Remove regcache_get_ptid
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
28
29 #include <signal.h>
30 #include "nat/gdb_ptrace.h"
31 #include "gdb_wait.h"
32 #ifdef HAVE_SYS_REG_H
33 #include <sys/reg.h>
34 #endif
35 #include <sys/syscall.h>
36 #include <sys/user.h>
37
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43
44 #include "inf-ptrace.h"
45
46 class ia64_linux_nat_target final : public linux_nat_target
47 {
48 public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
52
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
59
60 const struct target_desc *read_description () override;
61
62 /* Override watchpoint routines. */
63
64 /* The IA-64 architecture can step over a watch point (without
65 triggering it again) if the "dd" (data debug fault disable) bit
66 in the processor status word is set.
67
68 This PSR bit is set in
69 ia64_linux_nat_target::stopped_by_watchpoint when the code there
70 has determined that a hardware watchpoint has indeed been hit.
71 The CPU will then be able to execute one instruction without
72 triggering a watchpoint. */
73 bool have_steppable_watchpoint () { return 1; }
74
75 int can_use_hw_breakpoint (enum bptype, int, int) override;
76 bool stopped_by_watchpoint () override;
77 bool stopped_data_address (CORE_ADDR *) override;
78 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
80 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
81 struct expression *) override;
82 /* Override linux_nat_target low methods. */
83 void low_new_thread (struct lwp_info *lp) override;
84 bool low_status_is_event (int status) override;
85 };
86
87 static ia64_linux_nat_target the_ia64_linux_nat_target;
88
89 /* These must match the order of the register names.
90
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
93
94 static int u_offsets[] =
95 {
96 /* general registers */
97 -1, /* gr0 not available; i.e, it's always zero. */
98 PT_R1,
99 PT_R2,
100 PT_R3,
101 PT_R4,
102 PT_R5,
103 PT_R6,
104 PT_R7,
105 PT_R8,
106 PT_R9,
107 PT_R10,
108 PT_R11,
109 PT_R12,
110 PT_R13,
111 PT_R14,
112 PT_R15,
113 PT_R16,
114 PT_R17,
115 PT_R18,
116 PT_R19,
117 PT_R20,
118 PT_R21,
119 PT_R22,
120 PT_R23,
121 PT_R24,
122 PT_R25,
123 PT_R26,
124 PT_R27,
125 PT_R28,
126 PT_R29,
127 PT_R30,
128 PT_R31,
129 /* gr32 through gr127 not directly available via the ptrace interface. */
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
138 PT_F2,
139 PT_F3,
140 PT_F4,
141 PT_F5,
142 PT_F6,
143 PT_F7,
144 PT_F8,
145 PT_F9,
146 PT_F10,
147 PT_F11,
148 PT_F12,
149 PT_F13,
150 PT_F14,
151 PT_F15,
152 PT_F16,
153 PT_F17,
154 PT_F18,
155 PT_F19,
156 PT_F20,
157 PT_F21,
158 PT_F22,
159 PT_F23,
160 PT_F24,
161 PT_F25,
162 PT_F26,
163 PT_F27,
164 PT_F28,
165 PT_F29,
166 PT_F30,
167 PT_F31,
168 PT_F32,
169 PT_F33,
170 PT_F34,
171 PT_F35,
172 PT_F36,
173 PT_F37,
174 PT_F38,
175 PT_F39,
176 PT_F40,
177 PT_F41,
178 PT_F42,
179 PT_F43,
180 PT_F44,
181 PT_F45,
182 PT_F46,
183 PT_F47,
184 PT_F48,
185 PT_F49,
186 PT_F50,
187 PT_F51,
188 PT_F52,
189 PT_F53,
190 PT_F54,
191 PT_F55,
192 PT_F56,
193 PT_F57,
194 PT_F58,
195 PT_F59,
196 PT_F60,
197 PT_F61,
198 PT_F62,
199 PT_F63,
200 PT_F64,
201 PT_F65,
202 PT_F66,
203 PT_F67,
204 PT_F68,
205 PT_F69,
206 PT_F70,
207 PT_F71,
208 PT_F72,
209 PT_F73,
210 PT_F74,
211 PT_F75,
212 PT_F76,
213 PT_F77,
214 PT_F78,
215 PT_F79,
216 PT_F80,
217 PT_F81,
218 PT_F82,
219 PT_F83,
220 PT_F84,
221 PT_F85,
222 PT_F86,
223 PT_F87,
224 PT_F88,
225 PT_F89,
226 PT_F90,
227 PT_F91,
228 PT_F92,
229 PT_F93,
230 PT_F94,
231 PT_F95,
232 PT_F96,
233 PT_F97,
234 PT_F98,
235 PT_F99,
236 PT_F100,
237 PT_F101,
238 PT_F102,
239 PT_F103,
240 PT_F104,
241 PT_F105,
242 PT_F106,
243 PT_F107,
244 PT_F108,
245 PT_F109,
246 PT_F110,
247 PT_F111,
248 PT_F112,
249 PT_F113,
250 PT_F114,
251 PT_F115,
252 PT_F116,
253 PT_F117,
254 PT_F118,
255 PT_F119,
256 PT_F120,
257 PT_F121,
258 PT_F122,
259 PT_F123,
260 PT_F124,
261 PT_F125,
262 PT_F126,
263 PT_F127,
264 /* Predicate registers - we don't fetch these individually. */
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
274 PT_B0,
275 PT_B1,
276 PT_B2,
277 PT_B3,
278 PT_B4,
279 PT_B5,
280 PT_B6,
281 PT_B7,
282 /* Virtual frame pointer and virtual return address pointer. */
283 -1, -1,
284 /* other registers */
285 PT_PR,
286 PT_CR_IIP, /* ip */
287 PT_CR_IPSR, /* psr */
288 PT_CFM, /* cfm */
289 /* kernel registers not visible via ptrace interface (?) */
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 /* hole */
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 PT_AR_RSC,
294 PT_AR_BSP,
295 PT_AR_BSPSTORE,
296 PT_AR_RNAT,
297 -1,
298 -1, /* Not available: FCR, IA32 floating control register. */
299 -1, -1,
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
307 -1,
308 PT_AR_CCV,
309 -1, -1, -1,
310 PT_AR_UNAT,
311 -1, -1, -1,
312 PT_AR_FPSR,
313 -1, -1, -1,
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
317 PT_AR_PFS,
318 PT_AR_LC,
319 PT_AR_EC,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
326 -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
328 either rnat or unat or from memory. */
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 };
346
347 static CORE_ADDR
348 ia64_register_addr (struct gdbarch *gdbarch, int regno)
349 {
350 CORE_ADDR addr;
351
352 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
353 error (_("Invalid register number %d."), regno);
354
355 if (u_offsets[regno] == -1)
356 addr = 0;
357 else
358 addr = (CORE_ADDR) u_offsets[regno];
359
360 return addr;
361 }
362
363 static int
364 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
365 {
366 return regno < 0
367 || regno >= gdbarch_num_regs (gdbarch)
368 || u_offsets[regno] == -1;
369 }
370
371 static int
372 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
373 {
374 /* Rationale behind not permitting stores to bspstore...
375
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
381
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
390
391 OTOH, the Linux kernel provides read/write access to bsp (and
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
401 back.) */
402
403 return regno < 0
404 || regno >= gdbarch_num_regs (gdbarch)
405 || u_offsets[regno] == -1
406 || regno == IA64_BSPSTORE_REGNUM;
407 }
408
409 void
410 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
411 {
412 int regi;
413 const greg_t *regp = (const greg_t *) gregsetp;
414
415 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
416 {
417 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
418 }
419
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
421 somehow... */
422
423 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
424
425 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
426 {
427 regcache_raw_supply (regcache, regi,
428 regp + 34 + (regi - IA64_BR0_REGNUM));
429 }
430
431 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
432 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
433 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
434 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
435 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
436 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
437 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
438 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
439 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
440 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
441 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
442 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
443 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
444 }
445
446 void
447 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
448 {
449 int regi;
450 greg_t *regp = (greg_t *) gregsetp;
451
452 #define COPY_REG(_idx_,_regi_) \
453 if ((regno == -1) || regno == _regi_) \
454 regcache_raw_collect (regcache, _regi_, regp + _idx_)
455
456 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
457 {
458 COPY_REG (regi - IA64_GR0_REGNUM, regi);
459 }
460
461 /* FIXME: NAT collection bits at index 32? */
462
463 COPY_REG (33, IA64_PR_REGNUM);
464
465 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
466 {
467 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
468 }
469
470 COPY_REG (42, IA64_IP_REGNUM);
471 COPY_REG (43, IA64_CFM_REGNUM);
472 COPY_REG (44, IA64_PSR_REGNUM);
473 COPY_REG (45, IA64_RSC_REGNUM);
474 COPY_REG (46, IA64_BSP_REGNUM);
475 COPY_REG (47, IA64_BSPSTORE_REGNUM);
476 COPY_REG (48, IA64_RNAT_REGNUM);
477 COPY_REG (49, IA64_CCV_REGNUM);
478 COPY_REG (50, IA64_UNAT_REGNUM);
479 COPY_REG (51, IA64_FPSR_REGNUM);
480 COPY_REG (52, IA64_PFS_REGNUM);
481 COPY_REG (53, IA64_LC_REGNUM);
482 COPY_REG (54, IA64_EC_REGNUM);
483 }
484
485 /* Given a pointer to a floating point register set in /proc format
486 (fpregset_t *), unpack the register contents and supply them as gdb's
487 idea of the current floating point register values. */
488
489 void
490 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
491 {
492 int regi;
493 const char *from;
494 const gdb_byte f_zero[16] = { 0 };
495 const gdb_byte f_one[16] =
496 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
497
498 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
499 did the same. So ignore whatever might be recorded in fpregset_t
500 for fr0/fr1 and always supply their expected values. */
501
502 /* fr0 is always read as zero. */
503 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
504 /* fr1 is always read as one (1.0). */
505 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
506
507 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
508 {
509 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
510 regcache_raw_supply (regcache, regi, from);
511 }
512 }
513
514 /* Given a pointer to a floating point register set in /proc format
515 (fpregset_t *), update the register specified by REGNO from gdb's idea
516 of the current floating point register set. If REGNO is -1, update
517 them all. */
518
519 void
520 fill_fpregset (const struct regcache *regcache,
521 fpregset_t *fpregsetp, int regno)
522 {
523 int regi;
524
525 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
526 {
527 if ((regno == -1) || (regno == regi))
528 regcache_raw_collect (regcache, regi,
529 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
530 }
531 }
532
533 #define IA64_PSR_DB (1UL << 24)
534 #define IA64_PSR_DD (1UL << 39)
535
536 static void
537 enable_watchpoints_in_psr (ptid_t ptid)
538 {
539 struct regcache *regcache = get_thread_regcache (ptid);
540 ULONGEST psr;
541
542 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
543 if (!(psr & IA64_PSR_DB))
544 {
545 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
546 watchpoints and breakpoints. */
547 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
548 }
549 }
550
551 static long debug_registers[8];
552
553 static void
554 store_debug_register (ptid_t ptid, int idx, long val)
555 {
556 int tid;
557
558 tid = ptid_get_lwp (ptid);
559 if (tid == 0)
560 tid = ptid_get_pid (ptid);
561
562 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
563 }
564
565 static void
566 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
567 long *dbr_mask)
568 {
569 if (dbr_addr)
570 store_debug_register (ptid, 2 * idx, *dbr_addr);
571 if (dbr_mask)
572 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
573 }
574
575 static int
576 is_power_of_2 (int val)
577 {
578 int i, onecount;
579
580 onecount = 0;
581 for (i = 0; i < 8 * sizeof (val); i++)
582 if (val & (1 << i))
583 onecount++;
584
585 return onecount <= 1;
586 }
587
588 int
589 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
590 enum target_hw_bp_type type,
591 struct expression *cond)
592 {
593 struct lwp_info *lp;
594 int idx;
595 long dbr_addr, dbr_mask;
596 int max_watchpoints = 4;
597
598 if (len <= 0 || !is_power_of_2 (len))
599 return -1;
600
601 for (idx = 0; idx < max_watchpoints; idx++)
602 {
603 dbr_mask = debug_registers[idx * 2 + 1];
604 if ((dbr_mask & (0x3UL << 62)) == 0)
605 {
606 /* Exit loop if both r and w bits clear. */
607 break;
608 }
609 }
610
611 if (idx == max_watchpoints)
612 return -1;
613
614 dbr_addr = (long) addr;
615 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
616 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
617 switch (type)
618 {
619 case hw_write:
620 dbr_mask |= (1L << 62); /* Set w bit */
621 break;
622 case hw_read:
623 dbr_mask |= (1L << 63); /* Set r bit */
624 break;
625 case hw_access:
626 dbr_mask |= (3L << 62); /* Set both r and w bits */
627 break;
628 default:
629 return -1;
630 }
631
632 debug_registers[2 * idx] = dbr_addr;
633 debug_registers[2 * idx + 1] = dbr_mask;
634 ALL_LWPS (lp)
635 {
636 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
637 enable_watchpoints_in_psr (lp->ptid);
638 }
639
640 return 0;
641 }
642
643 int
644 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
645 enum target_hw_bp_type type,
646 struct expression *cond)
647 {
648 int idx;
649 long dbr_addr, dbr_mask;
650 int max_watchpoints = 4;
651
652 if (len <= 0 || !is_power_of_2 (len))
653 return -1;
654
655 for (idx = 0; idx < max_watchpoints; idx++)
656 {
657 dbr_addr = debug_registers[2 * idx];
658 dbr_mask = debug_registers[2 * idx + 1];
659 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
660 {
661 struct lwp_info *lp;
662
663 debug_registers[2 * idx] = 0;
664 debug_registers[2 * idx + 1] = 0;
665 dbr_addr = 0;
666 dbr_mask = 0;
667
668 ALL_LWPS (lp)
669 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
670
671 return 0;
672 }
673 }
674 return -1;
675 }
676
677 static void
678 ia64_linux_new_thread (struct lwp_info *lp)
679 {
680 int i, any;
681
682 any = 0;
683 for (i = 0; i < 8; i++)
684 {
685 if (debug_registers[i] != 0)
686 any = 1;
687 store_debug_register (lp->ptid, i, debug_registers[i]);
688 }
689
690 if (any)
691 enable_watchpoints_in_psr (lp->ptid);
692 }
693
694 bool
695 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
696 {
697 CORE_ADDR psr;
698 siginfo_t siginfo;
699 struct regcache *regcache = get_current_regcache ();
700
701 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
702 return false;
703
704 if (siginfo.si_signo != SIGTRAP
705 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
706 return false;
707
708 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
709 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
710 for the next instruction. */
711 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
712
713 *addr_p = (CORE_ADDR) siginfo.si_addr;
714 return true;
715 }
716
717 bool
718 ia64_linux_nat_target::stopped_by_watchpoint ()
719 {
720 CORE_ADDR addr;
721 return stopped_data_address (&addr);
722 }
723
724 static int
725 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
726 enum bptype type,
727 int cnt, int othertype)
728 {
729 return 1;
730 }
731
732
733 /* Fetch register REGNUM from the inferior. */
734
735 static void
736 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
737 {
738 struct gdbarch *gdbarch = regcache->arch ();
739 CORE_ADDR addr;
740 size_t size;
741 PTRACE_TYPE_RET *buf;
742 pid_t pid;
743 int i;
744
745 /* r0 cannot be fetched but is always zero. */
746 if (regnum == IA64_GR0_REGNUM)
747 {
748 const gdb_byte zero[8] = { 0 };
749
750 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
751 regcache_raw_supply (regcache, regnum, zero);
752 return;
753 }
754
755 /* fr0 cannot be fetched but is always zero. */
756 if (regnum == IA64_FR0_REGNUM)
757 {
758 const gdb_byte f_zero[16] = { 0 };
759
760 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
761 regcache_raw_supply (regcache, regnum, f_zero);
762 return;
763 }
764
765 /* fr1 cannot be fetched but is always one (1.0). */
766 if (regnum == IA64_FR1_REGNUM)
767 {
768 const gdb_byte f_one[16] =
769 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
770
771 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
772 regcache_raw_supply (regcache, regnum, f_one);
773 return;
774 }
775
776 if (ia64_cannot_fetch_register (gdbarch, regnum))
777 {
778 regcache_raw_supply (regcache, regnum, NULL);
779 return;
780 }
781
782 pid = get_ptrace_pid (regcache->ptid ());
783
784 /* This isn't really an address, but ptrace thinks of it as one. */
785 addr = ia64_register_addr (gdbarch, regnum);
786 size = register_size (gdbarch, regnum);
787
788 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
789 buf = (PTRACE_TYPE_RET *) alloca (size);
790
791 /* Read the register contents from the inferior a chunk at a time. */
792 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
793 {
794 errno = 0;
795 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
796 if (errno != 0)
797 error (_("Couldn't read register %s (#%d): %s."),
798 gdbarch_register_name (gdbarch, regnum),
799 regnum, safe_strerror (errno));
800
801 addr += sizeof (PTRACE_TYPE_RET);
802 }
803 regcache_raw_supply (regcache, regnum, buf);
804 }
805
806 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
807 for all registers. */
808
809 void
810 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
811 {
812 if (regnum == -1)
813 for (regnum = 0;
814 regnum < gdbarch_num_regs (regcache->arch ());
815 regnum++)
816 ia64_linux_fetch_register (regcache, regnum);
817 else
818 ia64_linux_fetch_register (regcache, regnum);
819 }
820
821 /* Store register REGNUM into the inferior. */
822
823 static void
824 ia64_linux_store_register (const struct regcache *regcache, int regnum)
825 {
826 struct gdbarch *gdbarch = regcache->arch ();
827 CORE_ADDR addr;
828 size_t size;
829 PTRACE_TYPE_RET *buf;
830 pid_t pid;
831 int i;
832
833 if (ia64_cannot_store_register (gdbarch, regnum))
834 return;
835
836 pid = get_ptrace_pid (regcache->ptid ());
837
838 /* This isn't really an address, but ptrace thinks of it as one. */
839 addr = ia64_register_addr (gdbarch, regnum);
840 size = register_size (gdbarch, regnum);
841
842 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
843 buf = (PTRACE_TYPE_RET *) alloca (size);
844
845 /* Write the register contents into the inferior a chunk at a time. */
846 regcache_raw_collect (regcache, regnum, buf);
847 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
848 {
849 errno = 0;
850 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
851 if (errno != 0)
852 error (_("Couldn't write register %s (#%d): %s."),
853 gdbarch_register_name (gdbarch, regnum),
854 regnum, safe_strerror (errno));
855
856 addr += sizeof (PTRACE_TYPE_RET);
857 }
858 }
859
860 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
861 this for all registers. */
862
863 void
864 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
865 {
866 if (regnum == -1)
867 for (regnum = 0;
868 regnum < gdbarch_num_regs (regcache->arch ());
869 regnum++)
870 ia64_linux_store_register (regcache, regnum);
871 else
872 ia64_linux_store_register (regcache, regnum);
873 }
874
875 /* Implement the xfer_partial target_ops method. */
876
877 enum target_xfer_status
878 ia64_linux_nat_target::xfer_partial (enum target_object object,
879 const char *annex,
880 gdb_byte *readbuf, const gdb_byte *writebuf,
881 ULONGEST offset, ULONGEST len,
882 ULONGEST *xfered_len)
883 {
884 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
885 {
886 static long gate_table_size;
887 gdb_byte *tmp_buf;
888 long res;
889
890 /* Probe for the table size once. */
891 if (gate_table_size == 0)
892 gate_table_size = syscall (__NR_getunwind, NULL, 0);
893 if (gate_table_size < 0)
894 return TARGET_XFER_E_IO;
895
896 if (offset >= gate_table_size)
897 return TARGET_XFER_EOF;
898
899 tmp_buf = (gdb_byte *) alloca (gate_table_size);
900 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
901 if (res < 0)
902 return TARGET_XFER_E_IO;
903 gdb_assert (res == gate_table_size);
904
905 if (offset + len > gate_table_size)
906 len = gate_table_size - offset;
907
908 memcpy (readbuf, tmp_buf + offset, len);
909 *xfered_len = len;
910 return TARGET_XFER_OK;
911 }
912
913 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
914 offset, len, xfered_len);
915 }
916
917 /* For break.b instruction ia64 CPU forgets the immediate value and generates
918 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
919 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
920 difference for the signals here. */
921
922 bool
923 ia64_linux_nat_target::low_status_is_event (int status)
924 {
925 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
926 || WSTOPSIG (status) == SIGILL);
927 }
928
929 void
930 _initialize_ia64_linux_nat (void)
931 {
932 /* Register the target. */
933 linux_target = &the_ia64_linux_nat_target;
934 add_inf_child_target (&the_ia64_linux_nat_target);
935 }
This page took 0.0908099999999999 seconds and 5 git commands to generate.