Adjust ia64_linux_xfer_partial following to_xfer_partial API change.
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
29
30 #include <signal.h>
31 #include <sys/ptrace.h>
32 #include "gdb_wait.h"
33 #ifdef HAVE_SYS_REG_H
34 #include <sys/reg.h>
35 #endif
36 #include <sys/syscall.h>
37 #include <sys/user.h>
38
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /* These must match the order of the register names.
46
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
49
50 static int u_offsets[] =
51 {
52 /* general registers */
53 -1, /* gr0 not available; i.e, it's always zero. */
54 PT_R1,
55 PT_R2,
56 PT_R3,
57 PT_R4,
58 PT_R5,
59 PT_R6,
60 PT_R7,
61 PT_R8,
62 PT_R9,
63 PT_R10,
64 PT_R11,
65 PT_R12,
66 PT_R13,
67 PT_R14,
68 PT_R15,
69 PT_R16,
70 PT_R17,
71 PT_R18,
72 PT_R19,
73 PT_R20,
74 PT_R21,
75 PT_R22,
76 PT_R23,
77 PT_R24,
78 PT_R25,
79 PT_R26,
80 PT_R27,
81 PT_R28,
82 PT_R29,
83 PT_R30,
84 PT_R31,
85 /* gr32 through gr127 not directly available via the ptrace interface. */
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
94 PT_F2,
95 PT_F3,
96 PT_F4,
97 PT_F5,
98 PT_F6,
99 PT_F7,
100 PT_F8,
101 PT_F9,
102 PT_F10,
103 PT_F11,
104 PT_F12,
105 PT_F13,
106 PT_F14,
107 PT_F15,
108 PT_F16,
109 PT_F17,
110 PT_F18,
111 PT_F19,
112 PT_F20,
113 PT_F21,
114 PT_F22,
115 PT_F23,
116 PT_F24,
117 PT_F25,
118 PT_F26,
119 PT_F27,
120 PT_F28,
121 PT_F29,
122 PT_F30,
123 PT_F31,
124 PT_F32,
125 PT_F33,
126 PT_F34,
127 PT_F35,
128 PT_F36,
129 PT_F37,
130 PT_F38,
131 PT_F39,
132 PT_F40,
133 PT_F41,
134 PT_F42,
135 PT_F43,
136 PT_F44,
137 PT_F45,
138 PT_F46,
139 PT_F47,
140 PT_F48,
141 PT_F49,
142 PT_F50,
143 PT_F51,
144 PT_F52,
145 PT_F53,
146 PT_F54,
147 PT_F55,
148 PT_F56,
149 PT_F57,
150 PT_F58,
151 PT_F59,
152 PT_F60,
153 PT_F61,
154 PT_F62,
155 PT_F63,
156 PT_F64,
157 PT_F65,
158 PT_F66,
159 PT_F67,
160 PT_F68,
161 PT_F69,
162 PT_F70,
163 PT_F71,
164 PT_F72,
165 PT_F73,
166 PT_F74,
167 PT_F75,
168 PT_F76,
169 PT_F77,
170 PT_F78,
171 PT_F79,
172 PT_F80,
173 PT_F81,
174 PT_F82,
175 PT_F83,
176 PT_F84,
177 PT_F85,
178 PT_F86,
179 PT_F87,
180 PT_F88,
181 PT_F89,
182 PT_F90,
183 PT_F91,
184 PT_F92,
185 PT_F93,
186 PT_F94,
187 PT_F95,
188 PT_F96,
189 PT_F97,
190 PT_F98,
191 PT_F99,
192 PT_F100,
193 PT_F101,
194 PT_F102,
195 PT_F103,
196 PT_F104,
197 PT_F105,
198 PT_F106,
199 PT_F107,
200 PT_F108,
201 PT_F109,
202 PT_F110,
203 PT_F111,
204 PT_F112,
205 PT_F113,
206 PT_F114,
207 PT_F115,
208 PT_F116,
209 PT_F117,
210 PT_F118,
211 PT_F119,
212 PT_F120,
213 PT_F121,
214 PT_F122,
215 PT_F123,
216 PT_F124,
217 PT_F125,
218 PT_F126,
219 PT_F127,
220 /* Predicate registers - we don't fetch these individually. */
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
230 PT_B0,
231 PT_B1,
232 PT_B2,
233 PT_B3,
234 PT_B4,
235 PT_B5,
236 PT_B6,
237 PT_B7,
238 /* Virtual frame pointer and virtual return address pointer. */
239 -1, -1,
240 /* other registers */
241 PT_PR,
242 PT_CR_IIP, /* ip */
243 PT_CR_IPSR, /* psr */
244 PT_CFM, /* cfm */
245 /* kernel registers not visible via ptrace interface (?) */
246 -1, -1, -1, -1, -1, -1, -1, -1,
247 /* hole */
248 -1, -1, -1, -1, -1, -1, -1, -1,
249 PT_AR_RSC,
250 PT_AR_BSP,
251 PT_AR_BSPSTORE,
252 PT_AR_RNAT,
253 -1,
254 -1, /* Not available: FCR, IA32 floating control register. */
255 -1, -1,
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
263 -1,
264 PT_AR_CCV,
265 -1, -1, -1,
266 PT_AR_UNAT,
267 -1, -1, -1,
268 PT_AR_FPSR,
269 -1, -1, -1,
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 PT_AR_PFS,
274 PT_AR_LC,
275 PT_AR_EC,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
284 either rnat or unat or from memory. */
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 };
302
303 static CORE_ADDR
304 ia64_register_addr (struct gdbarch *gdbarch, int regno)
305 {
306 CORE_ADDR addr;
307
308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
309 error (_("Invalid register number %d."), regno);
310
311 if (u_offsets[regno] == -1)
312 addr = 0;
313 else
314 addr = (CORE_ADDR) u_offsets[regno];
315
316 return addr;
317 }
318
319 static int
320 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
321 {
322 return regno < 0
323 || regno >= gdbarch_num_regs (gdbarch)
324 || u_offsets[regno] == -1;
325 }
326
327 static int
328 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
329 {
330 /* Rationale behind not permitting stores to bspstore...
331
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
337
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
346
347 OTOH, the Linux kernel provides read/write access to bsp (and
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
357 back.) */
358
359 return regno < 0
360 || regno >= gdbarch_num_regs (gdbarch)
361 || u_offsets[regno] == -1
362 || regno == IA64_BSPSTORE_REGNUM;
363 }
364
365 void
366 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
367 {
368 int regi;
369 const greg_t *regp = (const greg_t *) gregsetp;
370
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
372 {
373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
374 }
375
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
377 somehow... */
378
379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
380
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 {
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
385 }
386
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
400 }
401
402 void
403 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
404 {
405 int regi;
406 greg_t *regp = (greg_t *) gregsetp;
407
408 #define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
411
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 {
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
415 }
416
417 /* FIXME: NAT collection bits at index 32? */
418
419 COPY_REG (33, IA64_PR_REGNUM);
420
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
422 {
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
424 }
425
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
439 }
440
441 /* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
443 idea of the current floating point register values. */
444
445 void
446 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
447 {
448 int regi;
449 const char *from;
450 const gdb_byte f_zero[16] = { 0 };
451 const gdb_byte f_one[16] =
452 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
453
454 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
455 did the same. So ignore whatever might be recorded in fpregset_t
456 for fr0/fr1 and always supply their expected values. */
457
458 /* fr0 is always read as zero. */
459 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
460 /* fr1 is always read as one (1.0). */
461 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
462
463 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
464 {
465 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (regcache, regi, from);
467 }
468 }
469
470 /* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
473 them all. */
474
475 void
476 fill_fpregset (const struct regcache *regcache,
477 fpregset_t *fpregsetp, int regno)
478 {
479 int regi;
480
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
482 {
483 if ((regno == -1) || (regno == regi))
484 regcache_raw_collect (regcache, regi,
485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
486 }
487 }
488
489 #define IA64_PSR_DB (1UL << 24)
490 #define IA64_PSR_DD (1UL << 39)
491
492 static void
493 enable_watchpoints_in_psr (ptid_t ptid)
494 {
495 struct regcache *regcache = get_thread_regcache (ptid);
496 ULONGEST psr;
497
498 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
499 if (!(psr & IA64_PSR_DB))
500 {
501 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
502 watchpoints and breakpoints. */
503 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
504 }
505 }
506
507 static long debug_registers[8];
508
509 static void
510 store_debug_register (ptid_t ptid, int idx, long val)
511 {
512 int tid;
513
514 tid = ptid_get_lwp (ptid);
515 if (tid == 0)
516 tid = ptid_get_pid (ptid);
517
518 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
519 }
520
521 static void
522 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
523 long *dbr_mask)
524 {
525 if (dbr_addr)
526 store_debug_register (ptid, 2 * idx, *dbr_addr);
527 if (dbr_mask)
528 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
529 }
530
531 static int
532 is_power_of_2 (int val)
533 {
534 int i, onecount;
535
536 onecount = 0;
537 for (i = 0; i < 8 * sizeof (val); i++)
538 if (val & (1 << i))
539 onecount++;
540
541 return onecount <= 1;
542 }
543
544 static int
545 ia64_linux_insert_watchpoint (struct target_ops *self,
546 CORE_ADDR addr, int len, int rw,
547 struct expression *cond)
548 {
549 struct lwp_info *lp;
550 int idx;
551 long dbr_addr, dbr_mask;
552 int max_watchpoints = 4;
553
554 if (len <= 0 || !is_power_of_2 (len))
555 return -1;
556
557 for (idx = 0; idx < max_watchpoints; idx++)
558 {
559 dbr_mask = debug_registers[idx * 2 + 1];
560 if ((dbr_mask & (0x3UL << 62)) == 0)
561 {
562 /* Exit loop if both r and w bits clear. */
563 break;
564 }
565 }
566
567 if (idx == max_watchpoints)
568 return -1;
569
570 dbr_addr = (long) addr;
571 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
572 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
573 switch (rw)
574 {
575 case hw_write:
576 dbr_mask |= (1L << 62); /* Set w bit */
577 break;
578 case hw_read:
579 dbr_mask |= (1L << 63); /* Set r bit */
580 break;
581 case hw_access:
582 dbr_mask |= (3L << 62); /* Set both r and w bits */
583 break;
584 default:
585 return -1;
586 }
587
588 debug_registers[2 * idx] = dbr_addr;
589 debug_registers[2 * idx + 1] = dbr_mask;
590 ALL_LWPS (lp)
591 {
592 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
593 enable_watchpoints_in_psr (lp->ptid);
594 }
595
596 return 0;
597 }
598
599 static int
600 ia64_linux_remove_watchpoint (struct target_ops *self,
601 CORE_ADDR addr, int len, int type,
602 struct expression *cond)
603 {
604 int idx;
605 long dbr_addr, dbr_mask;
606 int max_watchpoints = 4;
607
608 if (len <= 0 || !is_power_of_2 (len))
609 return -1;
610
611 for (idx = 0; idx < max_watchpoints; idx++)
612 {
613 dbr_addr = debug_registers[2 * idx];
614 dbr_mask = debug_registers[2 * idx + 1];
615 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
616 {
617 struct lwp_info *lp;
618
619 debug_registers[2 * idx] = 0;
620 debug_registers[2 * idx + 1] = 0;
621 dbr_addr = 0;
622 dbr_mask = 0;
623
624 ALL_LWPS (lp)
625 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
626
627 return 0;
628 }
629 }
630 return -1;
631 }
632
633 static void
634 ia64_linux_new_thread (struct lwp_info *lp)
635 {
636 int i, any;
637
638 any = 0;
639 for (i = 0; i < 8; i++)
640 {
641 if (debug_registers[i] != 0)
642 any = 1;
643 store_debug_register (lp->ptid, i, debug_registers[i]);
644 }
645
646 if (any)
647 enable_watchpoints_in_psr (lp->ptid);
648 }
649
650 static int
651 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
652 {
653 CORE_ADDR psr;
654 siginfo_t siginfo;
655 struct regcache *regcache = get_current_regcache ();
656
657 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
658 return 0;
659
660 if (siginfo.si_signo != SIGTRAP
661 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
662 return 0;
663
664 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
665 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
666 for the next instruction. */
667 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
668
669 *addr_p = (CORE_ADDR) siginfo.si_addr;
670 return 1;
671 }
672
673 static int
674 ia64_linux_stopped_by_watchpoint (struct target_ops *ops)
675 {
676 CORE_ADDR addr;
677 return ia64_linux_stopped_data_address (ops, &addr);
678 }
679
680 static int
681 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
682 int type, int cnt, int othertype)
683 {
684 return 1;
685 }
686
687
688 /* Fetch register REGNUM from the inferior. */
689
690 static void
691 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
692 {
693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
694 CORE_ADDR addr;
695 size_t size;
696 PTRACE_TYPE_RET *buf;
697 int pid, i;
698
699 /* r0 cannot be fetched but is always zero. */
700 if (regnum == IA64_GR0_REGNUM)
701 {
702 const gdb_byte zero[8] = { 0 };
703
704 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
705 regcache_raw_supply (regcache, regnum, zero);
706 return;
707 }
708
709 /* fr0 cannot be fetched but is always zero. */
710 if (regnum == IA64_FR0_REGNUM)
711 {
712 const gdb_byte f_zero[16] = { 0 };
713
714 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
715 regcache_raw_supply (regcache, regnum, f_zero);
716 return;
717 }
718
719 /* fr1 cannot be fetched but is always one (1.0). */
720 if (regnum == IA64_FR1_REGNUM)
721 {
722 const gdb_byte f_one[16] =
723 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
724
725 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
726 regcache_raw_supply (regcache, regnum, f_one);
727 return;
728 }
729
730 if (ia64_cannot_fetch_register (gdbarch, regnum))
731 {
732 regcache_raw_supply (regcache, regnum, NULL);
733 return;
734 }
735
736 /* Cater for systems like GNU/Linux, that implement threads as
737 separate processes. */
738 pid = ptid_get_lwp (inferior_ptid);
739 if (pid == 0)
740 pid = ptid_get_pid (inferior_ptid);
741
742 /* This isn't really an address, but ptrace thinks of it as one. */
743 addr = ia64_register_addr (gdbarch, regnum);
744 size = register_size (gdbarch, regnum);
745
746 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
747 buf = alloca (size);
748
749 /* Read the register contents from the inferior a chunk at a time. */
750 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
751 {
752 errno = 0;
753 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
754 if (errno != 0)
755 error (_("Couldn't read register %s (#%d): %s."),
756 gdbarch_register_name (gdbarch, regnum),
757 regnum, safe_strerror (errno));
758
759 addr += sizeof (PTRACE_TYPE_RET);
760 }
761 regcache_raw_supply (regcache, regnum, buf);
762 }
763
764 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
765 for all registers. */
766
767 static void
768 ia64_linux_fetch_registers (struct target_ops *ops,
769 struct regcache *regcache, int regnum)
770 {
771 if (regnum == -1)
772 for (regnum = 0;
773 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
774 regnum++)
775 ia64_linux_fetch_register (regcache, regnum);
776 else
777 ia64_linux_fetch_register (regcache, regnum);
778 }
779
780 /* Store register REGNUM into the inferior. */
781
782 static void
783 ia64_linux_store_register (const struct regcache *regcache, int regnum)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 CORE_ADDR addr;
787 size_t size;
788 PTRACE_TYPE_RET *buf;
789 int pid, i;
790
791 if (ia64_cannot_store_register (gdbarch, regnum))
792 return;
793
794 /* Cater for systems like GNU/Linux, that implement threads as
795 separate processes. */
796 pid = ptid_get_lwp (inferior_ptid);
797 if (pid == 0)
798 pid = ptid_get_pid (inferior_ptid);
799
800 /* This isn't really an address, but ptrace thinks of it as one. */
801 addr = ia64_register_addr (gdbarch, regnum);
802 size = register_size (gdbarch, regnum);
803
804 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
805 buf = alloca (size);
806
807 /* Write the register contents into the inferior a chunk at a time. */
808 regcache_raw_collect (regcache, regnum, buf);
809 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
810 {
811 errno = 0;
812 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
813 if (errno != 0)
814 error (_("Couldn't write register %s (#%d): %s."),
815 gdbarch_register_name (gdbarch, regnum),
816 regnum, safe_strerror (errno));
817
818 addr += sizeof (PTRACE_TYPE_RET);
819 }
820 }
821
822 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
823 this for all registers. */
824
825 static void
826 ia64_linux_store_registers (struct target_ops *ops,
827 struct regcache *regcache, int regnum)
828 {
829 if (regnum == -1)
830 for (regnum = 0;
831 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
832 regnum++)
833 ia64_linux_store_register (regcache, regnum);
834 else
835 ia64_linux_store_register (regcache, regnum);
836 }
837
838
839 static target_xfer_partial_ftype *super_xfer_partial;
840
841 /* Implement the to_xfer_partial target_ops method. */
842
843 static enum target_xfer_status
844 ia64_linux_xfer_partial (struct target_ops *ops,
845 enum target_object object,
846 const char *annex,
847 gdb_byte *readbuf, const gdb_byte *writebuf,
848 ULONGEST offset, ULONGEST len,
849 ULONGEST *xfered_len)
850 {
851 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
852 {
853 gdb_byte *tmp_buf = alloca (offset + len);
854 ULONGEST xfered;
855
856 xfered = syscall (__NR_getunwind, readbuf, offset + len);
857 if (xfered <= 0)
858 return TARGET_XFER_E_IO;
859 else if (xfered <= offset)
860 return TARGET_XFER_EOF;
861 else
862 {
863 memcpy (readbuf, tmp_buf + offset, xfered - offset);
864 *xfered_len = xfered - offset;
865 return TARGET_XFER_OK;
866 }
867 }
868
869 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
870 offset, len, xfered_len);
871 }
872
873 /* For break.b instruction ia64 CPU forgets the immediate value and generates
874 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
875 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
876 difference for the signals here. */
877
878 static int
879 ia64_linux_status_is_event (int status)
880 {
881 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
882 || WSTOPSIG (status) == SIGILL);
883 }
884
885 void _initialize_ia64_linux_nat (void);
886
887 void
888 _initialize_ia64_linux_nat (void)
889 {
890 struct target_ops *t;
891
892 /* Fill in the generic GNU/Linux methods. */
893 t = linux_target ();
894
895 /* Override the default fetch/store register routines. */
896 t->to_fetch_registers = ia64_linux_fetch_registers;
897 t->to_store_registers = ia64_linux_store_registers;
898
899 /* Override the default to_xfer_partial. */
900 super_xfer_partial = t->to_xfer_partial;
901 t->to_xfer_partial = ia64_linux_xfer_partial;
902
903 /* Override watchpoint routines. */
904
905 /* The IA-64 architecture can step over a watch point (without triggering
906 it again) if the "dd" (data debug fault disable) bit in the processor
907 status word is set.
908
909 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
910 code there has determined that a hardware watchpoint has indeed
911 been hit. The CPU will then be able to execute one instruction
912 without triggering a watchpoint. */
913
914 t->to_have_steppable_watchpoint = 1;
915 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
916 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
917 t->to_stopped_data_address = ia64_linux_stopped_data_address;
918 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
919 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
920
921 /* Register the target. */
922 linux_nat_add_target (t);
923 linux_nat_set_new_thread (t, ia64_linux_new_thread);
924 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
925 }
This page took 0.071402 seconds and 5 git commands to generate.