Replace the sync_execution global with a new enum prompt_state tristate
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct interp *command_interp = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 command_interp = tp->control.command_interp;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->control.command_interp = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->control.command_interp = command_interp;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXECD_PATHNAME is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = pid_to_ptid (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 execd_pathname);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 if (*gdb_sysroot != '\0')
1168 {
1169 char *name = exec_file_find (execd_pathname, NULL);
1170
1171 execd_pathname = (char *) alloca (strlen (name) + 1);
1172 strcpy (execd_pathname, name);
1173 xfree (name);
1174 }
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* That a.out is now the one to use. */
1216 exec_file_attach (execd_pathname, 0);
1217
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 NULL, 0);
1227
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
1230
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
1239 solib_create_inferior_hook (0);
1240
1241 jit_inferior_created_hook ();
1242
1243 breakpoint_re_set ();
1244
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1247 to symbol_file_command...). */
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1253 matically get reset there in the new process.). */
1254 }
1255
1256 /* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263 struct thread_info *step_over_queue_head;
1264
1265 /* Bit flags indicating what the thread needs to step over. */
1266
1267 enum step_over_what_flag
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278
1279 /* Info about an instruction that is being stepped over. */
1280
1281 struct step_over_info
1282 {
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
1287 struct address_space *aspace;
1288 CORE_ADDR address;
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
1293
1294 /* The thread's global number. */
1295 int thread;
1296 };
1297
1298 /* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322 static struct step_over_info step_over_info;
1323
1324 /* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195 }
2196
2197 \f
2198 /* Resuming. */
2199
2200 /* Things to clean up if we QUIT out of resume (). */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208 }
2209
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225 {
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230 }
2231
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240 }
2241
2242 /* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245 int sched_multi = 0;
2246
2247 /* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261 {
2262 hw_step = 0;
2263 }
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369 }
2370
2371 /* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757 }
2758 \f
2759 /* Proceeding. */
2760
2761 /* See infrun.h. */
2762
2763 /* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770 static ULONGEST current_stop_id;
2771
2772 /* See infrun.h. */
2773
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777 return current_stop_id;
2778 }
2779
2780 /* Called when we report a user visible stop. */
2781
2782 static void
2783 new_stop_id (void)
2784 {
2785 current_stop_id++;
2786 }
2787
2788 /* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.command_interp = NULL;
2853 tp->control.stepping_command = 0;
2854
2855 /* Discard any remaining commands or status from previous stop. */
2856 bpstat_clear (&tp->control.stop_bpstat);
2857 }
2858
2859 void
2860 clear_proceed_status (int step)
2861 {
2862 /* With scheduler-locking replay, stop replaying other threads if we're
2863 not replaying the user-visible resume ptid.
2864
2865 This is a convenience feature to not require the user to explicitly
2866 stop replaying the other threads. We're assuming that the user's
2867 intent is to resume tracing the recorded process. */
2868 if (!non_stop && scheduler_mode == schedlock_replay
2869 && target_record_is_replaying (minus_one_ptid)
2870 && !target_record_will_replay (user_visible_resume_ptid (step),
2871 execution_direction))
2872 target_record_stop_replaying ();
2873
2874 if (!non_stop)
2875 {
2876 struct thread_info *tp;
2877 ptid_t resume_ptid;
2878
2879 resume_ptid = user_visible_resume_ptid (step);
2880
2881 /* In all-stop mode, delete the per-thread status of all threads
2882 we're about to resume, implicitly and explicitly. */
2883 ALL_NON_EXITED_THREADS (tp)
2884 {
2885 if (!ptid_match (tp->ptid, resume_ptid))
2886 continue;
2887 clear_proceed_status_thread (tp);
2888 }
2889 }
2890
2891 if (!ptid_equal (inferior_ptid, null_ptid))
2892 {
2893 struct inferior *inferior;
2894
2895 if (non_stop)
2896 {
2897 /* If in non-stop mode, only delete the per-thread status of
2898 the current thread. */
2899 clear_proceed_status_thread (inferior_thread ());
2900 }
2901
2902 inferior = current_inferior ();
2903 inferior->control.stop_soon = NO_STOP_QUIETLY;
2904 }
2905
2906 observer_notify_about_to_proceed ();
2907 }
2908
2909 /* Returns true if TP is still stopped at a breakpoint that needs
2910 stepping-over in order to make progress. If the breakpoint is gone
2911 meanwhile, we can skip the whole step-over dance. */
2912
2913 static int
2914 thread_still_needs_step_over_bp (struct thread_info *tp)
2915 {
2916 if (tp->stepping_over_breakpoint)
2917 {
2918 struct regcache *regcache = get_thread_regcache (tp->ptid);
2919
2920 if (breakpoint_here_p (get_regcache_aspace (regcache),
2921 regcache_read_pc (regcache))
2922 == ordinary_breakpoint_here)
2923 return 1;
2924
2925 tp->stepping_over_breakpoint = 0;
2926 }
2927
2928 return 0;
2929 }
2930
2931 /* Check whether thread TP still needs to start a step-over in order
2932 to make progress when resumed. Returns an bitwise or of enum
2933 step_over_what bits, indicating what needs to be stepped over. */
2934
2935 static step_over_what
2936 thread_still_needs_step_over (struct thread_info *tp)
2937 {
2938 step_over_what what = 0;
2939
2940 if (thread_still_needs_step_over_bp (tp))
2941 what |= STEP_OVER_BREAKPOINT;
2942
2943 if (tp->stepping_over_watchpoint
2944 && !target_have_steppable_watchpoint)
2945 what |= STEP_OVER_WATCHPOINT;
2946
2947 return what;
2948 }
2949
2950 /* Returns true if scheduler locking applies. STEP indicates whether
2951 we're about to do a step/next-like command to a thread. */
2952
2953 static int
2954 schedlock_applies (struct thread_info *tp)
2955 {
2956 return (scheduler_mode == schedlock_on
2957 || (scheduler_mode == schedlock_step
2958 && tp->control.stepping_command)
2959 || (scheduler_mode == schedlock_replay
2960 && target_record_will_replay (minus_one_ptid,
2961 execution_direction)));
2962 }
2963
2964 /* Basic routine for continuing the program in various fashions.
2965
2966 ADDR is the address to resume at, or -1 for resume where stopped.
2967 SIGGNAL is the signal to give it, or 0 for none,
2968 or -1 for act according to how it stopped.
2969 STEP is nonzero if should trap after one instruction.
2970 -1 means return after that and print nothing.
2971 You should probably set various step_... variables
2972 before calling here, if you are stepping.
2973
2974 You should call clear_proceed_status before calling proceed. */
2975
2976 void
2977 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2978 {
2979 struct regcache *regcache;
2980 struct gdbarch *gdbarch;
2981 struct thread_info *tp;
2982 CORE_ADDR pc;
2983 struct address_space *aspace;
2984 ptid_t resume_ptid;
2985 struct execution_control_state ecss;
2986 struct execution_control_state *ecs = &ecss;
2987 struct cleanup *old_chain;
2988 int started;
2989
2990 /* If we're stopped at a fork/vfork, follow the branch set by the
2991 "set follow-fork-mode" command; otherwise, we'll just proceed
2992 resuming the current thread. */
2993 if (!follow_fork ())
2994 {
2995 /* The target for some reason decided not to resume. */
2996 normal_stop ();
2997 if (target_can_async_p ())
2998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2999 return;
3000 }
3001
3002 /* We'll update this if & when we switch to a new thread. */
3003 previous_inferior_ptid = inferior_ptid;
3004
3005 regcache = get_current_regcache ();
3006 gdbarch = get_regcache_arch (regcache);
3007 aspace = get_regcache_aspace (regcache);
3008 pc = regcache_read_pc (regcache);
3009 tp = inferior_thread ();
3010
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
3016 if (addr == (CORE_ADDR) -1)
3017 {
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3020 && execution_direction != EXEC_REVERSE)
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
3029 tp->stepping_over_breakpoint = 1;
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
3035 tp->stepping_over_breakpoint = 1;
3036 }
3037 else
3038 {
3039 regcache_write_pc (regcache, addr);
3040 }
3041
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
3045 /* Record the interpreter that issued the execution command that
3046 caused this thread to resume. If the top level interpreter is
3047 MI/async, and the execution command was a CLI command
3048 (next/step/etc.), we'll want to print stop event output to the MI
3049 console channel (the stepped-to line, etc.), as if the user
3050 entered the execution command on a real GDB console. */
3051 tp->control.command_interp = command_interp ();
3052
3053 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3054
3055 /* If an exception is thrown from this point on, make sure to
3056 propagate GDB's knowledge of the executing state to the
3057 frontend/user running state. */
3058 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3059
3060 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3061 threads (e.g., we might need to set threads stepping over
3062 breakpoints first), from the user/frontend's point of view, all
3063 threads in RESUME_PTID are now running. Unless we're calling an
3064 inferior function, as in that case we pretend the inferior
3065 doesn't run at all. */
3066 if (!tp->control.in_infcall)
3067 set_running (resume_ptid, 1);
3068
3069 if (debug_infrun)
3070 fprintf_unfiltered (gdb_stdlog,
3071 "infrun: proceed (addr=%s, signal=%s)\n",
3072 paddress (gdbarch, addr),
3073 gdb_signal_to_symbol_string (siggnal));
3074
3075 annotate_starting ();
3076
3077 /* Make sure that output from GDB appears before output from the
3078 inferior. */
3079 gdb_flush (gdb_stdout);
3080
3081 /* In a multi-threaded task we may select another thread and
3082 then continue or step.
3083
3084 But if a thread that we're resuming had stopped at a breakpoint,
3085 it will immediately cause another breakpoint stop without any
3086 execution (i.e. it will report a breakpoint hit incorrectly). So
3087 we must step over it first.
3088
3089 Look for threads other than the current (TP) that reported a
3090 breakpoint hit and haven't been resumed yet since. */
3091
3092 /* If scheduler locking applies, we can avoid iterating over all
3093 threads. */
3094 if (!non_stop && !schedlock_applies (tp))
3095 {
3096 struct thread_info *current = tp;
3097
3098 ALL_NON_EXITED_THREADS (tp)
3099 {
3100 /* Ignore the current thread here. It's handled
3101 afterwards. */
3102 if (tp == current)
3103 continue;
3104
3105 /* Ignore threads of processes we're not resuming. */
3106 if (!ptid_match (tp->ptid, resume_ptid))
3107 continue;
3108
3109 if (!thread_still_needs_step_over (tp))
3110 continue;
3111
3112 gdb_assert (!thread_is_in_step_over_chain (tp));
3113
3114 if (debug_infrun)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "infrun: need to step-over [%s] first\n",
3117 target_pid_to_str (tp->ptid));
3118
3119 thread_step_over_chain_enqueue (tp);
3120 }
3121
3122 tp = current;
3123 }
3124
3125 /* Enqueue the current thread last, so that we move all other
3126 threads over their breakpoints first. */
3127 if (tp->stepping_over_breakpoint)
3128 thread_step_over_chain_enqueue (tp);
3129
3130 /* If the thread isn't started, we'll still need to set its prev_pc,
3131 so that switch_back_to_stepped_thread knows the thread hasn't
3132 advanced. Must do this before resuming any thread, as in
3133 all-stop/remote, once we resume we can't send any other packet
3134 until the target stops again. */
3135 tp->prev_pc = regcache_read_pc (regcache);
3136
3137 started = start_step_over ();
3138
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
3188 error (_("Command aborted."));
3189 }
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200
3201 discard_cleanups (old_chain);
3202
3203 /* Tell the event loop to wait for it to stop. If the target
3204 supports asynchronous execution, it'll do this from within
3205 target_resume. */
3206 if (!target_can_async_p ())
3207 mark_async_event_handler (infrun_async_inferior_event_token);
3208 }
3209 \f
3210
3211 /* Start remote-debugging of a machine over a serial link. */
3212
3213 void
3214 start_remote (int from_tty)
3215 {
3216 struct inferior *inferior;
3217
3218 inferior = current_inferior ();
3219 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3220
3221 /* Always go on waiting for the target, regardless of the mode. */
3222 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3223 indicate to wait_for_inferior that a target should timeout if
3224 nothing is returned (instead of just blocking). Because of this,
3225 targets expecting an immediate response need to, internally, set
3226 things up so that the target_wait() is forced to eventually
3227 timeout. */
3228 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3229 differentiate to its caller what the state of the target is after
3230 the initial open has been performed. Here we're assuming that
3231 the target has stopped. It should be possible to eventually have
3232 target_open() return to the caller an indication that the target
3233 is currently running and GDB state should be set to the same as
3234 for an async run. */
3235 wait_for_inferior ();
3236
3237 /* Now that the inferior has stopped, do any bookkeeping like
3238 loading shared libraries. We want to do this before normal_stop,
3239 so that the displayed frame is up to date. */
3240 post_create_inferior (&current_target, from_tty);
3241
3242 normal_stop ();
3243 }
3244
3245 /* Initialize static vars when a new inferior begins. */
3246
3247 void
3248 init_wait_for_inferior (void)
3249 {
3250 /* These are meaningless until the first time through wait_for_inferior. */
3251
3252 breakpoint_init_inferior (inf_starting);
3253
3254 clear_proceed_status (0);
3255
3256 target_last_wait_ptid = minus_one_ptid;
3257
3258 previous_inferior_ptid = inferior_ptid;
3259
3260 /* Discard any skipped inlined frames. */
3261 clear_inline_frame_state (minus_one_ptid);
3262 }
3263
3264 \f
3265
3266 static void handle_inferior_event (struct execution_control_state *ecs);
3267
3268 static void handle_step_into_function (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
3270 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3271 struct execution_control_state *ecs);
3272 static void handle_signal_stop (struct execution_control_state *ecs);
3273 static void check_exception_resume (struct execution_control_state *,
3274 struct frame_info *);
3275
3276 static void end_stepping_range (struct execution_control_state *ecs);
3277 static void stop_waiting (struct execution_control_state *ecs);
3278 static void keep_going (struct execution_control_state *ecs);
3279 static void process_event_stop_test (struct execution_control_state *ecs);
3280 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3281
3282 /* Callback for iterate over threads. If the thread is stopped, but
3283 the user/frontend doesn't know about that yet, go through
3284 normal_stop, as if the thread had just stopped now. ARG points at
3285 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3286 ptid_is_pid(PTID) is true, applies to all threads of the process
3287 pointed at by PTID. Otherwise, apply only to the thread pointed by
3288 PTID. */
3289
3290 static int
3291 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3292 {
3293 ptid_t ptid = * (ptid_t *) arg;
3294
3295 if ((ptid_equal (info->ptid, ptid)
3296 || ptid_equal (minus_one_ptid, ptid)
3297 || (ptid_is_pid (ptid)
3298 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3299 && is_running (info->ptid)
3300 && !is_executing (info->ptid))
3301 {
3302 struct cleanup *old_chain;
3303 struct execution_control_state ecss;
3304 struct execution_control_state *ecs = &ecss;
3305
3306 memset (ecs, 0, sizeof (*ecs));
3307
3308 old_chain = make_cleanup_restore_current_thread ();
3309
3310 overlay_cache_invalid = 1;
3311 /* Flush target cache before starting to handle each event.
3312 Target was running and cache could be stale. This is just a
3313 heuristic. Running threads may modify target memory, but we
3314 don't get any event. */
3315 target_dcache_invalidate ();
3316
3317 /* Go through handle_inferior_event/normal_stop, so we always
3318 have consistent output as if the stop event had been
3319 reported. */
3320 ecs->ptid = info->ptid;
3321 ecs->event_thread = info;
3322 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3323 ecs->ws.value.sig = GDB_SIGNAL_0;
3324
3325 handle_inferior_event (ecs);
3326
3327 if (!ecs->wait_some_more)
3328 {
3329 /* Cancel any running execution command. */
3330 thread_cancel_execution_command (info);
3331
3332 normal_stop ();
3333 }
3334
3335 do_cleanups (old_chain);
3336 }
3337
3338 return 0;
3339 }
3340
3341 /* This function is attached as a "thread_stop_requested" observer.
3342 Cleanup local state that assumed the PTID was to be resumed, and
3343 report the stop to the frontend. */
3344
3345 static void
3346 infrun_thread_stop_requested (ptid_t ptid)
3347 {
3348 struct thread_info *tp;
3349
3350 /* PTID was requested to stop. Remove matching threads from the
3351 step-over queue, so we don't try to resume them
3352 automatically. */
3353 ALL_NON_EXITED_THREADS (tp)
3354 if (ptid_match (tp->ptid, ptid))
3355 {
3356 if (thread_is_in_step_over_chain (tp))
3357 thread_step_over_chain_remove (tp);
3358 }
3359
3360 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3361 }
3362
3363 static void
3364 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3365 {
3366 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3367 nullify_last_target_wait_ptid ();
3368 }
3369
3370 /* Delete the step resume, single-step and longjmp/exception resume
3371 breakpoints of TP. */
3372
3373 static void
3374 delete_thread_infrun_breakpoints (struct thread_info *tp)
3375 {
3376 delete_step_resume_breakpoint (tp);
3377 delete_exception_resume_breakpoint (tp);
3378 delete_single_step_breakpoints (tp);
3379 }
3380
3381 /* If the target still has execution, call FUNC for each thread that
3382 just stopped. In all-stop, that's all the non-exited threads; in
3383 non-stop, that's the current thread, only. */
3384
3385 typedef void (*for_each_just_stopped_thread_callback_func)
3386 (struct thread_info *tp);
3387
3388 static void
3389 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3390 {
3391 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3392 return;
3393
3394 if (target_is_non_stop_p ())
3395 {
3396 /* If in non-stop mode, only the current thread stopped. */
3397 func (inferior_thread ());
3398 }
3399 else
3400 {
3401 struct thread_info *tp;
3402
3403 /* In all-stop mode, all threads have stopped. */
3404 ALL_NON_EXITED_THREADS (tp)
3405 {
3406 func (tp);
3407 }
3408 }
3409 }
3410
3411 /* Delete the step resume and longjmp/exception resume breakpoints of
3412 the threads that just stopped. */
3413
3414 static void
3415 delete_just_stopped_threads_infrun_breakpoints (void)
3416 {
3417 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3418 }
3419
3420 /* Delete the single-step breakpoints of the threads that just
3421 stopped. */
3422
3423 static void
3424 delete_just_stopped_threads_single_step_breakpoints (void)
3425 {
3426 for_each_just_stopped_thread (delete_single_step_breakpoints);
3427 }
3428
3429 /* A cleanup wrapper. */
3430
3431 static void
3432 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3433 {
3434 delete_just_stopped_threads_infrun_breakpoints ();
3435 }
3436
3437 /* See infrun.h. */
3438
3439 void
3440 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3441 const struct target_waitstatus *ws)
3442 {
3443 char *status_string = target_waitstatus_to_string (ws);
3444 struct ui_file *tmp_stream = mem_fileopen ();
3445 char *text;
3446
3447 /* The text is split over several lines because it was getting too long.
3448 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3449 output as a unit; we want only one timestamp printed if debug_timestamp
3450 is set. */
3451
3452 fprintf_unfiltered (tmp_stream,
3453 "infrun: target_wait (%d.%ld.%ld",
3454 ptid_get_pid (waiton_ptid),
3455 ptid_get_lwp (waiton_ptid),
3456 ptid_get_tid (waiton_ptid));
3457 if (ptid_get_pid (waiton_ptid) != -1)
3458 fprintf_unfiltered (tmp_stream,
3459 " [%s]", target_pid_to_str (waiton_ptid));
3460 fprintf_unfiltered (tmp_stream, ", status) =\n");
3461 fprintf_unfiltered (tmp_stream,
3462 "infrun: %d.%ld.%ld [%s],\n",
3463 ptid_get_pid (result_ptid),
3464 ptid_get_lwp (result_ptid),
3465 ptid_get_tid (result_ptid),
3466 target_pid_to_str (result_ptid));
3467 fprintf_unfiltered (tmp_stream,
3468 "infrun: %s\n",
3469 status_string);
3470
3471 text = ui_file_xstrdup (tmp_stream, NULL);
3472
3473 /* This uses %s in part to handle %'s in the text, but also to avoid
3474 a gcc error: the format attribute requires a string literal. */
3475 fprintf_unfiltered (gdb_stdlog, "%s", text);
3476
3477 xfree (status_string);
3478 xfree (text);
3479 ui_file_delete (tmp_stream);
3480 }
3481
3482 /* Select a thread at random, out of those which are resumed and have
3483 had events. */
3484
3485 static struct thread_info *
3486 random_pending_event_thread (ptid_t waiton_ptid)
3487 {
3488 struct thread_info *event_tp;
3489 int num_events = 0;
3490 int random_selector;
3491
3492 /* First see how many events we have. Count only resumed threads
3493 that have an event pending. */
3494 ALL_NON_EXITED_THREADS (event_tp)
3495 if (ptid_match (event_tp->ptid, waiton_ptid)
3496 && event_tp->resumed
3497 && event_tp->suspend.waitstatus_pending_p)
3498 num_events++;
3499
3500 if (num_events == 0)
3501 return NULL;
3502
3503 /* Now randomly pick a thread out of those that have had events. */
3504 random_selector = (int)
3505 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3506
3507 if (debug_infrun && num_events > 1)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Found %d events, selecting #%d\n",
3510 num_events, random_selector);
3511
3512 /* Select the Nth thread that has had an event. */
3513 ALL_NON_EXITED_THREADS (event_tp)
3514 if (ptid_match (event_tp->ptid, waiton_ptid)
3515 && event_tp->resumed
3516 && event_tp->suspend.waitstatus_pending_p)
3517 if (random_selector-- == 0)
3518 break;
3519
3520 return event_tp;
3521 }
3522
3523 /* Wrapper for target_wait that first checks whether threads have
3524 pending statuses to report before actually asking the target for
3525 more events. */
3526
3527 static ptid_t
3528 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3529 {
3530 ptid_t event_ptid;
3531 struct thread_info *tp;
3532
3533 /* First check if there is a resumed thread with a wait status
3534 pending. */
3535 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3536 {
3537 tp = random_pending_event_thread (ptid);
3538 }
3539 else
3540 {
3541 if (debug_infrun)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "infrun: Waiting for specific thread %s.\n",
3544 target_pid_to_str (ptid));
3545
3546 /* We have a specific thread to check. */
3547 tp = find_thread_ptid (ptid);
3548 gdb_assert (tp != NULL);
3549 if (!tp->suspend.waitstatus_pending_p)
3550 tp = NULL;
3551 }
3552
3553 if (tp != NULL
3554 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3555 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3556 {
3557 struct regcache *regcache = get_thread_regcache (tp->ptid);
3558 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3559 CORE_ADDR pc;
3560 int discard = 0;
3561
3562 pc = regcache_read_pc (regcache);
3563
3564 if (pc != tp->suspend.stop_pc)
3565 {
3566 if (debug_infrun)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "infrun: PC of %s changed. was=%s, now=%s\n",
3569 target_pid_to_str (tp->ptid),
3570 paddress (gdbarch, tp->prev_pc),
3571 paddress (gdbarch, pc));
3572 discard = 1;
3573 }
3574 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3575 {
3576 if (debug_infrun)
3577 fprintf_unfiltered (gdb_stdlog,
3578 "infrun: previous breakpoint of %s, at %s gone\n",
3579 target_pid_to_str (tp->ptid),
3580 paddress (gdbarch, pc));
3581
3582 discard = 1;
3583 }
3584
3585 if (discard)
3586 {
3587 if (debug_infrun)
3588 fprintf_unfiltered (gdb_stdlog,
3589 "infrun: pending event of %s cancelled.\n",
3590 target_pid_to_str (tp->ptid));
3591
3592 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3593 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3594 }
3595 }
3596
3597 if (tp != NULL)
3598 {
3599 if (debug_infrun)
3600 {
3601 char *statstr;
3602
3603 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3604 fprintf_unfiltered (gdb_stdlog,
3605 "infrun: Using pending wait status %s for %s.\n",
3606 statstr,
3607 target_pid_to_str (tp->ptid));
3608 xfree (statstr);
3609 }
3610
3611 /* Now that we've selected our final event LWP, un-adjust its PC
3612 if it was a software breakpoint (and the target doesn't
3613 always adjust the PC itself). */
3614 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3615 && !target_supports_stopped_by_sw_breakpoint ())
3616 {
3617 struct regcache *regcache;
3618 struct gdbarch *gdbarch;
3619 int decr_pc;
3620
3621 regcache = get_thread_regcache (tp->ptid);
3622 gdbarch = get_regcache_arch (regcache);
3623
3624 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3625 if (decr_pc != 0)
3626 {
3627 CORE_ADDR pc;
3628
3629 pc = regcache_read_pc (regcache);
3630 regcache_write_pc (regcache, pc + decr_pc);
3631 }
3632 }
3633
3634 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3635 *status = tp->suspend.waitstatus;
3636 tp->suspend.waitstatus_pending_p = 0;
3637
3638 /* Wake up the event loop again, until all pending events are
3639 processed. */
3640 if (target_is_async_p ())
3641 mark_async_event_handler (infrun_async_inferior_event_token);
3642 return tp->ptid;
3643 }
3644
3645 /* But if we don't find one, we'll have to wait. */
3646
3647 if (deprecated_target_wait_hook)
3648 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3649 else
3650 event_ptid = target_wait (ptid, status, options);
3651
3652 return event_ptid;
3653 }
3654
3655 /* Prepare and stabilize the inferior for detaching it. E.g.,
3656 detaching while a thread is displaced stepping is a recipe for
3657 crashing it, as nothing would readjust the PC out of the scratch
3658 pad. */
3659
3660 void
3661 prepare_for_detach (void)
3662 {
3663 struct inferior *inf = current_inferior ();
3664 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3665 struct cleanup *old_chain_1;
3666 struct displaced_step_inferior_state *displaced;
3667
3668 displaced = get_displaced_stepping_state (inf->pid);
3669
3670 /* Is any thread of this process displaced stepping? If not,
3671 there's nothing else to do. */
3672 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3673 return;
3674
3675 if (debug_infrun)
3676 fprintf_unfiltered (gdb_stdlog,
3677 "displaced-stepping in-process while detaching");
3678
3679 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3680 inf->detaching = 1;
3681
3682 while (!ptid_equal (displaced->step_ptid, null_ptid))
3683 {
3684 struct cleanup *old_chain_2;
3685 struct execution_control_state ecss;
3686 struct execution_control_state *ecs;
3687
3688 ecs = &ecss;
3689 memset (ecs, 0, sizeof (*ecs));
3690
3691 overlay_cache_invalid = 1;
3692 /* Flush target cache before starting to handle each event.
3693 Target was running and cache could be stale. This is just a
3694 heuristic. Running threads may modify target memory, but we
3695 don't get any event. */
3696 target_dcache_invalidate ();
3697
3698 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3699
3700 if (debug_infrun)
3701 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3702
3703 /* If an error happens while handling the event, propagate GDB's
3704 knowledge of the executing state to the frontend/user running
3705 state. */
3706 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3707 &minus_one_ptid);
3708
3709 /* Now figure out what to do with the result of the result. */
3710 handle_inferior_event (ecs);
3711
3712 /* No error, don't finish the state yet. */
3713 discard_cleanups (old_chain_2);
3714
3715 /* Breakpoints and watchpoints are not installed on the target
3716 at this point, and signals are passed directly to the
3717 inferior, so this must mean the process is gone. */
3718 if (!ecs->wait_some_more)
3719 {
3720 discard_cleanups (old_chain_1);
3721 error (_("Program exited while detaching"));
3722 }
3723 }
3724
3725 discard_cleanups (old_chain_1);
3726 }
3727
3728 /* Wait for control to return from inferior to debugger.
3729
3730 If inferior gets a signal, we may decide to start it up again
3731 instead of returning. That is why there is a loop in this function.
3732 When this function actually returns it means the inferior
3733 should be left stopped and GDB should read more commands. */
3734
3735 void
3736 wait_for_inferior (void)
3737 {
3738 struct cleanup *old_cleanups;
3739 struct cleanup *thread_state_chain;
3740
3741 if (debug_infrun)
3742 fprintf_unfiltered
3743 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3744
3745 old_cleanups
3746 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3747 NULL);
3748
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
3752 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3753
3754 while (1)
3755 {
3756 struct execution_control_state ecss;
3757 struct execution_control_state *ecs = &ecss;
3758 ptid_t waiton_ptid = minus_one_ptid;
3759
3760 memset (ecs, 0, sizeof (*ecs));
3761
3762 overlay_cache_invalid = 1;
3763
3764 /* Flush target cache before starting to handle each event.
3765 Target was running and cache could be stale. This is just a
3766 heuristic. Running threads may modify target memory, but we
3767 don't get any event. */
3768 target_dcache_invalidate ();
3769
3770 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3771
3772 if (debug_infrun)
3773 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3774
3775 /* Now figure out what to do with the result of the result. */
3776 handle_inferior_event (ecs);
3777
3778 if (!ecs->wait_some_more)
3779 break;
3780 }
3781
3782 /* No error, don't finish the state yet. */
3783 discard_cleanups (thread_state_chain);
3784
3785 do_cleanups (old_cleanups);
3786 }
3787
3788 /* Cleanup that reinstalls the readline callback handler, if the
3789 target is running in the background. If while handling the target
3790 event something triggered a secondary prompt, like e.g., a
3791 pagination prompt, we'll have removed the callback handler (see
3792 gdb_readline_wrapper_line). Need to do this as we go back to the
3793 event loop, ready to process further input. Note this has no
3794 effect if the handler hasn't actually been removed, because calling
3795 rl_callback_handler_install resets the line buffer, thus losing
3796 input. */
3797
3798 static void
3799 reinstall_readline_callback_handler_cleanup (void *arg)
3800 {
3801 struct ui *ui = current_ui;
3802
3803 if (!ui->async)
3804 {
3805 /* We're not going back to the top level event loop yet. Don't
3806 install the readline callback, as it'd prep the terminal,
3807 readline-style (raw, noecho) (e.g., --batch). We'll install
3808 it the next time the prompt is displayed, when we're ready
3809 for input. */
3810 return;
3811 }
3812
3813 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3814 gdb_rl_callback_handler_reinstall ();
3815 }
3816
3817 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3818 that's just the event thread. In all-stop, that's all threads. */
3819
3820 static void
3821 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3822 {
3823 struct thread_info *thr = ecs->event_thread;
3824
3825 if (thr != NULL && thr->thread_fsm != NULL)
3826 thread_fsm_clean_up (thr->thread_fsm);
3827
3828 if (!non_stop)
3829 {
3830 ALL_NON_EXITED_THREADS (thr)
3831 {
3832 if (thr->thread_fsm == NULL)
3833 continue;
3834 if (thr == ecs->event_thread)
3835 continue;
3836
3837 switch_to_thread (thr->ptid);
3838 thread_fsm_clean_up (thr->thread_fsm);
3839 }
3840
3841 if (ecs->event_thread != NULL)
3842 switch_to_thread (ecs->event_thread->ptid);
3843 }
3844 }
3845
3846 /* Helper for all_uis_check_sync_execution_done that works on the
3847 current UI. */
3848
3849 static void
3850 check_curr_ui_sync_execution_done (void)
3851 {
3852 struct ui *ui = current_ui;
3853
3854 if (ui->prompt_state == PROMPT_NEEDED
3855 && ui->async
3856 && !gdb_in_secondary_prompt_p (ui))
3857 {
3858 target_terminal_ours ();
3859 observer_notify_sync_execution_done ();
3860 }
3861 }
3862
3863 /* See infrun.h. */
3864
3865 void
3866 all_uis_check_sync_execution_done (void)
3867 {
3868 struct switch_thru_all_uis state;
3869
3870 SWITCH_THRU_ALL_UIS (state)
3871 {
3872 check_curr_ui_sync_execution_done ();
3873 }
3874 }
3875
3876 /* A cleanup that restores the execution direction to the value saved
3877 in *ARG. */
3878
3879 static void
3880 restore_execution_direction (void *arg)
3881 {
3882 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3883
3884 execution_direction = *save_exec_dir;
3885 }
3886
3887 /* Asynchronous version of wait_for_inferior. It is called by the
3888 event loop whenever a change of state is detected on the file
3889 descriptor corresponding to the target. It can be called more than
3890 once to complete a single execution command. In such cases we need
3891 to keep the state in a global variable ECSS. If it is the last time
3892 that this function is called for a single execution command, then
3893 report to the user that the inferior has stopped, and do the
3894 necessary cleanups. */
3895
3896 void
3897 fetch_inferior_event (void *client_data)
3898 {
3899 struct execution_control_state ecss;
3900 struct execution_control_state *ecs = &ecss;
3901 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3902 struct cleanup *ts_old_chain;
3903 enum exec_direction_kind save_exec_dir = execution_direction;
3904 int cmd_done = 0;
3905 ptid_t waiton_ptid = minus_one_ptid;
3906
3907 memset (ecs, 0, sizeof (*ecs));
3908
3909 /* Events are always processed with the main UI as current UI. This
3910 way, warnings, debug output, etc. are always consistently sent to
3911 the main console. */
3912 make_cleanup (restore_ui_cleanup, current_ui);
3913 current_ui = main_ui;
3914
3915 /* End up with readline processing input, if necessary. */
3916 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3917
3918 /* We're handling a live event, so make sure we're doing live
3919 debugging. If we're looking at traceframes while the target is
3920 running, we're going to need to get back to that mode after
3921 handling the event. */
3922 if (non_stop)
3923 {
3924 make_cleanup_restore_current_traceframe ();
3925 set_current_traceframe (-1);
3926 }
3927
3928 if (non_stop)
3929 /* In non-stop mode, the user/frontend should not notice a thread
3930 switch due to internal events. Make sure we reverse to the
3931 user selected thread and frame after handling the event and
3932 running any breakpoint commands. */
3933 make_cleanup_restore_current_thread ();
3934
3935 overlay_cache_invalid = 1;
3936 /* Flush target cache before starting to handle each event. Target
3937 was running and cache could be stale. This is just a heuristic.
3938 Running threads may modify target memory, but we don't get any
3939 event. */
3940 target_dcache_invalidate ();
3941
3942 make_cleanup (restore_execution_direction, &save_exec_dir);
3943 execution_direction = target_execution_direction ();
3944
3945 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3946 target_can_async_p () ? TARGET_WNOHANG : 0);
3947
3948 if (debug_infrun)
3949 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3950
3951 /* If an error happens while handling the event, propagate GDB's
3952 knowledge of the executing state to the frontend/user running
3953 state. */
3954 if (!target_is_non_stop_p ())
3955 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3956 else
3957 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3958
3959 /* Get executed before make_cleanup_restore_current_thread above to apply
3960 still for the thread which has thrown the exception. */
3961 make_bpstat_clear_actions_cleanup ();
3962
3963 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3964
3965 /* Now figure out what to do with the result of the result. */
3966 handle_inferior_event (ecs);
3967
3968 if (!ecs->wait_some_more)
3969 {
3970 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3971 int should_stop = 1;
3972 struct thread_info *thr = ecs->event_thread;
3973 int should_notify_stop = 1;
3974
3975 delete_just_stopped_threads_infrun_breakpoints ();
3976
3977 if (thr != NULL)
3978 {
3979 struct thread_fsm *thread_fsm = thr->thread_fsm;
3980
3981 if (thread_fsm != NULL)
3982 should_stop = thread_fsm_should_stop (thread_fsm);
3983 }
3984
3985 if (!should_stop)
3986 {
3987 keep_going (ecs);
3988 }
3989 else
3990 {
3991 clean_up_just_stopped_threads_fsms (ecs);
3992
3993 if (thr != NULL && thr->thread_fsm != NULL)
3994 {
3995 should_notify_stop
3996 = thread_fsm_should_notify_stop (thr->thread_fsm);
3997 }
3998
3999 if (should_notify_stop)
4000 {
4001 int proceeded = 0;
4002
4003 /* We may not find an inferior if this was a process exit. */
4004 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4005 proceeded = normal_stop ();
4006
4007 if (!proceeded)
4008 {
4009 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4010 cmd_done = 1;
4011 }
4012 }
4013 }
4014 }
4015
4016 /* No error, don't finish the thread states yet. */
4017 discard_cleanups (ts_old_chain);
4018
4019 /* Revert thread and frame. */
4020 do_cleanups (old_chain);
4021
4022 /* If a UI was in sync execution mode, and now isn't, restore its
4023 prompt (a synchronous execution command has finished, and we're
4024 ready for input). */
4025 all_uis_check_sync_execution_done ();
4026
4027 if (cmd_done
4028 && exec_done_display_p
4029 && (ptid_equal (inferior_ptid, null_ptid)
4030 || !is_running (inferior_ptid)))
4031 printf_unfiltered (_("completed.\n"));
4032 }
4033
4034 /* Record the frame and location we're currently stepping through. */
4035 void
4036 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4037 {
4038 struct thread_info *tp = inferior_thread ();
4039
4040 tp->control.step_frame_id = get_frame_id (frame);
4041 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4042
4043 tp->current_symtab = sal.symtab;
4044 tp->current_line = sal.line;
4045 }
4046
4047 /* Clear context switchable stepping state. */
4048
4049 void
4050 init_thread_stepping_state (struct thread_info *tss)
4051 {
4052 tss->stepped_breakpoint = 0;
4053 tss->stepping_over_breakpoint = 0;
4054 tss->stepping_over_watchpoint = 0;
4055 tss->step_after_step_resume_breakpoint = 0;
4056 }
4057
4058 /* Set the cached copy of the last ptid/waitstatus. */
4059
4060 void
4061 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4062 {
4063 target_last_wait_ptid = ptid;
4064 target_last_waitstatus = status;
4065 }
4066
4067 /* Return the cached copy of the last pid/waitstatus returned by
4068 target_wait()/deprecated_target_wait_hook(). The data is actually
4069 cached by handle_inferior_event(), which gets called immediately
4070 after target_wait()/deprecated_target_wait_hook(). */
4071
4072 void
4073 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4074 {
4075 *ptidp = target_last_wait_ptid;
4076 *status = target_last_waitstatus;
4077 }
4078
4079 void
4080 nullify_last_target_wait_ptid (void)
4081 {
4082 target_last_wait_ptid = minus_one_ptid;
4083 }
4084
4085 /* Switch thread contexts. */
4086
4087 static void
4088 context_switch (ptid_t ptid)
4089 {
4090 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4091 {
4092 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4093 target_pid_to_str (inferior_ptid));
4094 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4095 target_pid_to_str (ptid));
4096 }
4097
4098 switch_to_thread (ptid);
4099 }
4100
4101 /* If the target can't tell whether we've hit breakpoints
4102 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4103 check whether that could have been caused by a breakpoint. If so,
4104 adjust the PC, per gdbarch_decr_pc_after_break. */
4105
4106 static void
4107 adjust_pc_after_break (struct thread_info *thread,
4108 struct target_waitstatus *ws)
4109 {
4110 struct regcache *regcache;
4111 struct gdbarch *gdbarch;
4112 struct address_space *aspace;
4113 CORE_ADDR breakpoint_pc, decr_pc;
4114
4115 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4116 we aren't, just return.
4117
4118 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4119 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4120 implemented by software breakpoints should be handled through the normal
4121 breakpoint layer.
4122
4123 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4124 different signals (SIGILL or SIGEMT for instance), but it is less
4125 clear where the PC is pointing afterwards. It may not match
4126 gdbarch_decr_pc_after_break. I don't know any specific target that
4127 generates these signals at breakpoints (the code has been in GDB since at
4128 least 1992) so I can not guess how to handle them here.
4129
4130 In earlier versions of GDB, a target with
4131 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4132 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4133 target with both of these set in GDB history, and it seems unlikely to be
4134 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4135
4136 if (ws->kind != TARGET_WAITKIND_STOPPED)
4137 return;
4138
4139 if (ws->value.sig != GDB_SIGNAL_TRAP)
4140 return;
4141
4142 /* In reverse execution, when a breakpoint is hit, the instruction
4143 under it has already been de-executed. The reported PC always
4144 points at the breakpoint address, so adjusting it further would
4145 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4146 architecture:
4147
4148 B1 0x08000000 : INSN1
4149 B2 0x08000001 : INSN2
4150 0x08000002 : INSN3
4151 PC -> 0x08000003 : INSN4
4152
4153 Say you're stopped at 0x08000003 as above. Reverse continuing
4154 from that point should hit B2 as below. Reading the PC when the
4155 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4156 been de-executed already.
4157
4158 B1 0x08000000 : INSN1
4159 B2 PC -> 0x08000001 : INSN2
4160 0x08000002 : INSN3
4161 0x08000003 : INSN4
4162
4163 We can't apply the same logic as for forward execution, because
4164 we would wrongly adjust the PC to 0x08000000, since there's a
4165 breakpoint at PC - 1. We'd then report a hit on B1, although
4166 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4167 behaviour. */
4168 if (execution_direction == EXEC_REVERSE)
4169 return;
4170
4171 /* If the target can tell whether the thread hit a SW breakpoint,
4172 trust it. Targets that can tell also adjust the PC
4173 themselves. */
4174 if (target_supports_stopped_by_sw_breakpoint ())
4175 return;
4176
4177 /* Note that relying on whether a breakpoint is planted in memory to
4178 determine this can fail. E.g,. the breakpoint could have been
4179 removed since. Or the thread could have been told to step an
4180 instruction the size of a breakpoint instruction, and only
4181 _after_ was a breakpoint inserted at its address. */
4182
4183 /* If this target does not decrement the PC after breakpoints, then
4184 we have nothing to do. */
4185 regcache = get_thread_regcache (thread->ptid);
4186 gdbarch = get_regcache_arch (regcache);
4187
4188 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4189 if (decr_pc == 0)
4190 return;
4191
4192 aspace = get_regcache_aspace (regcache);
4193
4194 /* Find the location where (if we've hit a breakpoint) the
4195 breakpoint would be. */
4196 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4197
4198 /* If the target can't tell whether a software breakpoint triggered,
4199 fallback to figuring it out based on breakpoints we think were
4200 inserted in the target, and on whether the thread was stepped or
4201 continued. */
4202
4203 /* Check whether there actually is a software breakpoint inserted at
4204 that location.
4205
4206 If in non-stop mode, a race condition is possible where we've
4207 removed a breakpoint, but stop events for that breakpoint were
4208 already queued and arrive later. To suppress those spurious
4209 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4210 and retire them after a number of stop events are reported. Note
4211 this is an heuristic and can thus get confused. The real fix is
4212 to get the "stopped by SW BP and needs adjustment" info out of
4213 the target/kernel (and thus never reach here; see above). */
4214 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4215 || (target_is_non_stop_p ()
4216 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4217 {
4218 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4219
4220 if (record_full_is_used ())
4221 record_full_gdb_operation_disable_set ();
4222
4223 /* When using hardware single-step, a SIGTRAP is reported for both
4224 a completed single-step and a software breakpoint. Need to
4225 differentiate between the two, as the latter needs adjusting
4226 but the former does not.
4227
4228 The SIGTRAP can be due to a completed hardware single-step only if
4229 - we didn't insert software single-step breakpoints
4230 - this thread is currently being stepped
4231
4232 If any of these events did not occur, we must have stopped due
4233 to hitting a software breakpoint, and have to back up to the
4234 breakpoint address.
4235
4236 As a special case, we could have hardware single-stepped a
4237 software breakpoint. In this case (prev_pc == breakpoint_pc),
4238 we also need to back up to the breakpoint address. */
4239
4240 if (thread_has_single_step_breakpoints_set (thread)
4241 || !currently_stepping (thread)
4242 || (thread->stepped_breakpoint
4243 && thread->prev_pc == breakpoint_pc))
4244 regcache_write_pc (regcache, breakpoint_pc);
4245
4246 do_cleanups (old_cleanups);
4247 }
4248 }
4249
4250 static int
4251 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4252 {
4253 for (frame = get_prev_frame (frame);
4254 frame != NULL;
4255 frame = get_prev_frame (frame))
4256 {
4257 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4258 return 1;
4259 if (get_frame_type (frame) != INLINE_FRAME)
4260 break;
4261 }
4262
4263 return 0;
4264 }
4265
4266 /* Auxiliary function that handles syscall entry/return events.
4267 It returns 1 if the inferior should keep going (and GDB
4268 should ignore the event), or 0 if the event deserves to be
4269 processed. */
4270
4271 static int
4272 handle_syscall_event (struct execution_control_state *ecs)
4273 {
4274 struct regcache *regcache;
4275 int syscall_number;
4276
4277 if (!ptid_equal (ecs->ptid, inferior_ptid))
4278 context_switch (ecs->ptid);
4279
4280 regcache = get_thread_regcache (ecs->ptid);
4281 syscall_number = ecs->ws.value.syscall_number;
4282 stop_pc = regcache_read_pc (regcache);
4283
4284 if (catch_syscall_enabled () > 0
4285 && catching_syscall_number (syscall_number) > 0)
4286 {
4287 if (debug_infrun)
4288 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4289 syscall_number);
4290
4291 ecs->event_thread->control.stop_bpstat
4292 = bpstat_stop_status (get_regcache_aspace (regcache),
4293 stop_pc, ecs->ptid, &ecs->ws);
4294
4295 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4296 {
4297 /* Catchpoint hit. */
4298 return 0;
4299 }
4300 }
4301
4302 /* If no catchpoint triggered for this, then keep going. */
4303 keep_going (ecs);
4304 return 1;
4305 }
4306
4307 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4308
4309 static void
4310 fill_in_stop_func (struct gdbarch *gdbarch,
4311 struct execution_control_state *ecs)
4312 {
4313 if (!ecs->stop_func_filled_in)
4314 {
4315 /* Don't care about return value; stop_func_start and stop_func_name
4316 will both be 0 if it doesn't work. */
4317 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4318 &ecs->stop_func_start, &ecs->stop_func_end);
4319 ecs->stop_func_start
4320 += gdbarch_deprecated_function_start_offset (gdbarch);
4321
4322 if (gdbarch_skip_entrypoint_p (gdbarch))
4323 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4324 ecs->stop_func_start);
4325
4326 ecs->stop_func_filled_in = 1;
4327 }
4328 }
4329
4330
4331 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4332
4333 static enum stop_kind
4334 get_inferior_stop_soon (ptid_t ptid)
4335 {
4336 struct inferior *inf = find_inferior_ptid (ptid);
4337
4338 gdb_assert (inf != NULL);
4339 return inf->control.stop_soon;
4340 }
4341
4342 /* Wait for one event. Store the resulting waitstatus in WS, and
4343 return the event ptid. */
4344
4345 static ptid_t
4346 wait_one (struct target_waitstatus *ws)
4347 {
4348 ptid_t event_ptid;
4349 ptid_t wait_ptid = minus_one_ptid;
4350
4351 overlay_cache_invalid = 1;
4352
4353 /* Flush target cache before starting to handle each event.
4354 Target was running and cache could be stale. This is just a
4355 heuristic. Running threads may modify target memory, but we
4356 don't get any event. */
4357 target_dcache_invalidate ();
4358
4359 if (deprecated_target_wait_hook)
4360 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4361 else
4362 event_ptid = target_wait (wait_ptid, ws, 0);
4363
4364 if (debug_infrun)
4365 print_target_wait_results (wait_ptid, event_ptid, ws);
4366
4367 return event_ptid;
4368 }
4369
4370 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4371 instead of the current thread. */
4372 #define THREAD_STOPPED_BY(REASON) \
4373 static int \
4374 thread_stopped_by_ ## REASON (ptid_t ptid) \
4375 { \
4376 struct cleanup *old_chain; \
4377 int res; \
4378 \
4379 old_chain = save_inferior_ptid (); \
4380 inferior_ptid = ptid; \
4381 \
4382 res = target_stopped_by_ ## REASON (); \
4383 \
4384 do_cleanups (old_chain); \
4385 \
4386 return res; \
4387 }
4388
4389 /* Generate thread_stopped_by_watchpoint. */
4390 THREAD_STOPPED_BY (watchpoint)
4391 /* Generate thread_stopped_by_sw_breakpoint. */
4392 THREAD_STOPPED_BY (sw_breakpoint)
4393 /* Generate thread_stopped_by_hw_breakpoint. */
4394 THREAD_STOPPED_BY (hw_breakpoint)
4395
4396 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4397
4398 static void
4399 switch_to_thread_cleanup (void *ptid_p)
4400 {
4401 ptid_t ptid = *(ptid_t *) ptid_p;
4402
4403 switch_to_thread (ptid);
4404 }
4405
4406 /* Save the thread's event and stop reason to process it later. */
4407
4408 static void
4409 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4410 {
4411 struct regcache *regcache;
4412 struct address_space *aspace;
4413
4414 if (debug_infrun)
4415 {
4416 char *statstr;
4417
4418 statstr = target_waitstatus_to_string (ws);
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: saving status %s for %d.%ld.%ld\n",
4421 statstr,
4422 ptid_get_pid (tp->ptid),
4423 ptid_get_lwp (tp->ptid),
4424 ptid_get_tid (tp->ptid));
4425 xfree (statstr);
4426 }
4427
4428 /* Record for later. */
4429 tp->suspend.waitstatus = *ws;
4430 tp->suspend.waitstatus_pending_p = 1;
4431
4432 regcache = get_thread_regcache (tp->ptid);
4433 aspace = get_regcache_aspace (regcache);
4434
4435 if (ws->kind == TARGET_WAITKIND_STOPPED
4436 && ws->value.sig == GDB_SIGNAL_TRAP)
4437 {
4438 CORE_ADDR pc = regcache_read_pc (regcache);
4439
4440 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4441
4442 if (thread_stopped_by_watchpoint (tp->ptid))
4443 {
4444 tp->suspend.stop_reason
4445 = TARGET_STOPPED_BY_WATCHPOINT;
4446 }
4447 else if (target_supports_stopped_by_sw_breakpoint ()
4448 && thread_stopped_by_sw_breakpoint (tp->ptid))
4449 {
4450 tp->suspend.stop_reason
4451 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4452 }
4453 else if (target_supports_stopped_by_hw_breakpoint ()
4454 && thread_stopped_by_hw_breakpoint (tp->ptid))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4458 }
4459 else if (!target_supports_stopped_by_hw_breakpoint ()
4460 && hardware_breakpoint_inserted_here_p (aspace,
4461 pc))
4462 {
4463 tp->suspend.stop_reason
4464 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4465 }
4466 else if (!target_supports_stopped_by_sw_breakpoint ()
4467 && software_breakpoint_inserted_here_p (aspace,
4468 pc))
4469 {
4470 tp->suspend.stop_reason
4471 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4472 }
4473 else if (!thread_has_single_step_breakpoints_set (tp)
4474 && currently_stepping (tp))
4475 {
4476 tp->suspend.stop_reason
4477 = TARGET_STOPPED_BY_SINGLE_STEP;
4478 }
4479 }
4480 }
4481
4482 /* A cleanup that disables thread create/exit events. */
4483
4484 static void
4485 disable_thread_events (void *arg)
4486 {
4487 target_thread_events (0);
4488 }
4489
4490 /* See infrun.h. */
4491
4492 void
4493 stop_all_threads (void)
4494 {
4495 /* We may need multiple passes to discover all threads. */
4496 int pass;
4497 int iterations = 0;
4498 ptid_t entry_ptid;
4499 struct cleanup *old_chain;
4500
4501 gdb_assert (target_is_non_stop_p ());
4502
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4505
4506 entry_ptid = inferior_ptid;
4507 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4508
4509 target_thread_events (1);
4510 make_cleanup (disable_thread_events, NULL);
4511
4512 /* Request threads to stop, and then wait for the stops. Because
4513 threads we already know about can spawn more threads while we're
4514 trying to stop them, and we only learn about new threads when we
4515 update the thread list, do this in a loop, and keep iterating
4516 until two passes find no threads that need to be stopped. */
4517 for (pass = 0; pass < 2; pass++, iterations++)
4518 {
4519 if (debug_infrun)
4520 fprintf_unfiltered (gdb_stdlog,
4521 "infrun: stop_all_threads, pass=%d, "
4522 "iterations=%d\n", pass, iterations);
4523 while (1)
4524 {
4525 ptid_t event_ptid;
4526 struct target_waitstatus ws;
4527 int need_wait = 0;
4528 struct thread_info *t;
4529
4530 update_thread_list ();
4531
4532 /* Go through all threads looking for threads that we need
4533 to tell the target to stop. */
4534 ALL_NON_EXITED_THREADS (t)
4535 {
4536 if (t->executing)
4537 {
4538 /* If already stopping, don't request a stop again.
4539 We just haven't seen the notification yet. */
4540 if (!t->stop_requested)
4541 {
4542 if (debug_infrun)
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: %s executing, "
4545 "need stop\n",
4546 target_pid_to_str (t->ptid));
4547 target_stop (t->ptid);
4548 t->stop_requested = 1;
4549 }
4550 else
4551 {
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog,
4554 "infrun: %s executing, "
4555 "already stopping\n",
4556 target_pid_to_str (t->ptid));
4557 }
4558
4559 if (t->stop_requested)
4560 need_wait = 1;
4561 }
4562 else
4563 {
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog,
4566 "infrun: %s not executing\n",
4567 target_pid_to_str (t->ptid));
4568
4569 /* The thread may be not executing, but still be
4570 resumed with a pending status to process. */
4571 t->resumed = 0;
4572 }
4573 }
4574
4575 if (!need_wait)
4576 break;
4577
4578 /* If we find new threads on the second iteration, restart
4579 over. We want to see two iterations in a row with all
4580 threads stopped. */
4581 if (pass > 0)
4582 pass = -1;
4583
4584 event_ptid = wait_one (&ws);
4585 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4586 {
4587 /* All resumed threads exited. */
4588 }
4589 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4590 || ws.kind == TARGET_WAITKIND_EXITED
4591 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4592 {
4593 if (debug_infrun)
4594 {
4595 ptid_t ptid = pid_to_ptid (ws.value.integer);
4596
4597 fprintf_unfiltered (gdb_stdlog,
4598 "infrun: %s exited while "
4599 "stopping threads\n",
4600 target_pid_to_str (ptid));
4601 }
4602 }
4603 else
4604 {
4605 struct inferior *inf;
4606
4607 t = find_thread_ptid (event_ptid);
4608 if (t == NULL)
4609 t = add_thread (event_ptid);
4610
4611 t->stop_requested = 0;
4612 t->executing = 0;
4613 t->resumed = 0;
4614 t->control.may_range_step = 0;
4615
4616 /* This may be the first time we see the inferior report
4617 a stop. */
4618 inf = find_inferior_ptid (event_ptid);
4619 if (inf->needs_setup)
4620 {
4621 switch_to_thread_no_regs (t);
4622 setup_inferior (0);
4623 }
4624
4625 if (ws.kind == TARGET_WAITKIND_STOPPED
4626 && ws.value.sig == GDB_SIGNAL_0)
4627 {
4628 /* We caught the event that we intended to catch, so
4629 there's no event pending. */
4630 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4631 t->suspend.waitstatus_pending_p = 0;
4632
4633 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4634 {
4635 /* Add it back to the step-over queue. */
4636 if (debug_infrun)
4637 {
4638 fprintf_unfiltered (gdb_stdlog,
4639 "infrun: displaced-step of %s "
4640 "canceled: adding back to the "
4641 "step-over queue\n",
4642 target_pid_to_str (t->ptid));
4643 }
4644 t->control.trap_expected = 0;
4645 thread_step_over_chain_enqueue (t);
4646 }
4647 }
4648 else
4649 {
4650 enum gdb_signal sig;
4651 struct regcache *regcache;
4652
4653 if (debug_infrun)
4654 {
4655 char *statstr;
4656
4657 statstr = target_waitstatus_to_string (&ws);
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: target_wait %s, saving "
4660 "status for %d.%ld.%ld\n",
4661 statstr,
4662 ptid_get_pid (t->ptid),
4663 ptid_get_lwp (t->ptid),
4664 ptid_get_tid (t->ptid));
4665 xfree (statstr);
4666 }
4667
4668 /* Record for later. */
4669 save_waitstatus (t, &ws);
4670
4671 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4672 ? ws.value.sig : GDB_SIGNAL_0);
4673
4674 if (displaced_step_fixup (t->ptid, sig) < 0)
4675 {
4676 /* Add it back to the step-over queue. */
4677 t->control.trap_expected = 0;
4678 thread_step_over_chain_enqueue (t);
4679 }
4680
4681 regcache = get_thread_regcache (t->ptid);
4682 t->suspend.stop_pc = regcache_read_pc (regcache);
4683
4684 if (debug_infrun)
4685 {
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: saved stop_pc=%s for %s "
4688 "(currently_stepping=%d)\n",
4689 paddress (target_gdbarch (),
4690 t->suspend.stop_pc),
4691 target_pid_to_str (t->ptid),
4692 currently_stepping (t));
4693 }
4694 }
4695 }
4696 }
4697 }
4698
4699 do_cleanups (old_chain);
4700
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4703 }
4704
4705 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4706
4707 static int
4708 handle_no_resumed (struct execution_control_state *ecs)
4709 {
4710 struct inferior *inf;
4711 struct thread_info *thread;
4712
4713 if (target_can_async_p ())
4714 {
4715 struct ui *ui;
4716 int any_sync = 0;
4717
4718 ALL_UIS (ui)
4719 {
4720 if (ui->prompt_state == PROMPT_BLOCKED)
4721 {
4722 any_sync = 1;
4723 break;
4724 }
4725 }
4726 if (!any_sync)
4727 {
4728 /* There were no unwaited-for children left in the target, but,
4729 we're not synchronously waiting for events either. Just
4730 ignore. */
4731
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: TARGET_WAITKIND_NO_RESUMED "
4735 "(ignoring: bg)\n");
4736 prepare_to_wait (ecs);
4737 return 1;
4738 }
4739 }
4740
4741 /* Otherwise, if we were running a synchronous execution command, we
4742 may need to cancel it and give the user back the terminal.
4743
4744 In non-stop mode, the target can't tell whether we've already
4745 consumed previous stop events, so it can end up sending us a
4746 no-resumed event like so:
4747
4748 #0 - thread 1 is left stopped
4749
4750 #1 - thread 2 is resumed and hits breakpoint
4751 -> TARGET_WAITKIND_STOPPED
4752
4753 #2 - thread 3 is resumed and exits
4754 this is the last resumed thread, so
4755 -> TARGET_WAITKIND_NO_RESUMED
4756
4757 #3 - gdb processes stop for thread 2 and decides to re-resume
4758 it.
4759
4760 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4761 thread 2 is now resumed, so the event should be ignored.
4762
4763 IOW, if the stop for thread 2 doesn't end a foreground command,
4764 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4765 event. But it could be that the event meant that thread 2 itself
4766 (or whatever other thread was the last resumed thread) exited.
4767
4768 To address this we refresh the thread list and check whether we
4769 have resumed threads _now_. In the example above, this removes
4770 thread 3 from the thread list. If thread 2 was re-resumed, we
4771 ignore this event. If we find no thread resumed, then we cancel
4772 the synchronous command show "no unwaited-for " to the user. */
4773 update_thread_list ();
4774
4775 ALL_NON_EXITED_THREADS (thread)
4776 {
4777 if (thread->executing
4778 || thread->suspend.waitstatus_pending_p)
4779 {
4780 /* There were no unwaited-for children left in the target at
4781 some point, but there are now. Just ignore. */
4782 if (debug_infrun)
4783 fprintf_unfiltered (gdb_stdlog,
4784 "infrun: TARGET_WAITKIND_NO_RESUMED "
4785 "(ignoring: found resumed)\n");
4786 prepare_to_wait (ecs);
4787 return 1;
4788 }
4789 }
4790
4791 /* Note however that we may find no resumed thread because the whole
4792 process exited meanwhile (thus updating the thread list results
4793 in an empty thread list). In this case we know we'll be getting
4794 a process exit event shortly. */
4795 ALL_INFERIORS (inf)
4796 {
4797 if (inf->pid == 0)
4798 continue;
4799
4800 thread = any_live_thread_of_process (inf->pid);
4801 if (thread == NULL)
4802 {
4803 if (debug_infrun)
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: TARGET_WAITKIND_NO_RESUMED "
4806 "(expect process exit)\n");
4807 prepare_to_wait (ecs);
4808 return 1;
4809 }
4810 }
4811
4812 /* Go ahead and report the event. */
4813 return 0;
4814 }
4815
4816 /* Given an execution control state that has been freshly filled in by
4817 an event from the inferior, figure out what it means and take
4818 appropriate action.
4819
4820 The alternatives are:
4821
4822 1) stop_waiting and return; to really stop and return to the
4823 debugger.
4824
4825 2) keep_going and return; to wait for the next event (set
4826 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4827 once). */
4828
4829 static void
4830 handle_inferior_event_1 (struct execution_control_state *ecs)
4831 {
4832 enum stop_kind stop_soon;
4833
4834 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4835 {
4836 /* We had an event in the inferior, but we are not interested in
4837 handling it at this level. The lower layers have already
4838 done what needs to be done, if anything.
4839
4840 One of the possible circumstances for this is when the
4841 inferior produces output for the console. The inferior has
4842 not stopped, and we are ignoring the event. Another possible
4843 circumstance is any event which the lower level knows will be
4844 reported multiple times without an intervening resume. */
4845 if (debug_infrun)
4846 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4847 prepare_to_wait (ecs);
4848 return;
4849 }
4850
4851 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4852 {
4853 if (debug_infrun)
4854 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4855 prepare_to_wait (ecs);
4856 return;
4857 }
4858
4859 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4860 && handle_no_resumed (ecs))
4861 return;
4862
4863 /* Cache the last pid/waitstatus. */
4864 set_last_target_status (ecs->ptid, ecs->ws);
4865
4866 /* Always clear state belonging to the previous time we stopped. */
4867 stop_stack_dummy = STOP_NONE;
4868
4869 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4870 {
4871 /* No unwaited-for children left. IOW, all resumed children
4872 have exited. */
4873 if (debug_infrun)
4874 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4875
4876 stop_print_frame = 0;
4877 stop_waiting (ecs);
4878 return;
4879 }
4880
4881 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4882 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4883 {
4884 ecs->event_thread = find_thread_ptid (ecs->ptid);
4885 /* If it's a new thread, add it to the thread database. */
4886 if (ecs->event_thread == NULL)
4887 ecs->event_thread = add_thread (ecs->ptid);
4888
4889 /* Disable range stepping. If the next step request could use a
4890 range, this will be end up re-enabled then. */
4891 ecs->event_thread->control.may_range_step = 0;
4892 }
4893
4894 /* Dependent on valid ECS->EVENT_THREAD. */
4895 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4896
4897 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4898 reinit_frame_cache ();
4899
4900 breakpoint_retire_moribund ();
4901
4902 /* First, distinguish signals caused by the debugger from signals
4903 that have to do with the program's own actions. Note that
4904 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4905 on the operating system version. Here we detect when a SIGILL or
4906 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4907 something similar for SIGSEGV, since a SIGSEGV will be generated
4908 when we're trying to execute a breakpoint instruction on a
4909 non-executable stack. This happens for call dummy breakpoints
4910 for architectures like SPARC that place call dummies on the
4911 stack. */
4912 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4913 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4914 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4915 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4916 {
4917 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4918
4919 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4920 regcache_read_pc (regcache)))
4921 {
4922 if (debug_infrun)
4923 fprintf_unfiltered (gdb_stdlog,
4924 "infrun: Treating signal as SIGTRAP\n");
4925 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4926 }
4927 }
4928
4929 /* Mark the non-executing threads accordingly. In all-stop, all
4930 threads of all processes are stopped when we get any event
4931 reported. In non-stop mode, only the event thread stops. */
4932 {
4933 ptid_t mark_ptid;
4934
4935 if (!target_is_non_stop_p ())
4936 mark_ptid = minus_one_ptid;
4937 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4938 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4939 {
4940 /* If we're handling a process exit in non-stop mode, even
4941 though threads haven't been deleted yet, one would think
4942 that there is nothing to do, as threads of the dead process
4943 will be soon deleted, and threads of any other process were
4944 left running. However, on some targets, threads survive a
4945 process exit event. E.g., for the "checkpoint" command,
4946 when the current checkpoint/fork exits, linux-fork.c
4947 automatically switches to another fork from within
4948 target_mourn_inferior, by associating the same
4949 inferior/thread to another fork. We haven't mourned yet at
4950 this point, but we must mark any threads left in the
4951 process as not-executing so that finish_thread_state marks
4952 them stopped (in the user's perspective) if/when we present
4953 the stop to the user. */
4954 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4955 }
4956 else
4957 mark_ptid = ecs->ptid;
4958
4959 set_executing (mark_ptid, 0);
4960
4961 /* Likewise the resumed flag. */
4962 set_resumed (mark_ptid, 0);
4963 }
4964
4965 switch (ecs->ws.kind)
4966 {
4967 case TARGET_WAITKIND_LOADED:
4968 if (debug_infrun)
4969 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4970 if (!ptid_equal (ecs->ptid, inferior_ptid))
4971 context_switch (ecs->ptid);
4972 /* Ignore gracefully during startup of the inferior, as it might
4973 be the shell which has just loaded some objects, otherwise
4974 add the symbols for the newly loaded objects. Also ignore at
4975 the beginning of an attach or remote session; we will query
4976 the full list of libraries once the connection is
4977 established. */
4978
4979 stop_soon = get_inferior_stop_soon (ecs->ptid);
4980 if (stop_soon == NO_STOP_QUIETLY)
4981 {
4982 struct regcache *regcache;
4983
4984 regcache = get_thread_regcache (ecs->ptid);
4985
4986 handle_solib_event ();
4987
4988 ecs->event_thread->control.stop_bpstat
4989 = bpstat_stop_status (get_regcache_aspace (regcache),
4990 stop_pc, ecs->ptid, &ecs->ws);
4991
4992 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4993 {
4994 /* A catchpoint triggered. */
4995 process_event_stop_test (ecs);
4996 return;
4997 }
4998
4999 /* If requested, stop when the dynamic linker notifies
5000 gdb of events. This allows the user to get control
5001 and place breakpoints in initializer routines for
5002 dynamically loaded objects (among other things). */
5003 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5004 if (stop_on_solib_events)
5005 {
5006 /* Make sure we print "Stopped due to solib-event" in
5007 normal_stop. */
5008 stop_print_frame = 1;
5009
5010 stop_waiting (ecs);
5011 return;
5012 }
5013 }
5014
5015 /* If we are skipping through a shell, or through shared library
5016 loading that we aren't interested in, resume the program. If
5017 we're running the program normally, also resume. */
5018 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5019 {
5020 /* Loading of shared libraries might have changed breakpoint
5021 addresses. Make sure new breakpoints are inserted. */
5022 if (stop_soon == NO_STOP_QUIETLY)
5023 insert_breakpoints ();
5024 resume (GDB_SIGNAL_0);
5025 prepare_to_wait (ecs);
5026 return;
5027 }
5028
5029 /* But stop if we're attaching or setting up a remote
5030 connection. */
5031 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5032 || stop_soon == STOP_QUIETLY_REMOTE)
5033 {
5034 if (debug_infrun)
5035 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5036 stop_waiting (ecs);
5037 return;
5038 }
5039
5040 internal_error (__FILE__, __LINE__,
5041 _("unhandled stop_soon: %d"), (int) stop_soon);
5042
5043 case TARGET_WAITKIND_SPURIOUS:
5044 if (debug_infrun)
5045 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5046 if (!ptid_equal (ecs->ptid, inferior_ptid))
5047 context_switch (ecs->ptid);
5048 resume (GDB_SIGNAL_0);
5049 prepare_to_wait (ecs);
5050 return;
5051
5052 case TARGET_WAITKIND_THREAD_CREATED:
5053 if (debug_infrun)
5054 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5055 if (!ptid_equal (ecs->ptid, inferior_ptid))
5056 context_switch (ecs->ptid);
5057 if (!switch_back_to_stepped_thread (ecs))
5058 keep_going (ecs);
5059 return;
5060
5061 case TARGET_WAITKIND_EXITED:
5062 case TARGET_WAITKIND_SIGNALLED:
5063 if (debug_infrun)
5064 {
5065 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5066 fprintf_unfiltered (gdb_stdlog,
5067 "infrun: TARGET_WAITKIND_EXITED\n");
5068 else
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5071 }
5072
5073 inferior_ptid = ecs->ptid;
5074 set_current_inferior (find_inferior_ptid (ecs->ptid));
5075 set_current_program_space (current_inferior ()->pspace);
5076 handle_vfork_child_exec_or_exit (0);
5077 target_terminal_ours (); /* Must do this before mourn anyway. */
5078
5079 /* Clearing any previous state of convenience variables. */
5080 clear_exit_convenience_vars ();
5081
5082 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5083 {
5084 /* Record the exit code in the convenience variable $_exitcode, so
5085 that the user can inspect this again later. */
5086 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5087 (LONGEST) ecs->ws.value.integer);
5088
5089 /* Also record this in the inferior itself. */
5090 current_inferior ()->has_exit_code = 1;
5091 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5092
5093 /* Support the --return-child-result option. */
5094 return_child_result_value = ecs->ws.value.integer;
5095
5096 observer_notify_exited (ecs->ws.value.integer);
5097 }
5098 else
5099 {
5100 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5101 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5102
5103 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5104 {
5105 /* Set the value of the internal variable $_exitsignal,
5106 which holds the signal uncaught by the inferior. */
5107 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5108 gdbarch_gdb_signal_to_target (gdbarch,
5109 ecs->ws.value.sig));
5110 }
5111 else
5112 {
5113 /* We don't have access to the target's method used for
5114 converting between signal numbers (GDB's internal
5115 representation <-> target's representation).
5116 Therefore, we cannot do a good job at displaying this
5117 information to the user. It's better to just warn
5118 her about it (if infrun debugging is enabled), and
5119 give up. */
5120 if (debug_infrun)
5121 fprintf_filtered (gdb_stdlog, _("\
5122 Cannot fill $_exitsignal with the correct signal number.\n"));
5123 }
5124
5125 observer_notify_signal_exited (ecs->ws.value.sig);
5126 }
5127
5128 gdb_flush (gdb_stdout);
5129 target_mourn_inferior ();
5130 stop_print_frame = 0;
5131 stop_waiting (ecs);
5132 return;
5133
5134 /* The following are the only cases in which we keep going;
5135 the above cases end in a continue or goto. */
5136 case TARGET_WAITKIND_FORKED:
5137 case TARGET_WAITKIND_VFORKED:
5138 if (debug_infrun)
5139 {
5140 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5141 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5142 else
5143 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5144 }
5145
5146 /* Check whether the inferior is displaced stepping. */
5147 {
5148 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5149 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5150
5151 /* If checking displaced stepping is supported, and thread
5152 ecs->ptid is displaced stepping. */
5153 if (displaced_step_in_progress_thread (ecs->ptid))
5154 {
5155 struct inferior *parent_inf
5156 = find_inferior_ptid (ecs->ptid);
5157 struct regcache *child_regcache;
5158 CORE_ADDR parent_pc;
5159
5160 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5161 indicating that the displaced stepping of syscall instruction
5162 has been done. Perform cleanup for parent process here. Note
5163 that this operation also cleans up the child process for vfork,
5164 because their pages are shared. */
5165 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5166 /* Start a new step-over in another thread if there's one
5167 that needs it. */
5168 start_step_over ();
5169
5170 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5171 {
5172 struct displaced_step_inferior_state *displaced
5173 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5174
5175 /* Restore scratch pad for child process. */
5176 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5177 }
5178
5179 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5180 the child's PC is also within the scratchpad. Set the child's PC
5181 to the parent's PC value, which has already been fixed up.
5182 FIXME: we use the parent's aspace here, although we're touching
5183 the child, because the child hasn't been added to the inferior
5184 list yet at this point. */
5185
5186 child_regcache
5187 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5188 gdbarch,
5189 parent_inf->aspace);
5190 /* Read PC value of parent process. */
5191 parent_pc = regcache_read_pc (regcache);
5192
5193 if (debug_displaced)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "displaced: write child pc from %s to %s\n",
5196 paddress (gdbarch,
5197 regcache_read_pc (child_regcache)),
5198 paddress (gdbarch, parent_pc));
5199
5200 regcache_write_pc (child_regcache, parent_pc);
5201 }
5202 }
5203
5204 if (!ptid_equal (ecs->ptid, inferior_ptid))
5205 context_switch (ecs->ptid);
5206
5207 /* Immediately detach breakpoints from the child before there's
5208 any chance of letting the user delete breakpoints from the
5209 breakpoint lists. If we don't do this early, it's easy to
5210 leave left over traps in the child, vis: "break foo; catch
5211 fork; c; <fork>; del; c; <child calls foo>". We only follow
5212 the fork on the last `continue', and by that time the
5213 breakpoint at "foo" is long gone from the breakpoint table.
5214 If we vforked, then we don't need to unpatch here, since both
5215 parent and child are sharing the same memory pages; we'll
5216 need to unpatch at follow/detach time instead to be certain
5217 that new breakpoints added between catchpoint hit time and
5218 vfork follow are detached. */
5219 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5220 {
5221 /* This won't actually modify the breakpoint list, but will
5222 physically remove the breakpoints from the child. */
5223 detach_breakpoints (ecs->ws.value.related_pid);
5224 }
5225
5226 delete_just_stopped_threads_single_step_breakpoints ();
5227
5228 /* In case the event is caught by a catchpoint, remember that
5229 the event is to be followed at the next resume of the thread,
5230 and not immediately. */
5231 ecs->event_thread->pending_follow = ecs->ws;
5232
5233 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5234
5235 ecs->event_thread->control.stop_bpstat
5236 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5237 stop_pc, ecs->ptid, &ecs->ws);
5238
5239 /* If no catchpoint triggered for this, then keep going. Note
5240 that we're interested in knowing the bpstat actually causes a
5241 stop, not just if it may explain the signal. Software
5242 watchpoints, for example, always appear in the bpstat. */
5243 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5244 {
5245 ptid_t parent;
5246 ptid_t child;
5247 int should_resume;
5248 int follow_child
5249 = (follow_fork_mode_string == follow_fork_mode_child);
5250
5251 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5252
5253 should_resume = follow_fork ();
5254
5255 parent = ecs->ptid;
5256 child = ecs->ws.value.related_pid;
5257
5258 /* At this point, the parent is marked running, and the
5259 child is marked stopped. */
5260
5261 /* If not resuming the parent, mark it stopped. */
5262 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5263 set_running (parent, 0);
5264
5265 /* If resuming the child, mark it running. */
5266 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5267 set_running (child, 1);
5268
5269 /* In non-stop mode, also resume the other branch. */
5270 if (!detach_fork && (non_stop
5271 || (sched_multi && target_is_non_stop_p ())))
5272 {
5273 if (follow_child)
5274 switch_to_thread (parent);
5275 else
5276 switch_to_thread (child);
5277
5278 ecs->event_thread = inferior_thread ();
5279 ecs->ptid = inferior_ptid;
5280 keep_going (ecs);
5281 }
5282
5283 if (follow_child)
5284 switch_to_thread (child);
5285 else
5286 switch_to_thread (parent);
5287
5288 ecs->event_thread = inferior_thread ();
5289 ecs->ptid = inferior_ptid;
5290
5291 if (should_resume)
5292 keep_going (ecs);
5293 else
5294 stop_waiting (ecs);
5295 return;
5296 }
5297 process_event_stop_test (ecs);
5298 return;
5299
5300 case TARGET_WAITKIND_VFORK_DONE:
5301 /* Done with the shared memory region. Re-insert breakpoints in
5302 the parent, and keep going. */
5303
5304 if (debug_infrun)
5305 fprintf_unfiltered (gdb_stdlog,
5306 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5307
5308 if (!ptid_equal (ecs->ptid, inferior_ptid))
5309 context_switch (ecs->ptid);
5310
5311 current_inferior ()->waiting_for_vfork_done = 0;
5312 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5313 /* This also takes care of reinserting breakpoints in the
5314 previously locked inferior. */
5315 keep_going (ecs);
5316 return;
5317
5318 case TARGET_WAITKIND_EXECD:
5319 if (debug_infrun)
5320 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5321
5322 if (!ptid_equal (ecs->ptid, inferior_ptid))
5323 context_switch (ecs->ptid);
5324
5325 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5326
5327 /* Do whatever is necessary to the parent branch of the vfork. */
5328 handle_vfork_child_exec_or_exit (1);
5329
5330 /* This causes the eventpoints and symbol table to be reset.
5331 Must do this now, before trying to determine whether to
5332 stop. */
5333 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5334
5335 /* In follow_exec we may have deleted the original thread and
5336 created a new one. Make sure that the event thread is the
5337 execd thread for that case (this is a nop otherwise). */
5338 ecs->event_thread = inferior_thread ();
5339
5340 ecs->event_thread->control.stop_bpstat
5341 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5342 stop_pc, ecs->ptid, &ecs->ws);
5343
5344 /* Note that this may be referenced from inside
5345 bpstat_stop_status above, through inferior_has_execd. */
5346 xfree (ecs->ws.value.execd_pathname);
5347 ecs->ws.value.execd_pathname = NULL;
5348
5349 /* If no catchpoint triggered for this, then keep going. */
5350 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5351 {
5352 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5353 keep_going (ecs);
5354 return;
5355 }
5356 process_event_stop_test (ecs);
5357 return;
5358
5359 /* Be careful not to try to gather much state about a thread
5360 that's in a syscall. It's frequently a losing proposition. */
5361 case TARGET_WAITKIND_SYSCALL_ENTRY:
5362 if (debug_infrun)
5363 fprintf_unfiltered (gdb_stdlog,
5364 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5365 /* Getting the current syscall number. */
5366 if (handle_syscall_event (ecs) == 0)
5367 process_event_stop_test (ecs);
5368 return;
5369
5370 /* Before examining the threads further, step this thread to
5371 get it entirely out of the syscall. (We get notice of the
5372 event when the thread is just on the verge of exiting a
5373 syscall. Stepping one instruction seems to get it back
5374 into user code.) */
5375 case TARGET_WAITKIND_SYSCALL_RETURN:
5376 if (debug_infrun)
5377 fprintf_unfiltered (gdb_stdlog,
5378 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5379 if (handle_syscall_event (ecs) == 0)
5380 process_event_stop_test (ecs);
5381 return;
5382
5383 case TARGET_WAITKIND_STOPPED:
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5386 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5387 handle_signal_stop (ecs);
5388 return;
5389
5390 case TARGET_WAITKIND_NO_HISTORY:
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5393 /* Reverse execution: target ran out of history info. */
5394
5395 /* Switch to the stopped thread. */
5396 if (!ptid_equal (ecs->ptid, inferior_ptid))
5397 context_switch (ecs->ptid);
5398 if (debug_infrun)
5399 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5400
5401 delete_just_stopped_threads_single_step_breakpoints ();
5402 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5403 observer_notify_no_history ();
5404 stop_waiting (ecs);
5405 return;
5406 }
5407 }
5408
5409 /* A wrapper around handle_inferior_event_1, which also makes sure
5410 that all temporary struct value objects that were created during
5411 the handling of the event get deleted at the end. */
5412
5413 static void
5414 handle_inferior_event (struct execution_control_state *ecs)
5415 {
5416 struct value *mark = value_mark ();
5417
5418 handle_inferior_event_1 (ecs);
5419 /* Purge all temporary values created during the event handling,
5420 as it could be a long time before we return to the command level
5421 where such values would otherwise be purged. */
5422 value_free_to_mark (mark);
5423 }
5424
5425 /* Restart threads back to what they were trying to do back when we
5426 paused them for an in-line step-over. The EVENT_THREAD thread is
5427 ignored. */
5428
5429 static void
5430 restart_threads (struct thread_info *event_thread)
5431 {
5432 struct thread_info *tp;
5433
5434 /* In case the instruction just stepped spawned a new thread. */
5435 update_thread_list ();
5436
5437 ALL_NON_EXITED_THREADS (tp)
5438 {
5439 if (tp == event_thread)
5440 {
5441 if (debug_infrun)
5442 fprintf_unfiltered (gdb_stdlog,
5443 "infrun: restart threads: "
5444 "[%s] is event thread\n",
5445 target_pid_to_str (tp->ptid));
5446 continue;
5447 }
5448
5449 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5450 {
5451 if (debug_infrun)
5452 fprintf_unfiltered (gdb_stdlog,
5453 "infrun: restart threads: "
5454 "[%s] not meant to be running\n",
5455 target_pid_to_str (tp->ptid));
5456 continue;
5457 }
5458
5459 if (tp->resumed)
5460 {
5461 if (debug_infrun)
5462 fprintf_unfiltered (gdb_stdlog,
5463 "infrun: restart threads: [%s] resumed\n",
5464 target_pid_to_str (tp->ptid));
5465 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5466 continue;
5467 }
5468
5469 if (thread_is_in_step_over_chain (tp))
5470 {
5471 if (debug_infrun)
5472 fprintf_unfiltered (gdb_stdlog,
5473 "infrun: restart threads: "
5474 "[%s] needs step-over\n",
5475 target_pid_to_str (tp->ptid));
5476 gdb_assert (!tp->resumed);
5477 continue;
5478 }
5479
5480
5481 if (tp->suspend.waitstatus_pending_p)
5482 {
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog,
5485 "infrun: restart threads: "
5486 "[%s] has pending status\n",
5487 target_pid_to_str (tp->ptid));
5488 tp->resumed = 1;
5489 continue;
5490 }
5491
5492 /* If some thread needs to start a step-over at this point, it
5493 should still be in the step-over queue, and thus skipped
5494 above. */
5495 if (thread_still_needs_step_over (tp))
5496 {
5497 internal_error (__FILE__, __LINE__,
5498 "thread [%s] needs a step-over, but not in "
5499 "step-over queue\n",
5500 target_pid_to_str (tp->ptid));
5501 }
5502
5503 if (currently_stepping (tp))
5504 {
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: restart threads: [%s] was stepping\n",
5508 target_pid_to_str (tp->ptid));
5509 keep_going_stepped_thread (tp);
5510 }
5511 else
5512 {
5513 struct execution_control_state ecss;
5514 struct execution_control_state *ecs = &ecss;
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: restart threads: [%s] continuing\n",
5519 target_pid_to_str (tp->ptid));
5520 reset_ecs (ecs, tp);
5521 switch_to_thread (tp->ptid);
5522 keep_going_pass_signal (ecs);
5523 }
5524 }
5525 }
5526
5527 /* Callback for iterate_over_threads. Find a resumed thread that has
5528 a pending waitstatus. */
5529
5530 static int
5531 resumed_thread_with_pending_status (struct thread_info *tp,
5532 void *arg)
5533 {
5534 return (tp->resumed
5535 && tp->suspend.waitstatus_pending_p);
5536 }
5537
5538 /* Called when we get an event that may finish an in-line or
5539 out-of-line (displaced stepping) step-over started previously.
5540 Return true if the event is processed and we should go back to the
5541 event loop; false if the caller should continue processing the
5542 event. */
5543
5544 static int
5545 finish_step_over (struct execution_control_state *ecs)
5546 {
5547 int had_step_over_info;
5548
5549 displaced_step_fixup (ecs->ptid,
5550 ecs->event_thread->suspend.stop_signal);
5551
5552 had_step_over_info = step_over_info_valid_p ();
5553
5554 if (had_step_over_info)
5555 {
5556 /* If we're stepping over a breakpoint with all threads locked,
5557 then only the thread that was stepped should be reporting
5558 back an event. */
5559 gdb_assert (ecs->event_thread->control.trap_expected);
5560
5561 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5562 clear_step_over_info ();
5563 }
5564
5565 if (!target_is_non_stop_p ())
5566 return 0;
5567
5568 /* Start a new step-over in another thread if there's one that
5569 needs it. */
5570 start_step_over ();
5571
5572 /* If we were stepping over a breakpoint before, and haven't started
5573 a new in-line step-over sequence, then restart all other threads
5574 (except the event thread). We can't do this in all-stop, as then
5575 e.g., we wouldn't be able to issue any other remote packet until
5576 these other threads stop. */
5577 if (had_step_over_info && !step_over_info_valid_p ())
5578 {
5579 struct thread_info *pending;
5580
5581 /* If we only have threads with pending statuses, the restart
5582 below won't restart any thread and so nothing re-inserts the
5583 breakpoint we just stepped over. But we need it inserted
5584 when we later process the pending events, otherwise if
5585 another thread has a pending event for this breakpoint too,
5586 we'd discard its event (because the breakpoint that
5587 originally caused the event was no longer inserted). */
5588 context_switch (ecs->ptid);
5589 insert_breakpoints ();
5590
5591 restart_threads (ecs->event_thread);
5592
5593 /* If we have events pending, go through handle_inferior_event
5594 again, picking up a pending event at random. This avoids
5595 thread starvation. */
5596
5597 /* But not if we just stepped over a watchpoint in order to let
5598 the instruction execute so we can evaluate its expression.
5599 The set of watchpoints that triggered is recorded in the
5600 breakpoint objects themselves (see bp->watchpoint_triggered).
5601 If we processed another event first, that other event could
5602 clobber this info. */
5603 if (ecs->event_thread->stepping_over_watchpoint)
5604 return 0;
5605
5606 pending = iterate_over_threads (resumed_thread_with_pending_status,
5607 NULL);
5608 if (pending != NULL)
5609 {
5610 struct thread_info *tp = ecs->event_thread;
5611 struct regcache *regcache;
5612
5613 if (debug_infrun)
5614 {
5615 fprintf_unfiltered (gdb_stdlog,
5616 "infrun: found resumed threads with "
5617 "pending events, saving status\n");
5618 }
5619
5620 gdb_assert (pending != tp);
5621
5622 /* Record the event thread's event for later. */
5623 save_waitstatus (tp, &ecs->ws);
5624 /* This was cleared early, by handle_inferior_event. Set it
5625 so this pending event is considered by
5626 do_target_wait. */
5627 tp->resumed = 1;
5628
5629 gdb_assert (!tp->executing);
5630
5631 regcache = get_thread_regcache (tp->ptid);
5632 tp->suspend.stop_pc = regcache_read_pc (regcache);
5633
5634 if (debug_infrun)
5635 {
5636 fprintf_unfiltered (gdb_stdlog,
5637 "infrun: saved stop_pc=%s for %s "
5638 "(currently_stepping=%d)\n",
5639 paddress (target_gdbarch (),
5640 tp->suspend.stop_pc),
5641 target_pid_to_str (tp->ptid),
5642 currently_stepping (tp));
5643 }
5644
5645 /* This in-line step-over finished; clear this so we won't
5646 start a new one. This is what handle_signal_stop would
5647 do, if we returned false. */
5648 tp->stepping_over_breakpoint = 0;
5649
5650 /* Wake up the event loop again. */
5651 mark_async_event_handler (infrun_async_inferior_event_token);
5652
5653 prepare_to_wait (ecs);
5654 return 1;
5655 }
5656 }
5657
5658 return 0;
5659 }
5660
5661 /* Come here when the program has stopped with a signal. */
5662
5663 static void
5664 handle_signal_stop (struct execution_control_state *ecs)
5665 {
5666 struct frame_info *frame;
5667 struct gdbarch *gdbarch;
5668 int stopped_by_watchpoint;
5669 enum stop_kind stop_soon;
5670 int random_signal;
5671
5672 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5673
5674 /* Do we need to clean up the state of a thread that has
5675 completed a displaced single-step? (Doing so usually affects
5676 the PC, so do it here, before we set stop_pc.) */
5677 if (finish_step_over (ecs))
5678 return;
5679
5680 /* If we either finished a single-step or hit a breakpoint, but
5681 the user wanted this thread to be stopped, pretend we got a
5682 SIG0 (generic unsignaled stop). */
5683 if (ecs->event_thread->stop_requested
5684 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5685 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5686
5687 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5688
5689 if (debug_infrun)
5690 {
5691 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5693 struct cleanup *old_chain = save_inferior_ptid ();
5694
5695 inferior_ptid = ecs->ptid;
5696
5697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5698 paddress (gdbarch, stop_pc));
5699 if (target_stopped_by_watchpoint ())
5700 {
5701 CORE_ADDR addr;
5702
5703 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5704
5705 if (target_stopped_data_address (&current_target, &addr))
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: stopped data address = %s\n",
5708 paddress (gdbarch, addr));
5709 else
5710 fprintf_unfiltered (gdb_stdlog,
5711 "infrun: (no data address available)\n");
5712 }
5713
5714 do_cleanups (old_chain);
5715 }
5716
5717 /* This is originated from start_remote(), start_inferior() and
5718 shared libraries hook functions. */
5719 stop_soon = get_inferior_stop_soon (ecs->ptid);
5720 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5721 {
5722 if (!ptid_equal (ecs->ptid, inferior_ptid))
5723 context_switch (ecs->ptid);
5724 if (debug_infrun)
5725 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5726 stop_print_frame = 1;
5727 stop_waiting (ecs);
5728 return;
5729 }
5730
5731 /* This originates from attach_command(). We need to overwrite
5732 the stop_signal here, because some kernels don't ignore a
5733 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5734 See more comments in inferior.h. On the other hand, if we
5735 get a non-SIGSTOP, report it to the user - assume the backend
5736 will handle the SIGSTOP if it should show up later.
5737
5738 Also consider that the attach is complete when we see a
5739 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5740 target extended-remote report it instead of a SIGSTOP
5741 (e.g. gdbserver). We already rely on SIGTRAP being our
5742 signal, so this is no exception.
5743
5744 Also consider that the attach is complete when we see a
5745 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5746 the target to stop all threads of the inferior, in case the
5747 low level attach operation doesn't stop them implicitly. If
5748 they weren't stopped implicitly, then the stub will report a
5749 GDB_SIGNAL_0, meaning: stopped for no particular reason
5750 other than GDB's request. */
5751 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5752 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5753 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5754 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5755 {
5756 stop_print_frame = 1;
5757 stop_waiting (ecs);
5758 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5759 return;
5760 }
5761
5762 /* See if something interesting happened to the non-current thread. If
5763 so, then switch to that thread. */
5764 if (!ptid_equal (ecs->ptid, inferior_ptid))
5765 {
5766 if (debug_infrun)
5767 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5768
5769 context_switch (ecs->ptid);
5770
5771 if (deprecated_context_hook)
5772 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5773 }
5774
5775 /* At this point, get hold of the now-current thread's frame. */
5776 frame = get_current_frame ();
5777 gdbarch = get_frame_arch (frame);
5778
5779 /* Pull the single step breakpoints out of the target. */
5780 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5781 {
5782 struct regcache *regcache;
5783 struct address_space *aspace;
5784 CORE_ADDR pc;
5785
5786 regcache = get_thread_regcache (ecs->ptid);
5787 aspace = get_regcache_aspace (regcache);
5788 pc = regcache_read_pc (regcache);
5789
5790 /* However, before doing so, if this single-step breakpoint was
5791 actually for another thread, set this thread up for moving
5792 past it. */
5793 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5794 aspace, pc))
5795 {
5796 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5797 {
5798 if (debug_infrun)
5799 {
5800 fprintf_unfiltered (gdb_stdlog,
5801 "infrun: [%s] hit another thread's "
5802 "single-step breakpoint\n",
5803 target_pid_to_str (ecs->ptid));
5804 }
5805 ecs->hit_singlestep_breakpoint = 1;
5806 }
5807 }
5808 else
5809 {
5810 if (debug_infrun)
5811 {
5812 fprintf_unfiltered (gdb_stdlog,
5813 "infrun: [%s] hit its "
5814 "single-step breakpoint\n",
5815 target_pid_to_str (ecs->ptid));
5816 }
5817 }
5818 }
5819 delete_just_stopped_threads_single_step_breakpoints ();
5820
5821 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5822 && ecs->event_thread->control.trap_expected
5823 && ecs->event_thread->stepping_over_watchpoint)
5824 stopped_by_watchpoint = 0;
5825 else
5826 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5827
5828 /* If necessary, step over this watchpoint. We'll be back to display
5829 it in a moment. */
5830 if (stopped_by_watchpoint
5831 && (target_have_steppable_watchpoint
5832 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5833 {
5834 /* At this point, we are stopped at an instruction which has
5835 attempted to write to a piece of memory under control of
5836 a watchpoint. The instruction hasn't actually executed
5837 yet. If we were to evaluate the watchpoint expression
5838 now, we would get the old value, and therefore no change
5839 would seem to have occurred.
5840
5841 In order to make watchpoints work `right', we really need
5842 to complete the memory write, and then evaluate the
5843 watchpoint expression. We do this by single-stepping the
5844 target.
5845
5846 It may not be necessary to disable the watchpoint to step over
5847 it. For example, the PA can (with some kernel cooperation)
5848 single step over a watchpoint without disabling the watchpoint.
5849
5850 It is far more common to need to disable a watchpoint to step
5851 the inferior over it. If we have non-steppable watchpoints,
5852 we must disable the current watchpoint; it's simplest to
5853 disable all watchpoints.
5854
5855 Any breakpoint at PC must also be stepped over -- if there's
5856 one, it will have already triggered before the watchpoint
5857 triggered, and we either already reported it to the user, or
5858 it didn't cause a stop and we called keep_going. In either
5859 case, if there was a breakpoint at PC, we must be trying to
5860 step past it. */
5861 ecs->event_thread->stepping_over_watchpoint = 1;
5862 keep_going (ecs);
5863 return;
5864 }
5865
5866 ecs->event_thread->stepping_over_breakpoint = 0;
5867 ecs->event_thread->stepping_over_watchpoint = 0;
5868 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5869 ecs->event_thread->control.stop_step = 0;
5870 stop_print_frame = 1;
5871 stopped_by_random_signal = 0;
5872
5873 /* Hide inlined functions starting here, unless we just performed stepi or
5874 nexti. After stepi and nexti, always show the innermost frame (not any
5875 inline function call sites). */
5876 if (ecs->event_thread->control.step_range_end != 1)
5877 {
5878 struct address_space *aspace =
5879 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5880
5881 /* skip_inline_frames is expensive, so we avoid it if we can
5882 determine that the address is one where functions cannot have
5883 been inlined. This improves performance with inferiors that
5884 load a lot of shared libraries, because the solib event
5885 breakpoint is defined as the address of a function (i.e. not
5886 inline). Note that we have to check the previous PC as well
5887 as the current one to catch cases when we have just
5888 single-stepped off a breakpoint prior to reinstating it.
5889 Note that we're assuming that the code we single-step to is
5890 not inline, but that's not definitive: there's nothing
5891 preventing the event breakpoint function from containing
5892 inlined code, and the single-step ending up there. If the
5893 user had set a breakpoint on that inlined code, the missing
5894 skip_inline_frames call would break things. Fortunately
5895 that's an extremely unlikely scenario. */
5896 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5897 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5898 && ecs->event_thread->control.trap_expected
5899 && pc_at_non_inline_function (aspace,
5900 ecs->event_thread->prev_pc,
5901 &ecs->ws)))
5902 {
5903 skip_inline_frames (ecs->ptid);
5904
5905 /* Re-fetch current thread's frame in case that invalidated
5906 the frame cache. */
5907 frame = get_current_frame ();
5908 gdbarch = get_frame_arch (frame);
5909 }
5910 }
5911
5912 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5913 && ecs->event_thread->control.trap_expected
5914 && gdbarch_single_step_through_delay_p (gdbarch)
5915 && currently_stepping (ecs->event_thread))
5916 {
5917 /* We're trying to step off a breakpoint. Turns out that we're
5918 also on an instruction that needs to be stepped multiple
5919 times before it's been fully executing. E.g., architectures
5920 with a delay slot. It needs to be stepped twice, once for
5921 the instruction and once for the delay slot. */
5922 int step_through_delay
5923 = gdbarch_single_step_through_delay (gdbarch, frame);
5924
5925 if (debug_infrun && step_through_delay)
5926 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5927 if (ecs->event_thread->control.step_range_end == 0
5928 && step_through_delay)
5929 {
5930 /* The user issued a continue when stopped at a breakpoint.
5931 Set up for another trap and get out of here. */
5932 ecs->event_thread->stepping_over_breakpoint = 1;
5933 keep_going (ecs);
5934 return;
5935 }
5936 else if (step_through_delay)
5937 {
5938 /* The user issued a step when stopped at a breakpoint.
5939 Maybe we should stop, maybe we should not - the delay
5940 slot *might* correspond to a line of source. In any
5941 case, don't decide that here, just set
5942 ecs->stepping_over_breakpoint, making sure we
5943 single-step again before breakpoints are re-inserted. */
5944 ecs->event_thread->stepping_over_breakpoint = 1;
5945 }
5946 }
5947
5948 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5949 handles this event. */
5950 ecs->event_thread->control.stop_bpstat
5951 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5952 stop_pc, ecs->ptid, &ecs->ws);
5953
5954 /* Following in case break condition called a
5955 function. */
5956 stop_print_frame = 1;
5957
5958 /* This is where we handle "moribund" watchpoints. Unlike
5959 software breakpoints traps, hardware watchpoint traps are
5960 always distinguishable from random traps. If no high-level
5961 watchpoint is associated with the reported stop data address
5962 anymore, then the bpstat does not explain the signal ---
5963 simply make sure to ignore it if `stopped_by_watchpoint' is
5964 set. */
5965
5966 if (debug_infrun
5967 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5968 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5969 GDB_SIGNAL_TRAP)
5970 && stopped_by_watchpoint)
5971 fprintf_unfiltered (gdb_stdlog,
5972 "infrun: no user watchpoint explains "
5973 "watchpoint SIGTRAP, ignoring\n");
5974
5975 /* NOTE: cagney/2003-03-29: These checks for a random signal
5976 at one stage in the past included checks for an inferior
5977 function call's call dummy's return breakpoint. The original
5978 comment, that went with the test, read:
5979
5980 ``End of a stack dummy. Some systems (e.g. Sony news) give
5981 another signal besides SIGTRAP, so check here as well as
5982 above.''
5983
5984 If someone ever tries to get call dummys on a
5985 non-executable stack to work (where the target would stop
5986 with something like a SIGSEGV), then those tests might need
5987 to be re-instated. Given, however, that the tests were only
5988 enabled when momentary breakpoints were not being used, I
5989 suspect that it won't be the case.
5990
5991 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5992 be necessary for call dummies on a non-executable stack on
5993 SPARC. */
5994
5995 /* See if the breakpoints module can explain the signal. */
5996 random_signal
5997 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5998 ecs->event_thread->suspend.stop_signal);
5999
6000 /* Maybe this was a trap for a software breakpoint that has since
6001 been removed. */
6002 if (random_signal && target_stopped_by_sw_breakpoint ())
6003 {
6004 if (program_breakpoint_here_p (gdbarch, stop_pc))
6005 {
6006 struct regcache *regcache;
6007 int decr_pc;
6008
6009 /* Re-adjust PC to what the program would see if GDB was not
6010 debugging it. */
6011 regcache = get_thread_regcache (ecs->event_thread->ptid);
6012 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6013 if (decr_pc != 0)
6014 {
6015 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6016
6017 if (record_full_is_used ())
6018 record_full_gdb_operation_disable_set ();
6019
6020 regcache_write_pc (regcache, stop_pc + decr_pc);
6021
6022 do_cleanups (old_cleanups);
6023 }
6024 }
6025 else
6026 {
6027 /* A delayed software breakpoint event. Ignore the trap. */
6028 if (debug_infrun)
6029 fprintf_unfiltered (gdb_stdlog,
6030 "infrun: delayed software breakpoint "
6031 "trap, ignoring\n");
6032 random_signal = 0;
6033 }
6034 }
6035
6036 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6037 has since been removed. */
6038 if (random_signal && target_stopped_by_hw_breakpoint ())
6039 {
6040 /* A delayed hardware breakpoint event. Ignore the trap. */
6041 if (debug_infrun)
6042 fprintf_unfiltered (gdb_stdlog,
6043 "infrun: delayed hardware breakpoint/watchpoint "
6044 "trap, ignoring\n");
6045 random_signal = 0;
6046 }
6047
6048 /* If not, perhaps stepping/nexting can. */
6049 if (random_signal)
6050 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6051 && currently_stepping (ecs->event_thread));
6052
6053 /* Perhaps the thread hit a single-step breakpoint of _another_
6054 thread. Single-step breakpoints are transparent to the
6055 breakpoints module. */
6056 if (random_signal)
6057 random_signal = !ecs->hit_singlestep_breakpoint;
6058
6059 /* No? Perhaps we got a moribund watchpoint. */
6060 if (random_signal)
6061 random_signal = !stopped_by_watchpoint;
6062
6063 /* For the program's own signals, act according to
6064 the signal handling tables. */
6065
6066 if (random_signal)
6067 {
6068 /* Signal not for debugging purposes. */
6069 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6070 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6071
6072 if (debug_infrun)
6073 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6074 gdb_signal_to_symbol_string (stop_signal));
6075
6076 stopped_by_random_signal = 1;
6077
6078 /* Always stop on signals if we're either just gaining control
6079 of the program, or the user explicitly requested this thread
6080 to remain stopped. */
6081 if (stop_soon != NO_STOP_QUIETLY
6082 || ecs->event_thread->stop_requested
6083 || (!inf->detaching
6084 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6085 {
6086 stop_waiting (ecs);
6087 return;
6088 }
6089
6090 /* Notify observers the signal has "handle print" set. Note we
6091 returned early above if stopping; normal_stop handles the
6092 printing in that case. */
6093 if (signal_print[ecs->event_thread->suspend.stop_signal])
6094 {
6095 /* The signal table tells us to print about this signal. */
6096 target_terminal_ours_for_output ();
6097 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6098 target_terminal_inferior ();
6099 }
6100
6101 /* Clear the signal if it should not be passed. */
6102 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6103 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6104
6105 if (ecs->event_thread->prev_pc == stop_pc
6106 && ecs->event_thread->control.trap_expected
6107 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6108 {
6109 int was_in_line;
6110
6111 /* We were just starting a new sequence, attempting to
6112 single-step off of a breakpoint and expecting a SIGTRAP.
6113 Instead this signal arrives. This signal will take us out
6114 of the stepping range so GDB needs to remember to, when
6115 the signal handler returns, resume stepping off that
6116 breakpoint. */
6117 /* To simplify things, "continue" is forced to use the same
6118 code paths as single-step - set a breakpoint at the
6119 signal return address and then, once hit, step off that
6120 breakpoint. */
6121 if (debug_infrun)
6122 fprintf_unfiltered (gdb_stdlog,
6123 "infrun: signal arrived while stepping over "
6124 "breakpoint\n");
6125
6126 was_in_line = step_over_info_valid_p ();
6127 clear_step_over_info ();
6128 insert_hp_step_resume_breakpoint_at_frame (frame);
6129 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6130 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6131 ecs->event_thread->control.trap_expected = 0;
6132
6133 if (target_is_non_stop_p ())
6134 {
6135 /* Either "set non-stop" is "on", or the target is
6136 always in non-stop mode. In this case, we have a bit
6137 more work to do. Resume the current thread, and if
6138 we had paused all threads, restart them while the
6139 signal handler runs. */
6140 keep_going (ecs);
6141
6142 if (was_in_line)
6143 {
6144 restart_threads (ecs->event_thread);
6145 }
6146 else if (debug_infrun)
6147 {
6148 fprintf_unfiltered (gdb_stdlog,
6149 "infrun: no need to restart threads\n");
6150 }
6151 return;
6152 }
6153
6154 /* If we were nexting/stepping some other thread, switch to
6155 it, so that we don't continue it, losing control. */
6156 if (!switch_back_to_stepped_thread (ecs))
6157 keep_going (ecs);
6158 return;
6159 }
6160
6161 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6162 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6163 || ecs->event_thread->control.step_range_end == 1)
6164 && frame_id_eq (get_stack_frame_id (frame),
6165 ecs->event_thread->control.step_stack_frame_id)
6166 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6167 {
6168 /* The inferior is about to take a signal that will take it
6169 out of the single step range. Set a breakpoint at the
6170 current PC (which is presumably where the signal handler
6171 will eventually return) and then allow the inferior to
6172 run free.
6173
6174 Note that this is only needed for a signal delivered
6175 while in the single-step range. Nested signals aren't a
6176 problem as they eventually all return. */
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog,
6179 "infrun: signal may take us out of "
6180 "single-step range\n");
6181
6182 clear_step_over_info ();
6183 insert_hp_step_resume_breakpoint_at_frame (frame);
6184 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6185 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6186 ecs->event_thread->control.trap_expected = 0;
6187 keep_going (ecs);
6188 return;
6189 }
6190
6191 /* Note: step_resume_breakpoint may be non-NULL. This occures
6192 when either there's a nested signal, or when there's a
6193 pending signal enabled just as the signal handler returns
6194 (leaving the inferior at the step-resume-breakpoint without
6195 actually executing it). Either way continue until the
6196 breakpoint is really hit. */
6197
6198 if (!switch_back_to_stepped_thread (ecs))
6199 {
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog,
6202 "infrun: random signal, keep going\n");
6203
6204 keep_going (ecs);
6205 }
6206 return;
6207 }
6208
6209 process_event_stop_test (ecs);
6210 }
6211
6212 /* Come here when we've got some debug event / signal we can explain
6213 (IOW, not a random signal), and test whether it should cause a
6214 stop, or whether we should resume the inferior (transparently).
6215 E.g., could be a breakpoint whose condition evaluates false; we
6216 could be still stepping within the line; etc. */
6217
6218 static void
6219 process_event_stop_test (struct execution_control_state *ecs)
6220 {
6221 struct symtab_and_line stop_pc_sal;
6222 struct frame_info *frame;
6223 struct gdbarch *gdbarch;
6224 CORE_ADDR jmp_buf_pc;
6225 struct bpstat_what what;
6226
6227 /* Handle cases caused by hitting a breakpoint. */
6228
6229 frame = get_current_frame ();
6230 gdbarch = get_frame_arch (frame);
6231
6232 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6233
6234 if (what.call_dummy)
6235 {
6236 stop_stack_dummy = what.call_dummy;
6237 }
6238
6239 /* A few breakpoint types have callbacks associated (e.g.,
6240 bp_jit_event). Run them now. */
6241 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6242
6243 /* If we hit an internal event that triggers symbol changes, the
6244 current frame will be invalidated within bpstat_what (e.g., if we
6245 hit an internal solib event). Re-fetch it. */
6246 frame = get_current_frame ();
6247 gdbarch = get_frame_arch (frame);
6248
6249 switch (what.main_action)
6250 {
6251 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6252 /* If we hit the breakpoint at longjmp while stepping, we
6253 install a momentary breakpoint at the target of the
6254 jmp_buf. */
6255
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6259
6260 ecs->event_thread->stepping_over_breakpoint = 1;
6261
6262 if (what.is_longjmp)
6263 {
6264 struct value *arg_value;
6265
6266 /* If we set the longjmp breakpoint via a SystemTap probe,
6267 then use it to extract the arguments. The destination PC
6268 is the third argument to the probe. */
6269 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6270 if (arg_value)
6271 {
6272 jmp_buf_pc = value_as_address (arg_value);
6273 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6274 }
6275 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6276 || !gdbarch_get_longjmp_target (gdbarch,
6277 frame, &jmp_buf_pc))
6278 {
6279 if (debug_infrun)
6280 fprintf_unfiltered (gdb_stdlog,
6281 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6282 "(!gdbarch_get_longjmp_target)\n");
6283 keep_going (ecs);
6284 return;
6285 }
6286
6287 /* Insert a breakpoint at resume address. */
6288 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6289 }
6290 else
6291 check_exception_resume (ecs, frame);
6292 keep_going (ecs);
6293 return;
6294
6295 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6296 {
6297 struct frame_info *init_frame;
6298
6299 /* There are several cases to consider.
6300
6301 1. The initiating frame no longer exists. In this case we
6302 must stop, because the exception or longjmp has gone too
6303 far.
6304
6305 2. The initiating frame exists, and is the same as the
6306 current frame. We stop, because the exception or longjmp
6307 has been caught.
6308
6309 3. The initiating frame exists and is different from the
6310 current frame. This means the exception or longjmp has
6311 been caught beneath the initiating frame, so keep going.
6312
6313 4. longjmp breakpoint has been placed just to protect
6314 against stale dummy frames and user is not interested in
6315 stopping around longjmps. */
6316
6317 if (debug_infrun)
6318 fprintf_unfiltered (gdb_stdlog,
6319 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6320
6321 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6322 != NULL);
6323 delete_exception_resume_breakpoint (ecs->event_thread);
6324
6325 if (what.is_longjmp)
6326 {
6327 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6328
6329 if (!frame_id_p (ecs->event_thread->initiating_frame))
6330 {
6331 /* Case 4. */
6332 keep_going (ecs);
6333 return;
6334 }
6335 }
6336
6337 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6338
6339 if (init_frame)
6340 {
6341 struct frame_id current_id
6342 = get_frame_id (get_current_frame ());
6343 if (frame_id_eq (current_id,
6344 ecs->event_thread->initiating_frame))
6345 {
6346 /* Case 2. Fall through. */
6347 }
6348 else
6349 {
6350 /* Case 3. */
6351 keep_going (ecs);
6352 return;
6353 }
6354 }
6355
6356 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6357 exists. */
6358 delete_step_resume_breakpoint (ecs->event_thread);
6359
6360 end_stepping_range (ecs);
6361 }
6362 return;
6363
6364 case BPSTAT_WHAT_SINGLE:
6365 if (debug_infrun)
6366 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6367 ecs->event_thread->stepping_over_breakpoint = 1;
6368 /* Still need to check other stuff, at least the case where we
6369 are stepping and step out of the right range. */
6370 break;
6371
6372 case BPSTAT_WHAT_STEP_RESUME:
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6375
6376 delete_step_resume_breakpoint (ecs->event_thread);
6377 if (ecs->event_thread->control.proceed_to_finish
6378 && execution_direction == EXEC_REVERSE)
6379 {
6380 struct thread_info *tp = ecs->event_thread;
6381
6382 /* We are finishing a function in reverse, and just hit the
6383 step-resume breakpoint at the start address of the
6384 function, and we're almost there -- just need to back up
6385 by one more single-step, which should take us back to the
6386 function call. */
6387 tp->control.step_range_start = tp->control.step_range_end = 1;
6388 keep_going (ecs);
6389 return;
6390 }
6391 fill_in_stop_func (gdbarch, ecs);
6392 if (stop_pc == ecs->stop_func_start
6393 && execution_direction == EXEC_REVERSE)
6394 {
6395 /* We are stepping over a function call in reverse, and just
6396 hit the step-resume breakpoint at the start address of
6397 the function. Go back to single-stepping, which should
6398 take us back to the function call. */
6399 ecs->event_thread->stepping_over_breakpoint = 1;
6400 keep_going (ecs);
6401 return;
6402 }
6403 break;
6404
6405 case BPSTAT_WHAT_STOP_NOISY:
6406 if (debug_infrun)
6407 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6408 stop_print_frame = 1;
6409
6410 /* Assume the thread stopped for a breapoint. We'll still check
6411 whether a/the breakpoint is there when the thread is next
6412 resumed. */
6413 ecs->event_thread->stepping_over_breakpoint = 1;
6414
6415 stop_waiting (ecs);
6416 return;
6417
6418 case BPSTAT_WHAT_STOP_SILENT:
6419 if (debug_infrun)
6420 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6421 stop_print_frame = 0;
6422
6423 /* Assume the thread stopped for a breapoint. We'll still check
6424 whether a/the breakpoint is there when the thread is next
6425 resumed. */
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427 stop_waiting (ecs);
6428 return;
6429
6430 case BPSTAT_WHAT_HP_STEP_RESUME:
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6433
6434 delete_step_resume_breakpoint (ecs->event_thread);
6435 if (ecs->event_thread->step_after_step_resume_breakpoint)
6436 {
6437 /* Back when the step-resume breakpoint was inserted, we
6438 were trying to single-step off a breakpoint. Go back to
6439 doing that. */
6440 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6441 ecs->event_thread->stepping_over_breakpoint = 1;
6442 keep_going (ecs);
6443 return;
6444 }
6445 break;
6446
6447 case BPSTAT_WHAT_KEEP_CHECKING:
6448 break;
6449 }
6450
6451 /* If we stepped a permanent breakpoint and we had a high priority
6452 step-resume breakpoint for the address we stepped, but we didn't
6453 hit it, then we must have stepped into the signal handler. The
6454 step-resume was only necessary to catch the case of _not_
6455 stepping into the handler, so delete it, and fall through to
6456 checking whether the step finished. */
6457 if (ecs->event_thread->stepped_breakpoint)
6458 {
6459 struct breakpoint *sr_bp
6460 = ecs->event_thread->control.step_resume_breakpoint;
6461
6462 if (sr_bp != NULL
6463 && sr_bp->loc->permanent
6464 && sr_bp->type == bp_hp_step_resume
6465 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6466 {
6467 if (debug_infrun)
6468 fprintf_unfiltered (gdb_stdlog,
6469 "infrun: stepped permanent breakpoint, stopped in "
6470 "handler\n");
6471 delete_step_resume_breakpoint (ecs->event_thread);
6472 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6473 }
6474 }
6475
6476 /* We come here if we hit a breakpoint but should not stop for it.
6477 Possibly we also were stepping and should stop for that. So fall
6478 through and test for stepping. But, if not stepping, do not
6479 stop. */
6480
6481 /* In all-stop mode, if we're currently stepping but have stopped in
6482 some other thread, we need to switch back to the stepped thread. */
6483 if (switch_back_to_stepped_thread (ecs))
6484 return;
6485
6486 if (ecs->event_thread->control.step_resume_breakpoint)
6487 {
6488 if (debug_infrun)
6489 fprintf_unfiltered (gdb_stdlog,
6490 "infrun: step-resume breakpoint is inserted\n");
6491
6492 /* Having a step-resume breakpoint overrides anything
6493 else having to do with stepping commands until
6494 that breakpoint is reached. */
6495 keep_going (ecs);
6496 return;
6497 }
6498
6499 if (ecs->event_thread->control.step_range_end == 0)
6500 {
6501 if (debug_infrun)
6502 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6503 /* Likewise if we aren't even stepping. */
6504 keep_going (ecs);
6505 return;
6506 }
6507
6508 /* Re-fetch current thread's frame in case the code above caused
6509 the frame cache to be re-initialized, making our FRAME variable
6510 a dangling pointer. */
6511 frame = get_current_frame ();
6512 gdbarch = get_frame_arch (frame);
6513 fill_in_stop_func (gdbarch, ecs);
6514
6515 /* If stepping through a line, keep going if still within it.
6516
6517 Note that step_range_end is the address of the first instruction
6518 beyond the step range, and NOT the address of the last instruction
6519 within it!
6520
6521 Note also that during reverse execution, we may be stepping
6522 through a function epilogue and therefore must detect when
6523 the current-frame changes in the middle of a line. */
6524
6525 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6526 && (execution_direction != EXEC_REVERSE
6527 || frame_id_eq (get_frame_id (frame),
6528 ecs->event_thread->control.step_frame_id)))
6529 {
6530 if (debug_infrun)
6531 fprintf_unfiltered
6532 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6533 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6534 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6535
6536 /* Tentatively re-enable range stepping; `resume' disables it if
6537 necessary (e.g., if we're stepping over a breakpoint or we
6538 have software watchpoints). */
6539 ecs->event_thread->control.may_range_step = 1;
6540
6541 /* When stepping backward, stop at beginning of line range
6542 (unless it's the function entry point, in which case
6543 keep going back to the call point). */
6544 if (stop_pc == ecs->event_thread->control.step_range_start
6545 && stop_pc != ecs->stop_func_start
6546 && execution_direction == EXEC_REVERSE)
6547 end_stepping_range (ecs);
6548 else
6549 keep_going (ecs);
6550
6551 return;
6552 }
6553
6554 /* We stepped out of the stepping range. */
6555
6556 /* If we are stepping at the source level and entered the runtime
6557 loader dynamic symbol resolution code...
6558
6559 EXEC_FORWARD: we keep on single stepping until we exit the run
6560 time loader code and reach the callee's address.
6561
6562 EXEC_REVERSE: we've already executed the callee (backward), and
6563 the runtime loader code is handled just like any other
6564 undebuggable function call. Now we need only keep stepping
6565 backward through the trampoline code, and that's handled further
6566 down, so there is nothing for us to do here. */
6567
6568 if (execution_direction != EXEC_REVERSE
6569 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6570 && in_solib_dynsym_resolve_code (stop_pc))
6571 {
6572 CORE_ADDR pc_after_resolver =
6573 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6574
6575 if (debug_infrun)
6576 fprintf_unfiltered (gdb_stdlog,
6577 "infrun: stepped into dynsym resolve code\n");
6578
6579 if (pc_after_resolver)
6580 {
6581 /* Set up a step-resume breakpoint at the address
6582 indicated by SKIP_SOLIB_RESOLVER. */
6583 struct symtab_and_line sr_sal;
6584
6585 init_sal (&sr_sal);
6586 sr_sal.pc = pc_after_resolver;
6587 sr_sal.pspace = get_frame_program_space (frame);
6588
6589 insert_step_resume_breakpoint_at_sal (gdbarch,
6590 sr_sal, null_frame_id);
6591 }
6592
6593 keep_going (ecs);
6594 return;
6595 }
6596
6597 if (ecs->event_thread->control.step_range_end != 1
6598 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6599 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6600 && get_frame_type (frame) == SIGTRAMP_FRAME)
6601 {
6602 if (debug_infrun)
6603 fprintf_unfiltered (gdb_stdlog,
6604 "infrun: stepped into signal trampoline\n");
6605 /* The inferior, while doing a "step" or "next", has ended up in
6606 a signal trampoline (either by a signal being delivered or by
6607 the signal handler returning). Just single-step until the
6608 inferior leaves the trampoline (either by calling the handler
6609 or returning). */
6610 keep_going (ecs);
6611 return;
6612 }
6613
6614 /* If we're in the return path from a shared library trampoline,
6615 we want to proceed through the trampoline when stepping. */
6616 /* macro/2012-04-25: This needs to come before the subroutine
6617 call check below as on some targets return trampolines look
6618 like subroutine calls (MIPS16 return thunks). */
6619 if (gdbarch_in_solib_return_trampoline (gdbarch,
6620 stop_pc, ecs->stop_func_name)
6621 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6622 {
6623 /* Determine where this trampoline returns. */
6624 CORE_ADDR real_stop_pc;
6625
6626 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6627
6628 if (debug_infrun)
6629 fprintf_unfiltered (gdb_stdlog,
6630 "infrun: stepped into solib return tramp\n");
6631
6632 /* Only proceed through if we know where it's going. */
6633 if (real_stop_pc)
6634 {
6635 /* And put the step-breakpoint there and go until there. */
6636 struct symtab_and_line sr_sal;
6637
6638 init_sal (&sr_sal); /* initialize to zeroes */
6639 sr_sal.pc = real_stop_pc;
6640 sr_sal.section = find_pc_overlay (sr_sal.pc);
6641 sr_sal.pspace = get_frame_program_space (frame);
6642
6643 /* Do not specify what the fp should be when we stop since
6644 on some machines the prologue is where the new fp value
6645 is established. */
6646 insert_step_resume_breakpoint_at_sal (gdbarch,
6647 sr_sal, null_frame_id);
6648
6649 /* Restart without fiddling with the step ranges or
6650 other state. */
6651 keep_going (ecs);
6652 return;
6653 }
6654 }
6655
6656 /* Check for subroutine calls. The check for the current frame
6657 equalling the step ID is not necessary - the check of the
6658 previous frame's ID is sufficient - but it is a common case and
6659 cheaper than checking the previous frame's ID.
6660
6661 NOTE: frame_id_eq will never report two invalid frame IDs as
6662 being equal, so to get into this block, both the current and
6663 previous frame must have valid frame IDs. */
6664 /* The outer_frame_id check is a heuristic to detect stepping
6665 through startup code. If we step over an instruction which
6666 sets the stack pointer from an invalid value to a valid value,
6667 we may detect that as a subroutine call from the mythical
6668 "outermost" function. This could be fixed by marking
6669 outermost frames as !stack_p,code_p,special_p. Then the
6670 initial outermost frame, before sp was valid, would
6671 have code_addr == &_start. See the comment in frame_id_eq
6672 for more. */
6673 if (!frame_id_eq (get_stack_frame_id (frame),
6674 ecs->event_thread->control.step_stack_frame_id)
6675 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6676 ecs->event_thread->control.step_stack_frame_id)
6677 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6678 outer_frame_id)
6679 || (ecs->event_thread->control.step_start_function
6680 != find_pc_function (stop_pc)))))
6681 {
6682 CORE_ADDR real_stop_pc;
6683
6684 if (debug_infrun)
6685 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6686
6687 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6688 {
6689 /* I presume that step_over_calls is only 0 when we're
6690 supposed to be stepping at the assembly language level
6691 ("stepi"). Just stop. */
6692 /* And this works the same backward as frontward. MVS */
6693 end_stepping_range (ecs);
6694 return;
6695 }
6696
6697 /* Reverse stepping through solib trampolines. */
6698
6699 if (execution_direction == EXEC_REVERSE
6700 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6701 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6702 || (ecs->stop_func_start == 0
6703 && in_solib_dynsym_resolve_code (stop_pc))))
6704 {
6705 /* Any solib trampoline code can be handled in reverse
6706 by simply continuing to single-step. We have already
6707 executed the solib function (backwards), and a few
6708 steps will take us back through the trampoline to the
6709 caller. */
6710 keep_going (ecs);
6711 return;
6712 }
6713
6714 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6715 {
6716 /* We're doing a "next".
6717
6718 Normal (forward) execution: set a breakpoint at the
6719 callee's return address (the address at which the caller
6720 will resume).
6721
6722 Reverse (backward) execution. set the step-resume
6723 breakpoint at the start of the function that we just
6724 stepped into (backwards), and continue to there. When we
6725 get there, we'll need to single-step back to the caller. */
6726
6727 if (execution_direction == EXEC_REVERSE)
6728 {
6729 /* If we're already at the start of the function, we've either
6730 just stepped backward into a single instruction function,
6731 or stepped back out of a signal handler to the first instruction
6732 of the function. Just keep going, which will single-step back
6733 to the caller. */
6734 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6735 {
6736 struct symtab_and_line sr_sal;
6737
6738 /* Normal function call return (static or dynamic). */
6739 init_sal (&sr_sal);
6740 sr_sal.pc = ecs->stop_func_start;
6741 sr_sal.pspace = get_frame_program_space (frame);
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
6744 }
6745 }
6746 else
6747 insert_step_resume_breakpoint_at_caller (frame);
6748
6749 keep_going (ecs);
6750 return;
6751 }
6752
6753 /* If we are in a function call trampoline (a stub between the
6754 calling routine and the real function), locate the real
6755 function. That's what tells us (a) whether we want to step
6756 into it at all, and (b) what prologue we want to run to the
6757 end of, if we do step into it. */
6758 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6759 if (real_stop_pc == 0)
6760 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6761 if (real_stop_pc != 0)
6762 ecs->stop_func_start = real_stop_pc;
6763
6764 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6765 {
6766 struct symtab_and_line sr_sal;
6767
6768 init_sal (&sr_sal);
6769 sr_sal.pc = ecs->stop_func_start;
6770 sr_sal.pspace = get_frame_program_space (frame);
6771
6772 insert_step_resume_breakpoint_at_sal (gdbarch,
6773 sr_sal, null_frame_id);
6774 keep_going (ecs);
6775 return;
6776 }
6777
6778 /* If we have line number information for the function we are
6779 thinking of stepping into and the function isn't on the skip
6780 list, step into it.
6781
6782 If there are several symtabs at that PC (e.g. with include
6783 files), just want to know whether *any* of them have line
6784 numbers. find_pc_line handles this. */
6785 {
6786 struct symtab_and_line tmp_sal;
6787
6788 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6789 if (tmp_sal.line != 0
6790 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6791 &tmp_sal))
6792 {
6793 if (execution_direction == EXEC_REVERSE)
6794 handle_step_into_function_backward (gdbarch, ecs);
6795 else
6796 handle_step_into_function (gdbarch, ecs);
6797 return;
6798 }
6799 }
6800
6801 /* If we have no line number and the step-stop-if-no-debug is
6802 set, we stop the step so that the user has a chance to switch
6803 in assembly mode. */
6804 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6805 && step_stop_if_no_debug)
6806 {
6807 end_stepping_range (ecs);
6808 return;
6809 }
6810
6811 if (execution_direction == EXEC_REVERSE)
6812 {
6813 /* If we're already at the start of the function, we've either just
6814 stepped backward into a single instruction function without line
6815 number info, or stepped back out of a signal handler to the first
6816 instruction of the function without line number info. Just keep
6817 going, which will single-step back to the caller. */
6818 if (ecs->stop_func_start != stop_pc)
6819 {
6820 /* Set a breakpoint at callee's start address.
6821 From there we can step once and be back in the caller. */
6822 struct symtab_and_line sr_sal;
6823
6824 init_sal (&sr_sal);
6825 sr_sal.pc = ecs->stop_func_start;
6826 sr_sal.pspace = get_frame_program_space (frame);
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 }
6830 }
6831 else
6832 /* Set a breakpoint at callee's return address (the address
6833 at which the caller will resume). */
6834 insert_step_resume_breakpoint_at_caller (frame);
6835
6836 keep_going (ecs);
6837 return;
6838 }
6839
6840 /* Reverse stepping through solib trampolines. */
6841
6842 if (execution_direction == EXEC_REVERSE
6843 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6844 {
6845 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6846 || (ecs->stop_func_start == 0
6847 && in_solib_dynsym_resolve_code (stop_pc)))
6848 {
6849 /* Any solib trampoline code can be handled in reverse
6850 by simply continuing to single-step. We have already
6851 executed the solib function (backwards), and a few
6852 steps will take us back through the trampoline to the
6853 caller. */
6854 keep_going (ecs);
6855 return;
6856 }
6857 else if (in_solib_dynsym_resolve_code (stop_pc))
6858 {
6859 /* Stepped backward into the solib dynsym resolver.
6860 Set a breakpoint at its start and continue, then
6861 one more step will take us out. */
6862 struct symtab_and_line sr_sal;
6863
6864 init_sal (&sr_sal);
6865 sr_sal.pc = ecs->stop_func_start;
6866 sr_sal.pspace = get_frame_program_space (frame);
6867 insert_step_resume_breakpoint_at_sal (gdbarch,
6868 sr_sal, null_frame_id);
6869 keep_going (ecs);
6870 return;
6871 }
6872 }
6873
6874 stop_pc_sal = find_pc_line (stop_pc, 0);
6875
6876 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6877 the trampoline processing logic, however, there are some trampolines
6878 that have no names, so we should do trampoline handling first. */
6879 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6880 && ecs->stop_func_name == NULL
6881 && stop_pc_sal.line == 0)
6882 {
6883 if (debug_infrun)
6884 fprintf_unfiltered (gdb_stdlog,
6885 "infrun: stepped into undebuggable function\n");
6886
6887 /* The inferior just stepped into, or returned to, an
6888 undebuggable function (where there is no debugging information
6889 and no line number corresponding to the address where the
6890 inferior stopped). Since we want to skip this kind of code,
6891 we keep going until the inferior returns from this
6892 function - unless the user has asked us not to (via
6893 set step-mode) or we no longer know how to get back
6894 to the call site. */
6895 if (step_stop_if_no_debug
6896 || !frame_id_p (frame_unwind_caller_id (frame)))
6897 {
6898 /* If we have no line number and the step-stop-if-no-debug
6899 is set, we stop the step so that the user has a chance to
6900 switch in assembly mode. */
6901 end_stepping_range (ecs);
6902 return;
6903 }
6904 else
6905 {
6906 /* Set a breakpoint at callee's return address (the address
6907 at which the caller will resume). */
6908 insert_step_resume_breakpoint_at_caller (frame);
6909 keep_going (ecs);
6910 return;
6911 }
6912 }
6913
6914 if (ecs->event_thread->control.step_range_end == 1)
6915 {
6916 /* It is stepi or nexti. We always want to stop stepping after
6917 one instruction. */
6918 if (debug_infrun)
6919 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6920 end_stepping_range (ecs);
6921 return;
6922 }
6923
6924 if (stop_pc_sal.line == 0)
6925 {
6926 /* We have no line number information. That means to stop
6927 stepping (does this always happen right after one instruction,
6928 when we do "s" in a function with no line numbers,
6929 or can this happen as a result of a return or longjmp?). */
6930 if (debug_infrun)
6931 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6932 end_stepping_range (ecs);
6933 return;
6934 }
6935
6936 /* Look for "calls" to inlined functions, part one. If the inline
6937 frame machinery detected some skipped call sites, we have entered
6938 a new inline function. */
6939
6940 if (frame_id_eq (get_frame_id (get_current_frame ()),
6941 ecs->event_thread->control.step_frame_id)
6942 && inline_skipped_frames (ecs->ptid))
6943 {
6944 struct symtab_and_line call_sal;
6945
6946 if (debug_infrun)
6947 fprintf_unfiltered (gdb_stdlog,
6948 "infrun: stepped into inlined function\n");
6949
6950 find_frame_sal (get_current_frame (), &call_sal);
6951
6952 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6953 {
6954 /* For "step", we're going to stop. But if the call site
6955 for this inlined function is on the same source line as
6956 we were previously stepping, go down into the function
6957 first. Otherwise stop at the call site. */
6958
6959 if (call_sal.line == ecs->event_thread->current_line
6960 && call_sal.symtab == ecs->event_thread->current_symtab)
6961 step_into_inline_frame (ecs->ptid);
6962
6963 end_stepping_range (ecs);
6964 return;
6965 }
6966 else
6967 {
6968 /* For "next", we should stop at the call site if it is on a
6969 different source line. Otherwise continue through the
6970 inlined function. */
6971 if (call_sal.line == ecs->event_thread->current_line
6972 && call_sal.symtab == ecs->event_thread->current_symtab)
6973 keep_going (ecs);
6974 else
6975 end_stepping_range (ecs);
6976 return;
6977 }
6978 }
6979
6980 /* Look for "calls" to inlined functions, part two. If we are still
6981 in the same real function we were stepping through, but we have
6982 to go further up to find the exact frame ID, we are stepping
6983 through a more inlined call beyond its call site. */
6984
6985 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6986 && !frame_id_eq (get_frame_id (get_current_frame ()),
6987 ecs->event_thread->control.step_frame_id)
6988 && stepped_in_from (get_current_frame (),
6989 ecs->event_thread->control.step_frame_id))
6990 {
6991 if (debug_infrun)
6992 fprintf_unfiltered (gdb_stdlog,
6993 "infrun: stepping through inlined function\n");
6994
6995 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6996 keep_going (ecs);
6997 else
6998 end_stepping_range (ecs);
6999 return;
7000 }
7001
7002 if ((stop_pc == stop_pc_sal.pc)
7003 && (ecs->event_thread->current_line != stop_pc_sal.line
7004 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7005 {
7006 /* We are at the start of a different line. So stop. Note that
7007 we don't stop if we step into the middle of a different line.
7008 That is said to make things like for (;;) statements work
7009 better. */
7010 if (debug_infrun)
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: stepped to a different line\n");
7013 end_stepping_range (ecs);
7014 return;
7015 }
7016
7017 /* We aren't done stepping.
7018
7019 Optimize by setting the stepping range to the line.
7020 (We might not be in the original line, but if we entered a
7021 new line in mid-statement, we continue stepping. This makes
7022 things like for(;;) statements work better.) */
7023
7024 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7025 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7026 ecs->event_thread->control.may_range_step = 1;
7027 set_step_info (frame, stop_pc_sal);
7028
7029 if (debug_infrun)
7030 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7031 keep_going (ecs);
7032 }
7033
7034 /* In all-stop mode, if we're currently stepping but have stopped in
7035 some other thread, we may need to switch back to the stepped
7036 thread. Returns true we set the inferior running, false if we left
7037 it stopped (and the event needs further processing). */
7038
7039 static int
7040 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7041 {
7042 if (!target_is_non_stop_p ())
7043 {
7044 struct thread_info *tp;
7045 struct thread_info *stepping_thread;
7046
7047 /* If any thread is blocked on some internal breakpoint, and we
7048 simply need to step over that breakpoint to get it going
7049 again, do that first. */
7050
7051 /* However, if we see an event for the stepping thread, then we
7052 know all other threads have been moved past their breakpoints
7053 already. Let the caller check whether the step is finished,
7054 etc., before deciding to move it past a breakpoint. */
7055 if (ecs->event_thread->control.step_range_end != 0)
7056 return 0;
7057
7058 /* Check if the current thread is blocked on an incomplete
7059 step-over, interrupted by a random signal. */
7060 if (ecs->event_thread->control.trap_expected
7061 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7062 {
7063 if (debug_infrun)
7064 {
7065 fprintf_unfiltered (gdb_stdlog,
7066 "infrun: need to finish step-over of [%s]\n",
7067 target_pid_to_str (ecs->event_thread->ptid));
7068 }
7069 keep_going (ecs);
7070 return 1;
7071 }
7072
7073 /* Check if the current thread is blocked by a single-step
7074 breakpoint of another thread. */
7075 if (ecs->hit_singlestep_breakpoint)
7076 {
7077 if (debug_infrun)
7078 {
7079 fprintf_unfiltered (gdb_stdlog,
7080 "infrun: need to step [%s] over single-step "
7081 "breakpoint\n",
7082 target_pid_to_str (ecs->ptid));
7083 }
7084 keep_going (ecs);
7085 return 1;
7086 }
7087
7088 /* If this thread needs yet another step-over (e.g., stepping
7089 through a delay slot), do it first before moving on to
7090 another thread. */
7091 if (thread_still_needs_step_over (ecs->event_thread))
7092 {
7093 if (debug_infrun)
7094 {
7095 fprintf_unfiltered (gdb_stdlog,
7096 "infrun: thread [%s] still needs step-over\n",
7097 target_pid_to_str (ecs->event_thread->ptid));
7098 }
7099 keep_going (ecs);
7100 return 1;
7101 }
7102
7103 /* If scheduler locking applies even if not stepping, there's no
7104 need to walk over threads. Above we've checked whether the
7105 current thread is stepping. If some other thread not the
7106 event thread is stepping, then it must be that scheduler
7107 locking is not in effect. */
7108 if (schedlock_applies (ecs->event_thread))
7109 return 0;
7110
7111 /* Otherwise, we no longer expect a trap in the current thread.
7112 Clear the trap_expected flag before switching back -- this is
7113 what keep_going does as well, if we call it. */
7114 ecs->event_thread->control.trap_expected = 0;
7115
7116 /* Likewise, clear the signal if it should not be passed. */
7117 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7118 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7119
7120 /* Do all pending step-overs before actually proceeding with
7121 step/next/etc. */
7122 if (start_step_over ())
7123 {
7124 prepare_to_wait (ecs);
7125 return 1;
7126 }
7127
7128 /* Look for the stepping/nexting thread. */
7129 stepping_thread = NULL;
7130
7131 ALL_NON_EXITED_THREADS (tp)
7132 {
7133 /* Ignore threads of processes the caller is not
7134 resuming. */
7135 if (!sched_multi
7136 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7137 continue;
7138
7139 /* When stepping over a breakpoint, we lock all threads
7140 except the one that needs to move past the breakpoint.
7141 If a non-event thread has this set, the "incomplete
7142 step-over" check above should have caught it earlier. */
7143 if (tp->control.trap_expected)
7144 {
7145 internal_error (__FILE__, __LINE__,
7146 "[%s] has inconsistent state: "
7147 "trap_expected=%d\n",
7148 target_pid_to_str (tp->ptid),
7149 tp->control.trap_expected);
7150 }
7151
7152 /* Did we find the stepping thread? */
7153 if (tp->control.step_range_end)
7154 {
7155 /* Yep. There should only one though. */
7156 gdb_assert (stepping_thread == NULL);
7157
7158 /* The event thread is handled at the top, before we
7159 enter this loop. */
7160 gdb_assert (tp != ecs->event_thread);
7161
7162 /* If some thread other than the event thread is
7163 stepping, then scheduler locking can't be in effect,
7164 otherwise we wouldn't have resumed the current event
7165 thread in the first place. */
7166 gdb_assert (!schedlock_applies (tp));
7167
7168 stepping_thread = tp;
7169 }
7170 }
7171
7172 if (stepping_thread != NULL)
7173 {
7174 if (debug_infrun)
7175 fprintf_unfiltered (gdb_stdlog,
7176 "infrun: switching back to stepped thread\n");
7177
7178 if (keep_going_stepped_thread (stepping_thread))
7179 {
7180 prepare_to_wait (ecs);
7181 return 1;
7182 }
7183 }
7184 }
7185
7186 return 0;
7187 }
7188
7189 /* Set a previously stepped thread back to stepping. Returns true on
7190 success, false if the resume is not possible (e.g., the thread
7191 vanished). */
7192
7193 static int
7194 keep_going_stepped_thread (struct thread_info *tp)
7195 {
7196 struct frame_info *frame;
7197 struct execution_control_state ecss;
7198 struct execution_control_state *ecs = &ecss;
7199
7200 /* If the stepping thread exited, then don't try to switch back and
7201 resume it, which could fail in several different ways depending
7202 on the target. Instead, just keep going.
7203
7204 We can find a stepping dead thread in the thread list in two
7205 cases:
7206
7207 - The target supports thread exit events, and when the target
7208 tries to delete the thread from the thread list, inferior_ptid
7209 pointed at the exiting thread. In such case, calling
7210 delete_thread does not really remove the thread from the list;
7211 instead, the thread is left listed, with 'exited' state.
7212
7213 - The target's debug interface does not support thread exit
7214 events, and so we have no idea whatsoever if the previously
7215 stepping thread is still alive. For that reason, we need to
7216 synchronously query the target now. */
7217
7218 if (is_exited (tp->ptid)
7219 || !target_thread_alive (tp->ptid))
7220 {
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: not resuming previously "
7224 "stepped thread, it has vanished\n");
7225
7226 delete_thread (tp->ptid);
7227 return 0;
7228 }
7229
7230 if (debug_infrun)
7231 fprintf_unfiltered (gdb_stdlog,
7232 "infrun: resuming previously stepped thread\n");
7233
7234 reset_ecs (ecs, tp);
7235 switch_to_thread (tp->ptid);
7236
7237 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7238 frame = get_current_frame ();
7239
7240 /* If the PC of the thread we were trying to single-step has
7241 changed, then that thread has trapped or been signaled, but the
7242 event has not been reported to GDB yet. Re-poll the target
7243 looking for this particular thread's event (i.e. temporarily
7244 enable schedlock) by:
7245
7246 - setting a break at the current PC
7247 - resuming that particular thread, only (by setting trap
7248 expected)
7249
7250 This prevents us continuously moving the single-step breakpoint
7251 forward, one instruction at a time, overstepping. */
7252
7253 if (stop_pc != tp->prev_pc)
7254 {
7255 ptid_t resume_ptid;
7256
7257 if (debug_infrun)
7258 fprintf_unfiltered (gdb_stdlog,
7259 "infrun: expected thread advanced also (%s -> %s)\n",
7260 paddress (target_gdbarch (), tp->prev_pc),
7261 paddress (target_gdbarch (), stop_pc));
7262
7263 /* Clear the info of the previous step-over, as it's no longer
7264 valid (if the thread was trying to step over a breakpoint, it
7265 has already succeeded). It's what keep_going would do too,
7266 if we called it. Do this before trying to insert the sss
7267 breakpoint, otherwise if we were previously trying to step
7268 over this exact address in another thread, the breakpoint is
7269 skipped. */
7270 clear_step_over_info ();
7271 tp->control.trap_expected = 0;
7272
7273 insert_single_step_breakpoint (get_frame_arch (frame),
7274 get_frame_address_space (frame),
7275 stop_pc);
7276
7277 tp->resumed = 1;
7278 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7279 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7280 }
7281 else
7282 {
7283 if (debug_infrun)
7284 fprintf_unfiltered (gdb_stdlog,
7285 "infrun: expected thread still hasn't advanced\n");
7286
7287 keep_going_pass_signal (ecs);
7288 }
7289 return 1;
7290 }
7291
7292 /* Is thread TP in the middle of (software or hardware)
7293 single-stepping? (Note the result of this function must never be
7294 passed directly as target_resume's STEP parameter.) */
7295
7296 static int
7297 currently_stepping (struct thread_info *tp)
7298 {
7299 return ((tp->control.step_range_end
7300 && tp->control.step_resume_breakpoint == NULL)
7301 || tp->control.trap_expected
7302 || tp->stepped_breakpoint
7303 || bpstat_should_step ());
7304 }
7305
7306 /* Inferior has stepped into a subroutine call with source code that
7307 we should not step over. Do step to the first line of code in
7308 it. */
7309
7310 static void
7311 handle_step_into_function (struct gdbarch *gdbarch,
7312 struct execution_control_state *ecs)
7313 {
7314 struct compunit_symtab *cust;
7315 struct symtab_and_line stop_func_sal, sr_sal;
7316
7317 fill_in_stop_func (gdbarch, ecs);
7318
7319 cust = find_pc_compunit_symtab (stop_pc);
7320 if (cust != NULL && compunit_language (cust) != language_asm)
7321 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7322 ecs->stop_func_start);
7323
7324 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7325 /* Use the step_resume_break to step until the end of the prologue,
7326 even if that involves jumps (as it seems to on the vax under
7327 4.2). */
7328 /* If the prologue ends in the middle of a source line, continue to
7329 the end of that source line (if it is still within the function).
7330 Otherwise, just go to end of prologue. */
7331 if (stop_func_sal.end
7332 && stop_func_sal.pc != ecs->stop_func_start
7333 && stop_func_sal.end < ecs->stop_func_end)
7334 ecs->stop_func_start = stop_func_sal.end;
7335
7336 /* Architectures which require breakpoint adjustment might not be able
7337 to place a breakpoint at the computed address. If so, the test
7338 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7339 ecs->stop_func_start to an address at which a breakpoint may be
7340 legitimately placed.
7341
7342 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7343 made, GDB will enter an infinite loop when stepping through
7344 optimized code consisting of VLIW instructions which contain
7345 subinstructions corresponding to different source lines. On
7346 FR-V, it's not permitted to place a breakpoint on any but the
7347 first subinstruction of a VLIW instruction. When a breakpoint is
7348 set, GDB will adjust the breakpoint address to the beginning of
7349 the VLIW instruction. Thus, we need to make the corresponding
7350 adjustment here when computing the stop address. */
7351
7352 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7353 {
7354 ecs->stop_func_start
7355 = gdbarch_adjust_breakpoint_address (gdbarch,
7356 ecs->stop_func_start);
7357 }
7358
7359 if (ecs->stop_func_start == stop_pc)
7360 {
7361 /* We are already there: stop now. */
7362 end_stepping_range (ecs);
7363 return;
7364 }
7365 else
7366 {
7367 /* Put the step-breakpoint there and go until there. */
7368 init_sal (&sr_sal); /* initialize to zeroes */
7369 sr_sal.pc = ecs->stop_func_start;
7370 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7371 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7372
7373 /* Do not specify what the fp should be when we stop since on
7374 some machines the prologue is where the new fp value is
7375 established. */
7376 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7377
7378 /* And make sure stepping stops right away then. */
7379 ecs->event_thread->control.step_range_end
7380 = ecs->event_thread->control.step_range_start;
7381 }
7382 keep_going (ecs);
7383 }
7384
7385 /* Inferior has stepped backward into a subroutine call with source
7386 code that we should not step over. Do step to the beginning of the
7387 last line of code in it. */
7388
7389 static void
7390 handle_step_into_function_backward (struct gdbarch *gdbarch,
7391 struct execution_control_state *ecs)
7392 {
7393 struct compunit_symtab *cust;
7394 struct symtab_and_line stop_func_sal;
7395
7396 fill_in_stop_func (gdbarch, ecs);
7397
7398 cust = find_pc_compunit_symtab (stop_pc);
7399 if (cust != NULL && compunit_language (cust) != language_asm)
7400 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7401 ecs->stop_func_start);
7402
7403 stop_func_sal = find_pc_line (stop_pc, 0);
7404
7405 /* OK, we're just going to keep stepping here. */
7406 if (stop_func_sal.pc == stop_pc)
7407 {
7408 /* We're there already. Just stop stepping now. */
7409 end_stepping_range (ecs);
7410 }
7411 else
7412 {
7413 /* Else just reset the step range and keep going.
7414 No step-resume breakpoint, they don't work for
7415 epilogues, which can have multiple entry paths. */
7416 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7417 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7418 keep_going (ecs);
7419 }
7420 return;
7421 }
7422
7423 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7424 This is used to both functions and to skip over code. */
7425
7426 static void
7427 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7428 struct symtab_and_line sr_sal,
7429 struct frame_id sr_id,
7430 enum bptype sr_type)
7431 {
7432 /* There should never be more than one step-resume or longjmp-resume
7433 breakpoint per thread, so we should never be setting a new
7434 step_resume_breakpoint when one is already active. */
7435 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7436 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7437
7438 if (debug_infrun)
7439 fprintf_unfiltered (gdb_stdlog,
7440 "infrun: inserting step-resume breakpoint at %s\n",
7441 paddress (gdbarch, sr_sal.pc));
7442
7443 inferior_thread ()->control.step_resume_breakpoint
7444 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7445 }
7446
7447 void
7448 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7449 struct symtab_and_line sr_sal,
7450 struct frame_id sr_id)
7451 {
7452 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7453 sr_sal, sr_id,
7454 bp_step_resume);
7455 }
7456
7457 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7458 This is used to skip a potential signal handler.
7459
7460 This is called with the interrupted function's frame. The signal
7461 handler, when it returns, will resume the interrupted function at
7462 RETURN_FRAME.pc. */
7463
7464 static void
7465 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7466 {
7467 struct symtab_and_line sr_sal;
7468 struct gdbarch *gdbarch;
7469
7470 gdb_assert (return_frame != NULL);
7471 init_sal (&sr_sal); /* initialize to zeros */
7472
7473 gdbarch = get_frame_arch (return_frame);
7474 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7475 sr_sal.section = find_pc_overlay (sr_sal.pc);
7476 sr_sal.pspace = get_frame_program_space (return_frame);
7477
7478 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7479 get_stack_frame_id (return_frame),
7480 bp_hp_step_resume);
7481 }
7482
7483 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7484 is used to skip a function after stepping into it (for "next" or if
7485 the called function has no debugging information).
7486
7487 The current function has almost always been reached by single
7488 stepping a call or return instruction. NEXT_FRAME belongs to the
7489 current function, and the breakpoint will be set at the caller's
7490 resume address.
7491
7492 This is a separate function rather than reusing
7493 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7494 get_prev_frame, which may stop prematurely (see the implementation
7495 of frame_unwind_caller_id for an example). */
7496
7497 static void
7498 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7499 {
7500 struct symtab_and_line sr_sal;
7501 struct gdbarch *gdbarch;
7502
7503 /* We shouldn't have gotten here if we don't know where the call site
7504 is. */
7505 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7506
7507 init_sal (&sr_sal); /* initialize to zeros */
7508
7509 gdbarch = frame_unwind_caller_arch (next_frame);
7510 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7511 frame_unwind_caller_pc (next_frame));
7512 sr_sal.section = find_pc_overlay (sr_sal.pc);
7513 sr_sal.pspace = frame_unwind_program_space (next_frame);
7514
7515 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7516 frame_unwind_caller_id (next_frame));
7517 }
7518
7519 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7520 new breakpoint at the target of a jmp_buf. The handling of
7521 longjmp-resume uses the same mechanisms used for handling
7522 "step-resume" breakpoints. */
7523
7524 static void
7525 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7526 {
7527 /* There should never be more than one longjmp-resume breakpoint per
7528 thread, so we should never be setting a new
7529 longjmp_resume_breakpoint when one is already active. */
7530 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7531
7532 if (debug_infrun)
7533 fprintf_unfiltered (gdb_stdlog,
7534 "infrun: inserting longjmp-resume breakpoint at %s\n",
7535 paddress (gdbarch, pc));
7536
7537 inferior_thread ()->control.exception_resume_breakpoint =
7538 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7539 }
7540
7541 /* Insert an exception resume breakpoint. TP is the thread throwing
7542 the exception. The block B is the block of the unwinder debug hook
7543 function. FRAME is the frame corresponding to the call to this
7544 function. SYM is the symbol of the function argument holding the
7545 target PC of the exception. */
7546
7547 static void
7548 insert_exception_resume_breakpoint (struct thread_info *tp,
7549 const struct block *b,
7550 struct frame_info *frame,
7551 struct symbol *sym)
7552 {
7553 TRY
7554 {
7555 struct block_symbol vsym;
7556 struct value *value;
7557 CORE_ADDR handler;
7558 struct breakpoint *bp;
7559
7560 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7561 value = read_var_value (vsym.symbol, vsym.block, frame);
7562 /* If the value was optimized out, revert to the old behavior. */
7563 if (! value_optimized_out (value))
7564 {
7565 handler = value_as_address (value);
7566
7567 if (debug_infrun)
7568 fprintf_unfiltered (gdb_stdlog,
7569 "infrun: exception resume at %lx\n",
7570 (unsigned long) handler);
7571
7572 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7573 handler, bp_exception_resume);
7574
7575 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7576 frame = NULL;
7577
7578 bp->thread = tp->global_num;
7579 inferior_thread ()->control.exception_resume_breakpoint = bp;
7580 }
7581 }
7582 CATCH (e, RETURN_MASK_ERROR)
7583 {
7584 /* We want to ignore errors here. */
7585 }
7586 END_CATCH
7587 }
7588
7589 /* A helper for check_exception_resume that sets an
7590 exception-breakpoint based on a SystemTap probe. */
7591
7592 static void
7593 insert_exception_resume_from_probe (struct thread_info *tp,
7594 const struct bound_probe *probe,
7595 struct frame_info *frame)
7596 {
7597 struct value *arg_value;
7598 CORE_ADDR handler;
7599 struct breakpoint *bp;
7600
7601 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7602 if (!arg_value)
7603 return;
7604
7605 handler = value_as_address (arg_value);
7606
7607 if (debug_infrun)
7608 fprintf_unfiltered (gdb_stdlog,
7609 "infrun: exception resume at %s\n",
7610 paddress (get_objfile_arch (probe->objfile),
7611 handler));
7612
7613 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7614 handler, bp_exception_resume);
7615 bp->thread = tp->global_num;
7616 inferior_thread ()->control.exception_resume_breakpoint = bp;
7617 }
7618
7619 /* This is called when an exception has been intercepted. Check to
7620 see whether the exception's destination is of interest, and if so,
7621 set an exception resume breakpoint there. */
7622
7623 static void
7624 check_exception_resume (struct execution_control_state *ecs,
7625 struct frame_info *frame)
7626 {
7627 struct bound_probe probe;
7628 struct symbol *func;
7629
7630 /* First see if this exception unwinding breakpoint was set via a
7631 SystemTap probe point. If so, the probe has two arguments: the
7632 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7633 set a breakpoint there. */
7634 probe = find_probe_by_pc (get_frame_pc (frame));
7635 if (probe.probe)
7636 {
7637 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7638 return;
7639 }
7640
7641 func = get_frame_function (frame);
7642 if (!func)
7643 return;
7644
7645 TRY
7646 {
7647 const struct block *b;
7648 struct block_iterator iter;
7649 struct symbol *sym;
7650 int argno = 0;
7651
7652 /* The exception breakpoint is a thread-specific breakpoint on
7653 the unwinder's debug hook, declared as:
7654
7655 void _Unwind_DebugHook (void *cfa, void *handler);
7656
7657 The CFA argument indicates the frame to which control is
7658 about to be transferred. HANDLER is the destination PC.
7659
7660 We ignore the CFA and set a temporary breakpoint at HANDLER.
7661 This is not extremely efficient but it avoids issues in gdb
7662 with computing the DWARF CFA, and it also works even in weird
7663 cases such as throwing an exception from inside a signal
7664 handler. */
7665
7666 b = SYMBOL_BLOCK_VALUE (func);
7667 ALL_BLOCK_SYMBOLS (b, iter, sym)
7668 {
7669 if (!SYMBOL_IS_ARGUMENT (sym))
7670 continue;
7671
7672 if (argno == 0)
7673 ++argno;
7674 else
7675 {
7676 insert_exception_resume_breakpoint (ecs->event_thread,
7677 b, frame, sym);
7678 break;
7679 }
7680 }
7681 }
7682 CATCH (e, RETURN_MASK_ERROR)
7683 {
7684 }
7685 END_CATCH
7686 }
7687
7688 static void
7689 stop_waiting (struct execution_control_state *ecs)
7690 {
7691 if (debug_infrun)
7692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7693
7694 clear_step_over_info ();
7695
7696 /* Let callers know we don't want to wait for the inferior anymore. */
7697 ecs->wait_some_more = 0;
7698
7699 /* If all-stop, but the target is always in non-stop mode, stop all
7700 threads now that we're presenting the stop to the user. */
7701 if (!non_stop && target_is_non_stop_p ())
7702 stop_all_threads ();
7703 }
7704
7705 /* Like keep_going, but passes the signal to the inferior, even if the
7706 signal is set to nopass. */
7707
7708 static void
7709 keep_going_pass_signal (struct execution_control_state *ecs)
7710 {
7711 /* Make sure normal_stop is called if we get a QUIT handled before
7712 reaching resume. */
7713 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7714
7715 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7716 gdb_assert (!ecs->event_thread->resumed);
7717
7718 /* Save the pc before execution, to compare with pc after stop. */
7719 ecs->event_thread->prev_pc
7720 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7721
7722 if (ecs->event_thread->control.trap_expected)
7723 {
7724 struct thread_info *tp = ecs->event_thread;
7725
7726 if (debug_infrun)
7727 fprintf_unfiltered (gdb_stdlog,
7728 "infrun: %s has trap_expected set, "
7729 "resuming to collect trap\n",
7730 target_pid_to_str (tp->ptid));
7731
7732 /* We haven't yet gotten our trap, and either: intercepted a
7733 non-signal event (e.g., a fork); or took a signal which we
7734 are supposed to pass through to the inferior. Simply
7735 continue. */
7736 discard_cleanups (old_cleanups);
7737 resume (ecs->event_thread->suspend.stop_signal);
7738 }
7739 else if (step_over_info_valid_p ())
7740 {
7741 /* Another thread is stepping over a breakpoint in-line. If
7742 this thread needs a step-over too, queue the request. In
7743 either case, this resume must be deferred for later. */
7744 struct thread_info *tp = ecs->event_thread;
7745
7746 if (ecs->hit_singlestep_breakpoint
7747 || thread_still_needs_step_over (tp))
7748 {
7749 if (debug_infrun)
7750 fprintf_unfiltered (gdb_stdlog,
7751 "infrun: step-over already in progress: "
7752 "step-over for %s deferred\n",
7753 target_pid_to_str (tp->ptid));
7754 thread_step_over_chain_enqueue (tp);
7755 }
7756 else
7757 {
7758 if (debug_infrun)
7759 fprintf_unfiltered (gdb_stdlog,
7760 "infrun: step-over in progress: "
7761 "resume of %s deferred\n",
7762 target_pid_to_str (tp->ptid));
7763 }
7764
7765 discard_cleanups (old_cleanups);
7766 }
7767 else
7768 {
7769 struct regcache *regcache = get_current_regcache ();
7770 int remove_bp;
7771 int remove_wps;
7772 step_over_what step_what;
7773
7774 /* Either the trap was not expected, but we are continuing
7775 anyway (if we got a signal, the user asked it be passed to
7776 the child)
7777 -- or --
7778 We got our expected trap, but decided we should resume from
7779 it.
7780
7781 We're going to run this baby now!
7782
7783 Note that insert_breakpoints won't try to re-insert
7784 already inserted breakpoints. Therefore, we don't
7785 care if breakpoints were already inserted, or not. */
7786
7787 /* If we need to step over a breakpoint, and we're not using
7788 displaced stepping to do so, insert all breakpoints
7789 (watchpoints, etc.) but the one we're stepping over, step one
7790 instruction, and then re-insert the breakpoint when that step
7791 is finished. */
7792
7793 step_what = thread_still_needs_step_over (ecs->event_thread);
7794
7795 remove_bp = (ecs->hit_singlestep_breakpoint
7796 || (step_what & STEP_OVER_BREAKPOINT));
7797 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7798
7799 /* We can't use displaced stepping if we need to step past a
7800 watchpoint. The instruction copied to the scratch pad would
7801 still trigger the watchpoint. */
7802 if (remove_bp
7803 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7804 {
7805 set_step_over_info (get_regcache_aspace (regcache),
7806 regcache_read_pc (regcache), remove_wps,
7807 ecs->event_thread->global_num);
7808 }
7809 else if (remove_wps)
7810 set_step_over_info (NULL, 0, remove_wps, -1);
7811
7812 /* If we now need to do an in-line step-over, we need to stop
7813 all other threads. Note this must be done before
7814 insert_breakpoints below, because that removes the breakpoint
7815 we're about to step over, otherwise other threads could miss
7816 it. */
7817 if (step_over_info_valid_p () && target_is_non_stop_p ())
7818 stop_all_threads ();
7819
7820 /* Stop stepping if inserting breakpoints fails. */
7821 TRY
7822 {
7823 insert_breakpoints ();
7824 }
7825 CATCH (e, RETURN_MASK_ERROR)
7826 {
7827 exception_print (gdb_stderr, e);
7828 stop_waiting (ecs);
7829 discard_cleanups (old_cleanups);
7830 return;
7831 }
7832 END_CATCH
7833
7834 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7835
7836 discard_cleanups (old_cleanups);
7837 resume (ecs->event_thread->suspend.stop_signal);
7838 }
7839
7840 prepare_to_wait (ecs);
7841 }
7842
7843 /* Called when we should continue running the inferior, because the
7844 current event doesn't cause a user visible stop. This does the
7845 resuming part; waiting for the next event is done elsewhere. */
7846
7847 static void
7848 keep_going (struct execution_control_state *ecs)
7849 {
7850 if (ecs->event_thread->control.trap_expected
7851 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7852 ecs->event_thread->control.trap_expected = 0;
7853
7854 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7856 keep_going_pass_signal (ecs);
7857 }
7858
7859 /* This function normally comes after a resume, before
7860 handle_inferior_event exits. It takes care of any last bits of
7861 housekeeping, and sets the all-important wait_some_more flag. */
7862
7863 static void
7864 prepare_to_wait (struct execution_control_state *ecs)
7865 {
7866 if (debug_infrun)
7867 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7868
7869 ecs->wait_some_more = 1;
7870
7871 if (!target_is_async_p ())
7872 mark_infrun_async_event_handler ();
7873 }
7874
7875 /* We are done with the step range of a step/next/si/ni command.
7876 Called once for each n of a "step n" operation. */
7877
7878 static void
7879 end_stepping_range (struct execution_control_state *ecs)
7880 {
7881 ecs->event_thread->control.stop_step = 1;
7882 stop_waiting (ecs);
7883 }
7884
7885 /* Several print_*_reason functions to print why the inferior has stopped.
7886 We always print something when the inferior exits, or receives a signal.
7887 The rest of the cases are dealt with later on in normal_stop and
7888 print_it_typical. Ideally there should be a call to one of these
7889 print_*_reason functions functions from handle_inferior_event each time
7890 stop_waiting is called.
7891
7892 Note that we don't call these directly, instead we delegate that to
7893 the interpreters, through observers. Interpreters then call these
7894 with whatever uiout is right. */
7895
7896 void
7897 print_end_stepping_range_reason (struct ui_out *uiout)
7898 {
7899 /* For CLI-like interpreters, print nothing. */
7900
7901 if (ui_out_is_mi_like_p (uiout))
7902 {
7903 ui_out_field_string (uiout, "reason",
7904 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7905 }
7906 }
7907
7908 void
7909 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7910 {
7911 annotate_signalled ();
7912 if (ui_out_is_mi_like_p (uiout))
7913 ui_out_field_string
7914 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7915 ui_out_text (uiout, "\nProgram terminated with signal ");
7916 annotate_signal_name ();
7917 ui_out_field_string (uiout, "signal-name",
7918 gdb_signal_to_name (siggnal));
7919 annotate_signal_name_end ();
7920 ui_out_text (uiout, ", ");
7921 annotate_signal_string ();
7922 ui_out_field_string (uiout, "signal-meaning",
7923 gdb_signal_to_string (siggnal));
7924 annotate_signal_string_end ();
7925 ui_out_text (uiout, ".\n");
7926 ui_out_text (uiout, "The program no longer exists.\n");
7927 }
7928
7929 void
7930 print_exited_reason (struct ui_out *uiout, int exitstatus)
7931 {
7932 struct inferior *inf = current_inferior ();
7933 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7934
7935 annotate_exited (exitstatus);
7936 if (exitstatus)
7937 {
7938 if (ui_out_is_mi_like_p (uiout))
7939 ui_out_field_string (uiout, "reason",
7940 async_reason_lookup (EXEC_ASYNC_EXITED));
7941 ui_out_text (uiout, "[Inferior ");
7942 ui_out_text (uiout, plongest (inf->num));
7943 ui_out_text (uiout, " (");
7944 ui_out_text (uiout, pidstr);
7945 ui_out_text (uiout, ") exited with code ");
7946 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7947 ui_out_text (uiout, "]\n");
7948 }
7949 else
7950 {
7951 if (ui_out_is_mi_like_p (uiout))
7952 ui_out_field_string
7953 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7954 ui_out_text (uiout, "[Inferior ");
7955 ui_out_text (uiout, plongest (inf->num));
7956 ui_out_text (uiout, " (");
7957 ui_out_text (uiout, pidstr);
7958 ui_out_text (uiout, ") exited normally]\n");
7959 }
7960 }
7961
7962 /* Some targets/architectures can do extra processing/display of
7963 segmentation faults. E.g., Intel MPX boundary faults.
7964 Call the architecture dependent function to handle the fault. */
7965
7966 static void
7967 handle_segmentation_fault (struct ui_out *uiout)
7968 {
7969 struct regcache *regcache = get_current_regcache ();
7970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7971
7972 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7973 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7974 }
7975
7976 void
7977 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7978 {
7979 struct thread_info *thr = inferior_thread ();
7980
7981 annotate_signal ();
7982
7983 if (ui_out_is_mi_like_p (uiout))
7984 ;
7985 else if (show_thread_that_caused_stop ())
7986 {
7987 const char *name;
7988
7989 ui_out_text (uiout, "\nThread ");
7990 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7991
7992 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7993 if (name != NULL)
7994 {
7995 ui_out_text (uiout, " \"");
7996 ui_out_field_fmt (uiout, "name", "%s", name);
7997 ui_out_text (uiout, "\"");
7998 }
7999 }
8000 else
8001 ui_out_text (uiout, "\nProgram");
8002
8003 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8004 ui_out_text (uiout, " stopped");
8005 else
8006 {
8007 ui_out_text (uiout, " received signal ");
8008 annotate_signal_name ();
8009 if (ui_out_is_mi_like_p (uiout))
8010 ui_out_field_string
8011 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8012 ui_out_field_string (uiout, "signal-name",
8013 gdb_signal_to_name (siggnal));
8014 annotate_signal_name_end ();
8015 ui_out_text (uiout, ", ");
8016 annotate_signal_string ();
8017 ui_out_field_string (uiout, "signal-meaning",
8018 gdb_signal_to_string (siggnal));
8019
8020 if (siggnal == GDB_SIGNAL_SEGV)
8021 handle_segmentation_fault (uiout);
8022
8023 annotate_signal_string_end ();
8024 }
8025 ui_out_text (uiout, ".\n");
8026 }
8027
8028 void
8029 print_no_history_reason (struct ui_out *uiout)
8030 {
8031 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8032 }
8033
8034 /* Print current location without a level number, if we have changed
8035 functions or hit a breakpoint. Print source line if we have one.
8036 bpstat_print contains the logic deciding in detail what to print,
8037 based on the event(s) that just occurred. */
8038
8039 static void
8040 print_stop_location (struct target_waitstatus *ws)
8041 {
8042 int bpstat_ret;
8043 enum print_what source_flag;
8044 int do_frame_printing = 1;
8045 struct thread_info *tp = inferior_thread ();
8046
8047 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8048 switch (bpstat_ret)
8049 {
8050 case PRINT_UNKNOWN:
8051 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8052 should) carry around the function and does (or should) use
8053 that when doing a frame comparison. */
8054 if (tp->control.stop_step
8055 && frame_id_eq (tp->control.step_frame_id,
8056 get_frame_id (get_current_frame ()))
8057 && tp->control.step_start_function == find_pc_function (stop_pc))
8058 {
8059 /* Finished step, just print source line. */
8060 source_flag = SRC_LINE;
8061 }
8062 else
8063 {
8064 /* Print location and source line. */
8065 source_flag = SRC_AND_LOC;
8066 }
8067 break;
8068 case PRINT_SRC_AND_LOC:
8069 /* Print location and source line. */
8070 source_flag = SRC_AND_LOC;
8071 break;
8072 case PRINT_SRC_ONLY:
8073 source_flag = SRC_LINE;
8074 break;
8075 case PRINT_NOTHING:
8076 /* Something bogus. */
8077 source_flag = SRC_LINE;
8078 do_frame_printing = 0;
8079 break;
8080 default:
8081 internal_error (__FILE__, __LINE__, _("Unknown value."));
8082 }
8083
8084 /* The behavior of this routine with respect to the source
8085 flag is:
8086 SRC_LINE: Print only source line
8087 LOCATION: Print only location
8088 SRC_AND_LOC: Print location and source line. */
8089 if (do_frame_printing)
8090 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8091 }
8092
8093 /* Cleanup that restores a previous current uiout. */
8094
8095 static void
8096 restore_current_uiout_cleanup (void *arg)
8097 {
8098 struct ui_out *saved_uiout = (struct ui_out *) arg;
8099
8100 current_uiout = saved_uiout;
8101 }
8102
8103 /* See infrun.h. */
8104
8105 void
8106 print_stop_event (struct ui_out *uiout)
8107 {
8108 struct cleanup *old_chain;
8109 struct target_waitstatus last;
8110 ptid_t last_ptid;
8111 struct thread_info *tp;
8112
8113 get_last_target_status (&last_ptid, &last);
8114
8115 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8116 current_uiout = uiout;
8117
8118 print_stop_location (&last);
8119
8120 /* Display the auto-display expressions. */
8121 do_displays ();
8122
8123 do_cleanups (old_chain);
8124
8125 tp = inferior_thread ();
8126 if (tp->thread_fsm != NULL
8127 && thread_fsm_finished_p (tp->thread_fsm))
8128 {
8129 struct return_value_info *rv;
8130
8131 rv = thread_fsm_return_value (tp->thread_fsm);
8132 if (rv != NULL)
8133 print_return_value (uiout, rv);
8134 }
8135 }
8136
8137 /* See infrun.h. */
8138
8139 void
8140 maybe_remove_breakpoints (void)
8141 {
8142 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8143 {
8144 if (remove_breakpoints ())
8145 {
8146 target_terminal_ours_for_output ();
8147 printf_filtered (_("Cannot remove breakpoints because "
8148 "program is no longer writable.\nFurther "
8149 "execution is probably impossible.\n"));
8150 }
8151 }
8152 }
8153
8154 /* The execution context that just caused a normal stop. */
8155
8156 struct stop_context
8157 {
8158 /* The stop ID. */
8159 ULONGEST stop_id;
8160
8161 /* The event PTID. */
8162
8163 ptid_t ptid;
8164
8165 /* If stopp for a thread event, this is the thread that caused the
8166 stop. */
8167 struct thread_info *thread;
8168
8169 /* The inferior that caused the stop. */
8170 int inf_num;
8171 };
8172
8173 /* Returns a new stop context. If stopped for a thread event, this
8174 takes a strong reference to the thread. */
8175
8176 static struct stop_context *
8177 save_stop_context (void)
8178 {
8179 struct stop_context *sc = XNEW (struct stop_context);
8180
8181 sc->stop_id = get_stop_id ();
8182 sc->ptid = inferior_ptid;
8183 sc->inf_num = current_inferior ()->num;
8184
8185 if (!ptid_equal (inferior_ptid, null_ptid))
8186 {
8187 /* Take a strong reference so that the thread can't be deleted
8188 yet. */
8189 sc->thread = inferior_thread ();
8190 sc->thread->refcount++;
8191 }
8192 else
8193 sc->thread = NULL;
8194
8195 return sc;
8196 }
8197
8198 /* Release a stop context previously created with save_stop_context.
8199 Releases the strong reference to the thread as well. */
8200
8201 static void
8202 release_stop_context_cleanup (void *arg)
8203 {
8204 struct stop_context *sc = (struct stop_context *) arg;
8205
8206 if (sc->thread != NULL)
8207 sc->thread->refcount--;
8208 xfree (sc);
8209 }
8210
8211 /* Return true if the current context no longer matches the saved stop
8212 context. */
8213
8214 static int
8215 stop_context_changed (struct stop_context *prev)
8216 {
8217 if (!ptid_equal (prev->ptid, inferior_ptid))
8218 return 1;
8219 if (prev->inf_num != current_inferior ()->num)
8220 return 1;
8221 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8222 return 1;
8223 if (get_stop_id () != prev->stop_id)
8224 return 1;
8225 return 0;
8226 }
8227
8228 /* See infrun.h. */
8229
8230 int
8231 normal_stop (void)
8232 {
8233 struct target_waitstatus last;
8234 ptid_t last_ptid;
8235 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8236 ptid_t pid_ptid;
8237 struct switch_thru_all_uis state;
8238
8239 get_last_target_status (&last_ptid, &last);
8240
8241 new_stop_id ();
8242
8243 /* If an exception is thrown from this point on, make sure to
8244 propagate GDB's knowledge of the executing state to the
8245 frontend/user running state. A QUIT is an easy exception to see
8246 here, so do this before any filtered output. */
8247 if (!non_stop)
8248 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8249 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8250 || last.kind == TARGET_WAITKIND_EXITED)
8251 {
8252 /* On some targets, we may still have live threads in the
8253 inferior when we get a process exit event. E.g., for
8254 "checkpoint", when the current checkpoint/fork exits,
8255 linux-fork.c automatically switches to another fork from
8256 within target_mourn_inferior. */
8257 if (!ptid_equal (inferior_ptid, null_ptid))
8258 {
8259 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8260 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8261 }
8262 }
8263 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8264 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8265
8266 /* As we're presenting a stop, and potentially removing breakpoints,
8267 update the thread list so we can tell whether there are threads
8268 running on the target. With target remote, for example, we can
8269 only learn about new threads when we explicitly update the thread
8270 list. Do this before notifying the interpreters about signal
8271 stops, end of stepping ranges, etc., so that the "new thread"
8272 output is emitted before e.g., "Program received signal FOO",
8273 instead of after. */
8274 update_thread_list ();
8275
8276 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8277 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8278
8279 /* As with the notification of thread events, we want to delay
8280 notifying the user that we've switched thread context until
8281 the inferior actually stops.
8282
8283 There's no point in saying anything if the inferior has exited.
8284 Note that SIGNALLED here means "exited with a signal", not
8285 "received a signal".
8286
8287 Also skip saying anything in non-stop mode. In that mode, as we
8288 don't want GDB to switch threads behind the user's back, to avoid
8289 races where the user is typing a command to apply to thread x,
8290 but GDB switches to thread y before the user finishes entering
8291 the command, fetch_inferior_event installs a cleanup to restore
8292 the current thread back to the thread the user had selected right
8293 after this event is handled, so we're not really switching, only
8294 informing of a stop. */
8295 if (!non_stop
8296 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8297 && target_has_execution
8298 && last.kind != TARGET_WAITKIND_SIGNALLED
8299 && last.kind != TARGET_WAITKIND_EXITED
8300 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8301 {
8302 SWITCH_THRU_ALL_UIS (state)
8303 {
8304 target_terminal_ours_for_output ();
8305 printf_filtered (_("[Switching to %s]\n"),
8306 target_pid_to_str (inferior_ptid));
8307 annotate_thread_changed ();
8308 }
8309 previous_inferior_ptid = inferior_ptid;
8310 }
8311
8312 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8313 {
8314 SWITCH_THRU_ALL_UIS (state)
8315 if (current_ui->prompt_state == PROMPT_BLOCKED)
8316 {
8317 target_terminal_ours_for_output ();
8318 printf_filtered (_("No unwaited-for children left.\n"));
8319 }
8320 }
8321
8322 /* Note: this depends on the update_thread_list call above. */
8323 maybe_remove_breakpoints ();
8324
8325 /* If an auto-display called a function and that got a signal,
8326 delete that auto-display to avoid an infinite recursion. */
8327
8328 if (stopped_by_random_signal)
8329 disable_current_display ();
8330
8331 SWITCH_THRU_ALL_UIS (state)
8332 {
8333 async_enable_stdin ();
8334 }
8335
8336 /* Let the user/frontend see the threads as stopped. */
8337 do_cleanups (old_chain);
8338
8339 /* Select innermost stack frame - i.e., current frame is frame 0,
8340 and current location is based on that. Handle the case where the
8341 dummy call is returning after being stopped. E.g. the dummy call
8342 previously hit a breakpoint. (If the dummy call returns
8343 normally, we won't reach here.) Do this before the stop hook is
8344 run, so that it doesn't get to see the temporary dummy frame,
8345 which is not where we'll present the stop. */
8346 if (has_stack_frames ())
8347 {
8348 if (stop_stack_dummy == STOP_STACK_DUMMY)
8349 {
8350 /* Pop the empty frame that contains the stack dummy. This
8351 also restores inferior state prior to the call (struct
8352 infcall_suspend_state). */
8353 struct frame_info *frame = get_current_frame ();
8354
8355 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8356 frame_pop (frame);
8357 /* frame_pop calls reinit_frame_cache as the last thing it
8358 does which means there's now no selected frame. */
8359 }
8360
8361 select_frame (get_current_frame ());
8362
8363 /* Set the current source location. */
8364 set_current_sal_from_frame (get_current_frame ());
8365 }
8366
8367 /* Look up the hook_stop and run it (CLI internally handles problem
8368 of stop_command's pre-hook not existing). */
8369 if (stop_command != NULL)
8370 {
8371 struct stop_context *saved_context = save_stop_context ();
8372 struct cleanup *old_chain
8373 = make_cleanup (release_stop_context_cleanup, saved_context);
8374
8375 catch_errors (hook_stop_stub, stop_command,
8376 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8377
8378 /* If the stop hook resumes the target, then there's no point in
8379 trying to notify about the previous stop; its context is
8380 gone. Likewise if the command switches thread or inferior --
8381 the observers would print a stop for the wrong
8382 thread/inferior. */
8383 if (stop_context_changed (saved_context))
8384 {
8385 do_cleanups (old_chain);
8386 return 1;
8387 }
8388 do_cleanups (old_chain);
8389 }
8390
8391 /* Notify observers about the stop. This is where the interpreters
8392 print the stop event. */
8393 if (!ptid_equal (inferior_ptid, null_ptid))
8394 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8395 stop_print_frame);
8396 else
8397 observer_notify_normal_stop (NULL, stop_print_frame);
8398
8399 annotate_stopped ();
8400
8401 if (target_has_execution)
8402 {
8403 if (last.kind != TARGET_WAITKIND_SIGNALLED
8404 && last.kind != TARGET_WAITKIND_EXITED)
8405 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8406 Delete any breakpoint that is to be deleted at the next stop. */
8407 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8408 }
8409
8410 /* Try to get rid of automatically added inferiors that are no
8411 longer needed. Keeping those around slows down things linearly.
8412 Note that this never removes the current inferior. */
8413 prune_inferiors ();
8414
8415 return 0;
8416 }
8417
8418 static int
8419 hook_stop_stub (void *cmd)
8420 {
8421 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8422 return (0);
8423 }
8424 \f
8425 int
8426 signal_stop_state (int signo)
8427 {
8428 return signal_stop[signo];
8429 }
8430
8431 int
8432 signal_print_state (int signo)
8433 {
8434 return signal_print[signo];
8435 }
8436
8437 int
8438 signal_pass_state (int signo)
8439 {
8440 return signal_program[signo];
8441 }
8442
8443 static void
8444 signal_cache_update (int signo)
8445 {
8446 if (signo == -1)
8447 {
8448 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8449 signal_cache_update (signo);
8450
8451 return;
8452 }
8453
8454 signal_pass[signo] = (signal_stop[signo] == 0
8455 && signal_print[signo] == 0
8456 && signal_program[signo] == 1
8457 && signal_catch[signo] == 0);
8458 }
8459
8460 int
8461 signal_stop_update (int signo, int state)
8462 {
8463 int ret = signal_stop[signo];
8464
8465 signal_stop[signo] = state;
8466 signal_cache_update (signo);
8467 return ret;
8468 }
8469
8470 int
8471 signal_print_update (int signo, int state)
8472 {
8473 int ret = signal_print[signo];
8474
8475 signal_print[signo] = state;
8476 signal_cache_update (signo);
8477 return ret;
8478 }
8479
8480 int
8481 signal_pass_update (int signo, int state)
8482 {
8483 int ret = signal_program[signo];
8484
8485 signal_program[signo] = state;
8486 signal_cache_update (signo);
8487 return ret;
8488 }
8489
8490 /* Update the global 'signal_catch' from INFO and notify the
8491 target. */
8492
8493 void
8494 signal_catch_update (const unsigned int *info)
8495 {
8496 int i;
8497
8498 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8499 signal_catch[i] = info[i] > 0;
8500 signal_cache_update (-1);
8501 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8502 }
8503
8504 static void
8505 sig_print_header (void)
8506 {
8507 printf_filtered (_("Signal Stop\tPrint\tPass "
8508 "to program\tDescription\n"));
8509 }
8510
8511 static void
8512 sig_print_info (enum gdb_signal oursig)
8513 {
8514 const char *name = gdb_signal_to_name (oursig);
8515 int name_padding = 13 - strlen (name);
8516
8517 if (name_padding <= 0)
8518 name_padding = 0;
8519
8520 printf_filtered ("%s", name);
8521 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8522 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8523 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8524 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8525 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8526 }
8527
8528 /* Specify how various signals in the inferior should be handled. */
8529
8530 static void
8531 handle_command (char *args, int from_tty)
8532 {
8533 char **argv;
8534 int digits, wordlen;
8535 int sigfirst, signum, siglast;
8536 enum gdb_signal oursig;
8537 int allsigs;
8538 int nsigs;
8539 unsigned char *sigs;
8540 struct cleanup *old_chain;
8541
8542 if (args == NULL)
8543 {
8544 error_no_arg (_("signal to handle"));
8545 }
8546
8547 /* Allocate and zero an array of flags for which signals to handle. */
8548
8549 nsigs = (int) GDB_SIGNAL_LAST;
8550 sigs = (unsigned char *) alloca (nsigs);
8551 memset (sigs, 0, nsigs);
8552
8553 /* Break the command line up into args. */
8554
8555 argv = gdb_buildargv (args);
8556 old_chain = make_cleanup_freeargv (argv);
8557
8558 /* Walk through the args, looking for signal oursigs, signal names, and
8559 actions. Signal numbers and signal names may be interspersed with
8560 actions, with the actions being performed for all signals cumulatively
8561 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8562
8563 while (*argv != NULL)
8564 {
8565 wordlen = strlen (*argv);
8566 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8567 {;
8568 }
8569 allsigs = 0;
8570 sigfirst = siglast = -1;
8571
8572 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8573 {
8574 /* Apply action to all signals except those used by the
8575 debugger. Silently skip those. */
8576 allsigs = 1;
8577 sigfirst = 0;
8578 siglast = nsigs - 1;
8579 }
8580 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8581 {
8582 SET_SIGS (nsigs, sigs, signal_stop);
8583 SET_SIGS (nsigs, sigs, signal_print);
8584 }
8585 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8586 {
8587 UNSET_SIGS (nsigs, sigs, signal_program);
8588 }
8589 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8590 {
8591 SET_SIGS (nsigs, sigs, signal_print);
8592 }
8593 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8594 {
8595 SET_SIGS (nsigs, sigs, signal_program);
8596 }
8597 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8598 {
8599 UNSET_SIGS (nsigs, sigs, signal_stop);
8600 }
8601 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8602 {
8603 SET_SIGS (nsigs, sigs, signal_program);
8604 }
8605 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8606 {
8607 UNSET_SIGS (nsigs, sigs, signal_print);
8608 UNSET_SIGS (nsigs, sigs, signal_stop);
8609 }
8610 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8611 {
8612 UNSET_SIGS (nsigs, sigs, signal_program);
8613 }
8614 else if (digits > 0)
8615 {
8616 /* It is numeric. The numeric signal refers to our own
8617 internal signal numbering from target.h, not to host/target
8618 signal number. This is a feature; users really should be
8619 using symbolic names anyway, and the common ones like
8620 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8621
8622 sigfirst = siglast = (int)
8623 gdb_signal_from_command (atoi (*argv));
8624 if ((*argv)[digits] == '-')
8625 {
8626 siglast = (int)
8627 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8628 }
8629 if (sigfirst > siglast)
8630 {
8631 /* Bet he didn't figure we'd think of this case... */
8632 signum = sigfirst;
8633 sigfirst = siglast;
8634 siglast = signum;
8635 }
8636 }
8637 else
8638 {
8639 oursig = gdb_signal_from_name (*argv);
8640 if (oursig != GDB_SIGNAL_UNKNOWN)
8641 {
8642 sigfirst = siglast = (int) oursig;
8643 }
8644 else
8645 {
8646 /* Not a number and not a recognized flag word => complain. */
8647 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8648 }
8649 }
8650
8651 /* If any signal numbers or symbol names were found, set flags for
8652 which signals to apply actions to. */
8653
8654 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8655 {
8656 switch ((enum gdb_signal) signum)
8657 {
8658 case GDB_SIGNAL_TRAP:
8659 case GDB_SIGNAL_INT:
8660 if (!allsigs && !sigs[signum])
8661 {
8662 if (query (_("%s is used by the debugger.\n\
8663 Are you sure you want to change it? "),
8664 gdb_signal_to_name ((enum gdb_signal) signum)))
8665 {
8666 sigs[signum] = 1;
8667 }
8668 else
8669 {
8670 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8671 gdb_flush (gdb_stdout);
8672 }
8673 }
8674 break;
8675 case GDB_SIGNAL_0:
8676 case GDB_SIGNAL_DEFAULT:
8677 case GDB_SIGNAL_UNKNOWN:
8678 /* Make sure that "all" doesn't print these. */
8679 break;
8680 default:
8681 sigs[signum] = 1;
8682 break;
8683 }
8684 }
8685
8686 argv++;
8687 }
8688
8689 for (signum = 0; signum < nsigs; signum++)
8690 if (sigs[signum])
8691 {
8692 signal_cache_update (-1);
8693 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8694 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8695
8696 if (from_tty)
8697 {
8698 /* Show the results. */
8699 sig_print_header ();
8700 for (; signum < nsigs; signum++)
8701 if (sigs[signum])
8702 sig_print_info ((enum gdb_signal) signum);
8703 }
8704
8705 break;
8706 }
8707
8708 do_cleanups (old_chain);
8709 }
8710
8711 /* Complete the "handle" command. */
8712
8713 static VEC (char_ptr) *
8714 handle_completer (struct cmd_list_element *ignore,
8715 const char *text, const char *word)
8716 {
8717 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8718 static const char * const keywords[] =
8719 {
8720 "all",
8721 "stop",
8722 "ignore",
8723 "print",
8724 "pass",
8725 "nostop",
8726 "noignore",
8727 "noprint",
8728 "nopass",
8729 NULL,
8730 };
8731
8732 vec_signals = signal_completer (ignore, text, word);
8733 vec_keywords = complete_on_enum (keywords, word, word);
8734
8735 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8736 VEC_free (char_ptr, vec_signals);
8737 VEC_free (char_ptr, vec_keywords);
8738 return return_val;
8739 }
8740
8741 enum gdb_signal
8742 gdb_signal_from_command (int num)
8743 {
8744 if (num >= 1 && num <= 15)
8745 return (enum gdb_signal) num;
8746 error (_("Only signals 1-15 are valid as numeric signals.\n\
8747 Use \"info signals\" for a list of symbolic signals."));
8748 }
8749
8750 /* Print current contents of the tables set by the handle command.
8751 It is possible we should just be printing signals actually used
8752 by the current target (but for things to work right when switching
8753 targets, all signals should be in the signal tables). */
8754
8755 static void
8756 signals_info (char *signum_exp, int from_tty)
8757 {
8758 enum gdb_signal oursig;
8759
8760 sig_print_header ();
8761
8762 if (signum_exp)
8763 {
8764 /* First see if this is a symbol name. */
8765 oursig = gdb_signal_from_name (signum_exp);
8766 if (oursig == GDB_SIGNAL_UNKNOWN)
8767 {
8768 /* No, try numeric. */
8769 oursig =
8770 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8771 }
8772 sig_print_info (oursig);
8773 return;
8774 }
8775
8776 printf_filtered ("\n");
8777 /* These ugly casts brought to you by the native VAX compiler. */
8778 for (oursig = GDB_SIGNAL_FIRST;
8779 (int) oursig < (int) GDB_SIGNAL_LAST;
8780 oursig = (enum gdb_signal) ((int) oursig + 1))
8781 {
8782 QUIT;
8783
8784 if (oursig != GDB_SIGNAL_UNKNOWN
8785 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8786 sig_print_info (oursig);
8787 }
8788
8789 printf_filtered (_("\nUse the \"handle\" command "
8790 "to change these tables.\n"));
8791 }
8792
8793 /* The $_siginfo convenience variable is a bit special. We don't know
8794 for sure the type of the value until we actually have a chance to
8795 fetch the data. The type can change depending on gdbarch, so it is
8796 also dependent on which thread you have selected.
8797
8798 1. making $_siginfo be an internalvar that creates a new value on
8799 access.
8800
8801 2. making the value of $_siginfo be an lval_computed value. */
8802
8803 /* This function implements the lval_computed support for reading a
8804 $_siginfo value. */
8805
8806 static void
8807 siginfo_value_read (struct value *v)
8808 {
8809 LONGEST transferred;
8810
8811 /* If we can access registers, so can we access $_siginfo. Likewise
8812 vice versa. */
8813 validate_registers_access ();
8814
8815 transferred =
8816 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8817 NULL,
8818 value_contents_all_raw (v),
8819 value_offset (v),
8820 TYPE_LENGTH (value_type (v)));
8821
8822 if (transferred != TYPE_LENGTH (value_type (v)))
8823 error (_("Unable to read siginfo"));
8824 }
8825
8826 /* This function implements the lval_computed support for writing a
8827 $_siginfo value. */
8828
8829 static void
8830 siginfo_value_write (struct value *v, struct value *fromval)
8831 {
8832 LONGEST transferred;
8833
8834 /* If we can access registers, so can we access $_siginfo. Likewise
8835 vice versa. */
8836 validate_registers_access ();
8837
8838 transferred = target_write (&current_target,
8839 TARGET_OBJECT_SIGNAL_INFO,
8840 NULL,
8841 value_contents_all_raw (fromval),
8842 value_offset (v),
8843 TYPE_LENGTH (value_type (fromval)));
8844
8845 if (transferred != TYPE_LENGTH (value_type (fromval)))
8846 error (_("Unable to write siginfo"));
8847 }
8848
8849 static const struct lval_funcs siginfo_value_funcs =
8850 {
8851 siginfo_value_read,
8852 siginfo_value_write
8853 };
8854
8855 /* Return a new value with the correct type for the siginfo object of
8856 the current thread using architecture GDBARCH. Return a void value
8857 if there's no object available. */
8858
8859 static struct value *
8860 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8861 void *ignore)
8862 {
8863 if (target_has_stack
8864 && !ptid_equal (inferior_ptid, null_ptid)
8865 && gdbarch_get_siginfo_type_p (gdbarch))
8866 {
8867 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8868
8869 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8870 }
8871
8872 return allocate_value (builtin_type (gdbarch)->builtin_void);
8873 }
8874
8875 \f
8876 /* infcall_suspend_state contains state about the program itself like its
8877 registers and any signal it received when it last stopped.
8878 This state must be restored regardless of how the inferior function call
8879 ends (either successfully, or after it hits a breakpoint or signal)
8880 if the program is to properly continue where it left off. */
8881
8882 struct infcall_suspend_state
8883 {
8884 struct thread_suspend_state thread_suspend;
8885
8886 /* Other fields: */
8887 CORE_ADDR stop_pc;
8888 struct regcache *registers;
8889
8890 /* Format of SIGINFO_DATA or NULL if it is not present. */
8891 struct gdbarch *siginfo_gdbarch;
8892
8893 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8894 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8895 content would be invalid. */
8896 gdb_byte *siginfo_data;
8897 };
8898
8899 struct infcall_suspend_state *
8900 save_infcall_suspend_state (void)
8901 {
8902 struct infcall_suspend_state *inf_state;
8903 struct thread_info *tp = inferior_thread ();
8904 struct regcache *regcache = get_current_regcache ();
8905 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8906 gdb_byte *siginfo_data = NULL;
8907
8908 if (gdbarch_get_siginfo_type_p (gdbarch))
8909 {
8910 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8911 size_t len = TYPE_LENGTH (type);
8912 struct cleanup *back_to;
8913
8914 siginfo_data = (gdb_byte *) xmalloc (len);
8915 back_to = make_cleanup (xfree, siginfo_data);
8916
8917 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8918 siginfo_data, 0, len) == len)
8919 discard_cleanups (back_to);
8920 else
8921 {
8922 /* Errors ignored. */
8923 do_cleanups (back_to);
8924 siginfo_data = NULL;
8925 }
8926 }
8927
8928 inf_state = XCNEW (struct infcall_suspend_state);
8929
8930 if (siginfo_data)
8931 {
8932 inf_state->siginfo_gdbarch = gdbarch;
8933 inf_state->siginfo_data = siginfo_data;
8934 }
8935
8936 inf_state->thread_suspend = tp->suspend;
8937
8938 /* run_inferior_call will not use the signal due to its `proceed' call with
8939 GDB_SIGNAL_0 anyway. */
8940 tp->suspend.stop_signal = GDB_SIGNAL_0;
8941
8942 inf_state->stop_pc = stop_pc;
8943
8944 inf_state->registers = regcache_dup (regcache);
8945
8946 return inf_state;
8947 }
8948
8949 /* Restore inferior session state to INF_STATE. */
8950
8951 void
8952 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8953 {
8954 struct thread_info *tp = inferior_thread ();
8955 struct regcache *regcache = get_current_regcache ();
8956 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8957
8958 tp->suspend = inf_state->thread_suspend;
8959
8960 stop_pc = inf_state->stop_pc;
8961
8962 if (inf_state->siginfo_gdbarch == gdbarch)
8963 {
8964 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8965
8966 /* Errors ignored. */
8967 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8968 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8969 }
8970
8971 /* The inferior can be gone if the user types "print exit(0)"
8972 (and perhaps other times). */
8973 if (target_has_execution)
8974 /* NB: The register write goes through to the target. */
8975 regcache_cpy (regcache, inf_state->registers);
8976
8977 discard_infcall_suspend_state (inf_state);
8978 }
8979
8980 static void
8981 do_restore_infcall_suspend_state_cleanup (void *state)
8982 {
8983 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8984 }
8985
8986 struct cleanup *
8987 make_cleanup_restore_infcall_suspend_state
8988 (struct infcall_suspend_state *inf_state)
8989 {
8990 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8991 }
8992
8993 void
8994 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8995 {
8996 regcache_xfree (inf_state->registers);
8997 xfree (inf_state->siginfo_data);
8998 xfree (inf_state);
8999 }
9000
9001 struct regcache *
9002 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9003 {
9004 return inf_state->registers;
9005 }
9006
9007 /* infcall_control_state contains state regarding gdb's control of the
9008 inferior itself like stepping control. It also contains session state like
9009 the user's currently selected frame. */
9010
9011 struct infcall_control_state
9012 {
9013 struct thread_control_state thread_control;
9014 struct inferior_control_state inferior_control;
9015
9016 /* Other fields: */
9017 enum stop_stack_kind stop_stack_dummy;
9018 int stopped_by_random_signal;
9019
9020 /* ID if the selected frame when the inferior function call was made. */
9021 struct frame_id selected_frame_id;
9022 };
9023
9024 /* Save all of the information associated with the inferior<==>gdb
9025 connection. */
9026
9027 struct infcall_control_state *
9028 save_infcall_control_state (void)
9029 {
9030 struct infcall_control_state *inf_status =
9031 XNEW (struct infcall_control_state);
9032 struct thread_info *tp = inferior_thread ();
9033 struct inferior *inf = current_inferior ();
9034
9035 inf_status->thread_control = tp->control;
9036 inf_status->inferior_control = inf->control;
9037
9038 tp->control.step_resume_breakpoint = NULL;
9039 tp->control.exception_resume_breakpoint = NULL;
9040
9041 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9042 chain. If caller's caller is walking the chain, they'll be happier if we
9043 hand them back the original chain when restore_infcall_control_state is
9044 called. */
9045 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9046
9047 /* Other fields: */
9048 inf_status->stop_stack_dummy = stop_stack_dummy;
9049 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9050
9051 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9052
9053 return inf_status;
9054 }
9055
9056 static int
9057 restore_selected_frame (void *args)
9058 {
9059 struct frame_id *fid = (struct frame_id *) args;
9060 struct frame_info *frame;
9061
9062 frame = frame_find_by_id (*fid);
9063
9064 /* If inf_status->selected_frame_id is NULL, there was no previously
9065 selected frame. */
9066 if (frame == NULL)
9067 {
9068 warning (_("Unable to restore previously selected frame."));
9069 return 0;
9070 }
9071
9072 select_frame (frame);
9073
9074 return (1);
9075 }
9076
9077 /* Restore inferior session state to INF_STATUS. */
9078
9079 void
9080 restore_infcall_control_state (struct infcall_control_state *inf_status)
9081 {
9082 struct thread_info *tp = inferior_thread ();
9083 struct inferior *inf = current_inferior ();
9084
9085 if (tp->control.step_resume_breakpoint)
9086 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9087
9088 if (tp->control.exception_resume_breakpoint)
9089 tp->control.exception_resume_breakpoint->disposition
9090 = disp_del_at_next_stop;
9091
9092 /* Handle the bpstat_copy of the chain. */
9093 bpstat_clear (&tp->control.stop_bpstat);
9094
9095 tp->control = inf_status->thread_control;
9096 inf->control = inf_status->inferior_control;
9097
9098 /* Other fields: */
9099 stop_stack_dummy = inf_status->stop_stack_dummy;
9100 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9101
9102 if (target_has_stack)
9103 {
9104 /* The point of catch_errors is that if the stack is clobbered,
9105 walking the stack might encounter a garbage pointer and
9106 error() trying to dereference it. */
9107 if (catch_errors
9108 (restore_selected_frame, &inf_status->selected_frame_id,
9109 "Unable to restore previously selected frame:\n",
9110 RETURN_MASK_ERROR) == 0)
9111 /* Error in restoring the selected frame. Select the innermost
9112 frame. */
9113 select_frame (get_current_frame ());
9114 }
9115
9116 xfree (inf_status);
9117 }
9118
9119 static void
9120 do_restore_infcall_control_state_cleanup (void *sts)
9121 {
9122 restore_infcall_control_state ((struct infcall_control_state *) sts);
9123 }
9124
9125 struct cleanup *
9126 make_cleanup_restore_infcall_control_state
9127 (struct infcall_control_state *inf_status)
9128 {
9129 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9130 }
9131
9132 void
9133 discard_infcall_control_state (struct infcall_control_state *inf_status)
9134 {
9135 if (inf_status->thread_control.step_resume_breakpoint)
9136 inf_status->thread_control.step_resume_breakpoint->disposition
9137 = disp_del_at_next_stop;
9138
9139 if (inf_status->thread_control.exception_resume_breakpoint)
9140 inf_status->thread_control.exception_resume_breakpoint->disposition
9141 = disp_del_at_next_stop;
9142
9143 /* See save_infcall_control_state for info on stop_bpstat. */
9144 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9145
9146 xfree (inf_status);
9147 }
9148 \f
9149 /* restore_inferior_ptid() will be used by the cleanup machinery
9150 to restore the inferior_ptid value saved in a call to
9151 save_inferior_ptid(). */
9152
9153 static void
9154 restore_inferior_ptid (void *arg)
9155 {
9156 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9157
9158 inferior_ptid = *saved_ptid_ptr;
9159 xfree (arg);
9160 }
9161
9162 /* Save the value of inferior_ptid so that it may be restored by a
9163 later call to do_cleanups(). Returns the struct cleanup pointer
9164 needed for later doing the cleanup. */
9165
9166 struct cleanup *
9167 save_inferior_ptid (void)
9168 {
9169 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9170
9171 *saved_ptid_ptr = inferior_ptid;
9172 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9173 }
9174
9175 /* See infrun.h. */
9176
9177 void
9178 clear_exit_convenience_vars (void)
9179 {
9180 clear_internalvar (lookup_internalvar ("_exitsignal"));
9181 clear_internalvar (lookup_internalvar ("_exitcode"));
9182 }
9183 \f
9184
9185 /* User interface for reverse debugging:
9186 Set exec-direction / show exec-direction commands
9187 (returns error unless target implements to_set_exec_direction method). */
9188
9189 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9190 static const char exec_forward[] = "forward";
9191 static const char exec_reverse[] = "reverse";
9192 static const char *exec_direction = exec_forward;
9193 static const char *const exec_direction_names[] = {
9194 exec_forward,
9195 exec_reverse,
9196 NULL
9197 };
9198
9199 static void
9200 set_exec_direction_func (char *args, int from_tty,
9201 struct cmd_list_element *cmd)
9202 {
9203 if (target_can_execute_reverse)
9204 {
9205 if (!strcmp (exec_direction, exec_forward))
9206 execution_direction = EXEC_FORWARD;
9207 else if (!strcmp (exec_direction, exec_reverse))
9208 execution_direction = EXEC_REVERSE;
9209 }
9210 else
9211 {
9212 exec_direction = exec_forward;
9213 error (_("Target does not support this operation."));
9214 }
9215 }
9216
9217 static void
9218 show_exec_direction_func (struct ui_file *out, int from_tty,
9219 struct cmd_list_element *cmd, const char *value)
9220 {
9221 switch (execution_direction) {
9222 case EXEC_FORWARD:
9223 fprintf_filtered (out, _("Forward.\n"));
9224 break;
9225 case EXEC_REVERSE:
9226 fprintf_filtered (out, _("Reverse.\n"));
9227 break;
9228 default:
9229 internal_error (__FILE__, __LINE__,
9230 _("bogus execution_direction value: %d"),
9231 (int) execution_direction);
9232 }
9233 }
9234
9235 static void
9236 show_schedule_multiple (struct ui_file *file, int from_tty,
9237 struct cmd_list_element *c, const char *value)
9238 {
9239 fprintf_filtered (file, _("Resuming the execution of threads "
9240 "of all processes is %s.\n"), value);
9241 }
9242
9243 /* Implementation of `siginfo' variable. */
9244
9245 static const struct internalvar_funcs siginfo_funcs =
9246 {
9247 siginfo_make_value,
9248 NULL,
9249 NULL
9250 };
9251
9252 /* Callback for infrun's target events source. This is marked when a
9253 thread has a pending status to process. */
9254
9255 static void
9256 infrun_async_inferior_event_handler (gdb_client_data data)
9257 {
9258 inferior_event_handler (INF_REG_EVENT, NULL);
9259 }
9260
9261 void
9262 _initialize_infrun (void)
9263 {
9264 int i;
9265 int numsigs;
9266 struct cmd_list_element *c;
9267
9268 /* Register extra event sources in the event loop. */
9269 infrun_async_inferior_event_token
9270 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9271
9272 add_info ("signals", signals_info, _("\
9273 What debugger does when program gets various signals.\n\
9274 Specify a signal as argument to print info on that signal only."));
9275 add_info_alias ("handle", "signals", 0);
9276
9277 c = add_com ("handle", class_run, handle_command, _("\
9278 Specify how to handle signals.\n\
9279 Usage: handle SIGNAL [ACTIONS]\n\
9280 Args are signals and actions to apply to those signals.\n\
9281 If no actions are specified, the current settings for the specified signals\n\
9282 will be displayed instead.\n\
9283 \n\
9284 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9285 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9286 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9287 The special arg \"all\" is recognized to mean all signals except those\n\
9288 used by the debugger, typically SIGTRAP and SIGINT.\n\
9289 \n\
9290 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9291 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9292 Stop means reenter debugger if this signal happens (implies print).\n\
9293 Print means print a message if this signal happens.\n\
9294 Pass means let program see this signal; otherwise program doesn't know.\n\
9295 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9296 Pass and Stop may be combined.\n\
9297 \n\
9298 Multiple signals may be specified. Signal numbers and signal names\n\
9299 may be interspersed with actions, with the actions being performed for\n\
9300 all signals cumulatively specified."));
9301 set_cmd_completer (c, handle_completer);
9302
9303 if (!dbx_commands)
9304 stop_command = add_cmd ("stop", class_obscure,
9305 not_just_help_class_command, _("\
9306 There is no `stop' command, but you can set a hook on `stop'.\n\
9307 This allows you to set a list of commands to be run each time execution\n\
9308 of the program stops."), &cmdlist);
9309
9310 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9311 Set inferior debugging."), _("\
9312 Show inferior debugging."), _("\
9313 When non-zero, inferior specific debugging is enabled."),
9314 NULL,
9315 show_debug_infrun,
9316 &setdebuglist, &showdebuglist);
9317
9318 add_setshow_boolean_cmd ("displaced", class_maintenance,
9319 &debug_displaced, _("\
9320 Set displaced stepping debugging."), _("\
9321 Show displaced stepping debugging."), _("\
9322 When non-zero, displaced stepping specific debugging is enabled."),
9323 NULL,
9324 show_debug_displaced,
9325 &setdebuglist, &showdebuglist);
9326
9327 add_setshow_boolean_cmd ("non-stop", no_class,
9328 &non_stop_1, _("\
9329 Set whether gdb controls the inferior in non-stop mode."), _("\
9330 Show whether gdb controls the inferior in non-stop mode."), _("\
9331 When debugging a multi-threaded program and this setting is\n\
9332 off (the default, also called all-stop mode), when one thread stops\n\
9333 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9334 all other threads in the program while you interact with the thread of\n\
9335 interest. When you continue or step a thread, you can allow the other\n\
9336 threads to run, or have them remain stopped, but while you inspect any\n\
9337 thread's state, all threads stop.\n\
9338 \n\
9339 In non-stop mode, when one thread stops, other threads can continue\n\
9340 to run freely. You'll be able to step each thread independently,\n\
9341 leave it stopped or free to run as needed."),
9342 set_non_stop,
9343 show_non_stop,
9344 &setlist,
9345 &showlist);
9346
9347 numsigs = (int) GDB_SIGNAL_LAST;
9348 signal_stop = XNEWVEC (unsigned char, numsigs);
9349 signal_print = XNEWVEC (unsigned char, numsigs);
9350 signal_program = XNEWVEC (unsigned char, numsigs);
9351 signal_catch = XNEWVEC (unsigned char, numsigs);
9352 signal_pass = XNEWVEC (unsigned char, numsigs);
9353 for (i = 0; i < numsigs; i++)
9354 {
9355 signal_stop[i] = 1;
9356 signal_print[i] = 1;
9357 signal_program[i] = 1;
9358 signal_catch[i] = 0;
9359 }
9360
9361 /* Signals caused by debugger's own actions should not be given to
9362 the program afterwards.
9363
9364 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9365 explicitly specifies that it should be delivered to the target
9366 program. Typically, that would occur when a user is debugging a
9367 target monitor on a simulator: the target monitor sets a
9368 breakpoint; the simulator encounters this breakpoint and halts
9369 the simulation handing control to GDB; GDB, noting that the stop
9370 address doesn't map to any known breakpoint, returns control back
9371 to the simulator; the simulator then delivers the hardware
9372 equivalent of a GDB_SIGNAL_TRAP to the program being
9373 debugged. */
9374 signal_program[GDB_SIGNAL_TRAP] = 0;
9375 signal_program[GDB_SIGNAL_INT] = 0;
9376
9377 /* Signals that are not errors should not normally enter the debugger. */
9378 signal_stop[GDB_SIGNAL_ALRM] = 0;
9379 signal_print[GDB_SIGNAL_ALRM] = 0;
9380 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9381 signal_print[GDB_SIGNAL_VTALRM] = 0;
9382 signal_stop[GDB_SIGNAL_PROF] = 0;
9383 signal_print[GDB_SIGNAL_PROF] = 0;
9384 signal_stop[GDB_SIGNAL_CHLD] = 0;
9385 signal_print[GDB_SIGNAL_CHLD] = 0;
9386 signal_stop[GDB_SIGNAL_IO] = 0;
9387 signal_print[GDB_SIGNAL_IO] = 0;
9388 signal_stop[GDB_SIGNAL_POLL] = 0;
9389 signal_print[GDB_SIGNAL_POLL] = 0;
9390 signal_stop[GDB_SIGNAL_URG] = 0;
9391 signal_print[GDB_SIGNAL_URG] = 0;
9392 signal_stop[GDB_SIGNAL_WINCH] = 0;
9393 signal_print[GDB_SIGNAL_WINCH] = 0;
9394 signal_stop[GDB_SIGNAL_PRIO] = 0;
9395 signal_print[GDB_SIGNAL_PRIO] = 0;
9396
9397 /* These signals are used internally by user-level thread
9398 implementations. (See signal(5) on Solaris.) Like the above
9399 signals, a healthy program receives and handles them as part of
9400 its normal operation. */
9401 signal_stop[GDB_SIGNAL_LWP] = 0;
9402 signal_print[GDB_SIGNAL_LWP] = 0;
9403 signal_stop[GDB_SIGNAL_WAITING] = 0;
9404 signal_print[GDB_SIGNAL_WAITING] = 0;
9405 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9406 signal_print[GDB_SIGNAL_CANCEL] = 0;
9407
9408 /* Update cached state. */
9409 signal_cache_update (-1);
9410
9411 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9412 &stop_on_solib_events, _("\
9413 Set stopping for shared library events."), _("\
9414 Show stopping for shared library events."), _("\
9415 If nonzero, gdb will give control to the user when the dynamic linker\n\
9416 notifies gdb of shared library events. The most common event of interest\n\
9417 to the user would be loading/unloading of a new library."),
9418 set_stop_on_solib_events,
9419 show_stop_on_solib_events,
9420 &setlist, &showlist);
9421
9422 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9423 follow_fork_mode_kind_names,
9424 &follow_fork_mode_string, _("\
9425 Set debugger response to a program call of fork or vfork."), _("\
9426 Show debugger response to a program call of fork or vfork."), _("\
9427 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9428 parent - the original process is debugged after a fork\n\
9429 child - the new process is debugged after a fork\n\
9430 The unfollowed process will continue to run.\n\
9431 By default, the debugger will follow the parent process."),
9432 NULL,
9433 show_follow_fork_mode_string,
9434 &setlist, &showlist);
9435
9436 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9437 follow_exec_mode_names,
9438 &follow_exec_mode_string, _("\
9439 Set debugger response to a program call of exec."), _("\
9440 Show debugger response to a program call of exec."), _("\
9441 An exec call replaces the program image of a process.\n\
9442 \n\
9443 follow-exec-mode can be:\n\
9444 \n\
9445 new - the debugger creates a new inferior and rebinds the process\n\
9446 to this new inferior. The program the process was running before\n\
9447 the exec call can be restarted afterwards by restarting the original\n\
9448 inferior.\n\
9449 \n\
9450 same - the debugger keeps the process bound to the same inferior.\n\
9451 The new executable image replaces the previous executable loaded in\n\
9452 the inferior. Restarting the inferior after the exec call restarts\n\
9453 the executable the process was running after the exec call.\n\
9454 \n\
9455 By default, the debugger will use the same inferior."),
9456 NULL,
9457 show_follow_exec_mode_string,
9458 &setlist, &showlist);
9459
9460 add_setshow_enum_cmd ("scheduler-locking", class_run,
9461 scheduler_enums, &scheduler_mode, _("\
9462 Set mode for locking scheduler during execution."), _("\
9463 Show mode for locking scheduler during execution."), _("\
9464 off == no locking (threads may preempt at any time)\n\
9465 on == full locking (no thread except the current thread may run)\n\
9466 This applies to both normal execution and replay mode.\n\
9467 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9468 In this mode, other threads may run during other commands.\n\
9469 This applies to both normal execution and replay mode.\n\
9470 replay == scheduler locked in replay mode and unlocked during normal execution."),
9471 set_schedlock_func, /* traps on target vector */
9472 show_scheduler_mode,
9473 &setlist, &showlist);
9474
9475 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9476 Set mode for resuming threads of all processes."), _("\
9477 Show mode for resuming threads of all processes."), _("\
9478 When on, execution commands (such as 'continue' or 'next') resume all\n\
9479 threads of all processes. When off (which is the default), execution\n\
9480 commands only resume the threads of the current process. The set of\n\
9481 threads that are resumed is further refined by the scheduler-locking\n\
9482 mode (see help set scheduler-locking)."),
9483 NULL,
9484 show_schedule_multiple,
9485 &setlist, &showlist);
9486
9487 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9488 Set mode of the step operation."), _("\
9489 Show mode of the step operation."), _("\
9490 When set, doing a step over a function without debug line information\n\
9491 will stop at the first instruction of that function. Otherwise, the\n\
9492 function is skipped and the step command stops at a different source line."),
9493 NULL,
9494 show_step_stop_if_no_debug,
9495 &setlist, &showlist);
9496
9497 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9498 &can_use_displaced_stepping, _("\
9499 Set debugger's willingness to use displaced stepping."), _("\
9500 Show debugger's willingness to use displaced stepping."), _("\
9501 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9502 supported by the target architecture. If off, gdb will not use displaced\n\
9503 stepping to step over breakpoints, even if such is supported by the target\n\
9504 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9505 if the target architecture supports it and non-stop mode is active, but will not\n\
9506 use it in all-stop mode (see help set non-stop)."),
9507 NULL,
9508 show_can_use_displaced_stepping,
9509 &setlist, &showlist);
9510
9511 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9512 &exec_direction, _("Set direction of execution.\n\
9513 Options are 'forward' or 'reverse'."),
9514 _("Show direction of execution (forward/reverse)."),
9515 _("Tells gdb whether to execute forward or backward."),
9516 set_exec_direction_func, show_exec_direction_func,
9517 &setlist, &showlist);
9518
9519 /* Set/show detach-on-fork: user-settable mode. */
9520
9521 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9522 Set whether gdb will detach the child of a fork."), _("\
9523 Show whether gdb will detach the child of a fork."), _("\
9524 Tells gdb whether to detach the child of a fork."),
9525 NULL, NULL, &setlist, &showlist);
9526
9527 /* Set/show disable address space randomization mode. */
9528
9529 add_setshow_boolean_cmd ("disable-randomization", class_support,
9530 &disable_randomization, _("\
9531 Set disabling of debuggee's virtual address space randomization."), _("\
9532 Show disabling of debuggee's virtual address space randomization."), _("\
9533 When this mode is on (which is the default), randomization of the virtual\n\
9534 address space is disabled. Standalone programs run with the randomization\n\
9535 enabled by default on some platforms."),
9536 &set_disable_randomization,
9537 &show_disable_randomization,
9538 &setlist, &showlist);
9539
9540 /* ptid initializations */
9541 inferior_ptid = null_ptid;
9542 target_last_wait_ptid = minus_one_ptid;
9543
9544 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9545 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9546 observer_attach_thread_exit (infrun_thread_thread_exit);
9547 observer_attach_inferior_exit (infrun_inferior_exit);
9548
9549 /* Explicitly create without lookup, since that tries to create a
9550 value with a void typed value, and when we get here, gdbarch
9551 isn't initialized yet. At this point, we're quite sure there
9552 isn't another convenience variable of the same name. */
9553 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9554
9555 add_setshow_boolean_cmd ("observer", no_class,
9556 &observer_mode_1, _("\
9557 Set whether gdb controls the inferior in observer mode."), _("\
9558 Show whether gdb controls the inferior in observer mode."), _("\
9559 In observer mode, GDB can get data from the inferior, but not\n\
9560 affect its execution. Registers and memory may not be changed,\n\
9561 breakpoints may not be set, and the program cannot be interrupted\n\
9562 or signalled."),
9563 set_observer_mode,
9564 show_observer_mode,
9565 &setlist,
9566 &showlist);
9567 }
This page took 0.244421 seconds and 4 git commands to generate.