Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running Linux.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26
27 #include <signal.h>
28 #include <sys/ptrace.h>
29 #include <sys/wait.h>
30 #ifdef HAVE_SYS_REG_H
31 #include <sys/reg.h>
32 #endif
33 #include <sys/user.h>
34
35 #include <asm/ptrace_offsets.h>
36 #include <sys/procfs.h>
37
38 /* Prototypes for supply_gregset etc. */
39 #include "gregset.h"
40
41 /* These must match the order of the register names.
42
43 Some sort of lookup table is needed because the offsets associated
44 with the registers are all over the board. */
45
46 static int u_offsets[] =
47 {
48 /* general registers */
49 -1, /* gr0 not available; i.e, it's always zero */
50 PT_R1,
51 PT_R2,
52 PT_R3,
53 PT_R4,
54 PT_R5,
55 PT_R6,
56 PT_R7,
57 PT_R8,
58 PT_R9,
59 PT_R10,
60 PT_R11,
61 PT_R12,
62 PT_R13,
63 PT_R14,
64 PT_R15,
65 PT_R16,
66 PT_R17,
67 PT_R18,
68 PT_R19,
69 PT_R20,
70 PT_R21,
71 PT_R22,
72 PT_R23,
73 PT_R24,
74 PT_R25,
75 PT_R26,
76 PT_R27,
77 PT_R28,
78 PT_R29,
79 PT_R30,
80 PT_R31,
81 /* gr32 through gr127 not directly available via the ptrace interface */
82 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
83 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
84 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
85 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 /* Floating point registers */
89 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
90 PT_F2,
91 PT_F3,
92 PT_F4,
93 PT_F5,
94 PT_F6,
95 PT_F7,
96 PT_F8,
97 PT_F9,
98 PT_F10,
99 PT_F11,
100 PT_F12,
101 PT_F13,
102 PT_F14,
103 PT_F15,
104 PT_F16,
105 PT_F17,
106 PT_F18,
107 PT_F19,
108 PT_F20,
109 PT_F21,
110 PT_F22,
111 PT_F23,
112 PT_F24,
113 PT_F25,
114 PT_F26,
115 PT_F27,
116 PT_F28,
117 PT_F29,
118 PT_F30,
119 PT_F31,
120 PT_F32,
121 PT_F33,
122 PT_F34,
123 PT_F35,
124 PT_F36,
125 PT_F37,
126 PT_F38,
127 PT_F39,
128 PT_F40,
129 PT_F41,
130 PT_F42,
131 PT_F43,
132 PT_F44,
133 PT_F45,
134 PT_F46,
135 PT_F47,
136 PT_F48,
137 PT_F49,
138 PT_F50,
139 PT_F51,
140 PT_F52,
141 PT_F53,
142 PT_F54,
143 PT_F55,
144 PT_F56,
145 PT_F57,
146 PT_F58,
147 PT_F59,
148 PT_F60,
149 PT_F61,
150 PT_F62,
151 PT_F63,
152 PT_F64,
153 PT_F65,
154 PT_F66,
155 PT_F67,
156 PT_F68,
157 PT_F69,
158 PT_F70,
159 PT_F71,
160 PT_F72,
161 PT_F73,
162 PT_F74,
163 PT_F75,
164 PT_F76,
165 PT_F77,
166 PT_F78,
167 PT_F79,
168 PT_F80,
169 PT_F81,
170 PT_F82,
171 PT_F83,
172 PT_F84,
173 PT_F85,
174 PT_F86,
175 PT_F87,
176 PT_F88,
177 PT_F89,
178 PT_F90,
179 PT_F91,
180 PT_F92,
181 PT_F93,
182 PT_F94,
183 PT_F95,
184 PT_F96,
185 PT_F97,
186 PT_F98,
187 PT_F99,
188 PT_F100,
189 PT_F101,
190 PT_F102,
191 PT_F103,
192 PT_F104,
193 PT_F105,
194 PT_F106,
195 PT_F107,
196 PT_F108,
197 PT_F109,
198 PT_F110,
199 PT_F111,
200 PT_F112,
201 PT_F113,
202 PT_F114,
203 PT_F115,
204 PT_F116,
205 PT_F117,
206 PT_F118,
207 PT_F119,
208 PT_F120,
209 PT_F121,
210 PT_F122,
211 PT_F123,
212 PT_F124,
213 PT_F125,
214 PT_F126,
215 PT_F127,
216 /* predicate registers - we don't fetch these individually */
217 -1, -1, -1, -1, -1, -1, -1, -1,
218 -1, -1, -1, -1, -1, -1, -1, -1,
219 -1, -1, -1, -1, -1, -1, -1, -1,
220 -1, -1, -1, -1, -1, -1, -1, -1,
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 /* branch registers */
226 PT_B0,
227 PT_B1,
228 PT_B2,
229 PT_B3,
230 PT_B4,
231 PT_B5,
232 PT_B6,
233 PT_B7,
234 /* virtual frame pointer and virtual return address pointer */
235 -1, -1,
236 /* other registers */
237 PT_PR,
238 PT_CR_IIP, /* ip */
239 PT_CR_IPSR, /* psr */
240 PT_CFM, /* cfm */
241 /* kernel registers not visible via ptrace interface (?) */
242 -1, -1, -1, -1, -1, -1, -1, -1,
243 /* hole */
244 -1, -1, -1, -1, -1, -1, -1, -1,
245 PT_AR_RSC,
246 PT_AR_BSP,
247 PT_AR_BSPSTORE,
248 PT_AR_RNAT,
249 -1,
250 -1, /* Not available: FCR, IA32 floating control register */
251 -1, -1,
252 -1, /* Not available: EFLAG */
253 -1, /* Not available: CSD */
254 -1, /* Not available: SSD */
255 -1, /* Not available: CFLG */
256 -1, /* Not available: FSR */
257 -1, /* Not available: FIR */
258 -1, /* Not available: FDR */
259 -1,
260 PT_AR_CCV,
261 -1, -1, -1,
262 PT_AR_UNAT,
263 -1, -1, -1,
264 PT_AR_FPSR,
265 -1, -1, -1,
266 -1, /* Not available: ITC */
267 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1, -1,
269 PT_AR_PFS,
270 PT_AR_LC,
271 -1, /* Not available: EC, the Epilog Count register */
272 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
274 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
275 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1,
279 /* nat bits - not fetched directly; instead we obtain these bits from
280 either rnat or unat or from memory. */
281 -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1,
283 -1, -1, -1, -1, -1, -1, -1, -1,
284 -1, -1, -1, -1, -1, -1, -1, -1,
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 };
298
299 CORE_ADDR
300 register_addr (int regno, CORE_ADDR blockend)
301 {
302 CORE_ADDR addr;
303
304 if (regno < 0 || regno >= NUM_REGS)
305 error ("Invalid register number %d.", regno);
306
307 if (u_offsets[regno] == -1)
308 addr = 0;
309 else
310 addr = (CORE_ADDR) u_offsets[regno];
311
312 return addr;
313 }
314
315 int ia64_cannot_fetch_register (regno)
316 int regno;
317 {
318 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1;
319 }
320
321 int ia64_cannot_store_register (regno)
322 int regno;
323 {
324 /* Rationale behind not permitting stores to bspstore...
325
326 The IA-64 architecture provides bspstore and bsp which refer
327 memory locations in the RSE's backing store. bspstore is the
328 next location which will be written when the RSE needs to write
329 to memory. bsp is the address at which r32 in the current frame
330 would be found if it were written to the backing store.
331
332 The IA-64 architecture provides read-only access to bsp and
333 read/write access to bspstore (but only when the RSE is in
334 the enforced lazy mode). It should be noted that stores
335 to bspstore also affect the value of bsp. Changing bspstore
336 does not affect the number of dirty entries between bspstore
337 and bsp, so changing bspstore by N words will also cause bsp
338 to be changed by (roughly) N as well. (It could be N-1 or N+1
339 depending upon where the NaT collection bits fall.)
340
341 OTOH, the linux kernel provides read/write access to bsp (and
342 currently read/write access to bspstore as well). But it
343 is definitely the case that if you change one, the other
344 will change at the same time. It is more useful to gdb to
345 be able to change bsp. So in order to prevent strange and
346 undesirable things from happening when a dummy stack frame
347 is popped (after calling an inferior function), we allow
348 bspstore to be read, but not written. (Note that popping
349 a (generic) dummy stack frame causes all registers that
350 were previously read from the inferior process to be written
351 back.) */
352
353 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1
354 || regno == IA64_BSPSTORE_REGNUM;
355 }
356
357 void
358 supply_gregset (gregset_t *gregsetp)
359 {
360 int regi;
361 greg_t *regp = (greg_t *) gregsetp;
362
363 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
364 {
365 supply_register (regi, (char *) (regp + (regi - IA64_GR0_REGNUM)));
366 }
367
368 /* FIXME: NAT collection bits are at index 32; gotta deal with these
369 somehow... */
370
371 supply_register (IA64_PR_REGNUM, (char *) (regp + 33));
372
373 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
374 {
375 supply_register (regi, (char *) (regp + 34 + (regi - IA64_BR0_REGNUM)));
376 }
377
378 supply_register (IA64_IP_REGNUM, (char *) (regp + 42));
379 supply_register (IA64_CFM_REGNUM, (char *) (regp + 43));
380 supply_register (IA64_PSR_REGNUM, (char *) (regp + 44));
381 supply_register (IA64_RSC_REGNUM, (char *) (regp + 45));
382 supply_register (IA64_BSP_REGNUM, (char *) (regp + 46));
383 supply_register (IA64_BSPSTORE_REGNUM, (char *) (regp + 47));
384 supply_register (IA64_RNAT_REGNUM, (char *) (regp + 48));
385 supply_register (IA64_CCV_REGNUM, (char *) (regp + 49));
386 supply_register (IA64_UNAT_REGNUM, (char *) (regp + 50));
387 supply_register (IA64_FPSR_REGNUM, (char *) (regp + 51));
388 supply_register (IA64_PFS_REGNUM, (char *) (regp + 52));
389 supply_register (IA64_LC_REGNUM, (char *) (regp + 53));
390 supply_register (IA64_EC_REGNUM, (char *) (regp + 54));
391 }
392
393 void
394 fill_gregset (gregset_t *gregsetp, int regno)
395 {
396 int regi;
397 greg_t *regp = (greg_t *) gregsetp;
398
399 #define COPY_REG(_idx_,_regi_) \
400 if ((regno == -1) || regno == _regi_) \
401 memcpy (regp + _idx_, &registers[REGISTER_BYTE (_regi_)], \
402 REGISTER_RAW_SIZE (_regi_))
403
404 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
405 {
406 COPY_REG (regi - IA64_GR0_REGNUM, regi);
407 }
408
409 /* FIXME: NAT collection bits at index 32? */
410
411 COPY_REG (33, IA64_PR_REGNUM);
412
413 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
414 {
415 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
416 }
417
418 COPY_REG (42, IA64_IP_REGNUM);
419 COPY_REG (43, IA64_CFM_REGNUM);
420 COPY_REG (44, IA64_PSR_REGNUM);
421 COPY_REG (45, IA64_RSC_REGNUM);
422 COPY_REG (46, IA64_BSP_REGNUM);
423 COPY_REG (47, IA64_BSPSTORE_REGNUM);
424 COPY_REG (48, IA64_RNAT_REGNUM);
425 COPY_REG (49, IA64_CCV_REGNUM);
426 COPY_REG (50, IA64_UNAT_REGNUM);
427 COPY_REG (51, IA64_FPSR_REGNUM);
428 COPY_REG (52, IA64_PFS_REGNUM);
429 COPY_REG (53, IA64_LC_REGNUM);
430 COPY_REG (54, IA64_EC_REGNUM);
431 }
432
433 /* Given a pointer to a floating point register set in /proc format
434 (fpregset_t *), unpack the register contents and supply them as gdb's
435 idea of the current floating point register values. */
436
437 void
438 supply_fpregset (fpregset_t *fpregsetp)
439 {
440 register int regi;
441 char *from;
442
443 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
444 {
445 from = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
446 supply_register (regi, from);
447 }
448 }
449
450 /* Given a pointer to a floating point register set in /proc format
451 (fpregset_t *), update the register specified by REGNO from gdb's idea
452 of the current floating point register set. If REGNO is -1, update
453 them all. */
454
455 void
456 fill_fpregset (fpregset_t *fpregsetp, int regno)
457 {
458 int regi;
459 char *to;
460 char *from;
461
462 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
463 {
464 if ((regno == -1) || (regno == regi))
465 {
466 from = (char *) &registers[REGISTER_BYTE (regi)];
467 to = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
468 memcpy (to, from, REGISTER_RAW_SIZE (regi));
469 }
470 }
471 }
472
473 #define IA64_PSR_DB (1UL << 24)
474 #define IA64_PSR_DD (1UL << 39)
475
476 static void
477 enable_watchpoints_in_psr (ptid_t ptid)
478 {
479 CORE_ADDR psr;
480
481 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
482 if (!(psr & IA64_PSR_DB))
483 {
484 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
485 watchpoints and breakpoints. */
486 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
487 }
488 }
489
490 static long
491 fetch_debug_register (ptid_t ptid, int idx)
492 {
493 long val;
494 int tid;
495
496 tid = TIDGET (ptid);
497 if (tid == 0)
498 tid = PIDGET (ptid);
499
500 val = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) (PT_DBR + 8 * idx), 0);
501
502 return val;
503 }
504
505 static void
506 store_debug_register (ptid_t ptid, int idx, long val)
507 {
508 int tid;
509
510 tid = TIDGET (ptid);
511 if (tid == 0)
512 tid = PIDGET (ptid);
513
514 (void) ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) (PT_DBR + 8 * idx), val);
515 }
516
517 static void
518 fetch_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
519 {
520 if (dbr_addr)
521 *dbr_addr = fetch_debug_register (ptid, 2 * idx);
522 if (dbr_mask)
523 *dbr_mask = fetch_debug_register (ptid, 2 * idx + 1);
524 }
525
526 static void
527 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
528 {
529 if (dbr_addr)
530 store_debug_register (ptid, 2 * idx, *dbr_addr);
531 if (dbr_mask)
532 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
533 }
534
535 static int
536 is_power_of_2 (int val)
537 {
538 int i, onecount;
539
540 onecount = 0;
541 for (i = 0; i < 8 * sizeof (val); i++)
542 if (val & (1 << i))
543 onecount++;
544
545 return onecount <= 1;
546 }
547
548 int
549 ia64_linux_insert_watchpoint (ptid_t ptid, CORE_ADDR addr, int len, int rw)
550 {
551 int idx;
552 long dbr_addr, dbr_mask;
553 int max_watchpoints = 4;
554
555 if (len <= 0 || !is_power_of_2 (len))
556 return -1;
557
558 for (idx = 0; idx < max_watchpoints; idx++)
559 {
560 fetch_debug_register_pair (ptid, idx, NULL, &dbr_mask);
561 if ((dbr_mask & (0x3UL << 62)) == 0)
562 {
563 /* Exit loop if both r and w bits clear */
564 break;
565 }
566 }
567
568 if (idx == max_watchpoints)
569 return -1;
570
571 dbr_addr = (long) addr;
572 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
573 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
574 switch (rw)
575 {
576 case hw_write:
577 dbr_mask |= (1L << 62); /* Set w bit */
578 break;
579 case hw_read:
580 dbr_mask |= (1L << 63); /* Set r bit */
581 break;
582 case hw_access:
583 dbr_mask |= (3L << 62); /* Set both r and w bits */
584 break;
585 default:
586 return -1;
587 }
588
589 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
590 enable_watchpoints_in_psr (ptid);
591
592 return 0;
593 }
594
595 int
596 ia64_linux_remove_watchpoint (ptid_t ptid, CORE_ADDR addr, int len)
597 {
598 int idx;
599 long dbr_addr, dbr_mask;
600 int max_watchpoints = 4;
601
602 if (len <= 0 || !is_power_of_2 (len))
603 return -1;
604
605 for (idx = 0; idx < max_watchpoints; idx++)
606 {
607 fetch_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
608 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
609 {
610 dbr_addr = 0;
611 dbr_mask = 0;
612 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
613 return 0;
614 }
615 }
616 return -1;
617 }
618
619 CORE_ADDR
620 ia64_linux_stopped_by_watchpoint (ptid_t ptid)
621 {
622 CORE_ADDR psr;
623 int tid;
624 struct siginfo siginfo;
625
626 tid = TIDGET(ptid);
627 if (tid == 0)
628 tid = PIDGET (ptid);
629
630 errno = 0;
631 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_ARG3_TYPE) 0, &siginfo);
632
633 if (errno != 0 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
634 return 0;
635
636 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
637 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
638 for the next instruction */
639 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
640
641 return (CORE_ADDR) siginfo.si_addr;
642 }
This page took 0.043502 seconds and 5 git commands to generate.