[gdb/testsuite] Fix dwo path in fission-*.S
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
29
30 #include <signal.h>
31 #include "nat/gdb_ptrace.h"
32 #include "gdbsupport/gdb_wait.h"
33 #ifdef HAVE_SYS_REG_H
34 #include <sys/reg.h>
35 #endif
36 #include <sys/syscall.h>
37 #include <sys/user.h>
38
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 #include "inf-ptrace.h"
46
47 class ia64_linux_nat_target final : public linux_nat_target
48 {
49 public:
50 /* Add our register access methods. */
51 void fetch_registers (struct regcache *, int) override;
52 void store_registers (struct regcache *, int) override;
53
54 enum target_xfer_status xfer_partial (enum target_object object,
55 const char *annex,
56 gdb_byte *readbuf,
57 const gdb_byte *writebuf,
58 ULONGEST offset, ULONGEST len,
59 ULONGEST *xfered_len) override;
60
61 /* Override watchpoint routines. */
62
63 /* The IA-64 architecture can step over a watch point (without
64 triggering it again) if the "dd" (data debug fault disable) bit
65 in the processor status word is set.
66
67 This PSR bit is set in
68 ia64_linux_nat_target::stopped_by_watchpoint when the code there
69 has determined that a hardware watchpoint has indeed been hit.
70 The CPU will then be able to execute one instruction without
71 triggering a watchpoint. */
72 bool have_steppable_watchpoint () override { return true; }
73
74 int can_use_hw_breakpoint (enum bptype, int, int) override;
75 bool stopped_by_watchpoint () override;
76 bool stopped_data_address (CORE_ADDR *) override;
77 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
78 struct expression *) override;
79 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
80 struct expression *) override;
81 /* Override linux_nat_target low methods. */
82 void low_new_thread (struct lwp_info *lp) override;
83 bool low_status_is_event (int status) override;
84
85 void enable_watchpoints_in_psr (ptid_t ptid);
86 };
87
88 static ia64_linux_nat_target the_ia64_linux_nat_target;
89
90 /* These must match the order of the register names.
91
92 Some sort of lookup table is needed because the offsets associated
93 with the registers are all over the board. */
94
95 static int u_offsets[] =
96 {
97 /* general registers */
98 -1, /* gr0 not available; i.e, it's always zero. */
99 PT_R1,
100 PT_R2,
101 PT_R3,
102 PT_R4,
103 PT_R5,
104 PT_R6,
105 PT_R7,
106 PT_R8,
107 PT_R9,
108 PT_R10,
109 PT_R11,
110 PT_R12,
111 PT_R13,
112 PT_R14,
113 PT_R15,
114 PT_R16,
115 PT_R17,
116 PT_R18,
117 PT_R19,
118 PT_R20,
119 PT_R21,
120 PT_R22,
121 PT_R23,
122 PT_R24,
123 PT_R25,
124 PT_R26,
125 PT_R27,
126 PT_R28,
127 PT_R29,
128 PT_R30,
129 PT_R31,
130 /* gr32 through gr127 not directly available via the ptrace interface. */
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
137 /* Floating point registers */
138 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
139 PT_F2,
140 PT_F3,
141 PT_F4,
142 PT_F5,
143 PT_F6,
144 PT_F7,
145 PT_F8,
146 PT_F9,
147 PT_F10,
148 PT_F11,
149 PT_F12,
150 PT_F13,
151 PT_F14,
152 PT_F15,
153 PT_F16,
154 PT_F17,
155 PT_F18,
156 PT_F19,
157 PT_F20,
158 PT_F21,
159 PT_F22,
160 PT_F23,
161 PT_F24,
162 PT_F25,
163 PT_F26,
164 PT_F27,
165 PT_F28,
166 PT_F29,
167 PT_F30,
168 PT_F31,
169 PT_F32,
170 PT_F33,
171 PT_F34,
172 PT_F35,
173 PT_F36,
174 PT_F37,
175 PT_F38,
176 PT_F39,
177 PT_F40,
178 PT_F41,
179 PT_F42,
180 PT_F43,
181 PT_F44,
182 PT_F45,
183 PT_F46,
184 PT_F47,
185 PT_F48,
186 PT_F49,
187 PT_F50,
188 PT_F51,
189 PT_F52,
190 PT_F53,
191 PT_F54,
192 PT_F55,
193 PT_F56,
194 PT_F57,
195 PT_F58,
196 PT_F59,
197 PT_F60,
198 PT_F61,
199 PT_F62,
200 PT_F63,
201 PT_F64,
202 PT_F65,
203 PT_F66,
204 PT_F67,
205 PT_F68,
206 PT_F69,
207 PT_F70,
208 PT_F71,
209 PT_F72,
210 PT_F73,
211 PT_F74,
212 PT_F75,
213 PT_F76,
214 PT_F77,
215 PT_F78,
216 PT_F79,
217 PT_F80,
218 PT_F81,
219 PT_F82,
220 PT_F83,
221 PT_F84,
222 PT_F85,
223 PT_F86,
224 PT_F87,
225 PT_F88,
226 PT_F89,
227 PT_F90,
228 PT_F91,
229 PT_F92,
230 PT_F93,
231 PT_F94,
232 PT_F95,
233 PT_F96,
234 PT_F97,
235 PT_F98,
236 PT_F99,
237 PT_F100,
238 PT_F101,
239 PT_F102,
240 PT_F103,
241 PT_F104,
242 PT_F105,
243 PT_F106,
244 PT_F107,
245 PT_F108,
246 PT_F109,
247 PT_F110,
248 PT_F111,
249 PT_F112,
250 PT_F113,
251 PT_F114,
252 PT_F115,
253 PT_F116,
254 PT_F117,
255 PT_F118,
256 PT_F119,
257 PT_F120,
258 PT_F121,
259 PT_F122,
260 PT_F123,
261 PT_F124,
262 PT_F125,
263 PT_F126,
264 PT_F127,
265 /* Predicate registers - we don't fetch these individually. */
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1,
274 /* branch registers */
275 PT_B0,
276 PT_B1,
277 PT_B2,
278 PT_B3,
279 PT_B4,
280 PT_B5,
281 PT_B6,
282 PT_B7,
283 /* Virtual frame pointer and virtual return address pointer. */
284 -1, -1,
285 /* other registers */
286 PT_PR,
287 PT_CR_IIP, /* ip */
288 PT_CR_IPSR, /* psr */
289 PT_CFM, /* cfm */
290 /* kernel registers not visible via ptrace interface (?) */
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 /* hole */
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 PT_AR_RSC,
295 PT_AR_BSP,
296 PT_AR_BSPSTORE,
297 PT_AR_RNAT,
298 -1,
299 -1, /* Not available: FCR, IA32 floating control register. */
300 -1, -1,
301 -1, /* Not available: EFLAG */
302 -1, /* Not available: CSD */
303 -1, /* Not available: SSD */
304 -1, /* Not available: CFLG */
305 -1, /* Not available: FSR */
306 -1, /* Not available: FIR */
307 -1, /* Not available: FDR */
308 -1,
309 PT_AR_CCV,
310 -1, -1, -1,
311 PT_AR_UNAT,
312 -1, -1, -1,
313 PT_AR_FPSR,
314 -1, -1, -1,
315 -1, /* Not available: ITC */
316 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
317 -1, -1, -1, -1, -1, -1, -1, -1, -1,
318 PT_AR_PFS,
319 PT_AR_LC,
320 PT_AR_EC,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
326 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
327 -1,
328 /* nat bits - not fetched directly; instead we obtain these bits from
329 either rnat or unat or from memory. */
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 -1, -1, -1, -1, -1, -1, -1, -1,
346 };
347
348 static CORE_ADDR
349 ia64_register_addr (struct gdbarch *gdbarch, int regno)
350 {
351 CORE_ADDR addr;
352
353 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
354 error (_("Invalid register number %d."), regno);
355
356 if (u_offsets[regno] == -1)
357 addr = 0;
358 else
359 addr = (CORE_ADDR) u_offsets[regno];
360
361 return addr;
362 }
363
364 static int
365 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
366 {
367 return regno < 0
368 || regno >= gdbarch_num_regs (gdbarch)
369 || u_offsets[regno] == -1;
370 }
371
372 static int
373 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
374 {
375 /* Rationale behind not permitting stores to bspstore...
376
377 The IA-64 architecture provides bspstore and bsp which refer
378 memory locations in the RSE's backing store. bspstore is the
379 next location which will be written when the RSE needs to write
380 to memory. bsp is the address at which r32 in the current frame
381 would be found if it were written to the backing store.
382
383 The IA-64 architecture provides read-only access to bsp and
384 read/write access to bspstore (but only when the RSE is in
385 the enforced lazy mode). It should be noted that stores
386 to bspstore also affect the value of bsp. Changing bspstore
387 does not affect the number of dirty entries between bspstore
388 and bsp, so changing bspstore by N words will also cause bsp
389 to be changed by (roughly) N as well. (It could be N-1 or N+1
390 depending upon where the NaT collection bits fall.)
391
392 OTOH, the Linux kernel provides read/write access to bsp (and
393 currently read/write access to bspstore as well). But it
394 is definitely the case that if you change one, the other
395 will change at the same time. It is more useful to gdb to
396 be able to change bsp. So in order to prevent strange and
397 undesirable things from happening when a dummy stack frame
398 is popped (after calling an inferior function), we allow
399 bspstore to be read, but not written. (Note that popping
400 a (generic) dummy stack frame causes all registers that
401 were previously read from the inferior process to be written
402 back.) */
403
404 return regno < 0
405 || regno >= gdbarch_num_regs (gdbarch)
406 || u_offsets[regno] == -1
407 || regno == IA64_BSPSTORE_REGNUM;
408 }
409
410 void
411 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
412 {
413 int regi;
414 const greg_t *regp = (const greg_t *) gregsetp;
415
416 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
417 {
418 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
419 }
420
421 /* FIXME: NAT collection bits are at index 32; gotta deal with these
422 somehow... */
423
424 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
425
426 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
427 {
428 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
429 }
430
431 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
432 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
433 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
434 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
435 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
436 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
437 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
438 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
439 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
440 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
441 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
442 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
443 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
444 }
445
446 void
447 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
448 {
449 int regi;
450 greg_t *regp = (greg_t *) gregsetp;
451
452 #define COPY_REG(_idx_,_regi_) \
453 if ((regno == -1) || regno == _regi_) \
454 regcache->raw_collect (_regi_, regp + _idx_)
455
456 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
457 {
458 COPY_REG (regi - IA64_GR0_REGNUM, regi);
459 }
460
461 /* FIXME: NAT collection bits at index 32? */
462
463 COPY_REG (33, IA64_PR_REGNUM);
464
465 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
466 {
467 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
468 }
469
470 COPY_REG (42, IA64_IP_REGNUM);
471 COPY_REG (43, IA64_CFM_REGNUM);
472 COPY_REG (44, IA64_PSR_REGNUM);
473 COPY_REG (45, IA64_RSC_REGNUM);
474 COPY_REG (46, IA64_BSP_REGNUM);
475 COPY_REG (47, IA64_BSPSTORE_REGNUM);
476 COPY_REG (48, IA64_RNAT_REGNUM);
477 COPY_REG (49, IA64_CCV_REGNUM);
478 COPY_REG (50, IA64_UNAT_REGNUM);
479 COPY_REG (51, IA64_FPSR_REGNUM);
480 COPY_REG (52, IA64_PFS_REGNUM);
481 COPY_REG (53, IA64_LC_REGNUM);
482 COPY_REG (54, IA64_EC_REGNUM);
483 }
484
485 /* Given a pointer to a floating point register set in /proc format
486 (fpregset_t *), unpack the register contents and supply them as gdb's
487 idea of the current floating point register values. */
488
489 void
490 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
491 {
492 int regi;
493 const char *from;
494 const gdb_byte f_zero[16] = { 0 };
495 const gdb_byte f_one[16] =
496 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
497
498 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
499 did the same. So ignore whatever might be recorded in fpregset_t
500 for fr0/fr1 and always supply their expected values. */
501
502 /* fr0 is always read as zero. */
503 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
504 /* fr1 is always read as one (1.0). */
505 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
506
507 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
508 {
509 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
510 regcache->raw_supply (regi, from);
511 }
512 }
513
514 /* Given a pointer to a floating point register set in /proc format
515 (fpregset_t *), update the register specified by REGNO from gdb's idea
516 of the current floating point register set. If REGNO is -1, update
517 them all. */
518
519 void
520 fill_fpregset (const struct regcache *regcache,
521 fpregset_t *fpregsetp, int regno)
522 {
523 int regi;
524
525 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
526 {
527 if ((regno == -1) || (regno == regi))
528 regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
529 }
530 }
531
532 #define IA64_PSR_DB (1UL << 24)
533 #define IA64_PSR_DD (1UL << 39)
534
535 void
536 ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid)
537 {
538 struct regcache *regcache = get_thread_regcache (this, ptid);
539 ULONGEST psr;
540
541 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
542 if (!(psr & IA64_PSR_DB))
543 {
544 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
545 watchpoints and breakpoints. */
546 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
547 }
548 }
549
550 static long debug_registers[8];
551
552 static void
553 store_debug_register (ptid_t ptid, int idx, long val)
554 {
555 int tid;
556
557 tid = ptid.lwp ();
558 if (tid == 0)
559 tid = ptid.pid ();
560
561 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
562 }
563
564 static void
565 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
566 long *dbr_mask)
567 {
568 if (dbr_addr)
569 store_debug_register (ptid, 2 * idx, *dbr_addr);
570 if (dbr_mask)
571 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
572 }
573
574 static int
575 is_power_of_2 (int val)
576 {
577 int i, onecount;
578
579 onecount = 0;
580 for (i = 0; i < 8 * sizeof (val); i++)
581 if (val & (1 << i))
582 onecount++;
583
584 return onecount <= 1;
585 }
586
587 int
588 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
589 enum target_hw_bp_type type,
590 struct expression *cond)
591 {
592 struct lwp_info *lp;
593 int idx;
594 long dbr_addr, dbr_mask;
595 int max_watchpoints = 4;
596
597 if (len <= 0 || !is_power_of_2 (len))
598 return -1;
599
600 for (idx = 0; idx < max_watchpoints; idx++)
601 {
602 dbr_mask = debug_registers[idx * 2 + 1];
603 if ((dbr_mask & (0x3UL << 62)) == 0)
604 {
605 /* Exit loop if both r and w bits clear. */
606 break;
607 }
608 }
609
610 if (idx == max_watchpoints)
611 return -1;
612
613 dbr_addr = (long) addr;
614 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
615 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
616 switch (type)
617 {
618 case hw_write:
619 dbr_mask |= (1L << 62); /* Set w bit */
620 break;
621 case hw_read:
622 dbr_mask |= (1L << 63); /* Set r bit */
623 break;
624 case hw_access:
625 dbr_mask |= (3L << 62); /* Set both r and w bits */
626 break;
627 default:
628 return -1;
629 }
630
631 debug_registers[2 * idx] = dbr_addr;
632 debug_registers[2 * idx + 1] = dbr_mask;
633 ALL_LWPS (lp)
634 {
635 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
636 enable_watchpoints_in_psr (lp->ptid);
637 }
638
639 return 0;
640 }
641
642 int
643 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
644 enum target_hw_bp_type type,
645 struct expression *cond)
646 {
647 int idx;
648 long dbr_addr, dbr_mask;
649 int max_watchpoints = 4;
650
651 if (len <= 0 || !is_power_of_2 (len))
652 return -1;
653
654 for (idx = 0; idx < max_watchpoints; idx++)
655 {
656 dbr_addr = debug_registers[2 * idx];
657 dbr_mask = debug_registers[2 * idx + 1];
658 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
659 {
660 struct lwp_info *lp;
661
662 debug_registers[2 * idx] = 0;
663 debug_registers[2 * idx + 1] = 0;
664 dbr_addr = 0;
665 dbr_mask = 0;
666
667 ALL_LWPS (lp)
668 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
669
670 return 0;
671 }
672 }
673 return -1;
674 }
675
676 void
677 ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
678 {
679 int i, any;
680
681 any = 0;
682 for (i = 0; i < 8; i++)
683 {
684 if (debug_registers[i] != 0)
685 any = 1;
686 store_debug_register (lp->ptid, i, debug_registers[i]);
687 }
688
689 if (any)
690 enable_watchpoints_in_psr (lp->ptid);
691 }
692
693 bool
694 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
695 {
696 CORE_ADDR psr;
697 siginfo_t siginfo;
698 struct regcache *regcache = get_current_regcache ();
699
700 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
701 return false;
702
703 if (siginfo.si_signo != SIGTRAP
704 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
705 return false;
706
707 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
708 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
709 for the next instruction. */
710 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
711
712 *addr_p = (CORE_ADDR) siginfo.si_addr;
713 return true;
714 }
715
716 bool
717 ia64_linux_nat_target::stopped_by_watchpoint ()
718 {
719 CORE_ADDR addr;
720 return stopped_data_address (&addr);
721 }
722
723 int
724 ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
725 int cnt, int othertype)
726 {
727 return 1;
728 }
729
730
731 /* Fetch register REGNUM from the inferior. */
732
733 static void
734 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
735 {
736 struct gdbarch *gdbarch = regcache->arch ();
737 CORE_ADDR addr;
738 size_t size;
739 PTRACE_TYPE_RET *buf;
740 pid_t pid;
741 int i;
742
743 /* r0 cannot be fetched but is always zero. */
744 if (regnum == IA64_GR0_REGNUM)
745 {
746 const gdb_byte zero[8] = { 0 };
747
748 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
749 regcache->raw_supply (regnum, zero);
750 return;
751 }
752
753 /* fr0 cannot be fetched but is always zero. */
754 if (regnum == IA64_FR0_REGNUM)
755 {
756 const gdb_byte f_zero[16] = { 0 };
757
758 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
759 regcache->raw_supply (regnum, f_zero);
760 return;
761 }
762
763 /* fr1 cannot be fetched but is always one (1.0). */
764 if (regnum == IA64_FR1_REGNUM)
765 {
766 const gdb_byte f_one[16] =
767 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
768
769 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
770 regcache->raw_supply (regnum, f_one);
771 return;
772 }
773
774 if (ia64_cannot_fetch_register (gdbarch, regnum))
775 {
776 regcache->raw_supply (regnum, NULL);
777 return;
778 }
779
780 pid = get_ptrace_pid (regcache->ptid ());
781
782 /* This isn't really an address, but ptrace thinks of it as one. */
783 addr = ia64_register_addr (gdbarch, regnum);
784 size = register_size (gdbarch, regnum);
785
786 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
787 buf = (PTRACE_TYPE_RET *) alloca (size);
788
789 /* Read the register contents from the inferior a chunk at a time. */
790 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
791 {
792 errno = 0;
793 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
794 if (errno != 0)
795 error (_("Couldn't read register %s (#%d): %s."),
796 gdbarch_register_name (gdbarch, regnum),
797 regnum, safe_strerror (errno));
798
799 addr += sizeof (PTRACE_TYPE_RET);
800 }
801 regcache->raw_supply (regnum, buf);
802 }
803
804 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
805 for all registers. */
806
807 void
808 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
809 {
810 if (regnum == -1)
811 for (regnum = 0;
812 regnum < gdbarch_num_regs (regcache->arch ());
813 regnum++)
814 ia64_linux_fetch_register (regcache, regnum);
815 else
816 ia64_linux_fetch_register (regcache, regnum);
817 }
818
819 /* Store register REGNUM into the inferior. */
820
821 static void
822 ia64_linux_store_register (const struct regcache *regcache, int regnum)
823 {
824 struct gdbarch *gdbarch = regcache->arch ();
825 CORE_ADDR addr;
826 size_t size;
827 PTRACE_TYPE_RET *buf;
828 pid_t pid;
829 int i;
830
831 if (ia64_cannot_store_register (gdbarch, regnum))
832 return;
833
834 pid = get_ptrace_pid (regcache->ptid ());
835
836 /* This isn't really an address, but ptrace thinks of it as one. */
837 addr = ia64_register_addr (gdbarch, regnum);
838 size = register_size (gdbarch, regnum);
839
840 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
841 buf = (PTRACE_TYPE_RET *) alloca (size);
842
843 /* Write the register contents into the inferior a chunk at a time. */
844 regcache->raw_collect (regnum, buf);
845 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
846 {
847 errno = 0;
848 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
849 if (errno != 0)
850 error (_("Couldn't write register %s (#%d): %s."),
851 gdbarch_register_name (gdbarch, regnum),
852 regnum, safe_strerror (errno));
853
854 addr += sizeof (PTRACE_TYPE_RET);
855 }
856 }
857
858 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
859 this for all registers. */
860
861 void
862 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
863 {
864 if (regnum == -1)
865 for (regnum = 0;
866 regnum < gdbarch_num_regs (regcache->arch ());
867 regnum++)
868 ia64_linux_store_register (regcache, regnum);
869 else
870 ia64_linux_store_register (regcache, regnum);
871 }
872
873 /* Implement the xfer_partial target_ops method. */
874
875 enum target_xfer_status
876 ia64_linux_nat_target::xfer_partial (enum target_object object,
877 const char *annex,
878 gdb_byte *readbuf, const gdb_byte *writebuf,
879 ULONGEST offset, ULONGEST len,
880 ULONGEST *xfered_len)
881 {
882 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
883 {
884 static long gate_table_size;
885 gdb_byte *tmp_buf;
886 long res;
887
888 /* Probe for the table size once. */
889 if (gate_table_size == 0)
890 gate_table_size = syscall (__NR_getunwind, NULL, 0);
891 if (gate_table_size < 0)
892 return TARGET_XFER_E_IO;
893
894 if (offset >= gate_table_size)
895 return TARGET_XFER_EOF;
896
897 tmp_buf = (gdb_byte *) alloca (gate_table_size);
898 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
899 if (res < 0)
900 return TARGET_XFER_E_IO;
901 gdb_assert (res == gate_table_size);
902
903 if (offset + len > gate_table_size)
904 len = gate_table_size - offset;
905
906 memcpy (readbuf, tmp_buf + offset, len);
907 *xfered_len = len;
908 return TARGET_XFER_OK;
909 }
910
911 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
912 offset, len, xfered_len);
913 }
914
915 /* For break.b instruction ia64 CPU forgets the immediate value and generates
916 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
917 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
918 difference for the signals here. */
919
920 bool
921 ia64_linux_nat_target::low_status_is_event (int status)
922 {
923 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
924 || WSTOPSIG (status) == SIGILL);
925 }
926
927 void _initialize_ia64_linux_nat ();
928 void
929 _initialize_ia64_linux_nat ()
930 {
931 /* Register the target. */
932 linux_target = &the_ia64_linux_nat_target;
933 add_inf_child_target (&the_ia64_linux_nat_target);
934 }
This page took 0.047575 seconds and 4 git commands to generate.