ARI fix: remove "%p".
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "floatformat.h"
26 #include "gdbtypes.h"
27 #include "regcache.h"
28 #include "reggroups.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "gdb_assert.h"
35 #include "objfiles.h"
36 #include "elf/common.h" /* for DT_PLTGOT value */
37 #include "elf-bfd.h"
38 #include "dis-asm.h"
39 #include "infcall.h"
40 #include "osabi.h"
41 #include "ia64-tdep.h"
42 #include "cp-abi.h"
43
44 #ifdef HAVE_LIBUNWIND_IA64_H
45 #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
46 #include "libunwind-frame.h"
47 #include "libunwind-ia64.h"
48
49 /* Note: KERNEL_START is supposed to be an address which is not going
50 to ever contain any valid unwind info. For ia64 linux, the choice
51 of 0xc000000000000000 is fairly safe since that's uncached space.
52
53 We use KERNEL_START as follows: after obtaining the kernel's
54 unwind table via getunwind(), we project its unwind data into
55 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
56 when ia64_access_mem() sees a memory access to this
57 address-range, we redirect it to ktab instead.
58
59 None of this hackery is needed with a modern kernel/libcs
60 which uses the kernel virtual DSO to provide access to the
61 kernel's unwind info. In that case, ktab_size remains 0 and
62 hence the value of KERNEL_START doesn't matter. */
63
64 #define KERNEL_START 0xc000000000000000ULL
65
66 static size_t ktab_size = 0;
67 struct ia64_table_entry
68 {
69 uint64_t start_offset;
70 uint64_t end_offset;
71 uint64_t info_offset;
72 };
73
74 static struct ia64_table_entry *ktab = NULL;
75
76 #endif
77
78 /* An enumeration of the different IA-64 instruction types. */
79
80 typedef enum instruction_type
81 {
82 A, /* Integer ALU ; I-unit or M-unit */
83 I, /* Non-ALU integer; I-unit */
84 M, /* Memory ; M-unit */
85 F, /* Floating-point ; F-unit */
86 B, /* Branch ; B-unit */
87 L, /* Extended (L+X) ; I-unit */
88 X, /* Extended (L+X) ; I-unit */
89 undefined /* undefined or reserved */
90 } instruction_type;
91
92 /* We represent IA-64 PC addresses as the value of the instruction
93 pointer or'd with some bit combination in the low nibble which
94 represents the slot number in the bundle addressed by the
95 instruction pointer. The problem is that the Linux kernel
96 multiplies its slot numbers (for exceptions) by one while the
97 disassembler multiplies its slot numbers by 6. In addition, I've
98 heard it said that the simulator uses 1 as the multiplier.
99
100 I've fixed the disassembler so that the bytes_per_line field will
101 be the slot multiplier. If bytes_per_line comes in as zero, it
102 is set to six (which is how it was set up initially). -- objdump
103 displays pretty disassembly dumps with this value. For our purposes,
104 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
105 never want to also display the raw bytes the way objdump does. */
106
107 #define SLOT_MULTIPLIER 1
108
109 /* Length in bytes of an instruction bundle */
110
111 #define BUNDLE_LEN 16
112
113 /* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
114
115 #if BREAKPOINT_MAX < BUNDLE_LEN - 2
116 # error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
117 #endif
118
119 static gdbarch_init_ftype ia64_gdbarch_init;
120
121 static gdbarch_register_name_ftype ia64_register_name;
122 static gdbarch_register_type_ftype ia64_register_type;
123 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
124 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
125 static struct type *is_float_or_hfa_type (struct type *t);
126 static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr);
127
128 static struct type *builtin_type_ia64_ext;
129
130 #define NUM_IA64_RAW_REGS 462
131
132 static int sp_regnum = IA64_GR12_REGNUM;
133 static int fp_regnum = IA64_VFP_REGNUM;
134 static int lr_regnum = IA64_VRAP_REGNUM;
135
136 /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
137 they may not be accessible via the ptrace register get/set interfaces. */
138 enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
139 V127_REGNUM = V32_REGNUM + 95,
140 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
141
142 /* Array of register names; There should be ia64_num_regs strings in
143 the initializer. */
144
145 static char *ia64_register_names[] =
146 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
147 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
148 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
149 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 "", "", "", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
162
163 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
164 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
165 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
166 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
167 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
168 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
169 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
170 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
171 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
172 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
173 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
174 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
175 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
176 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
177 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
178 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
179
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
184 "", "", "", "", "", "", "", "",
185 "", "", "", "", "", "", "", "",
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
188
189 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
190
191 "vfp", "vrap",
192
193 "pr", "ip", "psr", "cfm",
194
195 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
196 "", "", "", "", "", "", "", "",
197 "rsc", "bsp", "bspstore", "rnat",
198 "", "fcr", "", "",
199 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
200 "ccv", "", "", "", "unat", "", "", "",
201 "fpsr", "", "", "", "itc",
202 "", "", "", "", "", "", "", "", "", "",
203 "", "", "", "", "", "", "", "", "",
204 "pfs", "lc", "ec",
205 "", "", "", "", "", "", "", "", "", "",
206 "", "", "", "", "", "", "", "", "", "",
207 "", "", "", "", "", "", "", "", "", "",
208 "", "", "", "", "", "", "", "", "", "",
209 "", "", "", "", "", "", "", "", "", "",
210 "", "", "", "", "", "", "", "", "", "",
211 "",
212 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
213 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
214 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
215 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
216 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
217 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
218 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
219 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
220 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
221 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
222 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
223 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
224 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
225 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
226 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
227 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
228
229 "bof",
230
231 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
232 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
233 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
234 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
235 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
236 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
237 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
238 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
239 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
240 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
241 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
242 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
243
244 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
245 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
246 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
247 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
248 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
249 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
250 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
251 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
252 };
253
254 struct ia64_frame_cache
255 {
256 CORE_ADDR base; /* frame pointer base for frame */
257 CORE_ADDR pc; /* function start pc for frame */
258 CORE_ADDR saved_sp; /* stack pointer for frame */
259 CORE_ADDR bsp; /* points at r32 for the current frame */
260 CORE_ADDR cfm; /* cfm value for current frame */
261 CORE_ADDR prev_cfm; /* cfm value for previous frame */
262 int frameless;
263 int sof; /* Size of frame (decoded from cfm value) */
264 int sol; /* Size of locals (decoded from cfm value) */
265 int sor; /* Number of rotating registers. (decoded from cfm value) */
266 CORE_ADDR after_prologue;
267 /* Address of first instruction after the last
268 prologue instruction; Note that there may
269 be instructions from the function's body
270 intermingled with the prologue. */
271 int mem_stack_frame_size;
272 /* Size of the memory stack frame (may be zero),
273 or -1 if it has not been determined yet. */
274 int fp_reg; /* Register number (if any) used a frame pointer
275 for this frame. 0 if no register is being used
276 as the frame pointer. */
277
278 /* Saved registers. */
279 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
280
281 };
282
283 static int
284 ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
285 struct reggroup *group)
286 {
287 int vector_p;
288 int float_p;
289 int raw_p;
290 if (group == all_reggroup)
291 return 1;
292 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
293 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
294 raw_p = regnum < NUM_IA64_RAW_REGS;
295 if (group == float_reggroup)
296 return float_p;
297 if (group == vector_reggroup)
298 return vector_p;
299 if (group == general_reggroup)
300 return (!vector_p && !float_p);
301 if (group == save_reggroup || group == restore_reggroup)
302 return raw_p;
303 return 0;
304 }
305
306 static const char *
307 ia64_register_name (struct gdbarch *gdbarch, int reg)
308 {
309 return ia64_register_names[reg];
310 }
311
312 struct type *
313 ia64_register_type (struct gdbarch *arch, int reg)
314 {
315 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
316 return builtin_type_ia64_ext;
317 else
318 return builtin_type (arch)->builtin_long;
319 }
320
321 static int
322 ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
323 {
324 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
325 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
326 return reg;
327 }
328
329 static int
330 floatformat_valid (const struct floatformat *fmt, const void *from)
331 {
332 return 1;
333 }
334
335 const struct floatformat floatformat_ia64_ext =
336 {
337 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
338 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
339 };
340
341 const struct floatformat *floatformats_ia64_ext[2] =
342 {
343 &floatformat_ia64_ext,
344 &floatformat_ia64_ext
345 };
346
347
348 /* Extract ``len'' bits from an instruction bundle starting at
349 bit ``from''. */
350
351 static long long
352 extract_bit_field (const char *bundle, int from, int len)
353 {
354 long long result = 0LL;
355 int to = from + len;
356 int from_byte = from / 8;
357 int to_byte = to / 8;
358 unsigned char *b = (unsigned char *) bundle;
359 unsigned char c;
360 int lshift;
361 int i;
362
363 c = b[from_byte];
364 if (from_byte == to_byte)
365 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
366 result = c >> (from % 8);
367 lshift = 8 - (from % 8);
368
369 for (i = from_byte+1; i < to_byte; i++)
370 {
371 result |= ((long long) b[i]) << lshift;
372 lshift += 8;
373 }
374
375 if (from_byte < to_byte && (to % 8 != 0))
376 {
377 c = b[to_byte];
378 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
379 result |= ((long long) c) << lshift;
380 }
381
382 return result;
383 }
384
385 /* Replace the specified bits in an instruction bundle */
386
387 static void
388 replace_bit_field (char *bundle, long long val, int from, int len)
389 {
390 int to = from + len;
391 int from_byte = from / 8;
392 int to_byte = to / 8;
393 unsigned char *b = (unsigned char *) bundle;
394 unsigned char c;
395
396 if (from_byte == to_byte)
397 {
398 unsigned char left, right;
399 c = b[from_byte];
400 left = (c >> (to % 8)) << (to % 8);
401 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
402 c = (unsigned char) (val & 0xff);
403 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
404 c |= right | left;
405 b[from_byte] = c;
406 }
407 else
408 {
409 int i;
410 c = b[from_byte];
411 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
412 c = c | (val << (from % 8));
413 b[from_byte] = c;
414 val >>= 8 - from % 8;
415
416 for (i = from_byte+1; i < to_byte; i++)
417 {
418 c = val & 0xff;
419 val >>= 8;
420 b[i] = c;
421 }
422
423 if (to % 8 != 0)
424 {
425 unsigned char cv = (unsigned char) val;
426 c = b[to_byte];
427 c = c >> (to % 8) << (to % 8);
428 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
429 b[to_byte] = c;
430 }
431 }
432 }
433
434 /* Return the contents of slot N (for N = 0, 1, or 2) in
435 and instruction bundle */
436
437 static long long
438 slotN_contents (char *bundle, int slotnum)
439 {
440 return extract_bit_field (bundle, 5+41*slotnum, 41);
441 }
442
443 /* Store an instruction in an instruction bundle */
444
445 static void
446 replace_slotN_contents (char *bundle, long long instr, int slotnum)
447 {
448 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
449 }
450
451 static const enum instruction_type template_encoding_table[32][3] =
452 {
453 { M, I, I }, /* 00 */
454 { M, I, I }, /* 01 */
455 { M, I, I }, /* 02 */
456 { M, I, I }, /* 03 */
457 { M, L, X }, /* 04 */
458 { M, L, X }, /* 05 */
459 { undefined, undefined, undefined }, /* 06 */
460 { undefined, undefined, undefined }, /* 07 */
461 { M, M, I }, /* 08 */
462 { M, M, I }, /* 09 */
463 { M, M, I }, /* 0A */
464 { M, M, I }, /* 0B */
465 { M, F, I }, /* 0C */
466 { M, F, I }, /* 0D */
467 { M, M, F }, /* 0E */
468 { M, M, F }, /* 0F */
469 { M, I, B }, /* 10 */
470 { M, I, B }, /* 11 */
471 { M, B, B }, /* 12 */
472 { M, B, B }, /* 13 */
473 { undefined, undefined, undefined }, /* 14 */
474 { undefined, undefined, undefined }, /* 15 */
475 { B, B, B }, /* 16 */
476 { B, B, B }, /* 17 */
477 { M, M, B }, /* 18 */
478 { M, M, B }, /* 19 */
479 { undefined, undefined, undefined }, /* 1A */
480 { undefined, undefined, undefined }, /* 1B */
481 { M, F, B }, /* 1C */
482 { M, F, B }, /* 1D */
483 { undefined, undefined, undefined }, /* 1E */
484 { undefined, undefined, undefined }, /* 1F */
485 };
486
487 /* Fetch and (partially) decode an instruction at ADDR and return the
488 address of the next instruction to fetch. */
489
490 static CORE_ADDR
491 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
492 {
493 char bundle[BUNDLE_LEN];
494 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
495 long long template;
496 int val;
497
498 /* Warn about slot numbers greater than 2. We used to generate
499 an error here on the assumption that the user entered an invalid
500 address. But, sometimes GDB itself requests an invalid address.
501 This can (easily) happen when execution stops in a function for
502 which there are no symbols. The prologue scanner will attempt to
503 find the beginning of the function - if the nearest symbol
504 happens to not be aligned on a bundle boundary (16 bytes), the
505 resulting starting address will cause GDB to think that the slot
506 number is too large.
507
508 So we warn about it and set the slot number to zero. It is
509 not necessarily a fatal condition, particularly if debugging
510 at the assembly language level. */
511 if (slotnum > 2)
512 {
513 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
514 "Using slot 0 instead"));
515 slotnum = 0;
516 }
517
518 addr &= ~0x0f;
519
520 val = target_read_memory (addr, bundle, BUNDLE_LEN);
521
522 if (val != 0)
523 return 0;
524
525 *instr = slotN_contents (bundle, slotnum);
526 template = extract_bit_field (bundle, 0, 5);
527 *it = template_encoding_table[(int)template][slotnum];
528
529 if (slotnum == 2 || (slotnum == 1 && *it == L))
530 addr += 16;
531 else
532 addr += (slotnum + 1) * SLOT_MULTIPLIER;
533
534 return addr;
535 }
536
537 /* There are 5 different break instructions (break.i, break.b,
538 break.m, break.f, and break.x), but they all have the same
539 encoding. (The five bit template in the low five bits of the
540 instruction bundle distinguishes one from another.)
541
542 The runtime architecture manual specifies that break instructions
543 used for debugging purposes must have the upper two bits of the 21
544 bit immediate set to a 0 and a 1 respectively. A breakpoint
545 instruction encodes the most significant bit of its 21 bit
546 immediate at bit 36 of the 41 bit instruction. The penultimate msb
547 is at bit 25 which leads to the pattern below.
548
549 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
550 it turns out that 0x80000 was used as the syscall break in the early
551 simulators. So I changed the pattern slightly to do "break.i 0x080001"
552 instead. But that didn't work either (I later found out that this
553 pattern was used by the simulator that I was using.) So I ended up
554 using the pattern seen below.
555
556 SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
557 while we need bit-based addressing as the instructions length is 41 bits and
558 we must not modify/corrupt the adjacent slots in the same bundle.
559 Fortunately we may store larger memory incl. the adjacent bits with the
560 original memory content (not the possibly already stored breakpoints there).
561 We need to be careful in ia64_memory_remove_breakpoint to always restore
562 only the specific bits of this instruction ignoring any adjacent stored
563 bits.
564
565 We use the original addressing with the low nibble in the range <0..2> which
566 gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
567 as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
568 bytes just without these two possibly skipped bytes to not to exceed to the
569 next bundle.
570
571 If we would like to store the whole bundle to SHADOW_CONTENTS we would have
572 to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
573 In such case there is no other place where to store
574 SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
575 SLOTNUM in ia64_memory_remove_breakpoint.
576
577 ia64 16-byte bundle layout:
578 | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
579
580 The current addressing used by the code below:
581 original PC placed_address placed_size required covered
582 == bp_tgt->shadow_len reqd \subset covered
583 0xABCDE0 0xABCDE0 0xE <0x0...0x5> <0x0..0xD>
584 0xABCDE1 0xABCDE1 0xE <0x5...0xA> <0x1..0xE>
585 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
586
587 `objdump -d' and some other tools show a bit unjustified offsets:
588 original PC byte where starts the instruction objdump offset
589 0xABCDE0 0xABCDE0 0xABCDE0
590 0xABCDE1 0xABCDE5 0xABCDE6
591 0xABCDE2 0xABCDEA 0xABCDEC
592 */
593
594 #define IA64_BREAKPOINT 0x00003333300LL
595
596 static int
597 ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
598 struct bp_target_info *bp_tgt)
599 {
600 CORE_ADDR addr = bp_tgt->placed_address;
601 gdb_byte bundle[BUNDLE_LEN];
602 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
603 long long instr_breakpoint;
604 int val;
605 int template;
606 struct cleanup *cleanup;
607
608 if (slotnum > 2)
609 error (_("Can't insert breakpoint for slot numbers greater than 2."));
610
611 addr &= ~0x0f;
612
613 /* Disable the automatic memory restoration from breakpoints while
614 we read our instruction bundle. Otherwise, the general restoration
615 mechanism kicks in and we would possibly remove parts of the adjacent
616 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
617 breakpoint instruction bits region. */
618 cleanup = make_show_memory_breakpoints_cleanup (1);
619 val = target_read_memory (addr, bundle, BUNDLE_LEN);
620
621 /* Check for L type instruction in slot 1, if present then bump up the slot
622 number to the slot 2. */
623 template = extract_bit_field (bundle, 0, 5);
624 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
625 slotnum = 2;
626
627 /* Slot number 2 may skip at most 2 bytes at the beginning. */
628 bp_tgt->placed_size = bp_tgt->shadow_len = BUNDLE_LEN - 2;
629
630 /* Store the whole bundle, except for the initial skipped bytes by the slot
631 number interpreted as bytes offset in PLACED_ADDRESS. */
632 memcpy (bp_tgt->shadow_contents, bundle + slotnum, bp_tgt->shadow_len);
633
634 /* Breakpoints already present in the code will get deteacted and not get
635 reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
636 location cannot induce the internal error as they are optimized into
637 a single instance by update_global_location_list. */
638 instr_breakpoint = slotN_contents (bundle, slotnum);
639 if (instr_breakpoint == IA64_BREAKPOINT)
640 internal_error (__FILE__, __LINE__,
641 _("Address %s already contains a breakpoint."),
642 paddr_nz (bp_tgt->placed_address));
643 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
644
645 if (val == 0)
646 val = target_write_memory (addr + slotnum, bundle + slotnum,
647 bp_tgt->shadow_len);
648
649 do_cleanups (cleanup);
650 return val;
651 }
652
653 static int
654 ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
655 struct bp_target_info *bp_tgt)
656 {
657 CORE_ADDR addr = bp_tgt->placed_address;
658 gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
659 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
660 long long instr_breakpoint, instr_saved;
661 int val;
662 int template;
663 struct cleanup *cleanup;
664
665 addr &= ~0x0f;
666
667 /* Disable the automatic memory restoration from breakpoints while
668 we read our instruction bundle. Otherwise, the general restoration
669 mechanism kicks in and we would possibly remove parts of the adjacent
670 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
671 breakpoint instruction bits region. */
672 cleanup = make_show_memory_breakpoints_cleanup (1);
673 val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
674
675 /* Check for L type instruction in slot 1, if present then bump up the slot
676 number to the slot 2. */
677 template = extract_bit_field (bundle_mem, 0, 5);
678 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
679 slotnum = 2;
680
681 gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - 2);
682 gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len);
683
684 instr_breakpoint = slotN_contents (bundle_mem, slotnum);
685 if (instr_breakpoint != IA64_BREAKPOINT)
686 {
687 warning (_("Cannot remove breakpoint at address %s, "
688 "no break instruction at such address."),
689 paddr_nz (bp_tgt->placed_address));
690 return -1;
691 }
692
693 /* Extract the original saved instruction from SLOTNUM normalizing its
694 bit-shift for INSTR_SAVED. */
695 memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
696 memcpy (bundle_saved + slotnum, bp_tgt->shadow_contents, bp_tgt->shadow_len);
697 instr_saved = slotN_contents (bundle_saved, slotnum);
698
699 /* In BUNDLE_MEM be careful to modify only the bits belonging to SLOTNUM and
700 never any other possibly also stored in SHADOW_CONTENTS. */
701 replace_slotN_contents (bundle_mem, instr_saved, slotnum);
702 if (val == 0)
703 val = target_write_memory (addr, bundle_mem, BUNDLE_LEN);
704
705 do_cleanups (cleanup);
706 return val;
707 }
708
709 /* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
710 instruction slots ranges are bit-granular (41 bits) we have to provide an
711 extended range as described for ia64_memory_insert_breakpoint. We also take
712 care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
713 make a match for permanent breakpoints. */
714
715 static const gdb_byte *
716 ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
717 {
718 CORE_ADDR addr = *pcptr;
719 static gdb_byte bundle[BUNDLE_LEN];
720 int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER;
721 long long instr_fetched;
722 int val;
723 int template;
724 struct cleanup *cleanup;
725
726 if (slotnum > 2)
727 error (_("Can't insert breakpoint for slot numbers greater than 2."));
728
729 addr &= ~0x0f;
730
731 /* Enable the automatic memory restoration from breakpoints while
732 we read our instruction bundle to match bp_loc_is_permanent. */
733 cleanup = make_show_memory_breakpoints_cleanup (0);
734 val = target_read_memory (addr, bundle, BUNDLE_LEN);
735 do_cleanups (cleanup);
736
737 /* The memory might be unreachable. This can happen, for instance,
738 when the user inserts a breakpoint at an invalid address. */
739 if (val != 0)
740 return NULL;
741
742 /* Check for L type instruction in slot 1, if present then bump up the slot
743 number to the slot 2. */
744 template = extract_bit_field (bundle, 0, 5);
745 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
746 slotnum = 2;
747
748 /* A break instruction has its all its opcode bits cleared except for
749 the parameter value. For L+X slot pair we are at the X slot (slot 2) so
750 we should not touch the L slot - the upper 41 bits of the parameter. */
751 instr_fetched = slotN_contents (bundle, slotnum);
752 instr_fetched &= 0x1003ffffc0LL;
753 replace_slotN_contents (bundle, instr_fetched, slotnum);
754
755 *lenptr = BUNDLE_LEN - 2;
756
757 /* SLOTNUM is possibly already locally modified - use caller's *PCPTR. */
758 return bundle + (*pcptr & 0x0f);
759 }
760
761 static CORE_ADDR
762 ia64_read_pc (struct regcache *regcache)
763 {
764 ULONGEST psr_value, pc_value;
765 int slot_num;
766
767 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
768 regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
769 slot_num = (psr_value >> 41) & 3;
770
771 return pc_value | (slot_num * SLOT_MULTIPLIER);
772 }
773
774 void
775 ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
776 {
777 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
778 ULONGEST psr_value;
779
780 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
781 psr_value &= ~(3LL << 41);
782 psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
783
784 new_pc &= ~0xfLL;
785
786 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
787 regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
788 }
789
790 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
791
792 /* Returns the address of the slot that's NSLOTS slots away from
793 the address ADDR. NSLOTS may be positive or negative. */
794 static CORE_ADDR
795 rse_address_add(CORE_ADDR addr, int nslots)
796 {
797 CORE_ADDR new_addr;
798 int mandatory_nat_slots = nslots / 63;
799 int direction = nslots < 0 ? -1 : 1;
800
801 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
802
803 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
804 new_addr += 8 * direction;
805
806 if (IS_NaT_COLLECTION_ADDR(new_addr))
807 new_addr += 8 * direction;
808
809 return new_addr;
810 }
811
812 static void
813 ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
814 int regnum, gdb_byte *buf)
815 {
816 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
817 {
818 #ifdef HAVE_LIBUNWIND_IA64_H
819 /* First try and use the libunwind special reg accessor, otherwise fallback to
820 standard logic. */
821 if (!libunwind_is_initialized ()
822 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
823 #endif
824 {
825 /* The fallback position is to assume that r32-r127 are found sequentially
826 in memory starting at $bof. This isn't always true, but without libunwind,
827 this is the best we can do. */
828 ULONGEST cfm;
829 ULONGEST bsp;
830 CORE_ADDR reg;
831 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
832 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
833
834 /* The bsp points at the end of the register frame so we
835 subtract the size of frame from it to get start of register frame. */
836 bsp = rse_address_add (bsp, -(cfm & 0x7f));
837
838 if ((cfm & 0x7f) > regnum - V32_REGNUM)
839 {
840 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
841 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8);
842 store_unsigned_integer (buf, register_size (gdbarch, regnum), reg);
843 }
844 else
845 store_unsigned_integer (buf, register_size (gdbarch, regnum), 0);
846 }
847 }
848 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
849 {
850 ULONGEST unatN_val;
851 ULONGEST unat;
852 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
853 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
854 store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val);
855 }
856 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
857 {
858 ULONGEST natN_val = 0;
859 ULONGEST bsp;
860 ULONGEST cfm;
861 CORE_ADDR gr_addr = 0;
862 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
863 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
864
865 /* The bsp points at the end of the register frame so we
866 subtract the size of frame from it to get start of register frame. */
867 bsp = rse_address_add (bsp, -(cfm & 0x7f));
868
869 if ((cfm & 0x7f) > regnum - V32_REGNUM)
870 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
871
872 if (gr_addr != 0)
873 {
874 /* Compute address of nat collection bits. */
875 CORE_ADDR nat_addr = gr_addr | 0x1f8;
876 CORE_ADDR nat_collection;
877 int nat_bit;
878 /* If our nat collection address is bigger than bsp, we have to get
879 the nat collection from rnat. Otherwise, we fetch the nat
880 collection from the computed address. */
881 if (nat_addr >= bsp)
882 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
883 else
884 nat_collection = read_memory_integer (nat_addr, 8);
885 nat_bit = (gr_addr >> 3) & 0x3f;
886 natN_val = (nat_collection >> nat_bit) & 1;
887 }
888
889 store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val);
890 }
891 else if (regnum == VBOF_REGNUM)
892 {
893 /* A virtual register frame start is provided for user convenience.
894 It can be calculated as the bsp - sof (sizeof frame). */
895 ULONGEST bsp, vbsp;
896 ULONGEST cfm;
897 CORE_ADDR reg;
898 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
899 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
900
901 /* The bsp points at the end of the register frame so we
902 subtract the size of frame from it to get beginning of frame. */
903 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
904 store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp);
905 }
906 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
907 {
908 ULONGEST pr;
909 ULONGEST cfm;
910 ULONGEST prN_val;
911 CORE_ADDR reg;
912 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
913 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
914
915 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
916 {
917 /* Fetch predicate register rename base from current frame
918 marker for this frame. */
919 int rrb_pr = (cfm >> 32) & 0x3f;
920
921 /* Adjust the register number to account for register rotation. */
922 regnum = VP16_REGNUM
923 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
924 }
925 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
926 store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val);
927 }
928 else
929 memset (buf, 0, register_size (gdbarch, regnum));
930 }
931
932 static void
933 ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
934 int regnum, const gdb_byte *buf)
935 {
936 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
937 {
938 ULONGEST bsp;
939 ULONGEST cfm;
940 CORE_ADDR reg;
941 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
942 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
943
944 bsp = rse_address_add (bsp, -(cfm & 0x7f));
945
946 if ((cfm & 0x7f) > regnum - V32_REGNUM)
947 {
948 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
949 write_memory (reg_addr, (void *)buf, 8);
950 }
951 }
952 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
953 {
954 ULONGEST unatN_val, unat, unatN_mask;
955 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
956 unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
957 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
958 if (unatN_val == 0)
959 unat &= ~unatN_mask;
960 else if (unatN_val == 1)
961 unat |= unatN_mask;
962 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
963 }
964 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
965 {
966 ULONGEST natN_val;
967 ULONGEST bsp;
968 ULONGEST cfm;
969 CORE_ADDR gr_addr = 0;
970 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
971 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
972
973 /* The bsp points at the end of the register frame so we
974 subtract the size of frame from it to get start of register frame. */
975 bsp = rse_address_add (bsp, -(cfm & 0x7f));
976
977 if ((cfm & 0x7f) > regnum - V32_REGNUM)
978 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
979
980 natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
981
982 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
983 {
984 /* Compute address of nat collection bits. */
985 CORE_ADDR nat_addr = gr_addr | 0x1f8;
986 CORE_ADDR nat_collection;
987 int natN_bit = (gr_addr >> 3) & 0x3f;
988 ULONGEST natN_mask = (1LL << natN_bit);
989 /* If our nat collection address is bigger than bsp, we have to get
990 the nat collection from rnat. Otherwise, we fetch the nat
991 collection from the computed address. */
992 if (nat_addr >= bsp)
993 {
994 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
995 if (natN_val)
996 nat_collection |= natN_mask;
997 else
998 nat_collection &= ~natN_mask;
999 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
1000 }
1001 else
1002 {
1003 char nat_buf[8];
1004 nat_collection = read_memory_integer (nat_addr, 8);
1005 if (natN_val)
1006 nat_collection |= natN_mask;
1007 else
1008 nat_collection &= ~natN_mask;
1009 store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection);
1010 write_memory (nat_addr, nat_buf, 8);
1011 }
1012 }
1013 }
1014 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1015 {
1016 ULONGEST pr;
1017 ULONGEST cfm;
1018 ULONGEST prN_val;
1019 ULONGEST prN_mask;
1020
1021 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
1022 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1023
1024 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1025 {
1026 /* Fetch predicate register rename base from current frame
1027 marker for this frame. */
1028 int rrb_pr = (cfm >> 32) & 0x3f;
1029
1030 /* Adjust the register number to account for register rotation. */
1031 regnum = VP16_REGNUM
1032 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1033 }
1034 prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
1035 prN_mask = (1LL << (regnum - VP0_REGNUM));
1036 if (prN_val == 0)
1037 pr &= ~prN_mask;
1038 else if (prN_val == 1)
1039 pr |= prN_mask;
1040 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
1041 }
1042 }
1043
1044 /* The ia64 needs to convert between various ieee floating-point formats
1045 and the special ia64 floating point register format. */
1046
1047 static int
1048 ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
1049 {
1050 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
1051 && type != builtin_type_ia64_ext);
1052 }
1053
1054 static void
1055 ia64_register_to_value (struct frame_info *frame, int regnum,
1056 struct type *valtype, gdb_byte *out)
1057 {
1058 char in[MAX_REGISTER_SIZE];
1059 frame_register_read (frame, regnum, in);
1060 convert_typed_floating (in, builtin_type_ia64_ext, out, valtype);
1061 }
1062
1063 static void
1064 ia64_value_to_register (struct frame_info *frame, int regnum,
1065 struct type *valtype, const gdb_byte *in)
1066 {
1067 char out[MAX_REGISTER_SIZE];
1068 convert_typed_floating (in, valtype, out, builtin_type_ia64_ext);
1069 put_frame_register (frame, regnum, out);
1070 }
1071
1072
1073 /* Limit the number of skipped non-prologue instructions since examining
1074 of the prologue is expensive. */
1075 static int max_skip_non_prologue_insns = 40;
1076
1077 /* Given PC representing the starting address of a function, and
1078 LIM_PC which is the (sloppy) limit to which to scan when looking
1079 for a prologue, attempt to further refine this limit by using
1080 the line data in the symbol table. If successful, a better guess
1081 on where the prologue ends is returned, otherwise the previous
1082 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
1083 which will be set to indicate whether the returned limit may be
1084 used with no further scanning in the event that the function is
1085 frameless. */
1086
1087 /* FIXME: cagney/2004-02-14: This function and logic have largely been
1088 superseded by skip_prologue_using_sal. */
1089
1090 static CORE_ADDR
1091 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
1092 {
1093 struct symtab_and_line prologue_sal;
1094 CORE_ADDR start_pc = pc;
1095 CORE_ADDR end_pc;
1096
1097 /* The prologue can not possibly go past the function end itself,
1098 so we can already adjust LIM_PC accordingly. */
1099 if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
1100 lim_pc = end_pc;
1101
1102 /* Start off not trusting the limit. */
1103 *trust_limit = 0;
1104
1105 prologue_sal = find_pc_line (pc, 0);
1106 if (prologue_sal.line != 0)
1107 {
1108 int i;
1109 CORE_ADDR addr = prologue_sal.end;
1110
1111 /* Handle the case in which compiler's optimizer/scheduler
1112 has moved instructions into the prologue. We scan ahead
1113 in the function looking for address ranges whose corresponding
1114 line number is less than or equal to the first one that we
1115 found for the function. (It can be less than when the
1116 scheduler puts a body instruction before the first prologue
1117 instruction.) */
1118 for (i = 2 * max_skip_non_prologue_insns;
1119 i > 0 && (lim_pc == 0 || addr < lim_pc);
1120 i--)
1121 {
1122 struct symtab_and_line sal;
1123
1124 sal = find_pc_line (addr, 0);
1125 if (sal.line == 0)
1126 break;
1127 if (sal.line <= prologue_sal.line
1128 && sal.symtab == prologue_sal.symtab)
1129 {
1130 prologue_sal = sal;
1131 }
1132 addr = sal.end;
1133 }
1134
1135 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1136 {
1137 lim_pc = prologue_sal.end;
1138 if (start_pc == get_pc_function_start (lim_pc))
1139 *trust_limit = 1;
1140 }
1141 }
1142 return lim_pc;
1143 }
1144
1145 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1146 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1147 || (14 <= (_regnum_) && (_regnum_) <= 31))
1148 #define imm9(_instr_) \
1149 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1150 | (((_instr_) & 0x00008000000LL) >> 20) \
1151 | (((_instr_) & 0x00000001fc0LL) >> 6))
1152
1153 /* Allocate and initialize a frame cache. */
1154
1155 static struct ia64_frame_cache *
1156 ia64_alloc_frame_cache (void)
1157 {
1158 struct ia64_frame_cache *cache;
1159 int i;
1160
1161 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1162
1163 /* Base address. */
1164 cache->base = 0;
1165 cache->pc = 0;
1166 cache->cfm = 0;
1167 cache->prev_cfm = 0;
1168 cache->sof = 0;
1169 cache->sol = 0;
1170 cache->sor = 0;
1171 cache->bsp = 0;
1172 cache->fp_reg = 0;
1173 cache->frameless = 1;
1174
1175 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1176 cache->saved_regs[i] = 0;
1177
1178 return cache;
1179 }
1180
1181 static CORE_ADDR
1182 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
1183 struct frame_info *this_frame,
1184 struct ia64_frame_cache *cache)
1185 {
1186 CORE_ADDR next_pc;
1187 CORE_ADDR last_prologue_pc = pc;
1188 instruction_type it;
1189 long long instr;
1190 int cfm_reg = 0;
1191 int ret_reg = 0;
1192 int fp_reg = 0;
1193 int unat_save_reg = 0;
1194 int pr_save_reg = 0;
1195 int mem_stack_frame_size = 0;
1196 int spill_reg = 0;
1197 CORE_ADDR spill_addr = 0;
1198 char instores[8];
1199 char infpstores[8];
1200 char reg_contents[256];
1201 int trust_limit;
1202 int frameless = 1;
1203 int i;
1204 CORE_ADDR addr;
1205 char buf[8];
1206 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
1207
1208 memset (instores, 0, sizeof instores);
1209 memset (infpstores, 0, sizeof infpstores);
1210 memset (reg_contents, 0, sizeof reg_contents);
1211
1212 if (cache->after_prologue != 0
1213 && cache->after_prologue <= lim_pc)
1214 return cache->after_prologue;
1215
1216 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
1217 next_pc = fetch_instruction (pc, &it, &instr);
1218
1219 /* We want to check if we have a recognizable function start before we
1220 look ahead for a prologue. */
1221 if (pc < lim_pc && next_pc
1222 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1223 {
1224 /* alloc - start of a regular function. */
1225 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1226 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1227 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
1228 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1229
1230 /* Verify that the current cfm matches what we think is the
1231 function start. If we have somehow jumped within a function,
1232 we do not want to interpret the prologue and calculate the
1233 addresses of various registers such as the return address.
1234 We will instead treat the frame as frameless. */
1235 if (!this_frame ||
1236 (sof == (cache->cfm & 0x7f) &&
1237 sol == ((cache->cfm >> 7) & 0x7f)))
1238 frameless = 0;
1239
1240 cfm_reg = rN;
1241 last_prologue_pc = next_pc;
1242 pc = next_pc;
1243 }
1244 else
1245 {
1246 /* Look for a leaf routine. */
1247 if (pc < lim_pc && next_pc
1248 && (it == I || it == M)
1249 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1250 {
1251 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1252 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1253 | ((instr & 0x001f8000000LL) >> 20)
1254 | ((instr & 0x000000fe000LL) >> 13));
1255 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1256 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1257 int qp = (int) (instr & 0x0000000003fLL);
1258 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1259 {
1260 /* mov r2, r12 - beginning of leaf routine */
1261 fp_reg = rN;
1262 last_prologue_pc = next_pc;
1263 }
1264 }
1265
1266 /* If we don't recognize a regular function or leaf routine, we are
1267 done. */
1268 if (!fp_reg)
1269 {
1270 pc = lim_pc;
1271 if (trust_limit)
1272 last_prologue_pc = lim_pc;
1273 }
1274 }
1275
1276 /* Loop, looking for prologue instructions, keeping track of
1277 where preserved registers were spilled. */
1278 while (pc < lim_pc)
1279 {
1280 next_pc = fetch_instruction (pc, &it, &instr);
1281 if (next_pc == 0)
1282 break;
1283
1284 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
1285 {
1286 /* Exit loop upon hitting a non-nop branch instruction. */
1287 if (trust_limit)
1288 lim_pc = pc;
1289 break;
1290 }
1291 else if (((instr & 0x3fLL) != 0LL) &&
1292 (frameless || ret_reg != 0))
1293 {
1294 /* Exit loop upon hitting a predicated instruction if
1295 we already have the return register or if we are frameless. */
1296 if (trust_limit)
1297 lim_pc = pc;
1298 break;
1299 }
1300 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
1301 {
1302 /* Move from BR */
1303 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1304 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1305 int qp = (int) (instr & 0x0000000003f);
1306
1307 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1308 {
1309 ret_reg = rN;
1310 last_prologue_pc = next_pc;
1311 }
1312 }
1313 else if ((it == I || it == M)
1314 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1315 {
1316 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1317 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1318 | ((instr & 0x001f8000000LL) >> 20)
1319 | ((instr & 0x000000fe000LL) >> 13));
1320 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1321 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1322 int qp = (int) (instr & 0x0000000003fLL);
1323
1324 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1325 {
1326 /* mov rN, r12 */
1327 fp_reg = rN;
1328 last_prologue_pc = next_pc;
1329 }
1330 else if (qp == 0 && rN == 12 && rM == 12)
1331 {
1332 /* adds r12, -mem_stack_frame_size, r12 */
1333 mem_stack_frame_size -= imm;
1334 last_prologue_pc = next_pc;
1335 }
1336 else if (qp == 0 && rN == 2
1337 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1338 {
1339 char buf[MAX_REGISTER_SIZE];
1340 CORE_ADDR saved_sp = 0;
1341 /* adds r2, spilloffset, rFramePointer
1342 or
1343 adds r2, spilloffset, r12
1344
1345 Get ready for stf.spill or st8.spill instructions.
1346 The address to start spilling at is loaded into r2.
1347 FIXME: Why r2? That's what gcc currently uses; it
1348 could well be different for other compilers. */
1349
1350 /* Hmm... whether or not this will work will depend on
1351 where the pc is. If it's still early in the prologue
1352 this'll be wrong. FIXME */
1353 if (this_frame)
1354 {
1355 get_frame_register (this_frame, sp_regnum, buf);
1356 saved_sp = extract_unsigned_integer (buf, 8);
1357 }
1358 spill_addr = saved_sp
1359 + (rM == 12 ? 0 : mem_stack_frame_size)
1360 + imm;
1361 spill_reg = rN;
1362 last_prologue_pc = next_pc;
1363 }
1364 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
1365 rN < 256 && imm == 0)
1366 {
1367 /* mov rN, rM where rM is an input register */
1368 reg_contents[rN] = rM;
1369 last_prologue_pc = next_pc;
1370 }
1371 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1372 rM == 2)
1373 {
1374 /* mov r12, r2 */
1375 last_prologue_pc = next_pc;
1376 break;
1377 }
1378 }
1379 else if (it == M
1380 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1381 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1382 {
1383 /* stf.spill [rN] = fM, imm9
1384 or
1385 stf.spill [rN] = fM */
1386
1387 int imm = imm9(instr);
1388 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1389 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1390 int qp = (int) (instr & 0x0000000003fLL);
1391 if (qp == 0 && rN == spill_reg && spill_addr != 0
1392 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1393 {
1394 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
1395
1396 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1397 spill_addr += imm;
1398 else
1399 spill_addr = 0; /* last one; must be done */
1400 last_prologue_pc = next_pc;
1401 }
1402 }
1403 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1404 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1405 {
1406 /* mov.m rN = arM
1407 or
1408 mov.i rN = arM */
1409
1410 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1411 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1412 int qp = (int) (instr & 0x0000000003fLL);
1413 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1414 {
1415 /* We have something like "mov.m r3 = ar.unat". Remember the
1416 r3 (or whatever) and watch for a store of this register... */
1417 unat_save_reg = rN;
1418 last_prologue_pc = next_pc;
1419 }
1420 }
1421 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1422 {
1423 /* mov rN = pr */
1424 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1425 int qp = (int) (instr & 0x0000000003fLL);
1426 if (qp == 0 && isScratch (rN))
1427 {
1428 pr_save_reg = rN;
1429 last_prologue_pc = next_pc;
1430 }
1431 }
1432 else if (it == M
1433 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1434 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1435 {
1436 /* st8 [rN] = rM
1437 or
1438 st8 [rN] = rM, imm9 */
1439 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1440 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1441 int qp = (int) (instr & 0x0000000003fLL);
1442 int indirect = rM < 256 ? reg_contents[rM] : 0;
1443 if (qp == 0 && rN == spill_reg && spill_addr != 0
1444 && (rM == unat_save_reg || rM == pr_save_reg))
1445 {
1446 /* We've found a spill of either the UNAT register or the PR
1447 register. (Well, not exactly; what we've actually found is
1448 a spill of the register that UNAT or PR was moved to).
1449 Record that fact and move on... */
1450 if (rM == unat_save_reg)
1451 {
1452 /* Track UNAT register */
1453 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
1454 unat_save_reg = 0;
1455 }
1456 else
1457 {
1458 /* Track PR register */
1459 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
1460 pr_save_reg = 0;
1461 }
1462 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1463 /* st8 [rN] = rM, imm9 */
1464 spill_addr += imm9(instr);
1465 else
1466 spill_addr = 0; /* must be done spilling */
1467 last_prologue_pc = next_pc;
1468 }
1469 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1470 {
1471 /* Allow up to one store of each input register. */
1472 instores[rM-32] = 1;
1473 last_prologue_pc = next_pc;
1474 }
1475 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1476 !instores[indirect-32])
1477 {
1478 /* Allow an indirect store of an input register. */
1479 instores[indirect-32] = 1;
1480 last_prologue_pc = next_pc;
1481 }
1482 }
1483 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1484 {
1485 /* One of
1486 st1 [rN] = rM
1487 st2 [rN] = rM
1488 st4 [rN] = rM
1489 st8 [rN] = rM
1490 Note that the st8 case is handled in the clause above.
1491
1492 Advance over stores of input registers. One store per input
1493 register is permitted. */
1494 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1495 int qp = (int) (instr & 0x0000000003fLL);
1496 int indirect = rM < 256 ? reg_contents[rM] : 0;
1497 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1498 {
1499 instores[rM-32] = 1;
1500 last_prologue_pc = next_pc;
1501 }
1502 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1503 !instores[indirect-32])
1504 {
1505 /* Allow an indirect store of an input register. */
1506 instores[indirect-32] = 1;
1507 last_prologue_pc = next_pc;
1508 }
1509 }
1510 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1511 {
1512 /* Either
1513 stfs [rN] = fM
1514 or
1515 stfd [rN] = fM
1516
1517 Advance over stores of floating point input registers. Again
1518 one store per register is permitted */
1519 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1520 int qp = (int) (instr & 0x0000000003fLL);
1521 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1522 {
1523 infpstores[fM-8] = 1;
1524 last_prologue_pc = next_pc;
1525 }
1526 }
1527 else if (it == M
1528 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1529 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1530 {
1531 /* st8.spill [rN] = rM
1532 or
1533 st8.spill [rN] = rM, imm9 */
1534 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1535 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1536 int qp = (int) (instr & 0x0000000003fLL);
1537 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1538 {
1539 /* We've found a spill of one of the preserved general purpose
1540 regs. Record the spill address and advance the spill
1541 register if appropriate. */
1542 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
1543 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1544 /* st8.spill [rN] = rM, imm9 */
1545 spill_addr += imm9(instr);
1546 else
1547 spill_addr = 0; /* Done spilling */
1548 last_prologue_pc = next_pc;
1549 }
1550 }
1551
1552 pc = next_pc;
1553 }
1554
1555 /* If not frameless and we aren't called by skip_prologue, then we need
1556 to calculate registers for the previous frame which will be needed
1557 later. */
1558
1559 if (!frameless && this_frame)
1560 {
1561 /* Extract the size of the rotating portion of the stack
1562 frame and the register rename base from the current
1563 frame marker. */
1564 cfm = cache->cfm;
1565 sor = cache->sor;
1566 sof = cache->sof;
1567 sol = cache->sol;
1568 rrb_gr = (cfm >> 18) & 0x7f;
1569
1570 /* Find the bof (beginning of frame). */
1571 bof = rse_address_add (cache->bsp, -sof);
1572
1573 for (i = 0, addr = bof;
1574 i < sof;
1575 i++, addr += 8)
1576 {
1577 if (IS_NaT_COLLECTION_ADDR (addr))
1578 {
1579 addr += 8;
1580 }
1581 if (i+32 == cfm_reg)
1582 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1583 if (i+32 == ret_reg)
1584 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1585 if (i+32 == fp_reg)
1586 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1587 }
1588
1589 /* For the previous argument registers we require the previous bof.
1590 If we can't find the previous cfm, then we can do nothing. */
1591 cfm = 0;
1592 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1593 {
1594 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8);
1595 }
1596 else if (cfm_reg != 0)
1597 {
1598 get_frame_register (this_frame, cfm_reg, buf);
1599 cfm = extract_unsigned_integer (buf, 8);
1600 }
1601 cache->prev_cfm = cfm;
1602
1603 if (cfm != 0)
1604 {
1605 sor = ((cfm >> 14) & 0xf) * 8;
1606 sof = (cfm & 0x7f);
1607 sol = (cfm >> 7) & 0x7f;
1608 rrb_gr = (cfm >> 18) & 0x7f;
1609
1610 /* The previous bof only requires subtraction of the sol (size of
1611 locals) due to the overlap between output and input of
1612 subsequent frames. */
1613 bof = rse_address_add (bof, -sol);
1614
1615 for (i = 0, addr = bof;
1616 i < sof;
1617 i++, addr += 8)
1618 {
1619 if (IS_NaT_COLLECTION_ADDR (addr))
1620 {
1621 addr += 8;
1622 }
1623 if (i < sor)
1624 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1625 = addr;
1626 else
1627 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1628 }
1629
1630 }
1631 }
1632
1633 /* Try and trust the lim_pc value whenever possible. */
1634 if (trust_limit && lim_pc >= last_prologue_pc)
1635 last_prologue_pc = lim_pc;
1636
1637 cache->frameless = frameless;
1638 cache->after_prologue = last_prologue_pc;
1639 cache->mem_stack_frame_size = mem_stack_frame_size;
1640 cache->fp_reg = fp_reg;
1641
1642 return last_prologue_pc;
1643 }
1644
1645 CORE_ADDR
1646 ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1647 {
1648 struct ia64_frame_cache cache;
1649 cache.base = 0;
1650 cache.after_prologue = 0;
1651 cache.cfm = 0;
1652 cache.bsp = 0;
1653
1654 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1655 return examine_prologue (pc, pc+1024, 0, &cache);
1656 }
1657
1658
1659 /* Normal frames. */
1660
1661 static struct ia64_frame_cache *
1662 ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
1663 {
1664 struct ia64_frame_cache *cache;
1665 char buf[8];
1666 CORE_ADDR cfm, sof, sol, bsp, psr;
1667 int i;
1668
1669 if (*this_cache)
1670 return *this_cache;
1671
1672 cache = ia64_alloc_frame_cache ();
1673 *this_cache = cache;
1674
1675 get_frame_register (this_frame, sp_regnum, buf);
1676 cache->saved_sp = extract_unsigned_integer (buf, 8);
1677
1678 /* We always want the bsp to point to the end of frame.
1679 This way, we can always get the beginning of frame (bof)
1680 by subtracting frame size. */
1681 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1682 cache->bsp = extract_unsigned_integer (buf, 8);
1683
1684 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1685 psr = extract_unsigned_integer (buf, 8);
1686
1687 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
1688 cfm = extract_unsigned_integer (buf, 8);
1689
1690 cache->sof = (cfm & 0x7f);
1691 cache->sol = (cfm >> 7) & 0x7f;
1692 cache->sor = ((cfm >> 14) & 0xf) * 8;
1693
1694 cache->cfm = cfm;
1695
1696 cache->pc = get_frame_func (this_frame);
1697
1698 if (cache->pc != 0)
1699 examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
1700
1701 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1702
1703 return cache;
1704 }
1705
1706 static void
1707 ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1708 struct frame_id *this_id)
1709 {
1710 struct ia64_frame_cache *cache =
1711 ia64_frame_cache (this_frame, this_cache);
1712
1713 /* If outermost frame, mark with null frame id. */
1714 if (cache->base == 0)
1715 (*this_id) = null_frame_id;
1716 else
1717 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
1718 if (gdbarch_debug >= 1)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "regular frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n",
1721 paddr_nz (this_id->code_addr),
1722 paddr_nz (this_id->stack_addr),
1723 paddr_nz (cache->bsp),
1724 host_address_to_string (this_frame));
1725 }
1726
1727 static struct value *
1728 ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1729 int regnum)
1730 {
1731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1732 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
1733 char buf[8];
1734
1735 gdb_assert (regnum >= 0);
1736
1737 if (!target_has_registers)
1738 error (_("No registers."));
1739
1740 if (regnum == gdbarch_sp_regnum (gdbarch))
1741 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1742
1743 else if (regnum == IA64_BSP_REGNUM)
1744 {
1745 struct value *val;
1746 CORE_ADDR prev_cfm, bsp, prev_bsp;
1747
1748 /* We want to calculate the previous bsp as the end of the previous
1749 register stack frame. This corresponds to what the hardware bsp
1750 register will be if we pop the frame back which is why we might
1751 have been called. We know the beginning of the current frame is
1752 cache->bsp - cache->sof. This value in the previous frame points
1753 to the start of the output registers. We can calculate the end of
1754 that frame by adding the size of output:
1755 (sof (size of frame) - sol (size of locals)). */
1756 val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
1757 prev_cfm = extract_unsigned_integer (value_contents_all (val), 8);
1758 bsp = rse_address_add (cache->bsp, -(cache->sof));
1759 prev_bsp =
1760 rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1761
1762 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
1763 }
1764
1765 else if (regnum == IA64_CFM_REGNUM)
1766 {
1767 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1768
1769 if (addr != 0)
1770 return frame_unwind_got_memory (this_frame, regnum, addr);
1771
1772 if (cache->prev_cfm)
1773 return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
1774
1775 if (cache->frameless)
1776 return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
1777 IA64_PFS_REGNUM);
1778 return frame_unwind_got_register (this_frame, regnum, 0);
1779 }
1780
1781 else if (regnum == IA64_VFP_REGNUM)
1782 {
1783 /* If the function in question uses an automatic register (r32-r127)
1784 for the frame pointer, it'll be found by ia64_find_saved_register()
1785 above. If the function lacks one of these frame pointers, we can
1786 still provide a value since we know the size of the frame. */
1787 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1788 }
1789
1790 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1791 {
1792 struct value *pr_val;
1793 ULONGEST prN;
1794
1795 pr_val = ia64_frame_prev_register (this_frame, this_cache,
1796 IA64_PR_REGNUM);
1797 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1798 {
1799 /* Fetch predicate register rename base from current frame
1800 marker for this frame. */
1801 int rrb_pr = (cache->cfm >> 32) & 0x3f;
1802
1803 /* Adjust the register number to account for register rotation. */
1804 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1805 }
1806 prN = extract_bit_field (value_contents_all (pr_val),
1807 regnum - VP0_REGNUM, 1);
1808 return frame_unwind_got_constant (this_frame, regnum, prN);
1809 }
1810
1811 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1812 {
1813 struct value *unat_val;
1814 ULONGEST unatN;
1815 unat_val = ia64_frame_prev_register (this_frame, this_cache,
1816 IA64_UNAT_REGNUM);
1817 unatN = extract_bit_field (value_contents_all (unat_val),
1818 regnum - IA64_NAT0_REGNUM, 1);
1819 return frame_unwind_got_constant (this_frame, regnum, unatN);
1820 }
1821
1822 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1823 {
1824 int natval = 0;
1825 /* Find address of general register corresponding to nat bit we're
1826 interested in. */
1827 CORE_ADDR gr_addr;
1828
1829 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
1830
1831 if (gr_addr != 0)
1832 {
1833 /* Compute address of nat collection bits. */
1834 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1835 CORE_ADDR bsp;
1836 CORE_ADDR nat_collection;
1837 int nat_bit;
1838
1839 /* If our nat collection address is bigger than bsp, we have to get
1840 the nat collection from rnat. Otherwise, we fetch the nat
1841 collection from the computed address. */
1842 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1843 bsp = extract_unsigned_integer (buf, 8);
1844 if (nat_addr >= bsp)
1845 {
1846 get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
1847 nat_collection = extract_unsigned_integer (buf, 8);
1848 }
1849 else
1850 nat_collection = read_memory_integer (nat_addr, 8);
1851 nat_bit = (gr_addr >> 3) & 0x3f;
1852 natval = (nat_collection >> nat_bit) & 1;
1853 }
1854
1855 return frame_unwind_got_constant (this_frame, regnum, natval);
1856 }
1857
1858 else if (regnum == IA64_IP_REGNUM)
1859 {
1860 CORE_ADDR pc = 0;
1861 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1862
1863 if (addr != 0)
1864 {
1865 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1866 pc = extract_unsigned_integer (buf, 8);
1867 }
1868 else if (cache->frameless)
1869 {
1870 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
1871 pc = extract_unsigned_integer (buf, 8);
1872 }
1873 pc &= ~0xf;
1874 return frame_unwind_got_constant (this_frame, regnum, pc);
1875 }
1876
1877 else if (regnum == IA64_PSR_REGNUM)
1878 {
1879 /* We don't know how to get the complete previous PSR, but we need it
1880 for the slot information when we unwind the pc (pc is formed of IP
1881 register plus slot information from PSR). To get the previous
1882 slot information, we mask it off the return address. */
1883 ULONGEST slot_num = 0;
1884 CORE_ADDR pc = 0;
1885 CORE_ADDR psr = 0;
1886 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1887
1888 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1889 psr = extract_unsigned_integer (buf, 8);
1890
1891 if (addr != 0)
1892 {
1893 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1894 pc = extract_unsigned_integer (buf, 8);
1895 }
1896 else if (cache->frameless)
1897 {
1898 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
1899 pc = extract_unsigned_integer (buf, 8);
1900 }
1901 psr &= ~(3LL << 41);
1902 slot_num = pc & 0x3LL;
1903 psr |= (CORE_ADDR)slot_num << 41;
1904 return frame_unwind_got_constant (this_frame, regnum, psr);
1905 }
1906
1907 else if (regnum == IA64_BR0_REGNUM)
1908 {
1909 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
1910
1911 if (addr != 0)
1912 return frame_unwind_got_memory (this_frame, regnum, addr);
1913
1914 return frame_unwind_got_constant (this_frame, regnum, 0);
1915 }
1916
1917 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
1918 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
1919 {
1920 CORE_ADDR addr = 0;
1921
1922 if (regnum >= V32_REGNUM)
1923 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1924 addr = cache->saved_regs[regnum];
1925 if (addr != 0)
1926 return frame_unwind_got_memory (this_frame, regnum, addr);
1927
1928 if (cache->frameless)
1929 {
1930 struct value *reg_val;
1931 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
1932
1933 /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
1934 with the same code above? */
1935 if (regnum >= V32_REGNUM)
1936 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1937 reg_val = ia64_frame_prev_register (this_frame, this_cache,
1938 IA64_CFM_REGNUM);
1939 prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
1940 8);
1941 reg_val = ia64_frame_prev_register (this_frame, this_cache,
1942 IA64_BSP_REGNUM);
1943 prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
1944 8);
1945 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
1946
1947 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
1948 return frame_unwind_got_memory (this_frame, regnum, addr);
1949 }
1950
1951 return frame_unwind_got_constant (this_frame, regnum, 0);
1952 }
1953
1954 else /* All other registers. */
1955 {
1956 CORE_ADDR addr = 0;
1957
1958 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
1959 {
1960 /* Fetch floating point register rename base from current
1961 frame marker for this frame. */
1962 int rrb_fr = (cache->cfm >> 25) & 0x7f;
1963
1964 /* Adjust the floating point register number to account for
1965 register rotation. */
1966 regnum = IA64_FR32_REGNUM
1967 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
1968 }
1969
1970 /* If we have stored a memory address, access the register. */
1971 addr = cache->saved_regs[regnum];
1972 if (addr != 0)
1973 return frame_unwind_got_memory (this_frame, regnum, addr);
1974 /* Otherwise, punt and get the current value of the register. */
1975 else
1976 return frame_unwind_got_register (this_frame, regnum, regnum);
1977 }
1978 }
1979
1980 static const struct frame_unwind ia64_frame_unwind =
1981 {
1982 NORMAL_FRAME,
1983 &ia64_frame_this_id,
1984 &ia64_frame_prev_register,
1985 NULL,
1986 default_frame_sniffer
1987 };
1988
1989 /* Signal trampolines. */
1990
1991 static void
1992 ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
1993 struct ia64_frame_cache *cache)
1994 {
1995 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1996
1997 if (tdep->sigcontext_register_address)
1998 {
1999 int regno;
2000
2001 cache->saved_regs[IA64_VRAP_REGNUM] =
2002 tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM);
2003 cache->saved_regs[IA64_CFM_REGNUM] =
2004 tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM);
2005 cache->saved_regs[IA64_PSR_REGNUM] =
2006 tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM);
2007 cache->saved_regs[IA64_BSP_REGNUM] =
2008 tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM);
2009 cache->saved_regs[IA64_RNAT_REGNUM] =
2010 tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM);
2011 cache->saved_regs[IA64_CCV_REGNUM] =
2012 tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM);
2013 cache->saved_regs[IA64_UNAT_REGNUM] =
2014 tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM);
2015 cache->saved_regs[IA64_FPSR_REGNUM] =
2016 tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM);
2017 cache->saved_regs[IA64_PFS_REGNUM] =
2018 tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM);
2019 cache->saved_regs[IA64_LC_REGNUM] =
2020 tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM);
2021 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
2022 cache->saved_regs[regno] =
2023 tdep->sigcontext_register_address (cache->base, regno);
2024 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
2025 cache->saved_regs[regno] =
2026 tdep->sigcontext_register_address (cache->base, regno);
2027 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
2028 cache->saved_regs[regno] =
2029 tdep->sigcontext_register_address (cache->base, regno);
2030 }
2031 }
2032
2033 static struct ia64_frame_cache *
2034 ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2035 {
2036 struct ia64_frame_cache *cache;
2037 CORE_ADDR addr;
2038 char buf[8];
2039 int i;
2040
2041 if (*this_cache)
2042 return *this_cache;
2043
2044 cache = ia64_alloc_frame_cache ();
2045
2046 get_frame_register (this_frame, sp_regnum, buf);
2047 /* Note that frame size is hard-coded below. We cannot calculate it
2048 via prologue examination. */
2049 cache->base = extract_unsigned_integer (buf, 8) + 16;
2050
2051 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2052 cache->bsp = extract_unsigned_integer (buf, 8);
2053
2054 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2055 cache->cfm = extract_unsigned_integer (buf, 8);
2056 cache->sof = cache->cfm & 0x7f;
2057
2058 ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
2059
2060 *this_cache = cache;
2061 return cache;
2062 }
2063
2064 static void
2065 ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
2066 void **this_cache, struct frame_id *this_id)
2067 {
2068 struct ia64_frame_cache *cache =
2069 ia64_sigtramp_frame_cache (this_frame, this_cache);
2070
2071 (*this_id) = frame_id_build_special (cache->base,
2072 get_frame_pc (this_frame),
2073 cache->bsp);
2074 if (gdbarch_debug >= 1)
2075 fprintf_unfiltered (gdb_stdlog,
2076 "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n",
2077 paddr_nz (this_id->code_addr),
2078 paddr_nz (this_id->stack_addr),
2079 paddr_nz (cache->bsp),
2080 host_address_to_string (this_frame));
2081 }
2082
2083 static struct value *
2084 ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2085 void **this_cache, int regnum)
2086 {
2087 char buf[MAX_REGISTER_SIZE];
2088
2089 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2090 struct ia64_frame_cache *cache =
2091 ia64_sigtramp_frame_cache (this_frame, this_cache);
2092
2093 gdb_assert (regnum >= 0);
2094
2095 if (!target_has_registers)
2096 error (_("No registers."));
2097
2098 if (regnum == IA64_IP_REGNUM)
2099 {
2100 CORE_ADDR pc = 0;
2101 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2102
2103 if (addr != 0)
2104 {
2105 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2106 pc = extract_unsigned_integer (buf, 8);
2107 }
2108 pc &= ~0xf;
2109 return frame_unwind_got_constant (this_frame, regnum, pc);
2110 }
2111
2112 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2113 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2114 {
2115 CORE_ADDR addr = 0;
2116
2117 if (regnum >= V32_REGNUM)
2118 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2119 addr = cache->saved_regs[regnum];
2120 if (addr != 0)
2121 return frame_unwind_got_memory (this_frame, regnum, addr);
2122
2123 return frame_unwind_got_constant (this_frame, regnum, 0);
2124 }
2125
2126 else /* All other registers not listed above. */
2127 {
2128 CORE_ADDR addr = cache->saved_regs[regnum];
2129
2130 if (addr != 0)
2131 return frame_unwind_got_memory (this_frame, regnum, addr);
2132
2133 return frame_unwind_got_constant (this_frame, regnum, 0);
2134 }
2135 }
2136
2137 static int
2138 ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2139 struct frame_info *this_frame,
2140 void **this_cache)
2141 {
2142 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2143 if (tdep->pc_in_sigtramp)
2144 {
2145 CORE_ADDR pc = get_frame_pc (this_frame);
2146
2147 if (tdep->pc_in_sigtramp (pc))
2148 return 1;
2149 }
2150
2151 return 0;
2152 }
2153
2154 static const struct frame_unwind ia64_sigtramp_frame_unwind =
2155 {
2156 SIGTRAMP_FRAME,
2157 ia64_sigtramp_frame_this_id,
2158 ia64_sigtramp_frame_prev_register,
2159 NULL,
2160 ia64_sigtramp_frame_sniffer
2161 };
2162
2163 \f
2164
2165 static CORE_ADDR
2166 ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2167 {
2168 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
2169
2170 return cache->base;
2171 }
2172
2173 static const struct frame_base ia64_frame_base =
2174 {
2175 &ia64_frame_unwind,
2176 ia64_frame_base_address,
2177 ia64_frame_base_address,
2178 ia64_frame_base_address
2179 };
2180
2181 #ifdef HAVE_LIBUNWIND_IA64_H
2182
2183 struct ia64_unwind_table_entry
2184 {
2185 unw_word_t start_offset;
2186 unw_word_t end_offset;
2187 unw_word_t info_offset;
2188 };
2189
2190 static __inline__ uint64_t
2191 ia64_rse_slot_num (uint64_t addr)
2192 {
2193 return (addr >> 3) & 0x3f;
2194 }
2195
2196 /* Skip over a designated number of registers in the backing
2197 store, remembering every 64th position is for NAT. */
2198 static __inline__ uint64_t
2199 ia64_rse_skip_regs (uint64_t addr, long num_regs)
2200 {
2201 long delta = ia64_rse_slot_num(addr) + num_regs;
2202
2203 if (num_regs < 0)
2204 delta -= 0x3e;
2205 return addr + ((num_regs + delta/0x3f) << 3);
2206 }
2207
2208 /* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2209 number to a libunwind register number. */
2210 static int
2211 ia64_gdb2uw_regnum (int regnum)
2212 {
2213 if (regnum == sp_regnum)
2214 return UNW_IA64_SP;
2215 else if (regnum == IA64_BSP_REGNUM)
2216 return UNW_IA64_BSP;
2217 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2218 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2219 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2220 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2221 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2222 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2223 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2224 return -1;
2225 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2226 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2227 else if (regnum == IA64_PR_REGNUM)
2228 return UNW_IA64_PR;
2229 else if (regnum == IA64_IP_REGNUM)
2230 return UNW_REG_IP;
2231 else if (regnum == IA64_CFM_REGNUM)
2232 return UNW_IA64_CFM;
2233 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2234 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2235 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2236 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2237 else
2238 return -1;
2239 }
2240
2241 /* Gdb libunwind-frame callback function to convert from a libunwind register
2242 number to a ia64 gdb register number. */
2243 static int
2244 ia64_uw2gdb_regnum (int uw_regnum)
2245 {
2246 if (uw_regnum == UNW_IA64_SP)
2247 return sp_regnum;
2248 else if (uw_regnum == UNW_IA64_BSP)
2249 return IA64_BSP_REGNUM;
2250 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2251 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2252 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2253 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2254 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2255 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2256 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2257 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2258 else if (uw_regnum == UNW_IA64_PR)
2259 return IA64_PR_REGNUM;
2260 else if (uw_regnum == UNW_REG_IP)
2261 return IA64_IP_REGNUM;
2262 else if (uw_regnum == UNW_IA64_CFM)
2263 return IA64_CFM_REGNUM;
2264 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2265 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2266 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2267 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2268 else
2269 return -1;
2270 }
2271
2272 /* Gdb libunwind-frame callback function to reveal if register is a float
2273 register or not. */
2274 static int
2275 ia64_is_fpreg (int uw_regnum)
2276 {
2277 return unw_is_fpreg (uw_regnum);
2278 }
2279
2280 /* Libunwind callback accessor function for general registers. */
2281 static int
2282 ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2283 int write, void *arg)
2284 {
2285 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2286 unw_word_t bsp, sof, sol, cfm, psr, ip;
2287 struct frame_info *this_frame = arg;
2288 long new_sof, old_sof;
2289 char buf[MAX_REGISTER_SIZE];
2290
2291 /* We never call any libunwind routines that need to write registers. */
2292 gdb_assert (!write);
2293
2294 switch (uw_regnum)
2295 {
2296 case UNW_REG_IP:
2297 /* Libunwind expects to see the pc value which means the slot number
2298 from the psr must be merged with the ip word address. */
2299 get_frame_register (this_frame, IA64_IP_REGNUM, buf);
2300 ip = extract_unsigned_integer (buf, 8);
2301 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
2302 psr = extract_unsigned_integer (buf, 8);
2303 *val = ip | ((psr >> 41) & 0x3);
2304 break;
2305
2306 case UNW_IA64_AR_BSP:
2307 /* Libunwind expects to see the beginning of the current register
2308 frame so we must account for the fact that ptrace() will return a value
2309 for bsp that points *after* the current register frame. */
2310 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2311 bsp = extract_unsigned_integer (buf, 8);
2312 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2313 cfm = extract_unsigned_integer (buf, 8);
2314 sof = (cfm & 0x7f);
2315 *val = ia64_rse_skip_regs (bsp, -sof);
2316 break;
2317
2318 case UNW_IA64_AR_BSPSTORE:
2319 /* Libunwind wants bspstore to be after the current register frame.
2320 This is what ptrace() and gdb treats as the regular bsp value. */
2321 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2322 *val = extract_unsigned_integer (buf, 8);
2323 break;
2324
2325 default:
2326 /* For all other registers, just unwind the value directly. */
2327 get_frame_register (this_frame, regnum, buf);
2328 *val = extract_unsigned_integer (buf, 8);
2329 break;
2330 }
2331
2332 if (gdbarch_debug >= 1)
2333 fprintf_unfiltered (gdb_stdlog,
2334 " access_reg: from cache: %4s=0x%s\n",
2335 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2336 ? ia64_register_names[regnum] : "r??"),
2337 paddr_nz (*val));
2338 return 0;
2339 }
2340
2341 /* Libunwind callback accessor function for floating-point registers. */
2342 static int
2343 ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2344 int write, void *arg)
2345 {
2346 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2347 struct frame_info *this_frame = arg;
2348
2349 /* We never call any libunwind routines that need to write registers. */
2350 gdb_assert (!write);
2351
2352 get_frame_register (this_frame, regnum, (char *) val);
2353
2354 return 0;
2355 }
2356
2357 /* Libunwind callback accessor function for top-level rse registers. */
2358 static int
2359 ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2360 int write, void *arg)
2361 {
2362 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2363 unw_word_t bsp, sof, sol, cfm, psr, ip;
2364 struct regcache *regcache = arg;
2365 long new_sof, old_sof;
2366 char buf[MAX_REGISTER_SIZE];
2367
2368 /* We never call any libunwind routines that need to write registers. */
2369 gdb_assert (!write);
2370
2371 switch (uw_regnum)
2372 {
2373 case UNW_REG_IP:
2374 /* Libunwind expects to see the pc value which means the slot number
2375 from the psr must be merged with the ip word address. */
2376 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2377 ip = extract_unsigned_integer (buf, 8);
2378 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2379 psr = extract_unsigned_integer (buf, 8);
2380 *val = ip | ((psr >> 41) & 0x3);
2381 break;
2382
2383 case UNW_IA64_AR_BSP:
2384 /* Libunwind expects to see the beginning of the current register
2385 frame so we must account for the fact that ptrace() will return a value
2386 for bsp that points *after* the current register frame. */
2387 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2388 bsp = extract_unsigned_integer (buf, 8);
2389 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2390 cfm = extract_unsigned_integer (buf, 8);
2391 sof = (cfm & 0x7f);
2392 *val = ia64_rse_skip_regs (bsp, -sof);
2393 break;
2394
2395 case UNW_IA64_AR_BSPSTORE:
2396 /* Libunwind wants bspstore to be after the current register frame.
2397 This is what ptrace() and gdb treats as the regular bsp value. */
2398 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2399 *val = extract_unsigned_integer (buf, 8);
2400 break;
2401
2402 default:
2403 /* For all other registers, just unwind the value directly. */
2404 regcache_cooked_read (regcache, regnum, buf);
2405 *val = extract_unsigned_integer (buf, 8);
2406 break;
2407 }
2408
2409 if (gdbarch_debug >= 1)
2410 fprintf_unfiltered (gdb_stdlog,
2411 " access_rse_reg: from cache: %4s=0x%s\n",
2412 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2413 ? ia64_register_names[regnum] : "r??"),
2414 paddr_nz (*val));
2415
2416 return 0;
2417 }
2418
2419 /* Libunwind callback accessor function for top-level fp registers. */
2420 static int
2421 ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2422 unw_fpreg_t *val, int write, void *arg)
2423 {
2424 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2425 struct regcache *regcache = arg;
2426
2427 /* We never call any libunwind routines that need to write registers. */
2428 gdb_assert (!write);
2429
2430 regcache_cooked_read (regcache, regnum, (char *) val);
2431
2432 return 0;
2433 }
2434
2435 /* Libunwind callback accessor function for accessing memory. */
2436 static int
2437 ia64_access_mem (unw_addr_space_t as,
2438 unw_word_t addr, unw_word_t *val,
2439 int write, void *arg)
2440 {
2441 if (addr - KERNEL_START < ktab_size)
2442 {
2443 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2444 + (addr - KERNEL_START));
2445
2446 if (write)
2447 *laddr = *val;
2448 else
2449 *val = *laddr;
2450 return 0;
2451 }
2452
2453 /* XXX do we need to normalize byte-order here? */
2454 if (write)
2455 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2456 else
2457 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2458 }
2459
2460 /* Call low-level function to access the kernel unwind table. */
2461 static LONGEST
2462 getunwind_table (gdb_byte **buf_p)
2463 {
2464 LONGEST x;
2465
2466 /* FIXME drow/2005-09-10: This code used to call
2467 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2468 for the currently running ia64-linux kernel. That data should
2469 come from the core file and be accessed via the auxv vector; if
2470 we want to preserve fall back to the running kernel's table, then
2471 we should find a way to override the corefile layer's
2472 xfer_partial method. */
2473
2474 x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
2475 NULL, buf_p);
2476
2477 return x;
2478 }
2479
2480 /* Get the kernel unwind table. */
2481 static int
2482 get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2483 {
2484 static struct ia64_table_entry *etab;
2485
2486 if (!ktab)
2487 {
2488 gdb_byte *ktab_buf;
2489 LONGEST size;
2490
2491 size = getunwind_table (&ktab_buf);
2492 if (size <= 0)
2493 return -UNW_ENOINFO;
2494
2495 ktab = (struct ia64_table_entry *) ktab_buf;
2496 ktab_size = size;
2497
2498 for (etab = ktab; etab->start_offset; ++etab)
2499 etab->info_offset += KERNEL_START;
2500 }
2501
2502 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2503 return -UNW_ENOINFO;
2504
2505 di->format = UNW_INFO_FORMAT_TABLE;
2506 di->gp = 0;
2507 di->start_ip = ktab[0].start_offset;
2508 di->end_ip = etab[-1].end_offset;
2509 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2510 di->u.ti.segbase = 0;
2511 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2512 di->u.ti.table_data = (unw_word_t *) ktab;
2513
2514 if (gdbarch_debug >= 1)
2515 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
2516 "segbase=0x%s, length=%s, gp=0x%s\n",
2517 (char *) di->u.ti.name_ptr,
2518 paddr_nz (di->u.ti.segbase),
2519 pulongest (di->u.ti.table_len),
2520 paddr_nz (di->gp));
2521 return 0;
2522 }
2523
2524 /* Find the unwind table entry for a specified address. */
2525 static int
2526 ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2527 unw_dyn_info_t *dip, void **buf)
2528 {
2529 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2530 Elf_Internal_Ehdr *ehdr;
2531 unw_word_t segbase = 0;
2532 CORE_ADDR load_base;
2533 bfd *bfd;
2534 int i;
2535
2536 bfd = objfile->obfd;
2537
2538 ehdr = elf_tdata (bfd)->elf_header;
2539 phdr = elf_tdata (bfd)->phdr;
2540
2541 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2542
2543 for (i = 0; i < ehdr->e_phnum; ++i)
2544 {
2545 switch (phdr[i].p_type)
2546 {
2547 case PT_LOAD:
2548 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2549 < phdr[i].p_memsz)
2550 p_text = phdr + i;
2551 break;
2552
2553 case PT_IA_64_UNWIND:
2554 p_unwind = phdr + i;
2555 break;
2556
2557 default:
2558 break;
2559 }
2560 }
2561
2562 if (!p_text || !p_unwind)
2563 return -UNW_ENOINFO;
2564
2565 /* Verify that the segment that contains the IP also contains
2566 the static unwind table. If not, we may be in the Linux kernel's
2567 DSO gate page in which case the unwind table is another segment.
2568 Otherwise, we are dealing with runtime-generated code, for which we
2569 have no info here. */
2570 segbase = p_text->p_vaddr + load_base;
2571
2572 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2573 {
2574 int ok = 0;
2575 for (i = 0; i < ehdr->e_phnum; ++i)
2576 {
2577 if (phdr[i].p_type == PT_LOAD
2578 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2579 {
2580 ok = 1;
2581 /* Get the segbase from the section containing the
2582 libunwind table. */
2583 segbase = phdr[i].p_vaddr + load_base;
2584 }
2585 }
2586 if (!ok)
2587 return -UNW_ENOINFO;
2588 }
2589
2590 dip->start_ip = p_text->p_vaddr + load_base;
2591 dip->end_ip = dip->start_ip + p_text->p_memsz;
2592 dip->gp = ia64_find_global_pointer (ip);
2593 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2594 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2595 dip->u.rti.segbase = segbase;
2596 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2597 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
2598
2599 return 0;
2600 }
2601
2602 /* Libunwind callback accessor function to acquire procedure unwind-info. */
2603 static int
2604 ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2605 int need_unwind_info, void *arg)
2606 {
2607 struct obj_section *sec = find_pc_section (ip);
2608 unw_dyn_info_t di;
2609 int ret;
2610 void *buf = NULL;
2611
2612 if (!sec)
2613 {
2614 /* XXX This only works if the host and the target architecture are
2615 both ia64 and if the have (more or less) the same kernel
2616 version. */
2617 if (get_kernel_table (ip, &di) < 0)
2618 return -UNW_ENOINFO;
2619
2620 if (gdbarch_debug >= 1)
2621 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2622 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2623 "length=%s,data=0x%s)\n",
2624 paddr_nz (ip), (char *)di.u.ti.name_ptr,
2625 paddr_nz (di.u.ti.segbase),
2626 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2627 paddr_nz (di.gp),
2628 pulongest (di.u.ti.table_len),
2629 paddr_nz ((CORE_ADDR)di.u.ti.table_data));
2630 }
2631 else
2632 {
2633 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2634 if (ret < 0)
2635 return ret;
2636
2637 if (gdbarch_debug >= 1)
2638 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2639 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2640 "length=%s,data=0x%s)\n",
2641 paddr_nz (ip), (char *)di.u.rti.name_ptr,
2642 paddr_nz (di.u.rti.segbase),
2643 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2644 paddr_nz (di.gp),
2645 pulongest (di.u.rti.table_len),
2646 paddr_nz (di.u.rti.table_data));
2647 }
2648
2649 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2650 arg);
2651
2652 /* We no longer need the dyn info storage so free it. */
2653 xfree (buf);
2654
2655 return ret;
2656 }
2657
2658 /* Libunwind callback accessor function for cleanup. */
2659 static void
2660 ia64_put_unwind_info (unw_addr_space_t as,
2661 unw_proc_info_t *pip, void *arg)
2662 {
2663 /* Nothing required for now. */
2664 }
2665
2666 /* Libunwind callback accessor function to get head of the dynamic
2667 unwind-info registration list. */
2668 static int
2669 ia64_get_dyn_info_list (unw_addr_space_t as,
2670 unw_word_t *dilap, void *arg)
2671 {
2672 struct obj_section *text_sec;
2673 struct objfile *objfile;
2674 unw_word_t ip, addr;
2675 unw_dyn_info_t di;
2676 int ret;
2677
2678 if (!libunwind_is_initialized ())
2679 return -UNW_ENOINFO;
2680
2681 for (objfile = object_files; objfile; objfile = objfile->next)
2682 {
2683 void *buf = NULL;
2684
2685 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2686 ip = obj_section_addr (text_sec);
2687 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2688 if (ret >= 0)
2689 {
2690 addr = libunwind_find_dyn_list (as, &di, arg);
2691 /* We no longer need the dyn info storage so free it. */
2692 xfree (buf);
2693
2694 if (addr)
2695 {
2696 if (gdbarch_debug >= 1)
2697 fprintf_unfiltered (gdb_stdlog,
2698 "dynamic unwind table in objfile %s "
2699 "at 0x%s (gp=0x%s)\n",
2700 bfd_get_filename (objfile->obfd),
2701 paddr_nz (addr), paddr_nz (di.gp));
2702 *dilap = addr;
2703 return 0;
2704 }
2705 }
2706 }
2707 return -UNW_ENOINFO;
2708 }
2709
2710
2711 /* Frame interface functions for libunwind. */
2712
2713 static void
2714 ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
2715 struct frame_id *this_id)
2716 {
2717 struct frame_id id;
2718 char buf[8];
2719 CORE_ADDR bsp;
2720
2721
2722 libunwind_frame_this_id (this_frame, this_cache, &id);
2723 if (frame_id_eq (id, null_frame_id))
2724 {
2725 (*this_id) = null_frame_id;
2726 return;
2727 }
2728
2729 /* We must add the bsp as the special address for frame comparison
2730 purposes. */
2731 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2732 bsp = extract_unsigned_integer (buf, 8);
2733
2734 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2735
2736 if (gdbarch_debug >= 1)
2737 fprintf_unfiltered (gdb_stdlog,
2738 "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n",
2739 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2740 paddr_nz (bsp),
2741 host_address_to_string (this_frame));
2742 }
2743
2744 static struct value *
2745 ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
2746 void **this_cache, int regnum)
2747 {
2748 int reg = regnum;
2749 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2750 struct value *val;
2751
2752 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2753 reg = IA64_PR_REGNUM;
2754 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2755 reg = IA64_UNAT_REGNUM;
2756
2757 /* Let libunwind do most of the work. */
2758 val = libunwind_frame_prev_register (this_frame, this_cache, reg);
2759
2760 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2761 {
2762 ULONGEST prN_val;
2763
2764 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2765 {
2766 int rrb_pr = 0;
2767 ULONGEST cfm;
2768 unsigned char buf[MAX_REGISTER_SIZE];
2769
2770 /* Fetch predicate register rename base from current frame
2771 marker for this frame. */
2772 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2773 cfm = extract_unsigned_integer (buf, 8);
2774 rrb_pr = (cfm >> 32) & 0x3f;
2775
2776 /* Adjust the register number to account for register rotation. */
2777 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2778 }
2779 prN_val = extract_bit_field (value_contents_all (val),
2780 regnum - VP0_REGNUM, 1);
2781 return frame_unwind_got_constant (this_frame, regnum, prN_val);
2782 }
2783
2784 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2785 {
2786 ULONGEST unatN_val;
2787
2788 unatN_val = extract_bit_field (value_contents_all (val),
2789 regnum - IA64_NAT0_REGNUM, 1);
2790 return frame_unwind_got_constant (this_frame, regnum, unatN_val);
2791 }
2792
2793 else if (regnum == IA64_BSP_REGNUM)
2794 {
2795 struct value *cfm_val;
2796 CORE_ADDR prev_bsp, prev_cfm;
2797
2798 /* We want to calculate the previous bsp as the end of the previous
2799 register stack frame. This corresponds to what the hardware bsp
2800 register will be if we pop the frame back which is why we might
2801 have been called. We know that libunwind will pass us back the
2802 beginning of the current frame so we should just add sof to it. */
2803 prev_bsp = extract_unsigned_integer (value_contents_all (val), 8);
2804 cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
2805 IA64_CFM_REGNUM);
2806 prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val), 8);
2807 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2808
2809 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
2810 }
2811 else
2812 return val;
2813 }
2814
2815 static int
2816 ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
2817 struct frame_info *this_frame,
2818 void **this_cache)
2819 {
2820 if (libunwind_is_initialized ()
2821 && libunwind_frame_sniffer (self, this_frame, this_cache))
2822 return 1;
2823
2824 return 0;
2825 }
2826
2827 static const struct frame_unwind ia64_libunwind_frame_unwind =
2828 {
2829 NORMAL_FRAME,
2830 ia64_libunwind_frame_this_id,
2831 ia64_libunwind_frame_prev_register,
2832 NULL,
2833 ia64_libunwind_frame_sniffer,
2834 libunwind_frame_dealloc_cache
2835 };
2836
2837 static void
2838 ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
2839 void **this_cache,
2840 struct frame_id *this_id)
2841 {
2842 char buf[8];
2843 CORE_ADDR bsp;
2844 struct frame_id id;
2845 CORE_ADDR prev_ip;
2846
2847 libunwind_frame_this_id (this_frame, this_cache, &id);
2848 if (frame_id_eq (id, null_frame_id))
2849 {
2850 (*this_id) = null_frame_id;
2851 return;
2852 }
2853
2854 /* We must add the bsp as the special address for frame comparison
2855 purposes. */
2856 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2857 bsp = extract_unsigned_integer (buf, 8);
2858
2859 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2860 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2861
2862 if (gdbarch_debug >= 1)
2863 fprintf_unfiltered (gdb_stdlog,
2864 "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n",
2865 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2866 paddr_nz (bsp),
2867 host_address_to_string (this_frame));
2868 }
2869
2870 static struct value *
2871 ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
2872 void **this_cache, int regnum)
2873 {
2874 struct value *prev_ip_val;
2875 CORE_ADDR prev_ip;
2876
2877 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
2878 method of getting previous registers. */
2879 prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
2880 IA64_IP_REGNUM);
2881 prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val), 8);
2882
2883 if (prev_ip == 0)
2884 {
2885 void *tmp_cache = NULL;
2886 return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
2887 regnum);
2888 }
2889 else
2890 return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
2891 }
2892
2893 static int
2894 ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
2895 struct frame_info *this_frame,
2896 void **this_cache)
2897 {
2898 if (libunwind_is_initialized ())
2899 {
2900 if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
2901 return 1;
2902 return 0;
2903 }
2904 else
2905 return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
2906 }
2907
2908 static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
2909 {
2910 SIGTRAMP_FRAME,
2911 ia64_libunwind_sigtramp_frame_this_id,
2912 ia64_libunwind_sigtramp_frame_prev_register,
2913 NULL,
2914 ia64_libunwind_sigtramp_frame_sniffer
2915 };
2916
2917 /* Set of libunwind callback acccessor functions. */
2918 static unw_accessors_t ia64_unw_accessors =
2919 {
2920 ia64_find_proc_info_x,
2921 ia64_put_unwind_info,
2922 ia64_get_dyn_info_list,
2923 ia64_access_mem,
2924 ia64_access_reg,
2925 ia64_access_fpreg,
2926 /* resume */
2927 /* get_proc_name */
2928 };
2929
2930 /* Set of special libunwind callback acccessor functions specific for accessing
2931 the rse registers. At the top of the stack, we want libunwind to figure out
2932 how to read r32 - r127. Though usually they are found sequentially in memory
2933 starting from $bof, this is not always true. */
2934 static unw_accessors_t ia64_unw_rse_accessors =
2935 {
2936 ia64_find_proc_info_x,
2937 ia64_put_unwind_info,
2938 ia64_get_dyn_info_list,
2939 ia64_access_mem,
2940 ia64_access_rse_reg,
2941 ia64_access_rse_fpreg,
2942 /* resume */
2943 /* get_proc_name */
2944 };
2945
2946 /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
2947 static struct libunwind_descr ia64_libunwind_descr =
2948 {
2949 ia64_gdb2uw_regnum,
2950 ia64_uw2gdb_regnum,
2951 ia64_is_fpreg,
2952 &ia64_unw_accessors,
2953 &ia64_unw_rse_accessors,
2954 };
2955
2956 #endif /* HAVE_LIBUNWIND_IA64_H */
2957
2958 static int
2959 ia64_use_struct_convention (struct type *type)
2960 {
2961 struct type *float_elt_type;
2962
2963 /* Don't use the struct convention for anything but structure,
2964 union, or array types. */
2965 if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
2966 || TYPE_CODE (type) == TYPE_CODE_UNION
2967 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
2968 return 0;
2969
2970 /* HFAs are structures (or arrays) consisting entirely of floating
2971 point values of the same length. Up to 8 of these are returned
2972 in registers. Don't use the struct convention when this is the
2973 case. */
2974 float_elt_type = is_float_or_hfa_type (type);
2975 if (float_elt_type != NULL
2976 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
2977 return 0;
2978
2979 /* Other structs of length 32 or less are returned in r8-r11.
2980 Don't use the struct convention for those either. */
2981 return TYPE_LENGTH (type) > 32;
2982 }
2983
2984 static void
2985 ia64_extract_return_value (struct type *type, struct regcache *regcache,
2986 gdb_byte *valbuf)
2987 {
2988 struct type *float_elt_type;
2989
2990 float_elt_type = is_float_or_hfa_type (type);
2991 if (float_elt_type != NULL)
2992 {
2993 char from[MAX_REGISTER_SIZE];
2994 int offset = 0;
2995 int regnum = IA64_FR8_REGNUM;
2996 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
2997
2998 while (n-- > 0)
2999 {
3000 regcache_cooked_read (regcache, regnum, from);
3001 convert_typed_floating (from, builtin_type_ia64_ext,
3002 (char *)valbuf + offset, float_elt_type);
3003 offset += TYPE_LENGTH (float_elt_type);
3004 regnum++;
3005 }
3006 }
3007 else
3008 {
3009 ULONGEST val;
3010 int offset = 0;
3011 int regnum = IA64_GR8_REGNUM;
3012 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3013 IA64_GR8_REGNUM));
3014 int n = TYPE_LENGTH (type) / reglen;
3015 int m = TYPE_LENGTH (type) % reglen;
3016
3017 while (n-- > 0)
3018 {
3019 ULONGEST val;
3020 regcache_cooked_read_unsigned (regcache, regnum, &val);
3021 memcpy ((char *)valbuf + offset, &val, reglen);
3022 offset += reglen;
3023 regnum++;
3024 }
3025
3026 if (m)
3027 {
3028 regcache_cooked_read_unsigned (regcache, regnum, &val);
3029 memcpy ((char *)valbuf + offset, &val, m);
3030 }
3031 }
3032 }
3033
3034 static void
3035 ia64_store_return_value (struct type *type, struct regcache *regcache,
3036 const gdb_byte *valbuf)
3037 {
3038 struct type *float_elt_type;
3039
3040 float_elt_type = is_float_or_hfa_type (type);
3041 if (float_elt_type != NULL)
3042 {
3043 char to[MAX_REGISTER_SIZE];
3044 int offset = 0;
3045 int regnum = IA64_FR8_REGNUM;
3046 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3047
3048 while (n-- > 0)
3049 {
3050 convert_typed_floating ((char *)valbuf + offset, float_elt_type,
3051 to, builtin_type_ia64_ext);
3052 regcache_cooked_write (regcache, regnum, to);
3053 offset += TYPE_LENGTH (float_elt_type);
3054 regnum++;
3055 }
3056 }
3057 else
3058 {
3059 ULONGEST val;
3060 int offset = 0;
3061 int regnum = IA64_GR8_REGNUM;
3062 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3063 IA64_GR8_REGNUM));
3064 int n = TYPE_LENGTH (type) / reglen;
3065 int m = TYPE_LENGTH (type) % reglen;
3066
3067 while (n-- > 0)
3068 {
3069 ULONGEST val;
3070 memcpy (&val, (char *)valbuf + offset, reglen);
3071 regcache_cooked_write_unsigned (regcache, regnum, val);
3072 offset += reglen;
3073 regnum++;
3074 }
3075
3076 if (m)
3077 {
3078 memcpy (&val, (char *)valbuf + offset, m);
3079 regcache_cooked_write_unsigned (regcache, regnum, val);
3080 }
3081 }
3082 }
3083
3084 static enum return_value_convention
3085 ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3086 struct type *valtype, struct regcache *regcache,
3087 gdb_byte *readbuf, const gdb_byte *writebuf)
3088 {
3089 int struct_return = ia64_use_struct_convention (valtype);
3090
3091 if (writebuf != NULL)
3092 {
3093 gdb_assert (!struct_return);
3094 ia64_store_return_value (valtype, regcache, writebuf);
3095 }
3096
3097 if (readbuf != NULL)
3098 {
3099 gdb_assert (!struct_return);
3100 ia64_extract_return_value (valtype, regcache, readbuf);
3101 }
3102
3103 if (struct_return)
3104 return RETURN_VALUE_STRUCT_CONVENTION;
3105 else
3106 return RETURN_VALUE_REGISTER_CONVENTION;
3107 }
3108
3109 static int
3110 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3111 {
3112 switch (TYPE_CODE (t))
3113 {
3114 case TYPE_CODE_FLT:
3115 if (*etp)
3116 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3117 else
3118 {
3119 *etp = t;
3120 return 1;
3121 }
3122 break;
3123 case TYPE_CODE_ARRAY:
3124 return
3125 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3126 etp);
3127 break;
3128 case TYPE_CODE_STRUCT:
3129 {
3130 int i;
3131
3132 for (i = 0; i < TYPE_NFIELDS (t); i++)
3133 if (!is_float_or_hfa_type_recurse
3134 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
3135 return 0;
3136 return 1;
3137 }
3138 break;
3139 default:
3140 return 0;
3141 break;
3142 }
3143 }
3144
3145 /* Determine if the given type is one of the floating point types or
3146 and HFA (which is a struct, array, or combination thereof whose
3147 bottom-most elements are all of the same floating point type). */
3148
3149 static struct type *
3150 is_float_or_hfa_type (struct type *t)
3151 {
3152 struct type *et = 0;
3153
3154 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3155 }
3156
3157
3158 /* Return 1 if the alignment of T is such that the next even slot
3159 should be used. Return 0, if the next available slot should
3160 be used. (See section 8.5.1 of the IA-64 Software Conventions
3161 and Runtime manual). */
3162
3163 static int
3164 slot_alignment_is_next_even (struct type *t)
3165 {
3166 switch (TYPE_CODE (t))
3167 {
3168 case TYPE_CODE_INT:
3169 case TYPE_CODE_FLT:
3170 if (TYPE_LENGTH (t) > 8)
3171 return 1;
3172 else
3173 return 0;
3174 case TYPE_CODE_ARRAY:
3175 return
3176 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3177 case TYPE_CODE_STRUCT:
3178 {
3179 int i;
3180
3181 for (i = 0; i < TYPE_NFIELDS (t); i++)
3182 if (slot_alignment_is_next_even
3183 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3184 return 1;
3185 return 0;
3186 }
3187 default:
3188 return 0;
3189 }
3190 }
3191
3192 /* Attempt to find (and return) the global pointer for the given
3193 function.
3194
3195 This is a rather nasty bit of code searchs for the .dynamic section
3196 in the objfile corresponding to the pc of the function we're trying
3197 to call. Once it finds the addresses at which the .dynamic section
3198 lives in the child process, it scans the Elf64_Dyn entries for a
3199 DT_PLTGOT tag. If it finds one of these, the corresponding
3200 d_un.d_ptr value is the global pointer. */
3201
3202 static CORE_ADDR
3203 ia64_find_global_pointer (CORE_ADDR faddr)
3204 {
3205 struct obj_section *faddr_sect;
3206
3207 faddr_sect = find_pc_section (faddr);
3208 if (faddr_sect != NULL)
3209 {
3210 struct obj_section *osect;
3211
3212 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3213 {
3214 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3215 break;
3216 }
3217
3218 if (osect < faddr_sect->objfile->sections_end)
3219 {
3220 CORE_ADDR addr, endaddr;
3221
3222 addr = obj_section_addr (osect);
3223 endaddr = obj_section_endaddr (osect);
3224
3225 while (addr < endaddr)
3226 {
3227 int status;
3228 LONGEST tag;
3229 char buf[8];
3230
3231 status = target_read_memory (addr, buf, sizeof (buf));
3232 if (status != 0)
3233 break;
3234 tag = extract_signed_integer (buf, sizeof (buf));
3235
3236 if (tag == DT_PLTGOT)
3237 {
3238 CORE_ADDR global_pointer;
3239
3240 status = target_read_memory (addr + 8, buf, sizeof (buf));
3241 if (status != 0)
3242 break;
3243 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
3244
3245 /* The payoff... */
3246 return global_pointer;
3247 }
3248
3249 if (tag == DT_NULL)
3250 break;
3251
3252 addr += 16;
3253 }
3254 }
3255 }
3256 return 0;
3257 }
3258
3259 /* Given a function's address, attempt to find (and return) the
3260 corresponding (canonical) function descriptor. Return 0 if
3261 not found. */
3262 static CORE_ADDR
3263 find_extant_func_descr (CORE_ADDR faddr)
3264 {
3265 struct obj_section *faddr_sect;
3266
3267 /* Return early if faddr is already a function descriptor. */
3268 faddr_sect = find_pc_section (faddr);
3269 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
3270 return faddr;
3271
3272 if (faddr_sect != NULL)
3273 {
3274 struct obj_section *osect;
3275 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3276 {
3277 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3278 break;
3279 }
3280
3281 if (osect < faddr_sect->objfile->sections_end)
3282 {
3283 CORE_ADDR addr, endaddr;
3284
3285 addr = obj_section_addr (osect);
3286 endaddr = obj_section_endaddr (osect);
3287
3288 while (addr < endaddr)
3289 {
3290 int status;
3291 LONGEST faddr2;
3292 char buf[8];
3293
3294 status = target_read_memory (addr, buf, sizeof (buf));
3295 if (status != 0)
3296 break;
3297 faddr2 = extract_signed_integer (buf, sizeof (buf));
3298
3299 if (faddr == faddr2)
3300 return addr;
3301
3302 addr += 16;
3303 }
3304 }
3305 }
3306 return 0;
3307 }
3308
3309 /* Attempt to find a function descriptor corresponding to the
3310 given address. If none is found, construct one on the
3311 stack using the address at fdaptr. */
3312
3313 static CORE_ADDR
3314 find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
3315 {
3316 CORE_ADDR fdesc;
3317
3318 fdesc = find_extant_func_descr (faddr);
3319
3320 if (fdesc == 0)
3321 {
3322 ULONGEST global_pointer;
3323 char buf[16];
3324
3325 fdesc = *fdaptr;
3326 *fdaptr += 16;
3327
3328 global_pointer = ia64_find_global_pointer (faddr);
3329
3330 if (global_pointer == 0)
3331 regcache_cooked_read_unsigned (regcache,
3332 IA64_GR1_REGNUM, &global_pointer);
3333
3334 store_unsigned_integer (buf, 8, faddr);
3335 store_unsigned_integer (buf + 8, 8, global_pointer);
3336
3337 write_memory (fdesc, buf, 16);
3338 }
3339
3340 return fdesc;
3341 }
3342
3343 /* Use the following routine when printing out function pointers
3344 so the user can see the function address rather than just the
3345 function descriptor. */
3346 static CORE_ADDR
3347 ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3348 struct target_ops *targ)
3349 {
3350 struct obj_section *s;
3351
3352 s = find_pc_section (addr);
3353
3354 /* check if ADDR points to a function descriptor. */
3355 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3356 return read_memory_unsigned_integer (addr, 8);
3357
3358 /* Normally, functions live inside a section that is executable.
3359 So, if ADDR points to a non-executable section, then treat it
3360 as a function descriptor and return the target address iff
3361 the target address itself points to a section that is executable. */
3362 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
3363 {
3364 CORE_ADDR pc = read_memory_unsigned_integer (addr, 8);
3365 struct obj_section *pc_section = find_pc_section (pc);
3366
3367 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
3368 return pc;
3369 }
3370
3371 /* There are also descriptors embedded in vtables. */
3372 if (s)
3373 {
3374 struct minimal_symbol *minsym;
3375
3376 minsym = lookup_minimal_symbol_by_pc (addr);
3377
3378 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3379 return read_memory_unsigned_integer (addr, 8);
3380 }
3381
3382 return addr;
3383 }
3384
3385 static CORE_ADDR
3386 ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3387 {
3388 return sp & ~0xfLL;
3389 }
3390
3391 static CORE_ADDR
3392 ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3393 struct regcache *regcache, CORE_ADDR bp_addr,
3394 int nargs, struct value **args, CORE_ADDR sp,
3395 int struct_return, CORE_ADDR struct_addr)
3396 {
3397 int argno;
3398 struct value *arg;
3399 struct type *type;
3400 int len, argoffset;
3401 int nslots, rseslots, memslots, slotnum, nfuncargs;
3402 int floatreg;
3403 ULONGEST bsp, cfm, pfs, new_bsp;
3404 CORE_ADDR funcdescaddr, pc, global_pointer;
3405 CORE_ADDR func_addr = find_function_addr (function, NULL);
3406
3407 nslots = 0;
3408 nfuncargs = 0;
3409 /* Count the number of slots needed for the arguments. */
3410 for (argno = 0; argno < nargs; argno++)
3411 {
3412 arg = args[argno];
3413 type = check_typedef (value_type (arg));
3414 len = TYPE_LENGTH (type);
3415
3416 if ((nslots & 1) && slot_alignment_is_next_even (type))
3417 nslots++;
3418
3419 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3420 nfuncargs++;
3421
3422 nslots += (len + 7) / 8;
3423 }
3424
3425 /* Divvy up the slots between the RSE and the memory stack. */
3426 rseslots = (nslots > 8) ? 8 : nslots;
3427 memslots = nslots - rseslots;
3428
3429 /* Allocate a new RSE frame. */
3430 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
3431
3432 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
3433 new_bsp = rse_address_add (bsp, rseslots);
3434 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
3435
3436 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
3437 pfs &= 0xc000000000000000LL;
3438 pfs |= (cfm & 0xffffffffffffLL);
3439 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
3440
3441 cfm &= 0xc000000000000000LL;
3442 cfm |= rseslots;
3443 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
3444
3445 /* We will attempt to find function descriptors in the .opd segment,
3446 but if we can't we'll construct them ourselves. That being the
3447 case, we'll need to reserve space on the stack for them. */
3448 funcdescaddr = sp - nfuncargs * 16;
3449 funcdescaddr &= ~0xfLL;
3450
3451 /* Adjust the stack pointer to it's new value. The calling conventions
3452 require us to have 16 bytes of scratch, plus whatever space is
3453 necessary for the memory slots and our function descriptors. */
3454 sp = sp - 16 - (memslots + nfuncargs) * 8;
3455 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
3456
3457 /* Place the arguments where they belong. The arguments will be
3458 either placed in the RSE backing store or on the memory stack.
3459 In addition, floating point arguments or HFAs are placed in
3460 floating point registers. */
3461 slotnum = 0;
3462 floatreg = IA64_FR8_REGNUM;
3463 for (argno = 0; argno < nargs; argno++)
3464 {
3465 struct type *float_elt_type;
3466
3467 arg = args[argno];
3468 type = check_typedef (value_type (arg));
3469 len = TYPE_LENGTH (type);
3470
3471 /* Special handling for function parameters. */
3472 if (len == 8
3473 && TYPE_CODE (type) == TYPE_CODE_PTR
3474 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3475 {
3476 char val_buf[8];
3477 ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8);
3478 store_unsigned_integer (val_buf, 8,
3479 find_func_descr (regcache, faddr,
3480 &funcdescaddr));
3481 if (slotnum < rseslots)
3482 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3483 else
3484 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3485 slotnum++;
3486 continue;
3487 }
3488
3489 /* Normal slots. */
3490
3491 /* Skip odd slot if necessary... */
3492 if ((slotnum & 1) && slot_alignment_is_next_even (type))
3493 slotnum++;
3494
3495 argoffset = 0;
3496 while (len > 0)
3497 {
3498 char val_buf[8];
3499
3500 memset (val_buf, 0, 8);
3501 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
3502
3503 if (slotnum < rseslots)
3504 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3505 else
3506 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3507
3508 argoffset += 8;
3509 len -= 8;
3510 slotnum++;
3511 }
3512
3513 /* Handle floating point types (including HFAs). */
3514 float_elt_type = is_float_or_hfa_type (type);
3515 if (float_elt_type != NULL)
3516 {
3517 argoffset = 0;
3518 len = TYPE_LENGTH (type);
3519 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3520 {
3521 char to[MAX_REGISTER_SIZE];
3522 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
3523 to, builtin_type_ia64_ext);
3524 regcache_cooked_write (regcache, floatreg, (void *)to);
3525 floatreg++;
3526 argoffset += TYPE_LENGTH (float_elt_type);
3527 len -= TYPE_LENGTH (float_elt_type);
3528 }
3529 }
3530 }
3531
3532 /* Store the struct return value in r8 if necessary. */
3533 if (struct_return)
3534 {
3535 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
3536 }
3537
3538 global_pointer = ia64_find_global_pointer (func_addr);
3539
3540 if (global_pointer != 0)
3541 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
3542
3543 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
3544
3545 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
3546
3547 return sp;
3548 }
3549
3550 static struct frame_id
3551 ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3552 {
3553 char buf[8];
3554 CORE_ADDR sp, bsp;
3555
3556 get_frame_register (this_frame, sp_regnum, buf);
3557 sp = extract_unsigned_integer (buf, 8);
3558
3559 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
3560 bsp = extract_unsigned_integer (buf, 8);
3561
3562 if (gdbarch_debug >= 1)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n",
3565 paddr_nz (get_frame_pc (this_frame)),
3566 paddr_nz (sp), paddr_nz (bsp));
3567
3568 return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
3569 }
3570
3571 static CORE_ADDR
3572 ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3573 {
3574 char buf[8];
3575 CORE_ADDR ip, psr, pc;
3576
3577 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3578 ip = extract_unsigned_integer (buf, 8);
3579 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3580 psr = extract_unsigned_integer (buf, 8);
3581
3582 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3583 return pc;
3584 }
3585
3586 static int
3587 ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3588 {
3589 info->bytes_per_line = SLOT_MULTIPLIER;
3590 return print_insn_ia64 (memaddr, info);
3591 }
3592
3593 static struct gdbarch *
3594 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3595 {
3596 struct gdbarch *gdbarch;
3597 struct gdbarch_tdep *tdep;
3598
3599 /* If there is already a candidate, use it. */
3600 arches = gdbarch_list_lookup_by_info (arches, &info);
3601 if (arches != NULL)
3602 return arches->gdbarch;
3603
3604 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3605 gdbarch = gdbarch_alloc (&info, tdep);
3606
3607 tdep->sigcontext_register_address = 0;
3608 tdep->pc_in_sigtramp = 0;
3609
3610 /* According to the ia64 specs, instructions that store long double
3611 floats in memory use a long-double format different than that
3612 used in the floating registers. The memory format matches the
3613 x86 extended float format which is 80 bits. An OS may choose to
3614 use this format (e.g. GNU/Linux) or choose to use a different
3615 format for storing long doubles (e.g. HPUX). In the latter case,
3616 the setting of the format may be moved/overridden in an
3617 OS-specific tdep file. */
3618 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
3619
3620 set_gdbarch_short_bit (gdbarch, 16);
3621 set_gdbarch_int_bit (gdbarch, 32);
3622 set_gdbarch_long_bit (gdbarch, 64);
3623 set_gdbarch_long_long_bit (gdbarch, 64);
3624 set_gdbarch_float_bit (gdbarch, 32);
3625 set_gdbarch_double_bit (gdbarch, 64);
3626 set_gdbarch_long_double_bit (gdbarch, 128);
3627 set_gdbarch_ptr_bit (gdbarch, 64);
3628
3629 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3630 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
3631 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
3632 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
3633
3634 set_gdbarch_register_name (gdbarch, ia64_register_name);
3635 set_gdbarch_register_type (gdbarch, ia64_register_type);
3636
3637 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3638 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3639 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3640 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3641 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3642 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3643 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
3644
3645 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
3646
3647 set_gdbarch_return_value (gdbarch, ia64_return_value);
3648
3649 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3650 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3651 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3652 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
3653 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
3654
3655 /* Settings for calling functions in the inferior. */
3656 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
3657 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3658 set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
3659
3660 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
3661 #ifdef HAVE_LIBUNWIND_IA64_H
3662 frame_unwind_append_unwinder (gdbarch,
3663 &ia64_libunwind_sigtramp_frame_unwind);
3664 frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
3665 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3666 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
3667 #else
3668 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3669 #endif
3670 frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
3671 frame_base_set_default (gdbarch, &ia64_frame_base);
3672
3673 /* Settings that should be unnecessary. */
3674 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3675
3676 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
3677 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
3678
3679 /* The virtual table contains 16-byte descriptors, not pointers to
3680 descriptors. */
3681 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3682
3683 /* Hook in ABI-specific overrides, if they have been registered. */
3684 gdbarch_init_osabi (info, gdbarch);
3685
3686 return gdbarch;
3687 }
3688
3689 extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3690
3691 void
3692 _initialize_ia64_tdep (void)
3693 {
3694 /* Define the ia64 floating-point format to gdb. */
3695 builtin_type_ia64_ext =
3696 init_type (TYPE_CODE_FLT, 128 / 8,
3697 0, "builtin_type_ia64_ext", NULL);
3698 TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext;
3699
3700 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
3701 }
This page took 0.126849 seconds and 5 git commands to generate.