2004-07-21 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
5 Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "regcache.h"
30
31 #include <signal.h>
32 #include <sys/ptrace.h>
33 #include "gdb_wait.h"
34 #ifdef HAVE_SYS_REG_H
35 #include <sys/reg.h>
36 #endif
37 #include <sys/syscall.h>
38 #include <sys/user.h>
39
40 #include <asm/ptrace_offsets.h>
41 #include <sys/procfs.h>
42
43 /* Prototypes for supply_gregset etc. */
44 #include "gregset.h"
45
46 /* These must match the order of the register names.
47
48 Some sort of lookup table is needed because the offsets associated
49 with the registers are all over the board. */
50
51 static int u_offsets[] =
52 {
53 /* general registers */
54 -1, /* gr0 not available; i.e, it's always zero */
55 PT_R1,
56 PT_R2,
57 PT_R3,
58 PT_R4,
59 PT_R5,
60 PT_R6,
61 PT_R7,
62 PT_R8,
63 PT_R9,
64 PT_R10,
65 PT_R11,
66 PT_R12,
67 PT_R13,
68 PT_R14,
69 PT_R15,
70 PT_R16,
71 PT_R17,
72 PT_R18,
73 PT_R19,
74 PT_R20,
75 PT_R21,
76 PT_R22,
77 PT_R23,
78 PT_R24,
79 PT_R25,
80 PT_R26,
81 PT_R27,
82 PT_R28,
83 PT_R29,
84 PT_R30,
85 PT_R31,
86 /* gr32 through gr127 not directly available via the ptrace interface */
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 /* Floating point registers */
94 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
95 PT_F2,
96 PT_F3,
97 PT_F4,
98 PT_F5,
99 PT_F6,
100 PT_F7,
101 PT_F8,
102 PT_F9,
103 PT_F10,
104 PT_F11,
105 PT_F12,
106 PT_F13,
107 PT_F14,
108 PT_F15,
109 PT_F16,
110 PT_F17,
111 PT_F18,
112 PT_F19,
113 PT_F20,
114 PT_F21,
115 PT_F22,
116 PT_F23,
117 PT_F24,
118 PT_F25,
119 PT_F26,
120 PT_F27,
121 PT_F28,
122 PT_F29,
123 PT_F30,
124 PT_F31,
125 PT_F32,
126 PT_F33,
127 PT_F34,
128 PT_F35,
129 PT_F36,
130 PT_F37,
131 PT_F38,
132 PT_F39,
133 PT_F40,
134 PT_F41,
135 PT_F42,
136 PT_F43,
137 PT_F44,
138 PT_F45,
139 PT_F46,
140 PT_F47,
141 PT_F48,
142 PT_F49,
143 PT_F50,
144 PT_F51,
145 PT_F52,
146 PT_F53,
147 PT_F54,
148 PT_F55,
149 PT_F56,
150 PT_F57,
151 PT_F58,
152 PT_F59,
153 PT_F60,
154 PT_F61,
155 PT_F62,
156 PT_F63,
157 PT_F64,
158 PT_F65,
159 PT_F66,
160 PT_F67,
161 PT_F68,
162 PT_F69,
163 PT_F70,
164 PT_F71,
165 PT_F72,
166 PT_F73,
167 PT_F74,
168 PT_F75,
169 PT_F76,
170 PT_F77,
171 PT_F78,
172 PT_F79,
173 PT_F80,
174 PT_F81,
175 PT_F82,
176 PT_F83,
177 PT_F84,
178 PT_F85,
179 PT_F86,
180 PT_F87,
181 PT_F88,
182 PT_F89,
183 PT_F90,
184 PT_F91,
185 PT_F92,
186 PT_F93,
187 PT_F94,
188 PT_F95,
189 PT_F96,
190 PT_F97,
191 PT_F98,
192 PT_F99,
193 PT_F100,
194 PT_F101,
195 PT_F102,
196 PT_F103,
197 PT_F104,
198 PT_F105,
199 PT_F106,
200 PT_F107,
201 PT_F108,
202 PT_F109,
203 PT_F110,
204 PT_F111,
205 PT_F112,
206 PT_F113,
207 PT_F114,
208 PT_F115,
209 PT_F116,
210 PT_F117,
211 PT_F118,
212 PT_F119,
213 PT_F120,
214 PT_F121,
215 PT_F122,
216 PT_F123,
217 PT_F124,
218 PT_F125,
219 PT_F126,
220 PT_F127,
221 /* predicate registers - we don't fetch these individually */
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 /* branch registers */
231 PT_B0,
232 PT_B1,
233 PT_B2,
234 PT_B3,
235 PT_B4,
236 PT_B5,
237 PT_B6,
238 PT_B7,
239 /* virtual frame pointer and virtual return address pointer */
240 -1, -1,
241 /* other registers */
242 PT_PR,
243 PT_CR_IIP, /* ip */
244 PT_CR_IPSR, /* psr */
245 PT_CFM, /* cfm */
246 /* kernel registers not visible via ptrace interface (?) */
247 -1, -1, -1, -1, -1, -1, -1, -1,
248 /* hole */
249 -1, -1, -1, -1, -1, -1, -1, -1,
250 PT_AR_RSC,
251 PT_AR_BSP,
252 PT_AR_BSPSTORE,
253 PT_AR_RNAT,
254 -1,
255 -1, /* Not available: FCR, IA32 floating control register */
256 -1, -1,
257 -1, /* Not available: EFLAG */
258 -1, /* Not available: CSD */
259 -1, /* Not available: SSD */
260 -1, /* Not available: CFLG */
261 -1, /* Not available: FSR */
262 -1, /* Not available: FIR */
263 -1, /* Not available: FDR */
264 -1,
265 PT_AR_CCV,
266 -1, -1, -1,
267 PT_AR_UNAT,
268 -1, -1, -1,
269 PT_AR_FPSR,
270 -1, -1, -1,
271 -1, /* Not available: ITC */
272 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1, -1,
274 PT_AR_PFS,
275 PT_AR_LC,
276 -1, /* Not available: EC, the Epilog Count register */
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 -1,
284 /* nat bits - not fetched directly; instead we obtain these bits from
285 either rnat or unat or from memory. */
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
302 };
303
304 CORE_ADDR
305 register_addr (int regno, CORE_ADDR blockend)
306 {
307 CORE_ADDR addr;
308
309 if (regno < 0 || regno >= NUM_REGS)
310 error ("Invalid register number %d.", regno);
311
312 if (u_offsets[regno] == -1)
313 addr = 0;
314 else
315 addr = (CORE_ADDR) u_offsets[regno];
316
317 return addr;
318 }
319
320 int ia64_cannot_fetch_register (regno)
321 int regno;
322 {
323 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1;
324 }
325
326 int ia64_cannot_store_register (regno)
327 int regno;
328 {
329 /* Rationale behind not permitting stores to bspstore...
330
331 The IA-64 architecture provides bspstore and bsp which refer
332 memory locations in the RSE's backing store. bspstore is the
333 next location which will be written when the RSE needs to write
334 to memory. bsp is the address at which r32 in the current frame
335 would be found if it were written to the backing store.
336
337 The IA-64 architecture provides read-only access to bsp and
338 read/write access to bspstore (but only when the RSE is in
339 the enforced lazy mode). It should be noted that stores
340 to bspstore also affect the value of bsp. Changing bspstore
341 does not affect the number of dirty entries between bspstore
342 and bsp, so changing bspstore by N words will also cause bsp
343 to be changed by (roughly) N as well. (It could be N-1 or N+1
344 depending upon where the NaT collection bits fall.)
345
346 OTOH, the Linux kernel provides read/write access to bsp (and
347 currently read/write access to bspstore as well). But it
348 is definitely the case that if you change one, the other
349 will change at the same time. It is more useful to gdb to
350 be able to change bsp. So in order to prevent strange and
351 undesirable things from happening when a dummy stack frame
352 is popped (after calling an inferior function), we allow
353 bspstore to be read, but not written. (Note that popping
354 a (generic) dummy stack frame causes all registers that
355 were previously read from the inferior process to be written
356 back.) */
357
358 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1
359 || regno == IA64_BSPSTORE_REGNUM;
360 }
361
362 void
363 supply_gregset (gregset_t *gregsetp)
364 {
365 int regi;
366 greg_t *regp = (greg_t *) gregsetp;
367
368 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
369 {
370 regcache_raw_supply (current_regcache, regi,
371 (char *) (regp + (regi - IA64_GR0_REGNUM)));
372 }
373
374 /* FIXME: NAT collection bits are at index 32; gotta deal with these
375 somehow... */
376
377 regcache_raw_supply (current_regcache, IA64_PR_REGNUM, (char *) (regp + 33));
378
379 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
380 {
381 regcache_raw_supply (current_regcache, regi,
382 (char *) (regp + 34 + (regi - IA64_BR0_REGNUM)));
383 }
384
385 regcache_raw_supply (current_regcache, IA64_IP_REGNUM,
386 (char *) (regp + 42));
387 regcache_raw_supply (current_regcache, IA64_CFM_REGNUM,
388 (char *) (regp + 43));
389 regcache_raw_supply (current_regcache, IA64_PSR_REGNUM,
390 (char *) (regp + 44));
391 regcache_raw_supply (current_regcache, IA64_RSC_REGNUM,
392 (char *) (regp + 45));
393 regcache_raw_supply (current_regcache, IA64_BSP_REGNUM,
394 (char *) (regp + 46));
395 regcache_raw_supply (current_regcache, IA64_BSPSTORE_REGNUM,
396 (char *) (regp + 47));
397 regcache_raw_supply (current_regcache, IA64_RNAT_REGNUM,
398 (char *) (regp + 48));
399 regcache_raw_supply (current_regcache, IA64_CCV_REGNUM,
400 (char *) (regp + 49));
401 regcache_raw_supply (current_regcache, IA64_UNAT_REGNUM,
402 (char *) (regp + 50));
403 regcache_raw_supply (current_regcache, IA64_FPSR_REGNUM,
404 (char *) (regp + 51));
405 regcache_raw_supply (current_regcache, IA64_PFS_REGNUM,
406 (char *) (regp + 52));
407 regcache_raw_supply (current_regcache, IA64_LC_REGNUM,
408 (char *) (regp + 53));
409 regcache_raw_supply (current_regcache, IA64_EC_REGNUM,
410 (char *) (regp + 54));
411 }
412
413 void
414 fill_gregset (gregset_t *gregsetp, int regno)
415 {
416 int regi;
417 greg_t *regp = (greg_t *) gregsetp;
418
419 #define COPY_REG(_idx_,_regi_) \
420 if ((regno == -1) || regno == _regi_) \
421 memcpy (regp + _idx_, &deprecated_registers[DEPRECATED_REGISTER_BYTE (_regi_)], \
422 DEPRECATED_REGISTER_RAW_SIZE (_regi_))
423
424 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
425 {
426 COPY_REG (regi - IA64_GR0_REGNUM, regi);
427 }
428
429 /* FIXME: NAT collection bits at index 32? */
430
431 COPY_REG (33, IA64_PR_REGNUM);
432
433 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
434 {
435 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
436 }
437
438 COPY_REG (42, IA64_IP_REGNUM);
439 COPY_REG (43, IA64_CFM_REGNUM);
440 COPY_REG (44, IA64_PSR_REGNUM);
441 COPY_REG (45, IA64_RSC_REGNUM);
442 COPY_REG (46, IA64_BSP_REGNUM);
443 COPY_REG (47, IA64_BSPSTORE_REGNUM);
444 COPY_REG (48, IA64_RNAT_REGNUM);
445 COPY_REG (49, IA64_CCV_REGNUM);
446 COPY_REG (50, IA64_UNAT_REGNUM);
447 COPY_REG (51, IA64_FPSR_REGNUM);
448 COPY_REG (52, IA64_PFS_REGNUM);
449 COPY_REG (53, IA64_LC_REGNUM);
450 COPY_REG (54, IA64_EC_REGNUM);
451 }
452
453 /* Given a pointer to a floating point register set in /proc format
454 (fpregset_t *), unpack the register contents and supply them as gdb's
455 idea of the current floating point register values. */
456
457 void
458 supply_fpregset (fpregset_t *fpregsetp)
459 {
460 int regi;
461 char *from;
462
463 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
464 {
465 from = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (current_regcache, regi, from);
467 }
468 }
469
470 /* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
473 them all. */
474
475 void
476 fill_fpregset (fpregset_t *fpregsetp, int regno)
477 {
478 int regi;
479 char *to;
480 char *from;
481
482 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
483 {
484 if ((regno == -1) || (regno == regi))
485 {
486 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regi)];
487 to = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
488 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regi));
489 }
490 }
491 }
492
493 #define IA64_PSR_DB (1UL << 24)
494 #define IA64_PSR_DD (1UL << 39)
495
496 static void
497 enable_watchpoints_in_psr (ptid_t ptid)
498 {
499 CORE_ADDR psr;
500
501 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
502 if (!(psr & IA64_PSR_DB))
503 {
504 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
505 watchpoints and breakpoints. */
506 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
507 }
508 }
509
510 static long
511 fetch_debug_register (ptid_t ptid, int idx)
512 {
513 long val;
514 int tid;
515
516 tid = TIDGET (ptid);
517 if (tid == 0)
518 tid = PIDGET (ptid);
519
520 val = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) (PT_DBR + 8 * idx), 0);
521
522 return val;
523 }
524
525 static void
526 store_debug_register (ptid_t ptid, int idx, long val)
527 {
528 int tid;
529
530 tid = TIDGET (ptid);
531 if (tid == 0)
532 tid = PIDGET (ptid);
533
534 (void) ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) (PT_DBR + 8 * idx), val);
535 }
536
537 static void
538 fetch_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
539 {
540 if (dbr_addr)
541 *dbr_addr = fetch_debug_register (ptid, 2 * idx);
542 if (dbr_mask)
543 *dbr_mask = fetch_debug_register (ptid, 2 * idx + 1);
544 }
545
546 static void
547 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
548 {
549 if (dbr_addr)
550 store_debug_register (ptid, 2 * idx, *dbr_addr);
551 if (dbr_mask)
552 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
553 }
554
555 static int
556 is_power_of_2 (int val)
557 {
558 int i, onecount;
559
560 onecount = 0;
561 for (i = 0; i < 8 * sizeof (val); i++)
562 if (val & (1 << i))
563 onecount++;
564
565 return onecount <= 1;
566 }
567
568 int
569 ia64_linux_insert_watchpoint (ptid_t ptid, CORE_ADDR addr, int len, int rw)
570 {
571 int idx;
572 long dbr_addr, dbr_mask;
573 int max_watchpoints = 4;
574
575 if (len <= 0 || !is_power_of_2 (len))
576 return -1;
577
578 for (idx = 0; idx < max_watchpoints; idx++)
579 {
580 fetch_debug_register_pair (ptid, idx, NULL, &dbr_mask);
581 if ((dbr_mask & (0x3UL << 62)) == 0)
582 {
583 /* Exit loop if both r and w bits clear */
584 break;
585 }
586 }
587
588 if (idx == max_watchpoints)
589 return -1;
590
591 dbr_addr = (long) addr;
592 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
593 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
594 switch (rw)
595 {
596 case hw_write:
597 dbr_mask |= (1L << 62); /* Set w bit */
598 break;
599 case hw_read:
600 dbr_mask |= (1L << 63); /* Set r bit */
601 break;
602 case hw_access:
603 dbr_mask |= (3L << 62); /* Set both r and w bits */
604 break;
605 default:
606 return -1;
607 }
608
609 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
610 enable_watchpoints_in_psr (ptid);
611
612 return 0;
613 }
614
615 int
616 ia64_linux_remove_watchpoint (ptid_t ptid, CORE_ADDR addr, int len)
617 {
618 int idx;
619 long dbr_addr, dbr_mask;
620 int max_watchpoints = 4;
621
622 if (len <= 0 || !is_power_of_2 (len))
623 return -1;
624
625 for (idx = 0; idx < max_watchpoints; idx++)
626 {
627 fetch_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
628 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
629 {
630 dbr_addr = 0;
631 dbr_mask = 0;
632 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
633 return 0;
634 }
635 }
636 return -1;
637 }
638
639 CORE_ADDR
640 ia64_linux_stopped_by_watchpoint (ptid_t ptid)
641 {
642 CORE_ADDR psr;
643 int tid;
644 struct siginfo siginfo;
645
646 tid = TIDGET(ptid);
647 if (tid == 0)
648 tid = PIDGET (ptid);
649
650 errno = 0;
651 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_ARG3_TYPE) 0, &siginfo);
652
653 if (errno != 0 || siginfo.si_signo != SIGTRAP ||
654 (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
655 return 0;
656
657 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
658 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
659 for the next instruction */
660 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
661
662 return (CORE_ADDR) siginfo.si_addr;
663 }
664
665 LONGEST
666 ia64_linux_xfer_unwind_table (struct target_ops *ops,
667 enum target_object object,
668 const char *annex,
669 void *readbuf, const void *writebuf,
670 ULONGEST offset, LONGEST len)
671 {
672 return syscall (__NR_getunwind, readbuf, len);
673 }
This page took 0.043681 seconds and 5 git commands to generate.