Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "regcache.h"
29
30 #include "gdb_wait.h"
31
32 #include "command.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <sys/param.h>
39 #include "gdb_dirent.h"
40 #include <signal.h>
41 #include <sys/ioctl.h>
42
43 #ifdef HAVE_PTRACE_H
44 #include <ptrace.h>
45 #else
46 #ifdef HAVE_SYS_PTRACE_H
47 #include <sys/ptrace.h>
48 #endif
49 #endif
50
51 #if !defined (PT_READ_I)
52 #define PT_READ_I 1 /* Read word from text space */
53 #endif
54 #if !defined (PT_READ_D)
55 #define PT_READ_D 2 /* Read word from data space */
56 #endif
57 #if !defined (PT_READ_U)
58 #define PT_READ_U 3 /* Read word from kernel user struct */
59 #endif
60 #if !defined (PT_WRITE_I)
61 #define PT_WRITE_I 4 /* Write word to text space */
62 #endif
63 #if !defined (PT_WRITE_D)
64 #define PT_WRITE_D 5 /* Write word to data space */
65 #endif
66 #if !defined (PT_WRITE_U)
67 #define PT_WRITE_U 6 /* Write word to kernel user struct */
68 #endif
69 #if !defined (PT_CONTINUE)
70 #define PT_CONTINUE 7 /* Continue after signal */
71 #endif
72 #if !defined (PT_STEP)
73 #define PT_STEP 9 /* Set flag for single stepping */
74 #endif
75 #if !defined (PT_KILL)
76 #define PT_KILL 8 /* Send child a SIGKILL signal */
77 #endif
78
79 #ifndef PT_ATTACH
80 #define PT_ATTACH PTRACE_ATTACH
81 #endif
82 #ifndef PT_DETACH
83 #define PT_DETACH PTRACE_DETACH
84 #endif
85
86 #include "gdbcore.h"
87 #ifndef NO_SYS_FILE
88 #include <sys/file.h>
89 #endif
90 #if 0
91 /* Don't think this is used anymore. On the sequent (not sure whether it's
92 dynix or ptx or both), it is included unconditionally by sys/user.h and
93 not protected against multiple inclusion. */
94 #include "gdb_stat.h"
95 #endif
96
97 #if !defined (FETCH_INFERIOR_REGISTERS)
98 #include <sys/user.h> /* Probably need to poke the user structure */
99 #if defined (KERNEL_U_ADDR_BSD)
100 #include <a.out.h> /* For struct nlist */
101 #endif /* KERNEL_U_ADDR_BSD. */
102 #endif /* !FETCH_INFERIOR_REGISTERS */
103
104 #if !defined (CHILD_XFER_MEMORY)
105 static void udot_info (char *, int);
106 #endif
107
108 #if !defined (FETCH_INFERIOR_REGISTERS)
109 static void fetch_register (int);
110 static void store_register (int);
111 #endif
112
113 /*
114 * Some systems (Linux) may have threads implemented as pseudo-processes,
115 * in which case we may be tracing more than one process at a time.
116 * In that case, inferior_pid will contain the main process ID and the
117 * individual thread (process) id mashed together. These macros are
118 * used to separate them out. The definitions may be overridden in tm.h
119 *
120 * NOTE: default definitions here are for systems with no threads.
121 * Useful definitions MUST be provided in tm.h
122 */
123
124 #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
125 #define PIDGET(PID) PID
126 #define TIDGET(PID) 0
127 #endif
128
129 void _initialize_kernel_u_addr (void);
130 void _initialize_infptrace (void);
131 \f
132
133 /* This function simply calls ptrace with the given arguments.
134 It exists so that all calls to ptrace are isolated in this
135 machine-dependent file. */
136 int
137 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
138 {
139 int pt_status = 0;
140
141 #if 0
142 int saved_errno;
143
144 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
145 request, pid, addr, data);
146 #endif
147 #if defined(PT_SETTRC)
148 /* If the parent can be told to attach to us, try to do it. */
149 if (request == PT_SETTRC)
150 {
151 errno = 0;
152 #if !defined (FIVE_ARG_PTRACE)
153 pt_status = ptrace (PT_SETTRC, pid, addr, data);
154 #else
155 /* Deal with HPUX 8.0 braindamage. We never use the
156 calls which require the fifth argument. */
157 pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
158 #endif
159 if (errno)
160 perror_with_name ("ptrace");
161 #if 0
162 printf (" = %d\n", pt_status);
163 #endif
164 if (pt_status < 0)
165 return pt_status;
166 else
167 return parent_attach_all (pid, addr, data);
168 }
169 #endif
170
171 #if defined(PT_CONTIN1)
172 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
173 signals. If it's available, use it. */
174 if (request == PT_CONTINUE)
175 request = PT_CONTIN1;
176 #endif
177
178 #if defined(PT_SINGLE1)
179 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
180 signals. If it's available, use it. */
181 if (request == PT_STEP)
182 request = PT_SINGLE1;
183 #endif
184
185 #if 0
186 saved_errno = errno;
187 errno = 0;
188 #endif
189 #if !defined (FIVE_ARG_PTRACE)
190 pt_status = ptrace (request, pid, addr, data);
191 #else
192 /* Deal with HPUX 8.0 braindamage. We never use the
193 calls which require the fifth argument. */
194 pt_status = ptrace (request, pid, addr, data, 0);
195 #endif
196
197 #if 0
198 if (errno)
199 printf (" [errno = %d]", errno);
200
201 errno = saved_errno;
202 printf (" = 0x%x\n", pt_status);
203 #endif
204 return pt_status;
205 }
206
207
208 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
209 /* For the rest of the file, use an extra level of indirection */
210 /* This lets us breakpoint usefully on call_ptrace. */
211 #define ptrace call_ptrace
212 #endif
213
214 /* Wait for a process to finish, possibly running a target-specific
215 hook before returning. */
216
217 int
218 ptrace_wait (ptid_t ptid, int *status)
219 {
220 int wstate;
221
222 wstate = wait (status);
223 target_post_wait (pid_to_ptid (wstate), *status);
224 return wstate;
225 }
226
227 void
228 kill_inferior (void)
229 {
230 int status;
231 int pid = PIDGET (inferior_ptid);
232
233 if (pid == 0)
234 return;
235
236 /* This once used to call "kill" to kill the inferior just in case
237 the inferior was still running. As others have noted in the past
238 (kingdon) there shouldn't be any way to get here if the inferior
239 is still running -- else there's a major problem elsewere in gdb
240 and it needs to be fixed.
241
242 The kill call causes problems under hpux10, so it's been removed;
243 if this causes problems we'll deal with them as they arise. */
244 ptrace (PT_KILL, pid, (PTRACE_ARG3_TYPE) 0, 0);
245 ptrace_wait (null_ptid, &status);
246 target_mourn_inferior ();
247 }
248
249 #ifndef CHILD_RESUME
250
251 /* Resume execution of the inferior process.
252 If STEP is nonzero, single-step it.
253 If SIGNAL is nonzero, give it that signal. */
254
255 void
256 child_resume (ptid_t ptid, int step, enum target_signal signal)
257 {
258 int pid = PIDGET (ptid);
259
260 errno = 0;
261
262 if (pid == -1)
263 /* Resume all threads. */
264 /* I think this only gets used in the non-threaded case, where "resume
265 all threads" and "resume inferior_ptid" are the same. */
266 pid = PIDGET (inferior_ptid);
267
268 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
269 it was. (If GDB wanted it to start some other way, we have already
270 written a new PC value to the child.)
271
272 If this system does not support PT_STEP, a higher level function will
273 have called single_step() to transmute the step request into a
274 continue request (by setting breakpoints on all possible successor
275 instructions), so we don't have to worry about that here. */
276
277 if (step)
278 {
279 if (SOFTWARE_SINGLE_STEP_P ())
280 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
281 else
282 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
283 target_signal_to_host (signal));
284 }
285 else
286 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
287 target_signal_to_host (signal));
288
289 if (errno)
290 {
291 perror_with_name ("ptrace");
292 }
293 }
294 #endif /* CHILD_RESUME */
295 \f
296
297 #ifdef ATTACH_DETACH
298 /* Start debugging the process whose number is PID. */
299 int
300 attach (int pid)
301 {
302 errno = 0;
303 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
304 if (errno)
305 perror_with_name ("ptrace");
306 attach_flag = 1;
307 return pid;
308 }
309
310 /* Stop debugging the process whose number is PID
311 and continue it with signal number SIGNAL.
312 SIGNAL = 0 means just continue it. */
313
314 void
315 detach (int signal)
316 {
317 errno = 0;
318 ptrace (PT_DETACH, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) 1,
319 signal);
320 if (errno)
321 perror_with_name ("ptrace");
322 attach_flag = 0;
323 }
324 #endif /* ATTACH_DETACH */
325 \f
326 /* Default the type of the ptrace transfer to int. */
327 #ifndef PTRACE_XFER_TYPE
328 #define PTRACE_XFER_TYPE int
329 #endif
330
331 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
332 to get the offset in the core file of the register values. */
333 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
334 /* Get kernel_u_addr using BSD-style nlist(). */
335 CORE_ADDR kernel_u_addr;
336 #endif /* KERNEL_U_ADDR_BSD. */
337
338 void
339 _initialize_kernel_u_addr (void)
340 {
341 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
342 struct nlist names[2];
343
344 names[0].n_un.n_name = "_u";
345 names[1].n_un.n_name = NULL;
346 if (nlist ("/vmunix", names) == 0)
347 kernel_u_addr = names[0].n_value;
348 else
349 internal_error (__FILE__, __LINE__,
350 "Unable to get kernel u area address.");
351 #endif /* KERNEL_U_ADDR_BSD. */
352 }
353
354 #if !defined (FETCH_INFERIOR_REGISTERS)
355
356 #if !defined (offsetof)
357 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
358 #endif
359
360 /* U_REGS_OFFSET is the offset of the registers within the u area. */
361 #if !defined (U_REGS_OFFSET)
362 #define U_REGS_OFFSET \
363 ptrace (PT_READ_U, PIDGET (inferior_ptid), \
364 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
365 - KERNEL_U_ADDR
366 #endif
367
368 /* Registers we shouldn't try to fetch. */
369 #if !defined (CANNOT_FETCH_REGISTER)
370 #define CANNOT_FETCH_REGISTER(regno) 0
371 #endif
372
373 /* Fetch one register. */
374
375 static void
376 fetch_register (int regno)
377 {
378 /* This isn't really an address. But ptrace thinks of it as one. */
379 CORE_ADDR regaddr;
380 char mess[128]; /* For messages */
381 register int i;
382 unsigned int offset; /* Offset of registers within the u area. */
383 char buf[MAX_REGISTER_RAW_SIZE];
384 int tid;
385
386 if (CANNOT_FETCH_REGISTER (regno))
387 {
388 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
389 supply_register (regno, buf);
390 return;
391 }
392
393 /* Overload thread id onto process id */
394 if ((tid = TIDGET (inferior_ptid)) == 0)
395 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
396
397 offset = U_REGS_OFFSET;
398
399 regaddr = register_addr (regno, offset);
400 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
401 {
402 errno = 0;
403 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
404 (PTRACE_ARG3_TYPE) regaddr, 0);
405 regaddr += sizeof (PTRACE_XFER_TYPE);
406 if (errno != 0)
407 {
408 sprintf (mess, "reading register %s (#%d)",
409 REGISTER_NAME (regno), regno);
410 perror_with_name (mess);
411 }
412 }
413 supply_register (regno, buf);
414 }
415
416
417 /* Fetch register values from the inferior.
418 If REGNO is negative, do this for all registers.
419 Otherwise, REGNO specifies which register (so we can save time). */
420
421 void
422 fetch_inferior_registers (int regno)
423 {
424 if (regno >= 0)
425 {
426 fetch_register (regno);
427 }
428 else
429 {
430 for (regno = 0; regno < NUM_REGS; regno++)
431 {
432 fetch_register (regno);
433 }
434 }
435 }
436
437 /* Registers we shouldn't try to store. */
438 #if !defined (CANNOT_STORE_REGISTER)
439 #define CANNOT_STORE_REGISTER(regno) 0
440 #endif
441
442 /* Store one register. */
443
444 static void
445 store_register (int regno)
446 {
447 /* This isn't really an address. But ptrace thinks of it as one. */
448 CORE_ADDR regaddr;
449 char mess[128]; /* For messages */
450 register int i;
451 unsigned int offset; /* Offset of registers within the u area. */
452 int tid;
453
454 if (CANNOT_STORE_REGISTER (regno))
455 {
456 return;
457 }
458
459 /* Overload thread id onto process id */
460 if ((tid = TIDGET (inferior_ptid)) == 0)
461 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
462
463 offset = U_REGS_OFFSET;
464
465 regaddr = register_addr (regno, offset);
466 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
467 {
468 errno = 0;
469 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
470 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
471 regaddr += sizeof (PTRACE_XFER_TYPE);
472 if (errno != 0)
473 {
474 sprintf (mess, "writing register %s (#%d)",
475 REGISTER_NAME (regno), regno);
476 perror_with_name (mess);
477 }
478 }
479 }
480
481 /* Store our register values back into the inferior.
482 If REGNO is negative, do this for all registers.
483 Otherwise, REGNO specifies which register (so we can save time). */
484
485 void
486 store_inferior_registers (int regno)
487 {
488 if (regno >= 0)
489 {
490 store_register (regno);
491 }
492 else
493 {
494 for (regno = 0; regno < NUM_REGS; regno++)
495 {
496 store_register (regno);
497 }
498 }
499 }
500 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
501 \f
502
503 #if !defined (CHILD_XFER_MEMORY)
504 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
505 in the NEW_SUN_PTRACE case.
506 It ought to be straightforward. But it appears that writing did
507 not write the data that I specified. I cannot understand where
508 it got the data that it actually did write. */
509
510 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
511 to debugger memory starting at MYADDR. Copy to inferior if
512 WRITE is nonzero. TARGET is ignored.
513
514 Returns the length copied, which is either the LEN argument or zero.
515 This xfer function does not do partial moves, since child_ops
516 doesn't allow memory operations to cross below us in the target stack
517 anyway. */
518
519 int
520 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
522 struct target_ops *target)
523 {
524 register int i;
525 /* Round starting address down to longword boundary. */
526 register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
527 /* Round ending address up; get number of longwords that makes. */
528 register int count
529 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
530 / sizeof (PTRACE_XFER_TYPE);
531 /* Allocate buffer of that many longwords. */
532 register PTRACE_XFER_TYPE *buffer
533 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
534
535 if (write)
536 {
537 /* Fill start and end extra bytes of buffer with existing memory data. */
538
539 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
540 {
541 /* Need part of initial word -- fetch it. */
542 buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
543 (PTRACE_ARG3_TYPE) addr, 0);
544 }
545
546 if (count > 1) /* FIXME, avoid if even boundary */
547 {
548 buffer[count - 1]
549 = ptrace (PT_READ_I, PIDGET (inferior_ptid),
550 ((PTRACE_ARG3_TYPE)
551 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
552 0);
553 }
554
555 /* Copy data to be written over corresponding part of buffer */
556
557 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
558 myaddr,
559 len);
560
561 /* Write the entire buffer. */
562
563 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
564 {
565 errno = 0;
566 ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
567 (PTRACE_ARG3_TYPE) addr, buffer[i]);
568 if (errno)
569 {
570 /* Using the appropriate one (I or D) is necessary for
571 Gould NP1, at least. */
572 errno = 0;
573 ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
574 (PTRACE_ARG3_TYPE) addr, buffer[i]);
575 }
576 if (errno)
577 return 0;
578 }
579 #ifdef CLEAR_INSN_CACHE
580 CLEAR_INSN_CACHE ();
581 #endif
582 }
583 else
584 {
585 /* Read all the longwords */
586 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
587 {
588 errno = 0;
589 buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
590 (PTRACE_ARG3_TYPE) addr, 0);
591 if (errno)
592 return 0;
593 QUIT;
594 }
595
596 /* Copy appropriate bytes out of the buffer. */
597 memcpy (myaddr,
598 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
599 len);
600 }
601 return len;
602 }
603 \f
604
605 static void
606 udot_info (char *dummy1, int dummy2)
607 {
608 #if defined (KERNEL_U_SIZE)
609 int udot_off; /* Offset into user struct */
610 int udot_val; /* Value from user struct at udot_off */
611 char mess[128]; /* For messages */
612 #endif
613
614 if (!target_has_execution)
615 {
616 error ("The program is not being run.");
617 }
618
619 #if !defined (KERNEL_U_SIZE)
620
621 /* Adding support for this command is easy. Typically you just add a
622 routine, called "kernel_u_size" that returns the size of the user
623 struct, to the appropriate *-nat.c file and then add to the native
624 config file "#define KERNEL_U_SIZE kernel_u_size()" */
625 error ("Don't know how large ``struct user'' is in this version of gdb.");
626
627 #else
628
629 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
630 {
631 if ((udot_off % 24) == 0)
632 {
633 if (udot_off > 0)
634 {
635 printf_filtered ("\n");
636 }
637 printf_filtered ("%04x:", udot_off);
638 }
639 udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) udot_off, 0);
640 if (errno != 0)
641 {
642 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
643 perror_with_name (mess);
644 }
645 /* Avoid using nonportable (?) "*" in print specs */
646 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
647 }
648 printf_filtered ("\n");
649
650 #endif
651 }
652 #endif /* !defined (CHILD_XFER_MEMORY). */
653 \f
654
655 void
656 _initialize_infptrace (void)
657 {
658 #if !defined (CHILD_XFER_MEMORY)
659 add_info ("udot", udot_info,
660 "Print contents of kernel ``struct user'' for current child.");
661 #endif
662 }
This page took 0.053222 seconds and 4 git commands to generate.