port GDB to ia64-hpux (native).
[deliverable/binutils-gdb.git] / gdb / ia64-hpux-nat.c
1 /* Copyright (C) 2010 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "ia64-tdep.h"
20 #include "inferior.h"
21 #include "inf-ttrace.h"
22 #include "regcache.h"
23 #include "solib-ia64-hpux.h"
24
25 #include <ia64/sys/uregs.h>
26 #include <sys/ttrace.h>
27
28 /* The offsets used with ttrace to read the value of the raw registers. */
29
30 static int u_offsets[] =
31 { /* Static General Registers. */
32 -1, __r1, __r2, __r3, __r4, __r5, __r6, __r7,
33 __r8, __r9, __r10, __r11, __r12, __r13, __r14, __r15,
34 __r16, __r17, __r18, __r19, __r20, __r21, __r22, __r23,
35 __r24, __r25, __r26, __r27, __r28, __r29, __r30, __r31,
36 -1, -1, -1, -1, -1, -1, -1, -1,
37 -1, -1, -1, -1, -1, -1, -1, -1,
38 -1, -1, -1, -1, -1, -1, -1, -1,
39 -1, -1, -1, -1, -1, -1, -1, -1,
40 -1, -1, -1, -1, -1, -1, -1, -1,
41 -1, -1, -1, -1, -1, -1, -1, -1,
42 -1, -1, -1, -1, -1, -1, -1, -1,
43 -1, -1, -1, -1, -1, -1, -1, -1,
44 -1, -1, -1, -1, -1, -1, -1, -1,
45 -1, -1, -1, -1, -1, -1, -1, -1,
46 -1, -1, -1, -1, -1, -1, -1, -1,
47 -1, -1, -1, -1, -1, -1, -1, -1,
48
49 /* Static Floating-Point Registers. */
50 -1, -1, __f2, __f3, __f4, __f5, __f6, __f7,
51 __f8, __f9, __f10, __f11, __f12, __f13, __f14, __f15,
52 __f16, __f17, __f18, __f19, __f20, __f21, __f22, __f23,
53 __f24, __f25, __f26, __f27, __f28, __f29, __f30, __f31,
54 __f32, __f33, __f34, __f35, __f36, __f37, __f38, __f39,
55 __f40, __f41, __f42, __f43, __f44, __f45, __f46, __f47,
56 __f48, __f49, __f50, __f51, __f52, __f53, __f54, __f55,
57 __f56, __f57, __f58, __f59, __f60, __f61, __f62, __f63,
58 __f64, __f65, __f66, __f67, __f68, __f69, __f70, __f71,
59 __f72, __f73, __f74, __f75, __f76, __f77, __f78, __f79,
60 __f80, __f81, __f82, __f83, __f84, __f85, __f86, __f87,
61 __f88, __f89, __f90, __f91, __f92, __f93, __f94, __f95,
62 __f96, __f97, __f98, __f99, __f100, __f101, __f102, __f103,
63 __f104, __f105, __f106, __f107, __f108, __f109, __f110, __f111,
64 __f112, __f113, __f114, __f115, __f116, __f117, __f118, __f119,
65 __f120, __f121, __f122, __f123, __f124, __f125, __f126, __f127,
66
67 -1, -1, -1, -1, -1, -1, -1, -1,
68 -1, -1, -1, -1, -1, -1, -1, -1,
69 -1, -1, -1, -1, -1, -1, -1, -1,
70 -1, -1, -1, -1, -1, -1, -1, -1,
71 -1, -1, -1, -1, -1, -1, -1, -1,
72 -1, -1, -1, -1, -1, -1, -1, -1,
73 -1, -1, -1, -1, -1, -1, -1, -1,
74 -1, -1, -1, -1, -1, -1, -1, -1,
75
76 /* Branch Registers. */
77 __b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7,
78
79 /* Virtual frame pointer and virtual return address pointer. */
80 -1, -1,
81
82 /* Other registers. */
83 __pr, __ip, __cr_ipsr, __cfm,
84
85 /* Kernel registers. */
86 -1, -1, -1, -1,
87 -1, -1, -1, -1,
88
89 -1, -1, -1, -1, -1, -1, -1, -1,
90
91 /* Some application registers. */
92 __ar_rsc, __ar_bsp, __ar_bspstore, __ar_rnat,
93
94 -1,
95 -1, /* Not available: FCR, IA32 floating control register. */
96 -1, -1,
97
98 -1, /* Not available: EFLAG. */
99 -1, /* Not available: CSD. */
100 -1, /* Not available: SSD. */
101 -1, /* Not available: CFLG. */
102 -1, /* Not available: FSR. */
103 -1, /* Not available: FIR. */
104 -1, /* Not available: FDR. */
105 -1,
106 __ar_ccv, -1, -1, -1, __ar_unat, -1, -1, -1,
107 __ar_fpsr, -1, -1, -1,
108 -1, /* Not available: ITC. */
109 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
110 -1, -1, -1, -1, -1, -1, -1, -1, -1,
111 __ar_pfs, __ar_lc, __ar_ec,
112 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
113 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
114 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
115 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
116 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
117 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
118 -1
119 /* All following registers, starting with nat0, are handled as
120 pseudo registers, and hence are handled separately. */
121 };
122
123 /* Some register have a fixed value and can not be modified.
124 Store their value in static constant buffers that can be used
125 later to fill the register cache. */
126 static const char r0_value[8] = {0x00, 0x00, 0x00, 0x00,
127 0x00, 0x00, 0x00, 0x00};
128 static const char f0_value[16] = {0x00, 0x00, 0x00, 0x00,
129 0x00, 0x00, 0x00, 0x00,
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x00, 0x00, 0x00};
132 static const char f1_value[16] = {0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0xff, 0xff,
134 0x80, 0x00, 0x00, 0x00,
135 0x00, 0x00, 0x00, 0x00};
136
137 /* The "to_wait" routine from the "inf-ttrace" layer. */
138
139 static ptid_t (*super_to_wait) (struct target_ops *, ptid_t,
140 struct target_waitstatus *, int);
141
142 /* The "to_wait" target_ops routine routine for ia64-hpux. */
143
144 static ptid_t
145 ia64_hpux_wait (struct target_ops *ops, ptid_t ptid,
146 struct target_waitstatus *ourstatus, int options)
147 {
148 ptid_t new_ptid;
149
150 new_ptid = super_to_wait (ops, ptid, ourstatus, options);
151
152 /* If this is a DLD event (hard-coded breakpoint instruction
153 that was activated by the solib-ia64-hpux module), we need to
154 process it, and then resume the execution as if the event did
155 not happen. */
156 if (ourstatus->kind == TARGET_WAITKIND_STOPPED
157 && ourstatus->value.sig == TARGET_SIGNAL_TRAP
158 && ia64_hpux_at_dld_breakpoint_p (new_ptid))
159 {
160 ia64_hpux_handle_dld_breakpoint (new_ptid);
161
162 target_resume (new_ptid, 0, TARGET_SIGNAL_0);
163 ourstatus->kind = TARGET_WAITKIND_IGNORE;
164 }
165
166 return new_ptid;
167 }
168
169 /* Fetch the RNAT register and supply it to the REGCACHE. */
170
171 static void
172 ia64_hpux_fetch_rnat_register (struct regcache *regcache)
173 {
174 CORE_ADDR addr;
175 gdb_byte buf[8];
176 int status;
177
178 /* The value of RNAT is stored at bsp|0x1f8, and must be read using
179 TT_LWP_RDRSEBS. */
180
181 regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &addr);
182 addr |= 0x1f8;
183
184 status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
185 ptid_get_lwp (inferior_ptid), addr, sizeof (buf),
186 (uintptr_t) buf);
187 if (status < 0)
188 error (_("failed to read RNAT register at %s"),
189 paddress (get_regcache_arch(regcache), addr));
190
191 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, buf);
192 }
193
194 /* Read the value of the register saved at OFFSET in the save_state_t
195 structure, and store its value in BUF. LEN is the size of the register
196 to be read. */
197
198 static int
199 ia64_hpux_read_register_from_save_state_t (int offset, gdb_byte *buf, int len)
200 {
201 int status;
202
203 status = ttrace (TT_LWP_RUREGS, ptid_get_pid (inferior_ptid),
204 ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
205
206 return status;
207 }
208
209 /* Fetch register REGNUM from the inferior. */
210
211 static void
212 ia64_hpux_fetch_register (struct regcache *regcache, int regnum)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int offset, len, status;
216 gdb_byte *buf;
217
218 if (regnum == IA64_GR0_REGNUM)
219 {
220 /* r0 is always 0. */
221 regcache_raw_supply (regcache, regnum, r0_value);
222 return;
223 }
224
225 if (regnum == IA64_FR0_REGNUM)
226 {
227 /* f0 is always 0.0. */
228 regcache_raw_supply (regcache, regnum, f0_value);
229 return;
230 }
231
232 if (regnum == IA64_FR1_REGNUM)
233 {
234 /* f1 is always 1.0. */
235 regcache_raw_supply (regcache, regnum, f1_value);
236 return;
237 }
238
239 if (regnum == IA64_RNAT_REGNUM)
240 {
241 ia64_hpux_fetch_rnat_register (regcache);
242 return;
243 }
244
245 /* Get the register location. If the register can not be fetched,
246 then return now. */
247 offset = u_offsets[regnum];
248 if (offset == -1)
249 return;
250
251 len = register_size (gdbarch, regnum);
252 buf = alloca (len * sizeof (gdb_byte));
253 status = ia64_hpux_read_register_from_save_state_t (offset, buf, len);
254 if (status < 0)
255 warning (_("Failed to read register value for %s.\n"),
256 gdbarch_register_name (gdbarch, regnum));
257
258 regcache_raw_supply (regcache, regnum, buf);
259 }
260
261 /* The "to_fetch_registers" target_ops routine for ia64-hpux. */
262
263 static void
264 ia64_hpux_fetch_registers (struct target_ops *ops,
265 struct regcache *regcache, int regnum)
266 {
267 if (regnum == -1)
268 for (regnum = 0;
269 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
270 regnum++)
271 ia64_hpux_fetch_register (regcache, regnum);
272 else
273 ia64_hpux_fetch_register (regcache, regnum);
274 }
275
276 /* Save register REGNUM (stored in BUF) in the save_state_t structure.
277 LEN is the size of the register in bytes.
278
279 Return the value from the corresponding ttrace call (a negative value
280 means that the operation failed). */
281
282 static int
283 ia64_hpux_write_register_to_saved_state_t (int offset, gdb_byte *buf, int len)
284 {
285 return ttrace (TT_LWP_WUREGS, ptid_get_pid (inferior_ptid),
286 ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
287 }
288
289 /* Store register REGNUM into the inferior. */
290
291 static void
292 ia64_hpux_store_register (const struct regcache *regcache, int regnum)
293 {
294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
295 int offset = u_offsets[regnum];
296 gdb_byte *buf;
297 int len, status;
298
299 /* If the register can not be stored, then return now. */
300 if (offset == -1)
301 return;
302
303 /* I don't know how to store that register for now. So just ignore any
304 request to store it, to avoid an internal error. */
305 if (regnum == IA64_PSR_REGNUM)
306 return;
307
308 len = register_size (gdbarch, regnum);
309 buf = alloca (len * sizeof (gdb_byte));
310 regcache_raw_collect (regcache, regnum, buf);
311
312 status = ia64_hpux_write_register_to_saved_state_t (offset, buf, len);
313
314 if (status < 0)
315 error (_("failed to write register value for %s.\n"),
316 gdbarch_register_name (gdbarch, regnum));
317 }
318
319 /* The "to_store_registers" target_ops routine for ia64-hpux. */
320
321 static void
322 ia64_hpux_store_registers (struct target_ops *ops,
323 struct regcache *regcache, int regnum)
324 {
325 if (regnum == -1)
326 for (regnum = 0;
327 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
328 regnum++)
329 ia64_hpux_store_register (regcache, regnum);
330 else
331 ia64_hpux_store_register (regcache, regnum);
332 }
333
334 /* The "xfer_partial" routine from the "inf-ttrace" target layer.
335 Ideally, we would like to use this routine for all transfer
336 requests, but this platforms has a lot of special cases that
337 need to be handled manually. So we override this routine and
338 delegate back if we detect that we are not in a special case. */
339
340 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
341 const char *, gdb_byte *,
342 const gdb_byte *, ULONGEST, LONGEST);
343
344 /* The "xfer_partial" routine for a memory region that is completely
345 outside of the backing-store region. */
346
347 static LONGEST
348 ia64_hpux_xfer_memory_no_bs (struct target_ops *ops, const char *annex,
349 gdb_byte *readbuf, const gdb_byte *writebuf,
350 CORE_ADDR addr, LONGEST len)
351 {
352 /* Memory writes need to be aligned on 16byte boundaries, at least
353 when writing in the text section. On the other hand, the size
354 of the buffer does not need to be a multiple of 16bytes.
355
356 No such restriction when performing memory reads. */
357
358 if (writebuf && addr & 0x0f)
359 {
360 const CORE_ADDR aligned_addr = addr & ~0x0f;
361 const int aligned_len = len + (addr - aligned_addr);
362 gdb_byte *aligned_buf = alloca (aligned_len * sizeof (gdb_byte));
363 LONGEST status;
364
365 /* Read the portion of memory between ALIGNED_ADDR and ADDR, so
366 that we can write it back during our aligned memory write. */
367 status = super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
368 aligned_buf /* read */,
369 NULL /* write */,
370 aligned_addr, addr - aligned_addr);
371 if (status <= 0)
372 return 0;
373 memcpy (aligned_buf + (addr - aligned_addr), writebuf, len);
374
375 return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
376 NULL /* read */, aligned_buf /* write */,
377 aligned_addr, aligned_len);
378 }
379 else
380 /* Memory read or properly aligned memory write. */
381 return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex, readbuf,
382 writebuf, addr, len);
383 }
384
385 /* Read LEN bytes at ADDR from memory, and store it in BUF. This memory
386 region is assumed to be inside the backing store.
387
388 Return zero if the operation failed. */
389
390 static int
391 ia64_hpux_read_memory_bs (gdb_byte *buf, CORE_ADDR addr, int len)
392 {
393 gdb_byte tmp_buf[8];
394 CORE_ADDR tmp_addr = addr & ~0x7;
395
396 while (tmp_addr < addr + len)
397 {
398 int status;
399 int skip_lo = 0;
400 int skip_hi = 0;
401
402 status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
403 ptid_get_lwp (inferior_ptid), tmp_addr,
404 sizeof (tmp_buf), (uintptr_t) tmp_buf);
405 if (status < 0)
406 return 0;
407
408 if (tmp_addr < addr)
409 skip_lo = addr - tmp_addr;
410
411 if (tmp_addr + sizeof (tmp_buf) > addr + len)
412 skip_hi = (tmp_addr + sizeof (tmp_buf)) - (addr + len);
413
414 memcpy (buf + (tmp_addr + skip_lo - addr),
415 tmp_buf + skip_lo,
416 sizeof (tmp_buf) - skip_lo - skip_hi);
417
418 tmp_addr += sizeof (tmp_buf);
419 }
420
421 return 1;
422 }
423
424 /* Write LEN bytes from BUF in memory at ADDR. This memory region is assumed
425 to be inside the backing store.
426
427 Return zero if the operation failed. */
428
429 static int
430 ia64_hpux_write_memory_bs (const gdb_byte *buf, CORE_ADDR addr, int len)
431 {
432 gdb_byte tmp_buf[8];
433 CORE_ADDR tmp_addr = addr & ~0x7;
434
435 while (tmp_addr < addr + len)
436 {
437 int status;
438 int lo = 0;
439 int hi = 7;
440
441 if (tmp_addr < addr || tmp_addr + sizeof (tmp_buf) > addr + len)
442 /* Part of the 8byte region pointed by tmp_addr needs to be preserved.
443 So read it in before we copy the data that needs to be changed. */
444 if (!ia64_hpux_read_memory_bs (tmp_buf, tmp_addr, sizeof (tmp_buf)))
445 return 0;
446
447 if (tmp_addr < addr)
448 lo = addr - tmp_addr;
449
450 if (tmp_addr + sizeof (tmp_buf) > addr + len)
451 hi = addr - tmp_addr + len - 1;
452
453 memcpy (tmp_buf + lo, buf + tmp_addr - addr + lo, hi - lo + 1);
454
455 status = ttrace (TT_LWP_WRRSEBS, ptid_get_pid (inferior_ptid),
456 ptid_get_lwp (inferior_ptid), tmp_addr,
457 sizeof (tmp_buf), (uintptr_t) tmp_buf);
458 if (status < 0)
459 return 0;
460
461 tmp_addr += sizeof (tmp_buf);
462 }
463
464 return 1;
465 }
466
467 /* The "xfer_partial" routine for a memory region that is completely
468 inside of the backing-store region. */
469
470 static LONGEST
471 ia64_hpux_xfer_memory_bs (struct target_ops *ops, const char *annex,
472 gdb_byte *readbuf, const gdb_byte *writebuf,
473 CORE_ADDR addr, LONGEST len)
474 {
475 int success;
476
477 if (readbuf)
478 success = ia64_hpux_read_memory_bs (readbuf, addr, len);
479 else
480 success = ia64_hpux_write_memory_bs (writebuf, addr, len);
481
482 if (success)
483 return len;
484 else
485 return 0;
486 }
487
488 /* The "xfer_partial" target_ops routine for ia64-hpux, in the case
489 where the requested object is TARGET_OBJECT_MEMORY. */
490
491 static LONGEST
492 ia64_hpux_xfer_memory (struct target_ops *ops, const char *annex,
493 gdb_byte *readbuf, const gdb_byte *writebuf,
494 CORE_ADDR addr, LONGEST len)
495 {
496 CORE_ADDR bsp, bspstore;
497 CORE_ADDR start_addr, short_len;
498 int status = 0;
499
500 /* The back-store region cannot be read/written by the standard memory
501 read/write operations. So we handle the memory region piecemeal:
502 (1) and (2) The regions before and after the backing-store region,
503 which can be treated as normal memory;
504 (3) The region inside the backing-store, which needs to be
505 read/written specially. */
506
507 regcache_raw_read_unsigned (get_current_regcache (), IA64_BSP_REGNUM, &bsp);
508 regcache_raw_read_unsigned (get_current_regcache (), IA64_BSPSTORE_REGNUM,
509 &bspstore);
510
511 /* 1. Memory region before BSPSTORE. */
512
513 if (addr < bspstore)
514 {
515 short_len = len;
516 if (addr + len > bspstore)
517 short_len = bspstore - addr;
518
519 status = ia64_hpux_xfer_memory_no_bs (ops, annex, readbuf, writebuf,
520 addr, short_len);
521 if (status <= 0)
522 return 0;
523 }
524
525 /* 2. Memory region after BSP. */
526
527 if (addr + len > bsp)
528 {
529 start_addr = addr;
530 if (start_addr < bsp)
531 start_addr = bsp;
532 short_len = len + addr - start_addr;
533
534 status = ia64_hpux_xfer_memory_no_bs
535 (ops, annex,
536 readbuf ? readbuf + (start_addr - addr) : NULL,
537 writebuf ? writebuf + (start_addr - addr) : NULL,
538 start_addr, short_len);
539 if (status <= 0)
540 return 0;
541 }
542
543 /* 3. Memory region between BSPSTORE and BSP. */
544
545 if (bspstore != bsp
546 && ((addr < bspstore && addr + len > bspstore)
547 || (addr + len <= bsp && addr + len > bsp)))
548 {
549 start_addr = addr;
550 if (addr < bspstore)
551 start_addr = bspstore;
552 short_len = len + addr - start_addr;
553
554 if (start_addr + short_len > bsp)
555 short_len = bsp - start_addr;
556
557 gdb_assert (short_len > 0);
558
559 status = ia64_hpux_xfer_memory_bs
560 (ops, annex,
561 readbuf ? readbuf + (start_addr - addr) : NULL,
562 writebuf ? writebuf + (start_addr - addr) : NULL,
563 start_addr, short_len);
564 if (status < 0)
565 return 0;
566 }
567
568 return len;
569 }
570
571 /* The "to_xfer_partial" target_ops routine for ia64-hpux. */
572
573 static LONGEST
574 ia64_hpux_xfer_partial (struct target_ops *ops, enum target_object object,
575 const char *annex, gdb_byte *readbuf,
576 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
577 {
578 LONGEST val;
579
580 if (object == TARGET_OBJECT_MEMORY)
581 val = ia64_hpux_xfer_memory (ops, annex, readbuf, writebuf, offset, len);
582 else
583 val = super_xfer_partial (ops, object, annex, readbuf, writebuf, offset,
584 len);
585
586 return val;
587 }
588
589 /* The "to_can_use_hw_breakpoint" target_ops routine for ia64-hpux. */
590
591 static int
592 ia64_hpux_can_use_hw_breakpoint (int type, int cnt, int othertype)
593 {
594 /* No hardware watchpoint/breakpoint support yet. */
595 return 0;
596 }
597
598 /* The "to_mourn_inferior" routine from the "inf-ttrace" target_ops layer. */
599
600 static void (*super_mourn_inferior) (struct target_ops *);
601
602 /* The "to_mourn_inferior" target_ops routine for ia64-hpux. */
603
604 static void
605 ia64_hpux_mourn_inferior (struct target_ops *ops)
606 {
607 const int pid = ptid_get_pid (inferior_ptid);
608 int status;
609
610 super_mourn_inferior (ops);
611
612 /* On this platform, the process still exists even after we received
613 an exit event. Detaching from the process isn't sufficient either,
614 as it only turns the process into a zombie. So the only solution
615 we found is to kill it. */
616 ttrace (TT_PROC_EXIT, pid, 0, 0, 0, 0);
617 wait (&status);
618 }
619
620 /* Prevent warning from -Wmissing-prototypes. */
621 void _initialize_hppa_hpux_nat (void);
622
623 void
624 _initialize_hppa_hpux_nat (void)
625 {
626 struct target_ops *t;
627
628 t = inf_ttrace_target ();
629 super_to_wait = t->to_wait;
630 super_xfer_partial = t->to_xfer_partial;
631 super_mourn_inferior = t->to_mourn_inferior;
632
633 t->to_wait = ia64_hpux_wait;
634 t->to_fetch_registers = ia64_hpux_fetch_registers;
635 t->to_store_registers = ia64_hpux_store_registers;
636 t->to_xfer_partial = ia64_hpux_xfer_partial;
637 t->to_can_use_hw_breakpoint = ia64_hpux_can_use_hw_breakpoint;
638 t->to_mourn_inferior = ia64_hpux_mourn_inferior;
639 t->to_attach_no_wait = 1;
640
641 add_target (t);
642 }
This page took 0.046934 seconds and 4 git commands to generate.