (to
, 5, push_buf
);
1012 /* Convert the relative call to a relative jump. */
1015 /* Adjust the destination offset. */
1016 rel32
= extract_signed_integer (insn
+ 1, 4, byte_order
);
1017 newrel
= (oldloc
- *to
) + rel32
;
1018 store_signed_integer (insn
+ 1, 4, byte_order
, newrel
);
1020 if (debug_displaced
)
1021 fprintf_unfiltered (gdb_stdlog
,
1022 "Adjusted insn rel32=%s at %s to"
1023 " rel32=%s at %s\n",
1024 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1025 hex_string (newrel
), paddress (gdbarch
, *to
));
1027 /* Write the adjusted jump into its displaced location. */
1028 append_insns (to
, 5, insn
);
1032 /* Adjust jumps with 32-bit relative addresses. Calls are already
1034 if (insn
[0] == 0xe9)
1036 /* Adjust conditional jumps. */
1037 else if (insn
[0] == 0x0f && (insn
[1] & 0xf0) == 0x80)
1042 rel32
= extract_signed_integer (insn
+ offset
, 4, byte_order
);
1043 newrel
= (oldloc
- *to
) + rel32
;
1044 store_signed_integer (insn
+ offset
, 4, byte_order
, newrel
);
1045 if (debug_displaced
)
1046 fprintf_unfiltered (gdb_stdlog
,
1047 "Adjusted insn rel32=%s at %s to"
1048 " rel32=%s at %s\n",
1049 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1050 hex_string (newrel
), paddress (gdbarch
, *to
));
1053 /* Write the adjusted instructions into their displaced
1055 append_insns (to
, insn_length
, buf
);
1059 #ifdef I386_REGNO_TO_SYMMETRY
1060 #error "The Sequent Symmetry is no longer supported."
1063 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1064 and %esp "belong" to the calling function. Therefore these
1065 registers should be saved if they're going to be modified. */
1067 /* The maximum number of saved registers. This should include all
1068 registers mentioned above, and %eip. */
1069 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1071 struct i386_frame_cache
1079 /* Saved registers. */
1080 CORE_ADDR saved_regs
[I386_NUM_SAVED_REGS
];
1085 /* Stack space reserved for local variables. */
1089 /* Allocate and initialize a frame cache. */
1091 static struct i386_frame_cache
*
1092 i386_alloc_frame_cache (void)
1094 struct i386_frame_cache
*cache
;
1097 cache
= FRAME_OBSTACK_ZALLOC (struct i386_frame_cache
);
1102 cache
->sp_offset
= -4;
1105 /* Saved registers. We initialize these to -1 since zero is a valid
1106 offset (that's where %ebp is supposed to be stored). */
1107 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
1108 cache
->saved_regs
[i
] = -1;
1109 cache
->saved_sp
= 0;
1110 cache
->saved_sp_reg
= -1;
1111 cache
->pc_in_eax
= 0;
1113 /* Frameless until proven otherwise. */
1119 /* If the instruction at PC is a jump, return the address of its
1120 target. Otherwise, return PC. */
1123 i386_follow_jump (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1125 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1130 if (target_read_code (pc
, &op
, 1))
1137 op
= read_code_unsigned_integer (pc
+ 1, 1, byte_order
);
1143 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 delta
= read_memory_integer (pc
+ 2, 2, byte_order
);
1148 /* Include the size of the jmp instruction (including the
1154 delta
= read_memory_integer (pc
+ 1, 4, byte_order
);
1156 /* Include the size of the jmp instruction. */
1161 /* Relative jump, disp8 (ignore data16). */
1162 delta
= read_memory_integer (pc
+ data16
+ 1, 1, byte_order
);
1164 delta
+= data16
+ 2;
1171 /* Check whether PC points at a prologue for a function returning a
1172 structure or union. If so, it updates CACHE and returns the
1173 address of the first instruction after the code sequence that
1174 removes the "hidden" argument from the stack or CURRENT_PC,
1175 whichever is smaller. Otherwise, return PC. */
1178 i386_analyze_struct_return (CORE_ADDR pc
, CORE_ADDR current_pc
,
1179 struct i386_frame_cache
*cache
)
1181 /* Functions that return a structure or union start with:
1184 xchgl %eax, (%esp) 0x87 0x04 0x24
1185 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1187 (the System V compiler puts out the second `xchg' instruction,
1188 and the assembler doesn't try to optimize it, so the 'sib' form
1189 gets generated). This sequence is used to get the address of the
1190 return buffer for a function that returns a structure. */
1191 static gdb_byte proto1
[3] = { 0x87, 0x04, 0x24 };
1192 static gdb_byte proto2
[4] = { 0x87, 0x44, 0x24, 0x00 };
1196 if (current_pc
<= pc
)
1199 if (target_read_code (pc
, &op
, 1))
1202 if (op
!= 0x58) /* popl %eax */
1205 if (target_read_code (pc
+ 1, buf
, 4))
1208 if (memcmp (buf
, proto1
, 3) != 0 && memcmp (buf
, proto2
, 4) != 0)
1211 if (current_pc
== pc
)
1213 cache
->sp_offset
+= 4;
1217 if (current_pc
== pc
+ 1)
1219 cache
->pc_in_eax
= 1;
1223 if (buf
[1] == proto1
[1])
1230 i386_skip_probe (CORE_ADDR pc
)
1232 /* A function may start with
1246 if (target_read_code (pc
, &op
, 1))
1249 if (op
== 0x68 || op
== 0x6a)
1253 /* Skip past the `pushl' instruction; it has either a one-byte or a
1254 four-byte operand, depending on the opcode. */
1260 /* Read the following 8 bytes, which should be `call _probe' (6
1261 bytes) followed by `addl $4,%esp' (2 bytes). */
1262 read_memory (pc
+ delta
, buf
, sizeof (buf
));
1263 if (buf
[0] == 0xe8 && buf
[6] == 0xc4 && buf
[7] == 0x4)
1264 pc
+= delta
+ sizeof (buf
);
1270 /* GCC 4.1 and later, can put code in the prologue to realign the
1271 stack pointer. Check whether PC points to such code, and update
1272 CACHE accordingly. Return the first instruction after the code
1273 sequence or CURRENT_PC, whichever is smaller. If we don't
1274 recognize the code, return PC. */
1277 i386_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
1278 struct i386_frame_cache
*cache
)
1280 /* There are 2 code sequences to re-align stack before the frame
1283 1. Use a caller-saved saved register:
1289 2. Use a callee-saved saved register:
1296 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1298 0x83 0xe4 0xf0 andl $-16, %esp
1299 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1304 int offset
, offset_and
;
1305 static int regnums
[8] = {
1306 I386_EAX_REGNUM
, /* %eax */
1307 I386_ECX_REGNUM
, /* %ecx */
1308 I386_EDX_REGNUM
, /* %edx */
1309 I386_EBX_REGNUM
, /* %ebx */
1310 I386_ESP_REGNUM
, /* %esp */
1311 I386_EBP_REGNUM
, /* %ebp */
1312 I386_ESI_REGNUM
, /* %esi */
1313 I386_EDI_REGNUM
/* %edi */
1316 if (target_read_code (pc
, buf
, sizeof buf
))
1319 /* Check caller-saved saved register. The first instruction has
1320 to be "leal 4(%esp), %reg". */
1321 if (buf
[0] == 0x8d && buf
[2] == 0x24 && buf
[3] == 0x4)
1323 /* MOD must be binary 10 and R/M must be binary 100. */
1324 if ((buf
[1] & 0xc7) != 0x44)
1327 /* REG has register number. */
1328 reg
= (buf
[1] >> 3) & 7;
1333 /* Check callee-saved saved register. The first instruction
1334 has to be "pushl %reg". */
1335 if ((buf
[0] & 0xf8) != 0x50)
1341 /* The next instruction has to be "leal 8(%esp), %reg". */
1342 if (buf
[1] != 0x8d || buf
[3] != 0x24 || buf
[4] != 0x8)
1345 /* MOD must be binary 10 and R/M must be binary 100. */
1346 if ((buf
[2] & 0xc7) != 0x44)
1349 /* REG has register number. Registers in pushl and leal have to
1351 if (reg
!= ((buf
[2] >> 3) & 7))
1357 /* Rigister can't be %esp nor %ebp. */
1358 if (reg
== 4 || reg
== 5)
1361 /* The next instruction has to be "andl $-XXX, %esp". */
1362 if (buf
[offset
+ 1] != 0xe4
1363 || (buf
[offset
] != 0x81 && buf
[offset
] != 0x83))
1366 offset_and
= offset
;
1367 offset
+= buf
[offset
] == 0x81 ? 6 : 3;
1369 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1370 0xfc. REG must be binary 110 and MOD must be binary 01. */
1371 if (buf
[offset
] != 0xff
1372 || buf
[offset
+ 2] != 0xfc
1373 || (buf
[offset
+ 1] & 0xf8) != 0x70)
1376 /* R/M has register. Registers in leal and pushl have to be the
1378 if (reg
!= (buf
[offset
+ 1] & 7))
1381 if (current_pc
> pc
+ offset_and
)
1382 cache
->saved_sp_reg
= regnums
[reg
];
1384 return std::min (pc
+ offset
+ 3, current_pc
);
1387 /* Maximum instruction length we need to handle. */
1388 #define I386_MAX_MATCHED_INSN_LEN 6
1390 /* Instruction description. */
1394 gdb_byte insn
[I386_MAX_MATCHED_INSN_LEN
];
1395 gdb_byte mask
[I386_MAX_MATCHED_INSN_LEN
];
1398 /* Return whether instruction at PC matches PATTERN. */
1401 i386_match_pattern (CORE_ADDR pc
, struct i386_insn pattern
)
1405 if (target_read_code (pc
, &op
, 1))
1408 if ((op
& pattern
.mask
[0]) == pattern
.insn
[0])
1410 gdb_byte buf
[I386_MAX_MATCHED_INSN_LEN
- 1];
1411 int insn_matched
= 1;
1414 gdb_assert (pattern
.len
> 1);
1415 gdb_assert (pattern
.len
<= I386_MAX_MATCHED_INSN_LEN
);
1417 if (target_read_code (pc
+ 1, buf
, pattern
.len
- 1))
1420 for (i
= 1; i
< pattern
.len
; i
++)
1422 if ((buf
[i
- 1] & pattern
.mask
[i
]) != pattern
.insn
[i
])
1425 return insn_matched
;
1430 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1431 the first instruction description that matches. Otherwise, return
1434 static struct i386_insn
*
1435 i386_match_insn (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1437 struct i386_insn
*pattern
;
1439 for (pattern
= insn_patterns
; pattern
->len
> 0; pattern
++)
1441 if (i386_match_pattern (pc
, *pattern
))
1448 /* Return whether PC points inside a sequence of instructions that
1449 matches INSN_PATTERNS. */
1452 i386_match_insn_block (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1454 CORE_ADDR current_pc
;
1456 struct i386_insn
*insn
;
1458 insn
= i386_match_insn (pc
, insn_patterns
);
1463 ix
= insn
- insn_patterns
;
1464 for (i
= ix
- 1; i
>= 0; i
--)
1466 current_pc
-= insn_patterns
[i
].len
;
1468 if (!i386_match_pattern (current_pc
, insn_patterns
[i
]))
1472 current_pc
= pc
+ insn
->len
;
1473 for (insn
= insn_patterns
+ ix
+ 1; insn
->len
> 0; insn
++)
1475 if (!i386_match_pattern (current_pc
, *insn
))
1478 current_pc
+= insn
->len
;
1484 /* Some special instructions that might be migrated by GCC into the
1485 part of the prologue that sets up the new stack frame. Because the
1486 stack frame hasn't been setup yet, no registers have been saved
1487 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 struct i386_insn i386_frame_setup_skip_insns
[] =
1492 /* Check for `movb imm8, r' and `movl imm32, r'.
1494 ??? Should we handle 16-bit operand-sizes here? */
1496 /* `movb imm8, %al' and `movb imm8, %ah' */
1497 /* `movb imm8, %cl' and `movb imm8, %ch' */
1498 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1499 /* `movb imm8, %dl' and `movb imm8, %dh' */
1500 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1501 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1502 { 5, { 0xb8 }, { 0xfe } },
1503 /* `movl imm32, %edx' */
1504 { 5, { 0xba }, { 0xff } },
1506 /* Check for `mov imm32, r32'. Note that there is an alternative
1507 encoding for `mov m32, %eax'.
1509 ??? Should we handle SIB addressing here?
1510 ??? Should we handle 16-bit operand-sizes here? */
1512 /* `movl m32, %eax' */
1513 { 5, { 0xa1 }, { 0xff } },
1514 /* `movl m32, %eax' and `mov; m32, %ecx' */
1515 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1516 /* `movl m32, %edx' */
1517 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1519 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1520 Because of the symmetry, there are actually two ways to encode
1521 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1522 opcode bytes 0x31 and 0x33 for `xorl'. */
1524 /* `subl %eax, %eax' */
1525 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1526 /* `subl %ecx, %ecx' */
1527 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1528 /* `subl %edx, %edx' */
1529 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1530 /* `xorl %eax, %eax' */
1531 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1532 /* `xorl %ecx, %ecx' */
1533 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1534 /* `xorl %edx, %edx' */
1535 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1540 /* Check whether PC points to a no-op instruction. */
1542 i386_skip_noop (CORE_ADDR pc
)
1547 if (target_read_code (pc
, &op
, 1))
1553 /* Ignore `nop' instruction. */
1557 if (target_read_code (pc
, &op
, 1))
1561 /* Ignore no-op instruction `mov %edi, %edi'.
1562 Microsoft system dlls often start with
1563 a `mov %edi,%edi' instruction.
1564 The 5 bytes before the function start are
1565 filled with `nop' instructions.
1566 This pattern can be used for hot-patching:
1567 The `mov %edi, %edi' instruction can be replaced by a
1568 near jump to the location of the 5 `nop' instructions
1569 which can be replaced by a 32-bit jump to anywhere
1570 in the 32-bit address space. */
1572 else if (op
== 0x8b)
1574 if (target_read_code (pc
+ 1, &op
, 1))
1580 if (target_read_code (pc
, &op
, 1))
1590 /* Check whether PC points at a code that sets up a new stack frame.
1591 If so, it updates CACHE and returns the address of the first
1592 instruction after the sequence that sets up the frame or LIMIT,
1593 whichever is smaller. If we don't recognize the code, return PC. */
1596 i386_analyze_frame_setup (struct gdbarch
*gdbarch
,
1597 CORE_ADDR pc
, CORE_ADDR limit
,
1598 struct i386_frame_cache
*cache
)
1600 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1601 struct i386_insn
*insn
;
1608 if (target_read_code (pc
, &op
, 1))
1611 if (op
== 0x55) /* pushl %ebp */
1613 /* Take into account that we've executed the `pushl %ebp' that
1614 starts this instruction sequence. */
1615 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
1616 cache
->sp_offset
+= 4;
1619 /* If that's all, return now. */
1623 /* Check for some special instructions that might be migrated by
1624 GCC into the prologue and skip them. At this point in the
1625 prologue, code should only touch the scratch registers %eax,
1626 %ecx and %edx, so while the number of possibilities is sheer,
1629 Make sure we only skip these instructions if we later see the
1630 `movl %esp, %ebp' that actually sets up the frame. */
1631 while (pc
+ skip
< limit
)
1633 insn
= i386_match_insn (pc
+ skip
, i386_frame_setup_skip_insns
);
1640 /* If that's all, return now. */
1641 if (limit
<= pc
+ skip
)
1644 if (target_read_code (pc
+ skip
, &op
, 1))
1647 /* The i386 prologue looks like
1653 and a different prologue can be generated for atom.
1657 lea -0x10(%esp),%esp
1659 We handle both of them here. */
1663 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1671 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1676 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1677 if (read_code_unsigned_integer (pc
+ skip
+ 1, 2, byte_order
)
1686 /* OK, we actually have a frame. We just don't know how large
1687 it is yet. Set its size to zero. We'll adjust it if
1688 necessary. We also now commit to skipping the special
1689 instructions mentioned before. */
1692 /* If that's all, return now. */
1696 /* Check for stack adjustment
1702 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1703 reg, so we don't have to worry about a data16 prefix. */
1704 if (target_read_code (pc
, &op
, 1))
1708 /* `subl' with 8-bit immediate. */
1709 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1710 /* Some instruction starting with 0x83 other than `subl'. */
1713 /* `subl' with signed 8-bit immediate (though it wouldn't
1714 make sense to be negative). */
1715 cache
->locals
= read_code_integer (pc
+ 2, 1, byte_order
);
1718 else if (op
== 0x81)
1720 /* Maybe it is `subl' with a 32-bit immediate. */
1721 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1722 /* Some instruction starting with 0x81 other than `subl'. */
1725 /* It is `subl' with a 32-bit immediate. */
1726 cache
->locals
= read_code_integer (pc
+ 2, 4, byte_order
);
1729 else if (op
== 0x8d)
1731 /* The ModR/M byte is 0x64. */
1732 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0x64)
1734 /* 'lea' with 8-bit displacement. */
1735 cache
->locals
= -1 * read_code_integer (pc
+ 3, 1, byte_order
);
1740 /* Some instruction other than `subl' nor 'lea'. */
1744 else if (op
== 0xc8) /* enter */
1746 cache
->locals
= read_code_unsigned_integer (pc
+ 1, 2, byte_order
);
1753 /* Check whether PC points at code that saves registers on the stack.
1754 If so, it updates CACHE and returns the address of the first
1755 instruction after the register saves or CURRENT_PC, whichever is
1756 smaller. Otherwise, return PC. */
1759 i386_analyze_register_saves (CORE_ADDR pc
, CORE_ADDR current_pc
,
1760 struct i386_frame_cache
*cache
)
1762 CORE_ADDR offset
= 0;
1766 if (cache
->locals
> 0)
1767 offset
-= cache
->locals
;
1768 for (i
= 0; i
< 8 && pc
< current_pc
; i
++)
1770 if (target_read_code (pc
, &op
, 1))
1772 if (op
< 0x50 || op
> 0x57)
1776 cache
->saved_regs
[op
- 0x50] = offset
;
1777 cache
->sp_offset
+= 4;
1784 /* Do a full analysis of the prologue at PC and update CACHE
1785 accordingly. Bail out early if CURRENT_PC is reached. Return the
1786 address where the analysis stopped.
1788 We handle these cases:
1790 The startup sequence can be at the start of the function, or the
1791 function can start with a branch to startup code at the end.
1793 %ebp can be set up with either the 'enter' instruction, or "pushl
1794 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1795 once used in the System V compiler).
1797 Local space is allocated just below the saved %ebp by either the
1798 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1799 16-bit unsigned argument for space to allocate, and the 'addl'
1800 instruction could have either a signed byte, or 32-bit immediate.
1802 Next, the registers used by this function are pushed. With the
1803 System V compiler they will always be in the order: %edi, %esi,
1804 %ebx (and sometimes a harmless bug causes it to also save but not
1805 restore %eax); however, the code below is willing to see the pushes
1806 in any order, and will handle up to 8 of them.
1808 If the setup sequence is at the end of the function, then the next
1809 instruction will be a branch back to the start. */
1812 i386_analyze_prologue (struct gdbarch
*gdbarch
,
1813 CORE_ADDR pc
, CORE_ADDR current_pc
,
1814 struct i386_frame_cache
*cache
)
1816 pc
= i386_skip_noop (pc
);
1817 pc
= i386_follow_jump (gdbarch
, pc
);
1818 pc
= i386_analyze_struct_return (pc
, current_pc
, cache
);
1819 pc
= i386_skip_probe (pc
);
1820 pc
= i386_analyze_stack_align (pc
, current_pc
, cache
);
1821 pc
= i386_analyze_frame_setup (gdbarch
, pc
, current_pc
, cache
);
1822 return i386_analyze_register_saves (pc
, current_pc
, cache
);
1825 /* Return PC of first real instruction. */
1828 i386_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1830 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1832 static gdb_byte pic_pat
[6] =
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1837 struct i386_frame_cache cache
;
1841 CORE_ADDR func_addr
;
1843 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch
, func_addr
);
1847 struct compunit_symtab
*cust
= find_pc_compunit_symtab (func_addr
);
1849 /* Clang always emits a line note before the prologue and another
1850 one after. We trust clang to emit usable line notes. */
1851 if (post_prologue_pc
1853 && COMPUNIT_PRODUCER (cust
) != NULL
1854 && startswith (COMPUNIT_PRODUCER (cust
), "clang ")))
1855 return std::max (start_pc
, post_prologue_pc
);
1859 pc
= i386_analyze_prologue (gdbarch
, start_pc
, 0xffffffff, &cache
);
1860 if (cache
.locals
< 0)
1863 /* Found valid frame setup. */
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
1871 movl %ebx,x(%ebp) (optional)
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
1878 for (i
= 0; i
< 6; i
++)
1880 if (target_read_code (pc
+ i
, &op
, 1))
1883 if (pic_pat
[i
] != op
)
1890 if (target_read_code (pc
+ delta
, &op
, 1))
1893 if (op
== 0x89) /* movl %ebx, x(%ebp) */
1895 op
= read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
);
1897 if (op
== 0x5d) /* One byte offset from %ebp. */
1899 else if (op
== 0x9d) /* Four byte offset from %ebp. */
1901 else /* Unexpected instruction. */
1904 if (target_read_code (pc
+ delta
, &op
, 1))
1909 if (delta
> 0 && op
== 0x81
1910 && read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
)
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
1920 if (i386_follow_jump (gdbarch
, start_pc
) != start_pc
)
1921 pc
= i386_follow_jump (gdbarch
, pc
);
1926 /* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1930 i386_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1932 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1935 if (target_read_code (pc
, &op
, 1))
1941 if (target_read_code (pc
+ 1, buf
, sizeof buf
) == 0)
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
1945 struct bound_minimal_symbol s
;
1946 CORE_ADDR call_dest
;
1948 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
1949 call_dest
= call_dest
& 0xffffffffU
;
1950 s
= lookup_minimal_symbol_by_pc (call_dest
);
1951 if (s
.minsym
!= NULL
1952 && s
.minsym
->linkage_name () != NULL
1953 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
1961 /* This function is 64-bit safe. */
1964 i386_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1968 frame_unwind_register (next_frame
, gdbarch_pc_regnum (gdbarch
), buf
);
1969 return extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
1973 /* Normal frames. */
1976 i386_frame_cache_1 (struct frame_info
*this_frame
,
1977 struct i386_frame_cache
*cache
)
1979 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1980 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1984 cache
->pc
= get_frame_func (this_frame
);
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1995 get_frame_register (this_frame
, I386_EBP_REGNUM
, buf
);
1996 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
);
1997 if (cache
->base
== 0)
2003 /* For normal frames, %eip is stored at 4(%ebp). */
2004 cache
->saved_regs
[I386_EIP_REGNUM
] = 4;
2007 i386_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
2010 if (cache
->locals
< 0)
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2020 if (cache
->saved_sp_reg
!= -1)
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame
, cache
->saved_sp_reg
, buf
);
2024 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2026 /* We're halfway aligning the stack. */
2027 cache
->base
= ((cache
->saved_sp
- 4) & 0xfffffff0) - 4;
2028 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->saved_sp
- 4;
2030 /* This will be added back below. */
2031 cache
->saved_regs
[I386_EIP_REGNUM
] -= cache
->base
;
2033 else if (cache
->pc
!= 0
2034 || target_read_code (get_frame_pc (this_frame
), buf
, 1))
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2041 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2042 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
)
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2050 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
2053 if (cache
->saved_sp_reg
!= -1)
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache
->saved_sp
== 0
2058 && deprecated_frame_register_read (this_frame
,
2059 cache
->saved_sp_reg
, buf
))
2060 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
2064 else if (cache
->saved_sp
== 0)
2065 cache
->saved_sp
= cache
->base
+ 8;
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
2070 if (cache
->saved_regs
[i
] != -1)
2071 cache
->saved_regs
[i
] += cache
->base
;
2076 static struct i386_frame_cache
*
2077 i386_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2079 struct i386_frame_cache
*cache
;
2082 return (struct i386_frame_cache
*) *this_cache
;
2084 cache
= i386_alloc_frame_cache ();
2085 *this_cache
= cache
;
2089 i386_frame_cache_1 (this_frame
, cache
);
2091 catch (const gdb_exception_error
&ex
)
2093 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2101 i386_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2102 struct frame_id
*this_id
)
2104 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2107 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2108 else if (cache
->base
== 0)
2110 /* This marks the outermost frame. */
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2119 static enum unwind_stop_reason
2120 i386_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2123 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2126 return UNWIND_UNAVAILABLE
;
2128 /* This marks the outermost frame. */
2129 if (cache
->base
== 0)
2130 return UNWIND_OUTERMOST
;
2132 return UNWIND_NO_REASON
;
2135 static struct value
*
2136 i386_frame_prev_register (struct frame_info
*this_frame
, void **this_cache
,
2139 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2141 gdb_assert (regnum
>= 0);
2143 /* The System V ABI says that:
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2162 if (regnum
== I386_EFLAGS_REGNUM
)
2166 val
= get_frame_register_unsigned (this_frame
, regnum
);
2168 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2171 if (regnum
== I386_EIP_REGNUM
&& cache
->pc_in_eax
)
2172 return frame_unwind_got_register (this_frame
, regnum
, I386_EAX_REGNUM
);
2174 if (regnum
== I386_ESP_REGNUM
2175 && (cache
->saved_sp
!= 0 || cache
->saved_sp_reg
!= -1))
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
2180 if (cache
->saved_sp
== 0)
2181 return frame_unwind_got_register (this_frame
, regnum
,
2182 cache
->saved_sp_reg
);
2184 return frame_unwind_got_constant (this_frame
, regnum
,
2188 if (regnum
< I386_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
2189 return frame_unwind_got_memory (this_frame
, regnum
,
2190 cache
->saved_regs
[regnum
]);
2192 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2195 static const struct frame_unwind i386_frame_unwind
=
2198 i386_frame_unwind_stop_reason
,
2200 i386_frame_prev_register
,
2202 default_frame_sniffer
2205 /* Normal frames, but in a function epilogue. */
2207 /* Implement the stack_frame_destroyed_p gdbarch method.
2209 The epilogue is defined here as the 'ret' instruction, which will
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2214 i386_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2217 struct compunit_symtab
*cust
;
2219 cust
= find_pc_compunit_symtab (pc
);
2220 if (cust
!= NULL
&& COMPUNIT_EPILOGUE_UNWIND_VALID (cust
))
2223 if (target_read_memory (pc
, &insn
, 1))
2224 return 0; /* Can't read memory at pc. */
2226 if (insn
!= 0xc3) /* 'ret' instruction. */
2233 i386_epilogue_frame_sniffer (const struct frame_unwind
*self
,
2234 struct frame_info
*this_frame
,
2235 void **this_prologue_cache
)
2237 if (frame_relative_level (this_frame
) == 0)
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame
),
2239 get_frame_pc (this_frame
));
2244 static struct i386_frame_cache
*
2245 i386_epilogue_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2247 struct i386_frame_cache
*cache
;
2251 return (struct i386_frame_cache
*) *this_cache
;
2253 cache
= i386_alloc_frame_cache ();
2254 *this_cache
= cache
;
2258 cache
->pc
= get_frame_func (this_frame
);
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2263 sp
= get_frame_register_unsigned (this_frame
, I386_ESP_REGNUM
);
2264 cache
->base
= sp
+ cache
->sp_offset
;
2265 cache
->saved_sp
= cache
->base
+ 8;
2266 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->base
+ 4;
2270 catch (const gdb_exception_error
&ex
)
2272 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2283 struct i386_frame_cache
*cache
=
2284 i386_epilogue_frame_cache (this_frame
, this_cache
);
2287 return UNWIND_UNAVAILABLE
;
2289 return UNWIND_NO_REASON
;
2293 i386_epilogue_frame_this_id (struct frame_info
*this_frame
,
2295 struct frame_id
*this_id
)
2297 struct i386_frame_cache
*cache
=
2298 i386_epilogue_frame_cache (this_frame
, this_cache
);
2301 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2303 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2306 static struct value
*
2307 i386_epilogue_frame_prev_register (struct frame_info
*this_frame
,
2308 void **this_cache
, int regnum
)
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame
, this_cache
);
2313 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2316 static const struct frame_unwind i386_epilogue_frame_unwind
=
2319 i386_epilogue_frame_unwind_stop_reason
,
2320 i386_epilogue_frame_this_id
,
2321 i386_epilogue_frame_prev_register
,
2323 i386_epilogue_frame_sniffer
2327 /* Stack-based trampolines. */
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334 /* Static chain passed in register. */
2336 struct i386_insn i386_tramp_chain_in_reg_insns
[] =
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2342 { 5, { 0xe9 }, { 0xff } },
2347 /* Static chain passed on stack (when regparm=3). */
2349 struct i386_insn i386_tramp_chain_on_stack_insns
[] =
2352 { 5, { 0x68 }, { 0xff } },
2355 { 5, { 0xe9 }, { 0xff } },
2360 /* Return whether PC points inside a stack trampoline. */
2363 i386_in_stack_tramp_p (CORE_ADDR pc
)
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2372 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2376 if (target_read_memory (pc
, &insn
, 1))
2379 if (!i386_match_insn_block (pc
, i386_tramp_chain_in_reg_insns
)
2380 && !i386_match_insn_block (pc
, i386_tramp_chain_on_stack_insns
))
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind
*self
,
2388 struct frame_info
*this_frame
,
2391 if (frame_relative_level (this_frame
) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame
));
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind
=
2400 i386_epilogue_frame_unwind_stop_reason
,
2401 i386_epilogue_frame_this_id
,
2402 i386_epilogue_frame_prev_register
,
2404 i386_stack_tramp_frame_sniffer
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2410 i386_gen_return_address (struct gdbarch
*gdbarch
,
2411 struct agent_expr
*ax
, struct axs_value
*value
,
2414 /* The following sequence assumes the traditional use of the base
2416 ax_reg (ax
, I386_EBP_REGNUM
);
2418 ax_simple (ax
, aop_add
);
2419 value
->type
= register_type (gdbarch
, I386_EIP_REGNUM
);
2420 value
->kind
= axs_lvalue_memory
;
2424 /* Signal trampolines. */
2426 static struct i386_frame_cache
*
2427 i386_sigtramp_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2429 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2430 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2431 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2432 struct i386_frame_cache
*cache
;
2437 return (struct i386_frame_cache
*) *this_cache
;
2439 cache
= i386_alloc_frame_cache ();
2443 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2444 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
) - 4;
2446 addr
= tdep
->sigcontext_addr (this_frame
);
2447 if (tdep
->sc_reg_offset
)
2451 gdb_assert (tdep
->sc_num_regs
<= I386_NUM_SAVED_REGS
);
2453 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
2454 if (tdep
->sc_reg_offset
[i
] != -1)
2455 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
2459 cache
->saved_regs
[I386_EIP_REGNUM
] = addr
+ tdep
->sc_pc_offset
;
2460 cache
->saved_regs
[I386_ESP_REGNUM
] = addr
+ tdep
->sc_sp_offset
;
2465 catch (const gdb_exception_error
&ex
)
2467 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2471 *this_cache
= cache
;
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2479 struct i386_frame_cache
*cache
=
2480 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2483 return UNWIND_UNAVAILABLE
;
2485 return UNWIND_NO_REASON
;
2489 i386_sigtramp_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2490 struct frame_id
*this_id
)
2492 struct i386_frame_cache
*cache
=
2493 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2496 (*this_id
) = frame_id_build_unavailable_stack (get_frame_pc (this_frame
));
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id
) = frame_id_build (cache
->base
+ 8, get_frame_pc (this_frame
));
2504 static struct value
*
2505 i386_sigtramp_frame_prev_register (struct frame_info
*this_frame
,
2506 void **this_cache
, int regnum
)
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2511 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
2516 struct frame_info
*this_frame
,
2517 void **this_prologue_cache
)
2519 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 if (tdep
->sigcontext_addr
== NULL
)
2526 if (tdep
->sigtramp_p
!= NULL
)
2528 if (tdep
->sigtramp_p (this_frame
))
2532 if (tdep
->sigtramp_start
!= 0)
2534 CORE_ADDR pc
= get_frame_pc (this_frame
);
2536 gdb_assert (tdep
->sigtramp_end
!= 0);
2537 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
2544 static const struct frame_unwind i386_sigtramp_frame_unwind
=
2547 i386_sigtramp_frame_unwind_stop_reason
,
2548 i386_sigtramp_frame_this_id
,
2549 i386_sigtramp_frame_prev_register
,
2551 i386_sigtramp_frame_sniffer
2556 i386_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2558 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2563 static const struct frame_base i386_frame_base
=
2566 i386_frame_base_address
,
2567 i386_frame_base_address
,
2568 i386_frame_base_address
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2576 fp
= get_frame_register_unsigned (this_frame
, I386_EBP_REGNUM
);
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp
+ 8, get_frame_pc (this_frame
));
2582 /* _Decimal128 function return values need 16-byte alignment on the
2586 i386_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
2588 return sp
& -(CORE_ADDR
)16;
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2599 i386_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
2602 CORE_ADDR sp
, jb_addr
;
2603 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2604 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2605 int jb_pc_offset
= gdbarch_tdep (gdbarch
)->jb_pc_offset
;
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset
== -1)
2612 get_frame_register (frame
, I386_ESP_REGNUM
, buf
);
2613 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2614 if (target_read_memory (sp
+ 4, buf
, 4))
2617 jb_addr
= extract_unsigned_integer (buf
, 4, byte_order
);
2618 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, 4))
2621 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2632 i386_16_byte_align_p (struct type
*type
)
2634 type
= check_typedef (type
);
2635 if ((TYPE_CODE (type
) == TYPE_CODE_DECFLOAT
2636 || (TYPE_CODE (type
) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type
)))
2637 && TYPE_LENGTH (type
) == 16)
2639 if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type
));
2641 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
2642 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
2645 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
2647 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type
, i
)))
2654 /* Implementation for set_gdbarch_push_dummy_code. */
2657 i386_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
, CORE_ADDR funaddr
,
2658 struct value
**args
, int nargs
, struct type
*value_type
,
2659 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
2660 struct regcache
*regcache
)
2662 /* Use 0xcc breakpoint - 1 byte. */
2666 /* Keep the stack aligned. */
2671 i386_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2672 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
2673 struct value
**args
, CORE_ADDR sp
,
2674 function_call_return_method return_method
,
2675 CORE_ADDR struct_addr
)
2677 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2683 /* BND registers can be in arbitrary values at the moment of the
2684 inferior call. This can cause boundary violations that are not
2685 due to a real bug or even desired by the user. The best to be done
2686 is set the BND registers to allow access to the whole memory, INIT
2687 state, before pushing the inferior call. */
2688 i387_reset_bnd_regs (gdbarch
, regcache
);
2690 /* Determine the total space required for arguments and struct
2691 return address in a first pass (allowing for 16-byte-aligned
2692 arguments), then push arguments in a second pass. */
2694 for (write_pass
= 0; write_pass
< 2; write_pass
++)
2696 int args_space_used
= 0;
2698 if (return_method
== return_method_struct
)
2702 /* Push value address. */
2703 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
2704 write_memory (sp
, buf
, 4);
2705 args_space_used
+= 4;
2711 for (i
= 0; i
< nargs
; i
++)
2713 int len
= TYPE_LENGTH (value_enclosing_type (args
[i
]));
2717 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2718 args_space_used
= align_up (args_space_used
, 16);
2720 write_memory (sp
+ args_space_used
,
2721 value_contents_all (args
[i
]), len
);
2722 /* The System V ABI says that:
2724 "An argument's size is increased, if necessary, to make it a
2725 multiple of [32-bit] words. This may require tail padding,
2726 depending on the size of the argument."
2728 This makes sure the stack stays word-aligned. */
2729 args_space_used
+= align_up (len
, 4);
2733 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2734 args_space
= align_up (args_space
, 16);
2735 args_space
+= align_up (len
, 4);
2743 /* The original System V ABI only requires word alignment,
2744 but modern incarnations need 16-byte alignment in order
2745 to support SSE. Since wasting a few bytes here isn't
2746 harmful we unconditionally enforce 16-byte alignment. */
2751 /* Store return address. */
2753 store_unsigned_integer (buf
, 4, byte_order
, bp_addr
);
2754 write_memory (sp
, buf
, 4);
2756 /* Finally, update the stack pointer... */
2757 store_unsigned_integer (buf
, 4, byte_order
, sp
);
2758 regcache
->cooked_write (I386_ESP_REGNUM
, buf
);
2760 /* ...and fake a frame pointer. */
2761 regcache
->cooked_write (I386_EBP_REGNUM
, buf
);
2763 /* MarkK wrote: This "+ 8" is all over the place:
2764 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2765 i386_dummy_id). It's there, since all frame unwinders for
2766 a given target have to agree (within a certain margin) on the
2767 definition of the stack address of a frame. Otherwise frame id
2768 comparison might not work correctly. Since DWARF2/GCC uses the
2769 stack address *before* the function call as a frame's CFA. On
2770 the i386, when %ebp is used as a frame pointer, the offset
2771 between the contents %ebp and the CFA as defined by GCC. */
2775 /* These registers are used for returning integers (and on some
2776 targets also for returning `struct' and `union' values when their
2777 size and alignment match an integer type). */
2778 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2779 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2781 /* Read, for architecture GDBARCH, a function return value of TYPE
2782 from REGCACHE, and copy that into VALBUF. */
2785 i386_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2786 struct regcache
*regcache
, gdb_byte
*valbuf
)
2788 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2789 int len
= TYPE_LENGTH (type
);
2790 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2792 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2794 if (tdep
->st0_regnum
< 0)
2796 warning (_("Cannot find floating-point return value."));
2797 memset (valbuf
, 0, len
);
2801 /* Floating-point return values can be found in %st(0). Convert
2802 its contents to the desired type. This is probably not
2803 exactly how it would happen on the target itself, but it is
2804 the best we can do. */
2805 regcache
->raw_read (I386_ST0_REGNUM
, buf
);
2806 target_float_convert (buf
, i387_ext_type (gdbarch
), valbuf
, type
);
2810 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2811 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2813 if (len
<= low_size
)
2815 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2816 memcpy (valbuf
, buf
, len
);
2818 else if (len
<= (low_size
+ high_size
))
2820 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2821 memcpy (valbuf
, buf
, low_size
);
2822 regcache
->raw_read (HIGH_RETURN_REGNUM
, buf
);
2823 memcpy (valbuf
+ low_size
, buf
, len
- low_size
);
2826 internal_error (__FILE__
, __LINE__
,
2827 _("Cannot extract return value of %d bytes long."),
2832 /* Write, for architecture GDBARCH, a function return value of TYPE
2833 from VALBUF into REGCACHE. */
2836 i386_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2837 struct regcache
*regcache
, const gdb_byte
*valbuf
)
2839 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2840 int len
= TYPE_LENGTH (type
);
2842 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2845 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2847 if (tdep
->st0_regnum
< 0)
2849 warning (_("Cannot set floating-point return value."));
2853 /* Returning floating-point values is a bit tricky. Apart from
2854 storing the return value in %st(0), we have to simulate the
2855 state of the FPU at function return point. */
2857 /* Convert the value found in VALBUF to the extended
2858 floating-point format used by the FPU. This is probably
2859 not exactly how it would happen on the target itself, but
2860 it is the best we can do. */
2861 target_float_convert (valbuf
, type
, buf
, i387_ext_type (gdbarch
));
2862 regcache
->raw_write (I386_ST0_REGNUM
, buf
);
2864 /* Set the top of the floating-point register stack to 7. The
2865 actual value doesn't really matter, but 7 is what a normal
2866 function return would end up with if the program started out
2867 with a freshly initialized FPU. */
2868 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), &fstat
);
2870 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), fstat
);
2872 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2873 the floating-point register stack to 7, the appropriate value
2874 for the tag word is 0x3fff. */
2875 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM (tdep
), 0x3fff);
2879 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2880 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2882 if (len
<= low_size
)
2883 regcache
->raw_write_part (LOW_RETURN_REGNUM
, 0, len
, valbuf
);
2884 else if (len
<= (low_size
+ high_size
))
2886 regcache
->raw_write (LOW_RETURN_REGNUM
, valbuf
);
2887 regcache
->raw_write_part (HIGH_RETURN_REGNUM
, 0, len
- low_size
,
2891 internal_error (__FILE__
, __LINE__
,
2892 _("Cannot store return value of %d bytes long."), len
);
2897 /* This is the variable that is set with "set struct-convention", and
2898 its legitimate values. */
2899 static const char default_struct_convention
[] = "default";
2900 static const char pcc_struct_convention
[] = "pcc";
2901 static const char reg_struct_convention
[] = "reg";
2902 static const char *const valid_conventions
[] =
2904 default_struct_convention
,
2905 pcc_struct_convention
,
2906 reg_struct_convention
,
2909 static const char *struct_convention
= default_struct_convention
;
2911 /* Return non-zero if TYPE, which is assumed to be a structure,
2912 a union type, or an array type, should be returned in registers
2913 for architecture GDBARCH. */
2916 i386_reg_struct_return_p (struct gdbarch
*gdbarch
, struct type
*type
)
2918 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2919 enum type_code code
= TYPE_CODE (type
);
2920 int len
= TYPE_LENGTH (type
);
2922 gdb_assert (code
== TYPE_CODE_STRUCT
2923 || code
== TYPE_CODE_UNION
2924 || code
== TYPE_CODE_ARRAY
);
2926 if (struct_convention
== pcc_struct_convention
2927 || (struct_convention
== default_struct_convention
2928 && tdep
->struct_return
== pcc_struct_return
))
2931 /* Structures consisting of a single `float', `double' or 'long
2932 double' member are returned in %st(0). */
2933 if (code
== TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type
) == 1)
2935 type
= check_typedef (TYPE_FIELD_TYPE (type
, 0));
2936 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2937 return (len
== 4 || len
== 8 || len
== 12);
2940 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
2943 /* Determine, for architecture GDBARCH, how a return value of TYPE
2944 should be returned. If it is supposed to be returned in registers,
2945 and READBUF is non-zero, read the appropriate value from REGCACHE,
2946 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2947 from WRITEBUF into REGCACHE. */
2949 static enum return_value_convention
2950 i386_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
2951 struct type
*type
, struct regcache
*regcache
,
2952 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
2954 enum type_code code
= TYPE_CODE (type
);
2956 if (((code
== TYPE_CODE_STRUCT
2957 || code
== TYPE_CODE_UNION
2958 || code
== TYPE_CODE_ARRAY
)
2959 && !i386_reg_struct_return_p (gdbarch
, type
))
2960 /* Complex double and long double uses the struct return convention. */
2961 || (code
== TYPE_CODE_COMPLEX
&& TYPE_LENGTH (type
) == 16)
2962 || (code
== TYPE_CODE_COMPLEX
&& TYPE_LENGTH (type
) == 24)
2963 /* 128-bit decimal float uses the struct return convention. */
2964 || (code
== TYPE_CODE_DECFLOAT
&& TYPE_LENGTH (type
) == 16))
2966 /* The System V ABI says that:
2968 "A function that returns a structure or union also sets %eax
2969 to the value of the original address of the caller's area
2970 before it returns. Thus when the caller receives control
2971 again, the address of the returned object resides in register
2972 %eax and can be used to access the object."
2974 So the ABI guarantees that we can always find the return
2975 value just after the function has returned. */
2977 /* Note that the ABI doesn't mention functions returning arrays,
2978 which is something possible in certain languages such as Ada.
2979 In this case, the value is returned as if it was wrapped in
2980 a record, so the convention applied to records also applies
2987 regcache_raw_read_unsigned (regcache
, I386_EAX_REGNUM
, &addr
);
2988 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
2991 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
2994 /* This special case is for structures consisting of a single
2995 `float', `double' or 'long double' member. These structures are
2996 returned in %st(0). For these structures, we call ourselves
2997 recursively, changing TYPE into the type of the first member of
2998 the structure. Since that should work for all structures that
2999 have only one member, we don't bother to check the member's type
3001 if (code
== TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type
) == 1)
3003 type
= check_typedef (TYPE_FIELD_TYPE (type
, 0));
3004 return i386_return_value (gdbarch
, function
, type
, regcache
,
3009 i386_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
3011 i386_store_return_value (gdbarch
, type
, regcache
, writebuf
);
3013 return RETURN_VALUE_REGISTER_CONVENTION
;
3018 i387_ext_type (struct gdbarch
*gdbarch
)
3020 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3022 if (!tdep
->i387_ext_type
)
3024 tdep
->i387_ext_type
= tdesc_find_type (gdbarch
, "i387_ext");
3025 gdb_assert (tdep
->i387_ext_type
!= NULL
);
3028 return tdep
->i387_ext_type
;
3031 /* Construct type for pseudo BND registers. We can't use
3032 tdesc_find_type since a complement of one value has to be used
3033 to describe the upper bound. */
3035 static struct type
*
3036 i386_bnd_type (struct gdbarch
*gdbarch
)
3038 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3041 if (!tdep
->i386_bnd_type
)
3044 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3046 /* The type we're building is described bellow: */
3051 void *ubound
; /* One complement of raw ubound field. */
3055 t
= arch_composite_type (gdbarch
,
3056 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT
);
3058 append_composite_type_field (t
, "lbound", bt
->builtin_data_ptr
);
3059 append_composite_type_field (t
, "ubound", bt
->builtin_data_ptr
);
3061 TYPE_NAME (t
) = "builtin_type_bound128";
3062 tdep
->i386_bnd_type
= t
;
3065 return tdep
->i386_bnd_type
;
3068 /* Construct vector type for pseudo ZMM registers. We can't use
3069 tdesc_find_type since ZMM isn't described in target description. */
3071 static struct type
*
3072 i386_zmm_type (struct gdbarch
*gdbarch
)
3074 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3076 if (!tdep
->i386_zmm_type
)
3078 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3080 /* The type we're building is this: */
3082 union __gdb_builtin_type_vec512i
3084 int128_t uint128
[4];
3085 int64_t v4_int64
[8];
3086 int32_t v8_int32
[16];
3087 int16_t v16_int16
[32];
3088 int8_t v32_int8
[64];
3089 double v4_double
[8];
3096 t
= arch_composite_type (gdbarch
,
3097 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION
);
3098 append_composite_type_field (t
, "v16_float",
3099 init_vector_type (bt
->builtin_float
, 16));
3100 append_composite_type_field (t
, "v8_double",
3101 init_vector_type (bt
->builtin_double
, 8));
3102 append_composite_type_field (t
, "v64_int8",
3103 init_vector_type (bt
->builtin_int8
, 64));
3104 append_composite_type_field (t
, "v32_int16",
3105 init_vector_type (bt
->builtin_int16
, 32));
3106 append_composite_type_field (t
, "v16_int32",
3107 init_vector_type (bt
->builtin_int32
, 16));
3108 append_composite_type_field (t
, "v8_int64",
3109 init_vector_type (bt
->builtin_int64
, 8));
3110 append_composite_type_field (t
, "v4_int128",
3111 init_vector_type (bt
->builtin_int128
, 4));
3113 TYPE_VECTOR (t
) = 1;
3114 TYPE_NAME (t
) = "builtin_type_vec512i";
3115 tdep
->i386_zmm_type
= t
;
3118 return tdep
->i386_zmm_type
;
3121 /* Construct vector type for pseudo YMM registers. We can't use
3122 tdesc_find_type since YMM isn't described in target description. */
3124 static struct type
*
3125 i386_ymm_type (struct gdbarch
*gdbarch
)
3127 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3129 if (!tdep
->i386_ymm_type
)
3131 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3133 /* The type we're building is this: */
3135 union __gdb_builtin_type_vec256i
3137 int128_t uint128
[2];
3138 int64_t v2_int64
[4];
3139 int32_t v4_int32
[8];
3140 int16_t v8_int16
[16];
3141 int8_t v16_int8
[32];
3142 double v2_double
[4];
3149 t
= arch_composite_type (gdbarch
,
3150 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION
);
3151 append_composite_type_field (t
, "v8_float",
3152 init_vector_type (bt
->builtin_float
, 8));
3153 append_composite_type_field (t
, "v4_double",
3154 init_vector_type (bt
->builtin_double
, 4));
3155 append_composite_type_field (t
, "v32_int8",
3156 init_vector_type (bt
->builtin_int8
, 32));
3157 append_composite_type_field (t
, "v16_int16",
3158 init_vector_type (bt
->builtin_int16
, 16));
3159 append_composite_type_field (t
, "v8_int32",
3160 init_vector_type (bt
->builtin_int32
, 8));
3161 append_composite_type_field (t
, "v4_int64",
3162 init_vector_type (bt
->builtin_int64
, 4));
3163 append_composite_type_field (t
, "v2_int128",
3164 init_vector_type (bt
->builtin_int128
, 2));
3166 TYPE_VECTOR (t
) = 1;
3167 TYPE_NAME (t
) = "builtin_type_vec256i";
3168 tdep
->i386_ymm_type
= t
;
3171 return tdep
->i386_ymm_type
;
3174 /* Construct vector type for MMX registers. */
3175 static struct type
*
3176 i386_mmx_type (struct gdbarch
*gdbarch
)
3178 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3180 if (!tdep
->i386_mmx_type
)
3182 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3184 /* The type we're building is this: */
3186 union __gdb_builtin_type_vec64i
3189 int32_t v2_int32
[2];
3190 int16_t v4_int16
[4];
3197 t
= arch_composite_type (gdbarch
,
3198 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION
);
3200 append_composite_type_field (t
, "uint64", bt
->builtin_int64
);
3201 append_composite_type_field (t
, "v2_int32",
3202 init_vector_type (bt
->builtin_int32
, 2));
3203 append_composite_type_field (t
, "v4_int16",
3204 init_vector_type (bt
->builtin_int16
, 4));
3205 append_composite_type_field (t
, "v8_int8",
3206 init_vector_type (bt
->builtin_int8
, 8));
3208 TYPE_VECTOR (t
) = 1;
3209 TYPE_NAME (t
) = "builtin_type_vec64i";
3210 tdep
->i386_mmx_type
= t
;
3213 return tdep
->i386_mmx_type
;
3216 /* Return the GDB type object for the "standard" data type of data in
3220 i386_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
3222 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3223 return i386_bnd_type (gdbarch
);
3224 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3225 return i386_mmx_type (gdbarch
);
3226 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3227 return i386_ymm_type (gdbarch
);
3228 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3229 return i386_ymm_type (gdbarch
);
3230 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3231 return i386_zmm_type (gdbarch
);
3234 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3235 if (i386_byte_regnum_p (gdbarch
, regnum
))
3236 return bt
->builtin_int8
;
3237 else if (i386_word_regnum_p (gdbarch
, regnum
))
3238 return bt
->builtin_int16
;
3239 else if (i386_dword_regnum_p (gdbarch
, regnum
))
3240 return bt
->builtin_int32
;
3241 else if (i386_k_regnum_p (gdbarch
, regnum
))
3242 return bt
->builtin_int64
;
3245 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3248 /* Map a cooked register onto a raw register or memory. For the i386,
3249 the MMX registers need to be mapped onto floating point registers. */
3252 i386_mmx_regnum_to_fp_regnum (readable_regcache
*regcache
, int regnum
)
3254 struct gdbarch_tdep
*tdep
= gdbarch_tdep (regcache
->arch ());
3259 mmxreg
= regnum
- tdep
->mm0_regnum
;
3260 regcache
->raw_read (I387_FSTAT_REGNUM (tdep
), &fstat
);
3261 tos
= (fstat
>> 11) & 0x7;
3262 fpreg
= (mmxreg
+ tos
) % 8;
3264 return (I387_ST0_REGNUM (tdep
) + fpreg
);
3267 /* A helper function for us by i386_pseudo_register_read_value and
3268 amd64_pseudo_register_read_value. It does all the work but reads
3269 the data into an already-allocated value. */
3272 i386_pseudo_register_read_into_value (struct gdbarch
*gdbarch
,
3273 readable_regcache
*regcache
,
3275 struct value
*result_value
)
3277 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3278 enum register_status status
;
3279 gdb_byte
*buf
= value_contents_raw (result_value
);
3281 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3283 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3285 /* Extract (always little endian). */
3286 status
= regcache
->raw_read (fpnum
, raw_buf
);
3287 if (status
!= REG_VALID
)
3288 mark_value_bytes_unavailable (result_value
, 0,
3289 TYPE_LENGTH (value_type (result_value
)));
3291 memcpy (buf
, raw_buf
, register_size (gdbarch
, regnum
));
3295 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3296 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3298 regnum
-= tdep
->bnd0_regnum
;
3300 /* Extract (always little endian). Read lower 128bits. */
3301 status
= regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3303 if (status
!= REG_VALID
)
3304 mark_value_bytes_unavailable (result_value
, 0, 16);
3307 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3308 LONGEST upper
, lower
;
3309 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
3311 lower
= extract_unsigned_integer (raw_buf
, 8, byte_order
);
3312 upper
= extract_unsigned_integer (raw_buf
+ 8, 8, byte_order
);
3315 memcpy (buf
, &lower
, size
);
3316 memcpy (buf
+ size
, &upper
, size
);
3319 else if (i386_k_regnum_p (gdbarch
, regnum
))
3321 regnum
-= tdep
->k0_regnum
;
3323 /* Extract (always little endian). */
3324 status
= regcache
->raw_read (tdep
->k0_regnum
+ regnum
, raw_buf
);
3325 if (status
!= REG_VALID
)
3326 mark_value_bytes_unavailable (result_value
, 0, 8);
3328 memcpy (buf
, raw_buf
, 8);
3330 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3332 regnum
-= tdep
->zmm0_regnum
;
3334 if (regnum
< num_lower_zmm_regs
)
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3339 if (status
!= REG_VALID
)
3340 mark_value_bytes_unavailable (result_value
, 0, 16);
3342 memcpy (buf
, raw_buf
, 16);
3344 /* Extract (always little endian). Read upper 128bits. */
3345 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3347 if (status
!= REG_VALID
)
3348 mark_value_bytes_unavailable (result_value
, 16, 16);
3350 memcpy (buf
+ 16, raw_buf
, 16);
3354 /* Extract (always little endian). Read lower 128bits. */
3355 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
3356 - num_lower_zmm_regs
,
3358 if (status
!= REG_VALID
)
3359 mark_value_bytes_unavailable (result_value
, 0, 16);
3361 memcpy (buf
, raw_buf
, 16);
3363 /* Extract (always little endian). Read upper 128bits. */
3364 status
= regcache
->raw_read (I387_YMM16H_REGNUM (tdep
) + regnum
3365 - num_lower_zmm_regs
,
3367 if (status
!= REG_VALID
)
3368 mark_value_bytes_unavailable (result_value
, 16, 16);
3370 memcpy (buf
+ 16, raw_buf
, 16);
3373 /* Read upper 256bits. */
3374 status
= regcache
->raw_read (tdep
->zmm0h_regnum
+ regnum
,
3376 if (status
!= REG_VALID
)
3377 mark_value_bytes_unavailable (result_value
, 32, 32);
3379 memcpy (buf
+ 32, raw_buf
, 32);
3381 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3383 regnum
-= tdep
->ymm0_regnum
;
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3388 if (status
!= REG_VALID
)
3389 mark_value_bytes_unavailable (result_value
, 0, 16);
3391 memcpy (buf
, raw_buf
, 16);
3392 /* Read upper 128bits. */
3393 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3395 if (status
!= REG_VALID
)
3396 mark_value_bytes_unavailable (result_value
, 16, 32);
3398 memcpy (buf
+ 16, raw_buf
, 16);
3400 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3402 regnum
-= tdep
->ymm16_regnum
;
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
,
3406 if (status
!= REG_VALID
)
3407 mark_value_bytes_unavailable (result_value
, 0, 16);
3409 memcpy (buf
, raw_buf
, 16);
3410 /* Read upper 128bits. */
3411 status
= regcache
->raw_read (tdep
->ymm16h_regnum
+ regnum
,
3413 if (status
!= REG_VALID
)
3414 mark_value_bytes_unavailable (result_value
, 16, 16);
3416 memcpy (buf
+ 16, raw_buf
, 16);
3418 else if (i386_word_regnum_p (gdbarch
, regnum
))
3420 int gpnum
= regnum
- tdep
->ax_regnum
;
3422 /* Extract (always little endian). */
3423 status
= regcache
->raw_read (gpnum
, raw_buf
);
3424 if (status
!= REG_VALID
)
3425 mark_value_bytes_unavailable (result_value
, 0,
3426 TYPE_LENGTH (value_type (result_value
)));
3428 memcpy (buf
, raw_buf
, 2);
3430 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3432 int gpnum
= regnum
- tdep
->al_regnum
;
3434 /* Extract (always little endian). We read both lower and
3436 status
= regcache
->raw_read (gpnum
% 4, raw_buf
);
3437 if (status
!= REG_VALID
)
3438 mark_value_bytes_unavailable (result_value
, 0,
3439 TYPE_LENGTH (value_type (result_value
)));
3440 else if (gpnum
>= 4)
3441 memcpy (buf
, raw_buf
+ 1, 1);
3443 memcpy (buf
, raw_buf
, 1);
3446 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3450 static struct value
*
3451 i386_pseudo_register_read_value (struct gdbarch
*gdbarch
,
3452 readable_regcache
*regcache
,
3455 struct value
*result
;
3457 result
= allocate_value (register_type (gdbarch
, regnum
));
3458 VALUE_LVAL (result
) = lval_register
;
3459 VALUE_REGNUM (result
) = regnum
;
3461 i386_pseudo_register_read_into_value (gdbarch
, regcache
, regnum
, result
);
3467 i386_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
3468 int regnum
, const gdb_byte
*buf
)
3470 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3472 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3474 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3477 regcache
->raw_read (fpnum
, raw_buf
);
3478 /* ... Modify ... (always little endian). */
3479 memcpy (raw_buf
, buf
, register_size (gdbarch
, regnum
));
3481 regcache
->raw_write (fpnum
, raw_buf
);
3485 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3487 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3489 ULONGEST upper
, lower
;
3490 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
3491 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3493 /* New values from input value. */
3494 regnum
-= tdep
->bnd0_regnum
;
3495 lower
= extract_unsigned_integer (buf
, size
, byte_order
);
3496 upper
= extract_unsigned_integer (buf
+ size
, size
, byte_order
);
3498 /* Fetching register buffer. */
3499 regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3504 /* Set register bits. */
3505 memcpy (raw_buf
, &lower
, 8);
3506 memcpy (raw_buf
+ 8, &upper
, 8);
3508 regcache
->raw_write (I387_BND0R_REGNUM (tdep
) + regnum
, raw_buf
);
3510 else if (i386_k_regnum_p (gdbarch
, regnum
))
3512 regnum
-= tdep
->k0_regnum
;
3514 regcache
->raw_write (tdep
->k0_regnum
+ regnum
, buf
);
3516 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3518 regnum
-= tdep
->zmm0_regnum
;
3520 if (regnum
< num_lower_zmm_regs
)
3522 /* Write lower 128bits. */
3523 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3524 /* Write upper 128bits. */
3525 regcache
->raw_write (I387_YMM0_REGNUM (tdep
) + regnum
, buf
+ 16);
3529 /* Write lower 128bits. */
3530 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
3531 - num_lower_zmm_regs
, buf
);
3532 /* Write upper 128bits. */
3533 regcache
->raw_write (I387_YMM16H_REGNUM (tdep
) + regnum
3534 - num_lower_zmm_regs
, buf
+ 16);
3536 /* Write upper 256bits. */
3537 regcache
->raw_write (tdep
->zmm0h_regnum
+ regnum
, buf
+ 32);
3539 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3541 regnum
-= tdep
->ymm0_regnum
;
3543 /* ... Write lower 128bits. */
3544 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3545 /* ... Write upper 128bits. */
3546 regcache
->raw_write (tdep
->ymm0h_regnum
+ regnum
, buf
+ 16);
3548 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3550 regnum
-= tdep
->ymm16_regnum
;
3552 /* ... Write lower 128bits. */
3553 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
, buf
);
3554 /* ... Write upper 128bits. */
3555 regcache
->raw_write (tdep
->ymm16h_regnum
+ regnum
, buf
+ 16);
3557 else if (i386_word_regnum_p (gdbarch
, regnum
))
3559 int gpnum
= regnum
- tdep
->ax_regnum
;
3562 regcache
->raw_read (gpnum
, raw_buf
);
3563 /* ... Modify ... (always little endian). */
3564 memcpy (raw_buf
, buf
, 2);
3566 regcache
->raw_write (gpnum
, raw_buf
);
3568 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3570 int gpnum
= regnum
- tdep
->al_regnum
;
3572 /* Read ... We read both lower and upper registers. */
3573 regcache
->raw_read (gpnum
% 4, raw_buf
);
3574 /* ... Modify ... (always little endian). */
3576 memcpy (raw_buf
+ 1, buf
, 1);
3578 memcpy (raw_buf
, buf
, 1);
3580 regcache
->raw_write (gpnum
% 4, raw_buf
);
3583 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3587 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3590 i386_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
3591 struct agent_expr
*ax
, int regnum
)
3593 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3595 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3597 /* MMX to FPU register mapping depends on current TOS. Let's just
3598 not care and collect everything... */
3601 ax_reg_mask (ax
, I387_FSTAT_REGNUM (tdep
));
3602 for (i
= 0; i
< 8; i
++)
3603 ax_reg_mask (ax
, I387_ST0_REGNUM (tdep
) + i
);
3606 else if (i386_bnd_regnum_p (gdbarch
, regnum
))
3608 regnum
-= tdep
->bnd0_regnum
;
3609 ax_reg_mask (ax
, I387_BND0R_REGNUM (tdep
) + regnum
);
3612 else if (i386_k_regnum_p (gdbarch
, regnum
))
3614 regnum
-= tdep
->k0_regnum
;
3615 ax_reg_mask (ax
, tdep
->k0_regnum
+ regnum
);
3618 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3620 regnum
-= tdep
->zmm0_regnum
;
3621 if (regnum
< num_lower_zmm_regs
)
3623 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3624 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3628 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
3629 - num_lower_zmm_regs
);
3630 ax_reg_mask (ax
, I387_YMM16H_REGNUM (tdep
) + regnum
3631 - num_lower_zmm_regs
);
3633 ax_reg_mask (ax
, tdep
->zmm0h_regnum
+ regnum
);
3636 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3638 regnum
-= tdep
->ymm0_regnum
;
3639 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3640 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3643 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3645 regnum
-= tdep
->ymm16_regnum
;
3646 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
);
3647 ax_reg_mask (ax
, tdep
->ymm16h_regnum
+ regnum
);
3650 else if (i386_word_regnum_p (gdbarch
, regnum
))
3652 int gpnum
= regnum
- tdep
->ax_regnum
;
3654 ax_reg_mask (ax
, gpnum
);
3657 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3659 int gpnum
= regnum
- tdep
->al_regnum
;
3661 ax_reg_mask (ax
, gpnum
% 4);
3665 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3670 /* Return the register number of the register allocated by GCC after
3671 REGNUM, or -1 if there is no such register. */
3674 i386_next_regnum (int regnum
)
3676 /* GCC allocates the registers in the order:
3678 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3680 Since storing a variable in %esp doesn't make any sense we return
3681 -1 for %ebp and for %esp itself. */
3682 static int next_regnum
[] =
3684 I386_EDX_REGNUM
, /* Slot for %eax. */
3685 I386_EBX_REGNUM
, /* Slot for %ecx. */
3686 I386_ECX_REGNUM
, /* Slot for %edx. */
3687 I386_ESI_REGNUM
, /* Slot for %ebx. */
3688 -1, -1, /* Slots for %esp and %ebp. */
3689 I386_EDI_REGNUM
, /* Slot for %esi. */
3690 I386_EBP_REGNUM
/* Slot for %edi. */
3693 if (regnum
>= 0 && regnum
< sizeof (next_regnum
) / sizeof (next_regnum
[0]))
3694 return next_regnum
[regnum
];
3699 /* Return nonzero if a value of type TYPE stored in register REGNUM
3700 needs any special handling. */
3703 i386_convert_register_p (struct gdbarch
*gdbarch
,
3704 int regnum
, struct type
*type
)
3706 int len
= TYPE_LENGTH (type
);
3708 /* Values may be spread across multiple registers. Most debugging
3709 formats aren't expressive enough to specify the locations, so
3710 some heuristics is involved. Right now we only handle types that
3711 have a length that is a multiple of the word size, since GCC
3712 doesn't seem to put any other types into registers. */
3713 if (len
> 4 && len
% 4 == 0)
3715 int last_regnum
= regnum
;
3719 last_regnum
= i386_next_regnum (last_regnum
);
3723 if (last_regnum
!= -1)
3727 return i387_convert_register_p (gdbarch
, regnum
, type
);
3730 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3731 return its contents in TO. */
3734 i386_register_to_value (struct frame_info
*frame
, int regnum
,
3735 struct type
*type
, gdb_byte
*to
,
3736 int *optimizedp
, int *unavailablep
)
3738 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3739 int len
= TYPE_LENGTH (type
);
3741 if (i386_fp_regnum_p (gdbarch
, regnum
))
3742 return i387_register_to_value (frame
, regnum
, type
, to
,
3743 optimizedp
, unavailablep
);
3745 /* Read a value spread across multiple registers. */
3747 gdb_assert (len
> 4 && len
% 4 == 0);
3751 gdb_assert (regnum
!= -1);
3752 gdb_assert (register_size (gdbarch
, regnum
) == 4);
3754 if (!get_frame_register_bytes (frame
, regnum
, 0,
3755 register_size (gdbarch
, regnum
),
3756 to
, optimizedp
, unavailablep
))
3759 regnum
= i386_next_regnum (regnum
);
3764 *optimizedp
= *unavailablep
= 0;
3768 /* Write the contents FROM of a value of type TYPE into register
3769 REGNUM in frame FRAME. */
3772 i386_value_to_register (struct frame_info
*frame
, int regnum
,
3773 struct type
*type
, const gdb_byte
*from
)
3775 int len
= TYPE_LENGTH (type
);
3777 if (i386_fp_regnum_p (get_frame_arch (frame
), regnum
))
3779 i387_value_to_register (frame
, regnum
, type
, from
);
3783 /* Write a value spread across multiple registers. */
3785 gdb_assert (len
> 4 && len
% 4 == 0);
3789 gdb_assert (regnum
!= -1);
3790 gdb_assert (register_size (get_frame_arch (frame
), regnum
) == 4);
3792 put_frame_register (frame
, regnum
, from
);
3793 regnum
= i386_next_regnum (regnum
);
3799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3800 in the general-purpose register set REGSET to register cache
3801 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3804 i386_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
3805 int regnum
, const void *gregs
, size_t len
)
3807 struct gdbarch
*gdbarch
= regcache
->arch ();
3808 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3809 const gdb_byte
*regs
= (const gdb_byte
*) gregs
;
3812 gdb_assert (len
>= tdep
->sizeof_gregset
);
3814 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3816 if ((regnum
== i
|| regnum
== -1)
3817 && tdep
->gregset_reg_offset
[i
] != -1)
3818 regcache
->raw_supply (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3822 /* Collect register REGNUM from the register cache REGCACHE and store
3823 it in the buffer specified by GREGS and LEN as described by the
3824 general-purpose register set REGSET. If REGNUM is -1, do this for
3825 all registers in REGSET. */
3828 i386_collect_gregset (const struct regset
*regset
,
3829 const struct regcache
*regcache
,
3830 int regnum
, void *gregs
, size_t len
)
3832 struct gdbarch
*gdbarch
= regcache
->arch ();
3833 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3834 gdb_byte
*regs
= (gdb_byte
*) gregs
;
3837 gdb_assert (len
>= tdep
->sizeof_gregset
);
3839 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3841 if ((regnum
== i
|| regnum
== -1)
3842 && tdep
->gregset_reg_offset
[i
] != -1)
3843 regcache
->raw_collect (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3847 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3848 in the floating-point register set REGSET to register cache
3849 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3852 i386_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
3853 int regnum
, const void *fpregs
, size_t len
)
3855 struct gdbarch
*gdbarch
= regcache
->arch ();
3856 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3858 if (len
== I387_SIZEOF_FXSAVE
)
3860 i387_supply_fxsave (regcache
, regnum
, fpregs
);
3864 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3865 i387_supply_fsave (regcache
, regnum
, fpregs
);
3868 /* Collect register REGNUM from the register cache REGCACHE and store
3869 it in the buffer specified by FPREGS and LEN as described by the
3870 floating-point register set REGSET. If REGNUM is -1, do this for
3871 all registers in REGSET. */
3874 i386_collect_fpregset (const struct regset
*regset
,
3875 const struct regcache
*regcache
,
3876 int regnum
, void *fpregs
, size_t len
)
3878 struct gdbarch
*gdbarch
= regcache
->arch ();
3879 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3881 if (len
== I387_SIZEOF_FXSAVE
)
3883 i387_collect_fxsave (regcache
, regnum
, fpregs
);
3887 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3888 i387_collect_fsave (regcache
, regnum
, fpregs
);
3891 /* Register set definitions. */
3893 const struct regset i386_gregset
=
3895 NULL
, i386_supply_gregset
, i386_collect_gregset
3898 const struct regset i386_fpregset
=
3900 NULL
, i386_supply_fpregset
, i386_collect_fpregset
3903 /* Default iterator over core file register note sections. */
3906 i386_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
3907 iterate_over_regset_sections_cb
*cb
,
3909 const struct regcache
*regcache
)
3911 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3913 cb (".reg", tdep
->sizeof_gregset
, tdep
->sizeof_gregset
, &i386_gregset
, NULL
,
3915 if (tdep
->sizeof_fpregset
)
3916 cb (".reg2", tdep
->sizeof_fpregset
, tdep
->sizeof_fpregset
, tdep
->fpregset
,
3921 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3924 i386_pe_skip_trampoline_code (struct frame_info
*frame
,
3925 CORE_ADDR pc
, char *name
)
3927 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3928 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
3931 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
3933 unsigned long indirect
=
3934 read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
3935 struct minimal_symbol
*indsym
=
3936 indirect
? lookup_minimal_symbol_by_pc (indirect
).minsym
: 0;
3937 const char *symname
= indsym
? indsym
->linkage_name () : 0;
3941 if (startswith (symname
, "__imp_")
3942 || startswith (symname
, "_imp_"))
3944 read_memory_unsigned_integer (indirect
, 4, byte_order
);
3947 return 0; /* Not a trampoline. */
3951 /* Return whether the THIS_FRAME corresponds to a sigtramp
3955 i386_sigtramp_p (struct frame_info
*this_frame
)
3957 CORE_ADDR pc
= get_frame_pc (this_frame
);
3960 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
3961 return (name
&& strcmp ("_sigtramp", name
) == 0);
3965 /* We have two flavours of disassembly. The machinery on this page
3966 deals with switching between those. */
3969 i386_print_insn (bfd_vma pc
, struct disassemble_info
*info
)
3971 gdb_assert (disassembly_flavor
== att_flavor
3972 || disassembly_flavor
== intel_flavor
);
3974 info
->disassembler_options
= disassembly_flavor
;
3976 return default_print_insn (pc
, info
);
3980 /* There are a few i386 architecture variants that differ only
3981 slightly from the generic i386 target. For now, we don't give them
3982 their own source file, but include them here. As a consequence,
3983 they'll always be included. */
3985 /* System V Release 4 (SVR4). */
3987 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3991 i386_svr4_sigtramp_p (struct frame_info
*this_frame
)
3993 CORE_ADDR pc
= get_frame_pc (this_frame
);
3996 /* The origin of these symbols is currently unknown. */
3997 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
3998 return (name
&& (strcmp ("_sigreturn", name
) == 0
3999 || strcmp ("sigvechandler", name
) == 0));
4002 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4003 address of the associated sigcontext (ucontext) structure. */
4006 i386_svr4_sigcontext_addr (struct frame_info
*this_frame
)
4008 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
4009 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4013 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
4014 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
4016 return read_memory_unsigned_integer (sp
+ 8, 4, byte_order
);
4021 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4025 i386_stap_is_single_operand (struct gdbarch
*gdbarch
, const char *s
)
4027 return (*s
== '$' /* Literal number. */
4028 || (isdigit (*s
) && s
[1] == '(' && s
[2] == '%') /* Displacement. */
4029 || (*s
== '(' && s
[1] == '%') /* Register indirection. */
4030 || (*s
== '%' && isalpha (s
[1]))); /* Register access. */
4033 /* Helper function for i386_stap_parse_special_token.
4035 This function parses operands of the form `-8+3+1(%rbp)', which
4036 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4038 Return true if the operand was parsed successfully, false
4042 i386_stap_parse_special_token_triplet (struct gdbarch
*gdbarch
,
4043 struct stap_parse_info
*p
)
4045 const char *s
= p
->arg
;
4047 if (isdigit (*s
) || *s
== '-' || *s
== '+')
4051 long displacements
[3];
4058 got_minus
[0] = false;
4064 got_minus
[0] = true;
4067 if (!isdigit ((unsigned char) *s
))
4070 displacements
[0] = strtol (s
, &endp
, 10);
4073 if (*s
!= '+' && *s
!= '-')
4075 /* We are not dealing with a triplet. */
4079 got_minus
[1] = false;
4085 got_minus
[1] = true;
4088 if (!isdigit ((unsigned char) *s
))
4091 displacements
[1] = strtol (s
, &endp
, 10);
4094 if (*s
!= '+' && *s
!= '-')
4096 /* We are not dealing with a triplet. */
4100 got_minus
[2] = false;
4106 got_minus
[2] = true;
4109 if (!isdigit ((unsigned char) *s
))
4112 displacements
[2] = strtol (s
, &endp
, 10);
4115 if (*s
!= '(' || s
[1] != '%')
4121 while (isalnum (*s
))
4127 len
= s
- start
- 1;
4128 regname
= (char *) alloca (len
+ 1);
4130 strncpy (regname
, start
, len
);
4131 regname
[len
] = '\0';
4133 if (user_reg_map_name_to_regnum (gdbarch
, regname
, len
) == -1)
4134 error (_("Invalid register name `%s' on expression `%s'."),
4135 regname
, p
->saved_arg
);
4137 for (i
= 0; i
< 3; i
++)
4139 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4141 (&p
->pstate
, builtin_type (gdbarch
)->builtin_long
);
4142 write_exp_elt_longcst (&p
->pstate
, displacements
[i
]);
4143 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4145 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4148 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4151 write_exp_string (&p
->pstate
, str
);
4152 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4154 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4155 write_exp_elt_type (&p
->pstate
,
4156 builtin_type (gdbarch
)->builtin_data_ptr
);
4157 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4159 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4160 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4161 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4163 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4164 write_exp_elt_type (&p
->pstate
,
4165 lookup_pointer_type (p
->arg_type
));
4166 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4168 write_exp_elt_opcode (&p
->pstate
, UNOP_IND
);
4178 /* Helper function for i386_stap_parse_special_token.
4180 This function parses operands of the form `register base +
4181 (register index * size) + offset', as represented in
4182 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4184 Return true if the operand was parsed successfully, false
4188 i386_stap_parse_special_token_three_arg_disp (struct gdbarch
*gdbarch
,
4189 struct stap_parse_info
*p
)
4191 const char *s
= p
->arg
;
4193 if (isdigit (*s
) || *s
== '(' || *s
== '-' || *s
== '+')
4195 bool offset_minus
= false;
4197 bool size_minus
= false;
4204 struct stoken base_token
, index_token
;
4211 offset_minus
= true;
4214 if (offset_minus
&& !isdigit (*s
))
4221 offset
= strtol (s
, &endp
, 10);
4225 if (*s
!= '(' || s
[1] != '%')
4231 while (isalnum (*s
))
4234 if (*s
!= ',' || s
[1] != '%')
4237 len_base
= s
- start
;
4238 base
= (char *) alloca (len_base
+ 1);
4239 strncpy (base
, start
, len_base
);
4240 base
[len_base
] = '\0';
4242 if (user_reg_map_name_to_regnum (gdbarch
, base
, len_base
) == -1)
4243 error (_("Invalid register name `%s' on expression `%s'."),
4244 base
, p
->saved_arg
);
4249 while (isalnum (*s
))
4252 len_index
= s
- start
;
4253 index
= (char *) alloca (len_index
+ 1);
4254 strncpy (index
, start
, len_index
);
4255 index
[len_index
] = '\0';
4257 if (user_reg_map_name_to_regnum (gdbarch
, index
, len_index
) == -1)
4258 error (_("Invalid register name `%s' on expression `%s'."),
4259 index
, p
->saved_arg
);
4261 if (*s
!= ',' && *s
!= ')')
4277 size
= strtol (s
, &endp
, 10);
4288 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4289 write_exp_elt_type (&p
->pstate
,
4290 builtin_type (gdbarch
)->builtin_long
);
4291 write_exp_elt_longcst (&p
->pstate
, offset
);
4292 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4294 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4297 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4298 base_token
.ptr
= base
;
4299 base_token
.length
= len_base
;
4300 write_exp_string (&p
->pstate
, base_token
);
4301 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4304 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4306 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4307 index_token
.ptr
= index
;
4308 index_token
.length
= len_index
;
4309 write_exp_string (&p
->pstate
, index_token
);
4310 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4314 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4315 write_exp_elt_type (&p
->pstate
,
4316 builtin_type (gdbarch
)->builtin_long
);
4317 write_exp_elt_longcst (&p
->pstate
, size
);
4318 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4320 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4321 write_exp_elt_opcode (&p
->pstate
, BINOP_MUL
);
4324 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4326 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4327 write_exp_elt_type (&p
->pstate
,
4328 lookup_pointer_type (p
->arg_type
));
4329 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4331 write_exp_elt_opcode (&p
->pstate
, UNOP_IND
);
4341 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4345 i386_stap_parse_special_token (struct gdbarch
*gdbarch
,
4346 struct stap_parse_info
*p
)
4348 /* In order to parse special tokens, we use a state-machine that go
4349 through every known token and try to get a match. */
4353 THREE_ARG_DISPLACEMENT
,
4358 current_state
= TRIPLET
;
4360 /* The special tokens to be parsed here are:
4362 - `register base + (register index * size) + offset', as represented
4363 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4365 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4366 `*(-8 + 3 - 1 + (void *) $eax)'. */
4368 while (current_state
!= DONE
)
4370 switch (current_state
)
4373 if (i386_stap_parse_special_token_triplet (gdbarch
, p
))
4377 case THREE_ARG_DISPLACEMENT
:
4378 if (i386_stap_parse_special_token_three_arg_disp (gdbarch
, p
))
4383 /* Advancing to the next state. */
4390 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4394 i386_stap_adjust_register (struct gdbarch
*gdbarch
, struct stap_parse_info
*p
,
4395 const std::string
®name
, int regnum
)
4397 static const std::unordered_set
<std::string
> reg_assoc
4398 = { "ax", "bx", "cx", "dx",
4399 "si", "di", "bp", "sp" };
4401 /* If we are dealing with a register whose size is less than the size
4402 specified by the "[-]N@" prefix, and it is one of the registers that
4403 we know has an extended variant available, then use the extended
4404 version of the register instead. */
4405 if (register_size (gdbarch
, regnum
) < TYPE_LENGTH (p
->arg_type
)
4406 && reg_assoc
.find (regname
) != reg_assoc
.end ())
4407 return "e" + regname
;
4409 /* Otherwise, just use the requested register. */
4415 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4416 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4419 i386_gnu_triplet_regexp (struct gdbarch
*gdbarch
)
4421 return "(x86_64|i.86)";
4426 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4429 i386_in_indirect_branch_thunk (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4431 return x86_in_indirect_branch_thunk (pc
, i386_register_names
,
4432 I386_EAX_REGNUM
, I386_EIP_REGNUM
);
4438 i386_elf_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4440 static const char *const stap_integer_prefixes
[] = { "$", NULL
};
4441 static const char *const stap_register_prefixes
[] = { "%", NULL
};
4442 static const char *const stap_register_indirection_prefixes
[] = { "(",
4444 static const char *const stap_register_indirection_suffixes
[] = { ")",
4447 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4448 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
4450 /* Registering SystemTap handlers. */
4451 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
4452 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
4453 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
4454 stap_register_indirection_prefixes
);
4455 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
4456 stap_register_indirection_suffixes
);
4457 set_gdbarch_stap_is_single_operand (gdbarch
,
4458 i386_stap_is_single_operand
);
4459 set_gdbarch_stap_parse_special_token (gdbarch
,
4460 i386_stap_parse_special_token
);
4461 set_gdbarch_stap_adjust_register (gdbarch
,
4462 i386_stap_adjust_register
);
4464 set_gdbarch_in_indirect_branch_thunk (gdbarch
,
4465 i386_in_indirect_branch_thunk
);
4468 /* System V Release 4 (SVR4). */
4471 i386_svr4_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4473 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4475 /* System V Release 4 uses ELF. */
4476 i386_elf_init_abi (info
, gdbarch
);
4478 /* System V Release 4 has shared libraries. */
4479 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
4481 tdep
->sigtramp_p
= i386_svr4_sigtramp_p
;
4482 tdep
->sigcontext_addr
= i386_svr4_sigcontext_addr
;
4483 tdep
->sc_pc_offset
= 36 + 14 * 4;
4484 tdep
->sc_sp_offset
= 36 + 17 * 4;
4486 tdep
->jb_pc_offset
= 20;
4491 /* i386 register groups. In addition to the normal groups, add "mmx"
4494 static struct reggroup
*i386_sse_reggroup
;
4495 static struct reggroup
*i386_mmx_reggroup
;
4498 i386_init_reggroups (void)
4500 i386_sse_reggroup
= reggroup_new ("sse", USER_REGGROUP
);
4501 i386_mmx_reggroup
= reggroup_new ("mmx", USER_REGGROUP
);
4505 i386_add_reggroups (struct gdbarch
*gdbarch
)
4507 reggroup_add (gdbarch
, i386_sse_reggroup
);
4508 reggroup_add (gdbarch
, i386_mmx_reggroup
);
4509 reggroup_add (gdbarch
, general_reggroup
);
4510 reggroup_add (gdbarch
, float_reggroup
);
4511 reggroup_add (gdbarch
, all_reggroup
);
4512 reggroup_add (gdbarch
, save_reggroup
);
4513 reggroup_add (gdbarch
, restore_reggroup
);
4514 reggroup_add (gdbarch
, vector_reggroup
);
4515 reggroup_add (gdbarch
, system_reggroup
);
4519 i386_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
4520 struct reggroup
*group
)
4522 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4523 int fp_regnum_p
, mmx_regnum_p
, xmm_regnum_p
, mxcsr_regnum_p
,
4524 ymm_regnum_p
, ymmh_regnum_p
, ymm_avx512_regnum_p
, ymmh_avx512_regnum_p
,
4525 bndr_regnum_p
, bnd_regnum_p
, zmm_regnum_p
, zmmh_regnum_p
,
4526 mpx_ctrl_regnum_p
, xmm_avx512_regnum_p
,
4527 avx512_p
, avx_p
, sse_p
, pkru_regnum_p
;
4529 /* Don't include pseudo registers, except for MMX, in any register
4531 if (i386_byte_regnum_p (gdbarch
, regnum
))
4534 if (i386_word_regnum_p (gdbarch
, regnum
))
4537 if (i386_dword_regnum_p (gdbarch
, regnum
))
4540 mmx_regnum_p
= i386_mmx_regnum_p (gdbarch
, regnum
);
4541 if (group
== i386_mmx_reggroup
)
4542 return mmx_regnum_p
;
4544 pkru_regnum_p
= i386_pkru_regnum_p(gdbarch
, regnum
);
4545 xmm_regnum_p
= i386_xmm_regnum_p (gdbarch
, regnum
);
4546 xmm_avx512_regnum_p
= i386_xmm_avx512_regnum_p (gdbarch
, regnum
);
4547 mxcsr_regnum_p
= i386_mxcsr_regnum_p (gdbarch
, regnum
);
4548 if (group
== i386_sse_reggroup
)
4549 return xmm_regnum_p
|| xmm_avx512_regnum_p
|| mxcsr_regnum_p
;
4551 ymm_regnum_p
= i386_ymm_regnum_p (gdbarch
, regnum
);
4552 ymm_avx512_regnum_p
= i386_ymm_avx512_regnum_p (gdbarch
, regnum
);
4553 zmm_regnum_p
= i386_zmm_regnum_p (gdbarch
, regnum
);
4555 avx512_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4556 == X86_XSTATE_AVX_AVX512_MASK
);
4557 avx_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4558 == X86_XSTATE_AVX_MASK
) && !avx512_p
;
4559 sse_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4560 == X86_XSTATE_SSE_MASK
) && !avx512_p
&& ! avx_p
;
4562 if (group
== vector_reggroup
)
4563 return (mmx_regnum_p
4564 || (zmm_regnum_p
&& avx512_p
)
4565 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && avx_p
)
4566 || ((xmm_regnum_p
|| xmm_avx512_regnum_p
) && sse_p
)
4569 fp_regnum_p
= (i386_fp_regnum_p (gdbarch
, regnum
)
4570 || i386_fpc_regnum_p (gdbarch
, regnum
));
4571 if (group
== float_reggroup
)
4574 /* For "info reg all", don't include upper YMM registers nor XMM
4575 registers when AVX is supported. */
4576 ymmh_regnum_p
= i386_ymmh_regnum_p (gdbarch
, regnum
);
4577 ymmh_avx512_regnum_p
= i386_ymmh_avx512_regnum_p (gdbarch
, regnum
);
4578 zmmh_regnum_p
= i386_zmmh_regnum_p (gdbarch
, regnum
);
4579 if (group
== all_reggroup
4580 && (((xmm_regnum_p
|| xmm_avx512_regnum_p
) && !sse_p
)
4581 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && !avx_p
)
4583 || ymmh_avx512_regnum_p
4587 bnd_regnum_p
= i386_bnd_regnum_p (gdbarch
, regnum
);
4588 if (group
== all_reggroup
4589 && ((bnd_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4590 return bnd_regnum_p
;
4592 bndr_regnum_p
= i386_bndr_regnum_p (gdbarch
, regnum
);
4593 if (group
== all_reggroup
4594 && ((bndr_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4597 mpx_ctrl_regnum_p
= i386_mpx_ctrl_regnum_p (gdbarch
, regnum
);
4598 if (group
== all_reggroup
4599 && ((mpx_ctrl_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4600 return mpx_ctrl_regnum_p
;
4602 if (group
== general_reggroup
)
4603 return (!fp_regnum_p
4607 && !xmm_avx512_regnum_p
4610 && !ymm_avx512_regnum_p
4611 && !ymmh_avx512_regnum_p
4614 && !mpx_ctrl_regnum_p
4619 return default_register_reggroup_p (gdbarch
, regnum
, group
);
4623 /* Get the ARGIth function argument for the current function. */
4626 i386_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
4629 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4630 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4631 CORE_ADDR sp
= get_frame_register_unsigned (frame
, I386_ESP_REGNUM
);
4632 return read_memory_unsigned_integer (sp
+ (4 * (argi
+ 1)), 4, byte_order
);
4635 #define PREFIX_REPZ 0x01
4636 #define PREFIX_REPNZ 0x02
4637 #define PREFIX_LOCK 0x04
4638 #define PREFIX_DATA 0x08
4639 #define PREFIX_ADDR 0x10
4651 /* i386 arith/logic operations */
4664 struct i386_record_s
4666 struct gdbarch
*gdbarch
;
4667 struct regcache
*regcache
;
4668 CORE_ADDR orig_addr
;
4674 uint8_t mod
, reg
, rm
;
4683 /* Parse the "modrm" part of the memory address irp->addr points at.
4684 Returns -1 if something goes wrong, 0 otherwise. */
4687 i386_record_modrm (struct i386_record_s
*irp
)
4689 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4691 if (record_read_memory (gdbarch
, irp
->addr
, &irp
->modrm
, 1))
4695 irp
->mod
= (irp
->modrm
>> 6) & 3;
4696 irp
->reg
= (irp
->modrm
>> 3) & 7;
4697 irp
->rm
= irp
->modrm
& 7;
4702 /* Extract the memory address that the current instruction writes to,
4703 and return it in *ADDR. Return -1 if something goes wrong. */
4706 i386_record_lea_modrm_addr (struct i386_record_s
*irp
, uint64_t *addr
)
4708 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4709 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4714 if (irp
->aflag
|| irp
->regmap
[X86_RECORD_R8_REGNUM
])
4721 uint8_t base
= irp
->rm
;
4726 if (record_read_memory (gdbarch
, irp
->addr
, &byte
, 1))
4729 scale
= (byte
>> 6) & 3;
4730 index
= ((byte
>> 3) & 7) | irp
->rex_x
;
4738 if ((base
& 7) == 5)
4741 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4744 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4745 if (irp
->regmap
[X86_RECORD_R8_REGNUM
] && !havesib
)
4746 *addr
+= irp
->addr
+ irp
->rip_offset
;
4750 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4753 *addr
= (int8_t) buf
[0];
4756 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4758 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4766 if (base
== 4 && irp
->popl_esp_hack
)
4767 *addr
+= irp
->popl_esp_hack
;
4768 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[base
],
4771 if (irp
->aflag
== 2)
4776 *addr
= (uint32_t) (offset64
+ *addr
);
4778 if (havesib
&& (index
!= 4 || scale
!= 0))
4780 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[index
],
4782 if (irp
->aflag
== 2)
4783 *addr
+= offset64
<< scale
;
4785 *addr
= (uint32_t) (*addr
+ (offset64
<< scale
));
4790 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4791 address from 32-bit to 64-bit. */
4792 *addr
= (uint32_t) *addr
;
4803 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4806 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4812 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4815 *addr
= (int8_t) buf
[0];
4818 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4821 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4828 regcache_raw_read_unsigned (irp
->regcache
,
4829 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4831 *addr
= (uint32_t) (*addr
+ offset64
);
4832 regcache_raw_read_unsigned (irp
->regcache
,
4833 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4835 *addr
= (uint32_t) (*addr
+ offset64
);
4838 regcache_raw_read_unsigned (irp
->regcache
,
4839 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4841 *addr
= (uint32_t) (*addr
+ offset64
);
4842 regcache_raw_read_unsigned (irp
->regcache
,
4843 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4845 *addr
= (uint32_t) (*addr
+ offset64
);
4848 regcache_raw_read_unsigned (irp
->regcache
,
4849 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4851 *addr
= (uint32_t) (*addr
+ offset64
);
4852 regcache_raw_read_unsigned (irp
->regcache
,
4853 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4855 *addr
= (uint32_t) (*addr
+ offset64
);
4858 regcache_raw_read_unsigned (irp
->regcache
,
4859 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4861 *addr
= (uint32_t) (*addr
+ offset64
);
4862 regcache_raw_read_unsigned (irp
->regcache
,
4863 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4865 *addr
= (uint32_t) (*addr
+ offset64
);
4868 regcache_raw_read_unsigned (irp
->regcache
,
4869 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4871 *addr
= (uint32_t) (*addr
+ offset64
);
4874 regcache_raw_read_unsigned (irp
->regcache
,
4875 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4877 *addr
= (uint32_t) (*addr
+ offset64
);
4880 regcache_raw_read_unsigned (irp
->regcache
,
4881 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4883 *addr
= (uint32_t) (*addr
+ offset64
);
4886 regcache_raw_read_unsigned (irp
->regcache
,
4887 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4889 *addr
= (uint32_t) (*addr
+ offset64
);
4899 /* Record the address and contents of the memory that will be changed
4900 by the current instruction. Return -1 if something goes wrong, 0
4904 i386_record_lea_modrm (struct i386_record_s
*irp
)
4906 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4909 if (irp
->override
>= 0)
4911 if (record_full_memory_query
)
4914 Process record ignores the memory change of instruction at address %s\n\
4915 because it can't get the value of the segment register.\n\
4916 Do you want to stop the program?"),
4917 paddress (gdbarch
, irp
->orig_addr
)))
4924 if (i386_record_lea_modrm_addr (irp
, &addr
))
4927 if (record_full_arch_list_add_mem (addr
, 1 << irp
->ot
))
4933 /* Record the effects of a push operation. Return -1 if something
4934 goes wrong, 0 otherwise. */
4937 i386_record_push (struct i386_record_s
*irp
, int size
)
4941 if (record_full_arch_list_add_reg (irp
->regcache
,
4942 irp
->regmap
[X86_RECORD_RESP_REGNUM
]))
4944 regcache_raw_read_unsigned (irp
->regcache
,
4945 irp
->regmap
[X86_RECORD_RESP_REGNUM
],
4947 if (record_full_arch_list_add_mem ((CORE_ADDR
) addr
- size
, size
))
4954 /* Defines contents to record. */
4955 #define I386_SAVE_FPU_REGS 0xfffd
4956 #define I386_SAVE_FPU_ENV 0xfffe
4957 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4959 /* Record the values of the floating point registers which will be
4960 changed by the current instruction. Returns -1 if something is
4961 wrong, 0 otherwise. */
4963 static int i386_record_floats (struct gdbarch
*gdbarch
,
4964 struct i386_record_s
*ir
,
4967 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4970 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4971 happen. Currently we store st0-st7 registers, but we need not store all
4972 registers all the time, in future we use ftag register and record only
4973 those who are not marked as an empty. */
4975 if (I386_SAVE_FPU_REGS
== iregnum
)
4977 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_ST0_REGNUM (tdep
) + 7; i
++)
4979 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
4983 else if (I386_SAVE_FPU_ENV
== iregnum
)
4985 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
4987 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
4991 else if (I386_SAVE_FPU_ENV_REG_STACK
== iregnum
)
4993 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
4995 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
4999 else if ((iregnum
>= I387_ST0_REGNUM (tdep
)) &&
5000 (iregnum
<= I387_FOP_REGNUM (tdep
)))
5002 if (record_full_arch_list_add_reg (ir
->regcache
,iregnum
))
5007 /* Parameter error. */
5010 if(I386_SAVE_FPU_ENV
!= iregnum
)
5012 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5014 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5021 /* Parse the current instruction, and record the values of the
5022 registers and memory that will be changed by the current
5023 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5025 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5026 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5029 i386_process_record (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
5030 CORE_ADDR input_addr
)
5032 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5038 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
5039 struct i386_record_s ir
;
5040 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
5044 memset (&ir
, 0, sizeof (struct i386_record_s
));
5045 ir
.regcache
= regcache
;
5046 ir
.addr
= input_addr
;
5047 ir
.orig_addr
= input_addr
;
5051 ir
.popl_esp_hack
= 0;
5052 ir
.regmap
= tdep
->record_regmap
;
5053 ir
.gdbarch
= gdbarch
;
5055 if (record_debug
> 1)
5056 fprintf_unfiltered (gdb_stdlog
, "Process record: i386_process_record "
5058 paddress (gdbarch
, ir
.addr
));
5063 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5066 switch (opcode8
) /* Instruction prefixes */
5068 case REPE_PREFIX_OPCODE
:
5069 prefixes
|= PREFIX_REPZ
;
5071 case REPNE_PREFIX_OPCODE
:
5072 prefixes
|= PREFIX_REPNZ
;
5074 case LOCK_PREFIX_OPCODE
:
5075 prefixes
|= PREFIX_LOCK
;
5077 case CS_PREFIX_OPCODE
:
5078 ir
.override
= X86_RECORD_CS_REGNUM
;
5080 case SS_PREFIX_OPCODE
:
5081 ir
.override
= X86_RECORD_SS_REGNUM
;
5083 case DS_PREFIX_OPCODE
:
5084 ir
.override
= X86_RECORD_DS_REGNUM
;
5086 case ES_PREFIX_OPCODE
:
5087 ir
.override
= X86_RECORD_ES_REGNUM
;
5089 case FS_PREFIX_OPCODE
:
5090 ir
.override
= X86_RECORD_FS_REGNUM
;
5092 case GS_PREFIX_OPCODE
:
5093 ir
.override
= X86_RECORD_GS_REGNUM
;
5095 case DATA_PREFIX_OPCODE
:
5096 prefixes
|= PREFIX_DATA
;
5098 case ADDR_PREFIX_OPCODE
:
5099 prefixes
|= PREFIX_ADDR
;
5101 case 0x40: /* i386 inc %eax */
5102 case 0x41: /* i386 inc %ecx */
5103 case 0x42: /* i386 inc %edx */
5104 case 0x43: /* i386 inc %ebx */
5105 case 0x44: /* i386 inc %esp */
5106 case 0x45: /* i386 inc %ebp */
5107 case 0x46: /* i386 inc %esi */
5108 case 0x47: /* i386 inc %edi */
5109 case 0x48: /* i386 dec %eax */
5110 case 0x49: /* i386 dec %ecx */
5111 case 0x4a: /* i386 dec %edx */
5112 case 0x4b: /* i386 dec %ebx */
5113 case 0x4c: /* i386 dec %esp */
5114 case 0x4d: /* i386 dec %ebp */
5115 case 0x4e: /* i386 dec %esi */
5116 case 0x4f: /* i386 dec %edi */
5117 if (ir
.regmap
[X86_RECORD_R8_REGNUM
]) /* 64 bit target */
5120 rex_w
= (opcode8
>> 3) & 1;
5121 rex_r
= (opcode8
& 0x4) << 1;
5122 ir
.rex_x
= (opcode8
& 0x2) << 2;
5123 ir
.rex_b
= (opcode8
& 0x1) << 3;
5125 else /* 32 bit target */
5134 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && rex_w
== 1)
5140 if (prefixes
& PREFIX_DATA
)
5143 if (prefixes
& PREFIX_ADDR
)
5145 else if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5148 /* Now check op code. */
5149 opcode
= (uint32_t) opcode8
;
5154 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5157 opcode
= (uint32_t) opcode8
| 0x0f00;
5161 case 0x00: /* arith & logic */
5209 if (((opcode
>> 3) & 7) != OP_CMPL
)
5211 if ((opcode
& 1) == 0)
5214 ir
.ot
= ir
.dflag
+ OT_WORD
;
5216 switch ((opcode
>> 1) & 3)
5218 case 0: /* OP Ev, Gv */
5219 if (i386_record_modrm (&ir
))
5223 if (i386_record_lea_modrm (&ir
))
5229 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5234 case 1: /* OP Gv, Ev */
5235 if (i386_record_modrm (&ir
))
5238 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5242 case 2: /* OP A, Iv */
5243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5250 case 0x80: /* GRP1 */
5254 if (i386_record_modrm (&ir
))
5257 if (ir
.reg
!= OP_CMPL
)
5259 if ((opcode
& 1) == 0)
5262 ir
.ot
= ir
.dflag
+ OT_WORD
;
5269 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5270 if (i386_record_lea_modrm (&ir
))
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5279 case 0x40: /* inc */
5288 case 0x48: /* dec */
5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 7);
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5301 case 0xf6: /* GRP3 */
5303 if ((opcode
& 1) == 0)
5306 ir
.ot
= ir
.dflag
+ OT_WORD
;
5307 if (i386_record_modrm (&ir
))
5310 if (ir
.mod
!= 3 && ir
.reg
== 0)
5311 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5322 if (i386_record_lea_modrm (&ir
))
5328 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5332 if (ir
.reg
== 3) /* neg */
5333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5340 if (ir
.ot
!= OT_BYTE
)
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5346 opcode
= opcode
<< 8 | ir
.modrm
;
5352 case 0xfe: /* GRP4 */
5353 case 0xff: /* GRP5 */
5354 if (i386_record_modrm (&ir
))
5356 if (ir
.reg
>= 2 && opcode
== 0xfe)
5359 opcode
= opcode
<< 8 | ir
.modrm
;
5366 if ((opcode
& 1) == 0)
5369 ir
.ot
= ir
.dflag
+ OT_WORD
;
5372 if (i386_record_lea_modrm (&ir
))
5378 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5385 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5387 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
5393 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5402 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5404 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5409 opcode
= opcode
<< 8 | ir
.modrm
;
5415 case 0x84: /* test */
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5422 case 0x98: /* CWDE/CBW */
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5426 case 0x99: /* CDQ/CWD */
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5431 case 0x0faf: /* imul */
5434 ir
.ot
= ir
.dflag
+ OT_WORD
;
5435 if (i386_record_modrm (&ir
))
5438 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5439 else if (opcode
== 0x6b)
5442 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5448 case 0x0fc0: /* xadd */
5450 if ((opcode
& 1) == 0)
5453 ir
.ot
= ir
.dflag
+ OT_WORD
;
5454 if (i386_record_modrm (&ir
))
5459 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5462 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5468 if (i386_record_lea_modrm (&ir
))
5470 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5477 case 0x0fb0: /* cmpxchg */
5479 if ((opcode
& 1) == 0)
5482 ir
.ot
= ir
.dflag
+ OT_WORD
;
5483 if (i386_record_modrm (&ir
))
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5489 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5496 if (i386_record_lea_modrm (&ir
))
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5502 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5503 if (i386_record_modrm (&ir
))
5507 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5508 an extended opcode. rdrand has bits 110 (/6) and rdseed
5509 has bits 111 (/7). */
5510 if (ir
.reg
== 6 || ir
.reg
== 7)
5512 /* The storage register is described by the 3 R/M bits, but the
5513 REX.B prefix may be used to give access to registers
5514 R8~R15. In this case ir.rex_b + R/M will give us the register
5515 in the range R8~R15.
5517 REX.W may also be used to access 64-bit registers, but we
5518 already record entire registers and not just partial bits
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
+ ir
.rm
);
5521 /* These instructions also set conditional bits. */
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5527 /* We don't handle this particular instruction yet. */
5529 opcode
= opcode
<< 8 | ir
.modrm
;
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5535 if (i386_record_lea_modrm (&ir
))
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5540 case 0x50: /* push */
5550 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5552 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5556 case 0x06: /* push es */
5557 case 0x0e: /* push cs */
5558 case 0x16: /* push ss */
5559 case 0x1e: /* push ds */
5560 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5565 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5569 case 0x0fa0: /* push fs */
5570 case 0x0fa8: /* push gs */
5571 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5576 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5580 case 0x60: /* pusha */
5581 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5586 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 4)))
5590 case 0x58: /* pop */
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5602 case 0x61: /* popa */
5603 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5608 for (regnum
= X86_RECORD_REAX_REGNUM
;
5609 regnum
<= X86_RECORD_REDI_REGNUM
;
5611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5614 case 0x8f: /* pop */
5615 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5616 ir
.ot
= ir
.dflag
? OT_QUAD
: OT_WORD
;
5618 ir
.ot
= ir
.dflag
+ OT_WORD
;
5619 if (i386_record_modrm (&ir
))
5622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5625 ir
.popl_esp_hack
= 1 << ir
.ot
;
5626 if (i386_record_lea_modrm (&ir
))
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5632 case 0xc8: /* enter */
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5634 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5636 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5640 case 0xc9: /* leave */
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5645 case 0x07: /* pop es */
5646 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM
);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5656 case 0x17: /* pop ss */
5657 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM
);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5667 case 0x1f: /* pop ds */
5668 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM
);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5678 case 0x0fa1: /* pop fs */
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM
);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5684 case 0x0fa9: /* pop gs */
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5690 case 0x88: /* mov */
5694 if ((opcode
& 1) == 0)
5697 ir
.ot
= ir
.dflag
+ OT_WORD
;
5699 if (i386_record_modrm (&ir
))
5704 if (opcode
== 0xc6 || opcode
== 0xc7)
5705 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5706 if (i386_record_lea_modrm (&ir
))
5711 if (opcode
== 0xc6 || opcode
== 0xc7)
5713 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5719 case 0x8a: /* mov */
5721 if ((opcode
& 1) == 0)
5724 ir
.ot
= ir
.dflag
+ OT_WORD
;
5725 if (i386_record_modrm (&ir
))
5728 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5733 case 0x8c: /* mov seg */
5734 if (i386_record_modrm (&ir
))
5739 opcode
= opcode
<< 8 | ir
.modrm
;
5744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5748 if (i386_record_lea_modrm (&ir
))
5753 case 0x8e: /* mov seg */
5754 if (i386_record_modrm (&ir
))
5759 regnum
= X86_RECORD_ES_REGNUM
;
5762 regnum
= X86_RECORD_SS_REGNUM
;
5765 regnum
= X86_RECORD_DS_REGNUM
;
5768 regnum
= X86_RECORD_FS_REGNUM
;
5771 regnum
= X86_RECORD_GS_REGNUM
;
5775 opcode
= opcode
<< 8 | ir
.modrm
;
5779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5783 case 0x0fb6: /* movzbS */
5784 case 0x0fb7: /* movzwS */
5785 case 0x0fbe: /* movsbS */
5786 case 0x0fbf: /* movswS */
5787 if (i386_record_modrm (&ir
))
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5792 case 0x8d: /* lea */
5793 if (i386_record_modrm (&ir
))
5798 opcode
= opcode
<< 8 | ir
.modrm
;
5803 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5808 case 0xa0: /* mov EAX */
5811 case 0xd7: /* xlat */
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5815 case 0xa2: /* mov EAX */
5817 if (ir
.override
>= 0)
5819 if (record_full_memory_query
)
5822 Process record ignores the memory change of instruction at address %s\n\
5823 because it can't get the value of the segment register.\n\
5824 Do you want to stop the program?"),
5825 paddress (gdbarch
, ir
.orig_addr
)))
5831 if ((opcode
& 1) == 0)
5834 ir
.ot
= ir
.dflag
+ OT_WORD
;
5837 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 8))
5840 addr
= extract_unsigned_integer (buf
, 8, byte_order
);
5844 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 4))
5847 addr
= extract_unsigned_integer (buf
, 4, byte_order
);
5851 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 2))
5854 addr
= extract_unsigned_integer (buf
, 2, byte_order
);
5856 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
5861 case 0xb0: /* mov R, Ib */
5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir
.regmap
[X86_RECORD_R8_REGNUM
])
5870 ? ((opcode
& 0x7) | ir
.rex_b
)
5871 : ((opcode
& 0x7) & 0x3));
5874 case 0xb8: /* mov R, Iv */
5882 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5885 case 0x91: /* xchg R, EAX */
5892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 0x7);
5896 case 0x86: /* xchg Ev, Gv */
5898 if ((opcode
& 1) == 0)
5901 ir
.ot
= ir
.dflag
+ OT_WORD
;
5902 if (i386_record_modrm (&ir
))
5907 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5913 if (i386_record_lea_modrm (&ir
))
5917 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5922 case 0xc4: /* les Gv */
5923 case 0xc5: /* lds Gv */
5924 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5930 case 0x0fb2: /* lss Gv */
5931 case 0x0fb4: /* lfs Gv */
5932 case 0x0fb5: /* lgs Gv */
5933 if (i386_record_modrm (&ir
))
5941 opcode
= opcode
<< 8 | ir
.modrm
;
5946 case 0xc4: /* les Gv */
5947 regnum
= X86_RECORD_ES_REGNUM
;
5949 case 0xc5: /* lds Gv */
5950 regnum
= X86_RECORD_DS_REGNUM
;
5952 case 0x0fb2: /* lss Gv */
5953 regnum
= X86_RECORD_SS_REGNUM
;
5955 case 0x0fb4: /* lfs Gv */
5956 regnum
= X86_RECORD_FS_REGNUM
;
5958 case 0x0fb5: /* lgs Gv */
5959 regnum
= X86_RECORD_GS_REGNUM
;
5962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5967 case 0xc0: /* shifts */
5973 if ((opcode
& 1) == 0)
5976 ir
.ot
= ir
.dflag
+ OT_WORD
;
5977 if (i386_record_modrm (&ir
))
5979 if (ir
.mod
!= 3 && (opcode
== 0xd2 || opcode
== 0xd3))
5981 if (i386_record_lea_modrm (&ir
))
5987 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5998 if (i386_record_modrm (&ir
))
6002 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
))
6007 if (i386_record_lea_modrm (&ir
))
6012 case 0xd8: /* Floats. */
6020 if (i386_record_modrm (&ir
))
6022 ir
.reg
|= ((opcode
& 7) << 3);
6028 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6036 /* For fcom, ficom nothing to do. */
6042 /* For fcomp, ficomp pop FPU stack, store all. */
6043 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6070 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6071 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6072 of code, always affects st(0) register. */
6073 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6097 /* Handling fld, fild. */
6098 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6102 switch (ir
.reg
>> 4)
6105 if (record_full_arch_list_add_mem (addr64
, 4))
6109 if (record_full_arch_list_add_mem (addr64
, 8))
6115 if (record_full_arch_list_add_mem (addr64
, 2))
6121 switch (ir
.reg
>> 4)
6124 if (record_full_arch_list_add_mem (addr64
, 4))
6126 if (3 == (ir
.reg
& 7))
6128 /* For fstp m32fp. */
6129 if (i386_record_floats (gdbarch
, &ir
,
6130 I386_SAVE_FPU_REGS
))
6135 if (record_full_arch_list_add_mem (addr64
, 4))
6137 if ((3 == (ir
.reg
& 7))
6138 || (5 == (ir
.reg
& 7))
6139 || (7 == (ir
.reg
& 7)))
6141 /* For fstp insn. */
6142 if (i386_record_floats (gdbarch
, &ir
,
6143 I386_SAVE_FPU_REGS
))
6148 if (record_full_arch_list_add_mem (addr64
, 8))
6150 if (3 == (ir
.reg
& 7))
6152 /* For fstp m64fp. */
6153 if (i386_record_floats (gdbarch
, &ir
,
6154 I386_SAVE_FPU_REGS
))
6159 if ((3 <= (ir
.reg
& 7)) && (6 <= (ir
.reg
& 7)))
6161 /* For fistp, fbld, fild, fbstp. */
6162 if (i386_record_floats (gdbarch
, &ir
,
6163 I386_SAVE_FPU_REGS
))
6168 if (record_full_arch_list_add_mem (addr64
, 2))
6177 if (i386_record_floats (gdbarch
, &ir
,
6178 I386_SAVE_FPU_ENV_REG_STACK
))
6183 if (i386_record_floats (gdbarch
, &ir
, I387_FCTRL_REGNUM (tdep
)))
6188 if (i386_record_floats (gdbarch
, &ir
,
6189 I386_SAVE_FPU_ENV_REG_STACK
))
6195 if (record_full_arch_list_add_mem (addr64
, 28))
6200 if (record_full_arch_list_add_mem (addr64
, 14))
6206 if (record_full_arch_list_add_mem (addr64
, 2))
6208 /* Insn fstp, fbstp. */
6209 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6214 if (record_full_arch_list_add_mem (addr64
, 10))
6220 if (record_full_arch_list_add_mem (addr64
, 28))
6226 if (record_full_arch_list_add_mem (addr64
, 14))
6230 if (record_full_arch_list_add_mem (addr64
, 80))
6233 if (i386_record_floats (gdbarch
, &ir
,
6234 I386_SAVE_FPU_ENV_REG_STACK
))
6238 if (record_full_arch_list_add_mem (addr64
, 8))
6241 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6246 opcode
= opcode
<< 8 | ir
.modrm
;
6251 /* Opcode is an extension of modR/M byte. */
6257 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6261 if (0x0c == (ir
.modrm
>> 4))
6263 if ((ir
.modrm
& 0x0f) <= 7)
6265 if (i386_record_floats (gdbarch
, &ir
,
6266 I386_SAVE_FPU_REGS
))
6271 if (i386_record_floats (gdbarch
, &ir
,
6272 I387_ST0_REGNUM (tdep
)))
6274 /* If only st(0) is changing, then we have already
6276 if ((ir
.modrm
& 0x0f) - 0x08)
6278 if (i386_record_floats (gdbarch
, &ir
,
6279 I387_ST0_REGNUM (tdep
) +
6280 ((ir
.modrm
& 0x0f) - 0x08)))
6298 if (i386_record_floats (gdbarch
, &ir
,
6299 I387_ST0_REGNUM (tdep
)))
6317 if (i386_record_floats (gdbarch
, &ir
,
6318 I386_SAVE_FPU_REGS
))
6322 if (i386_record_floats (gdbarch
, &ir
,
6323 I387_ST0_REGNUM (tdep
)))
6325 if (i386_record_floats (gdbarch
, &ir
,
6326 I387_ST0_REGNUM (tdep
) + 1))
6333 if (0xe9 == ir
.modrm
)
6335 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6338 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6340 if (i386_record_floats (gdbarch
, &ir
,
6341 I387_ST0_REGNUM (tdep
)))
6343 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6345 if (i386_record_floats (gdbarch
, &ir
,
6346 I387_ST0_REGNUM (tdep
) +
6350 else if ((ir
.modrm
& 0x0f) - 0x08)
6352 if (i386_record_floats (gdbarch
, &ir
,
6353 I387_ST0_REGNUM (tdep
) +
6354 ((ir
.modrm
& 0x0f) - 0x08)))
6360 if (0xe3 == ir
.modrm
)
6362 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_ENV
))
6365 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6367 if (i386_record_floats (gdbarch
, &ir
,
6368 I387_ST0_REGNUM (tdep
)))
6370 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6372 if (i386_record_floats (gdbarch
, &ir
,
6373 I387_ST0_REGNUM (tdep
) +
6377 else if ((ir
.modrm
& 0x0f) - 0x08)
6379 if (i386_record_floats (gdbarch
, &ir
,
6380 I387_ST0_REGNUM (tdep
) +
6381 ((ir
.modrm
& 0x0f) - 0x08)))
6387 if ((0x0c == ir
.modrm
>> 4)
6388 || (0x0d == ir
.modrm
>> 4)
6389 || (0x0f == ir
.modrm
>> 4))
6391 if ((ir
.modrm
& 0x0f) <= 7)
6393 if (i386_record_floats (gdbarch
, &ir
,
6394 I387_ST0_REGNUM (tdep
) +
6400 if (i386_record_floats (gdbarch
, &ir
,
6401 I387_ST0_REGNUM (tdep
) +
6402 ((ir
.modrm
& 0x0f) - 0x08)))
6408 if (0x0c == ir
.modrm
>> 4)
6410 if (i386_record_floats (gdbarch
, &ir
,
6411 I387_FTAG_REGNUM (tdep
)))
6414 else if ((0x0d == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6416 if ((ir
.modrm
& 0x0f) <= 7)
6418 if (i386_record_floats (gdbarch
, &ir
,
6419 I387_ST0_REGNUM (tdep
) +
6425 if (i386_record_floats (gdbarch
, &ir
,
6426 I386_SAVE_FPU_REGS
))
6432 if ((0x0c == ir
.modrm
>> 4)
6433 || (0x0e == ir
.modrm
>> 4)
6434 || (0x0f == ir
.modrm
>> 4)
6435 || (0xd9 == ir
.modrm
))
6437 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6442 if (0xe0 == ir
.modrm
)
6444 if (record_full_arch_list_add_reg (ir
.regcache
,
6448 else if ((0x0f == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6450 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6458 case 0xa4: /* movsS */
6460 case 0xaa: /* stosS */
6462 case 0x6c: /* insS */
6464 regcache_raw_read_unsigned (ir
.regcache
,
6465 ir
.regmap
[X86_RECORD_RECX_REGNUM
],
6471 if ((opcode
& 1) == 0)
6474 ir
.ot
= ir
.dflag
+ OT_WORD
;
6475 regcache_raw_read_unsigned (ir
.regcache
,
6476 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
6479 regcache_raw_read_unsigned (ir
.regcache
,
6480 ir
.regmap
[X86_RECORD_ES_REGNUM
],
6482 regcache_raw_read_unsigned (ir
.regcache
,
6483 ir
.regmap
[X86_RECORD_DS_REGNUM
],
6485 if (ir
.aflag
&& (es
!= ds
))
6487 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6488 if (record_full_memory_query
)
6491 Process record ignores the memory change of instruction at address %s\n\
6492 because it can't get the value of the segment register.\n\
6493 Do you want to stop the program?"),
6494 paddress (gdbarch
, ir
.orig_addr
)))
6500 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
6504 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6506 if (opcode
== 0xa4 || opcode
== 0xa5)
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6513 case 0xa6: /* cmpsS */
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6517 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6522 case 0xac: /* lodsS */
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6526 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6531 case 0xae: /* scasS */
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6534 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6539 case 0x6e: /* outsS */
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6542 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6547 case 0xe4: /* port I/O */
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6562 case 0xc2: /* ret im */
6563 case 0xc3: /* ret */
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6568 case 0xca: /* lret im */
6569 case 0xcb: /* lret */
6570 case 0xcf: /* iret */
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6576 case 0xe8: /* call im */
6577 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6579 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6583 case 0x9a: /* lcall im */
6584 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6590 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6594 case 0xe9: /* jmp im */
6595 case 0xea: /* ljmp im */
6596 case 0xeb: /* jmp Jb */
6597 case 0x70: /* jcc Jb */
6613 case 0x0f80: /* jcc Jv */
6631 case 0x0f90: /* setcc Gv */
6647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6649 if (i386_record_modrm (&ir
))
6652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
? (ir
.rm
| ir
.rex_b
)
6656 if (i386_record_lea_modrm (&ir
))
6661 case 0x0f40: /* cmov Gv, Ev */
6677 if (i386_record_modrm (&ir
))
6680 if (ir
.dflag
== OT_BYTE
)
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
6686 case 0x9c: /* pushf */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6688 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6690 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6694 case 0x9d: /* popf */
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6699 case 0x9e: /* sahf */
6700 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6706 case 0xf5: /* cmc */
6707 case 0xf8: /* clc */
6708 case 0xf9: /* stc */
6709 case 0xfc: /* cld */
6710 case 0xfd: /* std */
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6714 case 0x9f: /* lahf */
6715 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6724 /* bit operations */
6725 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6726 ir
.ot
= ir
.dflag
+ OT_WORD
;
6727 if (i386_record_modrm (&ir
))
6732 opcode
= opcode
<< 8 | ir
.modrm
;
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6741 if (i386_record_lea_modrm (&ir
))
6745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6748 case 0x0fa3: /* bt Gv, Ev */
6749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6752 case 0x0fab: /* bts */
6753 case 0x0fb3: /* btr */
6754 case 0x0fbb: /* btc */
6755 ir
.ot
= ir
.dflag
+ OT_WORD
;
6756 if (i386_record_modrm (&ir
))
6759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6763 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6765 regcache_raw_read_unsigned (ir
.regcache
,
6766 ir
.regmap
[ir
.reg
| rex_r
],
6771 addr64
+= ((int16_t) addr
>> 4) << 4;
6774 addr64
+= ((int32_t) addr
>> 5) << 5;
6777 addr64
+= ((int64_t) addr
>> 6) << 6;
6780 if (record_full_arch_list_add_mem (addr64
, 1 << ir
.ot
))
6782 if (i386_record_lea_modrm (&ir
))
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6788 case 0x0fbc: /* bsf */
6789 case 0x0fbd: /* bsr */
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6795 case 0x27: /* daa */
6796 case 0x2f: /* das */
6797 case 0x37: /* aaa */
6798 case 0x3f: /* aas */
6799 case 0xd4: /* aam */
6800 case 0xd5: /* aad */
6801 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6811 case 0x90: /* nop */
6812 if (prefixes
& PREFIX_LOCK
)
6819 case 0x9b: /* fwait */
6820 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
6822 opcode
= (uint32_t) opcode8
;
6828 case 0xcc: /* int3 */
6829 printf_unfiltered (_("Process record does not support instruction "
6836 case 0xcd: /* int */
6840 if (record_read_memory (gdbarch
, ir
.addr
, &interrupt
, 1))
6843 if (interrupt
!= 0x80
6844 || tdep
->i386_intx80_record
== NULL
)
6846 printf_unfiltered (_("Process record does not support "
6847 "instruction int 0x%02x.\n"),
6852 ret
= tdep
->i386_intx80_record (ir
.regcache
);
6859 case 0xce: /* into */
6860 printf_unfiltered (_("Process record does not support "
6861 "instruction into.\n"));
6866 case 0xfa: /* cli */
6867 case 0xfb: /* sti */
6870 case 0x62: /* bound */
6871 printf_unfiltered (_("Process record does not support "
6872 "instruction bound.\n"));
6877 case 0x0fc8: /* bswap reg */
6885 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 7) | ir
.rex_b
);
6888 case 0xd6: /* salc */
6889 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6898 case 0xe0: /* loopnz */
6899 case 0xe1: /* loopz */
6900 case 0xe2: /* loop */
6901 case 0xe3: /* jecxz */
6902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6906 case 0x0f30: /* wrmsr */
6907 printf_unfiltered (_("Process record does not support "
6908 "instruction wrmsr.\n"));
6913 case 0x0f32: /* rdmsr */
6914 printf_unfiltered (_("Process record does not support "
6915 "instruction rdmsr.\n"));
6920 case 0x0f31: /* rdtsc */
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
6925 case 0x0f34: /* sysenter */
6928 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6933 if (tdep
->i386_sysenter_record
== NULL
)
6935 printf_unfiltered (_("Process record does not support "
6936 "instruction sysenter.\n"));
6940 ret
= tdep
->i386_sysenter_record (ir
.regcache
);
6946 case 0x0f35: /* sysexit */
6947 printf_unfiltered (_("Process record does not support "
6948 "instruction sysexit.\n"));
6953 case 0x0f05: /* syscall */
6956 if (tdep
->i386_syscall_record
== NULL
)
6958 printf_unfiltered (_("Process record does not support "
6959 "instruction syscall.\n"));
6963 ret
= tdep
->i386_syscall_record (ir
.regcache
);
6969 case 0x0f07: /* sysret */
6970 printf_unfiltered (_("Process record does not support "
6971 "instruction sysret.\n"));
6976 case 0x0fa2: /* cpuid */
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
6983 case 0xf4: /* hlt */
6984 printf_unfiltered (_("Process record does not support "
6985 "instruction hlt.\n"));
6991 if (i386_record_modrm (&ir
))
6998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7002 if (i386_record_lea_modrm (&ir
))
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7015 opcode
= opcode
<< 8 | ir
.modrm
;
7022 if (i386_record_modrm (&ir
))
7033 opcode
= opcode
<< 8 | ir
.modrm
;
7036 if (ir
.override
>= 0)
7038 if (record_full_memory_query
)
7041 Process record ignores the memory change of instruction at address %s\n\
7042 because it can't get the value of the segment register.\n\
7043 Do you want to stop the program?"),
7044 paddress (gdbarch
, ir
.orig_addr
)))
7050 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7052 if (record_full_arch_list_add_mem (addr64
, 2))
7055 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7057 if (record_full_arch_list_add_mem (addr64
, 8))
7062 if (record_full_arch_list_add_mem (addr64
, 4))
7073 case 0: /* monitor */
7076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7080 opcode
= opcode
<< 8 | ir
.modrm
;
7088 if (ir
.override
>= 0)
7090 if (record_full_memory_query
)
7093 Process record ignores the memory change of instruction at address %s\n\
7094 because it can't get the value of the segment register.\n\
7095 Do you want to stop the program?"),
7096 paddress (gdbarch
, ir
.orig_addr
)))
7104 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7106 if (record_full_arch_list_add_mem (addr64
, 2))
7109 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7111 if (record_full_arch_list_add_mem (addr64
, 8))
7116 if (record_full_arch_list_add_mem (addr64
, 4))
7128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7133 else if (ir
.rm
== 1)
7141 opcode
= opcode
<< 8 | ir
.modrm
;
7148 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
| ir
.rex_b
))
7154 if (i386_record_lea_modrm (&ir
))
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7162 case 7: /* invlpg */
7165 if (ir
.rm
== 0 && ir
.regmap
[X86_RECORD_R8_REGNUM
])
7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
7170 opcode
= opcode
<< 8 | ir
.modrm
;
7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7179 opcode
= opcode
<< 8 | ir
.modrm
;
7185 case 0x0f08: /* invd */
7186 case 0x0f09: /* wbinvd */
7189 case 0x63: /* arpl */
7190 if (i386_record_modrm (&ir
))
7192 if (ir
.mod
== 3 || ir
.regmap
[X86_RECORD_R8_REGNUM
])
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.regmap
[X86_RECORD_R8_REGNUM
]
7195 ? (ir
.reg
| rex_r
) : ir
.rm
);
7199 ir
.ot
= ir
.dflag
? OT_LONG
: OT_WORD
;
7200 if (i386_record_lea_modrm (&ir
))
7203 if (!ir
.regmap
[X86_RECORD_R8_REGNUM
])
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7207 case 0x0f02: /* lar */
7208 case 0x0f03: /* lsl */
7209 if (i386_record_modrm (&ir
))
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7216 if (i386_record_modrm (&ir
))
7218 if (ir
.mod
== 3 && ir
.reg
== 3)
7221 opcode
= opcode
<< 8 | ir
.modrm
;
7233 /* nop (multi byte) */
7236 case 0x0f20: /* mov reg, crN */
7237 case 0x0f22: /* mov crN, reg */
7238 if (i386_record_modrm (&ir
))
7240 if ((ir
.modrm
& 0xc0) != 0xc0)
7243 opcode
= opcode
<< 8 | ir
.modrm
;
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7260 opcode
= opcode
<< 8 | ir
.modrm
;
7266 case 0x0f21: /* mov reg, drN */
7267 case 0x0f23: /* mov drN, reg */
7268 if (i386_record_modrm (&ir
))
7270 if ((ir
.modrm
& 0xc0) != 0xc0 || ir
.reg
== 4
7271 || ir
.reg
== 5 || ir
.reg
>= 8)
7274 opcode
= opcode
<< 8 | ir
.modrm
;
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7283 case 0x0f06: /* clts */
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7287 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7289 case 0x0f0d: /* 3DNow! prefetch */
7292 case 0x0f0e: /* 3DNow! femms */
7293 case 0x0f77: /* emms */
7294 if (i386_fpc_regnum_p (gdbarch
, I387_FTAG_REGNUM(tdep
)))
7296 record_full_arch_list_add_reg (ir
.regcache
, I387_FTAG_REGNUM(tdep
));
7299 case 0x0f0f: /* 3DNow! data */
7300 if (i386_record_modrm (&ir
))
7302 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7307 case 0x0c: /* 3DNow! pi2fw */
7308 case 0x0d: /* 3DNow! pi2fd */
7309 case 0x1c: /* 3DNow! pf2iw */
7310 case 0x1d: /* 3DNow! pf2id */
7311 case 0x8a: /* 3DNow! pfnacc */
7312 case 0x8e: /* 3DNow! pfpnacc */
7313 case 0x90: /* 3DNow! pfcmpge */
7314 case 0x94: /* 3DNow! pfmin */
7315 case 0x96: /* 3DNow! pfrcp */
7316 case 0x97: /* 3DNow! pfrsqrt */
7317 case 0x9a: /* 3DNow! pfsub */
7318 case 0x9e: /* 3DNow! pfadd */
7319 case 0xa0: /* 3DNow! pfcmpgt */
7320 case 0xa4: /* 3DNow! pfmax */
7321 case 0xa6: /* 3DNow! pfrcpit1 */
7322 case 0xa7: /* 3DNow! pfrsqit1 */
7323 case 0xaa: /* 3DNow! pfsubr */
7324 case 0xae: /* 3DNow! pfacc */
7325 case 0xb0: /* 3DNow! pfcmpeq */
7326 case 0xb4: /* 3DNow! pfmul */
7327 case 0xb6: /* 3DNow! pfrcpit2 */
7328 case 0xb7: /* 3DNow! pmulhrw */
7329 case 0xbb: /* 3DNow! pswapd */
7330 case 0xbf: /* 3DNow! pavgusb */
7331 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7332 goto no_support_3dnow_data
;
7333 record_full_arch_list_add_reg (ir
.regcache
, ir
.reg
);
7337 no_support_3dnow_data
:
7338 opcode
= (opcode
<< 8) | opcode8
;
7344 case 0x0faa: /* rsm */
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
7357 if (i386_record_modrm (&ir
))
7361 case 0: /* fxsave */
7365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7366 if (i386_record_lea_modrm_addr (&ir
, &tmpu64
))
7368 if (record_full_arch_list_add_mem (tmpu64
, 512))
7373 case 1: /* fxrstor */
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7379 for (i
= I387_MM0_REGNUM (tdep
);
7380 i386_mmx_regnum_p (gdbarch
, i
); i
++)
7381 record_full_arch_list_add_reg (ir
.regcache
, i
);
7383 for (i
= I387_XMM0_REGNUM (tdep
);
7384 i386_xmm_regnum_p (gdbarch
, i
); i
++)
7385 record_full_arch_list_add_reg (ir
.regcache
, i
);
7387 if (i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7388 record_full_arch_list_add_reg (ir
.regcache
,
7389 I387_MXCSR_REGNUM(tdep
));
7391 for (i
= I387_ST0_REGNUM (tdep
);
7392 i386_fp_regnum_p (gdbarch
, i
); i
++)
7393 record_full_arch_list_add_reg (ir
.regcache
, i
);
7395 for (i
= I387_FCTRL_REGNUM (tdep
);
7396 i386_fpc_regnum_p (gdbarch
, i
); i
++)
7397 record_full_arch_list_add_reg (ir
.regcache
, i
);
7401 case 2: /* ldmxcsr */
7402 if (!i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7404 record_full_arch_list_add_reg (ir
.regcache
, I387_MXCSR_REGNUM(tdep
));
7407 case 3: /* stmxcsr */
7409 if (i386_record_lea_modrm (&ir
))
7413 case 5: /* lfence */
7414 case 6: /* mfence */
7415 case 7: /* sfence clflush */
7419 opcode
= (opcode
<< 8) | ir
.modrm
;
7425 case 0x0fc3: /* movnti */
7426 ir
.ot
= (ir
.dflag
== 2) ? OT_QUAD
: OT_LONG
;
7427 if (i386_record_modrm (&ir
))
7432 if (i386_record_lea_modrm (&ir
))
7436 /* Add prefix to opcode. */
7551 /* Mask out PREFIX_ADDR. */
7552 switch ((prefixes
& ~PREFIX_ADDR
))
7564 reswitch_prefix_add
:
7572 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7575 opcode
= (uint32_t) opcode8
| opcode
<< 8;
7576 goto reswitch_prefix_add
;
7579 case 0x0f10: /* movups */
7580 case 0x660f10: /* movupd */
7581 case 0xf30f10: /* movss */
7582 case 0xf20f10: /* movsd */
7583 case 0x0f12: /* movlps */
7584 case 0x660f12: /* movlpd */
7585 case 0xf30f12: /* movsldup */
7586 case 0xf20f12: /* movddup */
7587 case 0x0f14: /* unpcklps */
7588 case 0x660f14: /* unpcklpd */
7589 case 0x0f15: /* unpckhps */
7590 case 0x660f15: /* unpckhpd */
7591 case 0x0f16: /* movhps */
7592 case 0x660f16: /* movhpd */
7593 case 0xf30f16: /* movshdup */
7594 case 0x0f28: /* movaps */
7595 case 0x660f28: /* movapd */
7596 case 0x0f2a: /* cvtpi2ps */
7597 case 0x660f2a: /* cvtpi2pd */
7598 case 0xf30f2a: /* cvtsi2ss */
7599 case 0xf20f2a: /* cvtsi2sd */
7600 case 0x0f2c: /* cvttps2pi */
7601 case 0x660f2c: /* cvttpd2pi */
7602 case 0x0f2d: /* cvtps2pi */
7603 case 0x660f2d: /* cvtpd2pi */
7604 case 0x660f3800: /* pshufb */
7605 case 0x660f3801: /* phaddw */
7606 case 0x660f3802: /* phaddd */
7607 case 0x660f3803: /* phaddsw */
7608 case 0x660f3804: /* pmaddubsw */
7609 case 0x660f3805: /* phsubw */
7610 case 0x660f3806: /* phsubd */
7611 case 0x660f3807: /* phsubsw */
7612 case 0x660f3808: /* psignb */
7613 case 0x660f3809: /* psignw */
7614 case 0x660f380a: /* psignd */
7615 case 0x660f380b: /* pmulhrsw */
7616 case 0x660f3810: /* pblendvb */
7617 case 0x660f3814: /* blendvps */
7618 case 0x660f3815: /* blendvpd */
7619 case 0x660f381c: /* pabsb */
7620 case 0x660f381d: /* pabsw */
7621 case 0x660f381e: /* pabsd */
7622 case 0x660f3820: /* pmovsxbw */
7623 case 0x660f3821: /* pmovsxbd */
7624 case 0x660f3822: /* pmovsxbq */
7625 case 0x660f3823: /* pmovsxwd */
7626 case 0x660f3824: /* pmovsxwq */
7627 case 0x660f3825: /* pmovsxdq */
7628 case 0x660f3828: /* pmuldq */
7629 case 0x660f3829: /* pcmpeqq */
7630 case 0x660f382a: /* movntdqa */
7631 case 0x660f3a08: /* roundps */
7632 case 0x660f3a09: /* roundpd */
7633 case 0x660f3a0a: /* roundss */
7634 case 0x660f3a0b: /* roundsd */
7635 case 0x660f3a0c: /* blendps */
7636 case 0x660f3a0d: /* blendpd */
7637 case 0x660f3a0e: /* pblendw */
7638 case 0x660f3a0f: /* palignr */
7639 case 0x660f3a20: /* pinsrb */
7640 case 0x660f3a21: /* insertps */
7641 case 0x660f3a22: /* pinsrd pinsrq */
7642 case 0x660f3a40: /* dpps */
7643 case 0x660f3a41: /* dppd */
7644 case 0x660f3a42: /* mpsadbw */
7645 case 0x660f3a60: /* pcmpestrm */
7646 case 0x660f3a61: /* pcmpestri */
7647 case 0x660f3a62: /* pcmpistrm */
7648 case 0x660f3a63: /* pcmpistri */
7649 case 0x0f51: /* sqrtps */
7650 case 0x660f51: /* sqrtpd */
7651 case 0xf20f51: /* sqrtsd */
7652 case 0xf30f51: /* sqrtss */
7653 case 0x0f52: /* rsqrtps */
7654 case 0xf30f52: /* rsqrtss */
7655 case 0x0f53: /* rcpps */
7656 case 0xf30f53: /* rcpss */
7657 case 0x0f54: /* andps */
7658 case 0x660f54: /* andpd */
7659 case 0x0f55: /* andnps */
7660 case 0x660f55: /* andnpd */
7661 case 0x0f56: /* orps */
7662 case 0x660f56: /* orpd */
7663 case 0x0f57: /* xorps */
7664 case 0x660f57: /* xorpd */
7665 case 0x0f58: /* addps */
7666 case 0x660f58: /* addpd */
7667 case 0xf20f58: /* addsd */
7668 case 0xf30f58: /* addss */
7669 case 0x0f59: /* mulps */
7670 case 0x660f59: /* mulpd */
7671 case 0xf20f59: /* mulsd */
7672 case 0xf30f59: /* mulss */
7673 case 0x0f5a: /* cvtps2pd */
7674 case 0x660f5a: /* cvtpd2ps */
7675 case 0xf20f5a: /* cvtsd2ss */
7676 case 0xf30f5a: /* cvtss2sd */
7677 case 0x0f5b: /* cvtdq2ps */
7678 case 0x660f5b: /* cvtps2dq */
7679 case 0xf30f5b: /* cvttps2dq */
7680 case 0x0f5c: /* subps */
7681 case 0x660f5c: /* subpd */
7682 case 0xf20f5c: /* subsd */
7683 case 0xf30f5c: /* subss */
7684 case 0x0f5d: /* minps */
7685 case 0x660f5d: /* minpd */
7686 case 0xf20f5d: /* minsd */
7687 case 0xf30f5d: /* minss */
7688 case 0x0f5e: /* divps */
7689 case 0x660f5e: /* divpd */
7690 case 0xf20f5e: /* divsd */
7691 case 0xf30f5e: /* divss */
7692 case 0x0f5f: /* maxps */
7693 case 0x660f5f: /* maxpd */
7694 case 0xf20f5f: /* maxsd */
7695 case 0xf30f5f: /* maxss */
7696 case 0x660f60: /* punpcklbw */
7697 case 0x660f61: /* punpcklwd */
7698 case 0x660f62: /* punpckldq */
7699 case 0x660f63: /* packsswb */
7700 case 0x660f64: /* pcmpgtb */
7701 case 0x660f65: /* pcmpgtw */
7702 case 0x660f66: /* pcmpgtd */
7703 case 0x660f67: /* packuswb */
7704 case 0x660f68: /* punpckhbw */
7705 case 0x660f69: /* punpckhwd */
7706 case 0x660f6a: /* punpckhdq */
7707 case 0x660f6b: /* packssdw */
7708 case 0x660f6c: /* punpcklqdq */
7709 case 0x660f6d: /* punpckhqdq */
7710 case 0x660f6e: /* movd */
7711 case 0x660f6f: /* movdqa */
7712 case 0xf30f6f: /* movdqu */
7713 case 0x660f70: /* pshufd */
7714 case 0xf20f70: /* pshuflw */
7715 case 0xf30f70: /* pshufhw */
7716 case 0x660f74: /* pcmpeqb */
7717 case 0x660f75: /* pcmpeqw */
7718 case 0x660f76: /* pcmpeqd */
7719 case 0x660f7c: /* haddpd */
7720 case 0xf20f7c: /* haddps */
7721 case 0x660f7d: /* hsubpd */
7722 case 0xf20f7d: /* hsubps */
7723 case 0xf30f7e: /* movq */
7724 case 0x0fc2: /* cmpps */
7725 case 0x660fc2: /* cmppd */
7726 case 0xf20fc2: /* cmpsd */
7727 case 0xf30fc2: /* cmpss */
7728 case 0x660fc4: /* pinsrw */
7729 case 0x0fc6: /* shufps */
7730 case 0x660fc6: /* shufpd */
7731 case 0x660fd0: /* addsubpd */
7732 case 0xf20fd0: /* addsubps */
7733 case 0x660fd1: /* psrlw */
7734 case 0x660fd2: /* psrld */
7735 case 0x660fd3: /* psrlq */
7736 case 0x660fd4: /* paddq */
7737 case 0x660fd5: /* pmullw */
7738 case 0xf30fd6: /* movq2dq */
7739 case 0x660fd8: /* psubusb */
7740 case 0x660fd9: /* psubusw */
7741 case 0x660fda: /* pminub */
7742 case 0x660fdb: /* pand */
7743 case 0x660fdc: /* paddusb */
7744 case 0x660fdd: /* paddusw */
7745 case 0x660fde: /* pmaxub */
7746 case 0x660fdf: /* pandn */
7747 case 0x660fe0: /* pavgb */
7748 case 0x660fe1: /* psraw */
7749 case 0x660fe2: /* psrad */
7750 case 0x660fe3: /* pavgw */
7751 case 0x660fe4: /* pmulhuw */
7752 case 0x660fe5: /* pmulhw */
7753 case 0x660fe6: /* cvttpd2dq */
7754 case 0xf20fe6: /* cvtpd2dq */
7755 case 0xf30fe6: /* cvtdq2pd */
7756 case 0x660fe8: /* psubsb */
7757 case 0x660fe9: /* psubsw */
7758 case 0x660fea: /* pminsw */
7759 case 0x660feb: /* por */
7760 case 0x660fec: /* paddsb */
7761 case 0x660fed: /* paddsw */
7762 case 0x660fee: /* pmaxsw */
7763 case 0x660fef: /* pxor */
7764 case 0xf20ff0: /* lddqu */
7765 case 0x660ff1: /* psllw */
7766 case 0x660ff2: /* pslld */
7767 case 0x660ff3: /* psllq */
7768 case 0x660ff4: /* pmuludq */
7769 case 0x660ff5: /* pmaddwd */
7770 case 0x660ff6: /* psadbw */
7771 case 0x660ff8: /* psubb */
7772 case 0x660ff9: /* psubw */
7773 case 0x660ffa: /* psubd */
7774 case 0x660ffb: /* psubq */
7775 case 0x660ffc: /* paddb */
7776 case 0x660ffd: /* paddw */
7777 case 0x660ffe: /* paddd */
7778 if (i386_record_modrm (&ir
))
7781 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.reg
))
7783 record_full_arch_list_add_reg (ir
.regcache
,
7784 I387_XMM0_REGNUM (tdep
) + ir
.reg
);
7785 if ((opcode
& 0xfffffffc) == 0x660f3a60)
7786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7789 case 0x0f11: /* movups */
7790 case 0x660f11: /* movupd */
7791 case 0xf30f11: /* movss */
7792 case 0xf20f11: /* movsd */
7793 case 0x0f13: /* movlps */
7794 case 0x660f13: /* movlpd */
7795 case 0x0f17: /* movhps */
7796 case 0x660f17: /* movhpd */
7797 case 0x0f29: /* movaps */
7798 case 0x660f29: /* movapd */
7799 case 0x660f3a14: /* pextrb */
7800 case 0x660f3a15: /* pextrw */
7801 case 0x660f3a16: /* pextrd pextrq */
7802 case 0x660f3a17: /* extractps */
7803 case 0x660f7f: /* movdqa */
7804 case 0xf30f7f: /* movdqu */
7805 if (i386_record_modrm (&ir
))
7809 if (opcode
== 0x0f13 || opcode
== 0x660f13
7810 || opcode
== 0x0f17 || opcode
== 0x660f17)
7813 if (!i386_xmm_regnum_p (gdbarch
,
7814 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
7816 record_full_arch_list_add_reg (ir
.regcache
,
7817 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
7839 if (i386_record_lea_modrm (&ir
))
7844 case 0x0f2b: /* movntps */
7845 case 0x660f2b: /* movntpd */
7846 case 0x0fe7: /* movntq */
7847 case 0x660fe7: /* movntdq */
7850 if (opcode
== 0x0fe7)
7854 if (i386_record_lea_modrm (&ir
))
7858 case 0xf30f2c: /* cvttss2si */
7859 case 0xf20f2c: /* cvttsd2si */
7860 case 0xf30f2d: /* cvtss2si */
7861 case 0xf20f2d: /* cvtsd2si */
7862 case 0xf20f38f0: /* crc32 */
7863 case 0xf20f38f1: /* crc32 */
7864 case 0x0f50: /* movmskps */
7865 case 0x660f50: /* movmskpd */
7866 case 0x0fc5: /* pextrw */
7867 case 0x660fc5: /* pextrw */
7868 case 0x0fd7: /* pmovmskb */
7869 case 0x660fd7: /* pmovmskb */
7870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7873 case 0x0f3800: /* pshufb */
7874 case 0x0f3801: /* phaddw */
7875 case 0x0f3802: /* phaddd */
7876 case 0x0f3803: /* phaddsw */
7877 case 0x0f3804: /* pmaddubsw */
7878 case 0x0f3805: /* phsubw */
7879 case 0x0f3806: /* phsubd */
7880 case 0x0f3807: /* phsubsw */
7881 case 0x0f3808: /* psignb */
7882 case 0x0f3809: /* psignw */
7883 case 0x0f380a: /* psignd */
7884 case 0x0f380b: /* pmulhrsw */
7885 case 0x0f381c: /* pabsb */
7886 case 0x0f381d: /* pabsw */
7887 case 0x0f381e: /* pabsd */
7888 case 0x0f382b: /* packusdw */
7889 case 0x0f3830: /* pmovzxbw */
7890 case 0x0f3831: /* pmovzxbd */
7891 case 0x0f3832: /* pmovzxbq */
7892 case 0x0f3833: /* pmovzxwd */
7893 case 0x0f3834: /* pmovzxwq */
7894 case 0x0f3835: /* pmovzxdq */
7895 case 0x0f3837: /* pcmpgtq */
7896 case 0x0f3838: /* pminsb */
7897 case 0x0f3839: /* pminsd */
7898 case 0x0f383a: /* pminuw */
7899 case 0x0f383b: /* pminud */
7900 case 0x0f383c: /* pmaxsb */
7901 case 0x0f383d: /* pmaxsd */
7902 case 0x0f383e: /* pmaxuw */
7903 case 0x0f383f: /* pmaxud */
7904 case 0x0f3840: /* pmulld */
7905 case 0x0f3841: /* phminposuw */
7906 case 0x0f3a0f: /* palignr */
7907 case 0x0f60: /* punpcklbw */
7908 case 0x0f61: /* punpcklwd */
7909 case 0x0f62: /* punpckldq */
7910 case 0x0f63: /* packsswb */
7911 case 0x0f64: /* pcmpgtb */
7912 case 0x0f65: /* pcmpgtw */
7913 case 0x0f66: /* pcmpgtd */
7914 case 0x0f67: /* packuswb */
7915 case 0x0f68: /* punpckhbw */
7916 case 0x0f69: /* punpckhwd */
7917 case 0x0f6a: /* punpckhdq */
7918 case 0x0f6b: /* packssdw */
7919 case 0x0f6e: /* movd */
7920 case 0x0f6f: /* movq */
7921 case 0x0f70: /* pshufw */
7922 case 0x0f74: /* pcmpeqb */
7923 case 0x0f75: /* pcmpeqw */
7924 case 0x0f76: /* pcmpeqd */
7925 case 0x0fc4: /* pinsrw */
7926 case 0x0fd1: /* psrlw */
7927 case 0x0fd2: /* psrld */
7928 case 0x0fd3: /* psrlq */
7929 case 0x0fd4: /* paddq */
7930 case 0x0fd5: /* pmullw */
7931 case 0xf20fd6: /* movdq2q */
7932 case 0x0fd8: /* psubusb */
7933 case 0x0fd9: /* psubusw */
7934 case 0x0fda: /* pminub */
7935 case 0x0fdb: /* pand */
7936 case 0x0fdc: /* paddusb */
7937 case 0x0fdd: /* paddusw */
7938 case 0x0fde: /* pmaxub */
7939 case 0x0fdf: /* pandn */
7940 case 0x0fe0: /* pavgb */
7941 case 0x0fe1: /* psraw */
7942 case 0x0fe2: /* psrad */
7943 case 0x0fe3: /* pavgw */
7944 case 0x0fe4: /* pmulhuw */
7945 case 0x0fe5: /* pmulhw */
7946 case 0x0fe8: /* psubsb */
7947 case 0x0fe9: /* psubsw */
7948 case 0x0fea: /* pminsw */
7949 case 0x0feb: /* por */
7950 case 0x0fec: /* paddsb */
7951 case 0x0fed: /* paddsw */
7952 case 0x0fee: /* pmaxsw */
7953 case 0x0fef: /* pxor */
7954 case 0x0ff1: /* psllw */
7955 case 0x0ff2: /* pslld */
7956 case 0x0ff3: /* psllq */
7957 case 0x0ff4: /* pmuludq */
7958 case 0x0ff5: /* pmaddwd */
7959 case 0x0ff6: /* psadbw */
7960 case 0x0ff8: /* psubb */
7961 case 0x0ff9: /* psubw */
7962 case 0x0ffa: /* psubd */
7963 case 0x0ffb: /* psubq */
7964 case 0x0ffc: /* paddb */
7965 case 0x0ffd: /* paddw */
7966 case 0x0ffe: /* paddd */
7967 if (i386_record_modrm (&ir
))
7969 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7971 record_full_arch_list_add_reg (ir
.regcache
,
7972 I387_MM0_REGNUM (tdep
) + ir
.reg
);
7975 case 0x0f71: /* psllw */
7976 case 0x0f72: /* pslld */
7977 case 0x0f73: /* psllq */
7978 if (i386_record_modrm (&ir
))
7980 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
7982 record_full_arch_list_add_reg (ir
.regcache
,
7983 I387_MM0_REGNUM (tdep
) + ir
.rm
);
7986 case 0x660f71: /* psllw */
7987 case 0x660f72: /* pslld */
7988 case 0x660f73: /* psllq */
7989 if (i386_record_modrm (&ir
))
7992 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.rm
))
7994 record_full_arch_list_add_reg (ir
.regcache
,
7995 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
7998 case 0x0f7e: /* movd */
7999 case 0x660f7e: /* movd */
8000 if (i386_record_modrm (&ir
))
8003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
8010 if (i386_record_lea_modrm (&ir
))
8015 case 0x0f7f: /* movq */
8016 if (i386_record_modrm (&ir
))
8020 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8022 record_full_arch_list_add_reg (ir
.regcache
,
8023 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8028 if (i386_record_lea_modrm (&ir
))
8033 case 0xf30fb8: /* popcnt */
8034 if (i386_record_modrm (&ir
))
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8040 case 0x660fd6: /* movq */
8041 if (i386_record_modrm (&ir
))
8046 if (!i386_xmm_regnum_p (gdbarch
,
8047 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8049 record_full_arch_list_add_reg (ir
.regcache
,
8050 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8055 if (i386_record_lea_modrm (&ir
))
8060 case 0x660f3817: /* ptest */
8061 case 0x0f2e: /* ucomiss */
8062 case 0x660f2e: /* ucomisd */
8063 case 0x0f2f: /* comiss */
8064 case 0x660f2f: /* comisd */
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8068 case 0x0ff7: /* maskmovq */
8069 regcache_raw_read_unsigned (ir
.regcache
,
8070 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8072 if (record_full_arch_list_add_mem (addr
, 64))
8076 case 0x660ff7: /* maskmovdqu */
8077 regcache_raw_read_unsigned (ir
.regcache
,
8078 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8080 if (record_full_arch_list_add_mem (addr
, 128))
8095 /* In the future, maybe still need to deal with need_dasm. */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM
);
8097 if (record_full_arch_list_add_end ())
8103 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8104 "at address %s.\n"),
8105 (unsigned int) (opcode
),
8106 paddress (gdbarch
, ir
.orig_addr
));
8110 static const int i386_record_regmap
[] =
8112 I386_EAX_REGNUM
, I386_ECX_REGNUM
, I386_EDX_REGNUM
, I386_EBX_REGNUM
,
8113 I386_ESP_REGNUM
, I386_EBP_REGNUM
, I386_ESI_REGNUM
, I386_EDI_REGNUM
,
8114 0, 0, 0, 0, 0, 0, 0, 0,
8115 I386_EIP_REGNUM
, I386_EFLAGS_REGNUM
, I386_CS_REGNUM
, I386_SS_REGNUM
,
8116 I386_DS_REGNUM
, I386_ES_REGNUM
, I386_FS_REGNUM
, I386_GS_REGNUM
8119 /* Check that the given address appears suitable for a fast
8120 tracepoint, which on x86-64 means that we need an instruction of at
8121 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8122 jump and not have to worry about program jumps to an address in the
8123 middle of the tracepoint jump. On x86, it may be possible to use
8124 4-byte jumps with a 2-byte offset to a trampoline located in the
8125 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8126 of instruction to replace, and 0 if not, plus an explanatory
8130 i386_fast_tracepoint_valid_at (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
8135 /* Ask the target for the minimum instruction length supported. */
8136 jumplen
= target_get_min_fast_tracepoint_insn_len ();
8140 /* If the target does not support the get_min_fast_tracepoint_insn_len
8141 operation, assume that fast tracepoints will always be implemented
8142 using 4-byte relative jumps on both x86 and x86-64. */
8145 else if (jumplen
== 0)
8147 /* If the target does support get_min_fast_tracepoint_insn_len but
8148 returns zero, then the IPA has not loaded yet. In this case,
8149 we optimistically assume that truncated 2-byte relative jumps
8150 will be available on x86, and compensate later if this assumption
8151 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8152 jumps will always be used. */
8153 jumplen
= (register_size (gdbarch
, 0) == 8) ? 5 : 4;
8156 /* Check for fit. */
8157 len
= gdb_insn_length (gdbarch
, addr
);
8161 /* Return a bit of target-specific detail to add to the caller's
8162 generic failure message. */
8164 *msg
= string_printf (_("; instruction is only %d bytes long, "
8165 "need at least %d bytes for the jump"),
8177 /* Return a floating-point format for a floating-point variable of
8178 length LEN in bits. If non-NULL, NAME is the name of its type.
8179 If no suitable type is found, return NULL. */
8181 static const struct floatformat
**
8182 i386_floatformat_for_type (struct gdbarch
*gdbarch
,
8183 const char *name
, int len
)
8185 if (len
== 128 && name
)
8186 if (strcmp (name
, "__float128") == 0
8187 || strcmp (name
, "_Float128") == 0
8188 || strcmp (name
, "complex _Float128") == 0
8189 || strcmp (name
, "complex(kind=16)") == 0
8190 || strcmp (name
, "real(kind=16)") == 0)
8191 return floatformats_ia64_quad
;
8193 return default_floatformat_for_type (gdbarch
, name
, len
);
8197 i386_validate_tdesc_p (struct gdbarch_tdep
*tdep
,
8198 struct tdesc_arch_data
*tdesc_data
)
8200 const struct target_desc
*tdesc
= tdep
->tdesc
;
8201 const struct tdesc_feature
*feature_core
;
8203 const struct tdesc_feature
*feature_sse
, *feature_avx
, *feature_mpx
,
8204 *feature_avx512
, *feature_pkeys
, *feature_segments
;
8205 int i
, num_regs
, valid_p
;
8207 if (! tdesc_has_registers (tdesc
))
8210 /* Get core registers. */
8211 feature_core
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.core");
8212 if (feature_core
== NULL
)
8215 /* Get SSE registers. */
8216 feature_sse
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.sse");
8218 /* Try AVX registers. */
8219 feature_avx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx");
8221 /* Try MPX registers. */
8222 feature_mpx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx");
8224 /* Try AVX512 registers. */
8225 feature_avx512
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx512");
8227 /* Try segment base registers. */
8228 feature_segments
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.segments");
8231 feature_pkeys
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.pkeys");
8235 /* The XCR0 bits. */
8238 /* AVX512 register description requires AVX register description. */
8242 tdep
->xcr0
= X86_XSTATE_AVX_AVX512_MASK
;
8244 /* It may have been set by OSABI initialization function. */
8245 if (tdep
->k0_regnum
< 0)
8247 tdep
->k_register_names
= i386_k_names
;
8248 tdep
->k0_regnum
= I386_K0_REGNUM
;
8251 for (i
= 0; i
< I387_NUM_K_REGS
; i
++)
8252 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8253 tdep
->k0_regnum
+ i
,
8256 if (tdep
->num_zmm_regs
== 0)
8258 tdep
->zmmh_register_names
= i386_zmmh_names
;
8259 tdep
->num_zmm_regs
= 8;
8260 tdep
->zmm0h_regnum
= I386_ZMM0H_REGNUM
;
8263 for (i
= 0; i
< tdep
->num_zmm_regs
; i
++)
8264 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8265 tdep
->zmm0h_regnum
+ i
,
8266 tdep
->zmmh_register_names
[i
]);
8268 for (i
= 0; i
< tdep
->num_xmm_avx512_regs
; i
++)
8269 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8270 tdep
->xmm16_regnum
+ i
,
8271 tdep
->xmm_avx512_register_names
[i
]);
8273 for (i
= 0; i
< tdep
->num_ymm_avx512_regs
; i
++)
8274 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8275 tdep
->ymm16h_regnum
+ i
,
8276 tdep
->ymm16h_register_names
[i
]);
8280 /* AVX register description requires SSE register description. */
8284 if (!feature_avx512
)
8285 tdep
->xcr0
= X86_XSTATE_AVX_MASK
;
8287 /* It may have been set by OSABI initialization function. */
8288 if (tdep
->num_ymm_regs
== 0)
8290 tdep
->ymmh_register_names
= i386_ymmh_names
;
8291 tdep
->num_ymm_regs
= 8;
8292 tdep
->ymm0h_regnum
= I386_YMM0H_REGNUM
;
8295 for (i
= 0; i
< tdep
->num_ymm_regs
; i
++)
8296 valid_p
&= tdesc_numbered_register (feature_avx
, tdesc_data
,
8297 tdep
->ymm0h_regnum
+ i
,
8298 tdep
->ymmh_register_names
[i
]);
8300 else if (feature_sse
)
8301 tdep
->xcr0
= X86_XSTATE_SSE_MASK
;
8304 tdep
->xcr0
= X86_XSTATE_X87_MASK
;
8305 tdep
->num_xmm_regs
= 0;
8308 num_regs
= tdep
->num_core_regs
;
8309 for (i
= 0; i
< num_regs
; i
++)
8310 valid_p
&= tdesc_numbered_register (feature_core
, tdesc_data
, i
,
8311 tdep
->register_names
[i
]);
8315 /* Need to include %mxcsr, so add one. */
8316 num_regs
+= tdep
->num_xmm_regs
+ 1;
8317 for (; i
< num_regs
; i
++)
8318 valid_p
&= tdesc_numbered_register (feature_sse
, tdesc_data
, i
,
8319 tdep
->register_names
[i
]);
8324 tdep
->xcr0
|= X86_XSTATE_MPX_MASK
;
8326 if (tdep
->bnd0r_regnum
< 0)
8328 tdep
->mpx_register_names
= i386_mpx_names
;
8329 tdep
->bnd0r_regnum
= I386_BND0R_REGNUM
;
8330 tdep
->bndcfgu_regnum
= I386_BNDCFGU_REGNUM
;
8333 for (i
= 0; i
< I387_NUM_MPX_REGS
; i
++)
8334 valid_p
&= tdesc_numbered_register (feature_mpx
, tdesc_data
,
8335 I387_BND0R_REGNUM (tdep
) + i
,
8336 tdep
->mpx_register_names
[i
]);
8339 if (feature_segments
)
8341 if (tdep
->fsbase_regnum
< 0)
8342 tdep
->fsbase_regnum
= I386_FSBASE_REGNUM
;
8343 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8344 tdep
->fsbase_regnum
, "fs_base");
8345 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8346 tdep
->fsbase_regnum
+ 1, "gs_base");
8351 tdep
->xcr0
|= X86_XSTATE_PKRU
;
8352 if (tdep
->pkru_regnum
< 0)
8354 tdep
->pkeys_register_names
= i386_pkeys_names
;
8355 tdep
->pkru_regnum
= I386_PKRU_REGNUM
;
8356 tdep
->num_pkeys_regs
= 1;
8359 for (i
= 0; i
< I387_NUM_PKEYS_REGS
; i
++)
8360 valid_p
&= tdesc_numbered_register (feature_pkeys
, tdesc_data
,
8361 I387_PKRU_REGNUM (tdep
) + i
,
8362 tdep
->pkeys_register_names
[i
]);
8370 /* Implement the type_align gdbarch function. */
8373 i386_type_align (struct gdbarch
*gdbarch
, struct type
*type
)
8375 type
= check_typedef (type
);
8377 if (gdbarch_ptr_bit (gdbarch
) == 32)
8379 if ((TYPE_CODE (type
) == TYPE_CODE_INT
8380 || TYPE_CODE (type
) == TYPE_CODE_FLT
)
8381 && TYPE_LENGTH (type
) > 4)
8384 /* Handle x86's funny long double. */
8385 if (TYPE_CODE (type
) == TYPE_CODE_FLT
8386 && gdbarch_long_double_bit (gdbarch
) == TYPE_LENGTH (type
) * 8)
8394 /* Note: This is called for both i386 and amd64. */
8396 static struct gdbarch
*
8397 i386_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
8399 struct gdbarch_tdep
*tdep
;
8400 struct gdbarch
*gdbarch
;
8401 struct tdesc_arch_data
*tdesc_data
;
8402 const struct target_desc
*tdesc
;
8408 /* If there is already a candidate, use it. */
8409 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
8411 return arches
->gdbarch
;
8413 /* Allocate space for the new architecture. Assume i386 for now. */
8414 tdep
= XCNEW (struct gdbarch_tdep
);
8415 gdbarch
= gdbarch_alloc (&info
, tdep
);
8417 /* General-purpose registers. */
8418 tdep
->gregset_reg_offset
= NULL
;
8419 tdep
->gregset_num_regs
= I386_NUM_GREGS
;
8420 tdep
->sizeof_gregset
= 0;
8422 /* Floating-point registers. */
8423 tdep
->sizeof_fpregset
= I387_SIZEOF_FSAVE
;
8424 tdep
->fpregset
= &i386_fpregset
;
8426 /* The default settings include the FPU registers, the MMX registers
8427 and the SSE registers. This can be overridden for a specific ABI
8428 by adjusting the members `st0_regnum', `mm0_regnum' and
8429 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8430 will show up in the output of "info all-registers". */
8432 tdep
->st0_regnum
= I386_ST0_REGNUM
;
8434 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8435 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
8437 tdep
->jb_pc_offset
= -1;
8438 tdep
->struct_return
= pcc_struct_return
;
8439 tdep
->sigtramp_start
= 0;
8440 tdep
->sigtramp_end
= 0;
8441 tdep
->sigtramp_p
= i386_sigtramp_p
;
8442 tdep
->sigcontext_addr
= NULL
;
8443 tdep
->sc_reg_offset
= NULL
;
8444 tdep
->sc_pc_offset
= -1;
8445 tdep
->sc_sp_offset
= -1;
8447 tdep
->xsave_xcr0_offset
= -1;
8449 tdep
->record_regmap
= i386_record_regmap
;
8451 set_gdbarch_type_align (gdbarch
, i386_type_align
);
8453 /* The format used for `long double' on almost all i386 targets is
8454 the i387 extended floating-point format. In fact, of all targets
8455 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8456 on having a `long double' that's not `long' at all. */
8457 set_gdbarch_long_double_format (gdbarch
, floatformats_i387_ext
);
8459 /* Although the i387 extended floating-point has only 80 significant
8460 bits, a `long double' actually takes up 96, probably to enforce
8462 set_gdbarch_long_double_bit (gdbarch
, 96);
8464 /* Support for floating-point data type variants. */
8465 set_gdbarch_floatformat_for_type (gdbarch
, i386_floatformat_for_type
);
8467 /* Register numbers of various important registers. */
8468 set_gdbarch_sp_regnum (gdbarch
, I386_ESP_REGNUM
); /* %esp */
8469 set_gdbarch_pc_regnum (gdbarch
, I386_EIP_REGNUM
); /* %eip */
8470 set_gdbarch_ps_regnum (gdbarch
, I386_EFLAGS_REGNUM
); /* %eflags */
8471 set_gdbarch_fp0_regnum (gdbarch
, I386_ST0_REGNUM
); /* %st(0) */
8473 /* NOTE: kettenis/20040418: GCC does have two possible register
8474 numbering schemes on the i386: dbx and SVR4. These schemes
8475 differ in how they number %ebp, %esp, %eflags, and the
8476 floating-point registers, and are implemented by the arrays
8477 dbx_register_map[] and svr4_dbx_register_map in
8478 gcc/config/i386.c. GCC also defines a third numbering scheme in
8479 gcc/config/i386.c, which it designates as the "default" register
8480 map used in 64bit mode. This last register numbering scheme is
8481 implemented in dbx64_register_map, and is used for AMD64; see
8484 Currently, each GCC i386 target always uses the same register
8485 numbering scheme across all its supported debugging formats
8486 i.e. SDB (COFF), stabs and DWARF 2. This is because
8487 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8488 DBX_REGISTER_NUMBER macro which is defined by each target's
8489 respective config header in a manner independent of the requested
8490 output debugging format.
8492 This does not match the arrangement below, which presumes that
8493 the SDB and stabs numbering schemes differ from the DWARF and
8494 DWARF 2 ones. The reason for this arrangement is that it is
8495 likely to get the numbering scheme for the target's
8496 default/native debug format right. For targets where GCC is the
8497 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8498 targets where the native toolchain uses a different numbering
8499 scheme for a particular debug format (stabs-in-ELF on Solaris)
8500 the defaults below will have to be overridden, like
8501 i386_elf_init_abi() does. */
8503 /* Use the dbx register numbering scheme for stabs and COFF. */
8504 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8505 set_gdbarch_sdb_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8507 /* Use the SVR4 register numbering scheme for DWARF 2. */
8508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, i386_svr4_dwarf_reg_to_regnum
);
8510 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8511 be in use on any of the supported i386 targets. */
8513 set_gdbarch_print_float_info (gdbarch
, i387_print_float_info
);
8515 set_gdbarch_get_longjmp_target (gdbarch
, i386_get_longjmp_target
);
8517 /* Call dummy code. */
8518 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
8519 set_gdbarch_push_dummy_code (gdbarch
, i386_push_dummy_code
);
8520 set_gdbarch_push_dummy_call (gdbarch
, i386_push_dummy_call
);
8521 set_gdbarch_frame_align (gdbarch
, i386_frame_align
);
8523 set_gdbarch_convert_register_p (gdbarch
, i386_convert_register_p
);
8524 set_gdbarch_register_to_value (gdbarch
, i386_register_to_value
);
8525 set_gdbarch_value_to_register (gdbarch
, i386_value_to_register
);
8527 set_gdbarch_return_value (gdbarch
, i386_return_value
);
8529 set_gdbarch_skip_prologue (gdbarch
, i386_skip_prologue
);
8531 /* Stack grows downward. */
8532 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
8534 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, i386_breakpoint::kind_from_pc
);
8535 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, i386_breakpoint::bp_from_kind
);
8537 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
8538 set_gdbarch_max_insn_length (gdbarch
, I386_MAX_INSN_LEN
);
8540 set_gdbarch_frame_args_skip (gdbarch
, 8);
8542 set_gdbarch_print_insn (gdbarch
, i386_print_insn
);
8544 set_gdbarch_dummy_id (gdbarch
, i386_dummy_id
);
8546 set_gdbarch_unwind_pc (gdbarch
, i386_unwind_pc
);
8548 /* Add the i386 register groups. */
8549 i386_add_reggroups (gdbarch
);
8550 tdep
->register_reggroup_p
= i386_register_reggroup_p
;
8552 /* Helper for function argument information. */
8553 set_gdbarch_fetch_pointer_argument (gdbarch
, i386_fetch_pointer_argument
);
8555 /* Hook the function epilogue frame unwinder. This unwinder is
8556 appended to the list first, so that it supercedes the DWARF
8557 unwinder in function epilogues (where the DWARF unwinder
8558 currently fails). */
8559 frame_unwind_append_unwinder (gdbarch
, &i386_epilogue_frame_unwind
);
8561 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8562 to the list before the prologue-based unwinders, so that DWARF
8563 CFI info will be used if it is available. */
8564 dwarf2_append_unwinders (gdbarch
);
8566 frame_base_set_default (gdbarch
, &i386_frame_base
);
8568 /* Pseudo registers may be changed by amd64_init_abi. */
8569 set_gdbarch_pseudo_register_read_value (gdbarch
,
8570 i386_pseudo_register_read_value
);
8571 set_gdbarch_pseudo_register_write (gdbarch
, i386_pseudo_register_write
);
8572 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
8573 i386_ax_pseudo_register_collect
);
8575 set_tdesc_pseudo_register_type (gdbarch
, i386_pseudo_register_type
);
8576 set_tdesc_pseudo_register_name (gdbarch
, i386_pseudo_register_name
);
8578 /* Override the normal target description method to make the AVX
8579 upper halves anonymous. */
8580 set_gdbarch_register_name (gdbarch
, i386_register_name
);
8582 /* Even though the default ABI only includes general-purpose registers,
8583 floating-point registers and the SSE registers, we have to leave a
8584 gap for the upper AVX, MPX and AVX512 registers. */
8585 set_gdbarch_num_regs (gdbarch
, I386_NUM_REGS
);
8587 set_gdbarch_gnu_triplet_regexp (gdbarch
, i386_gnu_triplet_regexp
);
8589 /* Get the x86 target description from INFO. */
8590 tdesc
= info
.target_desc
;
8591 if (! tdesc_has_registers (tdesc
))
8592 tdesc
= i386_target_description (X86_XSTATE_SSE_MASK
, false);
8593 tdep
->tdesc
= tdesc
;
8595 tdep
->num_core_regs
= I386_NUM_GREGS
+ I387_NUM_REGS
;
8596 tdep
->register_names
= i386_register_names
;
8598 /* No upper YMM registers. */
8599 tdep
->ymmh_register_names
= NULL
;
8600 tdep
->ymm0h_regnum
= -1;
8602 /* No upper ZMM registers. */
8603 tdep
->zmmh_register_names
= NULL
;
8604 tdep
->zmm0h_regnum
= -1;
8606 /* No high XMM registers. */
8607 tdep
->xmm_avx512_register_names
= NULL
;
8608 tdep
->xmm16_regnum
= -1;
8610 /* No upper YMM16-31 registers. */
8611 tdep
->ymm16h_register_names
= NULL
;
8612 tdep
->ymm16h_regnum
= -1;
8614 tdep
->num_byte_regs
= 8;
8615 tdep
->num_word_regs
= 8;
8616 tdep
->num_dword_regs
= 0;
8617 tdep
->num_mmx_regs
= 8;
8618 tdep
->num_ymm_regs
= 0;
8620 /* No MPX registers. */
8621 tdep
->bnd0r_regnum
= -1;
8622 tdep
->bndcfgu_regnum
= -1;
8624 /* No AVX512 registers. */
8625 tdep
->k0_regnum
= -1;
8626 tdep
->num_zmm_regs
= 0;
8627 tdep
->num_ymm_avx512_regs
= 0;
8628 tdep
->num_xmm_avx512_regs
= 0;
8630 /* No PKEYS registers */
8631 tdep
->pkru_regnum
= -1;
8632 tdep
->num_pkeys_regs
= 0;
8634 /* No segment base registers. */
8635 tdep
->fsbase_regnum
= -1;
8637 tdesc_data
= tdesc_data_alloc ();
8639 set_gdbarch_relocate_instruction (gdbarch
, i386_relocate_instruction
);
8641 set_gdbarch_gen_return_address (gdbarch
, i386_gen_return_address
);
8643 set_gdbarch_insn_is_call (gdbarch
, i386_insn_is_call
);
8644 set_gdbarch_insn_is_ret (gdbarch
, i386_insn_is_ret
);
8645 set_gdbarch_insn_is_jump (gdbarch
, i386_insn_is_jump
);
8647 /* Hook in ABI-specific overrides, if they have been registered.
8648 Note: If INFO specifies a 64 bit arch, this is where we turn
8649 a 32-bit i386 into a 64-bit amd64. */
8650 info
.tdesc_data
= tdesc_data
;
8651 gdbarch_init_osabi (info
, gdbarch
);
8653 if (!i386_validate_tdesc_p (tdep
, tdesc_data
))
8655 tdesc_data_cleanup (tdesc_data
);
8657 gdbarch_free (gdbarch
);
8661 num_bnd_cooked
= (tdep
->bnd0r_regnum
> 0 ? I387_NUM_BND_REGS
: 0);
8663 /* Wire in pseudo registers. Number of pseudo registers may be
8665 set_gdbarch_num_pseudo_regs (gdbarch
, (tdep
->num_byte_regs
8666 + tdep
->num_word_regs
8667 + tdep
->num_dword_regs
8668 + tdep
->num_mmx_regs
8669 + tdep
->num_ymm_regs
8671 + tdep
->num_ymm_avx512_regs
8672 + tdep
->num_zmm_regs
));
8674 /* Target description may be changed. */
8675 tdesc
= tdep
->tdesc
;
8677 tdesc_use_registers (gdbarch
, tdesc
, tdesc_data
);
8679 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8680 set_gdbarch_register_reggroup_p (gdbarch
, tdep
->register_reggroup_p
);
8682 /* Make %al the first pseudo-register. */
8683 tdep
->al_regnum
= gdbarch_num_regs (gdbarch
);
8684 tdep
->ax_regnum
= tdep
->al_regnum
+ tdep
->num_byte_regs
;
8686 ymm0_regnum
= tdep
->ax_regnum
+ tdep
->num_word_regs
;
8687 if (tdep
->num_dword_regs
)
8689 /* Support dword pseudo-register if it hasn't been disabled. */
8690 tdep
->eax_regnum
= ymm0_regnum
;
8691 ymm0_regnum
+= tdep
->num_dword_regs
;
8694 tdep
->eax_regnum
= -1;
8696 mm0_regnum
= ymm0_regnum
;
8697 if (tdep
->num_ymm_regs
)
8699 /* Support YMM pseudo-register if it is available. */
8700 tdep
->ymm0_regnum
= ymm0_regnum
;
8701 mm0_regnum
+= tdep
->num_ymm_regs
;
8704 tdep
->ymm0_regnum
= -1;
8706 if (tdep
->num_ymm_avx512_regs
)
8708 /* Support YMM16-31 pseudo registers if available. */
8709 tdep
->ymm16_regnum
= mm0_regnum
;
8710 mm0_regnum
+= tdep
->num_ymm_avx512_regs
;
8713 tdep
->ymm16_regnum
= -1;
8715 if (tdep
->num_zmm_regs
)
8717 /* Support ZMM pseudo-register if it is available. */
8718 tdep
->zmm0_regnum
= mm0_regnum
;
8719 mm0_regnum
+= tdep
->num_zmm_regs
;
8722 tdep
->zmm0_regnum
= -1;
8724 bnd0_regnum
= mm0_regnum
;
8725 if (tdep
->num_mmx_regs
!= 0)
8727 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8728 tdep
->mm0_regnum
= mm0_regnum
;
8729 bnd0_regnum
+= tdep
->num_mmx_regs
;
8732 tdep
->mm0_regnum
= -1;
8734 if (tdep
->bnd0r_regnum
> 0)
8735 tdep
->bnd0_regnum
= bnd0_regnum
;
8737 tdep
-> bnd0_regnum
= -1;
8739 /* Hook in the legacy prologue-based unwinders last (fallback). */
8740 frame_unwind_append_unwinder (gdbarch
, &i386_stack_tramp_frame_unwind
);
8741 frame_unwind_append_unwinder (gdbarch
, &i386_sigtramp_frame_unwind
);
8742 frame_unwind_append_unwinder (gdbarch
, &i386_frame_unwind
);
8744 /* If we have a register mapping, enable the generic core file
8745 support, unless it has already been enabled. */
8746 if (tdep
->gregset_reg_offset
8747 && !gdbarch_iterate_over_regset_sections_p (gdbarch
))
8748 set_gdbarch_iterate_over_regset_sections
8749 (gdbarch
, i386_iterate_over_regset_sections
);
8751 set_gdbarch_fast_tracepoint_valid_at (gdbarch
,
8752 i386_fast_tracepoint_valid_at
);
8759 /* Return the target description for a specified XSAVE feature mask. */
8761 const struct target_desc
*
8762 i386_target_description (uint64_t xcr0
, bool segments
)
8764 static target_desc
*i386_tdescs \
8765 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8766 target_desc
**tdesc
;
8768 tdesc
= &i386_tdescs
[(xcr0
& X86_XSTATE_SSE
) ? 1 : 0]
8769 [(xcr0
& X86_XSTATE_AVX
) ? 1 : 0]
8770 [(xcr0
& X86_XSTATE_MPX
) ? 1 : 0]
8771 [(xcr0
& X86_XSTATE_AVX512
) ? 1 : 0]
8772 [(xcr0
& X86_XSTATE_PKRU
) ? 1 : 0]
8776 *tdesc
= i386_create_target_description (xcr0
, false, segments
);
8781 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8783 /* Find the bound directory base address. */
8785 static unsigned long
8786 i386_mpx_bd_base (void)
8788 struct regcache
*rcache
;
8789 struct gdbarch_tdep
*tdep
;
8791 enum register_status regstatus
;
8793 rcache
= get_current_regcache ();
8794 tdep
= gdbarch_tdep (rcache
->arch ());
8796 regstatus
= regcache_raw_read_unsigned (rcache
, tdep
->bndcfgu_regnum
, &ret
);
8798 if (regstatus
!= REG_VALID
)
8799 error (_("BNDCFGU register invalid, read status %d."), regstatus
);
8801 return ret
& MPX_BASE_MASK
;
8805 i386_mpx_enabled (void)
8807 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_current_arch ());
8808 const struct target_desc
*tdesc
= tdep
->tdesc
;
8810 return (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx") != NULL
);
8813 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8814 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8815 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8816 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8818 /* Find the bound table entry given the pointer location and the base
8819 address of the table. */
8822 i386_mpx_get_bt_entry (CORE_ADDR ptr
, CORE_ADDR bd_base
)
8826 CORE_ADDR mpx_bd_mask
, bd_ptr_r_shift
, bd_ptr_l_shift
;
8827 CORE_ADDR bt_mask
, bt_select_r_shift
, bt_select_l_shift
;
8828 CORE_ADDR bd_entry_addr
;
8831 struct gdbarch
*gdbarch
= get_current_arch ();
8832 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8835 if (gdbarch_ptr_bit (gdbarch
) == 64)
8837 mpx_bd_mask
= (CORE_ADDR
) MPX_BD_MASK
;
8838 bd_ptr_r_shift
= 20;
8840 bt_select_r_shift
= 3;
8841 bt_select_l_shift
= 5;
8842 bt_mask
= (CORE_ADDR
) MPX_BT_MASK
;
8844 if ( sizeof (CORE_ADDR
) == 4)
8845 error (_("bound table examination not supported\
8846 for 64-bit process with 32-bit GDB"));
8850 mpx_bd_mask
= MPX_BD_MASK_32
;
8851 bd_ptr_r_shift
= 12;
8853 bt_select_r_shift
= 2;
8854 bt_select_l_shift
= 4;
8855 bt_mask
= MPX_BT_MASK_32
;
8858 offset1
= ((ptr
& mpx_bd_mask
) >> bd_ptr_r_shift
) << bd_ptr_l_shift
;
8859 bd_entry_addr
= bd_base
+ offset1
;
8860 bd_entry
= read_memory_typed_address (bd_entry_addr
, data_ptr_type
);
8862 if ((bd_entry
& 0x1) == 0)
8863 error (_("Invalid bounds directory entry at %s."),
8864 paddress (get_current_arch (), bd_entry_addr
));
8866 /* Clearing status bit. */
8868 bt_addr
= bd_entry
& ~bt_select_r_shift
;
8869 offset2
= ((ptr
& bt_mask
) >> bt_select_r_shift
) << bt_select_l_shift
;
8871 return bt_addr
+ offset2
;
8874 /* Print routine for the mpx bounds. */
8877 i386_mpx_print_bounds (const CORE_ADDR bt_entry
[4])
8879 struct ui_out
*uiout
= current_uiout
;
8881 struct gdbarch
*gdbarch
= get_current_arch ();
8882 CORE_ADDR onecompl
= ~((CORE_ADDR
) 0);
8883 int bounds_in_map
= ((~bt_entry
[1] == 0 && bt_entry
[0] == onecompl
) ? 1 : 0);
8885 if (bounds_in_map
== 1)
8887 uiout
->text ("Null bounds on map:");
8888 uiout
->text (" pointer value = ");
8889 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8895 uiout
->text ("{lbound = ");
8896 uiout
->field_core_addr ("lower-bound", gdbarch
, bt_entry
[0]);
8897 uiout
->text (", ubound = ");
8899 /* The upper bound is stored in 1's complement. */
8900 uiout
->field_core_addr ("upper-bound", gdbarch
, ~bt_entry
[1]);
8901 uiout
->text ("}: pointer value = ");
8902 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8904 if (gdbarch_ptr_bit (gdbarch
) == 64)
8905 size
= ( (~(int64_t) bt_entry
[1]) - (int64_t) bt_entry
[0]);
8907 size
= ( ~((int32_t) bt_entry
[1]) - (int32_t) bt_entry
[0]);
8909 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8910 -1 represents in this sense full memory access, and there is no need
8913 size
= (size
> -1 ? size
+ 1 : size
);
8914 uiout
->text (", size = ");
8915 uiout
->field_string ("size", plongest (size
));
8917 uiout
->text (", metadata = ");
8918 uiout
->field_core_addr ("metadata", gdbarch
, bt_entry
[3]);
8923 /* Implement the command "show mpx bound". */
8926 i386_mpx_info_bounds (const char *args
, int from_tty
)
8928 CORE_ADDR bd_base
= 0;
8930 CORE_ADDR bt_entry_addr
= 0;
8931 CORE_ADDR bt_entry
[4];
8933 struct gdbarch
*gdbarch
= get_current_arch ();
8934 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8936 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
8937 || !i386_mpx_enabled ())
8939 printf_unfiltered (_("Intel Memory Protection Extensions not "
8940 "supported on this target.\n"));
8946 printf_unfiltered (_("Address of pointer variable expected.\n"));
8950 addr
= parse_and_eval_address (args
);
8952 bd_base
= i386_mpx_bd_base ();
8953 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
8955 memset (bt_entry
, 0, sizeof (bt_entry
));
8957 for (i
= 0; i
< 4; i
++)
8958 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
8959 + i
* TYPE_LENGTH (data_ptr_type
),
8962 i386_mpx_print_bounds (bt_entry
);
8965 /* Implement the command "set mpx bound". */
8968 i386_mpx_set_bounds (const char *args
, int from_tty
)
8970 CORE_ADDR bd_base
= 0;
8971 CORE_ADDR addr
, lower
, upper
;
8972 CORE_ADDR bt_entry_addr
= 0;
8973 CORE_ADDR bt_entry
[2];
8974 const char *input
= args
;
8976 struct gdbarch
*gdbarch
= get_current_arch ();
8977 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
8978 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8980 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
8981 || !i386_mpx_enabled ())
8982 error (_("Intel Memory Protection Extensions not supported\
8986 error (_("Pointer value expected."));
8988 addr
= value_as_address (parse_to_comma_and_eval (&input
));
8990 if (input
[0] == ',')
8992 if (input
[0] == '\0')
8993 error (_("wrong number of arguments: missing lower and upper bound."));
8994 lower
= value_as_address (parse_to_comma_and_eval (&input
));
8996 if (input
[0] == ',')
8998 if (input
[0] == '\0')
8999 error (_("Wrong number of arguments; Missing upper bound."));
9000 upper
= value_as_address (parse_to_comma_and_eval (&input
));
9002 bd_base
= i386_mpx_bd_base ();
9003 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9004 for (i
= 0; i
< 2; i
++)
9005 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9006 + i
* TYPE_LENGTH (data_ptr_type
),
9008 bt_entry
[0] = (uint64_t) lower
;
9009 bt_entry
[1] = ~(uint64_t) upper
;
9011 for (i
= 0; i
< 2; i
++)
9012 write_memory_unsigned_integer (bt_entry_addr
9013 + i
* TYPE_LENGTH (data_ptr_type
),
9014 TYPE_LENGTH (data_ptr_type
), byte_order
,
9018 static struct cmd_list_element
*mpx_set_cmdlist
, *mpx_show_cmdlist
;
9020 /* Helper function for the CLI commands. */
9023 set_mpx_cmd (const char *args
, int from_tty
)
9025 help_list (mpx_set_cmdlist
, "set mpx ", all_commands
, gdb_stdout
);
9028 /* Helper function for the CLI commands. */
9031 show_mpx_cmd (const char *args
, int from_tty
)
9033 cmd_show_list (mpx_show_cmdlist
, from_tty
, "");
9036 void _initialize_i386_tdep ();
9038 _initialize_i386_tdep ()
9040 register_gdbarch_init (bfd_arch_i386
, i386_gdbarch_init
);
9042 /* Add the variable that controls the disassembly flavor. */
9043 add_setshow_enum_cmd ("disassembly-flavor", no_class
, valid_flavors
,
9044 &disassembly_flavor
, _("\
9045 Set the disassembly flavor."), _("\
9046 Show the disassembly flavor."), _("\
9047 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9049 NULL
, /* FIXME: i18n: */
9050 &setlist
, &showlist
);
9052 /* Add the variable that controls the convention for returning
9054 add_setshow_enum_cmd ("struct-convention", no_class
, valid_conventions
,
9055 &struct_convention
, _("\
9056 Set the convention for returning small structs."), _("\
9057 Show the convention for returning small structs."), _("\
9058 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9061 NULL
, /* FIXME: i18n: */
9062 &setlist
, &showlist
);
9064 /* Add "mpx" prefix for the set commands. */
9066 add_prefix_cmd ("mpx", class_support
, set_mpx_cmd
, _("\
9067 Set Intel Memory Protection Extensions specific variables."),
9068 &mpx_set_cmdlist
, "set mpx ",
9069 0 /* allow-unknown */, &setlist
);
9071 /* Add "mpx" prefix for the show commands. */
9073 add_prefix_cmd ("mpx", class_support
, show_mpx_cmd
, _("\
9074 Show Intel Memory Protection Extensions specific variables."),
9075 &mpx_show_cmdlist
, "show mpx ",
9076 0 /* allow-unknown */, &showlist
);
9078 /* Add "bound" command for the show mpx commands list. */
9080 add_cmd ("bound", no_class
, i386_mpx_info_bounds
,
9081 "Show the memory bounds for a given array/pointer storage\
9082 in the bound table.",
9085 /* Add "bound" command for the set mpx commands list. */
9087 add_cmd ("bound", no_class
, i386_mpx_set_bounds
,
9088 "Set the memory bounds for a given array/pointer storage\
9089 in the bound table.",
9092 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_SVR4
,
9093 i386_svr4_init_abi
);
9095 /* Initialize the i386-specific register groups. */
9096 i386_init_reggroups ();
9098 /* Tell remote stub that we support XML target description. */
9099 register_remote_support_xml ("i386");