Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
29
30 #include <signal.h>
31 #include <sys/ptrace.h>
32 #include "gdb_wait.h"
33 #ifdef HAVE_SYS_REG_H
34 #include <sys/reg.h>
35 #endif
36 #include <sys/syscall.h>
37 #include <sys/user.h>
38
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /* These must match the order of the register names.
46
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
49
50 static int u_offsets[] =
51 {
52 /* general registers */
53 -1, /* gr0 not available; i.e, it's always zero. */
54 PT_R1,
55 PT_R2,
56 PT_R3,
57 PT_R4,
58 PT_R5,
59 PT_R6,
60 PT_R7,
61 PT_R8,
62 PT_R9,
63 PT_R10,
64 PT_R11,
65 PT_R12,
66 PT_R13,
67 PT_R14,
68 PT_R15,
69 PT_R16,
70 PT_R17,
71 PT_R18,
72 PT_R19,
73 PT_R20,
74 PT_R21,
75 PT_R22,
76 PT_R23,
77 PT_R24,
78 PT_R25,
79 PT_R26,
80 PT_R27,
81 PT_R28,
82 PT_R29,
83 PT_R30,
84 PT_R31,
85 /* gr32 through gr127 not directly available via the ptrace interface. */
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
94 PT_F2,
95 PT_F3,
96 PT_F4,
97 PT_F5,
98 PT_F6,
99 PT_F7,
100 PT_F8,
101 PT_F9,
102 PT_F10,
103 PT_F11,
104 PT_F12,
105 PT_F13,
106 PT_F14,
107 PT_F15,
108 PT_F16,
109 PT_F17,
110 PT_F18,
111 PT_F19,
112 PT_F20,
113 PT_F21,
114 PT_F22,
115 PT_F23,
116 PT_F24,
117 PT_F25,
118 PT_F26,
119 PT_F27,
120 PT_F28,
121 PT_F29,
122 PT_F30,
123 PT_F31,
124 PT_F32,
125 PT_F33,
126 PT_F34,
127 PT_F35,
128 PT_F36,
129 PT_F37,
130 PT_F38,
131 PT_F39,
132 PT_F40,
133 PT_F41,
134 PT_F42,
135 PT_F43,
136 PT_F44,
137 PT_F45,
138 PT_F46,
139 PT_F47,
140 PT_F48,
141 PT_F49,
142 PT_F50,
143 PT_F51,
144 PT_F52,
145 PT_F53,
146 PT_F54,
147 PT_F55,
148 PT_F56,
149 PT_F57,
150 PT_F58,
151 PT_F59,
152 PT_F60,
153 PT_F61,
154 PT_F62,
155 PT_F63,
156 PT_F64,
157 PT_F65,
158 PT_F66,
159 PT_F67,
160 PT_F68,
161 PT_F69,
162 PT_F70,
163 PT_F71,
164 PT_F72,
165 PT_F73,
166 PT_F74,
167 PT_F75,
168 PT_F76,
169 PT_F77,
170 PT_F78,
171 PT_F79,
172 PT_F80,
173 PT_F81,
174 PT_F82,
175 PT_F83,
176 PT_F84,
177 PT_F85,
178 PT_F86,
179 PT_F87,
180 PT_F88,
181 PT_F89,
182 PT_F90,
183 PT_F91,
184 PT_F92,
185 PT_F93,
186 PT_F94,
187 PT_F95,
188 PT_F96,
189 PT_F97,
190 PT_F98,
191 PT_F99,
192 PT_F100,
193 PT_F101,
194 PT_F102,
195 PT_F103,
196 PT_F104,
197 PT_F105,
198 PT_F106,
199 PT_F107,
200 PT_F108,
201 PT_F109,
202 PT_F110,
203 PT_F111,
204 PT_F112,
205 PT_F113,
206 PT_F114,
207 PT_F115,
208 PT_F116,
209 PT_F117,
210 PT_F118,
211 PT_F119,
212 PT_F120,
213 PT_F121,
214 PT_F122,
215 PT_F123,
216 PT_F124,
217 PT_F125,
218 PT_F126,
219 PT_F127,
220 /* Predicate registers - we don't fetch these individually. */
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
230 PT_B0,
231 PT_B1,
232 PT_B2,
233 PT_B3,
234 PT_B4,
235 PT_B5,
236 PT_B6,
237 PT_B7,
238 /* Virtual frame pointer and virtual return address pointer. */
239 -1, -1,
240 /* other registers */
241 PT_PR,
242 PT_CR_IIP, /* ip */
243 PT_CR_IPSR, /* psr */
244 PT_CFM, /* cfm */
245 /* kernel registers not visible via ptrace interface (?) */
246 -1, -1, -1, -1, -1, -1, -1, -1,
247 /* hole */
248 -1, -1, -1, -1, -1, -1, -1, -1,
249 PT_AR_RSC,
250 PT_AR_BSP,
251 PT_AR_BSPSTORE,
252 PT_AR_RNAT,
253 -1,
254 -1, /* Not available: FCR, IA32 floating control register. */
255 -1, -1,
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
263 -1,
264 PT_AR_CCV,
265 -1, -1, -1,
266 PT_AR_UNAT,
267 -1, -1, -1,
268 PT_AR_FPSR,
269 -1, -1, -1,
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 PT_AR_PFS,
274 PT_AR_LC,
275 -1, /* Not available: EC, the Epilog Count register. */
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
284 either rnat or unat or from memory. */
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 };
302
303 static CORE_ADDR
304 ia64_register_addr (struct gdbarch *gdbarch, int regno)
305 {
306 CORE_ADDR addr;
307
308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
309 error (_("Invalid register number %d."), regno);
310
311 if (u_offsets[regno] == -1)
312 addr = 0;
313 else
314 addr = (CORE_ADDR) u_offsets[regno];
315
316 return addr;
317 }
318
319 static int
320 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
321 {
322 return regno < 0
323 || regno >= gdbarch_num_regs (gdbarch)
324 || u_offsets[regno] == -1;
325 }
326
327 static int
328 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
329 {
330 /* Rationale behind not permitting stores to bspstore...
331
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
337
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
346
347 OTOH, the Linux kernel provides read/write access to bsp (and
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
357 back.) */
358
359 return regno < 0
360 || regno >= gdbarch_num_regs (gdbarch)
361 || u_offsets[regno] == -1
362 || regno == IA64_BSPSTORE_REGNUM;
363 }
364
365 void
366 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
367 {
368 int regi;
369 const greg_t *regp = (const greg_t *) gregsetp;
370
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
372 {
373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
374 }
375
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
377 somehow... */
378
379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
380
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 {
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
385 }
386
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
400 }
401
402 void
403 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
404 {
405 int regi;
406 greg_t *regp = (greg_t *) gregsetp;
407
408 #define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
411
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 {
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
415 }
416
417 /* FIXME: NAT collection bits at index 32? */
418
419 COPY_REG (33, IA64_PR_REGNUM);
420
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
422 {
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
424 }
425
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
439 }
440
441 /* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
443 idea of the current floating point register values. */
444
445 void
446 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
447 {
448 int regi;
449 const char *from;
450
451 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
452 {
453 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
454 regcache_raw_supply (regcache, regi, from);
455 }
456 }
457
458 /* Given a pointer to a floating point register set in /proc format
459 (fpregset_t *), update the register specified by REGNO from gdb's idea
460 of the current floating point register set. If REGNO is -1, update
461 them all. */
462
463 void
464 fill_fpregset (const struct regcache *regcache,
465 fpregset_t *fpregsetp, int regno)
466 {
467 int regi;
468
469 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
470 {
471 if ((regno == -1) || (regno == regi))
472 regcache_raw_collect (regcache, regi,
473 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
474 }
475 }
476
477 #define IA64_PSR_DB (1UL << 24)
478 #define IA64_PSR_DD (1UL << 39)
479
480 static void
481 enable_watchpoints_in_psr (ptid_t ptid)
482 {
483 struct regcache *regcache = get_thread_regcache (ptid);
484 ULONGEST psr;
485
486 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
487 if (!(psr & IA64_PSR_DB))
488 {
489 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
490 watchpoints and breakpoints. */
491 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
492 }
493 }
494
495 static long debug_registers[8];
496
497 static void
498 store_debug_register (ptid_t ptid, int idx, long val)
499 {
500 int tid;
501
502 tid = TIDGET (ptid);
503 if (tid == 0)
504 tid = PIDGET (ptid);
505
506 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
507 }
508
509 static void
510 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
511 long *dbr_mask)
512 {
513 if (dbr_addr)
514 store_debug_register (ptid, 2 * idx, *dbr_addr);
515 if (dbr_mask)
516 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
517 }
518
519 static int
520 is_power_of_2 (int val)
521 {
522 int i, onecount;
523
524 onecount = 0;
525 for (i = 0; i < 8 * sizeof (val); i++)
526 if (val & (1 << i))
527 onecount++;
528
529 return onecount <= 1;
530 }
531
532 static int
533 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
534 struct expression *cond)
535 {
536 struct lwp_info *lp;
537 int idx;
538 long dbr_addr, dbr_mask;
539 int max_watchpoints = 4;
540
541 if (len <= 0 || !is_power_of_2 (len))
542 return -1;
543
544 for (idx = 0; idx < max_watchpoints; idx++)
545 {
546 dbr_mask = debug_registers[idx * 2 + 1];
547 if ((dbr_mask & (0x3UL << 62)) == 0)
548 {
549 /* Exit loop if both r and w bits clear. */
550 break;
551 }
552 }
553
554 if (idx == max_watchpoints)
555 return -1;
556
557 dbr_addr = (long) addr;
558 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
559 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
560 switch (rw)
561 {
562 case hw_write:
563 dbr_mask |= (1L << 62); /* Set w bit */
564 break;
565 case hw_read:
566 dbr_mask |= (1L << 63); /* Set r bit */
567 break;
568 case hw_access:
569 dbr_mask |= (3L << 62); /* Set both r and w bits */
570 break;
571 default:
572 return -1;
573 }
574
575 debug_registers[2 * idx] = dbr_addr;
576 debug_registers[2 * idx + 1] = dbr_mask;
577 ALL_LWPS (lp)
578 {
579 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
580 enable_watchpoints_in_psr (lp->ptid);
581 }
582
583 return 0;
584 }
585
586 static int
587 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
588 struct expression *cond)
589 {
590 int idx;
591 long dbr_addr, dbr_mask;
592 int max_watchpoints = 4;
593
594 if (len <= 0 || !is_power_of_2 (len))
595 return -1;
596
597 for (idx = 0; idx < max_watchpoints; idx++)
598 {
599 dbr_addr = debug_registers[2 * idx];
600 dbr_mask = debug_registers[2 * idx + 1];
601 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
602 {
603 struct lwp_info *lp;
604
605 debug_registers[2 * idx] = 0;
606 debug_registers[2 * idx + 1] = 0;
607 dbr_addr = 0;
608 dbr_mask = 0;
609
610 ALL_LWPS (lp)
611 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
612
613 return 0;
614 }
615 }
616 return -1;
617 }
618
619 static void
620 ia64_linux_new_thread (struct lwp_info *lp)
621 {
622 int i, any;
623
624 any = 0;
625 for (i = 0; i < 8; i++)
626 {
627 if (debug_registers[i] != 0)
628 any = 1;
629 store_debug_register (lp->ptid, i, debug_registers[i]);
630 }
631
632 if (any)
633 enable_watchpoints_in_psr (lp->ptid);
634 }
635
636 static int
637 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
638 {
639 CORE_ADDR psr;
640 struct siginfo *siginfo_p;
641 struct regcache *regcache = get_current_regcache ();
642
643 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
644
645 if (siginfo_p->si_signo != SIGTRAP
646 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
647 return 0;
648
649 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
650 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
651 for the next instruction. */
652 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
653
654 *addr_p = (CORE_ADDR)siginfo_p->si_addr;
655 return 1;
656 }
657
658 static int
659 ia64_linux_stopped_by_watchpoint (void)
660 {
661 CORE_ADDR addr;
662 return ia64_linux_stopped_data_address (&current_target, &addr);
663 }
664
665 static int
666 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
667 {
668 return 1;
669 }
670
671
672 /* Fetch register REGNUM from the inferior. */
673
674 static void
675 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
676 {
677 struct gdbarch *gdbarch = get_regcache_arch (regcache);
678 CORE_ADDR addr;
679 size_t size;
680 PTRACE_TYPE_RET *buf;
681 int pid, i;
682
683 if (ia64_cannot_fetch_register (gdbarch, regnum))
684 {
685 regcache_raw_supply (regcache, regnum, NULL);
686 return;
687 }
688
689 /* Cater for systems like GNU/Linux, that implement threads as
690 separate processes. */
691 pid = ptid_get_lwp (inferior_ptid);
692 if (pid == 0)
693 pid = ptid_get_pid (inferior_ptid);
694
695 /* This isn't really an address, but ptrace thinks of it as one. */
696 addr = ia64_register_addr (gdbarch, regnum);
697 size = register_size (gdbarch, regnum);
698
699 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
700 buf = alloca (size);
701
702 /* Read the register contents from the inferior a chunk at a time. */
703 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
704 {
705 errno = 0;
706 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
707 if (errno != 0)
708 error (_("Couldn't read register %s (#%d): %s."),
709 gdbarch_register_name (gdbarch, regnum),
710 regnum, safe_strerror (errno));
711
712 addr += sizeof (PTRACE_TYPE_RET);
713 }
714 regcache_raw_supply (regcache, regnum, buf);
715 }
716
717 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
718 for all registers. */
719
720 static void
721 ia64_linux_fetch_registers (struct target_ops *ops,
722 struct regcache *regcache, int regnum)
723 {
724 if (regnum == -1)
725 for (regnum = 0;
726 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
727 regnum++)
728 ia64_linux_fetch_register (regcache, regnum);
729 else
730 ia64_linux_fetch_register (regcache, regnum);
731 }
732
733 /* Store register REGNUM into the inferior. */
734
735 static void
736 ia64_linux_store_register (const struct regcache *regcache, int regnum)
737 {
738 struct gdbarch *gdbarch = get_regcache_arch (regcache);
739 CORE_ADDR addr;
740 size_t size;
741 PTRACE_TYPE_RET *buf;
742 int pid, i;
743
744 if (ia64_cannot_store_register (gdbarch, regnum))
745 return;
746
747 /* Cater for systems like GNU/Linux, that implement threads as
748 separate processes. */
749 pid = ptid_get_lwp (inferior_ptid);
750 if (pid == 0)
751 pid = ptid_get_pid (inferior_ptid);
752
753 /* This isn't really an address, but ptrace thinks of it as one. */
754 addr = ia64_register_addr (gdbarch, regnum);
755 size = register_size (gdbarch, regnum);
756
757 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
758 buf = alloca (size);
759
760 /* Write the register contents into the inferior a chunk at a time. */
761 regcache_raw_collect (regcache, regnum, buf);
762 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
763 {
764 errno = 0;
765 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
766 if (errno != 0)
767 error (_("Couldn't write register %s (#%d): %s."),
768 gdbarch_register_name (gdbarch, regnum),
769 regnum, safe_strerror (errno));
770
771 addr += sizeof (PTRACE_TYPE_RET);
772 }
773 }
774
775 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
776 this for all registers. */
777
778 static void
779 ia64_linux_store_registers (struct target_ops *ops,
780 struct regcache *regcache, int regnum)
781 {
782 if (regnum == -1)
783 for (regnum = 0;
784 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
785 regnum++)
786 ia64_linux_store_register (regcache, regnum);
787 else
788 ia64_linux_store_register (regcache, regnum);
789 }
790
791
792 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
793 const char *, gdb_byte *,
794 const gdb_byte *, ULONGEST, LONGEST);
795
796 static LONGEST
797 ia64_linux_xfer_partial (struct target_ops *ops,
798 enum target_object object,
799 const char *annex,
800 gdb_byte *readbuf, const gdb_byte *writebuf,
801 ULONGEST offset, LONGEST len)
802 {
803 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
804 return syscall (__NR_getunwind, readbuf, len);
805
806 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
807 offset, len);
808 }
809
810 /* For break.b instruction ia64 CPU forgets the immediate value and generates
811 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
812 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
813 difference for the signals here. */
814
815 static int
816 ia64_linux_status_is_event (int status)
817 {
818 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
819 || WSTOPSIG (status) == SIGILL);
820 }
821
822 void _initialize_ia64_linux_nat (void);
823
824 void
825 _initialize_ia64_linux_nat (void)
826 {
827 struct target_ops *t;
828
829 /* Fill in the generic GNU/Linux methods. */
830 t = linux_target ();
831
832 /* Override the default fetch/store register routines. */
833 t->to_fetch_registers = ia64_linux_fetch_registers;
834 t->to_store_registers = ia64_linux_store_registers;
835
836 /* Override the default to_xfer_partial. */
837 super_xfer_partial = t->to_xfer_partial;
838 t->to_xfer_partial = ia64_linux_xfer_partial;
839
840 /* Override watchpoint routines. */
841
842 /* The IA-64 architecture can step over a watch point (without triggering
843 it again) if the "dd" (data debug fault disable) bit in the processor
844 status word is set.
845
846 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
847 code there has determined that a hardware watchpoint has indeed
848 been hit. The CPU will then be able to execute one instruction
849 without triggering a watchpoint. */
850
851 t->to_have_steppable_watchpoint = 1;
852 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
853 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
854 t->to_stopped_data_address = ia64_linux_stopped_data_address;
855 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
856 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
857
858 /* Register the target. */
859 linux_nat_add_target (t);
860 linux_nat_set_new_thread (t, ia64_linux_new_thread);
861 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
862 }
This page took 0.069413 seconds and 5 git commands to generate.