* frame.c (deprecated_selected_frame): Rename to...
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293 static int breakpoints_failed;
294
295 /* Nonzero after stop if current stack frame should be printed. */
296
297 static int stop_print_frame;
298
299 static struct breakpoint *step_resume_breakpoint = NULL;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 static void
335 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("\
339 Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341 }
342 \f
343
344 static int
345 follow_fork (void)
346 {
347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
348
349 return target_follow_fork (follow_child);
350 }
351
352 void
353 follow_inferior_reset_breakpoints (void)
354 {
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
376 }
377
378 /* EXECD_PATHNAME is assumed to be non-NULL. */
379
380 static void
381 follow_exec (int pid, char *execd_pathname)
382 {
383 int saved_pid = pid;
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
388
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
417 /* What is this a.out's name? */
418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
427 error (_("Could find run target to save before following exec"));
428
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
431 inferior_ptid = pid_to_ptid (saved_pid);
432 /* Because mourn_inferior resets inferior_ptid. */
433 push_target (tgt);
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
439 symbol_file_add_main (execd_pathname, 0);
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
444 #if defined(SOLIB_RESTART)
445 SOLIB_RESTART ();
446 #endif
447 #ifdef SOLIB_CREATE_INFERIOR_HOOK
448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
449 #else
450 solib_create_inferior_hook ();
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* PC when we started this single-step. */
473 static CORE_ADDR singlestep_pc;
474
475 /* If another thread hit the singlestep breakpoint, we save the original
476 thread here so that we can resume single-stepping it later. */
477 static ptid_t saved_singlestep_ptid;
478 static int stepping_past_singlestep_breakpoint;
479 \f
480
481 /* Things to clean up if we QUIT out of resume (). */
482 static void
483 resume_cleanups (void *ignore)
484 {
485 normal_stop ();
486 }
487
488 static const char schedlock_off[] = "off";
489 static const char schedlock_on[] = "on";
490 static const char schedlock_step[] = "step";
491 static const char *scheduler_enums[] = {
492 schedlock_off,
493 schedlock_on,
494 schedlock_step,
495 NULL
496 };
497 static const char *scheduler_mode = schedlock_off;
498 static void
499 show_scheduler_mode (struct ui_file *file, int from_tty,
500 struct cmd_list_element *c, const char *value)
501 {
502 fprintf_filtered (file, _("\
503 Mode for locking scheduler during execution is \"%s\".\n"),
504 value);
505 }
506
507 static void
508 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
509 {
510 if (!target_can_lock_scheduler)
511 {
512 scheduler_mode = schedlock_off;
513 error (_("Target '%s' cannot support this command."), target_shortname);
514 }
515 }
516
517
518 /* Resume the inferior, but allow a QUIT. This is useful if the user
519 wants to interrupt some lengthy single-stepping operation
520 (for child processes, the SIGINT goes to the inferior, and so
521 we get a SIGINT random_signal, but for remote debugging and perhaps
522 other targets, that's not true).
523
524 STEP nonzero if we should step (zero to continue instead).
525 SIG is the signal to give the inferior (zero for none). */
526 void
527 resume (int step, enum target_signal sig)
528 {
529 int should_resume = 1;
530 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
531 QUIT;
532
533 if (debug_infrun)
534 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
535 step, sig);
536
537 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
538
539
540 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
541 over an instruction that causes a page fault without triggering
542 a hardware watchpoint. The kernel properly notices that it shouldn't
543 stop, because the hardware watchpoint is not triggered, but it forgets
544 the step request and continues the program normally.
545 Work around the problem by removing hardware watchpoints if a step is
546 requested, GDB will check for a hardware watchpoint trigger after the
547 step anyway. */
548 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
549 remove_hw_watchpoints ();
550
551
552 /* Normally, by the time we reach `resume', the breakpoints are either
553 removed or inserted, as appropriate. The exception is if we're sitting
554 at a permanent breakpoint; we need to step over it, but permanent
555 breakpoints can't be removed. So we have to test for it here. */
556 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
557 SKIP_PERMANENT_BREAKPOINT ();
558
559 if (SOFTWARE_SINGLE_STEP_P () && step)
560 {
561 /* Do it the hard way, w/temp breakpoints */
562 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
563 /* ...and don't ask hardware to do it. */
564 step = 0;
565 /* and do not pull these breakpoints until after a `wait' in
566 `wait_for_inferior' */
567 singlestep_breakpoints_inserted_p = 1;
568 singlestep_ptid = inferior_ptid;
569 singlestep_pc = read_pc ();
570 }
571
572 /* If there were any forks/vforks/execs that were caught and are
573 now to be followed, then do so. */
574 switch (pending_follow.kind)
575 {
576 case TARGET_WAITKIND_FORKED:
577 case TARGET_WAITKIND_VFORKED:
578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
579 if (follow_fork ())
580 should_resume = 0;
581 break;
582
583 case TARGET_WAITKIND_EXECD:
584 /* follow_exec is called as soon as the exec event is seen. */
585 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
586 break;
587
588 default:
589 break;
590 }
591
592 /* Install inferior's terminal modes. */
593 target_terminal_inferior ();
594
595 if (should_resume)
596 {
597 ptid_t resume_ptid;
598
599 resume_ptid = RESUME_ALL; /* Default */
600
601 if ((step || singlestep_breakpoints_inserted_p)
602 && (stepping_past_singlestep_breakpoint
603 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
604 {
605 /* Stepping past a breakpoint without inserting breakpoints.
606 Make sure only the current thread gets to step, so that
607 other threads don't sneak past breakpoints while they are
608 not inserted. */
609
610 resume_ptid = inferior_ptid;
611 }
612
613 if ((scheduler_mode == schedlock_on)
614 || (scheduler_mode == schedlock_step
615 && (step || singlestep_breakpoints_inserted_p)))
616 {
617 /* User-settable 'scheduler' mode requires solo thread resume. */
618 resume_ptid = inferior_ptid;
619 }
620
621 if (CANNOT_STEP_BREAKPOINT)
622 {
623 /* Most targets can step a breakpoint instruction, thus
624 executing it normally. But if this one cannot, just
625 continue and we will hit it anyway. */
626 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
627 step = 0;
628 }
629 target_resume (resume_ptid, step, sig);
630 }
631
632 discard_cleanups (old_cleanups);
633 }
634 \f
635
636 /* Clear out all variables saying what to do when inferior is continued.
637 First do this, then set the ones you want, then call `proceed'. */
638
639 void
640 clear_proceed_status (void)
641 {
642 trap_expected = 0;
643 step_range_start = 0;
644 step_range_end = 0;
645 step_frame_id = null_frame_id;
646 step_over_calls = STEP_OVER_UNDEBUGGABLE;
647 stop_after_trap = 0;
648 stop_soon = NO_STOP_QUIETLY;
649 proceed_to_finish = 0;
650 breakpoint_proceeded = 1; /* We're about to proceed... */
651
652 /* Discard any remaining commands or status from previous stop. */
653 bpstat_clear (&stop_bpstat);
654 }
655
656 /* This should be suitable for any targets that support threads. */
657
658 static int
659 prepare_to_proceed (void)
660 {
661 ptid_t wait_ptid;
662 struct target_waitstatus wait_status;
663
664 /* Get the last target status returned by target_wait(). */
665 get_last_target_status (&wait_ptid, &wait_status);
666
667 /* Make sure we were stopped either at a breakpoint, or because
668 of a Ctrl-C. */
669 if (wait_status.kind != TARGET_WAITKIND_STOPPED
670 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
671 && wait_status.value.sig != TARGET_SIGNAL_INT))
672 {
673 return 0;
674 }
675
676 if (!ptid_equal (wait_ptid, minus_one_ptid)
677 && !ptid_equal (inferior_ptid, wait_ptid))
678 {
679 /* Switched over from WAIT_PID. */
680 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
681
682 if (wait_pc != read_pc ())
683 {
684 /* Switch back to WAIT_PID thread. */
685 inferior_ptid = wait_ptid;
686
687 /* FIXME: This stuff came from switch_to_thread() in
688 thread.c (which should probably be a public function). */
689 flush_cached_frames ();
690 registers_changed ();
691 stop_pc = wait_pc;
692 select_frame (get_current_frame ());
693 }
694
695 /* We return 1 to indicate that there is a breakpoint here,
696 so we need to step over it before continuing to avoid
697 hitting it straight away. */
698 if (breakpoint_here_p (wait_pc))
699 return 1;
700 }
701
702 return 0;
703
704 }
705
706 /* Record the pc of the program the last time it stopped. This is
707 just used internally by wait_for_inferior, but need to be preserved
708 over calls to it and cleared when the inferior is started. */
709 static CORE_ADDR prev_pc;
710
711 /* Basic routine for continuing the program in various fashions.
712
713 ADDR is the address to resume at, or -1 for resume where stopped.
714 SIGGNAL is the signal to give it, or 0 for none,
715 or -1 for act according to how it stopped.
716 STEP is nonzero if should trap after one instruction.
717 -1 means return after that and print nothing.
718 You should probably set various step_... variables
719 before calling here, if you are stepping.
720
721 You should call clear_proceed_status before calling proceed. */
722
723 void
724 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
725 {
726 int oneproc = 0;
727
728 if (step > 0)
729 step_start_function = find_pc_function (read_pc ());
730 if (step < 0)
731 stop_after_trap = 1;
732
733 if (addr == (CORE_ADDR) -1)
734 {
735 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
736 /* There is a breakpoint at the address we will resume at,
737 step one instruction before inserting breakpoints so that
738 we do not stop right away (and report a second hit at this
739 breakpoint). */
740 oneproc = 1;
741 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
742 && gdbarch_single_step_through_delay (current_gdbarch,
743 get_current_frame ()))
744 /* We stepped onto an instruction that needs to be stepped
745 again before re-inserting the breakpoint, do so. */
746 oneproc = 1;
747 }
748 else
749 {
750 write_pc (addr);
751 }
752
753 if (debug_infrun)
754 fprintf_unfiltered (gdb_stdlog,
755 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
756 paddr_nz (addr), siggnal, step);
757
758 /* In a multi-threaded task we may select another thread
759 and then continue or step.
760
761 But if the old thread was stopped at a breakpoint, it
762 will immediately cause another breakpoint stop without
763 any execution (i.e. it will report a breakpoint hit
764 incorrectly). So we must step over it first.
765
766 prepare_to_proceed checks the current thread against the thread
767 that reported the most recent event. If a step-over is required
768 it returns TRUE and sets the current thread to the old thread. */
769 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
770 oneproc = 1;
771
772 if (oneproc)
773 /* We will get a trace trap after one instruction.
774 Continue it automatically and insert breakpoints then. */
775 trap_expected = 1;
776 else
777 {
778 insert_breakpoints ();
779 /* If we get here there was no call to error() in
780 insert breakpoints -- so they were inserted. */
781 breakpoints_inserted = 1;
782 }
783
784 if (siggnal != TARGET_SIGNAL_DEFAULT)
785 stop_signal = siggnal;
786 /* If this signal should not be seen by program,
787 give it zero. Used for debugging signals. */
788 else if (!signal_program[stop_signal])
789 stop_signal = TARGET_SIGNAL_0;
790
791 annotate_starting ();
792
793 /* Make sure that output from GDB appears before output from the
794 inferior. */
795 gdb_flush (gdb_stdout);
796
797 /* Refresh prev_pc value just prior to resuming. This used to be
798 done in stop_stepping, however, setting prev_pc there did not handle
799 scenarios such as inferior function calls or returning from
800 a function via the return command. In those cases, the prev_pc
801 value was not set properly for subsequent commands. The prev_pc value
802 is used to initialize the starting line number in the ecs. With an
803 invalid value, the gdb next command ends up stopping at the position
804 represented by the next line table entry past our start position.
805 On platforms that generate one line table entry per line, this
806 is not a problem. However, on the ia64, the compiler generates
807 extraneous line table entries that do not increase the line number.
808 When we issue the gdb next command on the ia64 after an inferior call
809 or a return command, we often end up a few instructions forward, still
810 within the original line we started.
811
812 An attempt was made to have init_execution_control_state () refresh
813 the prev_pc value before calculating the line number. This approach
814 did not work because on platforms that use ptrace, the pc register
815 cannot be read unless the inferior is stopped. At that point, we
816 are not guaranteed the inferior is stopped and so the read_pc ()
817 call can fail. Setting the prev_pc value here ensures the value is
818 updated correctly when the inferior is stopped. */
819 prev_pc = read_pc ();
820
821 /* Resume inferior. */
822 resume (oneproc || step || bpstat_should_step (), stop_signal);
823
824 /* Wait for it to stop (if not standalone)
825 and in any case decode why it stopped, and act accordingly. */
826 /* Do this only if we are not using the event loop, or if the target
827 does not support asynchronous execution. */
828 if (!target_can_async_p ())
829 {
830 wait_for_inferior ();
831 normal_stop ();
832 }
833 }
834 \f
835
836 /* Start remote-debugging of a machine over a serial link. */
837
838 void
839 start_remote (int from_tty)
840 {
841 init_thread_list ();
842 init_wait_for_inferior ();
843 stop_soon = STOP_QUIETLY;
844 trap_expected = 0;
845
846 /* Always go on waiting for the target, regardless of the mode. */
847 /* FIXME: cagney/1999-09-23: At present it isn't possible to
848 indicate to wait_for_inferior that a target should timeout if
849 nothing is returned (instead of just blocking). Because of this,
850 targets expecting an immediate response need to, internally, set
851 things up so that the target_wait() is forced to eventually
852 timeout. */
853 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
854 differentiate to its caller what the state of the target is after
855 the initial open has been performed. Here we're assuming that
856 the target has stopped. It should be possible to eventually have
857 target_open() return to the caller an indication that the target
858 is currently running and GDB state should be set to the same as
859 for an async run. */
860 wait_for_inferior ();
861
862 /* Now that the inferior has stopped, do any bookkeeping like
863 loading shared libraries. We want to do this before normal_stop,
864 so that the displayed frame is up to date. */
865 post_create_inferior (&current_target, from_tty);
866
867 normal_stop ();
868 }
869
870 /* Initialize static vars when a new inferior begins. */
871
872 void
873 init_wait_for_inferior (void)
874 {
875 /* These are meaningless until the first time through wait_for_inferior. */
876 prev_pc = 0;
877
878 breakpoints_inserted = 0;
879 breakpoint_init_inferior (inf_starting);
880
881 /* Don't confuse first call to proceed(). */
882 stop_signal = TARGET_SIGNAL_0;
883
884 /* The first resume is not following a fork/vfork/exec. */
885 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
886
887 clear_proceed_status ();
888
889 stepping_past_singlestep_breakpoint = 0;
890 }
891 \f
892 /* This enum encodes possible reasons for doing a target_wait, so that
893 wfi can call target_wait in one place. (Ultimately the call will be
894 moved out of the infinite loop entirely.) */
895
896 enum infwait_states
897 {
898 infwait_normal_state,
899 infwait_thread_hop_state,
900 infwait_nonstep_watch_state
901 };
902
903 /* Why did the inferior stop? Used to print the appropriate messages
904 to the interface from within handle_inferior_event(). */
905 enum inferior_stop_reason
906 {
907 /* Step, next, nexti, stepi finished. */
908 END_STEPPING_RANGE,
909 /* Inferior terminated by signal. */
910 SIGNAL_EXITED,
911 /* Inferior exited. */
912 EXITED,
913 /* Inferior received signal, and user asked to be notified. */
914 SIGNAL_RECEIVED
915 };
916
917 /* This structure contains what used to be local variables in
918 wait_for_inferior. Probably many of them can return to being
919 locals in handle_inferior_event. */
920
921 struct execution_control_state
922 {
923 struct target_waitstatus ws;
924 struct target_waitstatus *wp;
925 int another_trap;
926 int random_signal;
927 CORE_ADDR stop_func_start;
928 CORE_ADDR stop_func_end;
929 char *stop_func_name;
930 struct symtab_and_line sal;
931 int current_line;
932 struct symtab *current_symtab;
933 int handling_longjmp; /* FIXME */
934 ptid_t ptid;
935 ptid_t saved_inferior_ptid;
936 int step_after_step_resume_breakpoint;
937 int stepping_through_solib_after_catch;
938 bpstat stepping_through_solib_catchpoints;
939 int new_thread_event;
940 struct target_waitstatus tmpstatus;
941 enum infwait_states infwait_state;
942 ptid_t waiton_ptid;
943 int wait_some_more;
944 };
945
946 void init_execution_control_state (struct execution_control_state *ecs);
947
948 void handle_inferior_event (struct execution_control_state *ecs);
949
950 static void step_into_function (struct execution_control_state *ecs);
951 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
952 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
953 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
954 struct frame_id sr_id);
955 static void stop_stepping (struct execution_control_state *ecs);
956 static void prepare_to_wait (struct execution_control_state *ecs);
957 static void keep_going (struct execution_control_state *ecs);
958 static void print_stop_reason (enum inferior_stop_reason stop_reason,
959 int stop_info);
960
961 /* Wait for control to return from inferior to debugger.
962 If inferior gets a signal, we may decide to start it up again
963 instead of returning. That is why there is a loop in this function.
964 When this function actually returns it means the inferior
965 should be left stopped and GDB should read more commands. */
966
967 void
968 wait_for_inferior (void)
969 {
970 struct cleanup *old_cleanups;
971 struct execution_control_state ecss;
972 struct execution_control_state *ecs;
973
974 if (debug_infrun)
975 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
976
977 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
978 &step_resume_breakpoint);
979
980 /* wfi still stays in a loop, so it's OK just to take the address of
981 a local to get the ecs pointer. */
982 ecs = &ecss;
983
984 /* Fill in with reasonable starting values. */
985 init_execution_control_state (ecs);
986
987 /* We'll update this if & when we switch to a new thread. */
988 previous_inferior_ptid = inferior_ptid;
989
990 overlay_cache_invalid = 1;
991
992 /* We have to invalidate the registers BEFORE calling target_wait
993 because they can be loaded from the target while in target_wait.
994 This makes remote debugging a bit more efficient for those
995 targets that provide critical registers as part of their normal
996 status mechanism. */
997
998 registers_changed ();
999
1000 while (1)
1001 {
1002 if (deprecated_target_wait_hook)
1003 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1004 else
1005 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1006
1007 /* Now figure out what to do with the result of the result. */
1008 handle_inferior_event (ecs);
1009
1010 if (!ecs->wait_some_more)
1011 break;
1012 }
1013 do_cleanups (old_cleanups);
1014 }
1015
1016 /* Asynchronous version of wait_for_inferior. It is called by the
1017 event loop whenever a change of state is detected on the file
1018 descriptor corresponding to the target. It can be called more than
1019 once to complete a single execution command. In such cases we need
1020 to keep the state in a global variable ASYNC_ECSS. If it is the
1021 last time that this function is called for a single execution
1022 command, then report to the user that the inferior has stopped, and
1023 do the necessary cleanups. */
1024
1025 struct execution_control_state async_ecss;
1026 struct execution_control_state *async_ecs;
1027
1028 void
1029 fetch_inferior_event (void *client_data)
1030 {
1031 static struct cleanup *old_cleanups;
1032
1033 async_ecs = &async_ecss;
1034
1035 if (!async_ecs->wait_some_more)
1036 {
1037 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1038 &step_resume_breakpoint);
1039
1040 /* Fill in with reasonable starting values. */
1041 init_execution_control_state (async_ecs);
1042
1043 /* We'll update this if & when we switch to a new thread. */
1044 previous_inferior_ptid = inferior_ptid;
1045
1046 overlay_cache_invalid = 1;
1047
1048 /* We have to invalidate the registers BEFORE calling target_wait
1049 because they can be loaded from the target while in target_wait.
1050 This makes remote debugging a bit more efficient for those
1051 targets that provide critical registers as part of their normal
1052 status mechanism. */
1053
1054 registers_changed ();
1055 }
1056
1057 if (deprecated_target_wait_hook)
1058 async_ecs->ptid =
1059 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1060 else
1061 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1062
1063 /* Now figure out what to do with the result of the result. */
1064 handle_inferior_event (async_ecs);
1065
1066 if (!async_ecs->wait_some_more)
1067 {
1068 /* Do only the cleanups that have been added by this
1069 function. Let the continuations for the commands do the rest,
1070 if there are any. */
1071 do_exec_cleanups (old_cleanups);
1072 normal_stop ();
1073 if (step_multi && stop_step)
1074 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1075 else
1076 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1077 }
1078 }
1079
1080 /* Prepare an execution control state for looping through a
1081 wait_for_inferior-type loop. */
1082
1083 void
1084 init_execution_control_state (struct execution_control_state *ecs)
1085 {
1086 ecs->another_trap = 0;
1087 ecs->random_signal = 0;
1088 ecs->step_after_step_resume_breakpoint = 0;
1089 ecs->handling_longjmp = 0; /* FIXME */
1090 ecs->stepping_through_solib_after_catch = 0;
1091 ecs->stepping_through_solib_catchpoints = NULL;
1092 ecs->sal = find_pc_line (prev_pc, 0);
1093 ecs->current_line = ecs->sal.line;
1094 ecs->current_symtab = ecs->sal.symtab;
1095 ecs->infwait_state = infwait_normal_state;
1096 ecs->waiton_ptid = pid_to_ptid (-1);
1097 ecs->wp = &(ecs->ws);
1098 }
1099
1100 /* Return the cached copy of the last pid/waitstatus returned by
1101 target_wait()/deprecated_target_wait_hook(). The data is actually
1102 cached by handle_inferior_event(), which gets called immediately
1103 after target_wait()/deprecated_target_wait_hook(). */
1104
1105 void
1106 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1107 {
1108 *ptidp = target_last_wait_ptid;
1109 *status = target_last_waitstatus;
1110 }
1111
1112 void
1113 nullify_last_target_wait_ptid (void)
1114 {
1115 target_last_wait_ptid = minus_one_ptid;
1116 }
1117
1118 /* Switch thread contexts, maintaining "infrun state". */
1119
1120 static void
1121 context_switch (struct execution_control_state *ecs)
1122 {
1123 /* Caution: it may happen that the new thread (or the old one!)
1124 is not in the thread list. In this case we must not attempt
1125 to "switch context", or we run the risk that our context may
1126 be lost. This may happen as a result of the target module
1127 mishandling thread creation. */
1128
1129 if (debug_infrun)
1130 {
1131 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1132 target_pid_to_str (inferior_ptid));
1133 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1134 target_pid_to_str (ecs->ptid));
1135 }
1136
1137 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1138 { /* Perform infrun state context switch: */
1139 /* Save infrun state for the old thread. */
1140 save_infrun_state (inferior_ptid, prev_pc,
1141 trap_expected, step_resume_breakpoint,
1142 step_range_start,
1143 step_range_end, &step_frame_id,
1144 ecs->handling_longjmp, ecs->another_trap,
1145 ecs->stepping_through_solib_after_catch,
1146 ecs->stepping_through_solib_catchpoints,
1147 ecs->current_line, ecs->current_symtab);
1148
1149 /* Load infrun state for the new thread. */
1150 load_infrun_state (ecs->ptid, &prev_pc,
1151 &trap_expected, &step_resume_breakpoint,
1152 &step_range_start,
1153 &step_range_end, &step_frame_id,
1154 &ecs->handling_longjmp, &ecs->another_trap,
1155 &ecs->stepping_through_solib_after_catch,
1156 &ecs->stepping_through_solib_catchpoints,
1157 &ecs->current_line, &ecs->current_symtab);
1158 }
1159 inferior_ptid = ecs->ptid;
1160 flush_cached_frames ();
1161 }
1162
1163 static void
1164 adjust_pc_after_break (struct execution_control_state *ecs)
1165 {
1166 CORE_ADDR breakpoint_pc;
1167
1168 /* If this target does not decrement the PC after breakpoints, then
1169 we have nothing to do. */
1170 if (DECR_PC_AFTER_BREAK == 0)
1171 return;
1172
1173 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1174 we aren't, just return.
1175
1176 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1177 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1178 by software breakpoints should be handled through the normal breakpoint
1179 layer.
1180
1181 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1182 different signals (SIGILL or SIGEMT for instance), but it is less
1183 clear where the PC is pointing afterwards. It may not match
1184 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1185 these signals at breakpoints (the code has been in GDB since at least
1186 1992) so I can not guess how to handle them here.
1187
1188 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1189 would have the PC after hitting a watchpoint affected by
1190 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1191 in GDB history, and it seems unlikely to be correct, so
1192 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1193
1194 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1195 return;
1196
1197 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1198 return;
1199
1200 /* Find the location where (if we've hit a breakpoint) the
1201 breakpoint would be. */
1202 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1203
1204 if (SOFTWARE_SINGLE_STEP_P ())
1205 {
1206 /* When using software single-step, a SIGTRAP can only indicate
1207 an inserted breakpoint. This actually makes things
1208 easier. */
1209 if (singlestep_breakpoints_inserted_p)
1210 /* When software single stepping, the instruction at [prev_pc]
1211 is never a breakpoint, but the instruction following
1212 [prev_pc] (in program execution order) always is. Assume
1213 that following instruction was reached and hence a software
1214 breakpoint was hit. */
1215 write_pc_pid (breakpoint_pc, ecs->ptid);
1216 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1217 /* The inferior was free running (i.e., no single-step
1218 breakpoints inserted) and it hit a software breakpoint. */
1219 write_pc_pid (breakpoint_pc, ecs->ptid);
1220 }
1221 else
1222 {
1223 /* When using hardware single-step, a SIGTRAP is reported for
1224 both a completed single-step and a software breakpoint. Need
1225 to differentiate between the two as the latter needs
1226 adjusting but the former does not.
1227
1228 When the thread to be examined does not match the current thread
1229 context we can't use currently_stepping, so assume no
1230 single-stepping in this case. */
1231 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1232 {
1233 if (prev_pc == breakpoint_pc
1234 && software_breakpoint_inserted_here_p (breakpoint_pc))
1235 /* Hardware single-stepped a software breakpoint (as
1236 occures when the inferior is resumed with PC pointing
1237 at not-yet-hit software breakpoint). Since the
1238 breakpoint really is executed, the inferior needs to be
1239 backed up to the breakpoint address. */
1240 write_pc_pid (breakpoint_pc, ecs->ptid);
1241 }
1242 else
1243 {
1244 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1245 /* The inferior was free running (i.e., no hardware
1246 single-step and no possibility of a false SIGTRAP) and
1247 hit a software breakpoint. */
1248 write_pc_pid (breakpoint_pc, ecs->ptid);
1249 }
1250 }
1251 }
1252
1253 /* Given an execution control state that has been freshly filled in
1254 by an event from the inferior, figure out what it means and take
1255 appropriate action. */
1256
1257 int stepped_after_stopped_by_watchpoint;
1258
1259 void
1260 handle_inferior_event (struct execution_control_state *ecs)
1261 {
1262 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1263 that the variable stepped_after_stopped_by_watchpoint isn't used,
1264 then you're wrong! See remote.c:remote_stopped_data_address. */
1265
1266 int sw_single_step_trap_p = 0;
1267 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1268
1269 /* Cache the last pid/waitstatus. */
1270 target_last_wait_ptid = ecs->ptid;
1271 target_last_waitstatus = *ecs->wp;
1272
1273 adjust_pc_after_break (ecs);
1274
1275 switch (ecs->infwait_state)
1276 {
1277 case infwait_thread_hop_state:
1278 if (debug_infrun)
1279 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1280 /* Cancel the waiton_ptid. */
1281 ecs->waiton_ptid = pid_to_ptid (-1);
1282 break;
1283
1284 case infwait_normal_state:
1285 if (debug_infrun)
1286 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1287 stepped_after_stopped_by_watchpoint = 0;
1288 break;
1289
1290 case infwait_nonstep_watch_state:
1291 if (debug_infrun)
1292 fprintf_unfiltered (gdb_stdlog,
1293 "infrun: infwait_nonstep_watch_state\n");
1294 insert_breakpoints ();
1295
1296 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1297 handle things like signals arriving and other things happening
1298 in combination correctly? */
1299 stepped_after_stopped_by_watchpoint = 1;
1300 break;
1301
1302 default:
1303 internal_error (__FILE__, __LINE__, _("bad switch"));
1304 }
1305 ecs->infwait_state = infwait_normal_state;
1306
1307 flush_cached_frames ();
1308
1309 /* If it's a new process, add it to the thread database */
1310
1311 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1312 && !ptid_equal (ecs->ptid, minus_one_ptid)
1313 && !in_thread_list (ecs->ptid));
1314
1315 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1316 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1317 {
1318 add_thread (ecs->ptid);
1319
1320 ui_out_text (uiout, "[New ");
1321 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1322 ui_out_text (uiout, "]\n");
1323 }
1324
1325 switch (ecs->ws.kind)
1326 {
1327 case TARGET_WAITKIND_LOADED:
1328 if (debug_infrun)
1329 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1330 /* Ignore gracefully during startup of the inferior, as it
1331 might be the shell which has just loaded some objects,
1332 otherwise add the symbols for the newly loaded objects. */
1333 #ifdef SOLIB_ADD
1334 if (stop_soon == NO_STOP_QUIETLY)
1335 {
1336 /* Remove breakpoints, SOLIB_ADD might adjust
1337 breakpoint addresses via breakpoint_re_set. */
1338 if (breakpoints_inserted)
1339 remove_breakpoints ();
1340
1341 /* Check for any newly added shared libraries if we're
1342 supposed to be adding them automatically. Switch
1343 terminal for any messages produced by
1344 breakpoint_re_set. */
1345 target_terminal_ours_for_output ();
1346 /* NOTE: cagney/2003-11-25: Make certain that the target
1347 stack's section table is kept up-to-date. Architectures,
1348 (e.g., PPC64), use the section table to perform
1349 operations such as address => section name and hence
1350 require the table to contain all sections (including
1351 those found in shared libraries). */
1352 /* NOTE: cagney/2003-11-25: Pass current_target and not
1353 exec_ops to SOLIB_ADD. This is because current GDB is
1354 only tooled to propagate section_table changes out from
1355 the "current_target" (see target_resize_to_sections), and
1356 not up from the exec stratum. This, of course, isn't
1357 right. "infrun.c" should only interact with the
1358 exec/process stratum, instead relying on the target stack
1359 to propagate relevant changes (stop, section table
1360 changed, ...) up to other layers. */
1361 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1362 target_terminal_inferior ();
1363
1364 /* Reinsert breakpoints and continue. */
1365 if (breakpoints_inserted)
1366 insert_breakpoints ();
1367 }
1368 #endif
1369 resume (0, TARGET_SIGNAL_0);
1370 prepare_to_wait (ecs);
1371 return;
1372
1373 case TARGET_WAITKIND_SPURIOUS:
1374 if (debug_infrun)
1375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1376 resume (0, TARGET_SIGNAL_0);
1377 prepare_to_wait (ecs);
1378 return;
1379
1380 case TARGET_WAITKIND_EXITED:
1381 if (debug_infrun)
1382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1383 target_terminal_ours (); /* Must do this before mourn anyway */
1384 print_stop_reason (EXITED, ecs->ws.value.integer);
1385
1386 /* Record the exit code in the convenience variable $_exitcode, so
1387 that the user can inspect this again later. */
1388 set_internalvar (lookup_internalvar ("_exitcode"),
1389 value_from_longest (builtin_type_int,
1390 (LONGEST) ecs->ws.value.integer));
1391 gdb_flush (gdb_stdout);
1392 target_mourn_inferior ();
1393 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1394 stop_print_frame = 0;
1395 stop_stepping (ecs);
1396 return;
1397
1398 case TARGET_WAITKIND_SIGNALLED:
1399 if (debug_infrun)
1400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1401 stop_print_frame = 0;
1402 stop_signal = ecs->ws.value.sig;
1403 target_terminal_ours (); /* Must do this before mourn anyway */
1404
1405 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1406 reach here unless the inferior is dead. However, for years
1407 target_kill() was called here, which hints that fatal signals aren't
1408 really fatal on some systems. If that's true, then some changes
1409 may be needed. */
1410 target_mourn_inferior ();
1411
1412 print_stop_reason (SIGNAL_EXITED, stop_signal);
1413 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1414 stop_stepping (ecs);
1415 return;
1416
1417 /* The following are the only cases in which we keep going;
1418 the above cases end in a continue or goto. */
1419 case TARGET_WAITKIND_FORKED:
1420 case TARGET_WAITKIND_VFORKED:
1421 if (debug_infrun)
1422 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1423 stop_signal = TARGET_SIGNAL_TRAP;
1424 pending_follow.kind = ecs->ws.kind;
1425
1426 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1427 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1428
1429 if (!ptid_equal (ecs->ptid, inferior_ptid))
1430 {
1431 context_switch (ecs);
1432 flush_cached_frames ();
1433 }
1434
1435 stop_pc = read_pc ();
1436
1437 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1438
1439 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1440
1441 /* If no catchpoint triggered for this, then keep going. */
1442 if (ecs->random_signal)
1443 {
1444 stop_signal = TARGET_SIGNAL_0;
1445 keep_going (ecs);
1446 return;
1447 }
1448 goto process_event_stop_test;
1449
1450 case TARGET_WAITKIND_EXECD:
1451 if (debug_infrun)
1452 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1453 stop_signal = TARGET_SIGNAL_TRAP;
1454
1455 /* NOTE drow/2002-12-05: This code should be pushed down into the
1456 target_wait function. Until then following vfork on HP/UX 10.20
1457 is probably broken by this. Of course, it's broken anyway. */
1458 /* Is this a target which reports multiple exec events per actual
1459 call to exec()? (HP-UX using ptrace does, for example.) If so,
1460 ignore all but the last one. Just resume the exec'r, and wait
1461 for the next exec event. */
1462 if (inferior_ignoring_leading_exec_events)
1463 {
1464 inferior_ignoring_leading_exec_events--;
1465 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1466 prepare_to_wait (ecs);
1467 return;
1468 }
1469 inferior_ignoring_leading_exec_events =
1470 target_reported_exec_events_per_exec_call () - 1;
1471
1472 pending_follow.execd_pathname =
1473 savestring (ecs->ws.value.execd_pathname,
1474 strlen (ecs->ws.value.execd_pathname));
1475
1476 /* This causes the eventpoints and symbol table to be reset. Must
1477 do this now, before trying to determine whether to stop. */
1478 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1479 xfree (pending_follow.execd_pathname);
1480
1481 stop_pc = read_pc_pid (ecs->ptid);
1482 ecs->saved_inferior_ptid = inferior_ptid;
1483 inferior_ptid = ecs->ptid;
1484
1485 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1486
1487 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1488 inferior_ptid = ecs->saved_inferior_ptid;
1489
1490 if (!ptid_equal (ecs->ptid, inferior_ptid))
1491 {
1492 context_switch (ecs);
1493 flush_cached_frames ();
1494 }
1495
1496 /* If no catchpoint triggered for this, then keep going. */
1497 if (ecs->random_signal)
1498 {
1499 stop_signal = TARGET_SIGNAL_0;
1500 keep_going (ecs);
1501 return;
1502 }
1503 goto process_event_stop_test;
1504
1505 /* Be careful not to try to gather much state about a thread
1506 that's in a syscall. It's frequently a losing proposition. */
1507 case TARGET_WAITKIND_SYSCALL_ENTRY:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1510 resume (0, TARGET_SIGNAL_0);
1511 prepare_to_wait (ecs);
1512 return;
1513
1514 /* Before examining the threads further, step this thread to
1515 get it entirely out of the syscall. (We get notice of the
1516 event when the thread is just on the verge of exiting a
1517 syscall. Stepping one instruction seems to get it back
1518 into user code.) */
1519 case TARGET_WAITKIND_SYSCALL_RETURN:
1520 if (debug_infrun)
1521 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1522 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1523 prepare_to_wait (ecs);
1524 return;
1525
1526 case TARGET_WAITKIND_STOPPED:
1527 if (debug_infrun)
1528 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1529 stop_signal = ecs->ws.value.sig;
1530 break;
1531
1532 /* We had an event in the inferior, but we are not interested
1533 in handling it at this level. The lower layers have already
1534 done what needs to be done, if anything.
1535
1536 One of the possible circumstances for this is when the
1537 inferior produces output for the console. The inferior has
1538 not stopped, and we are ignoring the event. Another possible
1539 circumstance is any event which the lower level knows will be
1540 reported multiple times without an intervening resume. */
1541 case TARGET_WAITKIND_IGNORE:
1542 if (debug_infrun)
1543 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1544 prepare_to_wait (ecs);
1545 return;
1546 }
1547
1548 /* We may want to consider not doing a resume here in order to give
1549 the user a chance to play with the new thread. It might be good
1550 to make that a user-settable option. */
1551
1552 /* At this point, all threads are stopped (happens automatically in
1553 either the OS or the native code). Therefore we need to continue
1554 all threads in order to make progress. */
1555 if (ecs->new_thread_event)
1556 {
1557 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1558 prepare_to_wait (ecs);
1559 return;
1560 }
1561
1562 stop_pc = read_pc_pid (ecs->ptid);
1563
1564 if (debug_infrun)
1565 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1566
1567 if (stepping_past_singlestep_breakpoint)
1568 {
1569 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1570 && singlestep_breakpoints_inserted_p);
1571 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1572 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1573
1574 stepping_past_singlestep_breakpoint = 0;
1575
1576 /* We've either finished single-stepping past the single-step
1577 breakpoint, or stopped for some other reason. It would be nice if
1578 we could tell, but we can't reliably. */
1579 if (stop_signal == TARGET_SIGNAL_TRAP)
1580 {
1581 if (debug_infrun)
1582 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1583 /* Pull the single step breakpoints out of the target. */
1584 SOFTWARE_SINGLE_STEP (0, 0);
1585 singlestep_breakpoints_inserted_p = 0;
1586
1587 ecs->random_signal = 0;
1588
1589 ecs->ptid = saved_singlestep_ptid;
1590 context_switch (ecs);
1591 if (deprecated_context_hook)
1592 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1593
1594 resume (1, TARGET_SIGNAL_0);
1595 prepare_to_wait (ecs);
1596 return;
1597 }
1598 }
1599
1600 stepping_past_singlestep_breakpoint = 0;
1601
1602 /* See if a thread hit a thread-specific breakpoint that was meant for
1603 another thread. If so, then step that thread past the breakpoint,
1604 and continue it. */
1605
1606 if (stop_signal == TARGET_SIGNAL_TRAP)
1607 {
1608 int thread_hop_needed = 0;
1609
1610 /* Check if a regular breakpoint has been hit before checking
1611 for a potential single step breakpoint. Otherwise, GDB will
1612 not see this breakpoint hit when stepping onto breakpoints. */
1613 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1614 {
1615 ecs->random_signal = 0;
1616 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1617 thread_hop_needed = 1;
1618 }
1619 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1620 {
1621 /* We have not context switched yet, so this should be true
1622 no matter which thread hit the singlestep breakpoint. */
1623 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1624 if (debug_infrun)
1625 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1626 "trap for %s\n",
1627 target_pid_to_str (ecs->ptid));
1628
1629 ecs->random_signal = 0;
1630 /* The call to in_thread_list is necessary because PTIDs sometimes
1631 change when we go from single-threaded to multi-threaded. If
1632 the singlestep_ptid is still in the list, assume that it is
1633 really different from ecs->ptid. */
1634 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1635 && in_thread_list (singlestep_ptid))
1636 {
1637 /* If the PC of the thread we were trying to single-step
1638 has changed, discard this event (which we were going
1639 to ignore anyway), and pretend we saw that thread
1640 trap. This prevents us continuously moving the
1641 single-step breakpoint forward, one instruction at a
1642 time. If the PC has changed, then the thread we were
1643 trying to single-step has trapped or been signalled,
1644 but the event has not been reported to GDB yet.
1645
1646 There might be some cases where this loses signal
1647 information, if a signal has arrived at exactly the
1648 same time that the PC changed, but this is the best
1649 we can do with the information available. Perhaps we
1650 should arrange to report all events for all threads
1651 when they stop, or to re-poll the remote looking for
1652 this particular thread (i.e. temporarily enable
1653 schedlock). */
1654 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1655 {
1656 if (debug_infrun)
1657 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1658 " but expected thread advanced also\n");
1659
1660 /* The current context still belongs to
1661 singlestep_ptid. Don't swap here, since that's
1662 the context we want to use. Just fudge our
1663 state and continue. */
1664 ecs->ptid = singlestep_ptid;
1665 stop_pc = read_pc_pid (ecs->ptid);
1666 }
1667 else
1668 {
1669 if (debug_infrun)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "infrun: unexpected thread\n");
1672
1673 thread_hop_needed = 1;
1674 stepping_past_singlestep_breakpoint = 1;
1675 saved_singlestep_ptid = singlestep_ptid;
1676 }
1677 }
1678 }
1679
1680 if (thread_hop_needed)
1681 {
1682 int remove_status;
1683
1684 if (debug_infrun)
1685 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1686
1687 /* Saw a breakpoint, but it was hit by the wrong thread.
1688 Just continue. */
1689
1690 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1691 {
1692 /* Pull the single step breakpoints out of the target. */
1693 SOFTWARE_SINGLE_STEP (0, 0);
1694 singlestep_breakpoints_inserted_p = 0;
1695 }
1696
1697 remove_status = remove_breakpoints ();
1698 /* Did we fail to remove breakpoints? If so, try
1699 to set the PC past the bp. (There's at least
1700 one situation in which we can fail to remove
1701 the bp's: On HP-UX's that use ttrace, we can't
1702 change the address space of a vforking child
1703 process until the child exits (well, okay, not
1704 then either :-) or execs. */
1705 if (remove_status != 0)
1706 {
1707 /* FIXME! This is obviously non-portable! */
1708 write_pc_pid (stop_pc + 4, ecs->ptid);
1709 /* We need to restart all the threads now,
1710 * unles we're running in scheduler-locked mode.
1711 * Use currently_stepping to determine whether to
1712 * step or continue.
1713 */
1714 /* FIXME MVS: is there any reason not to call resume()? */
1715 if (scheduler_mode == schedlock_on)
1716 target_resume (ecs->ptid,
1717 currently_stepping (ecs), TARGET_SIGNAL_0);
1718 else
1719 target_resume (RESUME_ALL,
1720 currently_stepping (ecs), TARGET_SIGNAL_0);
1721 prepare_to_wait (ecs);
1722 return;
1723 }
1724 else
1725 { /* Single step */
1726 breakpoints_inserted = 0;
1727 if (!ptid_equal (inferior_ptid, ecs->ptid))
1728 context_switch (ecs);
1729 ecs->waiton_ptid = ecs->ptid;
1730 ecs->wp = &(ecs->ws);
1731 ecs->another_trap = 1;
1732
1733 ecs->infwait_state = infwait_thread_hop_state;
1734 keep_going (ecs);
1735 registers_changed ();
1736 return;
1737 }
1738 }
1739 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1740 {
1741 sw_single_step_trap_p = 1;
1742 ecs->random_signal = 0;
1743 }
1744 }
1745 else
1746 ecs->random_signal = 1;
1747
1748 /* See if something interesting happened to the non-current thread. If
1749 so, then switch to that thread. */
1750 if (!ptid_equal (ecs->ptid, inferior_ptid))
1751 {
1752 if (debug_infrun)
1753 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1754
1755 context_switch (ecs);
1756
1757 if (deprecated_context_hook)
1758 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1759 }
1760
1761 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1762 {
1763 /* Pull the single step breakpoints out of the target. */
1764 SOFTWARE_SINGLE_STEP (0, 0);
1765 singlestep_breakpoints_inserted_p = 0;
1766 }
1767
1768 /* It may not be necessary to disable the watchpoint to stop over
1769 it. For example, the PA can (with some kernel cooperation)
1770 single step over a watchpoint without disabling the watchpoint. */
1771 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1772 {
1773 if (debug_infrun)
1774 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1775 resume (1, 0);
1776 prepare_to_wait (ecs);
1777 return;
1778 }
1779
1780 /* It is far more common to need to disable a watchpoint to step
1781 the inferior over it. FIXME. What else might a debug
1782 register or page protection watchpoint scheme need here? */
1783 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1784 {
1785 /* At this point, we are stopped at an instruction which has
1786 attempted to write to a piece of memory under control of
1787 a watchpoint. The instruction hasn't actually executed
1788 yet. If we were to evaluate the watchpoint expression
1789 now, we would get the old value, and therefore no change
1790 would seem to have occurred.
1791
1792 In order to make watchpoints work `right', we really need
1793 to complete the memory write, and then evaluate the
1794 watchpoint expression. The following code does that by
1795 removing the watchpoint (actually, all watchpoints and
1796 breakpoints), single-stepping the target, re-inserting
1797 watchpoints, and then falling through to let normal
1798 single-step processing handle proceed. Since this
1799 includes evaluating watchpoints, things will come to a
1800 stop in the correct manner. */
1801
1802 if (debug_infrun)
1803 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1804 remove_breakpoints ();
1805 registers_changed ();
1806 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1807
1808 ecs->waiton_ptid = ecs->ptid;
1809 ecs->wp = &(ecs->ws);
1810 ecs->infwait_state = infwait_nonstep_watch_state;
1811 prepare_to_wait (ecs);
1812 return;
1813 }
1814
1815 /* It may be possible to simply continue after a watchpoint. */
1816 if (HAVE_CONTINUABLE_WATCHPOINT)
1817 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1818
1819 ecs->stop_func_start = 0;
1820 ecs->stop_func_end = 0;
1821 ecs->stop_func_name = 0;
1822 /* Don't care about return value; stop_func_start and stop_func_name
1823 will both be 0 if it doesn't work. */
1824 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1825 &ecs->stop_func_start, &ecs->stop_func_end);
1826 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1827 ecs->another_trap = 0;
1828 bpstat_clear (&stop_bpstat);
1829 stop_step = 0;
1830 stop_stack_dummy = 0;
1831 stop_print_frame = 1;
1832 ecs->random_signal = 0;
1833 stopped_by_random_signal = 0;
1834 breakpoints_failed = 0;
1835
1836 if (stop_signal == TARGET_SIGNAL_TRAP
1837 && trap_expected
1838 && gdbarch_single_step_through_delay_p (current_gdbarch)
1839 && currently_stepping (ecs))
1840 {
1841 /* We're trying to step of a breakpoint. Turns out that we're
1842 also on an instruction that needs to be stepped multiple
1843 times before it's been fully executing. E.g., architectures
1844 with a delay slot. It needs to be stepped twice, once for
1845 the instruction and once for the delay slot. */
1846 int step_through_delay
1847 = gdbarch_single_step_through_delay (current_gdbarch,
1848 get_current_frame ());
1849 if (debug_infrun && step_through_delay)
1850 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1851 if (step_range_end == 0 && step_through_delay)
1852 {
1853 /* The user issued a continue when stopped at a breakpoint.
1854 Set up for another trap and get out of here. */
1855 ecs->another_trap = 1;
1856 keep_going (ecs);
1857 return;
1858 }
1859 else if (step_through_delay)
1860 {
1861 /* The user issued a step when stopped at a breakpoint.
1862 Maybe we should stop, maybe we should not - the delay
1863 slot *might* correspond to a line of source. In any
1864 case, don't decide that here, just set ecs->another_trap,
1865 making sure we single-step again before breakpoints are
1866 re-inserted. */
1867 ecs->another_trap = 1;
1868 }
1869 }
1870
1871 /* Look at the cause of the stop, and decide what to do.
1872 The alternatives are:
1873 1) break; to really stop and return to the debugger,
1874 2) drop through to start up again
1875 (set ecs->another_trap to 1 to single step once)
1876 3) set ecs->random_signal to 1, and the decision between 1 and 2
1877 will be made according to the signal handling tables. */
1878
1879 /* First, distinguish signals caused by the debugger from signals
1880 that have to do with the program's own actions. Note that
1881 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1882 on the operating system version. Here we detect when a SIGILL or
1883 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1884 something similar for SIGSEGV, since a SIGSEGV will be generated
1885 when we're trying to execute a breakpoint instruction on a
1886 non-executable stack. This happens for call dummy breakpoints
1887 for architectures like SPARC that place call dummies on the
1888 stack. */
1889
1890 if (stop_signal == TARGET_SIGNAL_TRAP
1891 || (breakpoints_inserted
1892 && (stop_signal == TARGET_SIGNAL_ILL
1893 || stop_signal == TARGET_SIGNAL_SEGV
1894 || stop_signal == TARGET_SIGNAL_EMT))
1895 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1896 {
1897 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1898 {
1899 if (debug_infrun)
1900 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1901 stop_print_frame = 0;
1902 stop_stepping (ecs);
1903 return;
1904 }
1905
1906 /* This is originated from start_remote(), start_inferior() and
1907 shared libraries hook functions. */
1908 if (stop_soon == STOP_QUIETLY)
1909 {
1910 if (debug_infrun)
1911 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1912 stop_stepping (ecs);
1913 return;
1914 }
1915
1916 /* This originates from attach_command(). We need to overwrite
1917 the stop_signal here, because some kernels don't ignore a
1918 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1919 See more comments in inferior.h. */
1920 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1921 {
1922 stop_stepping (ecs);
1923 if (stop_signal == TARGET_SIGNAL_STOP)
1924 stop_signal = TARGET_SIGNAL_0;
1925 return;
1926 }
1927
1928 /* Don't even think about breakpoints if just proceeded over a
1929 breakpoint. */
1930 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1931 {
1932 if (debug_infrun)
1933 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1934 bpstat_clear (&stop_bpstat);
1935 }
1936 else
1937 {
1938 /* See if there is a breakpoint at the current PC. */
1939 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1940 stopped_by_watchpoint);
1941
1942 /* Following in case break condition called a
1943 function. */
1944 stop_print_frame = 1;
1945 }
1946
1947 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1948 at one stage in the past included checks for an inferior
1949 function call's call dummy's return breakpoint. The original
1950 comment, that went with the test, read:
1951
1952 ``End of a stack dummy. Some systems (e.g. Sony news) give
1953 another signal besides SIGTRAP, so check here as well as
1954 above.''
1955
1956 If someone ever tries to get get call dummys on a
1957 non-executable stack to work (where the target would stop
1958 with something like a SIGSEGV), then those tests might need
1959 to be re-instated. Given, however, that the tests were only
1960 enabled when momentary breakpoints were not being used, I
1961 suspect that it won't be the case.
1962
1963 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1964 be necessary for call dummies on a non-executable stack on
1965 SPARC. */
1966
1967 if (stop_signal == TARGET_SIGNAL_TRAP)
1968 ecs->random_signal
1969 = !(bpstat_explains_signal (stop_bpstat)
1970 || trap_expected
1971 || (step_range_end && step_resume_breakpoint == NULL));
1972 else
1973 {
1974 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1975 if (!ecs->random_signal)
1976 stop_signal = TARGET_SIGNAL_TRAP;
1977 }
1978 }
1979
1980 /* When we reach this point, we've pretty much decided
1981 that the reason for stopping must've been a random
1982 (unexpected) signal. */
1983
1984 else
1985 ecs->random_signal = 1;
1986
1987 process_event_stop_test:
1988 /* For the program's own signals, act according to
1989 the signal handling tables. */
1990
1991 if (ecs->random_signal)
1992 {
1993 /* Signal not for debugging purposes. */
1994 int printed = 0;
1995
1996 if (debug_infrun)
1997 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1998
1999 stopped_by_random_signal = 1;
2000
2001 if (signal_print[stop_signal])
2002 {
2003 printed = 1;
2004 target_terminal_ours_for_output ();
2005 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2006 }
2007 if (signal_stop[stop_signal])
2008 {
2009 stop_stepping (ecs);
2010 return;
2011 }
2012 /* If not going to stop, give terminal back
2013 if we took it away. */
2014 else if (printed)
2015 target_terminal_inferior ();
2016
2017 /* Clear the signal if it should not be passed. */
2018 if (signal_program[stop_signal] == 0)
2019 stop_signal = TARGET_SIGNAL_0;
2020
2021 if (prev_pc == read_pc ()
2022 && !breakpoints_inserted
2023 && breakpoint_here_p (read_pc ())
2024 && step_resume_breakpoint == NULL)
2025 {
2026 /* We were just starting a new sequence, attempting to
2027 single-step off of a breakpoint and expecting a SIGTRAP.
2028 Intead this signal arrives. This signal will take us out
2029 of the stepping range so GDB needs to remember to, when
2030 the signal handler returns, resume stepping off that
2031 breakpoint. */
2032 /* To simplify things, "continue" is forced to use the same
2033 code paths as single-step - set a breakpoint at the
2034 signal return address and then, once hit, step off that
2035 breakpoint. */
2036 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2037 ecs->step_after_step_resume_breakpoint = 1;
2038 keep_going (ecs);
2039 return;
2040 }
2041
2042 if (step_range_end != 0
2043 && stop_signal != TARGET_SIGNAL_0
2044 && stop_pc >= step_range_start && stop_pc < step_range_end
2045 && frame_id_eq (get_frame_id (get_current_frame ()),
2046 step_frame_id)
2047 && step_resume_breakpoint == NULL)
2048 {
2049 /* The inferior is about to take a signal that will take it
2050 out of the single step range. Set a breakpoint at the
2051 current PC (which is presumably where the signal handler
2052 will eventually return) and then allow the inferior to
2053 run free.
2054
2055 Note that this is only needed for a signal delivered
2056 while in the single-step range. Nested signals aren't a
2057 problem as they eventually all return. */
2058 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2059 keep_going (ecs);
2060 return;
2061 }
2062
2063 /* Note: step_resume_breakpoint may be non-NULL. This occures
2064 when either there's a nested signal, or when there's a
2065 pending signal enabled just as the signal handler returns
2066 (leaving the inferior at the step-resume-breakpoint without
2067 actually executing it). Either way continue until the
2068 breakpoint is really hit. */
2069 keep_going (ecs);
2070 return;
2071 }
2072
2073 /* Handle cases caused by hitting a breakpoint. */
2074 {
2075 CORE_ADDR jmp_buf_pc;
2076 struct bpstat_what what;
2077
2078 what = bpstat_what (stop_bpstat);
2079
2080 if (what.call_dummy)
2081 {
2082 stop_stack_dummy = 1;
2083 }
2084
2085 switch (what.main_action)
2086 {
2087 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2088 /* If we hit the breakpoint at longjmp, disable it for the
2089 duration of this command. Then, install a temporary
2090 breakpoint at the target of the jmp_buf. */
2091 if (debug_infrun)
2092 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2093 disable_longjmp_breakpoint ();
2094 remove_breakpoints ();
2095 breakpoints_inserted = 0;
2096 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2097 {
2098 keep_going (ecs);
2099 return;
2100 }
2101
2102 /* Need to blow away step-resume breakpoint, as it
2103 interferes with us */
2104 if (step_resume_breakpoint != NULL)
2105 {
2106 delete_step_resume_breakpoint (&step_resume_breakpoint);
2107 }
2108
2109 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2110 ecs->handling_longjmp = 1; /* FIXME */
2111 keep_going (ecs);
2112 return;
2113
2114 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2115 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2116 if (debug_infrun)
2117 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2118 remove_breakpoints ();
2119 breakpoints_inserted = 0;
2120 disable_longjmp_breakpoint ();
2121 ecs->handling_longjmp = 0; /* FIXME */
2122 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2123 break;
2124 /* else fallthrough */
2125
2126 case BPSTAT_WHAT_SINGLE:
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2129 if (breakpoints_inserted)
2130 {
2131 remove_breakpoints ();
2132 }
2133 breakpoints_inserted = 0;
2134 ecs->another_trap = 1;
2135 /* Still need to check other stuff, at least the case
2136 where we are stepping and step out of the right range. */
2137 break;
2138
2139 case BPSTAT_WHAT_STOP_NOISY:
2140 if (debug_infrun)
2141 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2142 stop_print_frame = 1;
2143
2144 /* We are about to nuke the step_resume_breakpointt via the
2145 cleanup chain, so no need to worry about it here. */
2146
2147 stop_stepping (ecs);
2148 return;
2149
2150 case BPSTAT_WHAT_STOP_SILENT:
2151 if (debug_infrun)
2152 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2153 stop_print_frame = 0;
2154
2155 /* We are about to nuke the step_resume_breakpoin via the
2156 cleanup chain, so no need to worry about it here. */
2157
2158 stop_stepping (ecs);
2159 return;
2160
2161 case BPSTAT_WHAT_STEP_RESUME:
2162 /* This proably demands a more elegant solution, but, yeah
2163 right...
2164
2165 This function's use of the simple variable
2166 step_resume_breakpoint doesn't seem to accomodate
2167 simultaneously active step-resume bp's, although the
2168 breakpoint list certainly can.
2169
2170 If we reach here and step_resume_breakpoint is already
2171 NULL, then apparently we have multiple active
2172 step-resume bp's. We'll just delete the breakpoint we
2173 stopped at, and carry on.
2174
2175 Correction: what the code currently does is delete a
2176 step-resume bp, but it makes no effort to ensure that
2177 the one deleted is the one currently stopped at. MVS */
2178
2179 if (debug_infrun)
2180 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2181
2182 if (step_resume_breakpoint == NULL)
2183 {
2184 step_resume_breakpoint =
2185 bpstat_find_step_resume_breakpoint (stop_bpstat);
2186 }
2187 delete_step_resume_breakpoint (&step_resume_breakpoint);
2188 if (ecs->step_after_step_resume_breakpoint)
2189 {
2190 /* Back when the step-resume breakpoint was inserted, we
2191 were trying to single-step off a breakpoint. Go back
2192 to doing that. */
2193 ecs->step_after_step_resume_breakpoint = 0;
2194 remove_breakpoints ();
2195 breakpoints_inserted = 0;
2196 ecs->another_trap = 1;
2197 keep_going (ecs);
2198 return;
2199 }
2200 break;
2201
2202 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2203 if (debug_infrun)
2204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2205 /* If were waiting for a trap, hitting the step_resume_break
2206 doesn't count as getting it. */
2207 if (trap_expected)
2208 ecs->another_trap = 1;
2209 break;
2210
2211 case BPSTAT_WHAT_CHECK_SHLIBS:
2212 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2213 {
2214 if (debug_infrun)
2215 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2216 /* Remove breakpoints, we eventually want to step over the
2217 shlib event breakpoint, and SOLIB_ADD might adjust
2218 breakpoint addresses via breakpoint_re_set. */
2219 if (breakpoints_inserted)
2220 remove_breakpoints ();
2221 breakpoints_inserted = 0;
2222
2223 /* Check for any newly added shared libraries if we're
2224 supposed to be adding them automatically. Switch
2225 terminal for any messages produced by
2226 breakpoint_re_set. */
2227 target_terminal_ours_for_output ();
2228 /* NOTE: cagney/2003-11-25: Make certain that the target
2229 stack's section table is kept up-to-date. Architectures,
2230 (e.g., PPC64), use the section table to perform
2231 operations such as address => section name and hence
2232 require the table to contain all sections (including
2233 those found in shared libraries). */
2234 /* NOTE: cagney/2003-11-25: Pass current_target and not
2235 exec_ops to SOLIB_ADD. This is because current GDB is
2236 only tooled to propagate section_table changes out from
2237 the "current_target" (see target_resize_to_sections), and
2238 not up from the exec stratum. This, of course, isn't
2239 right. "infrun.c" should only interact with the
2240 exec/process stratum, instead relying on the target stack
2241 to propagate relevant changes (stop, section table
2242 changed, ...) up to other layers. */
2243 #ifdef SOLIB_ADD
2244 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2245 #else
2246 solib_add (NULL, 0, &current_target, auto_solib_add);
2247 #endif
2248 target_terminal_inferior ();
2249
2250 /* Try to reenable shared library breakpoints, additional
2251 code segments in shared libraries might be mapped in now. */
2252 re_enable_breakpoints_in_shlibs ();
2253
2254 /* If requested, stop when the dynamic linker notifies
2255 gdb of events. This allows the user to get control
2256 and place breakpoints in initializer routines for
2257 dynamically loaded objects (among other things). */
2258 if (stop_on_solib_events || stop_stack_dummy)
2259 {
2260 stop_stepping (ecs);
2261 return;
2262 }
2263
2264 /* If we stopped due to an explicit catchpoint, then the
2265 (see above) call to SOLIB_ADD pulled in any symbols
2266 from a newly-loaded library, if appropriate.
2267
2268 We do want the inferior to stop, but not where it is
2269 now, which is in the dynamic linker callback. Rather,
2270 we would like it stop in the user's program, just after
2271 the call that caused this catchpoint to trigger. That
2272 gives the user a more useful vantage from which to
2273 examine their program's state. */
2274 else if (what.main_action
2275 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2276 {
2277 /* ??rehrauer: If I could figure out how to get the
2278 right return PC from here, we could just set a temp
2279 breakpoint and resume. I'm not sure we can without
2280 cracking open the dld's shared libraries and sniffing
2281 their unwind tables and text/data ranges, and that's
2282 not a terribly portable notion.
2283
2284 Until that time, we must step the inferior out of the
2285 dld callback, and also out of the dld itself (and any
2286 code or stubs in libdld.sl, such as "shl_load" and
2287 friends) until we reach non-dld code. At that point,
2288 we can stop stepping. */
2289 bpstat_get_triggered_catchpoints (stop_bpstat,
2290 &ecs->
2291 stepping_through_solib_catchpoints);
2292 ecs->stepping_through_solib_after_catch = 1;
2293
2294 /* Be sure to lift all breakpoints, so the inferior does
2295 actually step past this point... */
2296 ecs->another_trap = 1;
2297 break;
2298 }
2299 else
2300 {
2301 /* We want to step over this breakpoint, then keep going. */
2302 ecs->another_trap = 1;
2303 break;
2304 }
2305 }
2306 break;
2307
2308 case BPSTAT_WHAT_LAST:
2309 /* Not a real code, but listed here to shut up gcc -Wall. */
2310
2311 case BPSTAT_WHAT_KEEP_CHECKING:
2312 break;
2313 }
2314 }
2315
2316 /* We come here if we hit a breakpoint but should not
2317 stop for it. Possibly we also were stepping
2318 and should stop for that. So fall through and
2319 test for stepping. But, if not stepping,
2320 do not stop. */
2321
2322 /* Are we stepping to get the inferior out of the dynamic linker's
2323 hook (and possibly the dld itself) after catching a shlib
2324 event? */
2325 if (ecs->stepping_through_solib_after_catch)
2326 {
2327 #if defined(SOLIB_ADD)
2328 /* Have we reached our destination? If not, keep going. */
2329 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2330 {
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2333 ecs->another_trap = 1;
2334 keep_going (ecs);
2335 return;
2336 }
2337 #endif
2338 if (debug_infrun)
2339 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2340 /* Else, stop and report the catchpoint(s) whose triggering
2341 caused us to begin stepping. */
2342 ecs->stepping_through_solib_after_catch = 0;
2343 bpstat_clear (&stop_bpstat);
2344 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2345 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2346 stop_print_frame = 1;
2347 stop_stepping (ecs);
2348 return;
2349 }
2350
2351 if (step_resume_breakpoint)
2352 {
2353 if (debug_infrun)
2354 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2355
2356 /* Having a step-resume breakpoint overrides anything
2357 else having to do with stepping commands until
2358 that breakpoint is reached. */
2359 keep_going (ecs);
2360 return;
2361 }
2362
2363 if (step_range_end == 0)
2364 {
2365 if (debug_infrun)
2366 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2367 /* Likewise if we aren't even stepping. */
2368 keep_going (ecs);
2369 return;
2370 }
2371
2372 /* If stepping through a line, keep going if still within it.
2373
2374 Note that step_range_end is the address of the first instruction
2375 beyond the step range, and NOT the address of the last instruction
2376 within it! */
2377 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2378 {
2379 if (debug_infrun)
2380 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2381 paddr_nz (step_range_start),
2382 paddr_nz (step_range_end));
2383 keep_going (ecs);
2384 return;
2385 }
2386
2387 /* We stepped out of the stepping range. */
2388
2389 /* If we are stepping at the source level and entered the runtime
2390 loader dynamic symbol resolution code, we keep on single stepping
2391 until we exit the run time loader code and reach the callee's
2392 address. */
2393 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2394 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2395 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2396 #else
2397 && in_solib_dynsym_resolve_code (stop_pc)
2398 #endif
2399 )
2400 {
2401 CORE_ADDR pc_after_resolver =
2402 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2403
2404 if (debug_infrun)
2405 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2406
2407 if (pc_after_resolver)
2408 {
2409 /* Set up a step-resume breakpoint at the address
2410 indicated by SKIP_SOLIB_RESOLVER. */
2411 struct symtab_and_line sr_sal;
2412 init_sal (&sr_sal);
2413 sr_sal.pc = pc_after_resolver;
2414
2415 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2416 }
2417
2418 keep_going (ecs);
2419 return;
2420 }
2421
2422 if (step_range_end != 1
2423 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2424 || step_over_calls == STEP_OVER_ALL)
2425 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2426 {
2427 if (debug_infrun)
2428 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2429 /* The inferior, while doing a "step" or "next", has ended up in
2430 a signal trampoline (either by a signal being delivered or by
2431 the signal handler returning). Just single-step until the
2432 inferior leaves the trampoline (either by calling the handler
2433 or returning). */
2434 keep_going (ecs);
2435 return;
2436 }
2437
2438 /* Check for subroutine calls. The check for the current frame
2439 equalling the step ID is not necessary - the check of the
2440 previous frame's ID is sufficient - but it is a common case and
2441 cheaper than checking the previous frame's ID.
2442
2443 NOTE: frame_id_eq will never report two invalid frame IDs as
2444 being equal, so to get into this block, both the current and
2445 previous frame must have valid frame IDs. */
2446 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2447 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2448 {
2449 CORE_ADDR real_stop_pc;
2450
2451 if (debug_infrun)
2452 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2453
2454 if ((step_over_calls == STEP_OVER_NONE)
2455 || ((step_range_end == 1)
2456 && in_prologue (prev_pc, ecs->stop_func_start)))
2457 {
2458 /* I presume that step_over_calls is only 0 when we're
2459 supposed to be stepping at the assembly language level
2460 ("stepi"). Just stop. */
2461 /* Also, maybe we just did a "nexti" inside a prolog, so we
2462 thought it was a subroutine call but it was not. Stop as
2463 well. FENN */
2464 stop_step = 1;
2465 print_stop_reason (END_STEPPING_RANGE, 0);
2466 stop_stepping (ecs);
2467 return;
2468 }
2469
2470 if (step_over_calls == STEP_OVER_ALL)
2471 {
2472 /* We're doing a "next", set a breakpoint at callee's return
2473 address (the address at which the caller will
2474 resume). */
2475 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2476 keep_going (ecs);
2477 return;
2478 }
2479
2480 /* If we are in a function call trampoline (a stub between the
2481 calling routine and the real function), locate the real
2482 function. That's what tells us (a) whether we want to step
2483 into it at all, and (b) what prologue we want to run to the
2484 end of, if we do step into it. */
2485 real_stop_pc = skip_language_trampoline (stop_pc);
2486 if (real_stop_pc == 0)
2487 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2488 if (real_stop_pc != 0)
2489 ecs->stop_func_start = real_stop_pc;
2490
2491 if (
2492 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2493 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2494 #else
2495 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2496 #endif
2497 )
2498 {
2499 struct symtab_and_line sr_sal;
2500 init_sal (&sr_sal);
2501 sr_sal.pc = ecs->stop_func_start;
2502
2503 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2504 keep_going (ecs);
2505 return;
2506 }
2507
2508 /* If we have line number information for the function we are
2509 thinking of stepping into, step into it.
2510
2511 If there are several symtabs at that PC (e.g. with include
2512 files), just want to know whether *any* of them have line
2513 numbers. find_pc_line handles this. */
2514 {
2515 struct symtab_and_line tmp_sal;
2516
2517 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2518 if (tmp_sal.line != 0)
2519 {
2520 step_into_function (ecs);
2521 return;
2522 }
2523 }
2524
2525 /* If we have no line number and the step-stop-if-no-debug is
2526 set, we stop the step so that the user has a chance to switch
2527 in assembly mode. */
2528 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2529 {
2530 stop_step = 1;
2531 print_stop_reason (END_STEPPING_RANGE, 0);
2532 stop_stepping (ecs);
2533 return;
2534 }
2535
2536 /* Set a breakpoint at callee's return address (the address at
2537 which the caller will resume). */
2538 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2539 keep_going (ecs);
2540 return;
2541 }
2542
2543 /* If we're in the return path from a shared library trampoline,
2544 we want to proceed through the trampoline when stepping. */
2545 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2546 {
2547 /* Determine where this trampoline returns. */
2548 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2549
2550 if (debug_infrun)
2551 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2552
2553 /* Only proceed through if we know where it's going. */
2554 if (real_stop_pc)
2555 {
2556 /* And put the step-breakpoint there and go until there. */
2557 struct symtab_and_line sr_sal;
2558
2559 init_sal (&sr_sal); /* initialize to zeroes */
2560 sr_sal.pc = real_stop_pc;
2561 sr_sal.section = find_pc_overlay (sr_sal.pc);
2562
2563 /* Do not specify what the fp should be when we stop since
2564 on some machines the prologue is where the new fp value
2565 is established. */
2566 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2567
2568 /* Restart without fiddling with the step ranges or
2569 other state. */
2570 keep_going (ecs);
2571 return;
2572 }
2573 }
2574
2575 ecs->sal = find_pc_line (stop_pc, 0);
2576
2577 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2578 the trampoline processing logic, however, there are some trampolines
2579 that have no names, so we should do trampoline handling first. */
2580 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2581 && ecs->stop_func_name == NULL
2582 && ecs->sal.line == 0)
2583 {
2584 if (debug_infrun)
2585 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2586
2587 /* The inferior just stepped into, or returned to, an
2588 undebuggable function (where there is no debugging information
2589 and no line number corresponding to the address where the
2590 inferior stopped). Since we want to skip this kind of code,
2591 we keep going until the inferior returns from this
2592 function - unless the user has asked us not to (via
2593 set step-mode) or we no longer know how to get back
2594 to the call site. */
2595 if (step_stop_if_no_debug
2596 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2597 {
2598 /* If we have no line number and the step-stop-if-no-debug
2599 is set, we stop the step so that the user has a chance to
2600 switch in assembly mode. */
2601 stop_step = 1;
2602 print_stop_reason (END_STEPPING_RANGE, 0);
2603 stop_stepping (ecs);
2604 return;
2605 }
2606 else
2607 {
2608 /* Set a breakpoint at callee's return address (the address
2609 at which the caller will resume). */
2610 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2611 keep_going (ecs);
2612 return;
2613 }
2614 }
2615
2616 if (step_range_end == 1)
2617 {
2618 /* It is stepi or nexti. We always want to stop stepping after
2619 one instruction. */
2620 if (debug_infrun)
2621 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2622 stop_step = 1;
2623 print_stop_reason (END_STEPPING_RANGE, 0);
2624 stop_stepping (ecs);
2625 return;
2626 }
2627
2628 if (ecs->sal.line == 0)
2629 {
2630 /* We have no line number information. That means to stop
2631 stepping (does this always happen right after one instruction,
2632 when we do "s" in a function with no line numbers,
2633 or can this happen as a result of a return or longjmp?). */
2634 if (debug_infrun)
2635 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2636 stop_step = 1;
2637 print_stop_reason (END_STEPPING_RANGE, 0);
2638 stop_stepping (ecs);
2639 return;
2640 }
2641
2642 if ((stop_pc == ecs->sal.pc)
2643 && (ecs->current_line != ecs->sal.line
2644 || ecs->current_symtab != ecs->sal.symtab))
2645 {
2646 /* We are at the start of a different line. So stop. Note that
2647 we don't stop if we step into the middle of a different line.
2648 That is said to make things like for (;;) statements work
2649 better. */
2650 if (debug_infrun)
2651 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2652 stop_step = 1;
2653 print_stop_reason (END_STEPPING_RANGE, 0);
2654 stop_stepping (ecs);
2655 return;
2656 }
2657
2658 /* We aren't done stepping.
2659
2660 Optimize by setting the stepping range to the line.
2661 (We might not be in the original line, but if we entered a
2662 new line in mid-statement, we continue stepping. This makes
2663 things like for(;;) statements work better.) */
2664
2665 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2666 {
2667 /* If this is the last line of the function, don't keep stepping
2668 (it would probably step us out of the function).
2669 This is particularly necessary for a one-line function,
2670 in which after skipping the prologue we better stop even though
2671 we will be in mid-line. */
2672 if (debug_infrun)
2673 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2674 stop_step = 1;
2675 print_stop_reason (END_STEPPING_RANGE, 0);
2676 stop_stepping (ecs);
2677 return;
2678 }
2679 step_range_start = ecs->sal.pc;
2680 step_range_end = ecs->sal.end;
2681 step_frame_id = get_frame_id (get_current_frame ());
2682 ecs->current_line = ecs->sal.line;
2683 ecs->current_symtab = ecs->sal.symtab;
2684
2685 /* In the case where we just stepped out of a function into the
2686 middle of a line of the caller, continue stepping, but
2687 step_frame_id must be modified to current frame */
2688 #if 0
2689 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2690 generous. It will trigger on things like a step into a frameless
2691 stackless leaf function. I think the logic should instead look
2692 at the unwound frame ID has that should give a more robust
2693 indication of what happened. */
2694 if (step - ID == current - ID)
2695 still stepping in same function;
2696 else if (step - ID == unwind (current - ID))
2697 stepped into a function;
2698 else
2699 stepped out of a function;
2700 /* Of course this assumes that the frame ID unwind code is robust
2701 and we're willing to introduce frame unwind logic into this
2702 function. Fortunately, those days are nearly upon us. */
2703 #endif
2704 {
2705 struct frame_id current_frame = get_frame_id (get_current_frame ());
2706 if (!(frame_id_inner (current_frame, step_frame_id)))
2707 step_frame_id = current_frame;
2708 }
2709
2710 if (debug_infrun)
2711 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2712 keep_going (ecs);
2713 }
2714
2715 /* Are we in the middle of stepping? */
2716
2717 static int
2718 currently_stepping (struct execution_control_state *ecs)
2719 {
2720 return ((!ecs->handling_longjmp
2721 && ((step_range_end && step_resume_breakpoint == NULL)
2722 || trap_expected))
2723 || ecs->stepping_through_solib_after_catch
2724 || bpstat_should_step ());
2725 }
2726
2727 /* Subroutine call with source code we should not step over. Do step
2728 to the first line of code in it. */
2729
2730 static void
2731 step_into_function (struct execution_control_state *ecs)
2732 {
2733 struct symtab *s;
2734 struct symtab_and_line sr_sal;
2735
2736 s = find_pc_symtab (stop_pc);
2737 if (s && s->language != language_asm)
2738 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2739
2740 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2741 /* Use the step_resume_break to step until the end of the prologue,
2742 even if that involves jumps (as it seems to on the vax under
2743 4.2). */
2744 /* If the prologue ends in the middle of a source line, continue to
2745 the end of that source line (if it is still within the function).
2746 Otherwise, just go to end of prologue. */
2747 if (ecs->sal.end
2748 && ecs->sal.pc != ecs->stop_func_start
2749 && ecs->sal.end < ecs->stop_func_end)
2750 ecs->stop_func_start = ecs->sal.end;
2751
2752 /* Architectures which require breakpoint adjustment might not be able
2753 to place a breakpoint at the computed address. If so, the test
2754 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2755 ecs->stop_func_start to an address at which a breakpoint may be
2756 legitimately placed.
2757
2758 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2759 made, GDB will enter an infinite loop when stepping through
2760 optimized code consisting of VLIW instructions which contain
2761 subinstructions corresponding to different source lines. On
2762 FR-V, it's not permitted to place a breakpoint on any but the
2763 first subinstruction of a VLIW instruction. When a breakpoint is
2764 set, GDB will adjust the breakpoint address to the beginning of
2765 the VLIW instruction. Thus, we need to make the corresponding
2766 adjustment here when computing the stop address. */
2767
2768 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2769 {
2770 ecs->stop_func_start
2771 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2772 ecs->stop_func_start);
2773 }
2774
2775 if (ecs->stop_func_start == stop_pc)
2776 {
2777 /* We are already there: stop now. */
2778 stop_step = 1;
2779 print_stop_reason (END_STEPPING_RANGE, 0);
2780 stop_stepping (ecs);
2781 return;
2782 }
2783 else
2784 {
2785 /* Put the step-breakpoint there and go until there. */
2786 init_sal (&sr_sal); /* initialize to zeroes */
2787 sr_sal.pc = ecs->stop_func_start;
2788 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2789
2790 /* Do not specify what the fp should be when we stop since on
2791 some machines the prologue is where the new fp value is
2792 established. */
2793 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2794
2795 /* And make sure stepping stops right away then. */
2796 step_range_end = step_range_start;
2797 }
2798 keep_going (ecs);
2799 }
2800
2801 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2802 This is used to both functions and to skip over code. */
2803
2804 static void
2805 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2806 struct frame_id sr_id)
2807 {
2808 /* There should never be more than one step-resume breakpoint per
2809 thread, so we should never be setting a new
2810 step_resume_breakpoint when one is already active. */
2811 gdb_assert (step_resume_breakpoint == NULL);
2812 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2813 bp_step_resume);
2814 if (breakpoints_inserted)
2815 insert_breakpoints ();
2816 }
2817
2818 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2819 to skip a potential signal handler.
2820
2821 This is called with the interrupted function's frame. The signal
2822 handler, when it returns, will resume the interrupted function at
2823 RETURN_FRAME.pc. */
2824
2825 static void
2826 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2827 {
2828 struct symtab_and_line sr_sal;
2829
2830 init_sal (&sr_sal); /* initialize to zeros */
2831
2832 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2833 sr_sal.section = find_pc_overlay (sr_sal.pc);
2834
2835 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2836 }
2837
2838 /* Similar to insert_step_resume_breakpoint_at_frame, except
2839 but a breakpoint at the previous frame's PC. This is used to
2840 skip a function after stepping into it (for "next" or if the called
2841 function has no debugging information).
2842
2843 The current function has almost always been reached by single
2844 stepping a call or return instruction. NEXT_FRAME belongs to the
2845 current function, and the breakpoint will be set at the caller's
2846 resume address.
2847
2848 This is a separate function rather than reusing
2849 insert_step_resume_breakpoint_at_frame in order to avoid
2850 get_prev_frame, which may stop prematurely (see the implementation
2851 of frame_unwind_id for an example). */
2852
2853 static void
2854 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2855 {
2856 struct symtab_and_line sr_sal;
2857
2858 /* We shouldn't have gotten here if we don't know where the call site
2859 is. */
2860 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2861
2862 init_sal (&sr_sal); /* initialize to zeros */
2863
2864 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2865 sr_sal.section = find_pc_overlay (sr_sal.pc);
2866
2867 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2868 }
2869
2870 static void
2871 stop_stepping (struct execution_control_state *ecs)
2872 {
2873 if (debug_infrun)
2874 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2875
2876 /* Let callers know we don't want to wait for the inferior anymore. */
2877 ecs->wait_some_more = 0;
2878 }
2879
2880 /* This function handles various cases where we need to continue
2881 waiting for the inferior. */
2882 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2883
2884 static void
2885 keep_going (struct execution_control_state *ecs)
2886 {
2887 /* Save the pc before execution, to compare with pc after stop. */
2888 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2889
2890 /* If we did not do break;, it means we should keep running the
2891 inferior and not return to debugger. */
2892
2893 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2894 {
2895 /* We took a signal (which we are supposed to pass through to
2896 the inferior, else we'd have done a break above) and we
2897 haven't yet gotten our trap. Simply continue. */
2898 resume (currently_stepping (ecs), stop_signal);
2899 }
2900 else
2901 {
2902 /* Either the trap was not expected, but we are continuing
2903 anyway (the user asked that this signal be passed to the
2904 child)
2905 -- or --
2906 The signal was SIGTRAP, e.g. it was our signal, but we
2907 decided we should resume from it.
2908
2909 We're going to run this baby now! */
2910
2911 if (!breakpoints_inserted && !ecs->another_trap)
2912 {
2913 breakpoints_failed = insert_breakpoints ();
2914 if (breakpoints_failed)
2915 {
2916 stop_stepping (ecs);
2917 return;
2918 }
2919 breakpoints_inserted = 1;
2920 }
2921
2922 trap_expected = ecs->another_trap;
2923
2924 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2925 specifies that such a signal should be delivered to the
2926 target program).
2927
2928 Typically, this would occure when a user is debugging a
2929 target monitor on a simulator: the target monitor sets a
2930 breakpoint; the simulator encounters this break-point and
2931 halts the simulation handing control to GDB; GDB, noteing
2932 that the break-point isn't valid, returns control back to the
2933 simulator; the simulator then delivers the hardware
2934 equivalent of a SIGNAL_TRAP to the program being debugged. */
2935
2936 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2937 stop_signal = TARGET_SIGNAL_0;
2938
2939
2940 resume (currently_stepping (ecs), stop_signal);
2941 }
2942
2943 prepare_to_wait (ecs);
2944 }
2945
2946 /* This function normally comes after a resume, before
2947 handle_inferior_event exits. It takes care of any last bits of
2948 housekeeping, and sets the all-important wait_some_more flag. */
2949
2950 static void
2951 prepare_to_wait (struct execution_control_state *ecs)
2952 {
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2955 if (ecs->infwait_state == infwait_normal_state)
2956 {
2957 overlay_cache_invalid = 1;
2958
2959 /* We have to invalidate the registers BEFORE calling
2960 target_wait because they can be loaded from the target while
2961 in target_wait. This makes remote debugging a bit more
2962 efficient for those targets that provide critical registers
2963 as part of their normal status mechanism. */
2964
2965 registers_changed ();
2966 ecs->waiton_ptid = pid_to_ptid (-1);
2967 ecs->wp = &(ecs->ws);
2968 }
2969 /* This is the old end of the while loop. Let everybody know we
2970 want to wait for the inferior some more and get called again
2971 soon. */
2972 ecs->wait_some_more = 1;
2973 }
2974
2975 /* Print why the inferior has stopped. We always print something when
2976 the inferior exits, or receives a signal. The rest of the cases are
2977 dealt with later on in normal_stop() and print_it_typical(). Ideally
2978 there should be a call to this function from handle_inferior_event()
2979 each time stop_stepping() is called.*/
2980 static void
2981 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2982 {
2983 switch (stop_reason)
2984 {
2985 case END_STEPPING_RANGE:
2986 /* We are done with a step/next/si/ni command. */
2987 /* For now print nothing. */
2988 /* Print a message only if not in the middle of doing a "step n"
2989 operation for n > 1 */
2990 if (!step_multi || !stop_step)
2991 if (ui_out_is_mi_like_p (uiout))
2992 ui_out_field_string
2993 (uiout, "reason",
2994 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2995 break;
2996 case SIGNAL_EXITED:
2997 /* The inferior was terminated by a signal. */
2998 annotate_signalled ();
2999 if (ui_out_is_mi_like_p (uiout))
3000 ui_out_field_string
3001 (uiout, "reason",
3002 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3003 ui_out_text (uiout, "\nProgram terminated with signal ");
3004 annotate_signal_name ();
3005 ui_out_field_string (uiout, "signal-name",
3006 target_signal_to_name (stop_info));
3007 annotate_signal_name_end ();
3008 ui_out_text (uiout, ", ");
3009 annotate_signal_string ();
3010 ui_out_field_string (uiout, "signal-meaning",
3011 target_signal_to_string (stop_info));
3012 annotate_signal_string_end ();
3013 ui_out_text (uiout, ".\n");
3014 ui_out_text (uiout, "The program no longer exists.\n");
3015 break;
3016 case EXITED:
3017 /* The inferior program is finished. */
3018 annotate_exited (stop_info);
3019 if (stop_info)
3020 {
3021 if (ui_out_is_mi_like_p (uiout))
3022 ui_out_field_string (uiout, "reason",
3023 async_reason_lookup (EXEC_ASYNC_EXITED));
3024 ui_out_text (uiout, "\nProgram exited with code ");
3025 ui_out_field_fmt (uiout, "exit-code", "0%o",
3026 (unsigned int) stop_info);
3027 ui_out_text (uiout, ".\n");
3028 }
3029 else
3030 {
3031 if (ui_out_is_mi_like_p (uiout))
3032 ui_out_field_string
3033 (uiout, "reason",
3034 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3035 ui_out_text (uiout, "\nProgram exited normally.\n");
3036 }
3037 /* Support the --return-child-result option. */
3038 return_child_result_value = stop_info;
3039 break;
3040 case SIGNAL_RECEIVED:
3041 /* Signal received. The signal table tells us to print about
3042 it. */
3043 annotate_signal ();
3044 ui_out_text (uiout, "\nProgram received signal ");
3045 annotate_signal_name ();
3046 if (ui_out_is_mi_like_p (uiout))
3047 ui_out_field_string
3048 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3049 ui_out_field_string (uiout, "signal-name",
3050 target_signal_to_name (stop_info));
3051 annotate_signal_name_end ();
3052 ui_out_text (uiout, ", ");
3053 annotate_signal_string ();
3054 ui_out_field_string (uiout, "signal-meaning",
3055 target_signal_to_string (stop_info));
3056 annotate_signal_string_end ();
3057 ui_out_text (uiout, ".\n");
3058 break;
3059 default:
3060 internal_error (__FILE__, __LINE__,
3061 _("print_stop_reason: unrecognized enum value"));
3062 break;
3063 }
3064 }
3065 \f
3066
3067 /* Here to return control to GDB when the inferior stops for real.
3068 Print appropriate messages, remove breakpoints, give terminal our modes.
3069
3070 STOP_PRINT_FRAME nonzero means print the executing frame
3071 (pc, function, args, file, line number and line text).
3072 BREAKPOINTS_FAILED nonzero means stop was due to error
3073 attempting to insert breakpoints. */
3074
3075 void
3076 normal_stop (void)
3077 {
3078 struct target_waitstatus last;
3079 ptid_t last_ptid;
3080
3081 get_last_target_status (&last_ptid, &last);
3082
3083 /* As with the notification of thread events, we want to delay
3084 notifying the user that we've switched thread context until
3085 the inferior actually stops.
3086
3087 There's no point in saying anything if the inferior has exited.
3088 Note that SIGNALLED here means "exited with a signal", not
3089 "received a signal". */
3090 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3091 && target_has_execution
3092 && last.kind != TARGET_WAITKIND_SIGNALLED
3093 && last.kind != TARGET_WAITKIND_EXITED)
3094 {
3095 target_terminal_ours_for_output ();
3096 printf_filtered (_("[Switching to %s]\n"),
3097 target_pid_or_tid_to_str (inferior_ptid));
3098 previous_inferior_ptid = inferior_ptid;
3099 }
3100
3101 /* NOTE drow/2004-01-17: Is this still necessary? */
3102 /* Make sure that the current_frame's pc is correct. This
3103 is a correction for setting up the frame info before doing
3104 DECR_PC_AFTER_BREAK */
3105 if (target_has_execution)
3106 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3107 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3108 frame code to check for this and sort out any resultant mess.
3109 DECR_PC_AFTER_BREAK needs to just go away. */
3110 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3111
3112 if (target_has_execution && breakpoints_inserted)
3113 {
3114 if (remove_breakpoints ())
3115 {
3116 target_terminal_ours_for_output ();
3117 printf_filtered (_("\
3118 Cannot remove breakpoints because program is no longer writable.\n\
3119 It might be running in another process.\n\
3120 Further execution is probably impossible.\n"));
3121 }
3122 }
3123 breakpoints_inserted = 0;
3124
3125 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3126 Delete any breakpoint that is to be deleted at the next stop. */
3127
3128 breakpoint_auto_delete (stop_bpstat);
3129
3130 /* If an auto-display called a function and that got a signal,
3131 delete that auto-display to avoid an infinite recursion. */
3132
3133 if (stopped_by_random_signal)
3134 disable_current_display ();
3135
3136 /* Don't print a message if in the middle of doing a "step n"
3137 operation for n > 1 */
3138 if (step_multi && stop_step)
3139 goto done;
3140
3141 target_terminal_ours ();
3142
3143 /* Set the current source location. This will also happen if we
3144 display the frame below, but the current SAL will be incorrect
3145 during a user hook-stop function. */
3146 if (target_has_stack && !stop_stack_dummy)
3147 set_current_sal_from_frame (get_current_frame (), 1);
3148
3149 /* Look up the hook_stop and run it (CLI internally handles problem
3150 of stop_command's pre-hook not existing). */
3151 if (stop_command)
3152 catch_errors (hook_stop_stub, stop_command,
3153 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3154
3155 if (!target_has_stack)
3156 {
3157
3158 goto done;
3159 }
3160
3161 /* Select innermost stack frame - i.e., current frame is frame 0,
3162 and current location is based on that.
3163 Don't do this on return from a stack dummy routine,
3164 or if the program has exited. */
3165
3166 if (!stop_stack_dummy)
3167 {
3168 select_frame (get_current_frame ());
3169
3170 /* Print current location without a level number, if
3171 we have changed functions or hit a breakpoint.
3172 Print source line if we have one.
3173 bpstat_print() contains the logic deciding in detail
3174 what to print, based on the event(s) that just occurred. */
3175
3176 if (stop_print_frame)
3177 {
3178 int bpstat_ret;
3179 int source_flag;
3180 int do_frame_printing = 1;
3181
3182 bpstat_ret = bpstat_print (stop_bpstat);
3183 switch (bpstat_ret)
3184 {
3185 case PRINT_UNKNOWN:
3186 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3187 (or should) carry around the function and does (or
3188 should) use that when doing a frame comparison. */
3189 if (stop_step
3190 && frame_id_eq (step_frame_id,
3191 get_frame_id (get_current_frame ()))
3192 && step_start_function == find_pc_function (stop_pc))
3193 source_flag = SRC_LINE; /* finished step, just print source line */
3194 else
3195 source_flag = SRC_AND_LOC; /* print location and source line */
3196 break;
3197 case PRINT_SRC_AND_LOC:
3198 source_flag = SRC_AND_LOC; /* print location and source line */
3199 break;
3200 case PRINT_SRC_ONLY:
3201 source_flag = SRC_LINE;
3202 break;
3203 case PRINT_NOTHING:
3204 source_flag = SRC_LINE; /* something bogus */
3205 do_frame_printing = 0;
3206 break;
3207 default:
3208 internal_error (__FILE__, __LINE__, _("Unknown value."));
3209 }
3210 /* For mi, have the same behavior every time we stop:
3211 print everything but the source line. */
3212 if (ui_out_is_mi_like_p (uiout))
3213 source_flag = LOC_AND_ADDRESS;
3214
3215 if (ui_out_is_mi_like_p (uiout))
3216 ui_out_field_int (uiout, "thread-id",
3217 pid_to_thread_id (inferior_ptid));
3218 /* The behavior of this routine with respect to the source
3219 flag is:
3220 SRC_LINE: Print only source line
3221 LOCATION: Print only location
3222 SRC_AND_LOC: Print location and source line */
3223 if (do_frame_printing)
3224 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3225
3226 /* Display the auto-display expressions. */
3227 do_displays ();
3228 }
3229 }
3230
3231 /* Save the function value return registers, if we care.
3232 We might be about to restore their previous contents. */
3233 if (proceed_to_finish)
3234 /* NB: The copy goes through to the target picking up the value of
3235 all the registers. */
3236 regcache_cpy (stop_registers, current_regcache);
3237
3238 if (stop_stack_dummy)
3239 {
3240 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3241 ends with a setting of the current frame, so we can use that
3242 next. */
3243 frame_pop (get_current_frame ());
3244 /* Set stop_pc to what it was before we called the function.
3245 Can't rely on restore_inferior_status because that only gets
3246 called if we don't stop in the called function. */
3247 stop_pc = read_pc ();
3248 select_frame (get_current_frame ());
3249 }
3250
3251 done:
3252 annotate_stopped ();
3253 observer_notify_normal_stop (stop_bpstat);
3254 }
3255
3256 static int
3257 hook_stop_stub (void *cmd)
3258 {
3259 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3260 return (0);
3261 }
3262 \f
3263 int
3264 signal_stop_state (int signo)
3265 {
3266 return signal_stop[signo];
3267 }
3268
3269 int
3270 signal_print_state (int signo)
3271 {
3272 return signal_print[signo];
3273 }
3274
3275 int
3276 signal_pass_state (int signo)
3277 {
3278 return signal_program[signo];
3279 }
3280
3281 int
3282 signal_stop_update (int signo, int state)
3283 {
3284 int ret = signal_stop[signo];
3285 signal_stop[signo] = state;
3286 return ret;
3287 }
3288
3289 int
3290 signal_print_update (int signo, int state)
3291 {
3292 int ret = signal_print[signo];
3293 signal_print[signo] = state;
3294 return ret;
3295 }
3296
3297 int
3298 signal_pass_update (int signo, int state)
3299 {
3300 int ret = signal_program[signo];
3301 signal_program[signo] = state;
3302 return ret;
3303 }
3304
3305 static void
3306 sig_print_header (void)
3307 {
3308 printf_filtered (_("\
3309 Signal Stop\tPrint\tPass to program\tDescription\n"));
3310 }
3311
3312 static void
3313 sig_print_info (enum target_signal oursig)
3314 {
3315 char *name = target_signal_to_name (oursig);
3316 int name_padding = 13 - strlen (name);
3317
3318 if (name_padding <= 0)
3319 name_padding = 0;
3320
3321 printf_filtered ("%s", name);
3322 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3323 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3324 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3325 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3326 printf_filtered ("%s\n", target_signal_to_string (oursig));
3327 }
3328
3329 /* Specify how various signals in the inferior should be handled. */
3330
3331 static void
3332 handle_command (char *args, int from_tty)
3333 {
3334 char **argv;
3335 int digits, wordlen;
3336 int sigfirst, signum, siglast;
3337 enum target_signal oursig;
3338 int allsigs;
3339 int nsigs;
3340 unsigned char *sigs;
3341 struct cleanup *old_chain;
3342
3343 if (args == NULL)
3344 {
3345 error_no_arg (_("signal to handle"));
3346 }
3347
3348 /* Allocate and zero an array of flags for which signals to handle. */
3349
3350 nsigs = (int) TARGET_SIGNAL_LAST;
3351 sigs = (unsigned char *) alloca (nsigs);
3352 memset (sigs, 0, nsigs);
3353
3354 /* Break the command line up into args. */
3355
3356 argv = buildargv (args);
3357 if (argv == NULL)
3358 {
3359 nomem (0);
3360 }
3361 old_chain = make_cleanup_freeargv (argv);
3362
3363 /* Walk through the args, looking for signal oursigs, signal names, and
3364 actions. Signal numbers and signal names may be interspersed with
3365 actions, with the actions being performed for all signals cumulatively
3366 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3367
3368 while (*argv != NULL)
3369 {
3370 wordlen = strlen (*argv);
3371 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3372 {;
3373 }
3374 allsigs = 0;
3375 sigfirst = siglast = -1;
3376
3377 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3378 {
3379 /* Apply action to all signals except those used by the
3380 debugger. Silently skip those. */
3381 allsigs = 1;
3382 sigfirst = 0;
3383 siglast = nsigs - 1;
3384 }
3385 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3386 {
3387 SET_SIGS (nsigs, sigs, signal_stop);
3388 SET_SIGS (nsigs, sigs, signal_print);
3389 }
3390 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3391 {
3392 UNSET_SIGS (nsigs, sigs, signal_program);
3393 }
3394 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3395 {
3396 SET_SIGS (nsigs, sigs, signal_print);
3397 }
3398 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3399 {
3400 SET_SIGS (nsigs, sigs, signal_program);
3401 }
3402 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3403 {
3404 UNSET_SIGS (nsigs, sigs, signal_stop);
3405 }
3406 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3407 {
3408 SET_SIGS (nsigs, sigs, signal_program);
3409 }
3410 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3411 {
3412 UNSET_SIGS (nsigs, sigs, signal_print);
3413 UNSET_SIGS (nsigs, sigs, signal_stop);
3414 }
3415 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3416 {
3417 UNSET_SIGS (nsigs, sigs, signal_program);
3418 }
3419 else if (digits > 0)
3420 {
3421 /* It is numeric. The numeric signal refers to our own
3422 internal signal numbering from target.h, not to host/target
3423 signal number. This is a feature; users really should be
3424 using symbolic names anyway, and the common ones like
3425 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3426
3427 sigfirst = siglast = (int)
3428 target_signal_from_command (atoi (*argv));
3429 if ((*argv)[digits] == '-')
3430 {
3431 siglast = (int)
3432 target_signal_from_command (atoi ((*argv) + digits + 1));
3433 }
3434 if (sigfirst > siglast)
3435 {
3436 /* Bet he didn't figure we'd think of this case... */
3437 signum = sigfirst;
3438 sigfirst = siglast;
3439 siglast = signum;
3440 }
3441 }
3442 else
3443 {
3444 oursig = target_signal_from_name (*argv);
3445 if (oursig != TARGET_SIGNAL_UNKNOWN)
3446 {
3447 sigfirst = siglast = (int) oursig;
3448 }
3449 else
3450 {
3451 /* Not a number and not a recognized flag word => complain. */
3452 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3453 }
3454 }
3455
3456 /* If any signal numbers or symbol names were found, set flags for
3457 which signals to apply actions to. */
3458
3459 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3460 {
3461 switch ((enum target_signal) signum)
3462 {
3463 case TARGET_SIGNAL_TRAP:
3464 case TARGET_SIGNAL_INT:
3465 if (!allsigs && !sigs[signum])
3466 {
3467 if (query ("%s is used by the debugger.\n\
3468 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3469 {
3470 sigs[signum] = 1;
3471 }
3472 else
3473 {
3474 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3475 gdb_flush (gdb_stdout);
3476 }
3477 }
3478 break;
3479 case TARGET_SIGNAL_0:
3480 case TARGET_SIGNAL_DEFAULT:
3481 case TARGET_SIGNAL_UNKNOWN:
3482 /* Make sure that "all" doesn't print these. */
3483 break;
3484 default:
3485 sigs[signum] = 1;
3486 break;
3487 }
3488 }
3489
3490 argv++;
3491 }
3492
3493 target_notice_signals (inferior_ptid);
3494
3495 if (from_tty)
3496 {
3497 /* Show the results. */
3498 sig_print_header ();
3499 for (signum = 0; signum < nsigs; signum++)
3500 {
3501 if (sigs[signum])
3502 {
3503 sig_print_info (signum);
3504 }
3505 }
3506 }
3507
3508 do_cleanups (old_chain);
3509 }
3510
3511 static void
3512 xdb_handle_command (char *args, int from_tty)
3513 {
3514 char **argv;
3515 struct cleanup *old_chain;
3516
3517 /* Break the command line up into args. */
3518
3519 argv = buildargv (args);
3520 if (argv == NULL)
3521 {
3522 nomem (0);
3523 }
3524 old_chain = make_cleanup_freeargv (argv);
3525 if (argv[1] != (char *) NULL)
3526 {
3527 char *argBuf;
3528 int bufLen;
3529
3530 bufLen = strlen (argv[0]) + 20;
3531 argBuf = (char *) xmalloc (bufLen);
3532 if (argBuf)
3533 {
3534 int validFlag = 1;
3535 enum target_signal oursig;
3536
3537 oursig = target_signal_from_name (argv[0]);
3538 memset (argBuf, 0, bufLen);
3539 if (strcmp (argv[1], "Q") == 0)
3540 sprintf (argBuf, "%s %s", argv[0], "noprint");
3541 else
3542 {
3543 if (strcmp (argv[1], "s") == 0)
3544 {
3545 if (!signal_stop[oursig])
3546 sprintf (argBuf, "%s %s", argv[0], "stop");
3547 else
3548 sprintf (argBuf, "%s %s", argv[0], "nostop");
3549 }
3550 else if (strcmp (argv[1], "i") == 0)
3551 {
3552 if (!signal_program[oursig])
3553 sprintf (argBuf, "%s %s", argv[0], "pass");
3554 else
3555 sprintf (argBuf, "%s %s", argv[0], "nopass");
3556 }
3557 else if (strcmp (argv[1], "r") == 0)
3558 {
3559 if (!signal_print[oursig])
3560 sprintf (argBuf, "%s %s", argv[0], "print");
3561 else
3562 sprintf (argBuf, "%s %s", argv[0], "noprint");
3563 }
3564 else
3565 validFlag = 0;
3566 }
3567 if (validFlag)
3568 handle_command (argBuf, from_tty);
3569 else
3570 printf_filtered (_("Invalid signal handling flag.\n"));
3571 if (argBuf)
3572 xfree (argBuf);
3573 }
3574 }
3575 do_cleanups (old_chain);
3576 }
3577
3578 /* Print current contents of the tables set by the handle command.
3579 It is possible we should just be printing signals actually used
3580 by the current target (but for things to work right when switching
3581 targets, all signals should be in the signal tables). */
3582
3583 static void
3584 signals_info (char *signum_exp, int from_tty)
3585 {
3586 enum target_signal oursig;
3587 sig_print_header ();
3588
3589 if (signum_exp)
3590 {
3591 /* First see if this is a symbol name. */
3592 oursig = target_signal_from_name (signum_exp);
3593 if (oursig == TARGET_SIGNAL_UNKNOWN)
3594 {
3595 /* No, try numeric. */
3596 oursig =
3597 target_signal_from_command (parse_and_eval_long (signum_exp));
3598 }
3599 sig_print_info (oursig);
3600 return;
3601 }
3602
3603 printf_filtered ("\n");
3604 /* These ugly casts brought to you by the native VAX compiler. */
3605 for (oursig = TARGET_SIGNAL_FIRST;
3606 (int) oursig < (int) TARGET_SIGNAL_LAST;
3607 oursig = (enum target_signal) ((int) oursig + 1))
3608 {
3609 QUIT;
3610
3611 if (oursig != TARGET_SIGNAL_UNKNOWN
3612 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3613 sig_print_info (oursig);
3614 }
3615
3616 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3617 }
3618 \f
3619 struct inferior_status
3620 {
3621 enum target_signal stop_signal;
3622 CORE_ADDR stop_pc;
3623 bpstat stop_bpstat;
3624 int stop_step;
3625 int stop_stack_dummy;
3626 int stopped_by_random_signal;
3627 int trap_expected;
3628 CORE_ADDR step_range_start;
3629 CORE_ADDR step_range_end;
3630 struct frame_id step_frame_id;
3631 enum step_over_calls_kind step_over_calls;
3632 CORE_ADDR step_resume_break_address;
3633 int stop_after_trap;
3634 int stop_soon;
3635 struct regcache *stop_registers;
3636
3637 /* These are here because if call_function_by_hand has written some
3638 registers and then decides to call error(), we better not have changed
3639 any registers. */
3640 struct regcache *registers;
3641
3642 /* A frame unique identifier. */
3643 struct frame_id selected_frame_id;
3644
3645 int breakpoint_proceeded;
3646 int restore_stack_info;
3647 int proceed_to_finish;
3648 };
3649
3650 void
3651 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3652 LONGEST val)
3653 {
3654 int size = register_size (current_gdbarch, regno);
3655 void *buf = alloca (size);
3656 store_signed_integer (buf, size, val);
3657 regcache_raw_write (inf_status->registers, regno, buf);
3658 }
3659
3660 /* Save all of the information associated with the inferior<==>gdb
3661 connection. INF_STATUS is a pointer to a "struct inferior_status"
3662 (defined in inferior.h). */
3663
3664 struct inferior_status *
3665 save_inferior_status (int restore_stack_info)
3666 {
3667 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3668
3669 inf_status->stop_signal = stop_signal;
3670 inf_status->stop_pc = stop_pc;
3671 inf_status->stop_step = stop_step;
3672 inf_status->stop_stack_dummy = stop_stack_dummy;
3673 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3674 inf_status->trap_expected = trap_expected;
3675 inf_status->step_range_start = step_range_start;
3676 inf_status->step_range_end = step_range_end;
3677 inf_status->step_frame_id = step_frame_id;
3678 inf_status->step_over_calls = step_over_calls;
3679 inf_status->stop_after_trap = stop_after_trap;
3680 inf_status->stop_soon = stop_soon;
3681 /* Save original bpstat chain here; replace it with copy of chain.
3682 If caller's caller is walking the chain, they'll be happier if we
3683 hand them back the original chain when restore_inferior_status is
3684 called. */
3685 inf_status->stop_bpstat = stop_bpstat;
3686 stop_bpstat = bpstat_copy (stop_bpstat);
3687 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3688 inf_status->restore_stack_info = restore_stack_info;
3689 inf_status->proceed_to_finish = proceed_to_finish;
3690
3691 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3692
3693 inf_status->registers = regcache_dup (current_regcache);
3694
3695 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3696 return inf_status;
3697 }
3698
3699 static int
3700 restore_selected_frame (void *args)
3701 {
3702 struct frame_id *fid = (struct frame_id *) args;
3703 struct frame_info *frame;
3704
3705 frame = frame_find_by_id (*fid);
3706
3707 /* If inf_status->selected_frame_id is NULL, there was no previously
3708 selected frame. */
3709 if (frame == NULL)
3710 {
3711 warning (_("Unable to restore previously selected frame."));
3712 return 0;
3713 }
3714
3715 select_frame (frame);
3716
3717 return (1);
3718 }
3719
3720 void
3721 restore_inferior_status (struct inferior_status *inf_status)
3722 {
3723 stop_signal = inf_status->stop_signal;
3724 stop_pc = inf_status->stop_pc;
3725 stop_step = inf_status->stop_step;
3726 stop_stack_dummy = inf_status->stop_stack_dummy;
3727 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3728 trap_expected = inf_status->trap_expected;
3729 step_range_start = inf_status->step_range_start;
3730 step_range_end = inf_status->step_range_end;
3731 step_frame_id = inf_status->step_frame_id;
3732 step_over_calls = inf_status->step_over_calls;
3733 stop_after_trap = inf_status->stop_after_trap;
3734 stop_soon = inf_status->stop_soon;
3735 bpstat_clear (&stop_bpstat);
3736 stop_bpstat = inf_status->stop_bpstat;
3737 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3738 proceed_to_finish = inf_status->proceed_to_finish;
3739
3740 /* FIXME: Is the restore of stop_registers always needed. */
3741 regcache_xfree (stop_registers);
3742 stop_registers = inf_status->stop_registers;
3743
3744 /* The inferior can be gone if the user types "print exit(0)"
3745 (and perhaps other times). */
3746 if (target_has_execution)
3747 /* NB: The register write goes through to the target. */
3748 regcache_cpy (current_regcache, inf_status->registers);
3749 regcache_xfree (inf_status->registers);
3750
3751 /* FIXME: If we are being called after stopping in a function which
3752 is called from gdb, we should not be trying to restore the
3753 selected frame; it just prints a spurious error message (The
3754 message is useful, however, in detecting bugs in gdb (like if gdb
3755 clobbers the stack)). In fact, should we be restoring the
3756 inferior status at all in that case? . */
3757
3758 if (target_has_stack && inf_status->restore_stack_info)
3759 {
3760 /* The point of catch_errors is that if the stack is clobbered,
3761 walking the stack might encounter a garbage pointer and
3762 error() trying to dereference it. */
3763 if (catch_errors
3764 (restore_selected_frame, &inf_status->selected_frame_id,
3765 "Unable to restore previously selected frame:\n",
3766 RETURN_MASK_ERROR) == 0)
3767 /* Error in restoring the selected frame. Select the innermost
3768 frame. */
3769 select_frame (get_current_frame ());
3770
3771 }
3772
3773 xfree (inf_status);
3774 }
3775
3776 static void
3777 do_restore_inferior_status_cleanup (void *sts)
3778 {
3779 restore_inferior_status (sts);
3780 }
3781
3782 struct cleanup *
3783 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3784 {
3785 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3786 }
3787
3788 void
3789 discard_inferior_status (struct inferior_status *inf_status)
3790 {
3791 /* See save_inferior_status for info on stop_bpstat. */
3792 bpstat_clear (&inf_status->stop_bpstat);
3793 regcache_xfree (inf_status->registers);
3794 regcache_xfree (inf_status->stop_registers);
3795 xfree (inf_status);
3796 }
3797
3798 int
3799 inferior_has_forked (int pid, int *child_pid)
3800 {
3801 struct target_waitstatus last;
3802 ptid_t last_ptid;
3803
3804 get_last_target_status (&last_ptid, &last);
3805
3806 if (last.kind != TARGET_WAITKIND_FORKED)
3807 return 0;
3808
3809 if (ptid_get_pid (last_ptid) != pid)
3810 return 0;
3811
3812 *child_pid = last.value.related_pid;
3813 return 1;
3814 }
3815
3816 int
3817 inferior_has_vforked (int pid, int *child_pid)
3818 {
3819 struct target_waitstatus last;
3820 ptid_t last_ptid;
3821
3822 get_last_target_status (&last_ptid, &last);
3823
3824 if (last.kind != TARGET_WAITKIND_VFORKED)
3825 return 0;
3826
3827 if (ptid_get_pid (last_ptid) != pid)
3828 return 0;
3829
3830 *child_pid = last.value.related_pid;
3831 return 1;
3832 }
3833
3834 int
3835 inferior_has_execd (int pid, char **execd_pathname)
3836 {
3837 struct target_waitstatus last;
3838 ptid_t last_ptid;
3839
3840 get_last_target_status (&last_ptid, &last);
3841
3842 if (last.kind != TARGET_WAITKIND_EXECD)
3843 return 0;
3844
3845 if (ptid_get_pid (last_ptid) != pid)
3846 return 0;
3847
3848 *execd_pathname = xstrdup (last.value.execd_pathname);
3849 return 1;
3850 }
3851
3852 /* Oft used ptids */
3853 ptid_t null_ptid;
3854 ptid_t minus_one_ptid;
3855
3856 /* Create a ptid given the necessary PID, LWP, and TID components. */
3857
3858 ptid_t
3859 ptid_build (int pid, long lwp, long tid)
3860 {
3861 ptid_t ptid;
3862
3863 ptid.pid = pid;
3864 ptid.lwp = lwp;
3865 ptid.tid = tid;
3866 return ptid;
3867 }
3868
3869 /* Create a ptid from just a pid. */
3870
3871 ptid_t
3872 pid_to_ptid (int pid)
3873 {
3874 return ptid_build (pid, 0, 0);
3875 }
3876
3877 /* Fetch the pid (process id) component from a ptid. */
3878
3879 int
3880 ptid_get_pid (ptid_t ptid)
3881 {
3882 return ptid.pid;
3883 }
3884
3885 /* Fetch the lwp (lightweight process) component from a ptid. */
3886
3887 long
3888 ptid_get_lwp (ptid_t ptid)
3889 {
3890 return ptid.lwp;
3891 }
3892
3893 /* Fetch the tid (thread id) component from a ptid. */
3894
3895 long
3896 ptid_get_tid (ptid_t ptid)
3897 {
3898 return ptid.tid;
3899 }
3900
3901 /* ptid_equal() is used to test equality of two ptids. */
3902
3903 int
3904 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3905 {
3906 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3907 && ptid1.tid == ptid2.tid);
3908 }
3909
3910 /* restore_inferior_ptid() will be used by the cleanup machinery
3911 to restore the inferior_ptid value saved in a call to
3912 save_inferior_ptid(). */
3913
3914 static void
3915 restore_inferior_ptid (void *arg)
3916 {
3917 ptid_t *saved_ptid_ptr = arg;
3918 inferior_ptid = *saved_ptid_ptr;
3919 xfree (arg);
3920 }
3921
3922 /* Save the value of inferior_ptid so that it may be restored by a
3923 later call to do_cleanups(). Returns the struct cleanup pointer
3924 needed for later doing the cleanup. */
3925
3926 struct cleanup *
3927 save_inferior_ptid (void)
3928 {
3929 ptid_t *saved_ptid_ptr;
3930
3931 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3932 *saved_ptid_ptr = inferior_ptid;
3933 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3934 }
3935 \f
3936
3937 static void
3938 build_infrun (void)
3939 {
3940 stop_registers = regcache_xmalloc (current_gdbarch);
3941 }
3942
3943 void
3944 _initialize_infrun (void)
3945 {
3946 int i;
3947 int numsigs;
3948 struct cmd_list_element *c;
3949
3950 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3951 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3952
3953 add_info ("signals", signals_info, _("\
3954 What debugger does when program gets various signals.\n\
3955 Specify a signal as argument to print info on that signal only."));
3956 add_info_alias ("handle", "signals", 0);
3957
3958 add_com ("handle", class_run, handle_command, _("\
3959 Specify how to handle a signal.\n\
3960 Args are signals and actions to apply to those signals.\n\
3961 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3962 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3963 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3964 The special arg \"all\" is recognized to mean all signals except those\n\
3965 used by the debugger, typically SIGTRAP and SIGINT.\n\
3966 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3967 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3968 Stop means reenter debugger if this signal happens (implies print).\n\
3969 Print means print a message if this signal happens.\n\
3970 Pass means let program see this signal; otherwise program doesn't know.\n\
3971 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3972 Pass and Stop may be combined."));
3973 if (xdb_commands)
3974 {
3975 add_com ("lz", class_info, signals_info, _("\
3976 What debugger does when program gets various signals.\n\
3977 Specify a signal as argument to print info on that signal only."));
3978 add_com ("z", class_run, xdb_handle_command, _("\
3979 Specify how to handle a signal.\n\
3980 Args are signals and actions to apply to those signals.\n\
3981 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3982 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3983 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3984 The special arg \"all\" is recognized to mean all signals except those\n\
3985 used by the debugger, typically SIGTRAP and SIGINT.\n\
3986 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3987 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3988 nopass), \"Q\" (noprint)\n\
3989 Stop means reenter debugger if this signal happens (implies print).\n\
3990 Print means print a message if this signal happens.\n\
3991 Pass means let program see this signal; otherwise program doesn't know.\n\
3992 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3993 Pass and Stop may be combined."));
3994 }
3995
3996 if (!dbx_commands)
3997 stop_command = add_cmd ("stop", class_obscure,
3998 not_just_help_class_command, _("\
3999 There is no `stop' command, but you can set a hook on `stop'.\n\
4000 This allows you to set a list of commands to be run each time execution\n\
4001 of the program stops."), &cmdlist);
4002
4003 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4004 Set inferior debugging."), _("\
4005 Show inferior debugging."), _("\
4006 When non-zero, inferior specific debugging is enabled."),
4007 NULL,
4008 show_debug_infrun,
4009 &setdebuglist, &showdebuglist);
4010
4011 numsigs = (int) TARGET_SIGNAL_LAST;
4012 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4013 signal_print = (unsigned char *)
4014 xmalloc (sizeof (signal_print[0]) * numsigs);
4015 signal_program = (unsigned char *)
4016 xmalloc (sizeof (signal_program[0]) * numsigs);
4017 for (i = 0; i < numsigs; i++)
4018 {
4019 signal_stop[i] = 1;
4020 signal_print[i] = 1;
4021 signal_program[i] = 1;
4022 }
4023
4024 /* Signals caused by debugger's own actions
4025 should not be given to the program afterwards. */
4026 signal_program[TARGET_SIGNAL_TRAP] = 0;
4027 signal_program[TARGET_SIGNAL_INT] = 0;
4028
4029 /* Signals that are not errors should not normally enter the debugger. */
4030 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4031 signal_print[TARGET_SIGNAL_ALRM] = 0;
4032 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4033 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4034 signal_stop[TARGET_SIGNAL_PROF] = 0;
4035 signal_print[TARGET_SIGNAL_PROF] = 0;
4036 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4037 signal_print[TARGET_SIGNAL_CHLD] = 0;
4038 signal_stop[TARGET_SIGNAL_IO] = 0;
4039 signal_print[TARGET_SIGNAL_IO] = 0;
4040 signal_stop[TARGET_SIGNAL_POLL] = 0;
4041 signal_print[TARGET_SIGNAL_POLL] = 0;
4042 signal_stop[TARGET_SIGNAL_URG] = 0;
4043 signal_print[TARGET_SIGNAL_URG] = 0;
4044 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4045 signal_print[TARGET_SIGNAL_WINCH] = 0;
4046
4047 /* These signals are used internally by user-level thread
4048 implementations. (See signal(5) on Solaris.) Like the above
4049 signals, a healthy program receives and handles them as part of
4050 its normal operation. */
4051 signal_stop[TARGET_SIGNAL_LWP] = 0;
4052 signal_print[TARGET_SIGNAL_LWP] = 0;
4053 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4054 signal_print[TARGET_SIGNAL_WAITING] = 0;
4055 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4056 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4057
4058 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4059 &stop_on_solib_events, _("\
4060 Set stopping for shared library events."), _("\
4061 Show stopping for shared library events."), _("\
4062 If nonzero, gdb will give control to the user when the dynamic linker\n\
4063 notifies gdb of shared library events. The most common event of interest\n\
4064 to the user would be loading/unloading of a new library."),
4065 NULL,
4066 show_stop_on_solib_events,
4067 &setlist, &showlist);
4068
4069 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4070 follow_fork_mode_kind_names,
4071 &follow_fork_mode_string, _("\
4072 Set debugger response to a program call of fork or vfork."), _("\
4073 Show debugger response to a program call of fork or vfork."), _("\
4074 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4075 parent - the original process is debugged after a fork\n\
4076 child - the new process is debugged after a fork\n\
4077 The unfollowed process will continue to run.\n\
4078 By default, the debugger will follow the parent process."),
4079 NULL,
4080 show_follow_fork_mode_string,
4081 &setlist, &showlist);
4082
4083 add_setshow_enum_cmd ("scheduler-locking", class_run,
4084 scheduler_enums, &scheduler_mode, _("\
4085 Set mode for locking scheduler during execution."), _("\
4086 Show mode for locking scheduler during execution."), _("\
4087 off == no locking (threads may preempt at any time)\n\
4088 on == full locking (no thread except the current thread may run)\n\
4089 step == scheduler locked during every single-step operation.\n\
4090 In this mode, no other thread may run during a step command.\n\
4091 Other threads may run while stepping over a function call ('next')."),
4092 set_schedlock_func, /* traps on target vector */
4093 show_scheduler_mode,
4094 &setlist, &showlist);
4095
4096 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4097 Set mode of the step operation."), _("\
4098 Show mode of the step operation."), _("\
4099 When set, doing a step over a function without debug line information\n\
4100 will stop at the first instruction of that function. Otherwise, the\n\
4101 function is skipped and the step command stops at a different source line."),
4102 NULL,
4103 show_step_stop_if_no_debug,
4104 &setlist, &showlist);
4105
4106 /* ptid initializations */
4107 null_ptid = ptid_build (0, 0, 0);
4108 minus_one_ptid = ptid_build (-1, 0, 0);
4109 inferior_ptid = null_ptid;
4110 target_last_wait_ptid = minus_one_ptid;
4111 }
This page took 0.161645 seconds and 4 git commands to generate.