target_ops: Use bool throughout
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
28
29 #include <signal.h>
30 #include "nat/gdb_ptrace.h"
31 #include "gdb_wait.h"
32 #ifdef HAVE_SYS_REG_H
33 #include <sys/reg.h>
34 #endif
35 #include <sys/syscall.h>
36 #include <sys/user.h>
37
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43
44 #include "inf-ptrace.h"
45
46 class ia64_linux_nat_target final : public linux_nat_target
47 {
48 public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
52
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
59
60 const struct target_desc *read_description () override;
61
62 /* Override watchpoint routines. */
63
64 /* The IA-64 architecture can step over a watch point (without
65 triggering it again) if the "dd" (data debug fault disable) bit
66 in the processor status word is set.
67
68 This PSR bit is set in
69 ia64_linux_nat_target::stopped_by_watchpoint when the code there
70 has determined that a hardware watchpoint has indeed been hit.
71 The CPU will then be able to execute one instruction without
72 triggering a watchpoint. */
73 bool have_steppable_watchpoint () { return 1; }
74
75 int can_use_hw_breakpoint (enum bptype, int, int) override;
76 bool stopped_by_watchpoint () override;
77 bool stopped_data_address (CORE_ADDR *) override;
78 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
80 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
81 struct expression *) override;
82 };
83
84 static ia64_linux_nat_target the_ia64_linux_nat_target;
85
86 /* These must match the order of the register names.
87
88 Some sort of lookup table is needed because the offsets associated
89 with the registers are all over the board. */
90
91 static int u_offsets[] =
92 {
93 /* general registers */
94 -1, /* gr0 not available; i.e, it's always zero. */
95 PT_R1,
96 PT_R2,
97 PT_R3,
98 PT_R4,
99 PT_R5,
100 PT_R6,
101 PT_R7,
102 PT_R8,
103 PT_R9,
104 PT_R10,
105 PT_R11,
106 PT_R12,
107 PT_R13,
108 PT_R14,
109 PT_R15,
110 PT_R16,
111 PT_R17,
112 PT_R18,
113 PT_R19,
114 PT_R20,
115 PT_R21,
116 PT_R22,
117 PT_R23,
118 PT_R24,
119 PT_R25,
120 PT_R26,
121 PT_R27,
122 PT_R28,
123 PT_R29,
124 PT_R30,
125 PT_R31,
126 /* gr32 through gr127 not directly available via the ptrace interface. */
127 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
128 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
129 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 /* Floating point registers */
134 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
135 PT_F2,
136 PT_F3,
137 PT_F4,
138 PT_F5,
139 PT_F6,
140 PT_F7,
141 PT_F8,
142 PT_F9,
143 PT_F10,
144 PT_F11,
145 PT_F12,
146 PT_F13,
147 PT_F14,
148 PT_F15,
149 PT_F16,
150 PT_F17,
151 PT_F18,
152 PT_F19,
153 PT_F20,
154 PT_F21,
155 PT_F22,
156 PT_F23,
157 PT_F24,
158 PT_F25,
159 PT_F26,
160 PT_F27,
161 PT_F28,
162 PT_F29,
163 PT_F30,
164 PT_F31,
165 PT_F32,
166 PT_F33,
167 PT_F34,
168 PT_F35,
169 PT_F36,
170 PT_F37,
171 PT_F38,
172 PT_F39,
173 PT_F40,
174 PT_F41,
175 PT_F42,
176 PT_F43,
177 PT_F44,
178 PT_F45,
179 PT_F46,
180 PT_F47,
181 PT_F48,
182 PT_F49,
183 PT_F50,
184 PT_F51,
185 PT_F52,
186 PT_F53,
187 PT_F54,
188 PT_F55,
189 PT_F56,
190 PT_F57,
191 PT_F58,
192 PT_F59,
193 PT_F60,
194 PT_F61,
195 PT_F62,
196 PT_F63,
197 PT_F64,
198 PT_F65,
199 PT_F66,
200 PT_F67,
201 PT_F68,
202 PT_F69,
203 PT_F70,
204 PT_F71,
205 PT_F72,
206 PT_F73,
207 PT_F74,
208 PT_F75,
209 PT_F76,
210 PT_F77,
211 PT_F78,
212 PT_F79,
213 PT_F80,
214 PT_F81,
215 PT_F82,
216 PT_F83,
217 PT_F84,
218 PT_F85,
219 PT_F86,
220 PT_F87,
221 PT_F88,
222 PT_F89,
223 PT_F90,
224 PT_F91,
225 PT_F92,
226 PT_F93,
227 PT_F94,
228 PT_F95,
229 PT_F96,
230 PT_F97,
231 PT_F98,
232 PT_F99,
233 PT_F100,
234 PT_F101,
235 PT_F102,
236 PT_F103,
237 PT_F104,
238 PT_F105,
239 PT_F106,
240 PT_F107,
241 PT_F108,
242 PT_F109,
243 PT_F110,
244 PT_F111,
245 PT_F112,
246 PT_F113,
247 PT_F114,
248 PT_F115,
249 PT_F116,
250 PT_F117,
251 PT_F118,
252 PT_F119,
253 PT_F120,
254 PT_F121,
255 PT_F122,
256 PT_F123,
257 PT_F124,
258 PT_F125,
259 PT_F126,
260 PT_F127,
261 /* Predicate registers - we don't fetch these individually. */
262 -1, -1, -1, -1, -1, -1, -1, -1,
263 -1, -1, -1, -1, -1, -1, -1, -1,
264 -1, -1, -1, -1, -1, -1, -1, -1,
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 /* branch registers */
271 PT_B0,
272 PT_B1,
273 PT_B2,
274 PT_B3,
275 PT_B4,
276 PT_B5,
277 PT_B6,
278 PT_B7,
279 /* Virtual frame pointer and virtual return address pointer. */
280 -1, -1,
281 /* other registers */
282 PT_PR,
283 PT_CR_IIP, /* ip */
284 PT_CR_IPSR, /* psr */
285 PT_CFM, /* cfm */
286 /* kernel registers not visible via ptrace interface (?) */
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 /* hole */
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 PT_AR_RSC,
291 PT_AR_BSP,
292 PT_AR_BSPSTORE,
293 PT_AR_RNAT,
294 -1,
295 -1, /* Not available: FCR, IA32 floating control register. */
296 -1, -1,
297 -1, /* Not available: EFLAG */
298 -1, /* Not available: CSD */
299 -1, /* Not available: SSD */
300 -1, /* Not available: CFLG */
301 -1, /* Not available: FSR */
302 -1, /* Not available: FIR */
303 -1, /* Not available: FDR */
304 -1,
305 PT_AR_CCV,
306 -1, -1, -1,
307 PT_AR_UNAT,
308 -1, -1, -1,
309 PT_AR_FPSR,
310 -1, -1, -1,
311 -1, /* Not available: ITC */
312 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
313 -1, -1, -1, -1, -1, -1, -1, -1, -1,
314 PT_AR_PFS,
315 PT_AR_LC,
316 PT_AR_EC,
317 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
318 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
319 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1,
324 /* nat bits - not fetched directly; instead we obtain these bits from
325 either rnat or unat or from memory. */
326 -1, -1, -1, -1, -1, -1, -1, -1,
327 -1, -1, -1, -1, -1, -1, -1, -1,
328 -1, -1, -1, -1, -1, -1, -1, -1,
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 };
343
344 static CORE_ADDR
345 ia64_register_addr (struct gdbarch *gdbarch, int regno)
346 {
347 CORE_ADDR addr;
348
349 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
350 error (_("Invalid register number %d."), regno);
351
352 if (u_offsets[regno] == -1)
353 addr = 0;
354 else
355 addr = (CORE_ADDR) u_offsets[regno];
356
357 return addr;
358 }
359
360 static int
361 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
362 {
363 return regno < 0
364 || regno >= gdbarch_num_regs (gdbarch)
365 || u_offsets[regno] == -1;
366 }
367
368 static int
369 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
370 {
371 /* Rationale behind not permitting stores to bspstore...
372
373 The IA-64 architecture provides bspstore and bsp which refer
374 memory locations in the RSE's backing store. bspstore is the
375 next location which will be written when the RSE needs to write
376 to memory. bsp is the address at which r32 in the current frame
377 would be found if it were written to the backing store.
378
379 The IA-64 architecture provides read-only access to bsp and
380 read/write access to bspstore (but only when the RSE is in
381 the enforced lazy mode). It should be noted that stores
382 to bspstore also affect the value of bsp. Changing bspstore
383 does not affect the number of dirty entries between bspstore
384 and bsp, so changing bspstore by N words will also cause bsp
385 to be changed by (roughly) N as well. (It could be N-1 or N+1
386 depending upon where the NaT collection bits fall.)
387
388 OTOH, the Linux kernel provides read/write access to bsp (and
389 currently read/write access to bspstore as well). But it
390 is definitely the case that if you change one, the other
391 will change at the same time. It is more useful to gdb to
392 be able to change bsp. So in order to prevent strange and
393 undesirable things from happening when a dummy stack frame
394 is popped (after calling an inferior function), we allow
395 bspstore to be read, but not written. (Note that popping
396 a (generic) dummy stack frame causes all registers that
397 were previously read from the inferior process to be written
398 back.) */
399
400 return regno < 0
401 || regno >= gdbarch_num_regs (gdbarch)
402 || u_offsets[regno] == -1
403 || regno == IA64_BSPSTORE_REGNUM;
404 }
405
406 void
407 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
408 {
409 int regi;
410 const greg_t *regp = (const greg_t *) gregsetp;
411
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 {
414 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
415 }
416
417 /* FIXME: NAT collection bits are at index 32; gotta deal with these
418 somehow... */
419
420 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
421
422 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423 {
424 regcache_raw_supply (regcache, regi,
425 regp + 34 + (regi - IA64_BR0_REGNUM));
426 }
427
428 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
429 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
430 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
431 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
432 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
433 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
434 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
435 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
436 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
437 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
438 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
439 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
440 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
441 }
442
443 void
444 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
445 {
446 int regi;
447 greg_t *regp = (greg_t *) gregsetp;
448
449 #define COPY_REG(_idx_,_regi_) \
450 if ((regno == -1) || regno == _regi_) \
451 regcache_raw_collect (regcache, _regi_, regp + _idx_)
452
453 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
454 {
455 COPY_REG (regi - IA64_GR0_REGNUM, regi);
456 }
457
458 /* FIXME: NAT collection bits at index 32? */
459
460 COPY_REG (33, IA64_PR_REGNUM);
461
462 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
463 {
464 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
465 }
466
467 COPY_REG (42, IA64_IP_REGNUM);
468 COPY_REG (43, IA64_CFM_REGNUM);
469 COPY_REG (44, IA64_PSR_REGNUM);
470 COPY_REG (45, IA64_RSC_REGNUM);
471 COPY_REG (46, IA64_BSP_REGNUM);
472 COPY_REG (47, IA64_BSPSTORE_REGNUM);
473 COPY_REG (48, IA64_RNAT_REGNUM);
474 COPY_REG (49, IA64_CCV_REGNUM);
475 COPY_REG (50, IA64_UNAT_REGNUM);
476 COPY_REG (51, IA64_FPSR_REGNUM);
477 COPY_REG (52, IA64_PFS_REGNUM);
478 COPY_REG (53, IA64_LC_REGNUM);
479 COPY_REG (54, IA64_EC_REGNUM);
480 }
481
482 /* Given a pointer to a floating point register set in /proc format
483 (fpregset_t *), unpack the register contents and supply them as gdb's
484 idea of the current floating point register values. */
485
486 void
487 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
488 {
489 int regi;
490 const char *from;
491 const gdb_byte f_zero[16] = { 0 };
492 const gdb_byte f_one[16] =
493 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
494
495 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
496 did the same. So ignore whatever might be recorded in fpregset_t
497 for fr0/fr1 and always supply their expected values. */
498
499 /* fr0 is always read as zero. */
500 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
501 /* fr1 is always read as one (1.0). */
502 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
503
504 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
505 {
506 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
507 regcache_raw_supply (regcache, regi, from);
508 }
509 }
510
511 /* Given a pointer to a floating point register set in /proc format
512 (fpregset_t *), update the register specified by REGNO from gdb's idea
513 of the current floating point register set. If REGNO is -1, update
514 them all. */
515
516 void
517 fill_fpregset (const struct regcache *regcache,
518 fpregset_t *fpregsetp, int regno)
519 {
520 int regi;
521
522 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
523 {
524 if ((regno == -1) || (regno == regi))
525 regcache_raw_collect (regcache, regi,
526 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
527 }
528 }
529
530 #define IA64_PSR_DB (1UL << 24)
531 #define IA64_PSR_DD (1UL << 39)
532
533 static void
534 enable_watchpoints_in_psr (ptid_t ptid)
535 {
536 struct regcache *regcache = get_thread_regcache (ptid);
537 ULONGEST psr;
538
539 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
540 if (!(psr & IA64_PSR_DB))
541 {
542 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
543 watchpoints and breakpoints. */
544 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
545 }
546 }
547
548 static long debug_registers[8];
549
550 static void
551 store_debug_register (ptid_t ptid, int idx, long val)
552 {
553 int tid;
554
555 tid = ptid_get_lwp (ptid);
556 if (tid == 0)
557 tid = ptid_get_pid (ptid);
558
559 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
560 }
561
562 static void
563 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
564 long *dbr_mask)
565 {
566 if (dbr_addr)
567 store_debug_register (ptid, 2 * idx, *dbr_addr);
568 if (dbr_mask)
569 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
570 }
571
572 static int
573 is_power_of_2 (int val)
574 {
575 int i, onecount;
576
577 onecount = 0;
578 for (i = 0; i < 8 * sizeof (val); i++)
579 if (val & (1 << i))
580 onecount++;
581
582 return onecount <= 1;
583 }
584
585 int
586 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
587 enum target_hw_bp_type type,
588 struct expression *cond)
589 {
590 struct lwp_info *lp;
591 int idx;
592 long dbr_addr, dbr_mask;
593 int max_watchpoints = 4;
594
595 if (len <= 0 || !is_power_of_2 (len))
596 return -1;
597
598 for (idx = 0; idx < max_watchpoints; idx++)
599 {
600 dbr_mask = debug_registers[idx * 2 + 1];
601 if ((dbr_mask & (0x3UL << 62)) == 0)
602 {
603 /* Exit loop if both r and w bits clear. */
604 break;
605 }
606 }
607
608 if (idx == max_watchpoints)
609 return -1;
610
611 dbr_addr = (long) addr;
612 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
613 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
614 switch (type)
615 {
616 case hw_write:
617 dbr_mask |= (1L << 62); /* Set w bit */
618 break;
619 case hw_read:
620 dbr_mask |= (1L << 63); /* Set r bit */
621 break;
622 case hw_access:
623 dbr_mask |= (3L << 62); /* Set both r and w bits */
624 break;
625 default:
626 return -1;
627 }
628
629 debug_registers[2 * idx] = dbr_addr;
630 debug_registers[2 * idx + 1] = dbr_mask;
631 ALL_LWPS (lp)
632 {
633 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
634 enable_watchpoints_in_psr (lp->ptid);
635 }
636
637 return 0;
638 }
639
640 int
641 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
642 enum target_hw_bp_type type,
643 struct expression *cond)
644 {
645 int idx;
646 long dbr_addr, dbr_mask;
647 int max_watchpoints = 4;
648
649 if (len <= 0 || !is_power_of_2 (len))
650 return -1;
651
652 for (idx = 0; idx < max_watchpoints; idx++)
653 {
654 dbr_addr = debug_registers[2 * idx];
655 dbr_mask = debug_registers[2 * idx + 1];
656 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
657 {
658 struct lwp_info *lp;
659
660 debug_registers[2 * idx] = 0;
661 debug_registers[2 * idx + 1] = 0;
662 dbr_addr = 0;
663 dbr_mask = 0;
664
665 ALL_LWPS (lp)
666 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
667
668 return 0;
669 }
670 }
671 return -1;
672 }
673
674 static void
675 ia64_linux_new_thread (struct lwp_info *lp)
676 {
677 int i, any;
678
679 any = 0;
680 for (i = 0; i < 8; i++)
681 {
682 if (debug_registers[i] != 0)
683 any = 1;
684 store_debug_register (lp->ptid, i, debug_registers[i]);
685 }
686
687 if (any)
688 enable_watchpoints_in_psr (lp->ptid);
689 }
690
691 bool
692 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
693 {
694 CORE_ADDR psr;
695 siginfo_t siginfo;
696 struct regcache *regcache = get_current_regcache ();
697
698 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
699 return false;
700
701 if (siginfo.si_signo != SIGTRAP
702 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
703 return false;
704
705 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
706 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
707 for the next instruction. */
708 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
709
710 *addr_p = (CORE_ADDR) siginfo.si_addr;
711 return true;
712 }
713
714 bool
715 ia64_linux_nat_target::stopped_by_watchpoint ()
716 {
717 CORE_ADDR addr;
718 return stopped_data_address (&addr);
719 }
720
721 static int
722 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
723 enum bptype type,
724 int cnt, int othertype)
725 {
726 return 1;
727 }
728
729
730 /* Fetch register REGNUM from the inferior. */
731
732 static void
733 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
734 {
735 struct gdbarch *gdbarch = regcache->arch ();
736 CORE_ADDR addr;
737 size_t size;
738 PTRACE_TYPE_RET *buf;
739 pid_t pid;
740 int i;
741
742 /* r0 cannot be fetched but is always zero. */
743 if (regnum == IA64_GR0_REGNUM)
744 {
745 const gdb_byte zero[8] = { 0 };
746
747 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
748 regcache_raw_supply (regcache, regnum, zero);
749 return;
750 }
751
752 /* fr0 cannot be fetched but is always zero. */
753 if (regnum == IA64_FR0_REGNUM)
754 {
755 const gdb_byte f_zero[16] = { 0 };
756
757 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
758 regcache_raw_supply (regcache, regnum, f_zero);
759 return;
760 }
761
762 /* fr1 cannot be fetched but is always one (1.0). */
763 if (regnum == IA64_FR1_REGNUM)
764 {
765 const gdb_byte f_one[16] =
766 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
767
768 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
769 regcache_raw_supply (regcache, regnum, f_one);
770 return;
771 }
772
773 if (ia64_cannot_fetch_register (gdbarch, regnum))
774 {
775 regcache_raw_supply (regcache, regnum, NULL);
776 return;
777 }
778
779 pid = get_ptrace_pid (regcache_get_ptid (regcache));
780
781 /* This isn't really an address, but ptrace thinks of it as one. */
782 addr = ia64_register_addr (gdbarch, regnum);
783 size = register_size (gdbarch, regnum);
784
785 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
786 buf = (PTRACE_TYPE_RET *) alloca (size);
787
788 /* Read the register contents from the inferior a chunk at a time. */
789 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
790 {
791 errno = 0;
792 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
793 if (errno != 0)
794 error (_("Couldn't read register %s (#%d): %s."),
795 gdbarch_register_name (gdbarch, regnum),
796 regnum, safe_strerror (errno));
797
798 addr += sizeof (PTRACE_TYPE_RET);
799 }
800 regcache_raw_supply (regcache, regnum, buf);
801 }
802
803 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
804 for all registers. */
805
806 void
807 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
808 {
809 if (regnum == -1)
810 for (regnum = 0;
811 regnum < gdbarch_num_regs (regcache->arch ());
812 regnum++)
813 ia64_linux_fetch_register (regcache, regnum);
814 else
815 ia64_linux_fetch_register (regcache, regnum);
816 }
817
818 /* Store register REGNUM into the inferior. */
819
820 static void
821 ia64_linux_store_register (const struct regcache *regcache, int regnum)
822 {
823 struct gdbarch *gdbarch = regcache->arch ();
824 CORE_ADDR addr;
825 size_t size;
826 PTRACE_TYPE_RET *buf;
827 pid_t pid;
828 int i;
829
830 if (ia64_cannot_store_register (gdbarch, regnum))
831 return;
832
833 pid = get_ptrace_pid (regcache_get_ptid (regcache));
834
835 /* This isn't really an address, but ptrace thinks of it as one. */
836 addr = ia64_register_addr (gdbarch, regnum);
837 size = register_size (gdbarch, regnum);
838
839 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
840 buf = (PTRACE_TYPE_RET *) alloca (size);
841
842 /* Write the register contents into the inferior a chunk at a time. */
843 regcache_raw_collect (regcache, regnum, buf);
844 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
845 {
846 errno = 0;
847 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
848 if (errno != 0)
849 error (_("Couldn't write register %s (#%d): %s."),
850 gdbarch_register_name (gdbarch, regnum),
851 regnum, safe_strerror (errno));
852
853 addr += sizeof (PTRACE_TYPE_RET);
854 }
855 }
856
857 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
858 this for all registers. */
859
860 void
861 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
862 {
863 if (regnum == -1)
864 for (regnum = 0;
865 regnum < gdbarch_num_regs (regcache->arch ());
866 regnum++)
867 ia64_linux_store_register (regcache, regnum);
868 else
869 ia64_linux_store_register (regcache, regnum);
870 }
871
872 /* Implement the xfer_partial target_ops method. */
873
874 enum target_xfer_status
875 ia64_linux_nat_target::xfer_partial (enum target_object object,
876 const char *annex,
877 gdb_byte *readbuf, const gdb_byte *writebuf,
878 ULONGEST offset, ULONGEST len,
879 ULONGEST *xfered_len)
880 {
881 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
882 {
883 static long gate_table_size;
884 gdb_byte *tmp_buf;
885 long res;
886
887 /* Probe for the table size once. */
888 if (gate_table_size == 0)
889 gate_table_size = syscall (__NR_getunwind, NULL, 0);
890 if (gate_table_size < 0)
891 return TARGET_XFER_E_IO;
892
893 if (offset >= gate_table_size)
894 return TARGET_XFER_EOF;
895
896 tmp_buf = (gdb_byte *) alloca (gate_table_size);
897 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
898 if (res < 0)
899 return TARGET_XFER_E_IO;
900 gdb_assert (res == gate_table_size);
901
902 if (offset + len > gate_table_size)
903 len = gate_table_size - offset;
904
905 memcpy (readbuf, tmp_buf + offset, len);
906 *xfered_len = len;
907 return TARGET_XFER_OK;
908 }
909
910 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
911 offset, len, xfered_len);
912 }
913
914 /* For break.b instruction ia64 CPU forgets the immediate value and generates
915 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
916 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
917 difference for the signals here. */
918
919 static int
920 ia64_linux_status_is_event (int status)
921 {
922 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
923 || WSTOPSIG (status) == SIGILL);
924 }
925
926 void
927 _initialize_ia64_linux_nat (void)
928 {
929 struct target_ops *t = &the_ia64_linux_nat_target;
930
931 /* Register the target. */
932 linux_target = &the_ia64_linux_nat_target;
933 add_target (t);
934 linux_nat_set_new_thread (t, ia64_linux_new_thread);
935 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
936 }
This page took 0.05022 seconds and 5 git commands to generate.