Convert infcalls to thread_fsm mechanism
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "breakpoint.h"
22 #include "tracepoint.h"
23 #include "target.h"
24 #include "regcache.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "block.h"
28 #include "gdbcore.h"
29 #include "language.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "infcall.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42
43 /* If we can't find a function's name from its address,
44 we print this instead. */
45 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
46 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
47 + 2 * sizeof (CORE_ADDR))
48
49 /* NOTE: cagney/2003-04-16: What's the future of this code?
50
51 GDB needs an asynchronous expression evaluator, that means an
52 asynchronous inferior function call implementation, and that in
53 turn means restructuring the code so that it is event driven. */
54
55 /* How you should pass arguments to a function depends on whether it
56 was defined in K&R style or prototype style. If you define a
57 function using the K&R syntax that takes a `float' argument, then
58 callers must pass that argument as a `double'. If you define the
59 function using the prototype syntax, then you must pass the
60 argument as a `float', with no promotion.
61
62 Unfortunately, on certain older platforms, the debug info doesn't
63 indicate reliably how each function was defined. A function type's
64 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
65 defined in prototype style. When calling a function whose
66 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
67 decide what to do.
68
69 For modern targets, it is proper to assume that, if the prototype
70 flag is clear, that can be trusted: `float' arguments should be
71 promoted to `double'. For some older targets, if the prototype
72 flag is clear, that doesn't tell us anything. The default is to
73 trust the debug information; the user can override this behavior
74 with "set coerce-float-to-double 0". */
75
76 static int coerce_float_to_double_p = 1;
77 static void
78 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
79 struct cmd_list_element *c, const char *value)
80 {
81 fprintf_filtered (file,
82 _("Coercion of floats to doubles "
83 "when calling functions is %s.\n"),
84 value);
85 }
86
87 /* This boolean tells what gdb should do if a signal is received while
88 in a function called from gdb (call dummy). If set, gdb unwinds
89 the stack and restore the context to what as it was before the
90 call.
91
92 The default is to stop in the frame where the signal was received. */
93
94 static int unwind_on_signal_p = 0;
95 static void
96 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file,
100 _("Unwinding of stack if a signal is "
101 "received while in a call dummy is %s.\n"),
102 value);
103 }
104
105 /* This boolean tells what gdb should do if a std::terminate call is
106 made while in a function called from gdb (call dummy).
107 As the confines of a single dummy stack prohibit out-of-frame
108 handlers from handling a raised exception, and as out-of-frame
109 handlers are common in C++, this can lead to no handler being found
110 by the unwinder, and a std::terminate call. This is a false positive.
111 If set, gdb unwinds the stack and restores the context to what it
112 was before the call.
113
114 The default is to unwind the frame if a std::terminate call is
115 made. */
116
117 static int unwind_on_terminating_exception_p = 1;
118
119 static void
120 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123
124 {
125 fprintf_filtered (file,
126 _("Unwind stack if a C++ exception is "
127 "unhandled while in a call dummy is %s.\n"),
128 value);
129 }
130
131 /* Perform the standard coercions that are specified
132 for arguments to be passed to C or Ada functions.
133
134 If PARAM_TYPE is non-NULL, it is the expected parameter type.
135 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
136 SP is the stack pointer were additional data can be pushed (updating
137 its value as needed). */
138
139 static struct value *
140 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
141 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
142 {
143 const struct builtin_type *builtin = builtin_type (gdbarch);
144 struct type *arg_type = check_typedef (value_type (arg));
145 struct type *type
146 = param_type ? check_typedef (param_type) : arg_type;
147
148 /* Perform any Ada-specific coercion first. */
149 if (current_language->la_language == language_ada)
150 arg = ada_convert_actual (arg, type);
151
152 /* Force the value to the target if we will need its address. At
153 this point, we could allocate arguments on the stack instead of
154 calling malloc if we knew that their addresses would not be
155 saved by the called function. */
156 arg = value_coerce_to_target (arg);
157
158 switch (TYPE_CODE (type))
159 {
160 case TYPE_CODE_REF:
161 {
162 struct value *new_value;
163
164 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
165 return value_cast_pointers (type, arg, 0);
166
167 /* Cast the value to the reference's target type, and then
168 convert it back to a reference. This will issue an error
169 if the value was not previously in memory - in some cases
170 we should clearly be allowing this, but how? */
171 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
172 new_value = value_ref (new_value);
173 return new_value;
174 }
175 case TYPE_CODE_INT:
176 case TYPE_CODE_CHAR:
177 case TYPE_CODE_BOOL:
178 case TYPE_CODE_ENUM:
179 /* If we don't have a prototype, coerce to integer type if necessary. */
180 if (!is_prototyped)
181 {
182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
183 type = builtin->builtin_int;
184 }
185 /* Currently all target ABIs require at least the width of an integer
186 type for an argument. We may have to conditionalize the following
187 type coercion for future targets. */
188 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
189 type = builtin->builtin_int;
190 break;
191 case TYPE_CODE_FLT:
192 if (!is_prototyped && coerce_float_to_double_p)
193 {
194 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
195 type = builtin->builtin_double;
196 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
197 type = builtin->builtin_long_double;
198 }
199 break;
200 case TYPE_CODE_FUNC:
201 type = lookup_pointer_type (type);
202 break;
203 case TYPE_CODE_ARRAY:
204 /* Arrays are coerced to pointers to their first element, unless
205 they are vectors, in which case we want to leave them alone,
206 because they are passed by value. */
207 if (current_language->c_style_arrays)
208 if (!TYPE_VECTOR (type))
209 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
210 break;
211 case TYPE_CODE_UNDEF:
212 case TYPE_CODE_PTR:
213 case TYPE_CODE_STRUCT:
214 case TYPE_CODE_UNION:
215 case TYPE_CODE_VOID:
216 case TYPE_CODE_SET:
217 case TYPE_CODE_RANGE:
218 case TYPE_CODE_STRING:
219 case TYPE_CODE_ERROR:
220 case TYPE_CODE_MEMBERPTR:
221 case TYPE_CODE_METHODPTR:
222 case TYPE_CODE_METHOD:
223 case TYPE_CODE_COMPLEX:
224 default:
225 break;
226 }
227
228 return value_cast (type, arg);
229 }
230
231 /* Return the return type of a function with its first instruction exactly at
232 the PC address. Return NULL otherwise. */
233
234 static struct type *
235 find_function_return_type (CORE_ADDR pc)
236 {
237 struct symbol *sym = find_pc_function (pc);
238
239 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
240 && SYMBOL_TYPE (sym) != NULL)
241 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
242
243 return NULL;
244 }
245
246 /* Determine a function's address and its return type from its value.
247 Calls error() if the function is not valid for calling. */
248
249 CORE_ADDR
250 find_function_addr (struct value *function, struct type **retval_type)
251 {
252 struct type *ftype = check_typedef (value_type (function));
253 struct gdbarch *gdbarch = get_type_arch (ftype);
254 struct type *value_type = NULL;
255 /* Initialize it just to avoid a GCC false warning. */
256 CORE_ADDR funaddr = 0;
257
258 /* If it's a member function, just look at the function
259 part of it. */
260
261 /* Determine address to call. */
262 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264 funaddr = value_address (function);
265 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266 {
267 funaddr = value_as_address (function);
268 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272 &current_target);
273 }
274 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276 {
277 value_type = TYPE_TARGET_TYPE (ftype);
278
279 if (TYPE_GNU_IFUNC (ftype))
280 {
281 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
282
283 /* Skip querying the function symbol if no RETVAL_TYPE has been
284 asked for. */
285 if (retval_type)
286 value_type = find_function_return_type (funaddr);
287 }
288 }
289 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
290 {
291 /* Handle the case of functions lacking debugging info.
292 Their values are characters since their addresses are char. */
293 if (TYPE_LENGTH (ftype) == 1)
294 funaddr = value_as_address (value_addr (function));
295 else
296 {
297 /* Handle function descriptors lacking debug info. */
298 int found_descriptor = 0;
299
300 funaddr = 0; /* pacify "gcc -Werror" */
301 if (VALUE_LVAL (function) == lval_memory)
302 {
303 CORE_ADDR nfunaddr;
304
305 funaddr = value_as_address (value_addr (function));
306 nfunaddr = funaddr;
307 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
308 &current_target);
309 if (funaddr != nfunaddr)
310 found_descriptor = 1;
311 }
312 if (!found_descriptor)
313 /* Handle integer used as address of a function. */
314 funaddr = (CORE_ADDR) value_as_long (function);
315 }
316 }
317 else
318 error (_("Invalid data type for function to be called."));
319
320 if (retval_type != NULL)
321 *retval_type = value_type;
322 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
323 }
324
325 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
326 function returns to. */
327
328 static CORE_ADDR
329 push_dummy_code (struct gdbarch *gdbarch,
330 CORE_ADDR sp, CORE_ADDR funaddr,
331 struct value **args, int nargs,
332 struct type *value_type,
333 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
334 struct regcache *regcache)
335 {
336 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
337
338 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
339 args, nargs, value_type, real_pc, bp_addr,
340 regcache);
341 }
342
343 /* Fetch the name of the function at FUNADDR.
344 This is used in printing an error message for call_function_by_hand.
345 BUF is used to print FUNADDR in hex if the function name cannot be
346 determined. It must be large enough to hold formatted result of
347 RAW_FUNCTION_ADDRESS_FORMAT. */
348
349 static const char *
350 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
351 {
352 {
353 struct symbol *symbol = find_pc_function (funaddr);
354
355 if (symbol)
356 return SYMBOL_PRINT_NAME (symbol);
357 }
358
359 {
360 /* Try the minimal symbols. */
361 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
362
363 if (msymbol.minsym)
364 return MSYMBOL_PRINT_NAME (msymbol.minsym);
365 }
366
367 {
368 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
369 hex_string (funaddr));
370
371 gdb_assert (strlen (tmp) + 1 <= buf_size);
372 strcpy (buf, tmp);
373 xfree (tmp);
374 return buf;
375 }
376 }
377
378 /* All the meta data necessary to extract the call's return value. */
379
380 struct call_return_meta_info
381 {
382 /* The caller frame's architecture. */
383 struct gdbarch *gdbarch;
384
385 /* The called function. */
386 struct value *function;
387
388 /* The return value's type. */
389 struct type *value_type;
390
391 /* Are we returning a value using a structure return or a normal
392 value return? */
393 int struct_return_p;
394
395 /* If using a structure return, this is the structure's address. */
396 CORE_ADDR struct_addr;
397
398 /* Whether stack temporaries are enabled. */
399 int stack_temporaries_enabled;
400 };
401
402 /* Extract the called function's return value. */
403
404 static struct value *
405 get_call_return_value (struct call_return_meta_info *ri)
406 {
407 struct value *retval = NULL;
408 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
409
410 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
411 retval = allocate_value (ri->value_type);
412 else if (ri->struct_return_p)
413 {
414 if (stack_temporaries)
415 {
416 retval = value_from_contents_and_address (ri->value_type, NULL,
417 ri->struct_addr);
418 push_thread_stack_temporary (inferior_ptid, retval);
419 }
420 else
421 {
422 retval = allocate_value (ri->value_type);
423 read_value_memory (retval, 0, 1, ri->struct_addr,
424 value_contents_raw (retval),
425 TYPE_LENGTH (ri->value_type));
426 }
427 }
428 else
429 {
430 retval = allocate_value (ri->value_type);
431 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
432 get_current_regcache (),
433 value_contents_raw (retval), NULL);
434 if (stack_temporaries && class_or_union_p (ri->value_type))
435 {
436 /* Values of class type returned in registers are copied onto
437 the stack and their lval_type set to lval_memory. This is
438 required because further evaluation of the expression
439 could potentially invoke methods on the return value
440 requiring GDB to evaluate the "this" pointer. To evaluate
441 the this pointer, GDB needs the memory address of the
442 value. */
443 value_force_lval (retval, ri->struct_addr);
444 push_thread_stack_temporary (inferior_ptid, retval);
445 }
446 }
447
448 gdb_assert (retval != NULL);
449 return retval;
450 }
451
452 /* Data for the FSM that manages an infcall. It's main job is to
453 record the called function's return value. */
454
455 struct call_thread_fsm
456 {
457 /* The base class. */
458 struct thread_fsm thread_fsm;
459
460 /* All the info necessary to be able to extract the return
461 value. */
462 struct call_return_meta_info return_meta_info;
463
464 /* The called function's return value. This is extracted from the
465 target before the dummy frame is popped. */
466 struct value *return_value;
467 };
468
469 static int call_thread_fsm_should_stop (struct thread_fsm *self);
470 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
471
472 /* call_thread_fsm's vtable. */
473
474 static struct thread_fsm_ops call_thread_fsm_ops =
475 {
476 NULL, /*dtor */
477 NULL, /* clean_up */
478 call_thread_fsm_should_stop,
479 NULL, /* return_value */
480 NULL, /* async_reply_reason*/
481 call_thread_fsm_should_notify_stop,
482 };
483
484 /* Allocate a new call_thread_fsm object. */
485
486 static struct call_thread_fsm *
487 new_call_thread_fsm (struct gdbarch *gdbarch, struct value *function,
488 struct type *value_type,
489 int struct_return_p, CORE_ADDR struct_addr)
490 {
491 struct call_thread_fsm *sm;
492
493 sm = XCNEW (struct call_thread_fsm);
494 thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops);
495
496 sm->return_meta_info.gdbarch = gdbarch;
497 sm->return_meta_info.function = function;
498 sm->return_meta_info.value_type = value_type;
499 sm->return_meta_info.struct_return_p = struct_return_p;
500 sm->return_meta_info.struct_addr = struct_addr;
501
502 return sm;
503 }
504
505 /* Implementation of should_stop method for infcalls. */
506
507 static int
508 call_thread_fsm_should_stop (struct thread_fsm *self)
509 {
510 struct call_thread_fsm *f = (struct call_thread_fsm *) self;
511
512 if (stop_stack_dummy == STOP_STACK_DUMMY)
513 {
514 /* Done. */
515 thread_fsm_set_finished (self);
516
517 /* Stash the return value before the dummy frame is popped and
518 registers are restored to what they were before the
519 call.. */
520 f->return_value = get_call_return_value (&f->return_meta_info);
521
522 /* Break out of wait_sync_command_done. */
523 async_enable_stdin ();
524 }
525
526 return 1;
527 }
528
529 /* Implementation of should_notify_stop method for infcalls. */
530
531 static int
532 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
533 {
534 if (thread_fsm_finished_p (self))
535 {
536 /* Infcall succeeded. Be silent and proceed with evaluating the
537 expression. */
538 return 0;
539 }
540
541 /* Something wrong happened. E.g., an unexpected breakpoint
542 triggered, or a signal was intercepted. Notify the stop. */
543 return 1;
544 }
545
546 /* Subroutine of call_function_by_hand to simplify it.
547 Start up the inferior and wait for it to stop.
548 Return the exception if there's an error, or an exception with
549 reason >= 0 if there's no error.
550
551 This is done inside a TRY_CATCH so the caller needn't worry about
552 thrown errors. The caller should rethrow if there's an error. */
553
554 static struct gdb_exception
555 run_inferior_call (struct call_thread_fsm *sm,
556 struct thread_info *call_thread, CORE_ADDR real_pc)
557 {
558 struct gdb_exception caught_error = exception_none;
559 int saved_in_infcall = call_thread->control.in_infcall;
560 ptid_t call_thread_ptid = call_thread->ptid;
561 int saved_sync_execution = sync_execution;
562 int was_running = call_thread->state == THREAD_RUNNING;
563 int saved_interpreter_async = interpreter_async;
564
565 /* Infcalls run synchronously, in the foreground. */
566 sync_execution = 1;
567 /* So that we don't print the prompt prematurely in
568 fetch_inferior_event. */
569 interpreter_async = 0;
570
571 call_thread->control.in_infcall = 1;
572
573 clear_proceed_status (0);
574
575 /* Associate the FSM with the thread after clear_proceed_status
576 (otherwise it'd clear this FSM), and before anything throws, so
577 we don't leak it (and any resources it manages). */
578 call_thread->thread_fsm = &sm->thread_fsm;
579
580 disable_watchpoints_before_interactive_call_start ();
581
582 /* We want to print return value, please... */
583 call_thread->control.proceed_to_finish = 1;
584
585 TRY
586 {
587 proceed (real_pc, GDB_SIGNAL_0);
588
589 /* Inferior function calls are always synchronous, even if the
590 target supports asynchronous execution. */
591 wait_sync_command_done ();
592 }
593 CATCH (e, RETURN_MASK_ALL)
594 {
595 caught_error = e;
596 }
597 END_CATCH
598
599 /* If GDB was previously in sync execution mode, then ensure that it
600 remains so. normal_stop calls async_enable_stdin, so reset it
601 again here. In other cases, stdin will be re-enabled by
602 inferior_event_handler, when an exception is thrown. */
603 sync_execution = saved_sync_execution;
604 interpreter_async = saved_interpreter_async;
605
606 /* At this point the current thread may have changed. Refresh
607 CALL_THREAD as it could be invalid if its thread has exited. */
608 call_thread = find_thread_ptid (call_thread_ptid);
609
610 /* If the infcall does NOT succeed, normal_stop will have already
611 finished the thread states. However, on success, normal_stop
612 defers here, so that we can set back the thread states to what
613 they were before the call. Note that we must also finish the
614 state of new threads that might have spawned while the call was
615 running. The main cases to handle are:
616
617 - "(gdb) print foo ()", or any other command that evaluates an
618 expression at the prompt. (The thread was marked stopped before.)
619
620 - "(gdb) break foo if return_false()" or similar cases where we
621 do an infcall while handling an event (while the thread is still
622 marked running). In this example, whether the condition
623 evaluates true and thus we'll present a user-visible stop is
624 decided elsewhere. */
625 if (!was_running
626 && ptid_equal (call_thread_ptid, inferior_ptid)
627 && stop_stack_dummy == STOP_STACK_DUMMY)
628 finish_thread_state (user_visible_resume_ptid (0));
629
630 enable_watchpoints_after_interactive_call_stop ();
631
632 /* Call breakpoint_auto_delete on the current contents of the bpstat
633 of inferior call thread.
634 If all error()s out of proceed ended up calling normal_stop
635 (and perhaps they should; it already does in the special case
636 of error out of resume()), then we wouldn't need this. */
637 if (caught_error.reason < 0)
638 {
639 if (call_thread != NULL)
640 breakpoint_auto_delete (call_thread->control.stop_bpstat);
641 }
642
643 if (call_thread != NULL)
644 call_thread->control.in_infcall = saved_in_infcall;
645
646 return caught_error;
647 }
648
649 /* A cleanup function that calls delete_std_terminate_breakpoint. */
650 static void
651 cleanup_delete_std_terminate_breakpoint (void *ignore)
652 {
653 delete_std_terminate_breakpoint ();
654 }
655
656 /* See infcall.h. */
657
658 struct value *
659 call_function_by_hand (struct value *function, int nargs, struct value **args)
660 {
661 return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
662 }
663
664 /* Data for dummy_frame_context_saver. Structure can be freed only
665 after both dummy_frame_context_saver_dtor and
666 dummy_frame_context_saver_drop have been called for it. */
667
668 struct dummy_frame_context_saver
669 {
670 /* Inferior registers fetched before associated dummy_frame got freed
671 and before any other destructors of associated dummy_frame got called.
672 It is initialized to NULL. */
673 struct regcache *retbuf;
674
675 /* It is 1 if this dummy_frame_context_saver_drop has been already
676 called. */
677 int drop_done;
678 };
679
680 /* Free struct dummy_frame_context_saver. */
681
682 static void
683 dummy_frame_context_saver_free (struct dummy_frame_context_saver *saver)
684 {
685 regcache_xfree (saver->retbuf);
686 xfree (saver);
687 }
688
689 /* Destructor for associated dummy_frame. */
690
691 static void
692 dummy_frame_context_saver_dtor (void *data_voidp, int registers_valid)
693 {
694 struct dummy_frame_context_saver *data = data_voidp;
695
696 gdb_assert (data->retbuf == NULL);
697
698 if (data->drop_done)
699 dummy_frame_context_saver_free (data);
700 else if (registers_valid)
701 data->retbuf = regcache_dup (get_current_regcache ());
702 }
703
704 /* Caller is no longer interested in this
705 struct dummy_frame_context_saver. After its associated dummy_frame
706 gets freed struct dummy_frame_context_saver can be also freed. */
707
708 void
709 dummy_frame_context_saver_drop (struct dummy_frame_context_saver *saver)
710 {
711 saver->drop_done = 1;
712
713 if (!find_dummy_frame_dtor (dummy_frame_context_saver_dtor, saver))
714 dummy_frame_context_saver_free (saver);
715 }
716
717 /* Stub dummy_frame_context_saver_drop compatible with make_cleanup. */
718
719 void
720 dummy_frame_context_saver_cleanup (void *data)
721 {
722 struct dummy_frame_context_saver *saver = data;
723
724 dummy_frame_context_saver_drop (saver);
725 }
726
727 /* Fetch RETBUF field of possibly opaque DTOR_DATA.
728 RETBUF must not be NULL. */
729
730 struct regcache *
731 dummy_frame_context_saver_get_regs (struct dummy_frame_context_saver *saver)
732 {
733 gdb_assert (saver->retbuf != NULL);
734 return saver->retbuf;
735 }
736
737 /* Register provider of inferior registers at the time DUMMY_ID frame of
738 PTID gets freed (before inferior registers get restored to those
739 before dummy_frame). */
740
741 struct dummy_frame_context_saver *
742 dummy_frame_context_saver_setup (struct frame_id dummy_id, ptid_t ptid)
743 {
744 struct dummy_frame_context_saver *saver =
745 XNEW (struct dummy_frame_context_saver);
746
747 saver->retbuf = NULL;
748 saver->drop_done = 0;
749 register_dummy_frame_dtor (dummy_id, inferior_ptid,
750 dummy_frame_context_saver_dtor, saver);
751 return saver;
752 }
753
754 /* All this stuff with a dummy frame may seem unnecessarily complicated
755 (why not just save registers in GDB?). The purpose of pushing a dummy
756 frame which looks just like a real frame is so that if you call a
757 function and then hit a breakpoint (get a signal, etc), "backtrace"
758 will look right. Whether the backtrace needs to actually show the
759 stack at the time the inferior function was called is debatable, but
760 it certainly needs to not display garbage. So if you are contemplating
761 making dummy frames be different from normal frames, consider that. */
762
763 /* Perform a function call in the inferior.
764 ARGS is a vector of values of arguments (NARGS of them).
765 FUNCTION is a value, the function to be called.
766 Returns a value representing what the function returned.
767 May fail to return, if a breakpoint or signal is hit
768 during the execution of the function.
769
770 ARGS is modified to contain coerced values. */
771
772 struct value *
773 call_function_by_hand_dummy (struct value *function,
774 int nargs, struct value **args,
775 dummy_frame_dtor_ftype *dummy_dtor,
776 void *dummy_dtor_data)
777 {
778 CORE_ADDR sp;
779 struct type *values_type, *target_values_type;
780 unsigned char struct_return = 0, hidden_first_param_p = 0;
781 CORE_ADDR struct_addr = 0;
782 struct infcall_control_state *inf_status;
783 struct cleanup *inf_status_cleanup;
784 struct infcall_suspend_state *caller_state;
785 CORE_ADDR funaddr;
786 CORE_ADDR real_pc;
787 struct type *ftype = check_typedef (value_type (function));
788 CORE_ADDR bp_addr;
789 struct frame_id dummy_id;
790 struct cleanup *args_cleanup;
791 struct frame_info *frame;
792 struct gdbarch *gdbarch;
793 struct cleanup *terminate_bp_cleanup;
794 ptid_t call_thread_ptid;
795 struct gdb_exception e;
796 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
797 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
798
799 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
800 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
801
802 if (!target_has_execution)
803 noprocess ();
804
805 if (get_traceframe_number () >= 0)
806 error (_("May not call functions while looking at trace frames."));
807
808 if (execution_direction == EXEC_REVERSE)
809 error (_("Cannot call functions in reverse mode."));
810
811 frame = get_current_frame ();
812 gdbarch = get_frame_arch (frame);
813
814 if (!gdbarch_push_dummy_call_p (gdbarch))
815 error (_("This target does not support function calls."));
816
817 /* A cleanup for the inferior status.
818 This is only needed while we're preparing the inferior function call. */
819 inf_status = save_infcall_control_state ();
820 inf_status_cleanup
821 = make_cleanup_restore_infcall_control_state (inf_status);
822
823 /* Save the caller's registers and other state associated with the
824 inferior itself so that they can be restored once the
825 callee returns. To allow nested calls the registers are (further
826 down) pushed onto a dummy frame stack. Include a cleanup (which
827 is tossed once the regcache has been pushed). */
828 caller_state = save_infcall_suspend_state ();
829 make_cleanup_restore_infcall_suspend_state (caller_state);
830
831 /* Ensure that the initial SP is correctly aligned. */
832 {
833 CORE_ADDR old_sp = get_frame_sp (frame);
834
835 if (gdbarch_frame_align_p (gdbarch))
836 {
837 sp = gdbarch_frame_align (gdbarch, old_sp);
838 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
839 ABIs, a function can use memory beyond the inner most stack
840 address. AMD64 called that region the "red zone". Skip at
841 least the "red zone" size before allocating any space on
842 the stack. */
843 if (gdbarch_inner_than (gdbarch, 1, 2))
844 sp -= gdbarch_frame_red_zone_size (gdbarch);
845 else
846 sp += gdbarch_frame_red_zone_size (gdbarch);
847 /* Still aligned? */
848 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
849 /* NOTE: cagney/2002-09-18:
850
851 On a RISC architecture, a void parameterless generic dummy
852 frame (i.e., no parameters, no result) typically does not
853 need to push anything the stack and hence can leave SP and
854 FP. Similarly, a frameless (possibly leaf) function does
855 not push anything on the stack and, hence, that too can
856 leave FP and SP unchanged. As a consequence, a sequence of
857 void parameterless generic dummy frame calls to frameless
858 functions will create a sequence of effectively identical
859 frames (SP, FP and TOS and PC the same). This, not
860 suprisingly, results in what appears to be a stack in an
861 infinite loop --- when GDB tries to find a generic dummy
862 frame on the internal dummy frame stack, it will always
863 find the first one.
864
865 To avoid this problem, the code below always grows the
866 stack. That way, two dummy frames can never be identical.
867 It does burn a few bytes of stack but that is a small price
868 to pay :-). */
869 if (sp == old_sp)
870 {
871 if (gdbarch_inner_than (gdbarch, 1, 2))
872 /* Stack grows down. */
873 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
874 else
875 /* Stack grows up. */
876 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
877 }
878 /* SP may have underflown address zero here from OLD_SP. Memory access
879 functions will probably fail in such case but that is a target's
880 problem. */
881 }
882 else
883 /* FIXME: cagney/2002-09-18: Hey, you loose!
884
885 Who knows how badly aligned the SP is!
886
887 If the generic dummy frame ends up empty (because nothing is
888 pushed) GDB won't be able to correctly perform back traces.
889 If a target is having trouble with backtraces, first thing to
890 do is add FRAME_ALIGN() to the architecture vector. If that
891 fails, try dummy_id().
892
893 If the ABI specifies a "Red Zone" (see the doco) the code
894 below will quietly trash it. */
895 sp = old_sp;
896
897 /* Skip over the stack temporaries that might have been generated during
898 the evaluation of an expression. */
899 if (stack_temporaries)
900 {
901 struct value *lastval;
902
903 lastval = get_last_thread_stack_temporary (inferior_ptid);
904 if (lastval != NULL)
905 {
906 CORE_ADDR lastval_addr = value_address (lastval);
907
908 if (gdbarch_inner_than (gdbarch, 1, 2))
909 {
910 gdb_assert (sp >= lastval_addr);
911 sp = lastval_addr;
912 }
913 else
914 {
915 gdb_assert (sp <= lastval_addr);
916 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
917 }
918
919 if (gdbarch_frame_align_p (gdbarch))
920 sp = gdbarch_frame_align (gdbarch, sp);
921 }
922 }
923 }
924
925 funaddr = find_function_addr (function, &values_type);
926 if (!values_type)
927 values_type = builtin_type (gdbarch)->builtin_int;
928
929 values_type = check_typedef (values_type);
930
931 /* Are we returning a value using a structure return (passing a
932 hidden argument pointing to storage) or a normal value return?
933 There are two cases: language-mandated structure return and
934 target ABI structure return. The variable STRUCT_RETURN only
935 describes the latter. The language version is handled by passing
936 the return location as the first parameter to the function,
937 even preceding "this". This is different from the target
938 ABI version, which is target-specific; for instance, on ia64
939 the first argument is passed in out0 but the hidden structure
940 return pointer would normally be passed in r8. */
941
942 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
943 {
944 hidden_first_param_p = 1;
945
946 /* Tell the target specific argument pushing routine not to
947 expect a value. */
948 target_values_type = builtin_type (gdbarch)->builtin_void;
949 }
950 else
951 {
952 struct_return = using_struct_return (gdbarch, function, values_type);
953 target_values_type = values_type;
954 }
955
956 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
957
958 /* Determine the location of the breakpoint (and possibly other
959 stuff) that the called function will return to. The SPARC, for a
960 function returning a structure or union, needs to make space for
961 not just the breakpoint but also an extra word containing the
962 size (?) of the structure being passed. */
963
964 switch (gdbarch_call_dummy_location (gdbarch))
965 {
966 case ON_STACK:
967 {
968 const gdb_byte *bp_bytes;
969 CORE_ADDR bp_addr_as_address;
970 int bp_size;
971
972 /* Be careful BP_ADDR is in inferior PC encoding while
973 BP_ADDR_AS_ADDRESS is a plain memory address. */
974
975 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
976 target_values_type, &real_pc, &bp_addr,
977 get_current_regcache ());
978
979 /* Write a legitimate instruction at the point where the infcall
980 breakpoint is going to be inserted. While this instruction
981 is never going to be executed, a user investigating the
982 memory from GDB would see this instruction instead of random
983 uninitialized bytes. We chose the breakpoint instruction
984 as it may look as the most logical one to the user and also
985 valgrind 3.7.0 needs it for proper vgdb inferior calls.
986
987 If software breakpoints are unsupported for this target we
988 leave the user visible memory content uninitialized. */
989
990 bp_addr_as_address = bp_addr;
991 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
992 &bp_size);
993 if (bp_bytes != NULL)
994 write_memory (bp_addr_as_address, bp_bytes, bp_size);
995 }
996 break;
997 case AT_ENTRY_POINT:
998 {
999 CORE_ADDR dummy_addr;
1000
1001 real_pc = funaddr;
1002 dummy_addr = entry_point_address ();
1003
1004 /* A call dummy always consists of just a single breakpoint, so
1005 its address is the same as the address of the dummy.
1006
1007 The actual breakpoint is inserted separatly so there is no need to
1008 write that out. */
1009 bp_addr = dummy_addr;
1010 break;
1011 }
1012 default:
1013 internal_error (__FILE__, __LINE__, _("bad switch"));
1014 }
1015
1016 if (nargs < TYPE_NFIELDS (ftype))
1017 error (_("Too few arguments in function call."));
1018
1019 {
1020 int i;
1021
1022 for (i = nargs - 1; i >= 0; i--)
1023 {
1024 int prototyped;
1025 struct type *param_type;
1026
1027 /* FIXME drow/2002-05-31: Should just always mark methods as
1028 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1029 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1030 prototyped = 1;
1031 else if (i < TYPE_NFIELDS (ftype))
1032 prototyped = TYPE_PROTOTYPED (ftype);
1033 else
1034 prototyped = 0;
1035
1036 if (i < TYPE_NFIELDS (ftype))
1037 param_type = TYPE_FIELD_TYPE (ftype, i);
1038 else
1039 param_type = NULL;
1040
1041 args[i] = value_arg_coerce (gdbarch, args[i],
1042 param_type, prototyped, &sp);
1043
1044 if (param_type != NULL && language_pass_by_reference (param_type))
1045 args[i] = value_addr (args[i]);
1046 }
1047 }
1048
1049 /* Reserve space for the return structure to be written on the
1050 stack, if necessary. Make certain that the value is correctly
1051 aligned.
1052
1053 While evaluating expressions, we reserve space on the stack for
1054 return values of class type even if the language ABI and the target
1055 ABI do not require that the return value be passed as a hidden first
1056 argument. This is because we want to store the return value as an
1057 on-stack temporary while the expression is being evaluated. This
1058 enables us to have chained function calls in expressions.
1059
1060 Keeping the return values as on-stack temporaries while the expression
1061 is being evaluated is OK because the thread is stopped until the
1062 expression is completely evaluated. */
1063
1064 if (struct_return || hidden_first_param_p
1065 || (stack_temporaries && class_or_union_p (values_type)))
1066 {
1067 if (gdbarch_inner_than (gdbarch, 1, 2))
1068 {
1069 /* Stack grows downward. Align STRUCT_ADDR and SP after
1070 making space for the return value. */
1071 sp -= TYPE_LENGTH (values_type);
1072 if (gdbarch_frame_align_p (gdbarch))
1073 sp = gdbarch_frame_align (gdbarch, sp);
1074 struct_addr = sp;
1075 }
1076 else
1077 {
1078 /* Stack grows upward. Align the frame, allocate space, and
1079 then again, re-align the frame??? */
1080 if (gdbarch_frame_align_p (gdbarch))
1081 sp = gdbarch_frame_align (gdbarch, sp);
1082 struct_addr = sp;
1083 sp += TYPE_LENGTH (values_type);
1084 if (gdbarch_frame_align_p (gdbarch))
1085 sp = gdbarch_frame_align (gdbarch, sp);
1086 }
1087 }
1088
1089 if (hidden_first_param_p)
1090 {
1091 struct value **new_args;
1092
1093 /* Add the new argument to the front of the argument list. */
1094 new_args = XNEWVEC (struct value *, nargs + 1);
1095 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
1096 struct_addr);
1097 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
1098 args = new_args;
1099 nargs++;
1100 args_cleanup = make_cleanup (xfree, args);
1101 }
1102 else
1103 args_cleanup = make_cleanup (null_cleanup, NULL);
1104
1105 /* Create the dummy stack frame. Pass in the call dummy address as,
1106 presumably, the ABI code knows where, in the call dummy, the
1107 return address should be pointed. */
1108 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1109 bp_addr, nargs, args,
1110 sp, struct_return, struct_addr);
1111
1112 do_cleanups (args_cleanup);
1113
1114 /* Set up a frame ID for the dummy frame so we can pass it to
1115 set_momentary_breakpoint. We need to give the breakpoint a frame
1116 ID so that the breakpoint code can correctly re-identify the
1117 dummy breakpoint. */
1118 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1119 saved as the dummy-frame TOS, and used by dummy_id to form
1120 the frame ID's stack address. */
1121 dummy_id = frame_id_build (sp, bp_addr);
1122
1123 /* Create a momentary breakpoint at the return address of the
1124 inferior. That way it breaks when it returns. */
1125
1126 {
1127 struct breakpoint *bpt, *longjmp_b;
1128 struct symtab_and_line sal;
1129
1130 init_sal (&sal); /* initialize to zeroes */
1131 sal.pspace = current_program_space;
1132 sal.pc = bp_addr;
1133 sal.section = find_pc_overlay (sal.pc);
1134 /* Sanity. The exact same SP value is returned by
1135 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1136 dummy_id to form the frame ID's stack address. */
1137 bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
1138
1139 /* set_momentary_breakpoint invalidates FRAME. */
1140 frame = NULL;
1141
1142 bpt->disposition = disp_del;
1143 gdb_assert (bpt->related_breakpoint == bpt);
1144
1145 longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1146 if (longjmp_b)
1147 {
1148 /* Link BPT into the chain of LONGJMP_B. */
1149 bpt->related_breakpoint = longjmp_b;
1150 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1151 longjmp_b = longjmp_b->related_breakpoint;
1152 longjmp_b->related_breakpoint = bpt;
1153 }
1154 }
1155
1156 /* Create a breakpoint in std::terminate.
1157 If a C++ exception is raised in the dummy-frame, and the
1158 exception handler is (normally, and expected to be) out-of-frame,
1159 the default C++ handler will (wrongly) be called in an inferior
1160 function call. This is wrong, as an exception can be normally
1161 and legally handled out-of-frame. The confines of the dummy frame
1162 prevent the unwinder from finding the correct handler (or any
1163 handler, unless it is in-frame). The default handler calls
1164 std::terminate. This will kill the inferior. Assert that
1165 terminate should never be called in an inferior function
1166 call. Place a momentary breakpoint in the std::terminate function
1167 and if triggered in the call, rewind. */
1168 if (unwind_on_terminating_exception_p)
1169 set_std_terminate_breakpoint ();
1170
1171 /* Discard both inf_status and caller_state cleanups.
1172 From this point on we explicitly restore the associated state
1173 or discard it. */
1174 discard_cleanups (inf_status_cleanup);
1175
1176 /* Everything's ready, push all the info needed to restore the
1177 caller (and identify the dummy-frame) onto the dummy-frame
1178 stack. */
1179 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1180 if (dummy_dtor != NULL)
1181 register_dummy_frame_dtor (dummy_id, inferior_ptid,
1182 dummy_dtor, dummy_dtor_data);
1183
1184 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1185 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1186 NULL);
1187
1188 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1189 If you're looking to implement asynchronous dummy-frames, then
1190 just below is the place to chop this function in two.. */
1191
1192 /* TP is invalid after run_inferior_call returns, so enclose this
1193 in a block so that it's only in scope during the time it's valid. */
1194 {
1195 struct thread_info *tp = inferior_thread ();
1196 struct thread_fsm *saved_sm;
1197 struct call_thread_fsm *sm;
1198
1199 /* Save the current FSM. We'll override it. */
1200 saved_sm = tp->thread_fsm;
1201 tp->thread_fsm = NULL;
1202
1203 /* Save this thread's ptid, we need it later but the thread
1204 may have exited. */
1205 call_thread_ptid = tp->ptid;
1206
1207 /* Run the inferior until it stops. */
1208
1209 /* Create the FSM used to manage the infcall. It tells infrun to
1210 not report the stop to the user, and captures the return value
1211 before the dummy frame is popped. run_inferior_call registers
1212 it with the thread ASAP. */
1213 sm = new_call_thread_fsm (gdbarch, function,
1214 values_type,
1215 struct_return || hidden_first_param_p,
1216 struct_addr);
1217
1218 e = run_inferior_call (sm, tp, real_pc);
1219
1220 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1221
1222 tp = find_thread_ptid (call_thread_ptid);
1223 if (tp != NULL)
1224 {
1225 /* The FSM should still be the same. */
1226 gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1227
1228 if (thread_fsm_finished_p (tp->thread_fsm))
1229 {
1230 struct value *retval;
1231
1232 /* The inferior call is successful. Pop the dummy frame,
1233 which runs its destructors and restores the inferior's
1234 suspend state, and restore the inferior control
1235 state. */
1236 dummy_frame_pop (dummy_id, call_thread_ptid);
1237 restore_infcall_control_state (inf_status);
1238
1239 /* Get the return value. */
1240 retval = sm->return_value;
1241
1242 /* Clean up / destroy the call FSM, and restore the
1243 original one. */
1244 thread_fsm_clean_up (tp->thread_fsm);
1245 thread_fsm_delete (tp->thread_fsm);
1246 tp->thread_fsm = saved_sm;
1247
1248 maybe_remove_breakpoints ();
1249
1250 do_cleanups (terminate_bp_cleanup);
1251 gdb_assert (retval != NULL);
1252 return retval;
1253 }
1254
1255 /* Didn't complete. Restore previous state machine, and
1256 handle the error. */
1257 tp->thread_fsm = saved_sm;
1258 }
1259 }
1260
1261 /* Rethrow an error if we got one trying to run the inferior. */
1262
1263 if (e.reason < 0)
1264 {
1265 const char *name = get_function_name (funaddr,
1266 name_buf, sizeof (name_buf));
1267
1268 discard_infcall_control_state (inf_status);
1269
1270 /* We could discard the dummy frame here if the program exited,
1271 but it will get garbage collected the next time the program is
1272 run anyway. */
1273
1274 switch (e.reason)
1275 {
1276 case RETURN_ERROR:
1277 throw_error (e.error, _("%s\n\
1278 An error occurred while in a function called from GDB.\n\
1279 Evaluation of the expression containing the function\n\
1280 (%s) will be abandoned.\n\
1281 When the function is done executing, GDB will silently stop."),
1282 e.message, name);
1283 case RETURN_QUIT:
1284 default:
1285 throw_exception (e);
1286 }
1287 }
1288
1289 /* If the program has exited, or we stopped at a different thread,
1290 exit and inform the user. */
1291
1292 if (! target_has_execution)
1293 {
1294 const char *name = get_function_name (funaddr,
1295 name_buf, sizeof (name_buf));
1296
1297 /* If we try to restore the inferior status,
1298 we'll crash as the inferior is no longer running. */
1299 discard_infcall_control_state (inf_status);
1300
1301 /* We could discard the dummy frame here given that the program exited,
1302 but it will get garbage collected the next time the program is
1303 run anyway. */
1304
1305 error (_("The program being debugged exited while in a function "
1306 "called from GDB.\n"
1307 "Evaluation of the expression containing the function\n"
1308 "(%s) will be abandoned."),
1309 name);
1310 }
1311
1312 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1313 {
1314 const char *name = get_function_name (funaddr,
1315 name_buf, sizeof (name_buf));
1316
1317 /* We've switched threads. This can happen if another thread gets a
1318 signal or breakpoint while our thread was running.
1319 There's no point in restoring the inferior status,
1320 we're in a different thread. */
1321 discard_infcall_control_state (inf_status);
1322 /* Keep the dummy frame record, if the user switches back to the
1323 thread with the hand-call, we'll need it. */
1324 if (stopped_by_random_signal)
1325 error (_("\
1326 The program received a signal in another thread while\n\
1327 making a function call from GDB.\n\
1328 Evaluation of the expression containing the function\n\
1329 (%s) will be abandoned.\n\
1330 When the function is done executing, GDB will silently stop."),
1331 name);
1332 else
1333 error (_("\
1334 The program stopped in another thread while making a function call from GDB.\n\
1335 Evaluation of the expression containing the function\n\
1336 (%s) will be abandoned.\n\
1337 When the function is done executing, GDB will silently stop."),
1338 name);
1339 }
1340
1341 {
1342 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1343 char *name = xstrdup (get_function_name (funaddr,
1344 name_buf, sizeof (name_buf)));
1345 make_cleanup (xfree, name);
1346
1347
1348 if (stopped_by_random_signal)
1349 {
1350 /* We stopped inside the FUNCTION because of a random
1351 signal. Further execution of the FUNCTION is not
1352 allowed. */
1353
1354 if (unwind_on_signal_p)
1355 {
1356 /* The user wants the context restored. */
1357
1358 /* We must get back to the frame we were before the
1359 dummy call. */
1360 dummy_frame_pop (dummy_id, call_thread_ptid);
1361
1362 /* We also need to restore inferior status to that before the
1363 dummy call. */
1364 restore_infcall_control_state (inf_status);
1365
1366 /* FIXME: Insert a bunch of wrap_here; name can be very
1367 long if it's a C++ name with arguments and stuff. */
1368 error (_("\
1369 The program being debugged was signaled while in a function called from GDB.\n\
1370 GDB has restored the context to what it was before the call.\n\
1371 To change this behavior use \"set unwindonsignal off\".\n\
1372 Evaluation of the expression containing the function\n\
1373 (%s) will be abandoned."),
1374 name);
1375 }
1376 else
1377 {
1378 /* The user wants to stay in the frame where we stopped
1379 (default).
1380 Discard inferior status, we're not at the same point
1381 we started at. */
1382 discard_infcall_control_state (inf_status);
1383
1384 /* FIXME: Insert a bunch of wrap_here; name can be very
1385 long if it's a C++ name with arguments and stuff. */
1386 error (_("\
1387 The program being debugged was signaled while in a function called from GDB.\n\
1388 GDB remains in the frame where the signal was received.\n\
1389 To change this behavior use \"set unwindonsignal on\".\n\
1390 Evaluation of the expression containing the function\n\
1391 (%s) will be abandoned.\n\
1392 When the function is done executing, GDB will silently stop."),
1393 name);
1394 }
1395 }
1396
1397 if (stop_stack_dummy == STOP_STD_TERMINATE)
1398 {
1399 /* We must get back to the frame we were before the dummy
1400 call. */
1401 dummy_frame_pop (dummy_id, call_thread_ptid);
1402
1403 /* We also need to restore inferior status to that before
1404 the dummy call. */
1405 restore_infcall_control_state (inf_status);
1406
1407 error (_("\
1408 The program being debugged entered a std::terminate call, most likely\n\
1409 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1410 to prevent the program from being terminated, and has restored the\n\
1411 context to its original state before the call.\n\
1412 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1413 Evaluation of the expression containing the function (%s)\n\
1414 will be abandoned."),
1415 name);
1416 }
1417 else if (stop_stack_dummy == STOP_NONE)
1418 {
1419
1420 /* We hit a breakpoint inside the FUNCTION.
1421 Keep the dummy frame, the user may want to examine its state.
1422 Discard inferior status, we're not at the same point
1423 we started at. */
1424 discard_infcall_control_state (inf_status);
1425
1426 /* The following error message used to say "The expression
1427 which contained the function call has been discarded."
1428 It is a hard concept to explain in a few words. Ideally,
1429 GDB would be able to resume evaluation of the expression
1430 when the function finally is done executing. Perhaps
1431 someday this will be implemented (it would not be easy). */
1432 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1433 a C++ name with arguments and stuff. */
1434 error (_("\
1435 The program being debugged stopped while in a function called from GDB.\n\
1436 Evaluation of the expression containing the function\n\
1437 (%s) will be abandoned.\n\
1438 When the function is done executing, GDB will silently stop."),
1439 name);
1440 }
1441
1442 }
1443
1444 /* The above code errors out, so ... */
1445 gdb_assert_not_reached ("... should not be here");
1446 }
1447 \f
1448
1449 /* Provide a prototype to silence -Wmissing-prototypes. */
1450 void _initialize_infcall (void);
1451
1452 void
1453 _initialize_infcall (void)
1454 {
1455 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1456 &coerce_float_to_double_p, _("\
1457 Set coercion of floats to doubles when calling functions."), _("\
1458 Show coercion of floats to doubles when calling functions"), _("\
1459 Variables of type float should generally be converted to doubles before\n\
1460 calling an unprototyped function, and left alone when calling a prototyped\n\
1461 function. However, some older debug info formats do not provide enough\n\
1462 information to determine that a function is prototyped. If this flag is\n\
1463 set, GDB will perform the conversion for a function it considers\n\
1464 unprototyped.\n\
1465 The default is to perform the conversion.\n"),
1466 NULL,
1467 show_coerce_float_to_double_p,
1468 &setlist, &showlist);
1469
1470 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1471 &unwind_on_signal_p, _("\
1472 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1473 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1474 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1475 is received while in a function called from gdb (call dummy). If set, gdb\n\
1476 unwinds the stack and restore the context to what as it was before the call.\n\
1477 The default is to stop in the frame where the signal was received."),
1478 NULL,
1479 show_unwind_on_signal_p,
1480 &setlist, &showlist);
1481
1482 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1483 &unwind_on_terminating_exception_p, _("\
1484 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1485 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1486 _("\
1487 The unwind on terminating exception flag lets the user determine\n\
1488 what gdb should do if a std::terminate() call is made from the\n\
1489 default exception handler. If set, gdb unwinds the stack and restores\n\
1490 the context to what it was before the call. If unset, gdb allows the\n\
1491 std::terminate call to proceed.\n\
1492 The default is to unwind the frame."),
1493 NULL,
1494 show_unwind_on_terminating_exception_p,
1495 &setlist, &showlist);
1496
1497 }
This page took 0.06272 seconds and 4 git commands to generate.