Remove stop_registers
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "breakpoint.h"
22 #include "tracepoint.h"
23 #include "target.h"
24 #include "regcache.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "block.h"
28 #include "gdbcore.h"
29 #include "language.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "infcall.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39
40 /* If we can't find a function's name from its address,
41 we print this instead. */
42 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
43 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
44 + 2 * sizeof (CORE_ADDR))
45
46 /* NOTE: cagney/2003-04-16: What's the future of this code?
47
48 GDB needs an asynchronous expression evaluator, that means an
49 asynchronous inferior function call implementation, and that in
50 turn means restructuring the code so that it is event driven. */
51
52 /* How you should pass arguments to a function depends on whether it
53 was defined in K&R style or prototype style. If you define a
54 function using the K&R syntax that takes a `float' argument, then
55 callers must pass that argument as a `double'. If you define the
56 function using the prototype syntax, then you must pass the
57 argument as a `float', with no promotion.
58
59 Unfortunately, on certain older platforms, the debug info doesn't
60 indicate reliably how each function was defined. A function type's
61 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
62 defined in prototype style. When calling a function whose
63 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
64 decide what to do.
65
66 For modern targets, it is proper to assume that, if the prototype
67 flag is clear, that can be trusted: `float' arguments should be
68 promoted to `double'. For some older targets, if the prototype
69 flag is clear, that doesn't tell us anything. The default is to
70 trust the debug information; the user can override this behavior
71 with "set coerce-float-to-double 0". */
72
73 static int coerce_float_to_double_p = 1;
74 static void
75 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
76 struct cmd_list_element *c, const char *value)
77 {
78 fprintf_filtered (file,
79 _("Coercion of floats to doubles "
80 "when calling functions is %s.\n"),
81 value);
82 }
83
84 /* This boolean tells what gdb should do if a signal is received while
85 in a function called from gdb (call dummy). If set, gdb unwinds
86 the stack and restore the context to what as it was before the
87 call.
88
89 The default is to stop in the frame where the signal was received. */
90
91 static int unwind_on_signal_p = 0;
92 static void
93 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file,
97 _("Unwinding of stack if a signal is "
98 "received while in a call dummy is %s.\n"),
99 value);
100 }
101
102 /* This boolean tells what gdb should do if a std::terminate call is
103 made while in a function called from gdb (call dummy).
104 As the confines of a single dummy stack prohibit out-of-frame
105 handlers from handling a raised exception, and as out-of-frame
106 handlers are common in C++, this can lead to no handler being found
107 by the unwinder, and a std::terminate call. This is a false positive.
108 If set, gdb unwinds the stack and restores the context to what it
109 was before the call.
110
111 The default is to unwind the frame if a std::terminate call is
112 made. */
113
114 static int unwind_on_terminating_exception_p = 1;
115
116 static void
117 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c,
119 const char *value)
120
121 {
122 fprintf_filtered (file,
123 _("Unwind stack if a C++ exception is "
124 "unhandled while in a call dummy is %s.\n"),
125 value);
126 }
127
128 /* Perform the standard coercions that are specified
129 for arguments to be passed to C or Ada functions.
130
131 If PARAM_TYPE is non-NULL, it is the expected parameter type.
132 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
133 SP is the stack pointer were additional data can be pushed (updating
134 its value as needed). */
135
136 static struct value *
137 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
138 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
139 {
140 const struct builtin_type *builtin = builtin_type (gdbarch);
141 struct type *arg_type = check_typedef (value_type (arg));
142 struct type *type
143 = param_type ? check_typedef (param_type) : arg_type;
144
145 /* Perform any Ada-specific coercion first. */
146 if (current_language->la_language == language_ada)
147 arg = ada_convert_actual (arg, type);
148
149 /* Force the value to the target if we will need its address. At
150 this point, we could allocate arguments on the stack instead of
151 calling malloc if we knew that their addresses would not be
152 saved by the called function. */
153 arg = value_coerce_to_target (arg);
154
155 switch (TYPE_CODE (type))
156 {
157 case TYPE_CODE_REF:
158 {
159 struct value *new_value;
160
161 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
162 return value_cast_pointers (type, arg, 0);
163
164 /* Cast the value to the reference's target type, and then
165 convert it back to a reference. This will issue an error
166 if the value was not previously in memory - in some cases
167 we should clearly be allowing this, but how? */
168 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
169 new_value = value_ref (new_value);
170 return new_value;
171 }
172 case TYPE_CODE_INT:
173 case TYPE_CODE_CHAR:
174 case TYPE_CODE_BOOL:
175 case TYPE_CODE_ENUM:
176 /* If we don't have a prototype, coerce to integer type if necessary. */
177 if (!is_prototyped)
178 {
179 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
180 type = builtin->builtin_int;
181 }
182 /* Currently all target ABIs require at least the width of an integer
183 type for an argument. We may have to conditionalize the following
184 type coercion for future targets. */
185 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
186 type = builtin->builtin_int;
187 break;
188 case TYPE_CODE_FLT:
189 if (!is_prototyped && coerce_float_to_double_p)
190 {
191 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
192 type = builtin->builtin_double;
193 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
194 type = builtin->builtin_long_double;
195 }
196 break;
197 case TYPE_CODE_FUNC:
198 type = lookup_pointer_type (type);
199 break;
200 case TYPE_CODE_ARRAY:
201 /* Arrays are coerced to pointers to their first element, unless
202 they are vectors, in which case we want to leave them alone,
203 because they are passed by value. */
204 if (current_language->c_style_arrays)
205 if (!TYPE_VECTOR (type))
206 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
207 break;
208 case TYPE_CODE_UNDEF:
209 case TYPE_CODE_PTR:
210 case TYPE_CODE_STRUCT:
211 case TYPE_CODE_UNION:
212 case TYPE_CODE_VOID:
213 case TYPE_CODE_SET:
214 case TYPE_CODE_RANGE:
215 case TYPE_CODE_STRING:
216 case TYPE_CODE_ERROR:
217 case TYPE_CODE_MEMBERPTR:
218 case TYPE_CODE_METHODPTR:
219 case TYPE_CODE_METHOD:
220 case TYPE_CODE_COMPLEX:
221 default:
222 break;
223 }
224
225 return value_cast (type, arg);
226 }
227
228 /* Return the return type of a function with its first instruction exactly at
229 the PC address. Return NULL otherwise. */
230
231 static struct type *
232 find_function_return_type (CORE_ADDR pc)
233 {
234 struct symbol *sym = find_pc_function (pc);
235
236 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
237 && SYMBOL_TYPE (sym) != NULL)
238 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
239
240 return NULL;
241 }
242
243 /* Determine a function's address and its return type from its value.
244 Calls error() if the function is not valid for calling. */
245
246 CORE_ADDR
247 find_function_addr (struct value *function, struct type **retval_type)
248 {
249 struct type *ftype = check_typedef (value_type (function));
250 struct gdbarch *gdbarch = get_type_arch (ftype);
251 struct type *value_type = NULL;
252 /* Initialize it just to avoid a GCC false warning. */
253 CORE_ADDR funaddr = 0;
254
255 /* If it's a member function, just look at the function
256 part of it. */
257
258 /* Determine address to call. */
259 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
260 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
261 funaddr = value_address (function);
262 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
263 {
264 funaddr = value_as_address (function);
265 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
266 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
267 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
268 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
269 &current_target);
270 }
271 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
272 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
273 {
274 value_type = TYPE_TARGET_TYPE (ftype);
275
276 if (TYPE_GNU_IFUNC (ftype))
277 {
278 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
279
280 /* Skip querying the function symbol if no RETVAL_TYPE has been
281 asked for. */
282 if (retval_type)
283 value_type = find_function_return_type (funaddr);
284 }
285 }
286 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
287 {
288 /* Handle the case of functions lacking debugging info.
289 Their values are characters since their addresses are char. */
290 if (TYPE_LENGTH (ftype) == 1)
291 funaddr = value_as_address (value_addr (function));
292 else
293 {
294 /* Handle function descriptors lacking debug info. */
295 int found_descriptor = 0;
296
297 funaddr = 0; /* pacify "gcc -Werror" */
298 if (VALUE_LVAL (function) == lval_memory)
299 {
300 CORE_ADDR nfunaddr;
301
302 funaddr = value_as_address (value_addr (function));
303 nfunaddr = funaddr;
304 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
305 &current_target);
306 if (funaddr != nfunaddr)
307 found_descriptor = 1;
308 }
309 if (!found_descriptor)
310 /* Handle integer used as address of a function. */
311 funaddr = (CORE_ADDR) value_as_long (function);
312 }
313 }
314 else
315 error (_("Invalid data type for function to be called."));
316
317 if (retval_type != NULL)
318 *retval_type = value_type;
319 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
320 }
321
322 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
323 function returns to. */
324
325 static CORE_ADDR
326 push_dummy_code (struct gdbarch *gdbarch,
327 CORE_ADDR sp, CORE_ADDR funaddr,
328 struct value **args, int nargs,
329 struct type *value_type,
330 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
331 struct regcache *regcache)
332 {
333 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
334
335 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
336 args, nargs, value_type, real_pc, bp_addr,
337 regcache);
338 }
339
340 /* Fetch the name of the function at FUNADDR.
341 This is used in printing an error message for call_function_by_hand.
342 BUF is used to print FUNADDR in hex if the function name cannot be
343 determined. It must be large enough to hold formatted result of
344 RAW_FUNCTION_ADDRESS_FORMAT. */
345
346 static const char *
347 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
348 {
349 {
350 struct symbol *symbol = find_pc_function (funaddr);
351
352 if (symbol)
353 return SYMBOL_PRINT_NAME (symbol);
354 }
355
356 {
357 /* Try the minimal symbols. */
358 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
359
360 if (msymbol.minsym)
361 return MSYMBOL_PRINT_NAME (msymbol.minsym);
362 }
363
364 {
365 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
366 hex_string (funaddr));
367
368 gdb_assert (strlen (tmp) + 1 <= buf_size);
369 strcpy (buf, tmp);
370 xfree (tmp);
371 return buf;
372 }
373 }
374
375 /* Subroutine of call_function_by_hand to simplify it.
376 Start up the inferior and wait for it to stop.
377 Return the exception if there's an error, or an exception with
378 reason >= 0 if there's no error.
379
380 This is done inside a TRY_CATCH so the caller needn't worry about
381 thrown errors. The caller should rethrow if there's an error. */
382
383 static struct gdb_exception
384 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
385 {
386 struct gdb_exception caught_error = exception_none;
387 int saved_in_infcall = call_thread->control.in_infcall;
388 ptid_t call_thread_ptid = call_thread->ptid;
389 int saved_sync_execution = sync_execution;
390
391 /* Infcalls run synchronously, in the foreground. */
392 if (target_can_async_p ())
393 sync_execution = 1;
394
395 call_thread->control.in_infcall = 1;
396
397 clear_proceed_status (0);
398
399 disable_watchpoints_before_interactive_call_start ();
400
401 /* We want to print return value, please... */
402 call_thread->control.proceed_to_finish = 1;
403
404 TRY
405 {
406 int was_sync = sync_execution;
407
408 proceed (real_pc, GDB_SIGNAL_0);
409
410 /* Inferior function calls are always synchronous, even if the
411 target supports asynchronous execution. Do here what
412 `proceed' itself does in sync mode. */
413 if (target_can_async_p ())
414 {
415 wait_for_inferior ();
416 normal_stop ();
417 /* If GDB was previously in sync execution mode, then ensure
418 that it remains so. normal_stop calls
419 async_enable_stdin, so reset it again here. In other
420 cases, stdin will be re-enabled by
421 inferior_event_handler, when an exception is thrown. */
422 if (was_sync)
423 async_disable_stdin ();
424 }
425 }
426 CATCH (e, RETURN_MASK_ALL)
427 {
428 caught_error = e;
429 }
430 END_CATCH
431
432 /* At this point the current thread may have changed. Refresh
433 CALL_THREAD as it could be invalid if its thread has exited. */
434 call_thread = find_thread_ptid (call_thread_ptid);
435
436 enable_watchpoints_after_interactive_call_stop ();
437
438 /* Call breakpoint_auto_delete on the current contents of the bpstat
439 of inferior call thread.
440 If all error()s out of proceed ended up calling normal_stop
441 (and perhaps they should; it already does in the special case
442 of error out of resume()), then we wouldn't need this. */
443 if (caught_error.reason < 0)
444 {
445 if (call_thread != NULL)
446 breakpoint_auto_delete (call_thread->control.stop_bpstat);
447 }
448
449 if (call_thread != NULL)
450 call_thread->control.in_infcall = saved_in_infcall;
451
452 sync_execution = saved_sync_execution;
453
454 return caught_error;
455 }
456
457 /* A cleanup function that calls delete_std_terminate_breakpoint. */
458 static void
459 cleanup_delete_std_terminate_breakpoint (void *ignore)
460 {
461 delete_std_terminate_breakpoint ();
462 }
463
464 /* See infcall.h. */
465
466 struct value *
467 call_function_by_hand (struct value *function, int nargs, struct value **args)
468 {
469 return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
470 }
471
472 /* Data for dummy_frame_context_saver. Structure can be freed only
473 after both dummy_frame_context_saver_dtor and
474 dummy_frame_context_saver_drop have been called for it. */
475
476 struct dummy_frame_context_saver
477 {
478 /* Inferior registers fetched before associated dummy_frame got freed
479 and before any other destructors of associated dummy_frame got called.
480 It is initialized to NULL. */
481 struct regcache *retbuf;
482
483 /* It is 1 if this dummy_frame_context_saver_drop has been already
484 called. */
485 int drop_done;
486 };
487
488 /* Free struct dummy_frame_context_saver. */
489
490 static void
491 dummy_frame_context_saver_free (struct dummy_frame_context_saver *saver)
492 {
493 regcache_xfree (saver->retbuf);
494 xfree (saver);
495 }
496
497 /* Destructor for associated dummy_frame. */
498
499 static void
500 dummy_frame_context_saver_dtor (void *data_voidp, int registers_valid)
501 {
502 struct dummy_frame_context_saver *data = data_voidp;
503
504 gdb_assert (data->retbuf == NULL);
505
506 if (data->drop_done)
507 dummy_frame_context_saver_free (data);
508 else if (registers_valid)
509 data->retbuf = regcache_dup (get_current_regcache ());
510 }
511
512 /* Caller is no longer interested in this
513 struct dummy_frame_context_saver. After its associated dummy_frame
514 gets freed struct dummy_frame_context_saver can be also freed. */
515
516 void
517 dummy_frame_context_saver_drop (struct dummy_frame_context_saver *saver)
518 {
519 saver->drop_done = 1;
520
521 if (!find_dummy_frame_dtor (dummy_frame_context_saver_dtor, saver))
522 dummy_frame_context_saver_free (saver);
523 }
524
525 /* Stub dummy_frame_context_saver_drop compatible with make_cleanup. */
526
527 void
528 dummy_frame_context_saver_cleanup (void *data)
529 {
530 struct dummy_frame_context_saver *saver = data;
531
532 dummy_frame_context_saver_drop (saver);
533 }
534
535 /* Fetch RETBUF field of possibly opaque DTOR_DATA.
536 RETBUF must not be NULL. */
537
538 struct regcache *
539 dummy_frame_context_saver_get_regs (struct dummy_frame_context_saver *saver)
540 {
541 gdb_assert (saver->retbuf != NULL);
542 return saver->retbuf;
543 }
544
545 /* Register provider of inferior registers at the time DUMMY_ID frame of
546 PTID gets freed (before inferior registers get restored to those
547 before dummy_frame). */
548
549 struct dummy_frame_context_saver *
550 dummy_frame_context_saver_setup (struct frame_id dummy_id, ptid_t ptid)
551 {
552 struct dummy_frame_context_saver *saver;
553
554 saver = xmalloc (sizeof (*saver));
555 saver->retbuf = NULL;
556 saver->drop_done = 0;
557 register_dummy_frame_dtor (dummy_id, inferior_ptid,
558 dummy_frame_context_saver_dtor, saver);
559 return saver;
560 }
561
562 /* All this stuff with a dummy frame may seem unnecessarily complicated
563 (why not just save registers in GDB?). The purpose of pushing a dummy
564 frame which looks just like a real frame is so that if you call a
565 function and then hit a breakpoint (get a signal, etc), "backtrace"
566 will look right. Whether the backtrace needs to actually show the
567 stack at the time the inferior function was called is debatable, but
568 it certainly needs to not display garbage. So if you are contemplating
569 making dummy frames be different from normal frames, consider that. */
570
571 /* Perform a function call in the inferior.
572 ARGS is a vector of values of arguments (NARGS of them).
573 FUNCTION is a value, the function to be called.
574 Returns a value representing what the function returned.
575 May fail to return, if a breakpoint or signal is hit
576 during the execution of the function.
577
578 ARGS is modified to contain coerced values. */
579
580 struct value *
581 call_function_by_hand_dummy (struct value *function,
582 int nargs, struct value **args,
583 dummy_frame_dtor_ftype *dummy_dtor,
584 void *dummy_dtor_data)
585 {
586 CORE_ADDR sp;
587 struct type *values_type, *target_values_type;
588 unsigned char struct_return = 0, hidden_first_param_p = 0;
589 CORE_ADDR struct_addr = 0;
590 struct infcall_control_state *inf_status;
591 struct cleanup *inf_status_cleanup;
592 struct infcall_suspend_state *caller_state;
593 CORE_ADDR funaddr;
594 CORE_ADDR real_pc;
595 struct type *ftype = check_typedef (value_type (function));
596 CORE_ADDR bp_addr;
597 struct frame_id dummy_id;
598 struct cleanup *args_cleanup;
599 struct frame_info *frame;
600 struct gdbarch *gdbarch;
601 struct cleanup *terminate_bp_cleanup;
602 ptid_t call_thread_ptid;
603 struct gdb_exception e;
604 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
605 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
606 struct dummy_frame_context_saver *context_saver;
607 struct cleanup *context_saver_cleanup;
608
609 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
610 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
611
612 if (!target_has_execution)
613 noprocess ();
614
615 if (get_traceframe_number () >= 0)
616 error (_("May not call functions while looking at trace frames."));
617
618 if (execution_direction == EXEC_REVERSE)
619 error (_("Cannot call functions in reverse mode."));
620
621 frame = get_current_frame ();
622 gdbarch = get_frame_arch (frame);
623
624 if (!gdbarch_push_dummy_call_p (gdbarch))
625 error (_("This target does not support function calls."));
626
627 /* A cleanup for the inferior status.
628 This is only needed while we're preparing the inferior function call. */
629 inf_status = save_infcall_control_state ();
630 inf_status_cleanup
631 = make_cleanup_restore_infcall_control_state (inf_status);
632
633 /* Save the caller's registers and other state associated with the
634 inferior itself so that they can be restored once the
635 callee returns. To allow nested calls the registers are (further
636 down) pushed onto a dummy frame stack. Include a cleanup (which
637 is tossed once the regcache has been pushed). */
638 caller_state = save_infcall_suspend_state ();
639 make_cleanup_restore_infcall_suspend_state (caller_state);
640
641 /* Ensure that the initial SP is correctly aligned. */
642 {
643 CORE_ADDR old_sp = get_frame_sp (frame);
644
645 if (gdbarch_frame_align_p (gdbarch))
646 {
647 sp = gdbarch_frame_align (gdbarch, old_sp);
648 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
649 ABIs, a function can use memory beyond the inner most stack
650 address. AMD64 called that region the "red zone". Skip at
651 least the "red zone" size before allocating any space on
652 the stack. */
653 if (gdbarch_inner_than (gdbarch, 1, 2))
654 sp -= gdbarch_frame_red_zone_size (gdbarch);
655 else
656 sp += gdbarch_frame_red_zone_size (gdbarch);
657 /* Still aligned? */
658 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
659 /* NOTE: cagney/2002-09-18:
660
661 On a RISC architecture, a void parameterless generic dummy
662 frame (i.e., no parameters, no result) typically does not
663 need to push anything the stack and hence can leave SP and
664 FP. Similarly, a frameless (possibly leaf) function does
665 not push anything on the stack and, hence, that too can
666 leave FP and SP unchanged. As a consequence, a sequence of
667 void parameterless generic dummy frame calls to frameless
668 functions will create a sequence of effectively identical
669 frames (SP, FP and TOS and PC the same). This, not
670 suprisingly, results in what appears to be a stack in an
671 infinite loop --- when GDB tries to find a generic dummy
672 frame on the internal dummy frame stack, it will always
673 find the first one.
674
675 To avoid this problem, the code below always grows the
676 stack. That way, two dummy frames can never be identical.
677 It does burn a few bytes of stack but that is a small price
678 to pay :-). */
679 if (sp == old_sp)
680 {
681 if (gdbarch_inner_than (gdbarch, 1, 2))
682 /* Stack grows down. */
683 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
684 else
685 /* Stack grows up. */
686 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
687 }
688 /* SP may have underflown address zero here from OLD_SP. Memory access
689 functions will probably fail in such case but that is a target's
690 problem. */
691 }
692 else
693 /* FIXME: cagney/2002-09-18: Hey, you loose!
694
695 Who knows how badly aligned the SP is!
696
697 If the generic dummy frame ends up empty (because nothing is
698 pushed) GDB won't be able to correctly perform back traces.
699 If a target is having trouble with backtraces, first thing to
700 do is add FRAME_ALIGN() to the architecture vector. If that
701 fails, try dummy_id().
702
703 If the ABI specifies a "Red Zone" (see the doco) the code
704 below will quietly trash it. */
705 sp = old_sp;
706
707 /* Skip over the stack temporaries that might have been generated during
708 the evaluation of an expression. */
709 if (stack_temporaries)
710 {
711 struct value *lastval;
712
713 lastval = get_last_thread_stack_temporary (inferior_ptid);
714 if (lastval != NULL)
715 {
716 CORE_ADDR lastval_addr = value_address (lastval);
717
718 if (gdbarch_inner_than (gdbarch, 1, 2))
719 {
720 gdb_assert (sp >= lastval_addr);
721 sp = lastval_addr;
722 }
723 else
724 {
725 gdb_assert (sp <= lastval_addr);
726 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
727 }
728
729 if (gdbarch_frame_align_p (gdbarch))
730 sp = gdbarch_frame_align (gdbarch, sp);
731 }
732 }
733 }
734
735 funaddr = find_function_addr (function, &values_type);
736 if (!values_type)
737 values_type = builtin_type (gdbarch)->builtin_int;
738
739 CHECK_TYPEDEF (values_type);
740
741 /* Are we returning a value using a structure return (passing a
742 hidden argument pointing to storage) or a normal value return?
743 There are two cases: language-mandated structure return and
744 target ABI structure return. The variable STRUCT_RETURN only
745 describes the latter. The language version is handled by passing
746 the return location as the first parameter to the function,
747 even preceding "this". This is different from the target
748 ABI version, which is target-specific; for instance, on ia64
749 the first argument is passed in out0 but the hidden structure
750 return pointer would normally be passed in r8. */
751
752 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
753 {
754 hidden_first_param_p = 1;
755
756 /* Tell the target specific argument pushing routine not to
757 expect a value. */
758 target_values_type = builtin_type (gdbarch)->builtin_void;
759 }
760 else
761 {
762 struct_return = using_struct_return (gdbarch, function, values_type);
763 target_values_type = values_type;
764 }
765
766 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
767
768 /* Determine the location of the breakpoint (and possibly other
769 stuff) that the called function will return to. The SPARC, for a
770 function returning a structure or union, needs to make space for
771 not just the breakpoint but also an extra word containing the
772 size (?) of the structure being passed. */
773
774 switch (gdbarch_call_dummy_location (gdbarch))
775 {
776 case ON_STACK:
777 {
778 const gdb_byte *bp_bytes;
779 CORE_ADDR bp_addr_as_address;
780 int bp_size;
781
782 /* Be careful BP_ADDR is in inferior PC encoding while
783 BP_ADDR_AS_ADDRESS is a plain memory address. */
784
785 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
786 target_values_type, &real_pc, &bp_addr,
787 get_current_regcache ());
788
789 /* Write a legitimate instruction at the point where the infcall
790 breakpoint is going to be inserted. While this instruction
791 is never going to be executed, a user investigating the
792 memory from GDB would see this instruction instead of random
793 uninitialized bytes. We chose the breakpoint instruction
794 as it may look as the most logical one to the user and also
795 valgrind 3.7.0 needs it for proper vgdb inferior calls.
796
797 If software breakpoints are unsupported for this target we
798 leave the user visible memory content uninitialized. */
799
800 bp_addr_as_address = bp_addr;
801 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
802 &bp_size);
803 if (bp_bytes != NULL)
804 write_memory (bp_addr_as_address, bp_bytes, bp_size);
805 }
806 break;
807 case AT_ENTRY_POINT:
808 {
809 CORE_ADDR dummy_addr;
810
811 real_pc = funaddr;
812 dummy_addr = entry_point_address ();
813
814 /* A call dummy always consists of just a single breakpoint, so
815 its address is the same as the address of the dummy.
816
817 The actual breakpoint is inserted separatly so there is no need to
818 write that out. */
819 bp_addr = dummy_addr;
820 break;
821 }
822 default:
823 internal_error (__FILE__, __LINE__, _("bad switch"));
824 }
825
826 if (nargs < TYPE_NFIELDS (ftype))
827 error (_("Too few arguments in function call."));
828
829 {
830 int i;
831
832 for (i = nargs - 1; i >= 0; i--)
833 {
834 int prototyped;
835 struct type *param_type;
836
837 /* FIXME drow/2002-05-31: Should just always mark methods as
838 prototyped. Can we respect TYPE_VARARGS? Probably not. */
839 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
840 prototyped = 1;
841 else if (i < TYPE_NFIELDS (ftype))
842 prototyped = TYPE_PROTOTYPED (ftype);
843 else
844 prototyped = 0;
845
846 if (i < TYPE_NFIELDS (ftype))
847 param_type = TYPE_FIELD_TYPE (ftype, i);
848 else
849 param_type = NULL;
850
851 args[i] = value_arg_coerce (gdbarch, args[i],
852 param_type, prototyped, &sp);
853
854 if (param_type != NULL && language_pass_by_reference (param_type))
855 args[i] = value_addr (args[i]);
856 }
857 }
858
859 /* Reserve space for the return structure to be written on the
860 stack, if necessary. Make certain that the value is correctly
861 aligned.
862
863 While evaluating expressions, we reserve space on the stack for
864 return values of class type even if the language ABI and the target
865 ABI do not require that the return value be passed as a hidden first
866 argument. This is because we want to store the return value as an
867 on-stack temporary while the expression is being evaluated. This
868 enables us to have chained function calls in expressions.
869
870 Keeping the return values as on-stack temporaries while the expression
871 is being evaluated is OK because the thread is stopped until the
872 expression is completely evaluated. */
873
874 if (struct_return || hidden_first_param_p
875 || (stack_temporaries && class_or_union_p (values_type)))
876 {
877 if (gdbarch_inner_than (gdbarch, 1, 2))
878 {
879 /* Stack grows downward. Align STRUCT_ADDR and SP after
880 making space for the return value. */
881 sp -= TYPE_LENGTH (values_type);
882 if (gdbarch_frame_align_p (gdbarch))
883 sp = gdbarch_frame_align (gdbarch, sp);
884 struct_addr = sp;
885 }
886 else
887 {
888 /* Stack grows upward. Align the frame, allocate space, and
889 then again, re-align the frame??? */
890 if (gdbarch_frame_align_p (gdbarch))
891 sp = gdbarch_frame_align (gdbarch, sp);
892 struct_addr = sp;
893 sp += TYPE_LENGTH (values_type);
894 if (gdbarch_frame_align_p (gdbarch))
895 sp = gdbarch_frame_align (gdbarch, sp);
896 }
897 }
898
899 if (hidden_first_param_p)
900 {
901 struct value **new_args;
902
903 /* Add the new argument to the front of the argument list. */
904 new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
905 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
906 struct_addr);
907 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
908 args = new_args;
909 nargs++;
910 args_cleanup = make_cleanup (xfree, args);
911 }
912 else
913 args_cleanup = make_cleanup (null_cleanup, NULL);
914
915 /* Create the dummy stack frame. Pass in the call dummy address as,
916 presumably, the ABI code knows where, in the call dummy, the
917 return address should be pointed. */
918 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
919 bp_addr, nargs, args,
920 sp, struct_return, struct_addr);
921
922 do_cleanups (args_cleanup);
923
924 /* Set up a frame ID for the dummy frame so we can pass it to
925 set_momentary_breakpoint. We need to give the breakpoint a frame
926 ID so that the breakpoint code can correctly re-identify the
927 dummy breakpoint. */
928 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
929 saved as the dummy-frame TOS, and used by dummy_id to form
930 the frame ID's stack address. */
931 dummy_id = frame_id_build (sp, bp_addr);
932
933 /* Create a momentary breakpoint at the return address of the
934 inferior. That way it breaks when it returns. */
935
936 {
937 struct breakpoint *bpt, *longjmp_b;
938 struct symtab_and_line sal;
939
940 init_sal (&sal); /* initialize to zeroes */
941 sal.pspace = current_program_space;
942 sal.pc = bp_addr;
943 sal.section = find_pc_overlay (sal.pc);
944 /* Sanity. The exact same SP value is returned by
945 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
946 dummy_id to form the frame ID's stack address. */
947 bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
948
949 /* set_momentary_breakpoint invalidates FRAME. */
950 frame = NULL;
951
952 bpt->disposition = disp_del;
953 gdb_assert (bpt->related_breakpoint == bpt);
954
955 longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
956 if (longjmp_b)
957 {
958 /* Link BPT into the chain of LONGJMP_B. */
959 bpt->related_breakpoint = longjmp_b;
960 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
961 longjmp_b = longjmp_b->related_breakpoint;
962 longjmp_b->related_breakpoint = bpt;
963 }
964 }
965
966 /* Create a breakpoint in std::terminate.
967 If a C++ exception is raised in the dummy-frame, and the
968 exception handler is (normally, and expected to be) out-of-frame,
969 the default C++ handler will (wrongly) be called in an inferior
970 function call. This is wrong, as an exception can be normally
971 and legally handled out-of-frame. The confines of the dummy frame
972 prevent the unwinder from finding the correct handler (or any
973 handler, unless it is in-frame). The default handler calls
974 std::terminate. This will kill the inferior. Assert that
975 terminate should never be called in an inferior function
976 call. Place a momentary breakpoint in the std::terminate function
977 and if triggered in the call, rewind. */
978 if (unwind_on_terminating_exception_p)
979 set_std_terminate_breakpoint ();
980
981 /* Discard both inf_status and caller_state cleanups.
982 From this point on we explicitly restore the associated state
983 or discard it. */
984 discard_cleanups (inf_status_cleanup);
985
986 /* Everything's ready, push all the info needed to restore the
987 caller (and identify the dummy-frame) onto the dummy-frame
988 stack. */
989 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
990 if (dummy_dtor != NULL)
991 register_dummy_frame_dtor (dummy_id, inferior_ptid,
992 dummy_dtor, dummy_dtor_data);
993
994 /* dummy_frame_context_saver_setup must be called last so that its
995 saving of inferior registers gets called first (before possible
996 DUMMY_DTOR destructor). */
997 context_saver = dummy_frame_context_saver_setup (dummy_id, inferior_ptid);
998 context_saver_cleanup = make_cleanup (dummy_frame_context_saver_cleanup,
999 context_saver);
1000
1001 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1002 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1003 NULL);
1004
1005 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1006 If you're looking to implement asynchronous dummy-frames, then
1007 just below is the place to chop this function in two.. */
1008
1009 /* TP is invalid after run_inferior_call returns, so enclose this
1010 in a block so that it's only in scope during the time it's valid. */
1011 {
1012 struct thread_info *tp = inferior_thread ();
1013
1014 /* Save this thread's ptid, we need it later but the thread
1015 may have exited. */
1016 call_thread_ptid = tp->ptid;
1017
1018 /* Run the inferior until it stops. */
1019
1020 e = run_inferior_call (tp, real_pc);
1021 }
1022
1023 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1024
1025 /* Rethrow an error if we got one trying to run the inferior. */
1026
1027 if (e.reason < 0)
1028 {
1029 const char *name = get_function_name (funaddr,
1030 name_buf, sizeof (name_buf));
1031
1032 discard_infcall_control_state (inf_status);
1033
1034 /* We could discard the dummy frame here if the program exited,
1035 but it will get garbage collected the next time the program is
1036 run anyway. */
1037
1038 switch (e.reason)
1039 {
1040 case RETURN_ERROR:
1041 throw_error (e.error, _("%s\n\
1042 An error occurred while in a function called from GDB.\n\
1043 Evaluation of the expression containing the function\n\
1044 (%s) will be abandoned.\n\
1045 When the function is done executing, GDB will silently stop."),
1046 e.message, name);
1047 case RETURN_QUIT:
1048 default:
1049 throw_exception (e);
1050 }
1051 }
1052
1053 /* If the program has exited, or we stopped at a different thread,
1054 exit and inform the user. */
1055
1056 if (! target_has_execution)
1057 {
1058 const char *name = get_function_name (funaddr,
1059 name_buf, sizeof (name_buf));
1060
1061 /* If we try to restore the inferior status,
1062 we'll crash as the inferior is no longer running. */
1063 discard_infcall_control_state (inf_status);
1064
1065 /* We could discard the dummy frame here given that the program exited,
1066 but it will get garbage collected the next time the program is
1067 run anyway. */
1068
1069 error (_("The program being debugged exited while in a function "
1070 "called from GDB.\n"
1071 "Evaluation of the expression containing the function\n"
1072 "(%s) will be abandoned."),
1073 name);
1074 }
1075
1076 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1077 {
1078 const char *name = get_function_name (funaddr,
1079 name_buf, sizeof (name_buf));
1080
1081 /* We've switched threads. This can happen if another thread gets a
1082 signal or breakpoint while our thread was running.
1083 There's no point in restoring the inferior status,
1084 we're in a different thread. */
1085 discard_infcall_control_state (inf_status);
1086 /* Keep the dummy frame record, if the user switches back to the
1087 thread with the hand-call, we'll need it. */
1088 if (stopped_by_random_signal)
1089 error (_("\
1090 The program received a signal in another thread while\n\
1091 making a function call from GDB.\n\
1092 Evaluation of the expression containing the function\n\
1093 (%s) will be abandoned.\n\
1094 When the function is done executing, GDB will silently stop."),
1095 name);
1096 else
1097 error (_("\
1098 The program stopped in another thread while making a function call from GDB.\n\
1099 Evaluation of the expression containing the function\n\
1100 (%s) will be abandoned.\n\
1101 When the function is done executing, GDB will silently stop."),
1102 name);
1103 }
1104
1105 if (stopped_by_random_signal || stop_stack_dummy != STOP_STACK_DUMMY)
1106 {
1107 const char *name = get_function_name (funaddr,
1108 name_buf, sizeof (name_buf));
1109
1110 if (stopped_by_random_signal)
1111 {
1112 /* We stopped inside the FUNCTION because of a random
1113 signal. Further execution of the FUNCTION is not
1114 allowed. */
1115
1116 if (unwind_on_signal_p)
1117 {
1118 /* The user wants the context restored. */
1119
1120 /* We must get back to the frame we were before the
1121 dummy call. */
1122 dummy_frame_pop (dummy_id, call_thread_ptid);
1123
1124 /* We also need to restore inferior status to that before the
1125 dummy call. */
1126 restore_infcall_control_state (inf_status);
1127
1128 /* FIXME: Insert a bunch of wrap_here; name can be very
1129 long if it's a C++ name with arguments and stuff. */
1130 error (_("\
1131 The program being debugged was signaled while in a function called from GDB.\n\
1132 GDB has restored the context to what it was before the call.\n\
1133 To change this behavior use \"set unwindonsignal off\".\n\
1134 Evaluation of the expression containing the function\n\
1135 (%s) will be abandoned."),
1136 name);
1137 }
1138 else
1139 {
1140 /* The user wants to stay in the frame where we stopped
1141 (default).
1142 Discard inferior status, we're not at the same point
1143 we started at. */
1144 discard_infcall_control_state (inf_status);
1145
1146 /* FIXME: Insert a bunch of wrap_here; name can be very
1147 long if it's a C++ name with arguments and stuff. */
1148 error (_("\
1149 The program being debugged was signaled while in a function called from GDB.\n\
1150 GDB remains in the frame where the signal was received.\n\
1151 To change this behavior use \"set unwindonsignal on\".\n\
1152 Evaluation of the expression containing the function\n\
1153 (%s) will be abandoned.\n\
1154 When the function is done executing, GDB will silently stop."),
1155 name);
1156 }
1157 }
1158
1159 if (stop_stack_dummy == STOP_STD_TERMINATE)
1160 {
1161 /* We must get back to the frame we were before the dummy
1162 call. */
1163 dummy_frame_pop (dummy_id, call_thread_ptid);
1164
1165 /* We also need to restore inferior status to that before
1166 the dummy call. */
1167 restore_infcall_control_state (inf_status);
1168
1169 error (_("\
1170 The program being debugged entered a std::terminate call, most likely\n\
1171 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1172 to prevent the program from being terminated, and has restored the\n\
1173 context to its original state before the call.\n\
1174 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1175 Evaluation of the expression containing the function (%s)\n\
1176 will be abandoned."),
1177 name);
1178 }
1179 else if (stop_stack_dummy == STOP_NONE)
1180 {
1181
1182 /* We hit a breakpoint inside the FUNCTION.
1183 Keep the dummy frame, the user may want to examine its state.
1184 Discard inferior status, we're not at the same point
1185 we started at. */
1186 discard_infcall_control_state (inf_status);
1187
1188 /* The following error message used to say "The expression
1189 which contained the function call has been discarded."
1190 It is a hard concept to explain in a few words. Ideally,
1191 GDB would be able to resume evaluation of the expression
1192 when the function finally is done executing. Perhaps
1193 someday this will be implemented (it would not be easy). */
1194 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1195 a C++ name with arguments and stuff. */
1196 error (_("\
1197 The program being debugged stopped while in a function called from GDB.\n\
1198 Evaluation of the expression containing the function\n\
1199 (%s) will be abandoned.\n\
1200 When the function is done executing, GDB will silently stop."),
1201 name);
1202 }
1203
1204 /* The above code errors out, so ... */
1205 internal_error (__FILE__, __LINE__, _("... should not be here"));
1206 }
1207
1208 do_cleanups (terminate_bp_cleanup);
1209
1210 /* If we get here the called FUNCTION ran to completion,
1211 and the dummy frame has already been popped. */
1212
1213 {
1214 struct value *retval = NULL;
1215
1216 /* Inferior call is successful. Restore the inferior status.
1217 At this stage, leave the RETBUF alone. */
1218 restore_infcall_control_state (inf_status);
1219
1220 if (TYPE_CODE (values_type) == TYPE_CODE_VOID)
1221 retval = allocate_value (values_type);
1222 else if (struct_return || hidden_first_param_p)
1223 {
1224 if (stack_temporaries)
1225 {
1226 retval = value_from_contents_and_address (values_type, NULL,
1227 struct_addr);
1228 push_thread_stack_temporary (inferior_ptid, retval);
1229 }
1230 else
1231 {
1232 retval = allocate_value (values_type);
1233 read_value_memory (retval, 0, 1, struct_addr,
1234 value_contents_raw (retval),
1235 TYPE_LENGTH (values_type));
1236 }
1237 }
1238 else
1239 {
1240 retval = allocate_value (values_type);
1241 gdbarch_return_value (gdbarch, function, values_type,
1242 dummy_frame_context_saver_get_regs (context_saver),
1243 value_contents_raw (retval), NULL);
1244 if (stack_temporaries && class_or_union_p (values_type))
1245 {
1246 /* Values of class type returned in registers are copied onto
1247 the stack and their lval_type set to lval_memory. This is
1248 required because further evaluation of the expression
1249 could potentially invoke methods on the return value
1250 requiring GDB to evaluate the "this" pointer. To evaluate
1251 the this pointer, GDB needs the memory address of the
1252 value. */
1253 value_force_lval (retval, struct_addr);
1254 push_thread_stack_temporary (inferior_ptid, retval);
1255 }
1256 }
1257
1258 do_cleanups (context_saver_cleanup);
1259
1260 gdb_assert (retval);
1261 return retval;
1262 }
1263 }
1264 \f
1265
1266 /* Provide a prototype to silence -Wmissing-prototypes. */
1267 void _initialize_infcall (void);
1268
1269 void
1270 _initialize_infcall (void)
1271 {
1272 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1273 &coerce_float_to_double_p, _("\
1274 Set coercion of floats to doubles when calling functions."), _("\
1275 Show coercion of floats to doubles when calling functions"), _("\
1276 Variables of type float should generally be converted to doubles before\n\
1277 calling an unprototyped function, and left alone when calling a prototyped\n\
1278 function. However, some older debug info formats do not provide enough\n\
1279 information to determine that a function is prototyped. If this flag is\n\
1280 set, GDB will perform the conversion for a function it considers\n\
1281 unprototyped.\n\
1282 The default is to perform the conversion.\n"),
1283 NULL,
1284 show_coerce_float_to_double_p,
1285 &setlist, &showlist);
1286
1287 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1288 &unwind_on_signal_p, _("\
1289 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1290 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1291 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1292 is received while in a function called from gdb (call dummy). If set, gdb\n\
1293 unwinds the stack and restore the context to what as it was before the call.\n\
1294 The default is to stop in the frame where the signal was received."),
1295 NULL,
1296 show_unwind_on_signal_p,
1297 &setlist, &showlist);
1298
1299 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1300 &unwind_on_terminating_exception_p, _("\
1301 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1302 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1303 _("\
1304 The unwind on terminating exception flag lets the user determine\n\
1305 what gdb should do if a std::terminate() call is made from the\n\
1306 default exception handler. If set, gdb unwinds the stack and restores\n\
1307 the context to what it was before the call. If unset, gdb allows the\n\
1308 std::terminate call to proceed.\n\
1309 The default is to unwind the frame."),
1310 NULL,
1311 show_unwind_on_terminating_exception_p,
1312 &setlist, &showlist);
1313
1314 }
This page took 0.065847 seconds and 5 git commands to generate.