* gregset.h (struct regcache): Add forward declaration.
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "regcache.h"
30 #include "ia64-tdep.h"
31 #include "linux-nat.h"
32
33 #include <signal.h>
34 #include <sys/ptrace.h>
35 #include "gdb_wait.h"
36 #ifdef HAVE_SYS_REG_H
37 #include <sys/reg.h>
38 #endif
39 #include <sys/syscall.h>
40 #include <sys/user.h>
41
42 #include <asm/ptrace_offsets.h>
43 #include <sys/procfs.h>
44
45 /* Prototypes for supply_gregset etc. */
46 #include "gregset.h"
47
48 /* These must match the order of the register names.
49
50 Some sort of lookup table is needed because the offsets associated
51 with the registers are all over the board. */
52
53 static int u_offsets[] =
54 {
55 /* general registers */
56 -1, /* gr0 not available; i.e, it's always zero */
57 PT_R1,
58 PT_R2,
59 PT_R3,
60 PT_R4,
61 PT_R5,
62 PT_R6,
63 PT_R7,
64 PT_R8,
65 PT_R9,
66 PT_R10,
67 PT_R11,
68 PT_R12,
69 PT_R13,
70 PT_R14,
71 PT_R15,
72 PT_R16,
73 PT_R17,
74 PT_R18,
75 PT_R19,
76 PT_R20,
77 PT_R21,
78 PT_R22,
79 PT_R23,
80 PT_R24,
81 PT_R25,
82 PT_R26,
83 PT_R27,
84 PT_R28,
85 PT_R29,
86 PT_R30,
87 PT_R31,
88 /* gr32 through gr127 not directly available via the ptrace interface */
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
94 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
95 /* Floating point registers */
96 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
97 PT_F2,
98 PT_F3,
99 PT_F4,
100 PT_F5,
101 PT_F6,
102 PT_F7,
103 PT_F8,
104 PT_F9,
105 PT_F10,
106 PT_F11,
107 PT_F12,
108 PT_F13,
109 PT_F14,
110 PT_F15,
111 PT_F16,
112 PT_F17,
113 PT_F18,
114 PT_F19,
115 PT_F20,
116 PT_F21,
117 PT_F22,
118 PT_F23,
119 PT_F24,
120 PT_F25,
121 PT_F26,
122 PT_F27,
123 PT_F28,
124 PT_F29,
125 PT_F30,
126 PT_F31,
127 PT_F32,
128 PT_F33,
129 PT_F34,
130 PT_F35,
131 PT_F36,
132 PT_F37,
133 PT_F38,
134 PT_F39,
135 PT_F40,
136 PT_F41,
137 PT_F42,
138 PT_F43,
139 PT_F44,
140 PT_F45,
141 PT_F46,
142 PT_F47,
143 PT_F48,
144 PT_F49,
145 PT_F50,
146 PT_F51,
147 PT_F52,
148 PT_F53,
149 PT_F54,
150 PT_F55,
151 PT_F56,
152 PT_F57,
153 PT_F58,
154 PT_F59,
155 PT_F60,
156 PT_F61,
157 PT_F62,
158 PT_F63,
159 PT_F64,
160 PT_F65,
161 PT_F66,
162 PT_F67,
163 PT_F68,
164 PT_F69,
165 PT_F70,
166 PT_F71,
167 PT_F72,
168 PT_F73,
169 PT_F74,
170 PT_F75,
171 PT_F76,
172 PT_F77,
173 PT_F78,
174 PT_F79,
175 PT_F80,
176 PT_F81,
177 PT_F82,
178 PT_F83,
179 PT_F84,
180 PT_F85,
181 PT_F86,
182 PT_F87,
183 PT_F88,
184 PT_F89,
185 PT_F90,
186 PT_F91,
187 PT_F92,
188 PT_F93,
189 PT_F94,
190 PT_F95,
191 PT_F96,
192 PT_F97,
193 PT_F98,
194 PT_F99,
195 PT_F100,
196 PT_F101,
197 PT_F102,
198 PT_F103,
199 PT_F104,
200 PT_F105,
201 PT_F106,
202 PT_F107,
203 PT_F108,
204 PT_F109,
205 PT_F110,
206 PT_F111,
207 PT_F112,
208 PT_F113,
209 PT_F114,
210 PT_F115,
211 PT_F116,
212 PT_F117,
213 PT_F118,
214 PT_F119,
215 PT_F120,
216 PT_F121,
217 PT_F122,
218 PT_F123,
219 PT_F124,
220 PT_F125,
221 PT_F126,
222 PT_F127,
223 /* predicate registers - we don't fetch these individually */
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 -1, -1, -1, -1, -1, -1, -1, -1,
231 -1, -1, -1, -1, -1, -1, -1, -1,
232 /* branch registers */
233 PT_B0,
234 PT_B1,
235 PT_B2,
236 PT_B3,
237 PT_B4,
238 PT_B5,
239 PT_B6,
240 PT_B7,
241 /* virtual frame pointer and virtual return address pointer */
242 -1, -1,
243 /* other registers */
244 PT_PR,
245 PT_CR_IIP, /* ip */
246 PT_CR_IPSR, /* psr */
247 PT_CFM, /* cfm */
248 /* kernel registers not visible via ptrace interface (?) */
249 -1, -1, -1, -1, -1, -1, -1, -1,
250 /* hole */
251 -1, -1, -1, -1, -1, -1, -1, -1,
252 PT_AR_RSC,
253 PT_AR_BSP,
254 PT_AR_BSPSTORE,
255 PT_AR_RNAT,
256 -1,
257 -1, /* Not available: FCR, IA32 floating control register */
258 -1, -1,
259 -1, /* Not available: EFLAG */
260 -1, /* Not available: CSD */
261 -1, /* Not available: SSD */
262 -1, /* Not available: CFLG */
263 -1, /* Not available: FSR */
264 -1, /* Not available: FIR */
265 -1, /* Not available: FDR */
266 -1,
267 PT_AR_CCV,
268 -1, -1, -1,
269 PT_AR_UNAT,
270 -1, -1, -1,
271 PT_AR_FPSR,
272 -1, -1, -1,
273 -1, /* Not available: ITC */
274 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
275 -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 PT_AR_PFS,
277 PT_AR_LC,
278 -1, /* Not available: EC, the Epilog Count register */
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
284 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
285 -1,
286 /* nat bits - not fetched directly; instead we obtain these bits from
287 either rnat or unat or from memory. */
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
302 -1, -1, -1, -1, -1, -1, -1, -1,
303 -1, -1, -1, -1, -1, -1, -1, -1,
304 };
305
306 static CORE_ADDR
307 ia64_register_addr (int regno)
308 {
309 CORE_ADDR addr;
310
311 if (regno < 0 || regno >= NUM_REGS)
312 error (_("Invalid register number %d."), regno);
313
314 if (u_offsets[regno] == -1)
315 addr = 0;
316 else
317 addr = (CORE_ADDR) u_offsets[regno];
318
319 return addr;
320 }
321
322 static int
323 ia64_cannot_fetch_register (int regno)
324 {
325 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1;
326 }
327
328 static int
329 ia64_cannot_store_register (int regno)
330 {
331 /* Rationale behind not permitting stores to bspstore...
332
333 The IA-64 architecture provides bspstore and bsp which refer
334 memory locations in the RSE's backing store. bspstore is the
335 next location which will be written when the RSE needs to write
336 to memory. bsp is the address at which r32 in the current frame
337 would be found if it were written to the backing store.
338
339 The IA-64 architecture provides read-only access to bsp and
340 read/write access to bspstore (but only when the RSE is in
341 the enforced lazy mode). It should be noted that stores
342 to bspstore also affect the value of bsp. Changing bspstore
343 does not affect the number of dirty entries between bspstore
344 and bsp, so changing bspstore by N words will also cause bsp
345 to be changed by (roughly) N as well. (It could be N-1 or N+1
346 depending upon where the NaT collection bits fall.)
347
348 OTOH, the Linux kernel provides read/write access to bsp (and
349 currently read/write access to bspstore as well). But it
350 is definitely the case that if you change one, the other
351 will change at the same time. It is more useful to gdb to
352 be able to change bsp. So in order to prevent strange and
353 undesirable things from happening when a dummy stack frame
354 is popped (after calling an inferior function), we allow
355 bspstore to be read, but not written. (Note that popping
356 a (generic) dummy stack frame causes all registers that
357 were previously read from the inferior process to be written
358 back.) */
359
360 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1
361 || regno == IA64_BSPSTORE_REGNUM;
362 }
363
364 void
365 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
366 {
367 int regi;
368 const greg_t *regp = (const greg_t *) gregsetp;
369
370 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
371 {
372 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
373 }
374
375 /* FIXME: NAT collection bits are at index 32; gotta deal with these
376 somehow... */
377
378 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
379
380 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
381 {
382 regcache_raw_supply (regcache, regi,
383 regp + 34 + (regi - IA64_BR0_REGNUM));
384 }
385
386 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
387 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
388 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
389 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
390 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
391 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
392 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
393 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
394 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
395 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
396 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
397 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
398 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
399 }
400
401 void
402 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
403 {
404 int regi;
405 greg_t *regp = (greg_t *) gregsetp;
406
407 #define COPY_REG(_idx_,_regi_) \
408 if ((regno == -1) || regno == _regi_) \
409 regcache_raw_collect (regcache, _regi_, regp + _idx_)
410
411 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
412 {
413 COPY_REG (regi - IA64_GR0_REGNUM, regi);
414 }
415
416 /* FIXME: NAT collection bits at index 32? */
417
418 COPY_REG (33, IA64_PR_REGNUM);
419
420 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
421 {
422 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
423 }
424
425 COPY_REG (42, IA64_IP_REGNUM);
426 COPY_REG (43, IA64_CFM_REGNUM);
427 COPY_REG (44, IA64_PSR_REGNUM);
428 COPY_REG (45, IA64_RSC_REGNUM);
429 COPY_REG (46, IA64_BSP_REGNUM);
430 COPY_REG (47, IA64_BSPSTORE_REGNUM);
431 COPY_REG (48, IA64_RNAT_REGNUM);
432 COPY_REG (49, IA64_CCV_REGNUM);
433 COPY_REG (50, IA64_UNAT_REGNUM);
434 COPY_REG (51, IA64_FPSR_REGNUM);
435 COPY_REG (52, IA64_PFS_REGNUM);
436 COPY_REG (53, IA64_LC_REGNUM);
437 COPY_REG (54, IA64_EC_REGNUM);
438 }
439
440 /* Given a pointer to a floating point register set in /proc format
441 (fpregset_t *), unpack the register contents and supply them as gdb's
442 idea of the current floating point register values. */
443
444 void
445 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
446 {
447 int regi;
448 const char *from;
449
450 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
451 {
452 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
453 regcache_raw_supply (regcache, regi, from);
454 }
455 }
456
457 /* Given a pointer to a floating point register set in /proc format
458 (fpregset_t *), update the register specified by REGNO from gdb's idea
459 of the current floating point register set. If REGNO is -1, update
460 them all. */
461
462 void
463 fill_fpregset (const struct regcache *regcache,
464 fpregset_t *fpregsetp, int regno)
465 {
466 int regi;
467
468 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
469 {
470 if ((regno == -1) || (regno == regi))
471 regcache_raw_collect (regcache, regi,
472 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
473 }
474 }
475
476 #define IA64_PSR_DB (1UL << 24)
477 #define IA64_PSR_DD (1UL << 39)
478
479 static void
480 enable_watchpoints_in_psr (ptid_t ptid)
481 {
482 CORE_ADDR psr;
483
484 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
485 if (!(psr & IA64_PSR_DB))
486 {
487 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
488 watchpoints and breakpoints. */
489 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
490 }
491 }
492
493 static long
494 fetch_debug_register (ptid_t ptid, int idx)
495 {
496 long val;
497 int tid;
498
499 tid = TIDGET (ptid);
500 if (tid == 0)
501 tid = PIDGET (ptid);
502
503 val = ptrace (PT_READ_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), 0);
504
505 return val;
506 }
507
508 static void
509 store_debug_register (ptid_t ptid, int idx, long val)
510 {
511 int tid;
512
513 tid = TIDGET (ptid);
514 if (tid == 0)
515 tid = PIDGET (ptid);
516
517 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
518 }
519
520 static void
521 fetch_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
522 {
523 if (dbr_addr)
524 *dbr_addr = fetch_debug_register (ptid, 2 * idx);
525 if (dbr_mask)
526 *dbr_mask = fetch_debug_register (ptid, 2 * idx + 1);
527 }
528
529 static void
530 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
531 {
532 if (dbr_addr)
533 store_debug_register (ptid, 2 * idx, *dbr_addr);
534 if (dbr_mask)
535 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
536 }
537
538 static int
539 is_power_of_2 (int val)
540 {
541 int i, onecount;
542
543 onecount = 0;
544 for (i = 0; i < 8 * sizeof (val); i++)
545 if (val & (1 << i))
546 onecount++;
547
548 return onecount <= 1;
549 }
550
551 static int
552 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
553 {
554 ptid_t ptid = inferior_ptid;
555 int idx;
556 long dbr_addr, dbr_mask;
557 int max_watchpoints = 4;
558
559 if (len <= 0 || !is_power_of_2 (len))
560 return -1;
561
562 for (idx = 0; idx < max_watchpoints; idx++)
563 {
564 fetch_debug_register_pair (ptid, idx, NULL, &dbr_mask);
565 if ((dbr_mask & (0x3UL << 62)) == 0)
566 {
567 /* Exit loop if both r and w bits clear */
568 break;
569 }
570 }
571
572 if (idx == max_watchpoints)
573 return -1;
574
575 dbr_addr = (long) addr;
576 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
577 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
578 switch (rw)
579 {
580 case hw_write:
581 dbr_mask |= (1L << 62); /* Set w bit */
582 break;
583 case hw_read:
584 dbr_mask |= (1L << 63); /* Set r bit */
585 break;
586 case hw_access:
587 dbr_mask |= (3L << 62); /* Set both r and w bits */
588 break;
589 default:
590 return -1;
591 }
592
593 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
594 enable_watchpoints_in_psr (ptid);
595
596 return 0;
597 }
598
599 static int
600 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type)
601 {
602 ptid_t ptid = inferior_ptid;
603 int idx;
604 long dbr_addr, dbr_mask;
605 int max_watchpoints = 4;
606
607 if (len <= 0 || !is_power_of_2 (len))
608 return -1;
609
610 for (idx = 0; idx < max_watchpoints; idx++)
611 {
612 fetch_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
613 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
614 {
615 dbr_addr = 0;
616 dbr_mask = 0;
617 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
618 return 0;
619 }
620 }
621 return -1;
622 }
623
624 static int
625 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
626 {
627 CORE_ADDR psr;
628 int tid;
629 struct siginfo siginfo;
630 ptid_t ptid = inferior_ptid;
631
632 tid = TIDGET(ptid);
633 if (tid == 0)
634 tid = PIDGET (ptid);
635
636 errno = 0;
637 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_TYPE_ARG3) 0, &siginfo);
638
639 if (errno != 0 || siginfo.si_signo != SIGTRAP ||
640 (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
641 return 0;
642
643 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
644 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
645 for the next instruction */
646 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
647
648 *addr_p = (CORE_ADDR)siginfo.si_addr;
649 return 1;
650 }
651
652 static int
653 ia64_linux_stopped_by_watchpoint (void)
654 {
655 CORE_ADDR addr;
656 return ia64_linux_stopped_data_address (&current_target, &addr);
657 }
658
659 static int
660 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
661 {
662 return 1;
663 }
664
665
666 /* Fetch register REGNUM from the inferior. */
667
668 static void
669 ia64_linux_fetch_register (int regnum)
670 {
671 CORE_ADDR addr;
672 size_t size;
673 PTRACE_TYPE_RET *buf;
674 int pid, i;
675
676 if (ia64_cannot_fetch_register (regnum))
677 {
678 regcache_raw_supply (current_regcache, regnum, NULL);
679 return;
680 }
681
682 /* Cater for systems like GNU/Linux, that implement threads as
683 separate processes. */
684 pid = ptid_get_lwp (inferior_ptid);
685 if (pid == 0)
686 pid = ptid_get_pid (inferior_ptid);
687
688 /* This isn't really an address, but ptrace thinks of it as one. */
689 addr = ia64_register_addr (regnum);
690 size = register_size (current_gdbarch, regnum);
691
692 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
693 buf = alloca (size);
694
695 /* Read the register contents from the inferior a chunk at a time. */
696 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
697 {
698 errno = 0;
699 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
700 if (errno != 0)
701 error (_("Couldn't read register %s (#%d): %s."),
702 REGISTER_NAME (regnum), regnum, safe_strerror (errno));
703
704 addr += sizeof (PTRACE_TYPE_RET);
705 }
706 regcache_raw_supply (current_regcache, regnum, buf);
707 }
708
709 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
710 for all registers. */
711
712 static void
713 ia64_linux_fetch_registers (int regnum)
714 {
715 if (regnum == -1)
716 for (regnum = 0; regnum < NUM_REGS; regnum++)
717 ia64_linux_fetch_register (regnum);
718 else
719 ia64_linux_fetch_register (regnum);
720 }
721
722 /* Store register REGNUM into the inferior. */
723
724 static void
725 ia64_linux_store_register (int regnum)
726 {
727 CORE_ADDR addr;
728 size_t size;
729 PTRACE_TYPE_RET *buf;
730 int pid, i;
731
732 if (ia64_cannot_store_register (regnum))
733 return;
734
735 /* Cater for systems like GNU/Linux, that implement threads as
736 separate processes. */
737 pid = ptid_get_lwp (inferior_ptid);
738 if (pid == 0)
739 pid = ptid_get_pid (inferior_ptid);
740
741 /* This isn't really an address, but ptrace thinks of it as one. */
742 addr = ia64_register_addr (regnum);
743 size = register_size (current_gdbarch, regnum);
744
745 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
746 buf = alloca (size);
747
748 /* Write the register contents into the inferior a chunk at a time. */
749 regcache_raw_collect (current_regcache, regnum, buf);
750 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
751 {
752 errno = 0;
753 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
754 if (errno != 0)
755 error (_("Couldn't write register %s (#%d): %s."),
756 REGISTER_NAME (regnum), regnum, safe_strerror (errno));
757
758 addr += sizeof (PTRACE_TYPE_RET);
759 }
760 }
761
762 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
763 this for all registers. */
764
765 static void
766 ia64_linux_store_registers (int regnum)
767 {
768 if (regnum == -1)
769 for (regnum = 0; regnum < NUM_REGS; regnum++)
770 ia64_linux_store_register (regnum);
771 else
772 ia64_linux_store_register (regnum);
773 }
774
775
776 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
777 const char *, gdb_byte *, const gdb_byte *,
778 ULONGEST, LONGEST);
779
780 static LONGEST
781 ia64_linux_xfer_partial (struct target_ops *ops,
782 enum target_object object,
783 const char *annex,
784 gdb_byte *readbuf, const gdb_byte *writebuf,
785 ULONGEST offset, LONGEST len)
786 {
787 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
788 return syscall (__NR_getunwind, readbuf, len);
789
790 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
791 offset, len);
792 }
793
794 void _initialize_ia64_linux_nat (void);
795
796 void
797 _initialize_ia64_linux_nat (void)
798 {
799 struct target_ops *t = linux_target ();
800
801 /* Fill in the generic GNU/Linux methods. */
802 t = linux_target ();
803
804 /* Override the default fetch/store register routines. */
805 t->to_fetch_registers = ia64_linux_fetch_registers;
806 t->to_store_registers = ia64_linux_store_registers;
807
808 /* Override the default to_xfer_partial. */
809 super_xfer_partial = t->to_xfer_partial;
810 t->to_xfer_partial = ia64_linux_xfer_partial;
811
812 /* Override watchpoint routines. */
813
814 /* The IA-64 architecture can step over a watch point (without triggering
815 it again) if the "dd" (data debug fault disable) bit in the processor
816 status word is set.
817
818 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
819 code there has determined that a hardware watchpoint has indeed
820 been hit. The CPU will then be able to execute one instruction
821 without triggering a watchpoint. */
822
823 t->to_have_steppable_watchpoint = 1;
824 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
825 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
826 t->to_stopped_data_address = ia64_linux_stopped_data_address;
827 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
828 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
829
830 /* Register the target. */
831 linux_nat_add_target (t);
832 }
This page took 0.046694 seconds and 5 git commands to generate.