gdb/infrun: add inferior parameters to stop_all_threads and restart_threads
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2022 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75
76 /* Prototypes for local functions */
77
78 static void sig_print_info (enum gdb_signal);
79
80 static void sig_print_header (void);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static bool currently_stepping (struct thread_info *tp);
85
86 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
93
94 static void resume (gdb_signal sig);
95
96 static void wait_for_inferior (inferior *inf);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 bool step_stop_if_no_debug = false;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static bool detach_fork = true;
155
156 bool debug_infrun = false;
157 static void
158 show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162 }
163
164 /* Support for disabling address space randomization. */
165
166 bool disable_randomization = true;
167
168 static void
169 show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181 }
182
183 static void
184 set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186 {
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191 }
192
193 /* User interface for non-stop mode. */
194
195 bool non_stop = false;
196 static bool non_stop_1 = false;
197
198 static void
199 set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201 {
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209 }
210
211 static void
212 show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218 }
219
220 /* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224 static bool observer_mode = false;
225 static bool observer_mode_1 = false;
226
227 static void
228 set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261 }
262
263 static void
264 show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268 }
269
270 /* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276 void
277 update_observer_mode (void)
278 {
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291 }
292
293 /* Tables of how to react to signals; the user sets them. */
294
295 static unsigned char signal_stop[GDB_SIGNAL_LAST];
296 static unsigned char signal_print[GDB_SIGNAL_LAST];
297 static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299 /* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302 static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals (signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344 int stop_on_solib_events;
345
346 /* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349 static void
350 set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352 {
353 update_solib_breakpoints ();
354 }
355
356 static void
357 show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362 }
363
364 /* True after stop if current stack frame should be printed. */
365
366 static bool stop_print_frame;
367
368 /* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371 static process_stratum_target *target_last_proc_target;
372 static ptid_t target_last_wait_ptid;
373 static struct target_waitstatus target_last_waitstatus;
374
375 void init_thread_stepping_state (struct thread_info *tss);
376
377 static const char follow_fork_mode_child[] = "child";
378 static const char follow_fork_mode_parent[] = "parent";
379
380 static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384 };
385
386 static const char *follow_fork_mode_string = follow_fork_mode_parent;
387 static void
388 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390 {
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395 }
396 \f
397
398 /* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404 static bool
405 follow_fork_inferior (bool follow_child, bool detach_fork)
406 {
407 int has_vforked;
408 ptid_t parent_ptid, child_ptid;
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
417 && current_ui->prompt_state == PROMPT_BLOCKED
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426 Can not resume the parent process over vfork in the foreground while\n\
427 holding the child stopped. Try \"set detach-on-fork\" or \
428 \"set schedule-multiple\".\n"));
429 return true;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
447 remove_breakpoints_inf (current_inferior ());
448 }
449
450 if (print_inferior_events)
451 {
452 /* Ensure that we have a process ptid. */
453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
454
455 target_terminal::ours_for_output ();
456 fprintf_filtered (gdb_stdlog,
457 _("[Detaching after %s from child %s]\n"),
458 has_vforked ? "vfork" : "fork",
459 target_pid_to_str (process_ptid).c_str ());
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (child_ptid.pid ());
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
476
477 set_current_inferior (child_inf);
478 switch_to_no_thread ();
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480 child_inf->push_target (parent_inf->process_target ());
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
491 exec_on_vfork ();
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = new program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 scoped_restore restore_in_initial_library_scan
525 = make_scoped_restore (&child_inf->in_initial_library_scan,
526 true);
527 solib_create_inferior_hook (0);
528 }
529 }
530
531 if (has_vforked)
532 {
533 struct inferior *parent_inf;
534
535 parent_inf = current_inferior ();
536
537 /* If we detached from the child, then we have to be careful
538 to not insert breakpoints in the parent until the child
539 is done with the shared memory region. However, if we're
540 staying attached to the child, then we can and should
541 insert breakpoints, so that we can debug it. A
542 subsequent child exec or exit is enough to know when does
543 the child stops using the parent's address space. */
544 parent_inf->thread_waiting_for_vfork_done
545 = detach_fork ? inferior_thread () : nullptr;
546 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
547 }
548 }
549 else
550 {
551 /* Follow the child. */
552 struct inferior *parent_inf, *child_inf;
553 struct program_space *parent_pspace;
554
555 if (print_inferior_events)
556 {
557 std::string parent_pid = target_pid_to_str (parent_ptid);
558 std::string child_pid = target_pid_to_str (child_ptid);
559
560 target_terminal::ours_for_output ();
561 fprintf_filtered (gdb_stdlog,
562 _("[Attaching after %s %s to child %s]\n"),
563 parent_pid.c_str (),
564 has_vforked ? "vfork" : "fork",
565 child_pid.c_str ());
566 }
567
568 /* Add the new inferior first, so that the target_detach below
569 doesn't unpush the target. */
570
571 child_inf = add_inferior (child_ptid.pid ());
572
573 parent_inf = current_inferior ();
574 child_inf->attach_flag = parent_inf->attach_flag;
575 copy_terminal_info (child_inf, parent_inf);
576 child_inf->gdbarch = parent_inf->gdbarch;
577 copy_inferior_target_desc_info (child_inf, parent_inf);
578
579 parent_pspace = parent_inf->pspace;
580
581 process_stratum_target *target = parent_inf->process_target ();
582
583 {
584 /* Hold a strong reference to the target while (maybe)
585 detaching the parent. Otherwise detaching could close the
586 target. */
587 auto target_ref = target_ops_ref::new_reference (target);
588
589 /* If we're vforking, we want to hold on to the parent until
590 the child exits or execs. At child exec or exit time we
591 can remove the old breakpoints from the parent and detach
592 or resume debugging it. Otherwise, detach the parent now;
593 we'll want to reuse it's program/address spaces, but we
594 can't set them to the child before removing breakpoints
595 from the parent, otherwise, the breakpoints module could
596 decide to remove breakpoints from the wrong process (since
597 they'd be assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->thread_waiting_for_vfork_done = nullptr;
608 }
609 else if (detach_fork)
610 {
611 if (print_inferior_events)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
615
616 target_terminal::ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("[Detaching after fork from "
619 "parent %s]\n"),
620 target_pid_to_str (process_ptid).c_str ());
621 }
622
623 target_detach (parent_inf, 0);
624 parent_inf = NULL;
625 }
626
627 /* Note that the detach above makes PARENT_INF dangling. */
628
629 /* Add the child thread to the appropriate lists, and switch
630 to this new thread, before cloning the program space, and
631 informing the solib layer about this new process. */
632
633 set_current_inferior (child_inf);
634 child_inf->push_target (target);
635 }
636
637 thread_info *child_thr = add_thread_silent (target, child_ptid);
638
639 /* If this is a vfork child, then the address-space is shared
640 with the parent. If we detached from the parent, then we can
641 reuse the parent's program/address spaces. */
642 if (has_vforked || detach_fork)
643 {
644 child_inf->pspace = parent_pspace;
645 child_inf->aspace = child_inf->pspace->aspace;
646
647 exec_on_vfork ();
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = new program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 scoped_restore restore_in_initial_library_scan
664 = make_scoped_restore (&child_inf->in_initial_library_scan, true);
665 solib_create_inferior_hook (0);
666 }
667
668 switch_to_thread (child_thr);
669 }
670
671 target_follow_fork (follow_child, detach_fork);
672
673 return false;
674 }
675
676 /* Tell the target to follow the fork we're stopped at. Returns true
677 if the inferior should be resumed; false, if the target for some
678 reason decided it's best not to resume. */
679
680 static bool
681 follow_fork ()
682 {
683 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
684 bool should_resume = true;
685 struct thread_info *tp;
686
687 /* Copy user stepping state to the new inferior thread. FIXME: the
688 followed fork child thread should have a copy of most of the
689 parent thread structure's run control related fields, not just these.
690 Initialized to avoid "may be used uninitialized" warnings from gcc. */
691 struct breakpoint *step_resume_breakpoint = NULL;
692 struct breakpoint *exception_resume_breakpoint = NULL;
693 CORE_ADDR step_range_start = 0;
694 CORE_ADDR step_range_end = 0;
695 int current_line = 0;
696 symtab *current_symtab = NULL;
697 struct frame_id step_frame_id = { 0 };
698 struct thread_fsm *thread_fsm = NULL;
699
700 if (!non_stop)
701 {
702 process_stratum_target *wait_target;
703 ptid_t wait_ptid;
704 struct target_waitstatus wait_status;
705
706 /* Get the last target status returned by target_wait(). */
707 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
708
709 /* If not stopped at a fork event, then there's nothing else to
710 do. */
711 if (wait_status.kind != TARGET_WAITKIND_FORKED
712 && wait_status.kind != TARGET_WAITKIND_VFORKED)
713 return 1;
714
715 /* Check if we switched over from WAIT_PTID, since the event was
716 reported. */
717 if (wait_ptid != minus_one_ptid
718 && (current_inferior ()->process_target () != wait_target
719 || inferior_ptid != wait_ptid))
720 {
721 /* We did. Switch back to WAIT_PTID thread, to tell the
722 target to follow it (in either direction). We'll
723 afterwards refuse to resume, and inform the user what
724 happened. */
725 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
726 switch_to_thread (wait_thread);
727 should_resume = false;
728 }
729 }
730
731 tp = inferior_thread ();
732
733 /* If there were any forks/vforks that were caught and are now to be
734 followed, then do so now. */
735 switch (tp->pending_follow.kind)
736 {
737 case TARGET_WAITKIND_FORKED:
738 case TARGET_WAITKIND_VFORKED:
739 {
740 ptid_t parent, child;
741
742 /* If the user did a next/step, etc, over a fork call,
743 preserve the stepping state in the fork child. */
744 if (follow_child && should_resume)
745 {
746 step_resume_breakpoint = clone_momentary_breakpoint
747 (tp->control.step_resume_breakpoint);
748 step_range_start = tp->control.step_range_start;
749 step_range_end = tp->control.step_range_end;
750 current_line = tp->current_line;
751 current_symtab = tp->current_symtab;
752 step_frame_id = tp->control.step_frame_id;
753 exception_resume_breakpoint
754 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
755 thread_fsm = tp->thread_fsm;
756
757 /* For now, delete the parent's sr breakpoint, otherwise,
758 parent/child sr breakpoints are considered duplicates,
759 and the child version will not be installed. Remove
760 this when the breakpoints module becomes aware of
761 inferiors and address spaces. */
762 delete_step_resume_breakpoint (tp);
763 tp->control.step_range_start = 0;
764 tp->control.step_range_end = 0;
765 tp->control.step_frame_id = null_frame_id;
766 delete_exception_resume_breakpoint (tp);
767 tp->thread_fsm = NULL;
768 }
769
770 parent = inferior_ptid;
771 child = tp->pending_follow.value.related_pid;
772
773 process_stratum_target *parent_targ = tp->inf->process_target ();
774 /* Set up inferior(s) as specified by the caller, and tell the
775 target to do whatever is necessary to follow either parent
776 or child. */
777 if (follow_fork_inferior (follow_child, detach_fork))
778 {
779 /* Target refused to follow, or there's some other reason
780 we shouldn't resume. */
781 should_resume = 0;
782 }
783 else
784 {
785 /* This pending follow fork event is now handled, one way
786 or another. The previous selected thread may be gone
787 from the lists by now, but if it is still around, need
788 to clear the pending follow request. */
789 tp = find_thread_ptid (parent_targ, parent);
790 if (tp)
791 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
792
793 /* This makes sure we don't try to apply the "Switched
794 over from WAIT_PID" logic above. */
795 nullify_last_target_wait_ptid ();
796
797 /* If we followed the child, switch to it... */
798 if (follow_child)
799 {
800 thread_info *child_thr = find_thread_ptid (parent_targ, child);
801 switch_to_thread (child_thr);
802
803 /* ... and preserve the stepping state, in case the
804 user was stepping over the fork call. */
805 if (should_resume)
806 {
807 tp = inferior_thread ();
808 tp->control.step_resume_breakpoint
809 = step_resume_breakpoint;
810 tp->control.step_range_start = step_range_start;
811 tp->control.step_range_end = step_range_end;
812 tp->current_line = current_line;
813 tp->current_symtab = current_symtab;
814 tp->control.step_frame_id = step_frame_id;
815 tp->control.exception_resume_breakpoint
816 = exception_resume_breakpoint;
817 tp->thread_fsm = thread_fsm;
818 }
819 else
820 {
821 /* If we get here, it was because we're trying to
822 resume from a fork catchpoint, but, the user
823 has switched threads away from the thread that
824 forked. In that case, the resume command
825 issued is most likely not applicable to the
826 child, so just warn, and refuse to resume. */
827 warning (_("Not resuming: switched threads "
828 "before following fork child."));
829 }
830
831 /* Reset breakpoints in the child as appropriate. */
832 follow_inferior_reset_breakpoints ();
833 }
834 }
835 }
836 break;
837 case TARGET_WAITKIND_SPURIOUS:
838 /* Nothing to follow. */
839 break;
840 default:
841 internal_error (__FILE__, __LINE__,
842 "Unexpected pending_follow.kind %d\n",
843 tp->pending_follow.kind);
844 break;
845 }
846
847 return should_resume;
848 }
849
850 static void
851 follow_inferior_reset_breakpoints (void)
852 {
853 struct thread_info *tp = inferior_thread ();
854
855 /* Was there a step_resume breakpoint? (There was if the user
856 did a "next" at the fork() call.) If so, explicitly reset its
857 thread number. Cloned step_resume breakpoints are disabled on
858 creation, so enable it here now that it is associated with the
859 correct thread.
860
861 step_resumes are a form of bp that are made to be per-thread.
862 Since we created the step_resume bp when the parent process
863 was being debugged, and now are switching to the child process,
864 from the breakpoint package's viewpoint, that's a switch of
865 "threads". We must update the bp's notion of which thread
866 it is for, or it'll be ignored when it triggers. */
867
868 if (tp->control.step_resume_breakpoint)
869 {
870 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
871 tp->control.step_resume_breakpoint->loc->enabled = 1;
872 }
873
874 /* Treat exception_resume breakpoints like step_resume breakpoints. */
875 if (tp->control.exception_resume_breakpoint)
876 {
877 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
878 tp->control.exception_resume_breakpoint->loc->enabled = 1;
879 }
880
881 /* Reinsert all breakpoints in the child. The user may have set
882 breakpoints after catching the fork, in which case those
883 were never set in the child, but only in the parent. This makes
884 sure the inserted breakpoints match the breakpoint list. */
885
886 breakpoint_re_set ();
887 insert_breakpoints ();
888 }
889
890 /* The child has exited or execed: resume threads of the parent the
891 user wanted to be executing. */
892
893 static int
894 proceed_after_vfork_done (struct thread_info *thread,
895 void *arg)
896 {
897 int pid = * (int *) arg;
898
899 if (thread->ptid.pid () == pid
900 && thread->state == THREAD_RUNNING
901 && !thread->executing
902 && !thread->stop_requested
903 && thread->suspend.stop_signal == GDB_SIGNAL_0)
904 {
905 infrun_debug_printf ("resuming vfork parent thread %s",
906 target_pid_to_str (thread->ptid).c_str ());
907
908 switch_to_thread (thread);
909 clear_proceed_status (0);
910 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
911 }
912
913 return 0;
914 }
915
916 /* Called whenever we notice an exec or exit event, to handle
917 detaching or resuming a vfork parent. */
918
919 static void
920 handle_vfork_child_exec_or_exit (int exec)
921 {
922 struct inferior *inf = current_inferior ();
923
924 if (inf->vfork_parent)
925 {
926 int resume_parent = -1;
927
928 /* This exec or exit marks the end of the shared memory region
929 between the parent and the child. Break the bonds. */
930 inferior *vfork_parent = inf->vfork_parent;
931 inf->vfork_parent->vfork_child = NULL;
932 inf->vfork_parent = NULL;
933
934 /* If the user wanted to detach from the parent, now is the
935 time. */
936 if (vfork_parent->pending_detach)
937 {
938 struct program_space *pspace;
939 struct address_space *aspace;
940
941 /* follow-fork child, detach-on-fork on. */
942
943 vfork_parent->pending_detach = 0;
944
945 scoped_restore_current_pspace_and_thread restore_thread;
946
947 /* We're letting loose of the parent. */
948 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
949 switch_to_thread (tp);
950
951 /* We're about to detach from the parent, which implicitly
952 removes breakpoints from its address space. There's a
953 catch here: we want to reuse the spaces for the child,
954 but, parent/child are still sharing the pspace at this
955 point, although the exec in reality makes the kernel give
956 the child a fresh set of new pages. The problem here is
957 that the breakpoints module being unaware of this, would
958 likely chose the child process to write to the parent
959 address space. Swapping the child temporarily away from
960 the spaces has the desired effect. Yes, this is "sort
961 of" a hack. */
962
963 pspace = inf->pspace;
964 aspace = inf->aspace;
965 inf->aspace = NULL;
966 inf->pspace = NULL;
967
968 if (print_inferior_events)
969 {
970 std::string pidstr
971 = target_pid_to_str (ptid_t (vfork_parent->pid));
972
973 target_terminal::ours_for_output ();
974
975 if (exec)
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("[Detaching vfork parent %s "
979 "after child exec]\n"), pidstr.c_str ());
980 }
981 else
982 {
983 fprintf_filtered (gdb_stdlog,
984 _("[Detaching vfork parent %s "
985 "after child exit]\n"), pidstr.c_str ());
986 }
987 }
988
989 target_detach (vfork_parent, 0);
990
991 /* Put it back. */
992 inf->pspace = pspace;
993 inf->aspace = aspace;
994 }
995 else if (exec)
996 {
997 /* We're staying attached to the parent, so, really give the
998 child a new address space. */
999 inf->pspace = new program_space (maybe_new_address_space ());
1000 inf->aspace = inf->pspace->aspace;
1001 inf->removable = 1;
1002 set_current_program_space (inf->pspace);
1003
1004 resume_parent = vfork_parent->pid;
1005 }
1006 else
1007 {
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to no-thread while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore_current_thread restore_thread;
1021 switch_to_no_thread ();
1022
1023 inf->pspace = new program_space (maybe_new_address_space ());
1024 inf->aspace = inf->pspace->aspace;
1025 set_current_program_space (inf->pspace);
1026 inf->removable = 1;
1027 inf->symfile_flags = SYMFILE_NO_READ;
1028 clone_program_space (inf->pspace, vfork_parent->pspace);
1029
1030 resume_parent = vfork_parent->pid;
1031 }
1032
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
1039 scoped_restore_current_thread restore_thread;
1040
1041 infrun_debug_printf ("resuming vfork parent process %d",
1042 resume_parent);
1043
1044 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1045 }
1046 }
1047 }
1048
1049 /* Enum strings for "set|show follow-exec-mode". */
1050
1051 static const char follow_exec_mode_new[] = "new";
1052 static const char follow_exec_mode_same[] = "same";
1053 static const char *const follow_exec_mode_names[] =
1054 {
1055 follow_exec_mode_new,
1056 follow_exec_mode_same,
1057 NULL,
1058 };
1059
1060 static const char *follow_exec_mode_string = follow_exec_mode_same;
1061 static void
1062 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1063 struct cmd_list_element *c, const char *value)
1064 {
1065 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1066 }
1067
1068 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1069
1070 static void
1071 follow_exec (ptid_t ptid, const char *exec_file_target)
1072 {
1073 int pid = ptid.pid ();
1074 ptid_t process_ptid;
1075
1076 /* Switch terminal for any messages produced e.g. by
1077 breakpoint_re_set. */
1078 target_terminal::ours_for_output ();
1079
1080 /* This is an exec event that we actually wish to pay attention to.
1081 Refresh our symbol table to the newly exec'd program, remove any
1082 momentary bp's, etc.
1083
1084 If there are breakpoints, they aren't really inserted now,
1085 since the exec() transformed our inferior into a fresh set
1086 of instructions.
1087
1088 We want to preserve symbolic breakpoints on the list, since
1089 we have hopes that they can be reset after the new a.out's
1090 symbol table is read.
1091
1092 However, any "raw" breakpoints must be removed from the list
1093 (e.g., the solib bp's), since their address is probably invalid
1094 now.
1095
1096 And, we DON'T want to call delete_breakpoints() here, since
1097 that may write the bp's "shadow contents" (the instruction
1098 value that was overwritten with a TRAP instruction). Since
1099 we now have a new a.out, those shadow contents aren't valid. */
1100
1101 mark_breakpoints_out ();
1102
1103 /* The target reports the exec event to the main thread, even if
1104 some other thread does the exec, and even if the main thread was
1105 stopped or already gone. We may still have non-leader threads of
1106 the process on our list. E.g., on targets that don't have thread
1107 exit events (like remote); or on native Linux in non-stop mode if
1108 there were only two threads in the inferior and the non-leader
1109 one is the one that execs (and nothing forces an update of the
1110 thread list up to here). When debugging remotely, it's best to
1111 avoid extra traffic, when possible, so avoid syncing the thread
1112 list with the target, and instead go ahead and delete all threads
1113 of the process but one that reported the event. Note this must
1114 be done before calling update_breakpoints_after_exec, as
1115 otherwise clearing the threads' resources would reference stale
1116 thread breakpoints -- it may have been one of these threads that
1117 stepped across the exec. We could just clear their stepping
1118 states, but as long as we're iterating, might as well delete
1119 them. Deleting them now rather than at the next user-visible
1120 stop provides a nicer sequence of events for user and MI
1121 notifications. */
1122 for (thread_info *th : all_threads_safe ())
1123 if (th->ptid.pid () == pid && th->ptid != ptid)
1124 delete_thread (th);
1125
1126 /* We also need to clear any left over stale state for the
1127 leader/event thread. E.g., if there was any step-resume
1128 breakpoint or similar, it's gone now. We cannot truly
1129 step-to-next statement through an exec(). */
1130 thread_info *th = inferior_thread ();
1131 th->control.step_resume_breakpoint = NULL;
1132 th->control.exception_resume_breakpoint = NULL;
1133 th->control.single_step_breakpoints = NULL;
1134 th->control.step_range_start = 0;
1135 th->control.step_range_end = 0;
1136
1137 /* The user may have had the main thread held stopped in the
1138 previous image (e.g., schedlock on, or non-stop). Release
1139 it now. */
1140 th->stop_requested = 0;
1141
1142 update_breakpoints_after_exec ();
1143
1144 /* What is this a.out's name? */
1145 process_ptid = ptid_t (pid);
1146 printf_unfiltered (_("%s is executing new program: %s\n"),
1147 target_pid_to_str (process_ptid).c_str (),
1148 exec_file_target);
1149
1150 /* We've followed the inferior through an exec. Therefore, the
1151 inferior has essentially been killed & reborn. */
1152
1153 breakpoint_init_inferior (inf_execd);
1154
1155 gdb::unique_xmalloc_ptr<char> exec_file_host
1156 = exec_file_find (exec_file_target, NULL);
1157
1158 /* If we were unable to map the executable target pathname onto a host
1159 pathname, tell the user that. Otherwise GDB's subsequent behavior
1160 is confusing. Maybe it would even be better to stop at this point
1161 so that the user can specify a file manually before continuing. */
1162 if (exec_file_host == NULL)
1163 warning (_("Could not load symbols for executable %s.\n"
1164 "Do you need \"set sysroot\"?"),
1165 exec_file_target);
1166
1167 /* Reset the shared library package. This ensures that we get a
1168 shlib event when the child reaches "_start", at which point the
1169 dld will have had a chance to initialize the child. */
1170 /* Also, loading a symbol file below may trigger symbol lookups, and
1171 we don't want those to be satisfied by the libraries of the
1172 previous incarnation of this process. */
1173 no_shared_libraries (NULL, 0);
1174
1175 struct inferior *inf = current_inferior ();
1176
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inferior *new_inferior = add_inferior_with_spaces ();
1187
1188 swap_terminal_info (new_inferior, inf);
1189 exit_inferior_silent (inf);
1190
1191 new_inferior->pid = pid;
1192 target_follow_exec (new_inferior, ptid, exec_file_target);
1193
1194 /* We continue with the new inferior. */
1195 inf = new_inferior;
1196 }
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 target_follow_exec (inf, ptid, exec_file_target);
1207 }
1208
1209 gdb_assert (current_inferior () == inf);
1210 gdb_assert (current_program_space == inf->pspace);
1211
1212 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1213 because the proper displacement for a PIE (Position Independent
1214 Executable) main symbol file will only be computed by
1215 solib_create_inferior_hook below. breakpoint_re_set would fail
1216 to insert the breakpoints with the zero displacement. */
1217 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1218
1219 /* If the target can specify a description, read it. Must do this
1220 after flipping to the new executable (because the target supplied
1221 description must be compatible with the executable's
1222 architecture, and the old executable may e.g., be 32-bit, while
1223 the new one 64-bit), and before anything involving memory or
1224 registers. */
1225 target_find_description ();
1226
1227 gdb::observers::inferior_execd.notify (inf);
1228
1229 breakpoint_re_set ();
1230
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1233 to symbol_file_command...). */
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1239 matically get reset there in the new process.). */
1240 }
1241
1242 /* The chain of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249 struct thread_info *global_thread_step_over_chain_head;
1250
1251 /* Bit flags indicating what the thread needs to step over. */
1252
1253 enum step_over_what_flag
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
1263 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1264
1265 /* Info about an instruction that is being stepped over. */
1266
1267 struct step_over_info
1268 {
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
1273 const address_space *aspace = nullptr;
1274 CORE_ADDR address = 0;
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p = 0;
1279
1280 /* The thread's global number. */
1281 int thread = -1;
1282 };
1283
1284 /* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308 static struct step_over_info step_over_info;
1309
1310 /* Record the address of the breakpoint/instruction we're currently
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
1314
1315 static void
1316 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1317 int nonsteppable_watchpoint_p,
1318 int thread)
1319 {
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1323 step_over_info.thread = thread;
1324 }
1325
1326 /* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329 static void
1330 clear_step_over_info (void)
1331 {
1332 infrun_debug_printf ("clearing step over info");
1333 step_over_info.aspace = NULL;
1334 step_over_info.address = 0;
1335 step_over_info.nonsteppable_watchpoint_p = 0;
1336 step_over_info.thread = -1;
1337 }
1338
1339 /* See infrun.h. */
1340
1341 int
1342 stepping_past_instruction_at (struct address_space *aspace,
1343 CORE_ADDR address)
1344 {
1345 return (step_over_info.aspace != NULL
1346 && breakpoint_address_match (aspace, address,
1347 step_over_info.aspace,
1348 step_over_info.address));
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 thread_is_stepping_over_breakpoint (int thread)
1355 {
1356 return (step_over_info.thread != -1
1357 && thread == step_over_info.thread);
1358 }
1359
1360 /* See infrun.h. */
1361
1362 int
1363 stepping_past_nonsteppable_watchpoint (void)
1364 {
1365 return step_over_info.nonsteppable_watchpoint_p;
1366 }
1367
1368 /* Returns true if step-over info is valid. */
1369
1370 static bool
1371 step_over_info_valid_p (void)
1372 {
1373 return (step_over_info.aspace != NULL
1374 || stepping_past_nonsteppable_watchpoint ());
1375 }
1376
1377 \f
1378 /* Displaced stepping. */
1379
1380 /* In non-stop debugging mode, we must take special care to manage
1381 breakpoints properly; in particular, the traditional strategy for
1382 stepping a thread past a breakpoint it has hit is unsuitable.
1383 'Displaced stepping' is a tactic for stepping one thread past a
1384 breakpoint it has hit while ensuring that other threads running
1385 concurrently will hit the breakpoint as they should.
1386
1387 The traditional way to step a thread T off a breakpoint in a
1388 multi-threaded program in all-stop mode is as follows:
1389
1390 a0) Initially, all threads are stopped, and breakpoints are not
1391 inserted.
1392 a1) We single-step T, leaving breakpoints uninserted.
1393 a2) We insert breakpoints, and resume all threads.
1394
1395 In non-stop debugging, however, this strategy is unsuitable: we
1396 don't want to have to stop all threads in the system in order to
1397 continue or step T past a breakpoint. Instead, we use displaced
1398 stepping:
1399
1400 n0) Initially, T is stopped, other threads are running, and
1401 breakpoints are inserted.
1402 n1) We copy the instruction "under" the breakpoint to a separate
1403 location, outside the main code stream, making any adjustments
1404 to the instruction, register, and memory state as directed by
1405 T's architecture.
1406 n2) We single-step T over the instruction at its new location.
1407 n3) We adjust the resulting register and memory state as directed
1408 by T's architecture. This includes resetting T's PC to point
1409 back into the main instruction stream.
1410 n4) We resume T.
1411
1412 This approach depends on the following gdbarch methods:
1413
1414 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1415 indicate where to copy the instruction, and how much space must
1416 be reserved there. We use these in step n1.
1417
1418 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1419 address, and makes any necessary adjustments to the instruction,
1420 register contents, and memory. We use this in step n1.
1421
1422 - gdbarch_displaced_step_fixup adjusts registers and memory after
1423 we have successfully single-stepped the instruction, to yield the
1424 same effect the instruction would have had if we had executed it
1425 at its original address. We use this in step n3.
1426
1427 The gdbarch_displaced_step_copy_insn and
1428 gdbarch_displaced_step_fixup functions must be written so that
1429 copying an instruction with gdbarch_displaced_step_copy_insn,
1430 single-stepping across the copied instruction, and then applying
1431 gdbarch_displaced_insn_fixup should have the same effects on the
1432 thread's memory and registers as stepping the instruction in place
1433 would have. Exactly which responsibilities fall to the copy and
1434 which fall to the fixup is up to the author of those functions.
1435
1436 See the comments in gdbarch.sh for details.
1437
1438 Note that displaced stepping and software single-step cannot
1439 currently be used in combination, although with some care I think
1440 they could be made to. Software single-step works by placing
1441 breakpoints on all possible subsequent instructions; if the
1442 displaced instruction is a PC-relative jump, those breakpoints
1443 could fall in very strange places --- on pages that aren't
1444 executable, or at addresses that are not proper instruction
1445 boundaries. (We do generally let other threads run while we wait
1446 to hit the software single-step breakpoint, and they might
1447 encounter such a corrupted instruction.) One way to work around
1448 this would be to have gdbarch_displaced_step_copy_insn fully
1449 simulate the effect of PC-relative instructions (and return NULL)
1450 on architectures that use software single-stepping.
1451
1452 In non-stop mode, we can have independent and simultaneous step
1453 requests, so more than one thread may need to simultaneously step
1454 over a breakpoint. The current implementation assumes there is
1455 only one scratch space per process. In this case, we have to
1456 serialize access to the scratch space. If thread A wants to step
1457 over a breakpoint, but we are currently waiting for some other
1458 thread to complete a displaced step, we leave thread A stopped and
1459 place it in the displaced_step_request_queue. Whenever a displaced
1460 step finishes, we pick the next thread in the queue and start a new
1461 displaced step operation on it. See displaced_step_prepare and
1462 displaced_step_finish for details. */
1463
1464 /* Return true if THREAD is doing a displaced step. */
1465
1466 static bool
1467 displaced_step_in_progress_thread (thread_info *thread)
1468 {
1469 gdb_assert (thread != NULL);
1470
1471 return thread->displaced_step_state.in_progress ();
1472 }
1473
1474 /* Return true if INF has a thread doing a displaced step. */
1475
1476 static bool
1477 displaced_step_in_progress (inferior *inf)
1478 {
1479 return inf->displaced_step_state.in_progress_count > 0;
1480 }
1481
1482 /* Return true if any thread is doing a displaced step. */
1483
1484 static bool
1485 displaced_step_in_progress_any_thread ()
1486 {
1487 for (inferior *inf : all_non_exited_inferiors ())
1488 {
1489 if (displaced_step_in_progress (inf))
1490 return true;
1491 }
1492
1493 return false;
1494 }
1495
1496 static void
1497 infrun_inferior_exit (struct inferior *inf)
1498 {
1499 inf->displaced_step_state.reset ();
1500 inf->thread_waiting_for_vfork_done = nullptr;
1501 }
1502
1503 static void
1504 infrun_inferior_execd (inferior *inf)
1505 {
1506 /* If some threads where was doing a displaced step in this inferior at the
1507 moment of the exec, they no longer exist. Even if the exec'ing thread
1508 doing a displaced step, we don't want to to any fixup nor restore displaced
1509 stepping buffer bytes. */
1510 inf->displaced_step_state.reset ();
1511
1512 for (thread_info *thread : inf->threads ())
1513 thread->displaced_step_state.reset ();
1514
1515 /* Since an in-line step is done with everything else stopped, if there was
1516 one in progress at the time of the exec, it must have been the exec'ing
1517 thread. */
1518 clear_step_over_info ();
1519
1520 inf->thread_waiting_for_vfork_done = nullptr;
1521 }
1522
1523 /* If ON, and the architecture supports it, GDB will use displaced
1524 stepping to step over breakpoints. If OFF, or if the architecture
1525 doesn't support it, GDB will instead use the traditional
1526 hold-and-step approach. If AUTO (which is the default), GDB will
1527 decide which technique to use to step over breakpoints depending on
1528 whether the target works in a non-stop way (see use_displaced_stepping). */
1529
1530 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1531
1532 static void
1533 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1534 struct cmd_list_element *c,
1535 const char *value)
1536 {
1537 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1538 fprintf_filtered (file,
1539 _("Debugger's willingness to use displaced stepping "
1540 "to step over breakpoints is %s (currently %s).\n"),
1541 value, target_is_non_stop_p () ? "on" : "off");
1542 else
1543 fprintf_filtered (file,
1544 _("Debugger's willingness to use displaced stepping "
1545 "to step over breakpoints is %s.\n"), value);
1546 }
1547
1548 /* Return true if the gdbarch implements the required methods to use
1549 displaced stepping. */
1550
1551 static bool
1552 gdbarch_supports_displaced_stepping (gdbarch *arch)
1553 {
1554 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1555 that if `prepare` is provided, so is `finish`. */
1556 return gdbarch_displaced_step_prepare_p (arch);
1557 }
1558
1559 /* Return non-zero if displaced stepping can/should be used to step
1560 over breakpoints of thread TP. */
1561
1562 static bool
1563 use_displaced_stepping (thread_info *tp)
1564 {
1565 /* If the user disabled it explicitly, don't use displaced stepping. */
1566 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1567 return false;
1568
1569 /* If "auto", only use displaced stepping if the target operates in a non-stop
1570 way. */
1571 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1572 && !target_is_non_stop_p ())
1573 return false;
1574
1575 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1576
1577 /* If the architecture doesn't implement displaced stepping, don't use
1578 it. */
1579 if (!gdbarch_supports_displaced_stepping (gdbarch))
1580 return false;
1581
1582 /* If recording, don't use displaced stepping. */
1583 if (find_record_target () != nullptr)
1584 return false;
1585
1586 /* If displaced stepping failed before for this inferior, don't bother trying
1587 again. */
1588 if (tp->inf->displaced_step_state.failed_before)
1589 return false;
1590
1591 return true;
1592 }
1593
1594 /* Simple function wrapper around displaced_step_thread_state::reset. */
1595
1596 static void
1597 displaced_step_reset (displaced_step_thread_state *displaced)
1598 {
1599 displaced->reset ();
1600 }
1601
1602 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1603 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1604
1605 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1606
1607 /* See infrun.h. */
1608
1609 std::string
1610 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1611 {
1612 std::string ret;
1613
1614 for (size_t i = 0; i < len; i++)
1615 {
1616 if (i == 0)
1617 ret += string_printf ("%02x", buf[i]);
1618 else
1619 ret += string_printf (" %02x", buf[i]);
1620 }
1621
1622 return ret;
1623 }
1624
1625 /* Prepare to single-step, using displaced stepping.
1626
1627 Note that we cannot use displaced stepping when we have a signal to
1628 deliver. If we have a signal to deliver and an instruction to step
1629 over, then after the step, there will be no indication from the
1630 target whether the thread entered a signal handler or ignored the
1631 signal and stepped over the instruction successfully --- both cases
1632 result in a simple SIGTRAP. In the first case we mustn't do a
1633 fixup, and in the second case we must --- but we can't tell which.
1634 Comments in the code for 'random signals' in handle_inferior_event
1635 explain how we handle this case instead.
1636
1637 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1638 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1639 if displaced stepping this thread got queued; or
1640 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1641 stepped. */
1642
1643 static displaced_step_prepare_status
1644 displaced_step_prepare_throw (thread_info *tp)
1645 {
1646 regcache *regcache = get_thread_regcache (tp);
1647 struct gdbarch *gdbarch = regcache->arch ();
1648 displaced_step_thread_state &disp_step_thread_state
1649 = tp->displaced_step_state;
1650
1651 /* We should never reach this function if the architecture does not
1652 support displaced stepping. */
1653 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1654
1655 /* Nor if the thread isn't meant to step over a breakpoint. */
1656 gdb_assert (tp->control.trap_expected);
1657
1658 /* Disable range stepping while executing in the scratch pad. We
1659 want a single-step even if executing the displaced instruction in
1660 the scratch buffer lands within the stepping range (e.g., a
1661 jump/branch). */
1662 tp->control.may_range_step = 0;
1663
1664 /* We are about to start a displaced step for this thread. If one is already
1665 in progress, something's wrong. */
1666 gdb_assert (!disp_step_thread_state.in_progress ());
1667
1668 if (tp->inf->displaced_step_state.unavailable)
1669 {
1670 /* The gdbarch tells us it's not worth asking to try a prepare because
1671 it is likely that it will return unavailable, so don't bother asking. */
1672
1673 displaced_debug_printf ("deferring step of %s",
1674 target_pid_to_str (tp->ptid).c_str ());
1675
1676 global_thread_step_over_chain_enqueue (tp);
1677 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1678 }
1679
1680 displaced_debug_printf ("displaced-stepping %s now",
1681 target_pid_to_str (tp->ptid).c_str ());
1682
1683 scoped_restore_current_thread restore_thread;
1684
1685 switch_to_thread (tp);
1686
1687 CORE_ADDR original_pc = regcache_read_pc (regcache);
1688 CORE_ADDR displaced_pc;
1689
1690 displaced_step_prepare_status status
1691 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1692
1693 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1694 {
1695 displaced_debug_printf ("failed to prepare (%s)",
1696 target_pid_to_str (tp->ptid).c_str ());
1697
1698 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1699 }
1700 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1701 {
1702 /* Not enough displaced stepping resources available, defer this
1703 request by placing it the queue. */
1704
1705 displaced_debug_printf ("not enough resources available, "
1706 "deferring step of %s",
1707 target_pid_to_str (tp->ptid).c_str ());
1708
1709 global_thread_step_over_chain_enqueue (tp);
1710
1711 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1712 }
1713
1714 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1715
1716 /* Save the information we need to fix things up if the step
1717 succeeds. */
1718 disp_step_thread_state.set (gdbarch);
1719
1720 tp->inf->displaced_step_state.in_progress_count++;
1721
1722 displaced_debug_printf ("prepared successfully thread=%s, "
1723 "original_pc=%s, displaced_pc=%s",
1724 target_pid_to_str (tp->ptid).c_str (),
1725 paddress (gdbarch, original_pc),
1726 paddress (gdbarch, displaced_pc));
1727
1728 return DISPLACED_STEP_PREPARE_STATUS_OK;
1729 }
1730
1731 /* Wrapper for displaced_step_prepare_throw that disabled further
1732 attempts at displaced stepping if we get a memory error. */
1733
1734 static displaced_step_prepare_status
1735 displaced_step_prepare (thread_info *thread)
1736 {
1737 displaced_step_prepare_status status
1738 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1739
1740 try
1741 {
1742 status = displaced_step_prepare_throw (thread);
1743 }
1744 catch (const gdb_exception_error &ex)
1745 {
1746 if (ex.error != MEMORY_ERROR
1747 && ex.error != NOT_SUPPORTED_ERROR)
1748 throw;
1749
1750 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1751 ex.what ());
1752
1753 /* Be verbose if "set displaced-stepping" is "on", silent if
1754 "auto". */
1755 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1756 {
1757 warning (_("disabling displaced stepping: %s"),
1758 ex.what ());
1759 }
1760
1761 /* Disable further displaced stepping attempts. */
1762 thread->inf->displaced_step_state.failed_before = 1;
1763 }
1764
1765 return status;
1766 }
1767
1768 /* If we displaced stepped an instruction successfully, adjust registers and
1769 memory to yield the same effect the instruction would have had if we had
1770 executed it at its original address, and return
1771 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1772 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1773
1774 If the thread wasn't displaced stepping, return
1775 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1776
1777 static displaced_step_finish_status
1778 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1779 {
1780 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1781
1782 /* Was this thread performing a displaced step? */
1783 if (!displaced->in_progress ())
1784 return DISPLACED_STEP_FINISH_STATUS_OK;
1785
1786 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1787 event_thread->inf->displaced_step_state.in_progress_count--;
1788
1789 /* Fixup may need to read memory/registers. Switch to the thread
1790 that we're fixing up. Also, target_stopped_by_watchpoint checks
1791 the current thread, and displaced_step_restore performs ptid-dependent
1792 memory accesses using current_inferior(). */
1793 switch_to_thread (event_thread);
1794
1795 displaced_step_reset_cleanup cleanup (displaced);
1796
1797 /* Do the fixup, and release the resources acquired to do the displaced
1798 step. */
1799 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1800 event_thread, signal);
1801 }
1802
1803 /* Data to be passed around while handling an event. This data is
1804 discarded between events. */
1805 struct execution_control_state
1806 {
1807 process_stratum_target *target;
1808 ptid_t ptid;
1809 /* The thread that got the event, if this was a thread event; NULL
1810 otherwise. */
1811 struct thread_info *event_thread;
1812
1813 struct target_waitstatus ws;
1814 int stop_func_filled_in;
1815 CORE_ADDR stop_func_start;
1816 CORE_ADDR stop_func_end;
1817 const char *stop_func_name;
1818 int wait_some_more;
1819
1820 /* True if the event thread hit the single-step breakpoint of
1821 another thread. Thus the event doesn't cause a stop, the thread
1822 needs to be single-stepped past the single-step breakpoint before
1823 we can switch back to the original stepping thread. */
1824 int hit_singlestep_breakpoint;
1825 };
1826
1827 /* Clear ECS and set it to point at TP. */
1828
1829 static void
1830 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1831 {
1832 memset (ecs, 0, sizeof (*ecs));
1833 ecs->event_thread = tp;
1834 ecs->ptid = tp->ptid;
1835 }
1836
1837 static void keep_going_pass_signal (struct execution_control_state *ecs);
1838 static void prepare_to_wait (struct execution_control_state *ecs);
1839 static bool keep_going_stepped_thread (struct thread_info *tp);
1840 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1841
1842 /* Are there any pending step-over requests? If so, run all we can
1843 now and return true. Otherwise, return false. */
1844
1845 static bool
1846 start_step_over (void)
1847 {
1848 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1849
1850 thread_info *next;
1851
1852 /* Don't start a new step-over if we already have an in-line
1853 step-over operation ongoing. */
1854 if (step_over_info_valid_p ())
1855 return false;
1856
1857 /* Steal the global thread step over chain. As we try to initiate displaced
1858 steps, threads will be enqueued in the global chain if no buffers are
1859 available. If we iterated on the global chain directly, we might iterate
1860 indefinitely. */
1861 thread_info *threads_to_step = global_thread_step_over_chain_head;
1862 global_thread_step_over_chain_head = NULL;
1863
1864 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1865 thread_step_over_chain_length (threads_to_step));
1866
1867 bool started = false;
1868
1869 /* On scope exit (whatever the reason, return or exception), if there are
1870 threads left in the THREADS_TO_STEP chain, put back these threads in the
1871 global list. */
1872 SCOPE_EXIT
1873 {
1874 if (threads_to_step == nullptr)
1875 infrun_debug_printf ("step-over queue now empty");
1876 else
1877 {
1878 infrun_debug_printf ("putting back %d threads to step in global queue",
1879 thread_step_over_chain_length (threads_to_step));
1880
1881 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1882 }
1883 };
1884
1885 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
1886 {
1887 struct execution_control_state ecss;
1888 struct execution_control_state *ecs = &ecss;
1889 step_over_what step_what;
1890 int must_be_in_line;
1891
1892 gdb_assert (!tp->stop_requested);
1893
1894 next = thread_step_over_chain_next (threads_to_step, tp);
1895
1896 if (tp->inf->displaced_step_state.unavailable)
1897 {
1898 /* The arch told us to not even try preparing another displaced step
1899 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1900 will get moved to the global chain on scope exit. */
1901 continue;
1902 }
1903
1904 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1905 while we try to prepare the displaced step, we don't add it back to
1906 the global step over chain. This is to avoid a thread staying in the
1907 step over chain indefinitely if something goes wrong when resuming it
1908 If the error is intermittent and it still needs a step over, it will
1909 get enqueued again when we try to resume it normally. */
1910 thread_step_over_chain_remove (&threads_to_step, tp);
1911
1912 step_what = thread_still_needs_step_over (tp);
1913 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1914 || ((step_what & STEP_OVER_BREAKPOINT)
1915 && !use_displaced_stepping (tp)));
1916
1917 /* We currently stop all threads of all processes to step-over
1918 in-line. If we need to start a new in-line step-over, let
1919 any pending displaced steps finish first. */
1920 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1921 {
1922 global_thread_step_over_chain_enqueue (tp);
1923 continue;
1924 }
1925
1926 if (tp->control.trap_expected
1927 || tp->resumed
1928 || tp->executing)
1929 {
1930 internal_error (__FILE__, __LINE__,
1931 "[%s] has inconsistent state: "
1932 "trap_expected=%d, resumed=%d, executing=%d\n",
1933 target_pid_to_str (tp->ptid).c_str (),
1934 tp->control.trap_expected,
1935 tp->resumed,
1936 tp->executing);
1937 }
1938
1939 infrun_debug_printf ("resuming [%s] for step-over",
1940 target_pid_to_str (tp->ptid).c_str ());
1941
1942 /* keep_going_pass_signal skips the step-over if the breakpoint
1943 is no longer inserted. In all-stop, we want to keep looking
1944 for a thread that needs a step-over instead of resuming TP,
1945 because we wouldn't be able to resume anything else until the
1946 target stops again. In non-stop, the resume always resumes
1947 only TP, so it's OK to let the thread resume freely. */
1948 if (!target_is_non_stop_p () && !step_what)
1949 continue;
1950
1951 switch_to_thread (tp);
1952 reset_ecs (ecs, tp);
1953 keep_going_pass_signal (ecs);
1954
1955 if (!ecs->wait_some_more)
1956 error (_("Command aborted."));
1957
1958 /* If the thread's step over could not be initiated because no buffers
1959 were available, it was re-added to the global step over chain. */
1960 if (tp->resumed)
1961 {
1962 infrun_debug_printf ("[%s] was resumed.",
1963 target_pid_to_str (tp->ptid).c_str ());
1964 gdb_assert (!thread_is_in_step_over_chain (tp));
1965 }
1966 else
1967 {
1968 infrun_debug_printf ("[%s] was NOT resumed.",
1969 target_pid_to_str (tp->ptid).c_str ());
1970 gdb_assert (thread_is_in_step_over_chain (tp));
1971 }
1972
1973 /* If we started a new in-line step-over, we're done. */
1974 if (step_over_info_valid_p ())
1975 {
1976 gdb_assert (tp->control.trap_expected);
1977 started = true;
1978 break;
1979 }
1980
1981 if (!target_is_non_stop_p ())
1982 {
1983 /* On all-stop, shouldn't have resumed unless we needed a
1984 step over. */
1985 gdb_assert (tp->control.trap_expected
1986 || tp->step_after_step_resume_breakpoint);
1987
1988 /* With remote targets (at least), in all-stop, we can't
1989 issue any further remote commands until the program stops
1990 again. */
1991 started = true;
1992 break;
1993 }
1994
1995 /* Either the thread no longer needed a step-over, or a new
1996 displaced stepping sequence started. Even in the latter
1997 case, continue looking. Maybe we can also start another
1998 displaced step on a thread of other process. */
1999 }
2000
2001 return started;
2002 }
2003
2004 /* Update global variables holding ptids to hold NEW_PTID if they were
2005 holding OLD_PTID. */
2006 static void
2007 infrun_thread_ptid_changed (process_stratum_target *target,
2008 ptid_t old_ptid, ptid_t new_ptid)
2009 {
2010 if (inferior_ptid == old_ptid
2011 && current_inferior ()->process_target () == target)
2012 inferior_ptid = new_ptid;
2013 }
2014
2015 \f
2016
2017 static const char schedlock_off[] = "off";
2018 static const char schedlock_on[] = "on";
2019 static const char schedlock_step[] = "step";
2020 static const char schedlock_replay[] = "replay";
2021 static const char *const scheduler_enums[] = {
2022 schedlock_off,
2023 schedlock_on,
2024 schedlock_step,
2025 schedlock_replay,
2026 NULL
2027 };
2028 static const char *scheduler_mode = schedlock_replay;
2029 static void
2030 show_scheduler_mode (struct ui_file *file, int from_tty,
2031 struct cmd_list_element *c, const char *value)
2032 {
2033 fprintf_filtered (file,
2034 _("Mode for locking scheduler "
2035 "during execution is \"%s\".\n"),
2036 value);
2037 }
2038
2039 static void
2040 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2041 {
2042 if (!target_can_lock_scheduler ())
2043 {
2044 scheduler_mode = schedlock_off;
2045 error (_("Target '%s' cannot support this command."),
2046 target_shortname ());
2047 }
2048 }
2049
2050 /* True if execution commands resume all threads of all processes by
2051 default; otherwise, resume only threads of the current inferior
2052 process. */
2053 bool sched_multi = false;
2054
2055 /* Try to setup for software single stepping over the specified location.
2056 Return true if target_resume() should use hardware single step.
2057
2058 GDBARCH the current gdbarch.
2059 PC the location to step over. */
2060
2061 static bool
2062 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2063 {
2064 bool hw_step = true;
2065
2066 if (execution_direction == EXEC_FORWARD
2067 && gdbarch_software_single_step_p (gdbarch))
2068 hw_step = !insert_single_step_breakpoints (gdbarch);
2069
2070 return hw_step;
2071 }
2072
2073 /* See infrun.h. */
2074
2075 ptid_t
2076 user_visible_resume_ptid (int step)
2077 {
2078 ptid_t resume_ptid;
2079
2080 if (non_stop)
2081 {
2082 /* With non-stop mode on, threads are always handled
2083 individually. */
2084 resume_ptid = inferior_ptid;
2085 }
2086 else if ((scheduler_mode == schedlock_on)
2087 || (scheduler_mode == schedlock_step && step))
2088 {
2089 /* User-settable 'scheduler' mode requires solo thread
2090 resume. */
2091 resume_ptid = inferior_ptid;
2092 }
2093 else if ((scheduler_mode == schedlock_replay)
2094 && target_record_will_replay (minus_one_ptid, execution_direction))
2095 {
2096 /* User-settable 'scheduler' mode requires solo thread resume in replay
2097 mode. */
2098 resume_ptid = inferior_ptid;
2099 }
2100 else if (!sched_multi && target_supports_multi_process ())
2101 {
2102 /* Resume all threads of the current process (and none of other
2103 processes). */
2104 resume_ptid = ptid_t (inferior_ptid.pid ());
2105 }
2106 else
2107 {
2108 /* Resume all threads of all processes. */
2109 resume_ptid = RESUME_ALL;
2110 }
2111
2112 return resume_ptid;
2113 }
2114
2115 /* See infrun.h. */
2116
2117 process_stratum_target *
2118 user_visible_resume_target (ptid_t resume_ptid)
2119 {
2120 return (resume_ptid == minus_one_ptid && sched_multi
2121 ? NULL
2122 : current_inferior ()->process_target ());
2123 }
2124
2125 /* Return a ptid representing the set of threads that we will resume,
2126 in the perspective of the target, assuming run control handling
2127 does not require leaving some threads stopped (e.g., stepping past
2128 breakpoint). USER_STEP indicates whether we're about to start the
2129 target for a stepping command. */
2130
2131 static ptid_t
2132 internal_resume_ptid (int user_step)
2133 {
2134 /* In non-stop, we always control threads individually. Note that
2135 the target may always work in non-stop mode even with "set
2136 non-stop off", in which case user_visible_resume_ptid could
2137 return a wildcard ptid. */
2138 if (target_is_non_stop_p ())
2139 return inferior_ptid;
2140 else
2141 return user_visible_resume_ptid (user_step);
2142 }
2143
2144 /* Wrapper for target_resume, that handles infrun-specific
2145 bookkeeping. */
2146
2147 static void
2148 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2149 {
2150 struct thread_info *tp = inferior_thread ();
2151
2152 gdb_assert (!tp->stop_requested);
2153
2154 /* Install inferior's terminal modes. */
2155 target_terminal::inferior ();
2156
2157 /* Avoid confusing the next resume, if the next stop/resume
2158 happens to apply to another thread. */
2159 tp->suspend.stop_signal = GDB_SIGNAL_0;
2160
2161 /* Advise target which signals may be handled silently.
2162
2163 If we have removed breakpoints because we are stepping over one
2164 in-line (in any thread), we need to receive all signals to avoid
2165 accidentally skipping a breakpoint during execution of a signal
2166 handler.
2167
2168 Likewise if we're displaced stepping, otherwise a trap for a
2169 breakpoint in a signal handler might be confused with the
2170 displaced step finishing. We don't make the displaced_step_finish
2171 step distinguish the cases instead, because:
2172
2173 - a backtrace while stopped in the signal handler would show the
2174 scratch pad as frame older than the signal handler, instead of
2175 the real mainline code.
2176
2177 - when the thread is later resumed, the signal handler would
2178 return to the scratch pad area, which would no longer be
2179 valid. */
2180 if (step_over_info_valid_p ()
2181 || displaced_step_in_progress (tp->inf))
2182 target_pass_signals ({});
2183 else
2184 target_pass_signals (signal_pass);
2185
2186 target_resume (resume_ptid, step, sig);
2187
2188 if (target_can_async_p ())
2189 target_async (1);
2190 }
2191
2192 /* Resume the inferior. SIG is the signal to give the inferior
2193 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2194 call 'resume', which handles exceptions. */
2195
2196 static void
2197 resume_1 (enum gdb_signal sig)
2198 {
2199 struct regcache *regcache = get_current_regcache ();
2200 struct gdbarch *gdbarch = regcache->arch ();
2201 struct thread_info *tp = inferior_thread ();
2202 const address_space *aspace = regcache->aspace ();
2203 ptid_t resume_ptid;
2204 /* This represents the user's step vs continue request. When
2205 deciding whether "set scheduler-locking step" applies, it's the
2206 user's intention that counts. */
2207 const int user_step = tp->control.stepping_command;
2208 /* This represents what we'll actually request the target to do.
2209 This can decay from a step to a continue, if e.g., we need to
2210 implement single-stepping with breakpoints (software
2211 single-step). */
2212 bool step;
2213
2214 gdb_assert (!tp->stop_requested);
2215 gdb_assert (!thread_is_in_step_over_chain (tp));
2216
2217 if (tp->suspend.waitstatus_pending_p)
2218 {
2219 infrun_debug_printf
2220 ("thread %s has pending wait "
2221 "status %s (currently_stepping=%d).",
2222 target_pid_to_str (tp->ptid).c_str (),
2223 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2224 currently_stepping (tp));
2225
2226 tp->inf->process_target ()->threads_executing = true;
2227 tp->resumed = true;
2228
2229 /* FIXME: What should we do if we are supposed to resume this
2230 thread with a signal? Maybe we should maintain a queue of
2231 pending signals to deliver. */
2232 if (sig != GDB_SIGNAL_0)
2233 {
2234 warning (_("Couldn't deliver signal %s to %s."),
2235 gdb_signal_to_name (sig),
2236 target_pid_to_str (tp->ptid).c_str ());
2237 }
2238
2239 tp->suspend.stop_signal = GDB_SIGNAL_0;
2240
2241 if (target_can_async_p ())
2242 {
2243 target_async (1);
2244 /* Tell the event loop we have an event to process. */
2245 mark_async_event_handler (infrun_async_inferior_event_token);
2246 }
2247 return;
2248 }
2249
2250 tp->stepped_breakpoint = 0;
2251
2252 /* Depends on stepped_breakpoint. */
2253 step = currently_stepping (tp);
2254
2255 if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
2256 {
2257 /* Don't try to single-step a vfork parent that is waiting for
2258 the child to get out of the shared memory region (by exec'ing
2259 or exiting). This is particularly important on software
2260 single-step archs, as the child process would trip on the
2261 software single step breakpoint inserted for the parent
2262 process. Since the parent will not actually execute any
2263 instruction until the child is out of the shared region (such
2264 are vfork's semantics), it is safe to simply continue it.
2265 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2266 the parent, and tell it to `keep_going', which automatically
2267 re-sets it stepping. */
2268 infrun_debug_printf ("resume : clear step");
2269 step = false;
2270 }
2271
2272 CORE_ADDR pc = regcache_read_pc (regcache);
2273
2274 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2275 "current thread [%s] at %s",
2276 step, gdb_signal_to_symbol_string (sig),
2277 tp->control.trap_expected,
2278 target_pid_to_str (inferior_ptid).c_str (),
2279 paddress (gdbarch, pc));
2280
2281 /* Normally, by the time we reach `resume', the breakpoints are either
2282 removed or inserted, as appropriate. The exception is if we're sitting
2283 at a permanent breakpoint; we need to step over it, but permanent
2284 breakpoints can't be removed. So we have to test for it here. */
2285 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2286 {
2287 if (sig != GDB_SIGNAL_0)
2288 {
2289 /* We have a signal to pass to the inferior. The resume
2290 may, or may not take us to the signal handler. If this
2291 is a step, we'll need to stop in the signal handler, if
2292 there's one, (if the target supports stepping into
2293 handlers), or in the next mainline instruction, if
2294 there's no handler. If this is a continue, we need to be
2295 sure to run the handler with all breakpoints inserted.
2296 In all cases, set a breakpoint at the current address
2297 (where the handler returns to), and once that breakpoint
2298 is hit, resume skipping the permanent breakpoint. If
2299 that breakpoint isn't hit, then we've stepped into the
2300 signal handler (or hit some other event). We'll delete
2301 the step-resume breakpoint then. */
2302
2303 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2304 "deliver signal first");
2305
2306 clear_step_over_info ();
2307 tp->control.trap_expected = 0;
2308
2309 if (tp->control.step_resume_breakpoint == NULL)
2310 {
2311 /* Set a "high-priority" step-resume, as we don't want
2312 user breakpoints at PC to trigger (again) when this
2313 hits. */
2314 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2315 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2316
2317 tp->step_after_step_resume_breakpoint = step;
2318 }
2319
2320 insert_breakpoints ();
2321 }
2322 else
2323 {
2324 /* There's no signal to pass, we can go ahead and skip the
2325 permanent breakpoint manually. */
2326 infrun_debug_printf ("skipping permanent breakpoint");
2327 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2328 /* Update pc to reflect the new address from which we will
2329 execute instructions. */
2330 pc = regcache_read_pc (regcache);
2331
2332 if (step)
2333 {
2334 /* We've already advanced the PC, so the stepping part
2335 is done. Now we need to arrange for a trap to be
2336 reported to handle_inferior_event. Set a breakpoint
2337 at the current PC, and run to it. Don't update
2338 prev_pc, because if we end in
2339 switch_back_to_stepped_thread, we want the "expected
2340 thread advanced also" branch to be taken. IOW, we
2341 don't want this thread to step further from PC
2342 (overstep). */
2343 gdb_assert (!step_over_info_valid_p ());
2344 insert_single_step_breakpoint (gdbarch, aspace, pc);
2345 insert_breakpoints ();
2346
2347 resume_ptid = internal_resume_ptid (user_step);
2348 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2349 tp->resumed = true;
2350 return;
2351 }
2352 }
2353 }
2354
2355 /* If we have a breakpoint to step over, make sure to do a single
2356 step only. Same if we have software watchpoints. */
2357 if (tp->control.trap_expected || bpstat_should_step ())
2358 tp->control.may_range_step = 0;
2359
2360 /* If displaced stepping is enabled, step over breakpoints by executing a
2361 copy of the instruction at a different address.
2362
2363 We can't use displaced stepping when we have a signal to deliver;
2364 the comments for displaced_step_prepare explain why. The
2365 comments in the handle_inferior event for dealing with 'random
2366 signals' explain what we do instead.
2367
2368 We can't use displaced stepping when we are waiting for vfork_done
2369 event, displaced stepping breaks the vfork child similarly as single
2370 step software breakpoint. */
2371 if (tp->control.trap_expected
2372 && use_displaced_stepping (tp)
2373 && !step_over_info_valid_p ()
2374 && sig == GDB_SIGNAL_0
2375 && current_inferior ()->thread_waiting_for_vfork_done == nullptr)
2376 {
2377 displaced_step_prepare_status prepare_status
2378 = displaced_step_prepare (tp);
2379
2380 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2381 {
2382 infrun_debug_printf ("Got placed in step-over queue");
2383
2384 tp->control.trap_expected = 0;
2385 return;
2386 }
2387 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2388 {
2389 /* Fallback to stepping over the breakpoint in-line. */
2390
2391 if (target_is_non_stop_p ())
2392 stop_all_threads ("displaced stepping falling back on inline stepping");
2393
2394 set_step_over_info (regcache->aspace (),
2395 regcache_read_pc (regcache), 0, tp->global_num);
2396
2397 step = maybe_software_singlestep (gdbarch, pc);
2398
2399 insert_breakpoints ();
2400 }
2401 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2402 {
2403 /* Update pc to reflect the new address from which we will
2404 execute instructions due to displaced stepping. */
2405 pc = regcache_read_pc (get_thread_regcache (tp));
2406
2407 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2408 }
2409 else
2410 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2411 "value."));
2412 }
2413
2414 /* Do we need to do it the hard way, w/temp breakpoints? */
2415 else if (step)
2416 step = maybe_software_singlestep (gdbarch, pc);
2417
2418 /* Currently, our software single-step implementation leads to different
2419 results than hardware single-stepping in one situation: when stepping
2420 into delivering a signal which has an associated signal handler,
2421 hardware single-step will stop at the first instruction of the handler,
2422 while software single-step will simply skip execution of the handler.
2423
2424 For now, this difference in behavior is accepted since there is no
2425 easy way to actually implement single-stepping into a signal handler
2426 without kernel support.
2427
2428 However, there is one scenario where this difference leads to follow-on
2429 problems: if we're stepping off a breakpoint by removing all breakpoints
2430 and then single-stepping. In this case, the software single-step
2431 behavior means that even if there is a *breakpoint* in the signal
2432 handler, GDB still would not stop.
2433
2434 Fortunately, we can at least fix this particular issue. We detect
2435 here the case where we are about to deliver a signal while software
2436 single-stepping with breakpoints removed. In this situation, we
2437 revert the decisions to remove all breakpoints and insert single-
2438 step breakpoints, and instead we install a step-resume breakpoint
2439 at the current address, deliver the signal without stepping, and
2440 once we arrive back at the step-resume breakpoint, actually step
2441 over the breakpoint we originally wanted to step over. */
2442 if (thread_has_single_step_breakpoints_set (tp)
2443 && sig != GDB_SIGNAL_0
2444 && step_over_info_valid_p ())
2445 {
2446 /* If we have nested signals or a pending signal is delivered
2447 immediately after a handler returns, might already have
2448 a step-resume breakpoint set on the earlier handler. We cannot
2449 set another step-resume breakpoint; just continue on until the
2450 original breakpoint is hit. */
2451 if (tp->control.step_resume_breakpoint == NULL)
2452 {
2453 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2454 tp->step_after_step_resume_breakpoint = 1;
2455 }
2456
2457 delete_single_step_breakpoints (tp);
2458
2459 clear_step_over_info ();
2460 tp->control.trap_expected = 0;
2461
2462 insert_breakpoints ();
2463 }
2464
2465 /* If STEP is set, it's a request to use hardware stepping
2466 facilities. But in that case, we should never
2467 use singlestep breakpoint. */
2468 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2469
2470 /* Decide the set of threads to ask the target to resume. */
2471 if (tp->control.trap_expected)
2472 {
2473 /* We're allowing a thread to run past a breakpoint it has
2474 hit, either by single-stepping the thread with the breakpoint
2475 removed, or by displaced stepping, with the breakpoint inserted.
2476 In the former case, we need to single-step only this thread,
2477 and keep others stopped, as they can miss this breakpoint if
2478 allowed to run. That's not really a problem for displaced
2479 stepping, but, we still keep other threads stopped, in case
2480 another thread is also stopped for a breakpoint waiting for
2481 its turn in the displaced stepping queue. */
2482 resume_ptid = inferior_ptid;
2483 }
2484 else
2485 resume_ptid = internal_resume_ptid (user_step);
2486
2487 if (execution_direction != EXEC_REVERSE
2488 && step && breakpoint_inserted_here_p (aspace, pc))
2489 {
2490 /* There are two cases where we currently need to step a
2491 breakpoint instruction when we have a signal to deliver:
2492
2493 - See handle_signal_stop where we handle random signals that
2494 could take out us out of the stepping range. Normally, in
2495 that case we end up continuing (instead of stepping) over the
2496 signal handler with a breakpoint at PC, but there are cases
2497 where we should _always_ single-step, even if we have a
2498 step-resume breakpoint, like when a software watchpoint is
2499 set. Assuming single-stepping and delivering a signal at the
2500 same time would takes us to the signal handler, then we could
2501 have removed the breakpoint at PC to step over it. However,
2502 some hardware step targets (like e.g., Mac OS) can't step
2503 into signal handlers, and for those, we need to leave the
2504 breakpoint at PC inserted, as otherwise if the handler
2505 recurses and executes PC again, it'll miss the breakpoint.
2506 So we leave the breakpoint inserted anyway, but we need to
2507 record that we tried to step a breakpoint instruction, so
2508 that adjust_pc_after_break doesn't end up confused.
2509
2510 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2511 in one thread after another thread that was stepping had been
2512 momentarily paused for a step-over. When we re-resume the
2513 stepping thread, it may be resumed from that address with a
2514 breakpoint that hasn't trapped yet. Seen with
2515 gdb.threads/non-stop-fair-events.exp, on targets that don't
2516 do displaced stepping. */
2517
2518 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2519 target_pid_to_str (tp->ptid).c_str ());
2520
2521 tp->stepped_breakpoint = 1;
2522
2523 /* Most targets can step a breakpoint instruction, thus
2524 executing it normally. But if this one cannot, just
2525 continue and we will hit it anyway. */
2526 if (gdbarch_cannot_step_breakpoint (gdbarch))
2527 step = false;
2528 }
2529
2530 if (debug_displaced
2531 && tp->control.trap_expected
2532 && use_displaced_stepping (tp)
2533 && !step_over_info_valid_p ())
2534 {
2535 struct regcache *resume_regcache = get_thread_regcache (tp);
2536 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2537 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2538 gdb_byte buf[4];
2539
2540 read_memory (actual_pc, buf, sizeof (buf));
2541 displaced_debug_printf ("run %s: %s",
2542 paddress (resume_gdbarch, actual_pc),
2543 displaced_step_dump_bytes
2544 (buf, sizeof (buf)).c_str ());
2545 }
2546
2547 if (tp->control.may_range_step)
2548 {
2549 /* If we're resuming a thread with the PC out of the step
2550 range, then we're doing some nested/finer run control
2551 operation, like stepping the thread out of the dynamic
2552 linker or the displaced stepping scratch pad. We
2553 shouldn't have allowed a range step then. */
2554 gdb_assert (pc_in_thread_step_range (pc, tp));
2555 }
2556
2557 do_target_resume (resume_ptid, step, sig);
2558 tp->resumed = true;
2559 }
2560
2561 /* Resume the inferior. SIG is the signal to give the inferior
2562 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2563 rolls back state on error. */
2564
2565 static void
2566 resume (gdb_signal sig)
2567 {
2568 try
2569 {
2570 resume_1 (sig);
2571 }
2572 catch (const gdb_exception &ex)
2573 {
2574 /* If resuming is being aborted for any reason, delete any
2575 single-step breakpoint resume_1 may have created, to avoid
2576 confusing the following resumption, and to avoid leaving
2577 single-step breakpoints perturbing other threads, in case
2578 we're running in non-stop mode. */
2579 if (inferior_ptid != null_ptid)
2580 delete_single_step_breakpoints (inferior_thread ());
2581 throw;
2582 }
2583 }
2584
2585 \f
2586 /* Proceeding. */
2587
2588 /* See infrun.h. */
2589
2590 /* Counter that tracks number of user visible stops. This can be used
2591 to tell whether a command has proceeded the inferior past the
2592 current location. This allows e.g., inferior function calls in
2593 breakpoint commands to not interrupt the command list. When the
2594 call finishes successfully, the inferior is standing at the same
2595 breakpoint as if nothing happened (and so we don't call
2596 normal_stop). */
2597 static ULONGEST current_stop_id;
2598
2599 /* See infrun.h. */
2600
2601 ULONGEST
2602 get_stop_id (void)
2603 {
2604 return current_stop_id;
2605 }
2606
2607 /* Called when we report a user visible stop. */
2608
2609 static void
2610 new_stop_id (void)
2611 {
2612 current_stop_id++;
2613 }
2614
2615 /* Clear out all variables saying what to do when inferior is continued.
2616 First do this, then set the ones you want, then call `proceed'. */
2617
2618 static void
2619 clear_proceed_status_thread (struct thread_info *tp)
2620 {
2621 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2622
2623 /* If we're starting a new sequence, then the previous finished
2624 single-step is no longer relevant. */
2625 if (tp->suspend.waitstatus_pending_p)
2626 {
2627 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2628 {
2629 infrun_debug_printf ("pending event of %s was a finished step. "
2630 "Discarding.",
2631 target_pid_to_str (tp->ptid).c_str ());
2632
2633 tp->suspend.waitstatus_pending_p = 0;
2634 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2635 }
2636 else
2637 {
2638 infrun_debug_printf
2639 ("thread %s has pending wait status %s (currently_stepping=%d).",
2640 target_pid_to_str (tp->ptid).c_str (),
2641 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2642 currently_stepping (tp));
2643 }
2644 }
2645
2646 /* If this signal should not be seen by program, give it zero.
2647 Used for debugging signals. */
2648 if (!signal_pass_state (tp->suspend.stop_signal))
2649 tp->suspend.stop_signal = GDB_SIGNAL_0;
2650
2651 delete tp->thread_fsm;
2652 tp->thread_fsm = NULL;
2653
2654 tp->control.trap_expected = 0;
2655 tp->control.step_range_start = 0;
2656 tp->control.step_range_end = 0;
2657 tp->control.may_range_step = 0;
2658 tp->control.step_frame_id = null_frame_id;
2659 tp->control.step_stack_frame_id = null_frame_id;
2660 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2661 tp->control.step_start_function = NULL;
2662 tp->stop_requested = 0;
2663
2664 tp->control.stop_step = 0;
2665
2666 tp->control.proceed_to_finish = 0;
2667
2668 tp->control.stepping_command = 0;
2669
2670 /* Discard any remaining commands or status from previous stop. */
2671 bpstat_clear (&tp->control.stop_bpstat);
2672 }
2673
2674 void
2675 clear_proceed_status (int step)
2676 {
2677 /* With scheduler-locking replay, stop replaying other threads if we're
2678 not replaying the user-visible resume ptid.
2679
2680 This is a convenience feature to not require the user to explicitly
2681 stop replaying the other threads. We're assuming that the user's
2682 intent is to resume tracing the recorded process. */
2683 if (!non_stop && scheduler_mode == schedlock_replay
2684 && target_record_is_replaying (minus_one_ptid)
2685 && !target_record_will_replay (user_visible_resume_ptid (step),
2686 execution_direction))
2687 target_record_stop_replaying ();
2688
2689 if (!non_stop && inferior_ptid != null_ptid)
2690 {
2691 ptid_t resume_ptid = user_visible_resume_ptid (step);
2692 process_stratum_target *resume_target
2693 = user_visible_resume_target (resume_ptid);
2694
2695 /* In all-stop mode, delete the per-thread status of all threads
2696 we're about to resume, implicitly and explicitly. */
2697 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2698 clear_proceed_status_thread (tp);
2699 }
2700
2701 if (inferior_ptid != null_ptid)
2702 {
2703 struct inferior *inferior;
2704
2705 if (non_stop)
2706 {
2707 /* If in non-stop mode, only delete the per-thread status of
2708 the current thread. */
2709 clear_proceed_status_thread (inferior_thread ());
2710 }
2711
2712 inferior = current_inferior ();
2713 inferior->control.stop_soon = NO_STOP_QUIETLY;
2714 }
2715
2716 gdb::observers::about_to_proceed.notify ();
2717 }
2718
2719 /* Returns true if TP is still stopped at a breakpoint that needs
2720 stepping-over in order to make progress. If the breakpoint is gone
2721 meanwhile, we can skip the whole step-over dance. */
2722
2723 static bool
2724 thread_still_needs_step_over_bp (struct thread_info *tp)
2725 {
2726 if (tp->stepping_over_breakpoint)
2727 {
2728 struct regcache *regcache = get_thread_regcache (tp);
2729
2730 if (breakpoint_here_p (regcache->aspace (),
2731 regcache_read_pc (regcache))
2732 == ordinary_breakpoint_here)
2733 return true;
2734
2735 tp->stepping_over_breakpoint = 0;
2736 }
2737
2738 return false;
2739 }
2740
2741 /* Check whether thread TP still needs to start a step-over in order
2742 to make progress when resumed. Returns an bitwise or of enum
2743 step_over_what bits, indicating what needs to be stepped over. */
2744
2745 static step_over_what
2746 thread_still_needs_step_over (struct thread_info *tp)
2747 {
2748 step_over_what what = 0;
2749
2750 if (thread_still_needs_step_over_bp (tp))
2751 what |= STEP_OVER_BREAKPOINT;
2752
2753 if (tp->stepping_over_watchpoint
2754 && !target_have_steppable_watchpoint ())
2755 what |= STEP_OVER_WATCHPOINT;
2756
2757 return what;
2758 }
2759
2760 /* Returns true if scheduler locking applies. STEP indicates whether
2761 we're about to do a step/next-like command to a thread. */
2762
2763 static bool
2764 schedlock_applies (struct thread_info *tp)
2765 {
2766 return (scheduler_mode == schedlock_on
2767 || (scheduler_mode == schedlock_step
2768 && tp->control.stepping_command)
2769 || (scheduler_mode == schedlock_replay
2770 && target_record_will_replay (minus_one_ptid,
2771 execution_direction)));
2772 }
2773
2774 /* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2775 stacks that have threads executing and don't have threads with
2776 pending events. */
2777
2778 static void
2779 maybe_set_commit_resumed_all_targets ()
2780 {
2781 scoped_restore_current_thread restore_thread;
2782
2783 for (inferior *inf : all_non_exited_inferiors ())
2784 {
2785 process_stratum_target *proc_target = inf->process_target ();
2786
2787 if (proc_target->commit_resumed_state)
2788 {
2789 /* We already set this in a previous iteration, via another
2790 inferior sharing the process_stratum target. */
2791 continue;
2792 }
2793
2794 /* If the target has no resumed threads, it would be useless to
2795 ask it to commit the resumed threads. */
2796 if (!proc_target->threads_executing)
2797 {
2798 infrun_debug_printf ("not requesting commit-resumed for target "
2799 "%s, no resumed threads",
2800 proc_target->shortname ());
2801 continue;
2802 }
2803
2804 /* As an optimization, if a thread from this target has some
2805 status to report, handle it before requiring the target to
2806 commit its resumed threads: handling the status might lead to
2807 resuming more threads. */
2808 bool has_thread_with_pending_status = false;
2809 for (thread_info *thread : all_non_exited_threads (proc_target))
2810 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2811 {
2812 has_thread_with_pending_status = true;
2813 break;
2814 }
2815
2816 if (has_thread_with_pending_status)
2817 {
2818 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2819 " thread has a pending waitstatus",
2820 proc_target->shortname ());
2821 continue;
2822 }
2823
2824 switch_to_inferior_no_thread (inf);
2825
2826 if (target_has_pending_events ())
2827 {
2828 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2829 "target has pending events",
2830 proc_target->shortname ());
2831 continue;
2832 }
2833
2834 infrun_debug_printf ("enabling commit-resumed for target %s",
2835 proc_target->shortname ());
2836
2837 proc_target->commit_resumed_state = true;
2838 }
2839 }
2840
2841 /* See infrun.h. */
2842
2843 void
2844 maybe_call_commit_resumed_all_targets ()
2845 {
2846 scoped_restore_current_thread restore_thread;
2847
2848 for (inferior *inf : all_non_exited_inferiors ())
2849 {
2850 process_stratum_target *proc_target = inf->process_target ();
2851
2852 if (!proc_target->commit_resumed_state)
2853 continue;
2854
2855 switch_to_inferior_no_thread (inf);
2856
2857 infrun_debug_printf ("calling commit_resumed for target %s",
2858 proc_target->shortname());
2859
2860 target_commit_resumed ();
2861 }
2862 }
2863
2864 /* To track nesting of scoped_disable_commit_resumed objects, ensuring
2865 that only the outermost one attempts to re-enable
2866 commit-resumed. */
2867 static bool enable_commit_resumed = true;
2868
2869 /* See infrun.h. */
2870
2871 scoped_disable_commit_resumed::scoped_disable_commit_resumed
2872 (const char *reason)
2873 : m_reason (reason),
2874 m_prev_enable_commit_resumed (enable_commit_resumed)
2875 {
2876 infrun_debug_printf ("reason=%s", m_reason);
2877
2878 enable_commit_resumed = false;
2879
2880 for (inferior *inf : all_non_exited_inferiors ())
2881 {
2882 process_stratum_target *proc_target = inf->process_target ();
2883
2884 if (m_prev_enable_commit_resumed)
2885 {
2886 /* This is the outermost instance: force all
2887 COMMIT_RESUMED_STATE to false. */
2888 proc_target->commit_resumed_state = false;
2889 }
2890 else
2891 {
2892 /* This is not the outermost instance, we expect
2893 COMMIT_RESUMED_STATE to have been cleared by the
2894 outermost instance. */
2895 gdb_assert (!proc_target->commit_resumed_state);
2896 }
2897 }
2898 }
2899
2900 /* See infrun.h. */
2901
2902 void
2903 scoped_disable_commit_resumed::reset ()
2904 {
2905 if (m_reset)
2906 return;
2907 m_reset = true;
2908
2909 infrun_debug_printf ("reason=%s", m_reason);
2910
2911 gdb_assert (!enable_commit_resumed);
2912
2913 enable_commit_resumed = m_prev_enable_commit_resumed;
2914
2915 if (m_prev_enable_commit_resumed)
2916 {
2917 /* This is the outermost instance, re-enable
2918 COMMIT_RESUMED_STATE on the targets where it's possible. */
2919 maybe_set_commit_resumed_all_targets ();
2920 }
2921 else
2922 {
2923 /* This is not the outermost instance, we expect
2924 COMMIT_RESUMED_STATE to still be false. */
2925 for (inferior *inf : all_non_exited_inferiors ())
2926 {
2927 process_stratum_target *proc_target = inf->process_target ();
2928 gdb_assert (!proc_target->commit_resumed_state);
2929 }
2930 }
2931 }
2932
2933 /* See infrun.h. */
2934
2935 scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2936 {
2937 reset ();
2938 }
2939
2940 /* See infrun.h. */
2941
2942 void
2943 scoped_disable_commit_resumed::reset_and_commit ()
2944 {
2945 reset ();
2946 maybe_call_commit_resumed_all_targets ();
2947 }
2948
2949 /* See infrun.h. */
2950
2951 scoped_enable_commit_resumed::scoped_enable_commit_resumed
2952 (const char *reason)
2953 : m_reason (reason),
2954 m_prev_enable_commit_resumed (enable_commit_resumed)
2955 {
2956 infrun_debug_printf ("reason=%s", m_reason);
2957
2958 if (!enable_commit_resumed)
2959 {
2960 enable_commit_resumed = true;
2961
2962 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2963 possible. */
2964 maybe_set_commit_resumed_all_targets ();
2965
2966 maybe_call_commit_resumed_all_targets ();
2967 }
2968 }
2969
2970 /* See infrun.h. */
2971
2972 scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2973 {
2974 infrun_debug_printf ("reason=%s", m_reason);
2975
2976 gdb_assert (enable_commit_resumed);
2977
2978 enable_commit_resumed = m_prev_enable_commit_resumed;
2979
2980 if (!enable_commit_resumed)
2981 {
2982 /* Force all COMMIT_RESUMED_STATE back to false. */
2983 for (inferior *inf : all_non_exited_inferiors ())
2984 {
2985 process_stratum_target *proc_target = inf->process_target ();
2986 proc_target->commit_resumed_state = false;
2987 }
2988 }
2989 }
2990
2991 /* Check that all the targets we're about to resume are in non-stop
2992 mode. Ideally, we'd only care whether all targets support
2993 target-async, but we're not there yet. E.g., stop_all_threads
2994 doesn't know how to handle all-stop targets. Also, the remote
2995 protocol in all-stop mode is synchronous, irrespective of
2996 target-async, which means that things like a breakpoint re-set
2997 triggered by one target would try to read memory from all targets
2998 and fail. */
2999
3000 static void
3001 check_multi_target_resumption (process_stratum_target *resume_target)
3002 {
3003 if (!non_stop && resume_target == nullptr)
3004 {
3005 scoped_restore_current_thread restore_thread;
3006
3007 /* This is used to track whether we're resuming more than one
3008 target. */
3009 process_stratum_target *first_connection = nullptr;
3010
3011 /* The first inferior we see with a target that does not work in
3012 always-non-stop mode. */
3013 inferior *first_not_non_stop = nullptr;
3014
3015 for (inferior *inf : all_non_exited_inferiors ())
3016 {
3017 switch_to_inferior_no_thread (inf);
3018
3019 if (!target_has_execution ())
3020 continue;
3021
3022 process_stratum_target *proc_target
3023 = current_inferior ()->process_target();
3024
3025 if (!target_is_non_stop_p ())
3026 first_not_non_stop = inf;
3027
3028 if (first_connection == nullptr)
3029 first_connection = proc_target;
3030 else if (first_connection != proc_target
3031 && first_not_non_stop != nullptr)
3032 {
3033 switch_to_inferior_no_thread (first_not_non_stop);
3034
3035 proc_target = current_inferior ()->process_target();
3036
3037 error (_("Connection %d (%s) does not support "
3038 "multi-target resumption."),
3039 proc_target->connection_number,
3040 make_target_connection_string (proc_target).c_str ());
3041 }
3042 }
3043 }
3044 }
3045
3046 /* Basic routine for continuing the program in various fashions.
3047
3048 ADDR is the address to resume at, or -1 for resume where stopped.
3049 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3050 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3051
3052 You should call clear_proceed_status before calling proceed. */
3053
3054 void
3055 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3056 {
3057 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3058
3059 struct regcache *regcache;
3060 struct gdbarch *gdbarch;
3061 CORE_ADDR pc;
3062 struct execution_control_state ecss;
3063 struct execution_control_state *ecs = &ecss;
3064 bool started;
3065
3066 /* If we're stopped at a fork/vfork, follow the branch set by the
3067 "set follow-fork-mode" command; otherwise, we'll just proceed
3068 resuming the current thread. */
3069 if (!follow_fork ())
3070 {
3071 /* The target for some reason decided not to resume. */
3072 normal_stop ();
3073 if (target_can_async_p ())
3074 inferior_event_handler (INF_EXEC_COMPLETE);
3075 return;
3076 }
3077
3078 /* We'll update this if & when we switch to a new thread. */
3079 previous_inferior_ptid = inferior_ptid;
3080
3081 regcache = get_current_regcache ();
3082 gdbarch = regcache->arch ();
3083 const address_space *aspace = regcache->aspace ();
3084
3085 pc = regcache_read_pc_protected (regcache);
3086
3087 thread_info *cur_thr = inferior_thread ();
3088
3089 /* Fill in with reasonable starting values. */
3090 init_thread_stepping_state (cur_thr);
3091
3092 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3093
3094 ptid_t resume_ptid
3095 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3096 process_stratum_target *resume_target
3097 = user_visible_resume_target (resume_ptid);
3098
3099 check_multi_target_resumption (resume_target);
3100
3101 if (addr == (CORE_ADDR) -1)
3102 {
3103 if (pc == cur_thr->suspend.stop_pc
3104 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3105 && execution_direction != EXEC_REVERSE)
3106 /* There is a breakpoint at the address we will resume at,
3107 step one instruction before inserting breakpoints so that
3108 we do not stop right away (and report a second hit at this
3109 breakpoint).
3110
3111 Note, we don't do this in reverse, because we won't
3112 actually be executing the breakpoint insn anyway.
3113 We'll be (un-)executing the previous instruction. */
3114 cur_thr->stepping_over_breakpoint = 1;
3115 else if (gdbarch_single_step_through_delay_p (gdbarch)
3116 && gdbarch_single_step_through_delay (gdbarch,
3117 get_current_frame ()))
3118 /* We stepped onto an instruction that needs to be stepped
3119 again before re-inserting the breakpoint, do so. */
3120 cur_thr->stepping_over_breakpoint = 1;
3121 }
3122 else
3123 {
3124 regcache_write_pc (regcache, addr);
3125 }
3126
3127 if (siggnal != GDB_SIGNAL_DEFAULT)
3128 cur_thr->suspend.stop_signal = siggnal;
3129
3130 /* If an exception is thrown from this point on, make sure to
3131 propagate GDB's knowledge of the executing state to the
3132 frontend/user running state. */
3133 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3134
3135 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3136 threads (e.g., we might need to set threads stepping over
3137 breakpoints first), from the user/frontend's point of view, all
3138 threads in RESUME_PTID are now running. Unless we're calling an
3139 inferior function, as in that case we pretend the inferior
3140 doesn't run at all. */
3141 if (!cur_thr->control.in_infcall)
3142 set_running (resume_target, resume_ptid, true);
3143
3144 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3145 gdb_signal_to_symbol_string (siggnal));
3146
3147 annotate_starting ();
3148
3149 /* Make sure that output from GDB appears before output from the
3150 inferior. */
3151 gdb_flush (gdb_stdout);
3152
3153 /* Since we've marked the inferior running, give it the terminal. A
3154 QUIT/Ctrl-C from here on is forwarded to the target (which can
3155 still detect attempts to unblock a stuck connection with repeated
3156 Ctrl-C from within target_pass_ctrlc). */
3157 target_terminal::inferior ();
3158
3159 /* In a multi-threaded task we may select another thread and
3160 then continue or step.
3161
3162 But if a thread that we're resuming had stopped at a breakpoint,
3163 it will immediately cause another breakpoint stop without any
3164 execution (i.e. it will report a breakpoint hit incorrectly). So
3165 we must step over it first.
3166
3167 Look for threads other than the current (TP) that reported a
3168 breakpoint hit and haven't been resumed yet since. */
3169
3170 /* If scheduler locking applies, we can avoid iterating over all
3171 threads. */
3172 if (!non_stop && !schedlock_applies (cur_thr))
3173 {
3174 for (thread_info *tp : all_non_exited_threads (resume_target,
3175 resume_ptid))
3176 {
3177 switch_to_thread_no_regs (tp);
3178
3179 /* Ignore the current thread here. It's handled
3180 afterwards. */
3181 if (tp == cur_thr)
3182 continue;
3183
3184 if (!thread_still_needs_step_over (tp))
3185 continue;
3186
3187 gdb_assert (!thread_is_in_step_over_chain (tp));
3188
3189 infrun_debug_printf ("need to step-over [%s] first",
3190 target_pid_to_str (tp->ptid).c_str ());
3191
3192 global_thread_step_over_chain_enqueue (tp);
3193 }
3194
3195 switch_to_thread (cur_thr);
3196 }
3197
3198 /* Enqueue the current thread last, so that we move all other
3199 threads over their breakpoints first. */
3200 if (cur_thr->stepping_over_breakpoint)
3201 global_thread_step_over_chain_enqueue (cur_thr);
3202
3203 /* If the thread isn't started, we'll still need to set its prev_pc,
3204 so that switch_back_to_stepped_thread knows the thread hasn't
3205 advanced. Must do this before resuming any thread, as in
3206 all-stop/remote, once we resume we can't send any other packet
3207 until the target stops again. */
3208 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3209
3210 {
3211 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3212
3213 started = start_step_over ();
3214
3215 if (step_over_info_valid_p ())
3216 {
3217 /* Either this thread started a new in-line step over, or some
3218 other thread was already doing one. In either case, don't
3219 resume anything else until the step-over is finished. */
3220 }
3221 else if (started && !target_is_non_stop_p ())
3222 {
3223 /* A new displaced stepping sequence was started. In all-stop,
3224 we can't talk to the target anymore until it next stops. */
3225 }
3226 else if (!non_stop && target_is_non_stop_p ())
3227 {
3228 INFRUN_SCOPED_DEBUG_START_END
3229 ("resuming threads, all-stop-on-top-of-non-stop");
3230
3231 /* In all-stop, but the target is always in non-stop mode.
3232 Start all other threads that are implicitly resumed too. */
3233 for (thread_info *tp : all_non_exited_threads (resume_target,
3234 resume_ptid))
3235 {
3236 switch_to_thread_no_regs (tp);
3237
3238 if (!tp->inf->has_execution ())
3239 {
3240 infrun_debug_printf ("[%s] target has no execution",
3241 target_pid_to_str (tp->ptid).c_str ());
3242 continue;
3243 }
3244
3245 if (tp->resumed)
3246 {
3247 infrun_debug_printf ("[%s] resumed",
3248 target_pid_to_str (tp->ptid).c_str ());
3249 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3250 continue;
3251 }
3252
3253 if (thread_is_in_step_over_chain (tp))
3254 {
3255 infrun_debug_printf ("[%s] needs step-over",
3256 target_pid_to_str (tp->ptid).c_str ());
3257 continue;
3258 }
3259
3260 infrun_debug_printf ("resuming %s",
3261 target_pid_to_str (tp->ptid).c_str ());
3262
3263 reset_ecs (ecs, tp);
3264 switch_to_thread (tp);
3265 keep_going_pass_signal (ecs);
3266 if (!ecs->wait_some_more)
3267 error (_("Command aborted."));
3268 }
3269 }
3270 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3271 {
3272 /* The thread wasn't started, and isn't queued, run it now. */
3273 reset_ecs (ecs, cur_thr);
3274 switch_to_thread (cur_thr);
3275 keep_going_pass_signal (ecs);
3276 if (!ecs->wait_some_more)
3277 error (_("Command aborted."));
3278 }
3279
3280 disable_commit_resumed.reset_and_commit ();
3281 }
3282
3283 finish_state.release ();
3284
3285 /* If we've switched threads above, switch back to the previously
3286 current thread. We don't want the user to see a different
3287 selected thread. */
3288 switch_to_thread (cur_thr);
3289
3290 /* Tell the event loop to wait for it to stop. If the target
3291 supports asynchronous execution, it'll do this from within
3292 target_resume. */
3293 if (!target_can_async_p ())
3294 mark_async_event_handler (infrun_async_inferior_event_token);
3295 }
3296 \f
3297
3298 /* Start remote-debugging of a machine over a serial link. */
3299
3300 void
3301 start_remote (int from_tty)
3302 {
3303 inferior *inf = current_inferior ();
3304 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3305
3306 /* Always go on waiting for the target, regardless of the mode. */
3307 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3308 indicate to wait_for_inferior that a target should timeout if
3309 nothing is returned (instead of just blocking). Because of this,
3310 targets expecting an immediate response need to, internally, set
3311 things up so that the target_wait() is forced to eventually
3312 timeout. */
3313 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3314 differentiate to its caller what the state of the target is after
3315 the initial open has been performed. Here we're assuming that
3316 the target has stopped. It should be possible to eventually have
3317 target_open() return to the caller an indication that the target
3318 is currently running and GDB state should be set to the same as
3319 for an async run. */
3320 wait_for_inferior (inf);
3321
3322 /* Now that the inferior has stopped, do any bookkeeping like
3323 loading shared libraries. We want to do this before normal_stop,
3324 so that the displayed frame is up to date. */
3325 post_create_inferior (from_tty);
3326
3327 normal_stop ();
3328 }
3329
3330 /* Initialize static vars when a new inferior begins. */
3331
3332 void
3333 init_wait_for_inferior (void)
3334 {
3335 /* These are meaningless until the first time through wait_for_inferior. */
3336
3337 breakpoint_init_inferior (inf_starting);
3338
3339 clear_proceed_status (0);
3340
3341 nullify_last_target_wait_ptid ();
3342
3343 previous_inferior_ptid = inferior_ptid;
3344 }
3345
3346 \f
3347
3348 static void handle_inferior_event (struct execution_control_state *ecs);
3349
3350 static void handle_step_into_function (struct gdbarch *gdbarch,
3351 struct execution_control_state *ecs);
3352 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3353 struct execution_control_state *ecs);
3354 static void handle_signal_stop (struct execution_control_state *ecs);
3355 static void check_exception_resume (struct execution_control_state *,
3356 struct frame_info *);
3357
3358 static void end_stepping_range (struct execution_control_state *ecs);
3359 static void stop_waiting (struct execution_control_state *ecs);
3360 static void keep_going (struct execution_control_state *ecs);
3361 static void process_event_stop_test (struct execution_control_state *ecs);
3362 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3363
3364 /* This function is attached as a "thread_stop_requested" observer.
3365 Cleanup local state that assumed the PTID was to be resumed, and
3366 report the stop to the frontend. */
3367
3368 static void
3369 infrun_thread_stop_requested (ptid_t ptid)
3370 {
3371 process_stratum_target *curr_target = current_inferior ()->process_target ();
3372
3373 /* PTID was requested to stop. If the thread was already stopped,
3374 but the user/frontend doesn't know about that yet (e.g., the
3375 thread had been temporarily paused for some step-over), set up
3376 for reporting the stop now. */
3377 for (thread_info *tp : all_threads (curr_target, ptid))
3378 {
3379 if (tp->state != THREAD_RUNNING)
3380 continue;
3381 if (tp->executing)
3382 continue;
3383
3384 /* Remove matching threads from the step-over queue, so
3385 start_step_over doesn't try to resume them
3386 automatically. */
3387 if (thread_is_in_step_over_chain (tp))
3388 global_thread_step_over_chain_remove (tp);
3389
3390 /* If the thread is stopped, but the user/frontend doesn't
3391 know about that yet, queue a pending event, as if the
3392 thread had just stopped now. Unless the thread already had
3393 a pending event. */
3394 if (!tp->suspend.waitstatus_pending_p)
3395 {
3396 tp->suspend.waitstatus_pending_p = 1;
3397 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3398 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3399 }
3400
3401 /* Clear the inline-frame state, since we're re-processing the
3402 stop. */
3403 clear_inline_frame_state (tp);
3404
3405 /* If this thread was paused because some other thread was
3406 doing an inline-step over, let that finish first. Once
3407 that happens, we'll restart all threads and consume pending
3408 stop events then. */
3409 if (step_over_info_valid_p ())
3410 continue;
3411
3412 /* Otherwise we can process the (new) pending event now. Set
3413 it so this pending event is considered by
3414 do_target_wait. */
3415 tp->resumed = true;
3416 }
3417 }
3418
3419 static void
3420 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3421 {
3422 if (target_last_proc_target == tp->inf->process_target ()
3423 && target_last_wait_ptid == tp->ptid)
3424 nullify_last_target_wait_ptid ();
3425 }
3426
3427 /* Delete the step resume, single-step and longjmp/exception resume
3428 breakpoints of TP. */
3429
3430 static void
3431 delete_thread_infrun_breakpoints (struct thread_info *tp)
3432 {
3433 delete_step_resume_breakpoint (tp);
3434 delete_exception_resume_breakpoint (tp);
3435 delete_single_step_breakpoints (tp);
3436 }
3437
3438 /* If the target still has execution, call FUNC for each thread that
3439 just stopped. In all-stop, that's all the non-exited threads; in
3440 non-stop, that's the current thread, only. */
3441
3442 typedef void (*for_each_just_stopped_thread_callback_func)
3443 (struct thread_info *tp);
3444
3445 static void
3446 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3447 {
3448 if (!target_has_execution () || inferior_ptid == null_ptid)
3449 return;
3450
3451 if (target_is_non_stop_p ())
3452 {
3453 /* If in non-stop mode, only the current thread stopped. */
3454 func (inferior_thread ());
3455 }
3456 else
3457 {
3458 /* In all-stop mode, all threads have stopped. */
3459 for (thread_info *tp : all_non_exited_threads ())
3460 func (tp);
3461 }
3462 }
3463
3464 /* Delete the step resume and longjmp/exception resume breakpoints of
3465 the threads that just stopped. */
3466
3467 static void
3468 delete_just_stopped_threads_infrun_breakpoints (void)
3469 {
3470 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3471 }
3472
3473 /* Delete the single-step breakpoints of the threads that just
3474 stopped. */
3475
3476 static void
3477 delete_just_stopped_threads_single_step_breakpoints (void)
3478 {
3479 for_each_just_stopped_thread (delete_single_step_breakpoints);
3480 }
3481
3482 /* See infrun.h. */
3483
3484 void
3485 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3486 const struct target_waitstatus *ws)
3487 {
3488 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3489 waiton_ptid.pid (),
3490 waiton_ptid.lwp (),
3491 waiton_ptid.tid (),
3492 target_pid_to_str (waiton_ptid).c_str ());
3493 infrun_debug_printf (" %d.%ld.%ld [%s],",
3494 result_ptid.pid (),
3495 result_ptid.lwp (),
3496 result_ptid.tid (),
3497 target_pid_to_str (result_ptid).c_str ());
3498 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
3499 }
3500
3501 /* Select a thread at random, out of those which are resumed and have
3502 had events. */
3503
3504 static struct thread_info *
3505 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3506 {
3507 int num_events = 0;
3508
3509 auto has_event = [&] (thread_info *tp)
3510 {
3511 return (tp->ptid.matches (waiton_ptid)
3512 && tp->resumed
3513 && tp->suspend.waitstatus_pending_p);
3514 };
3515
3516 /* First see how many events we have. Count only resumed threads
3517 that have an event pending. */
3518 for (thread_info *tp : inf->non_exited_threads ())
3519 if (has_event (tp))
3520 num_events++;
3521
3522 if (num_events == 0)
3523 return NULL;
3524
3525 /* Now randomly pick a thread out of those that have had events. */
3526 int random_selector = (int) ((num_events * (double) rand ())
3527 / (RAND_MAX + 1.0));
3528
3529 if (num_events > 1)
3530 infrun_debug_printf ("Found %d events, selecting #%d",
3531 num_events, random_selector);
3532
3533 /* Select the Nth thread that has had an event. */
3534 for (thread_info *tp : inf->non_exited_threads ())
3535 if (has_event (tp))
3536 if (random_selector-- == 0)
3537 return tp;
3538
3539 gdb_assert_not_reached ("event thread not found");
3540 }
3541
3542 /* Wrapper for target_wait that first checks whether threads have
3543 pending statuses to report before actually asking the target for
3544 more events. INF is the inferior we're using to call target_wait
3545 on. */
3546
3547 static ptid_t
3548 do_target_wait_1 (inferior *inf, ptid_t ptid,
3549 target_waitstatus *status, target_wait_flags options)
3550 {
3551 ptid_t event_ptid;
3552 struct thread_info *tp;
3553
3554 /* We know that we are looking for an event in the target of inferior
3555 INF, but we don't know which thread the event might come from. As
3556 such we want to make sure that INFERIOR_PTID is reset so that none of
3557 the wait code relies on it - doing so is always a mistake. */
3558 switch_to_inferior_no_thread (inf);
3559
3560 /* First check if there is a resumed thread with a wait status
3561 pending. */
3562 if (ptid == minus_one_ptid || ptid.is_pid ())
3563 {
3564 tp = random_pending_event_thread (inf, ptid);
3565 }
3566 else
3567 {
3568 infrun_debug_printf ("Waiting for specific thread %s.",
3569 target_pid_to_str (ptid).c_str ());
3570
3571 /* We have a specific thread to check. */
3572 tp = find_thread_ptid (inf, ptid);
3573 gdb_assert (tp != NULL);
3574 if (!tp->suspend.waitstatus_pending_p)
3575 tp = NULL;
3576 }
3577
3578 if (tp != NULL
3579 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3581 {
3582 struct regcache *regcache = get_thread_regcache (tp);
3583 struct gdbarch *gdbarch = regcache->arch ();
3584 CORE_ADDR pc;
3585 int discard = 0;
3586
3587 pc = regcache_read_pc (regcache);
3588
3589 if (pc != tp->suspend.stop_pc)
3590 {
3591 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3592 target_pid_to_str (tp->ptid).c_str (),
3593 paddress (gdbarch, tp->suspend.stop_pc),
3594 paddress (gdbarch, pc));
3595 discard = 1;
3596 }
3597 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3598 {
3599 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3600 target_pid_to_str (tp->ptid).c_str (),
3601 paddress (gdbarch, pc));
3602
3603 discard = 1;
3604 }
3605
3606 if (discard)
3607 {
3608 infrun_debug_printf ("pending event of %s cancelled.",
3609 target_pid_to_str (tp->ptid).c_str ());
3610
3611 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3612 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3613 }
3614 }
3615
3616 if (tp != NULL)
3617 {
3618 infrun_debug_printf ("Using pending wait status %s for %s.",
3619 target_waitstatus_to_string
3620 (&tp->suspend.waitstatus).c_str (),
3621 target_pid_to_str (tp->ptid).c_str ());
3622
3623 /* Now that we've selected our final event LWP, un-adjust its PC
3624 if it was a software breakpoint (and the target doesn't
3625 always adjust the PC itself). */
3626 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3627 && !target_supports_stopped_by_sw_breakpoint ())
3628 {
3629 struct regcache *regcache;
3630 struct gdbarch *gdbarch;
3631 int decr_pc;
3632
3633 regcache = get_thread_regcache (tp);
3634 gdbarch = regcache->arch ();
3635
3636 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3637 if (decr_pc != 0)
3638 {
3639 CORE_ADDR pc;
3640
3641 pc = regcache_read_pc (regcache);
3642 regcache_write_pc (regcache, pc + decr_pc);
3643 }
3644 }
3645
3646 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3647 *status = tp->suspend.waitstatus;
3648 tp->suspend.waitstatus_pending_p = 0;
3649
3650 /* Wake up the event loop again, until all pending events are
3651 processed. */
3652 if (target_is_async_p ())
3653 mark_async_event_handler (infrun_async_inferior_event_token);
3654 return tp->ptid;
3655 }
3656
3657 /* But if we don't find one, we'll have to wait. */
3658
3659 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3660 a blocking wait. */
3661 if (!target_can_async_p ())
3662 options &= ~TARGET_WNOHANG;
3663
3664 if (deprecated_target_wait_hook)
3665 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3666 else
3667 event_ptid = target_wait (ptid, status, options);
3668
3669 return event_ptid;
3670 }
3671
3672 /* Wrapper for target_wait that first checks whether threads have
3673 pending statuses to report before actually asking the target for
3674 more events. Polls for events from all inferiors/targets. */
3675
3676 static bool
3677 do_target_wait (execution_control_state *ecs, target_wait_flags options)
3678 {
3679 int num_inferiors = 0;
3680 int random_selector;
3681
3682 /* For fairness, we pick the first inferior/target to poll at random
3683 out of all inferiors that may report events, and then continue
3684 polling the rest of the inferior list starting from that one in a
3685 circular fashion until the whole list is polled once. */
3686
3687 auto inferior_matches = [] (inferior *inf)
3688 {
3689 return inf->process_target () != nullptr;
3690 };
3691
3692 /* First see how many matching inferiors we have. */
3693 for (inferior *inf : all_inferiors ())
3694 if (inferior_matches (inf))
3695 num_inferiors++;
3696
3697 if (num_inferiors == 0)
3698 {
3699 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3700 return false;
3701 }
3702
3703 /* Now randomly pick an inferior out of those that matched. */
3704 random_selector = (int)
3705 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3706
3707 if (num_inferiors > 1)
3708 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3709 num_inferiors, random_selector);
3710
3711 /* Select the Nth inferior that matched. */
3712
3713 inferior *selected = nullptr;
3714
3715 for (inferior *inf : all_inferiors ())
3716 if (inferior_matches (inf))
3717 if (random_selector-- == 0)
3718 {
3719 selected = inf;
3720 break;
3721 }
3722
3723 /* Now poll for events out of each of the matching inferior's
3724 targets, starting from the selected one. */
3725
3726 auto do_wait = [&] (inferior *inf)
3727 {
3728 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options);
3729 ecs->target = inf->process_target ();
3730 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3731 };
3732
3733 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3734 here spuriously after the target is all stopped and we've already
3735 reported the stop to the user, polling for events. */
3736 scoped_restore_current_thread restore_thread;
3737
3738 int inf_num = selected->num;
3739 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3740 if (inferior_matches (inf))
3741 if (do_wait (inf))
3742 return true;
3743
3744 for (inferior *inf = inferior_list;
3745 inf != NULL && inf->num < inf_num;
3746 inf = inf->next)
3747 if (inferior_matches (inf))
3748 if (do_wait (inf))
3749 return true;
3750
3751 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3752 return false;
3753 }
3754
3755 /* An event reported by wait_one. */
3756
3757 struct wait_one_event
3758 {
3759 /* The target the event came out of. */
3760 process_stratum_target *target;
3761
3762 /* The PTID the event was for. */
3763 ptid_t ptid;
3764
3765 /* The waitstatus. */
3766 target_waitstatus ws;
3767 };
3768
3769 static bool handle_one (const wait_one_event &event);
3770 static void restart_threads (struct thread_info *event_thread,
3771 inferior *inf = nullptr);
3772
3773 /* Prepare and stabilize the inferior for detaching it. E.g.,
3774 detaching while a thread is displaced stepping is a recipe for
3775 crashing it, as nothing would readjust the PC out of the scratch
3776 pad. */
3777
3778 void
3779 prepare_for_detach (void)
3780 {
3781 struct inferior *inf = current_inferior ();
3782 ptid_t pid_ptid = ptid_t (inf->pid);
3783 scoped_restore_current_thread restore_thread;
3784
3785 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3786
3787 /* Remove all threads of INF from the global step-over chain. We
3788 want to stop any ongoing step-over, not start any new one. */
3789 thread_info *next;
3790 for (thread_info *tp = global_thread_step_over_chain_head;
3791 tp != nullptr;
3792 tp = next)
3793 {
3794 next = global_thread_step_over_chain_next (tp);
3795 if (tp->inf == inf)
3796 global_thread_step_over_chain_remove (tp);
3797 }
3798
3799 /* If we were already in the middle of an inline step-over, and the
3800 thread stepping belongs to the inferior we're detaching, we need
3801 to restart the threads of other inferiors. */
3802 if (step_over_info.thread != -1)
3803 {
3804 infrun_debug_printf ("inline step-over in-process while detaching");
3805
3806 thread_info *thr = find_thread_global_id (step_over_info.thread);
3807 if (thr->inf == inf)
3808 {
3809 /* Since we removed threads of INF from the step-over chain,
3810 we know this won't start a step-over for INF. */
3811 clear_step_over_info ();
3812
3813 if (target_is_non_stop_p ())
3814 {
3815 /* Start a new step-over in another thread if there's
3816 one that needs it. */
3817 start_step_over ();
3818
3819 /* Restart all other threads (except the
3820 previously-stepping thread, since that one is still
3821 running). */
3822 if (!step_over_info_valid_p ())
3823 restart_threads (thr);
3824 }
3825 }
3826 }
3827
3828 if (displaced_step_in_progress (inf))
3829 {
3830 infrun_debug_printf ("displaced-stepping in-process while detaching");
3831
3832 /* Stop threads currently displaced stepping, aborting it. */
3833
3834 for (thread_info *thr : inf->non_exited_threads ())
3835 {
3836 if (thr->displaced_step_state.in_progress ())
3837 {
3838 if (thr->executing)
3839 {
3840 if (!thr->stop_requested)
3841 {
3842 target_stop (thr->ptid);
3843 thr->stop_requested = true;
3844 }
3845 }
3846 else
3847 thr->resumed = false;
3848 }
3849 }
3850
3851 while (displaced_step_in_progress (inf))
3852 {
3853 wait_one_event event;
3854
3855 event.target = inf->process_target ();
3856 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3857
3858 if (debug_infrun)
3859 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
3860
3861 handle_one (event);
3862 }
3863
3864 /* It's OK to leave some of the threads of INF stopped, since
3865 they'll be detached shortly. */
3866 }
3867 }
3868
3869 /* Wait for control to return from inferior to debugger.
3870
3871 If inferior gets a signal, we may decide to start it up again
3872 instead of returning. That is why there is a loop in this function.
3873 When this function actually returns it means the inferior
3874 should be left stopped and GDB should read more commands. */
3875
3876 static void
3877 wait_for_inferior (inferior *inf)
3878 {
3879 infrun_debug_printf ("wait_for_inferior ()");
3880
3881 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3882
3883 /* If an error happens while handling the event, propagate GDB's
3884 knowledge of the executing state to the frontend/user running
3885 state. */
3886 scoped_finish_thread_state finish_state
3887 (inf->process_target (), minus_one_ptid);
3888
3889 while (1)
3890 {
3891 struct execution_control_state ecss;
3892 struct execution_control_state *ecs = &ecss;
3893
3894 memset (ecs, 0, sizeof (*ecs));
3895
3896 overlay_cache_invalid = 1;
3897
3898 /* Flush target cache before starting to handle each event.
3899 Target was running and cache could be stale. This is just a
3900 heuristic. Running threads may modify target memory, but we
3901 don't get any event. */
3902 target_dcache_invalidate ();
3903
3904 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3905 ecs->target = inf->process_target ();
3906
3907 if (debug_infrun)
3908 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3909
3910 /* Now figure out what to do with the result of the result. */
3911 handle_inferior_event (ecs);
3912
3913 if (!ecs->wait_some_more)
3914 break;
3915 }
3916
3917 /* No error, don't finish the state yet. */
3918 finish_state.release ();
3919 }
3920
3921 /* Cleanup that reinstalls the readline callback handler, if the
3922 target is running in the background. If while handling the target
3923 event something triggered a secondary prompt, like e.g., a
3924 pagination prompt, we'll have removed the callback handler (see
3925 gdb_readline_wrapper_line). Need to do this as we go back to the
3926 event loop, ready to process further input. Note this has no
3927 effect if the handler hasn't actually been removed, because calling
3928 rl_callback_handler_install resets the line buffer, thus losing
3929 input. */
3930
3931 static void
3932 reinstall_readline_callback_handler_cleanup ()
3933 {
3934 struct ui *ui = current_ui;
3935
3936 if (!ui->async)
3937 {
3938 /* We're not going back to the top level event loop yet. Don't
3939 install the readline callback, as it'd prep the terminal,
3940 readline-style (raw, noecho) (e.g., --batch). We'll install
3941 it the next time the prompt is displayed, when we're ready
3942 for input. */
3943 return;
3944 }
3945
3946 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3947 gdb_rl_callback_handler_reinstall ();
3948 }
3949
3950 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3951 that's just the event thread. In all-stop, that's all threads. */
3952
3953 static void
3954 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3955 {
3956 if (ecs->event_thread != NULL
3957 && ecs->event_thread->thread_fsm != NULL)
3958 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3959
3960 if (!non_stop)
3961 {
3962 for (thread_info *thr : all_non_exited_threads ())
3963 {
3964 if (thr->thread_fsm == NULL)
3965 continue;
3966 if (thr == ecs->event_thread)
3967 continue;
3968
3969 switch_to_thread (thr);
3970 thr->thread_fsm->clean_up (thr);
3971 }
3972
3973 if (ecs->event_thread != NULL)
3974 switch_to_thread (ecs->event_thread);
3975 }
3976 }
3977
3978 /* Helper for all_uis_check_sync_execution_done that works on the
3979 current UI. */
3980
3981 static void
3982 check_curr_ui_sync_execution_done (void)
3983 {
3984 struct ui *ui = current_ui;
3985
3986 if (ui->prompt_state == PROMPT_NEEDED
3987 && ui->async
3988 && !gdb_in_secondary_prompt_p (ui))
3989 {
3990 target_terminal::ours ();
3991 gdb::observers::sync_execution_done.notify ();
3992 ui_register_input_event_handler (ui);
3993 }
3994 }
3995
3996 /* See infrun.h. */
3997
3998 void
3999 all_uis_check_sync_execution_done (void)
4000 {
4001 SWITCH_THRU_ALL_UIS ()
4002 {
4003 check_curr_ui_sync_execution_done ();
4004 }
4005 }
4006
4007 /* See infrun.h. */
4008
4009 void
4010 all_uis_on_sync_execution_starting (void)
4011 {
4012 SWITCH_THRU_ALL_UIS ()
4013 {
4014 if (current_ui->prompt_state == PROMPT_NEEDED)
4015 async_disable_stdin ();
4016 }
4017 }
4018
4019 /* Asynchronous version of wait_for_inferior. It is called by the
4020 event loop whenever a change of state is detected on the file
4021 descriptor corresponding to the target. It can be called more than
4022 once to complete a single execution command. In such cases we need
4023 to keep the state in a global variable ECSS. If it is the last time
4024 that this function is called for a single execution command, then
4025 report to the user that the inferior has stopped, and do the
4026 necessary cleanups. */
4027
4028 void
4029 fetch_inferior_event ()
4030 {
4031 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4032
4033 struct execution_control_state ecss;
4034 struct execution_control_state *ecs = &ecss;
4035 int cmd_done = 0;
4036
4037 memset (ecs, 0, sizeof (*ecs));
4038
4039 /* Events are always processed with the main UI as current UI. This
4040 way, warnings, debug output, etc. are always consistently sent to
4041 the main console. */
4042 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4043
4044 /* Temporarily disable pagination. Otherwise, the user would be
4045 given an option to press 'q' to quit, which would cause an early
4046 exit and could leave GDB in a half-baked state. */
4047 scoped_restore save_pagination
4048 = make_scoped_restore (&pagination_enabled, false);
4049
4050 /* End up with readline processing input, if necessary. */
4051 {
4052 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4053
4054 /* We're handling a live event, so make sure we're doing live
4055 debugging. If we're looking at traceframes while the target is
4056 running, we're going to need to get back to that mode after
4057 handling the event. */
4058 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4059 if (non_stop)
4060 {
4061 maybe_restore_traceframe.emplace ();
4062 set_current_traceframe (-1);
4063 }
4064
4065 /* The user/frontend should not notice a thread switch due to
4066 internal events. Make sure we revert to the user selected
4067 thread and frame after handling the event and running any
4068 breakpoint commands. */
4069 scoped_restore_current_thread restore_thread;
4070
4071 overlay_cache_invalid = 1;
4072 /* Flush target cache before starting to handle each event. Target
4073 was running and cache could be stale. This is just a heuristic.
4074 Running threads may modify target memory, but we don't get any
4075 event. */
4076 target_dcache_invalidate ();
4077
4078 scoped_restore save_exec_dir
4079 = make_scoped_restore (&execution_direction,
4080 target_execution_direction ());
4081
4082 /* Allow targets to pause their resumed threads while we handle
4083 the event. */
4084 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4085
4086 if (!do_target_wait (ecs, TARGET_WNOHANG))
4087 {
4088 infrun_debug_printf ("do_target_wait returned no event");
4089 disable_commit_resumed.reset_and_commit ();
4090 return;
4091 }
4092
4093 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4094
4095 /* Switch to the target that generated the event, so we can do
4096 target calls. */
4097 switch_to_target_no_thread (ecs->target);
4098
4099 if (debug_infrun)
4100 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4101
4102 /* If an error happens while handling the event, propagate GDB's
4103 knowledge of the executing state to the frontend/user running
4104 state. */
4105 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4106 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4107
4108 /* Get executed before scoped_restore_current_thread above to apply
4109 still for the thread which has thrown the exception. */
4110 auto defer_bpstat_clear
4111 = make_scope_exit (bpstat_clear_actions);
4112 auto defer_delete_threads
4113 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4114
4115 /* Now figure out what to do with the result of the result. */
4116 handle_inferior_event (ecs);
4117
4118 if (!ecs->wait_some_more)
4119 {
4120 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4121 bool should_stop = true;
4122 struct thread_info *thr = ecs->event_thread;
4123
4124 delete_just_stopped_threads_infrun_breakpoints ();
4125
4126 if (thr != NULL)
4127 {
4128 struct thread_fsm *thread_fsm = thr->thread_fsm;
4129
4130 if (thread_fsm != NULL)
4131 should_stop = thread_fsm->should_stop (thr);
4132 }
4133
4134 if (!should_stop)
4135 {
4136 keep_going (ecs);
4137 }
4138 else
4139 {
4140 bool should_notify_stop = true;
4141 int proceeded = 0;
4142
4143 clean_up_just_stopped_threads_fsms (ecs);
4144
4145 if (thr != NULL && thr->thread_fsm != NULL)
4146 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4147
4148 if (should_notify_stop)
4149 {
4150 /* We may not find an inferior if this was a process exit. */
4151 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4152 proceeded = normal_stop ();
4153 }
4154
4155 if (!proceeded)
4156 {
4157 inferior_event_handler (INF_EXEC_COMPLETE);
4158 cmd_done = 1;
4159 }
4160
4161 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4162 previously selected thread is gone. We have two
4163 choices - switch to no thread selected, or restore the
4164 previously selected thread (now exited). We chose the
4165 later, just because that's what GDB used to do. After
4166 this, "info threads" says "The current thread <Thread
4167 ID 2> has terminated." instead of "No thread
4168 selected.". */
4169 if (!non_stop
4170 && cmd_done
4171 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4172 restore_thread.dont_restore ();
4173 }
4174 }
4175
4176 defer_delete_threads.release ();
4177 defer_bpstat_clear.release ();
4178
4179 /* No error, don't finish the thread states yet. */
4180 finish_state.release ();
4181
4182 disable_commit_resumed.reset_and_commit ();
4183
4184 /* This scope is used to ensure that readline callbacks are
4185 reinstalled here. */
4186 }
4187
4188 /* If a UI was in sync execution mode, and now isn't, restore its
4189 prompt (a synchronous execution command has finished, and we're
4190 ready for input). */
4191 all_uis_check_sync_execution_done ();
4192
4193 if (cmd_done
4194 && exec_done_display_p
4195 && (inferior_ptid == null_ptid
4196 || inferior_thread ()->state != THREAD_RUNNING))
4197 printf_unfiltered (_("completed.\n"));
4198 }
4199
4200 /* See infrun.h. */
4201
4202 void
4203 set_step_info (thread_info *tp, struct frame_info *frame,
4204 struct symtab_and_line sal)
4205 {
4206 /* This can be removed once this function no longer implicitly relies on the
4207 inferior_ptid value. */
4208 gdb_assert (inferior_ptid == tp->ptid);
4209
4210 tp->control.step_frame_id = get_frame_id (frame);
4211 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4212
4213 tp->current_symtab = sal.symtab;
4214 tp->current_line = sal.line;
4215 }
4216
4217 /* Clear context switchable stepping state. */
4218
4219 void
4220 init_thread_stepping_state (struct thread_info *tss)
4221 {
4222 tss->stepped_breakpoint = 0;
4223 tss->stepping_over_breakpoint = 0;
4224 tss->stepping_over_watchpoint = 0;
4225 tss->step_after_step_resume_breakpoint = 0;
4226 }
4227
4228 /* See infrun.h. */
4229
4230 void
4231 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4232 target_waitstatus status)
4233 {
4234 target_last_proc_target = target;
4235 target_last_wait_ptid = ptid;
4236 target_last_waitstatus = status;
4237 }
4238
4239 /* See infrun.h. */
4240
4241 void
4242 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4243 target_waitstatus *status)
4244 {
4245 if (target != nullptr)
4246 *target = target_last_proc_target;
4247 if (ptid != nullptr)
4248 *ptid = target_last_wait_ptid;
4249 if (status != nullptr)
4250 *status = target_last_waitstatus;
4251 }
4252
4253 /* See infrun.h. */
4254
4255 void
4256 nullify_last_target_wait_ptid (void)
4257 {
4258 target_last_proc_target = nullptr;
4259 target_last_wait_ptid = minus_one_ptid;
4260 target_last_waitstatus = {};
4261 }
4262
4263 /* Switch thread contexts. */
4264
4265 static void
4266 context_switch (execution_control_state *ecs)
4267 {
4268 if (ecs->ptid != inferior_ptid
4269 && (inferior_ptid == null_ptid
4270 || ecs->event_thread != inferior_thread ()))
4271 {
4272 infrun_debug_printf ("Switching context from %s to %s",
4273 target_pid_to_str (inferior_ptid).c_str (),
4274 target_pid_to_str (ecs->ptid).c_str ());
4275 }
4276
4277 switch_to_thread (ecs->event_thread);
4278 }
4279
4280 /* If the target can't tell whether we've hit breakpoints
4281 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4282 check whether that could have been caused by a breakpoint. If so,
4283 adjust the PC, per gdbarch_decr_pc_after_break. */
4284
4285 static void
4286 adjust_pc_after_break (struct thread_info *thread,
4287 struct target_waitstatus *ws)
4288 {
4289 struct regcache *regcache;
4290 struct gdbarch *gdbarch;
4291 CORE_ADDR breakpoint_pc, decr_pc;
4292
4293 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4294 we aren't, just return.
4295
4296 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4297 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4298 implemented by software breakpoints should be handled through the normal
4299 breakpoint layer.
4300
4301 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4302 different signals (SIGILL or SIGEMT for instance), but it is less
4303 clear where the PC is pointing afterwards. It may not match
4304 gdbarch_decr_pc_after_break. I don't know any specific target that
4305 generates these signals at breakpoints (the code has been in GDB since at
4306 least 1992) so I can not guess how to handle them here.
4307
4308 In earlier versions of GDB, a target with
4309 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4310 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4311 target with both of these set in GDB history, and it seems unlikely to be
4312 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4313
4314 if (ws->kind != TARGET_WAITKIND_STOPPED)
4315 return;
4316
4317 if (ws->value.sig != GDB_SIGNAL_TRAP)
4318 return;
4319
4320 /* In reverse execution, when a breakpoint is hit, the instruction
4321 under it has already been de-executed. The reported PC always
4322 points at the breakpoint address, so adjusting it further would
4323 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4324 architecture:
4325
4326 B1 0x08000000 : INSN1
4327 B2 0x08000001 : INSN2
4328 0x08000002 : INSN3
4329 PC -> 0x08000003 : INSN4
4330
4331 Say you're stopped at 0x08000003 as above. Reverse continuing
4332 from that point should hit B2 as below. Reading the PC when the
4333 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4334 been de-executed already.
4335
4336 B1 0x08000000 : INSN1
4337 B2 PC -> 0x08000001 : INSN2
4338 0x08000002 : INSN3
4339 0x08000003 : INSN4
4340
4341 We can't apply the same logic as for forward execution, because
4342 we would wrongly adjust the PC to 0x08000000, since there's a
4343 breakpoint at PC - 1. We'd then report a hit on B1, although
4344 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4345 behaviour. */
4346 if (execution_direction == EXEC_REVERSE)
4347 return;
4348
4349 /* If the target can tell whether the thread hit a SW breakpoint,
4350 trust it. Targets that can tell also adjust the PC
4351 themselves. */
4352 if (target_supports_stopped_by_sw_breakpoint ())
4353 return;
4354
4355 /* Note that relying on whether a breakpoint is planted in memory to
4356 determine this can fail. E.g,. the breakpoint could have been
4357 removed since. Or the thread could have been told to step an
4358 instruction the size of a breakpoint instruction, and only
4359 _after_ was a breakpoint inserted at its address. */
4360
4361 /* If this target does not decrement the PC after breakpoints, then
4362 we have nothing to do. */
4363 regcache = get_thread_regcache (thread);
4364 gdbarch = regcache->arch ();
4365
4366 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4367 if (decr_pc == 0)
4368 return;
4369
4370 const address_space *aspace = regcache->aspace ();
4371
4372 /* Find the location where (if we've hit a breakpoint) the
4373 breakpoint would be. */
4374 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4375
4376 /* If the target can't tell whether a software breakpoint triggered,
4377 fallback to figuring it out based on breakpoints we think were
4378 inserted in the target, and on whether the thread was stepped or
4379 continued. */
4380
4381 /* Check whether there actually is a software breakpoint inserted at
4382 that location.
4383
4384 If in non-stop mode, a race condition is possible where we've
4385 removed a breakpoint, but stop events for that breakpoint were
4386 already queued and arrive later. To suppress those spurious
4387 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4388 and retire them after a number of stop events are reported. Note
4389 this is an heuristic and can thus get confused. The real fix is
4390 to get the "stopped by SW BP and needs adjustment" info out of
4391 the target/kernel (and thus never reach here; see above). */
4392 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4393 || (target_is_non_stop_p ()
4394 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4395 {
4396 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4397
4398 if (record_full_is_used ())
4399 restore_operation_disable.emplace
4400 (record_full_gdb_operation_disable_set ());
4401
4402 /* When using hardware single-step, a SIGTRAP is reported for both
4403 a completed single-step and a software breakpoint. Need to
4404 differentiate between the two, as the latter needs adjusting
4405 but the former does not.
4406
4407 The SIGTRAP can be due to a completed hardware single-step only if
4408 - we didn't insert software single-step breakpoints
4409 - this thread is currently being stepped
4410
4411 If any of these events did not occur, we must have stopped due
4412 to hitting a software breakpoint, and have to back up to the
4413 breakpoint address.
4414
4415 As a special case, we could have hardware single-stepped a
4416 software breakpoint. In this case (prev_pc == breakpoint_pc),
4417 we also need to back up to the breakpoint address. */
4418
4419 if (thread_has_single_step_breakpoints_set (thread)
4420 || !currently_stepping (thread)
4421 || (thread->stepped_breakpoint
4422 && thread->prev_pc == breakpoint_pc))
4423 regcache_write_pc (regcache, breakpoint_pc);
4424 }
4425 }
4426
4427 static bool
4428 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4429 {
4430 for (frame = get_prev_frame (frame);
4431 frame != NULL;
4432 frame = get_prev_frame (frame))
4433 {
4434 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4435 return true;
4436
4437 if (get_frame_type (frame) != INLINE_FRAME)
4438 break;
4439 }
4440
4441 return false;
4442 }
4443
4444 /* Look for an inline frame that is marked for skip.
4445 If PREV_FRAME is TRUE start at the previous frame,
4446 otherwise start at the current frame. Stop at the
4447 first non-inline frame, or at the frame where the
4448 step started. */
4449
4450 static bool
4451 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4452 {
4453 struct frame_info *frame = get_current_frame ();
4454
4455 if (prev_frame)
4456 frame = get_prev_frame (frame);
4457
4458 for (; frame != NULL; frame = get_prev_frame (frame))
4459 {
4460 const char *fn = NULL;
4461 symtab_and_line sal;
4462 struct symbol *sym;
4463
4464 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4465 break;
4466 if (get_frame_type (frame) != INLINE_FRAME)
4467 break;
4468
4469 sal = find_frame_sal (frame);
4470 sym = get_frame_function (frame);
4471
4472 if (sym != NULL)
4473 fn = sym->print_name ();
4474
4475 if (sal.line != 0
4476 && function_name_is_marked_for_skip (fn, sal))
4477 return true;
4478 }
4479
4480 return false;
4481 }
4482
4483 /* If the event thread has the stop requested flag set, pretend it
4484 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4485 target_stop). */
4486
4487 static bool
4488 handle_stop_requested (struct execution_control_state *ecs)
4489 {
4490 if (ecs->event_thread->stop_requested)
4491 {
4492 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4493 ecs->ws.value.sig = GDB_SIGNAL_0;
4494 handle_signal_stop (ecs);
4495 return true;
4496 }
4497 return false;
4498 }
4499
4500 /* Auxiliary function that handles syscall entry/return events.
4501 It returns true if the inferior should keep going (and GDB
4502 should ignore the event), or false if the event deserves to be
4503 processed. */
4504
4505 static bool
4506 handle_syscall_event (struct execution_control_state *ecs)
4507 {
4508 struct regcache *regcache;
4509 int syscall_number;
4510
4511 context_switch (ecs);
4512
4513 regcache = get_thread_regcache (ecs->event_thread);
4514 syscall_number = ecs->ws.value.syscall_number;
4515 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4516
4517 if (catch_syscall_enabled () > 0
4518 && catching_syscall_number (syscall_number) > 0)
4519 {
4520 infrun_debug_printf ("syscall number=%d", syscall_number);
4521
4522 ecs->event_thread->control.stop_bpstat
4523 = bpstat_stop_status (regcache->aspace (),
4524 ecs->event_thread->suspend.stop_pc,
4525 ecs->event_thread, &ecs->ws);
4526
4527 if (handle_stop_requested (ecs))
4528 return false;
4529
4530 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4531 {
4532 /* Catchpoint hit. */
4533 return false;
4534 }
4535 }
4536
4537 if (handle_stop_requested (ecs))
4538 return false;
4539
4540 /* If no catchpoint triggered for this, then keep going. */
4541 keep_going (ecs);
4542
4543 return true;
4544 }
4545
4546 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4547
4548 static void
4549 fill_in_stop_func (struct gdbarch *gdbarch,
4550 struct execution_control_state *ecs)
4551 {
4552 if (!ecs->stop_func_filled_in)
4553 {
4554 const block *block;
4555 const general_symbol_info *gsi;
4556
4557 /* Don't care about return value; stop_func_start and stop_func_name
4558 will both be 0 if it doesn't work. */
4559 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4560 &gsi,
4561 &ecs->stop_func_start,
4562 &ecs->stop_func_end,
4563 &block);
4564 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4565
4566 /* The call to find_pc_partial_function, above, will set
4567 stop_func_start and stop_func_end to the start and end
4568 of the range containing the stop pc. If this range
4569 contains the entry pc for the block (which is always the
4570 case for contiguous blocks), advance stop_func_start past
4571 the function's start offset and entrypoint. Note that
4572 stop_func_start is NOT advanced when in a range of a
4573 non-contiguous block that does not contain the entry pc. */
4574 if (block != nullptr
4575 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4576 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4577 {
4578 ecs->stop_func_start
4579 += gdbarch_deprecated_function_start_offset (gdbarch);
4580
4581 if (gdbarch_skip_entrypoint_p (gdbarch))
4582 ecs->stop_func_start
4583 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4584 }
4585
4586 ecs->stop_func_filled_in = 1;
4587 }
4588 }
4589
4590
4591 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4592
4593 static enum stop_kind
4594 get_inferior_stop_soon (execution_control_state *ecs)
4595 {
4596 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4597
4598 gdb_assert (inf != NULL);
4599 return inf->control.stop_soon;
4600 }
4601
4602 /* Poll for one event out of the current target. Store the resulting
4603 waitstatus in WS, and return the event ptid. Does not block. */
4604
4605 static ptid_t
4606 poll_one_curr_target (struct target_waitstatus *ws)
4607 {
4608 ptid_t event_ptid;
4609
4610 overlay_cache_invalid = 1;
4611
4612 /* Flush target cache before starting to handle each event.
4613 Target was running and cache could be stale. This is just a
4614 heuristic. Running threads may modify target memory, but we
4615 don't get any event. */
4616 target_dcache_invalidate ();
4617
4618 if (deprecated_target_wait_hook)
4619 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4620 else
4621 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4622
4623 if (debug_infrun)
4624 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4625
4626 return event_ptid;
4627 }
4628
4629 /* Wait for one event out of any target. */
4630
4631 static wait_one_event
4632 wait_one ()
4633 {
4634 while (1)
4635 {
4636 for (inferior *inf : all_inferiors ())
4637 {
4638 process_stratum_target *target = inf->process_target ();
4639 if (target == NULL
4640 || !target->is_async_p ()
4641 || !target->threads_executing)
4642 continue;
4643
4644 switch_to_inferior_no_thread (inf);
4645
4646 wait_one_event event;
4647 event.target = target;
4648 event.ptid = poll_one_curr_target (&event.ws);
4649
4650 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4651 {
4652 /* If nothing is resumed, remove the target from the
4653 event loop. */
4654 target_async (0);
4655 }
4656 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4657 return event;
4658 }
4659
4660 /* Block waiting for some event. */
4661
4662 fd_set readfds;
4663 int nfds = 0;
4664
4665 FD_ZERO (&readfds);
4666
4667 for (inferior *inf : all_inferiors ())
4668 {
4669 process_stratum_target *target = inf->process_target ();
4670 if (target == NULL
4671 || !target->is_async_p ()
4672 || !target->threads_executing)
4673 continue;
4674
4675 int fd = target->async_wait_fd ();
4676 FD_SET (fd, &readfds);
4677 if (nfds <= fd)
4678 nfds = fd + 1;
4679 }
4680
4681 if (nfds == 0)
4682 {
4683 /* No waitable targets left. All must be stopped. */
4684 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4685 }
4686
4687 QUIT;
4688
4689 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4690 if (numfds < 0)
4691 {
4692 if (errno == EINTR)
4693 continue;
4694 else
4695 perror_with_name ("interruptible_select");
4696 }
4697 }
4698 }
4699
4700 /* Save the thread's event and stop reason to process it later. */
4701
4702 static void
4703 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4704 {
4705 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4706 target_waitstatus_to_string (ws).c_str (),
4707 tp->ptid.pid (),
4708 tp->ptid.lwp (),
4709 tp->ptid.tid ());
4710
4711 /* Record for later. */
4712 tp->suspend.waitstatus = *ws;
4713 tp->suspend.waitstatus_pending_p = 1;
4714
4715 if (ws->kind == TARGET_WAITKIND_STOPPED
4716 && ws->value.sig == GDB_SIGNAL_TRAP)
4717 {
4718 struct regcache *regcache = get_thread_regcache (tp);
4719 const address_space *aspace = regcache->aspace ();
4720 CORE_ADDR pc = regcache_read_pc (regcache);
4721
4722 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4723
4724 scoped_restore_current_thread restore_thread;
4725 switch_to_thread (tp);
4726
4727 if (target_stopped_by_watchpoint ())
4728 {
4729 tp->suspend.stop_reason
4730 = TARGET_STOPPED_BY_WATCHPOINT;
4731 }
4732 else if (target_supports_stopped_by_sw_breakpoint ()
4733 && target_stopped_by_sw_breakpoint ())
4734 {
4735 tp->suspend.stop_reason
4736 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4737 }
4738 else if (target_supports_stopped_by_hw_breakpoint ()
4739 && target_stopped_by_hw_breakpoint ())
4740 {
4741 tp->suspend.stop_reason
4742 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4743 }
4744 else if (!target_supports_stopped_by_hw_breakpoint ()
4745 && hardware_breakpoint_inserted_here_p (aspace,
4746 pc))
4747 {
4748 tp->suspend.stop_reason
4749 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4750 }
4751 else if (!target_supports_stopped_by_sw_breakpoint ()
4752 && software_breakpoint_inserted_here_p (aspace,
4753 pc))
4754 {
4755 tp->suspend.stop_reason
4756 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4757 }
4758 else if (!thread_has_single_step_breakpoints_set (tp)
4759 && currently_stepping (tp))
4760 {
4761 tp->suspend.stop_reason
4762 = TARGET_STOPPED_BY_SINGLE_STEP;
4763 }
4764 }
4765 }
4766
4767 /* Mark the non-executing threads accordingly. In all-stop, all
4768 threads of all processes are stopped when we get any event
4769 reported. In non-stop mode, only the event thread stops. */
4770
4771 static void
4772 mark_non_executing_threads (process_stratum_target *target,
4773 ptid_t event_ptid,
4774 struct target_waitstatus ws)
4775 {
4776 ptid_t mark_ptid;
4777
4778 if (!target_is_non_stop_p ())
4779 mark_ptid = minus_one_ptid;
4780 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4781 || ws.kind == TARGET_WAITKIND_EXITED)
4782 {
4783 /* If we're handling a process exit in non-stop mode, even
4784 though threads haven't been deleted yet, one would think
4785 that there is nothing to do, as threads of the dead process
4786 will be soon deleted, and threads of any other process were
4787 left running. However, on some targets, threads survive a
4788 process exit event. E.g., for the "checkpoint" command,
4789 when the current checkpoint/fork exits, linux-fork.c
4790 automatically switches to another fork from within
4791 target_mourn_inferior, by associating the same
4792 inferior/thread to another fork. We haven't mourned yet at
4793 this point, but we must mark any threads left in the
4794 process as not-executing so that finish_thread_state marks
4795 them stopped (in the user's perspective) if/when we present
4796 the stop to the user. */
4797 mark_ptid = ptid_t (event_ptid.pid ());
4798 }
4799 else
4800 mark_ptid = event_ptid;
4801
4802 set_executing (target, mark_ptid, false);
4803
4804 /* Likewise the resumed flag. */
4805 set_resumed (target, mark_ptid, false);
4806 }
4807
4808 /* Handle one event after stopping threads. If the eventing thread
4809 reports back any interesting event, we leave it pending. If the
4810 eventing thread was in the middle of a displaced step, we
4811 cancel/finish it, and unless the thread's inferior is being
4812 detached, put the thread back in the step-over chain. Returns true
4813 if there are no resumed threads left in the target (thus there's no
4814 point in waiting further), false otherwise. */
4815
4816 static bool
4817 handle_one (const wait_one_event &event)
4818 {
4819 infrun_debug_printf
4820 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4821 target_pid_to_str (event.ptid).c_str ());
4822
4823 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4824 {
4825 /* All resumed threads exited. */
4826 return true;
4827 }
4828 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4829 || event.ws.kind == TARGET_WAITKIND_EXITED
4830 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4831 {
4832 /* One thread/process exited/signalled. */
4833
4834 thread_info *t = nullptr;
4835
4836 /* The target may have reported just a pid. If so, try
4837 the first non-exited thread. */
4838 if (event.ptid.is_pid ())
4839 {
4840 int pid = event.ptid.pid ();
4841 inferior *inf = find_inferior_pid (event.target, pid);
4842 for (thread_info *tp : inf->non_exited_threads ())
4843 {
4844 t = tp;
4845 break;
4846 }
4847
4848 /* If there is no available thread, the event would
4849 have to be appended to a per-inferior event list,
4850 which does not exist (and if it did, we'd have
4851 to adjust run control command to be able to
4852 resume such an inferior). We assert here instead
4853 of going into an infinite loop. */
4854 gdb_assert (t != nullptr);
4855
4856 infrun_debug_printf
4857 ("using %s", target_pid_to_str (t->ptid).c_str ());
4858 }
4859 else
4860 {
4861 t = find_thread_ptid (event.target, event.ptid);
4862 /* Check if this is the first time we see this thread.
4863 Don't bother adding if it individually exited. */
4864 if (t == nullptr
4865 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4866 t = add_thread (event.target, event.ptid);
4867 }
4868
4869 if (t != nullptr)
4870 {
4871 /* Set the threads as non-executing to avoid
4872 another stop attempt on them. */
4873 switch_to_thread_no_regs (t);
4874 mark_non_executing_threads (event.target, event.ptid,
4875 event.ws);
4876 save_waitstatus (t, &event.ws);
4877 t->stop_requested = false;
4878 }
4879 }
4880 else
4881 {
4882 thread_info *t = find_thread_ptid (event.target, event.ptid);
4883 if (t == NULL)
4884 t = add_thread (event.target, event.ptid);
4885
4886 t->stop_requested = 0;
4887 t->executing = 0;
4888 t->resumed = false;
4889 t->control.may_range_step = 0;
4890
4891 /* This may be the first time we see the inferior report
4892 a stop. */
4893 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4894 if (inf->needs_setup)
4895 {
4896 switch_to_thread_no_regs (t);
4897 setup_inferior (0);
4898 }
4899
4900 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4901 && event.ws.value.sig == GDB_SIGNAL_0)
4902 {
4903 /* We caught the event that we intended to catch, so
4904 there's no event pending. */
4905 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4906 t->suspend.waitstatus_pending_p = 0;
4907
4908 if (displaced_step_finish (t, GDB_SIGNAL_0)
4909 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4910 {
4911 /* Add it back to the step-over queue. */
4912 infrun_debug_printf
4913 ("displaced-step of %s canceled",
4914 target_pid_to_str (t->ptid).c_str ());
4915
4916 t->control.trap_expected = 0;
4917 if (!t->inf->detaching)
4918 global_thread_step_over_chain_enqueue (t);
4919 }
4920 }
4921 else
4922 {
4923 enum gdb_signal sig;
4924 struct regcache *regcache;
4925
4926 infrun_debug_printf
4927 ("target_wait %s, saving status for %d.%ld.%ld",
4928 target_waitstatus_to_string (&event.ws).c_str (),
4929 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4930
4931 /* Record for later. */
4932 save_waitstatus (t, &event.ws);
4933
4934 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4935 ? event.ws.value.sig : GDB_SIGNAL_0);
4936
4937 if (displaced_step_finish (t, sig)
4938 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4939 {
4940 /* Add it back to the step-over queue. */
4941 t->control.trap_expected = 0;
4942 if (!t->inf->detaching)
4943 global_thread_step_over_chain_enqueue (t);
4944 }
4945
4946 regcache = get_thread_regcache (t);
4947 t->suspend.stop_pc = regcache_read_pc (regcache);
4948
4949 infrun_debug_printf ("saved stop_pc=%s for %s "
4950 "(currently_stepping=%d)",
4951 paddress (target_gdbarch (),
4952 t->suspend.stop_pc),
4953 target_pid_to_str (t->ptid).c_str (),
4954 currently_stepping (t));
4955 }
4956 }
4957
4958 return false;
4959 }
4960
4961 /* See infrun.h. */
4962
4963 void
4964 stop_all_threads (const char *reason, inferior *inf)
4965 {
4966 /* We may need multiple passes to discover all threads. */
4967 int pass;
4968 int iterations = 0;
4969
4970 gdb_assert (exists_non_stop_target ());
4971
4972 INFRUN_SCOPED_DEBUG_START_END ("reason=%s, inf=%d", reason,
4973 inf != nullptr ? inf->num : -1);
4974
4975 scoped_restore_current_thread restore_thread;
4976
4977 /* Enable thread events on relevant targets. */
4978 for (auto *target : all_non_exited_process_targets ())
4979 {
4980 if (inf != nullptr && inf->process_target () != target)
4981 continue;
4982
4983 switch_to_target_no_thread (target);
4984 target_thread_events (true);
4985 }
4986
4987 SCOPE_EXIT
4988 {
4989 /* Disable thread events on relevant targets. */
4990 for (auto *target : all_non_exited_process_targets ())
4991 {
4992 if (inf != nullptr && inf->process_target () != target)
4993 continue;
4994
4995 switch_to_target_no_thread (target);
4996 target_thread_events (false);
4997 }
4998
4999 /* Use debug_prefixed_printf directly to get a meaningful function
5000 name. */
5001 if (debug_infrun)
5002 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
5003 };
5004
5005 /* Request threads to stop, and then wait for the stops. Because
5006 threads we already know about can spawn more threads while we're
5007 trying to stop them, and we only learn about new threads when we
5008 update the thread list, do this in a loop, and keep iterating
5009 until two passes find no threads that need to be stopped. */
5010 for (pass = 0; pass < 2; pass++, iterations++)
5011 {
5012 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
5013 while (1)
5014 {
5015 int waits_needed = 0;
5016
5017 for (auto *target : all_non_exited_process_targets ())
5018 {
5019 if (inf != nullptr && inf->process_target () != target)
5020 continue;
5021
5022 switch_to_target_no_thread (target);
5023 update_thread_list ();
5024 }
5025
5026 /* Go through all threads looking for threads that we need
5027 to tell the target to stop. */
5028 for (thread_info *t : all_non_exited_threads ())
5029 {
5030 if (inf != nullptr && t->inf != inf)
5031 continue;
5032
5033 /* For a single-target setting with an all-stop target,
5034 we would not even arrive here. For a multi-target
5035 setting, until GDB is able to handle a mixture of
5036 all-stop and non-stop targets, simply skip all-stop
5037 targets' threads. This should be fine due to the
5038 protection of 'check_multi_target_resumption'. */
5039
5040 switch_to_thread_no_regs (t);
5041 if (!target_is_non_stop_p ())
5042 continue;
5043
5044 if (t->executing)
5045 {
5046 /* If already stopping, don't request a stop again.
5047 We just haven't seen the notification yet. */
5048 if (!t->stop_requested)
5049 {
5050 infrun_debug_printf (" %s executing, need stop",
5051 target_pid_to_str (t->ptid).c_str ());
5052 target_stop (t->ptid);
5053 t->stop_requested = 1;
5054 }
5055 else
5056 {
5057 infrun_debug_printf (" %s executing, already stopping",
5058 target_pid_to_str (t->ptid).c_str ());
5059 }
5060
5061 if (t->stop_requested)
5062 waits_needed++;
5063 }
5064 else
5065 {
5066 infrun_debug_printf (" %s not executing",
5067 target_pid_to_str (t->ptid).c_str ());
5068
5069 /* The thread may be not executing, but still be
5070 resumed with a pending status to process. */
5071 t->resumed = false;
5072 }
5073 }
5074
5075 if (waits_needed == 0)
5076 break;
5077
5078 /* If we find new threads on the second iteration, restart
5079 over. We want to see two iterations in a row with all
5080 threads stopped. */
5081 if (pass > 0)
5082 pass = -1;
5083
5084 for (int i = 0; i < waits_needed; i++)
5085 {
5086 wait_one_event event = wait_one ();
5087 if (handle_one (event))
5088 break;
5089 }
5090 }
5091 }
5092 }
5093
5094 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5095
5096 static bool
5097 handle_no_resumed (struct execution_control_state *ecs)
5098 {
5099 if (target_can_async_p ())
5100 {
5101 bool any_sync = false;
5102
5103 for (ui *ui : all_uis ())
5104 {
5105 if (ui->prompt_state == PROMPT_BLOCKED)
5106 {
5107 any_sync = true;
5108 break;
5109 }
5110 }
5111 if (!any_sync)
5112 {
5113 /* There were no unwaited-for children left in the target, but,
5114 we're not synchronously waiting for events either. Just
5115 ignore. */
5116
5117 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5118 prepare_to_wait (ecs);
5119 return true;
5120 }
5121 }
5122
5123 /* Otherwise, if we were running a synchronous execution command, we
5124 may need to cancel it and give the user back the terminal.
5125
5126 In non-stop mode, the target can't tell whether we've already
5127 consumed previous stop events, so it can end up sending us a
5128 no-resumed event like so:
5129
5130 #0 - thread 1 is left stopped
5131
5132 #1 - thread 2 is resumed and hits breakpoint
5133 -> TARGET_WAITKIND_STOPPED
5134
5135 #2 - thread 3 is resumed and exits
5136 this is the last resumed thread, so
5137 -> TARGET_WAITKIND_NO_RESUMED
5138
5139 #3 - gdb processes stop for thread 2 and decides to re-resume
5140 it.
5141
5142 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5143 thread 2 is now resumed, so the event should be ignored.
5144
5145 IOW, if the stop for thread 2 doesn't end a foreground command,
5146 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5147 event. But it could be that the event meant that thread 2 itself
5148 (or whatever other thread was the last resumed thread) exited.
5149
5150 To address this we refresh the thread list and check whether we
5151 have resumed threads _now_. In the example above, this removes
5152 thread 3 from the thread list. If thread 2 was re-resumed, we
5153 ignore this event. If we find no thread resumed, then we cancel
5154 the synchronous command and show "no unwaited-for " to the
5155 user. */
5156
5157 inferior *curr_inf = current_inferior ();
5158
5159 scoped_restore_current_thread restore_thread;
5160
5161 for (auto *target : all_non_exited_process_targets ())
5162 {
5163 switch_to_target_no_thread (target);
5164 update_thread_list ();
5165 }
5166
5167 /* If:
5168
5169 - the current target has no thread executing, and
5170 - the current inferior is native, and
5171 - the current inferior is the one which has the terminal, and
5172 - we did nothing,
5173
5174 then a Ctrl-C from this point on would remain stuck in the
5175 kernel, until a thread resumes and dequeues it. That would
5176 result in the GDB CLI not reacting to Ctrl-C, not able to
5177 interrupt the program. To address this, if the current inferior
5178 no longer has any thread executing, we give the terminal to some
5179 other inferior that has at least one thread executing. */
5180 bool swap_terminal = true;
5181
5182 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5183 whether to report it to the user. */
5184 bool ignore_event = false;
5185
5186 for (thread_info *thread : all_non_exited_threads ())
5187 {
5188 if (swap_terminal && thread->executing)
5189 {
5190 if (thread->inf != curr_inf)
5191 {
5192 target_terminal::ours ();
5193
5194 switch_to_thread (thread);
5195 target_terminal::inferior ();
5196 }
5197 swap_terminal = false;
5198 }
5199
5200 if (!ignore_event
5201 && (thread->executing
5202 || thread->suspend.waitstatus_pending_p))
5203 {
5204 /* Either there were no unwaited-for children left in the
5205 target at some point, but there are now, or some target
5206 other than the eventing one has unwaited-for children
5207 left. Just ignore. */
5208 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5209 "(ignoring: found resumed)");
5210
5211 ignore_event = true;
5212 }
5213
5214 if (ignore_event && !swap_terminal)
5215 break;
5216 }
5217
5218 if (ignore_event)
5219 {
5220 switch_to_inferior_no_thread (curr_inf);
5221 prepare_to_wait (ecs);
5222 return true;
5223 }
5224
5225 /* Go ahead and report the event. */
5226 return false;
5227 }
5228
5229 /* Given an execution control state that has been freshly filled in by
5230 an event from the inferior, figure out what it means and take
5231 appropriate action.
5232
5233 The alternatives are:
5234
5235 1) stop_waiting and return; to really stop and return to the
5236 debugger.
5237
5238 2) keep_going and return; to wait for the next event (set
5239 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5240 once). */
5241
5242 static void
5243 handle_inferior_event (struct execution_control_state *ecs)
5244 {
5245 /* Make sure that all temporary struct value objects that were
5246 created during the handling of the event get deleted at the
5247 end. */
5248 scoped_value_mark free_values;
5249
5250 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5251
5252 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5253 {
5254 /* We had an event in the inferior, but we are not interested in
5255 handling it at this level. The lower layers have already
5256 done what needs to be done, if anything.
5257
5258 One of the possible circumstances for this is when the
5259 inferior produces output for the console. The inferior has
5260 not stopped, and we are ignoring the event. Another possible
5261 circumstance is any event which the lower level knows will be
5262 reported multiple times without an intervening resume. */
5263 prepare_to_wait (ecs);
5264 return;
5265 }
5266
5267 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5268 {
5269 prepare_to_wait (ecs);
5270 return;
5271 }
5272
5273 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5274 && handle_no_resumed (ecs))
5275 return;
5276
5277 /* Cache the last target/ptid/waitstatus. */
5278 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5279
5280 /* Always clear state belonging to the previous time we stopped. */
5281 stop_stack_dummy = STOP_NONE;
5282
5283 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5284 {
5285 /* No unwaited-for children left. IOW, all resumed children
5286 have exited. */
5287 stop_print_frame = false;
5288 stop_waiting (ecs);
5289 return;
5290 }
5291
5292 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5293 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5294 {
5295 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5296 /* If it's a new thread, add it to the thread database. */
5297 if (ecs->event_thread == NULL)
5298 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5299
5300 /* Disable range stepping. If the next step request could use a
5301 range, this will be end up re-enabled then. */
5302 ecs->event_thread->control.may_range_step = 0;
5303 }
5304
5305 /* Dependent on valid ECS->EVENT_THREAD. */
5306 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5307
5308 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5309 reinit_frame_cache ();
5310
5311 breakpoint_retire_moribund ();
5312
5313 /* First, distinguish signals caused by the debugger from signals
5314 that have to do with the program's own actions. Note that
5315 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5316 on the operating system version. Here we detect when a SIGILL or
5317 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5318 something similar for SIGSEGV, since a SIGSEGV will be generated
5319 when we're trying to execute a breakpoint instruction on a
5320 non-executable stack. This happens for call dummy breakpoints
5321 for architectures like SPARC that place call dummies on the
5322 stack. */
5323 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5324 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5325 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5326 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5327 {
5328 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5329
5330 if (breakpoint_inserted_here_p (regcache->aspace (),
5331 regcache_read_pc (regcache)))
5332 {
5333 infrun_debug_printf ("Treating signal as SIGTRAP");
5334 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5335 }
5336 }
5337
5338 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5339
5340 switch (ecs->ws.kind)
5341 {
5342 case TARGET_WAITKIND_LOADED:
5343 {
5344 context_switch (ecs);
5345 /* Ignore gracefully during startup of the inferior, as it might
5346 be the shell which has just loaded some objects, otherwise
5347 add the symbols for the newly loaded objects. Also ignore at
5348 the beginning of an attach or remote session; we will query
5349 the full list of libraries once the connection is
5350 established. */
5351
5352 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5353 if (stop_soon == NO_STOP_QUIETLY)
5354 {
5355 struct regcache *regcache;
5356
5357 regcache = get_thread_regcache (ecs->event_thread);
5358
5359 handle_solib_event ();
5360
5361 ecs->event_thread->control.stop_bpstat
5362 = bpstat_stop_status (regcache->aspace (),
5363 ecs->event_thread->suspend.stop_pc,
5364 ecs->event_thread, &ecs->ws);
5365
5366 if (handle_stop_requested (ecs))
5367 return;
5368
5369 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5370 {
5371 /* A catchpoint triggered. */
5372 process_event_stop_test (ecs);
5373 return;
5374 }
5375
5376 /* If requested, stop when the dynamic linker notifies
5377 gdb of events. This allows the user to get control
5378 and place breakpoints in initializer routines for
5379 dynamically loaded objects (among other things). */
5380 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5381 if (stop_on_solib_events)
5382 {
5383 /* Make sure we print "Stopped due to solib-event" in
5384 normal_stop. */
5385 stop_print_frame = true;
5386
5387 stop_waiting (ecs);
5388 return;
5389 }
5390 }
5391
5392 /* If we are skipping through a shell, or through shared library
5393 loading that we aren't interested in, resume the program. If
5394 we're running the program normally, also resume. */
5395 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5396 {
5397 /* Loading of shared libraries might have changed breakpoint
5398 addresses. Make sure new breakpoints are inserted. */
5399 if (stop_soon == NO_STOP_QUIETLY)
5400 insert_breakpoints ();
5401 resume (GDB_SIGNAL_0);
5402 prepare_to_wait (ecs);
5403 return;
5404 }
5405
5406 /* But stop if we're attaching or setting up a remote
5407 connection. */
5408 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5409 || stop_soon == STOP_QUIETLY_REMOTE)
5410 {
5411 infrun_debug_printf ("quietly stopped");
5412 stop_waiting (ecs);
5413 return;
5414 }
5415
5416 internal_error (__FILE__, __LINE__,
5417 _("unhandled stop_soon: %d"), (int) stop_soon);
5418 }
5419
5420 case TARGET_WAITKIND_SPURIOUS:
5421 if (handle_stop_requested (ecs))
5422 return;
5423 context_switch (ecs);
5424 resume (GDB_SIGNAL_0);
5425 prepare_to_wait (ecs);
5426 return;
5427
5428 case TARGET_WAITKIND_THREAD_CREATED:
5429 if (handle_stop_requested (ecs))
5430 return;
5431 context_switch (ecs);
5432 if (!switch_back_to_stepped_thread (ecs))
5433 keep_going (ecs);
5434 return;
5435
5436 case TARGET_WAITKIND_EXITED:
5437 case TARGET_WAITKIND_SIGNALLED:
5438 {
5439 /* Depending on the system, ecs->ptid may point to a thread or
5440 to a process. On some targets, target_mourn_inferior may
5441 need to have access to the just-exited thread. That is the
5442 case of GNU/Linux's "checkpoint" support, for example.
5443 Call the switch_to_xxx routine as appropriate. */
5444 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5445 if (thr != nullptr)
5446 switch_to_thread (thr);
5447 else
5448 {
5449 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5450 switch_to_inferior_no_thread (inf);
5451 }
5452 }
5453 handle_vfork_child_exec_or_exit (0);
5454 target_terminal::ours (); /* Must do this before mourn anyway. */
5455
5456 /* Clearing any previous state of convenience variables. */
5457 clear_exit_convenience_vars ();
5458
5459 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5460 {
5461 /* Record the exit code in the convenience variable $_exitcode, so
5462 that the user can inspect this again later. */
5463 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5464 (LONGEST) ecs->ws.value.integer);
5465
5466 /* Also record this in the inferior itself. */
5467 current_inferior ()->has_exit_code = 1;
5468 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5469
5470 /* Support the --return-child-result option. */
5471 return_child_result_value = ecs->ws.value.integer;
5472
5473 gdb::observers::exited.notify (ecs->ws.value.integer);
5474 }
5475 else
5476 {
5477 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5478
5479 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5480 {
5481 /* Set the value of the internal variable $_exitsignal,
5482 which holds the signal uncaught by the inferior. */
5483 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5484 gdbarch_gdb_signal_to_target (gdbarch,
5485 ecs->ws.value.sig));
5486 }
5487 else
5488 {
5489 /* We don't have access to the target's method used for
5490 converting between signal numbers (GDB's internal
5491 representation <-> target's representation).
5492 Therefore, we cannot do a good job at displaying this
5493 information to the user. It's better to just warn
5494 her about it (if infrun debugging is enabled), and
5495 give up. */
5496 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5497 "signal number.");
5498 }
5499
5500 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5501 }
5502
5503 gdb_flush (gdb_stdout);
5504 target_mourn_inferior (inferior_ptid);
5505 stop_print_frame = false;
5506 stop_waiting (ecs);
5507 return;
5508
5509 case TARGET_WAITKIND_FORKED:
5510 case TARGET_WAITKIND_VFORKED:
5511 /* Check whether the inferior is displaced stepping. */
5512 {
5513 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5514 struct gdbarch *gdbarch = regcache->arch ();
5515 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5516
5517 /* If this is a fork (child gets its own address space copy)
5518 and some displaced step buffers were in use at the time of
5519 the fork, restore the displaced step buffer bytes in the
5520 child process.
5521
5522 Architectures which support displaced stepping and fork
5523 events must supply an implementation of
5524 gdbarch_displaced_step_restore_all_in_ptid. This is not
5525 enforced during gdbarch validation to support architectures
5526 which support displaced stepping but not forks. */
5527 if (ecs->ws.kind == TARGET_WAITKIND_FORKED
5528 && gdbarch_supports_displaced_stepping (gdbarch))
5529 gdbarch_displaced_step_restore_all_in_ptid
5530 (gdbarch, parent_inf, ecs->ws.value.related_pid);
5531
5532 /* If displaced stepping is supported, and thread ecs->ptid is
5533 displaced stepping. */
5534 if (displaced_step_in_progress_thread (ecs->event_thread))
5535 {
5536 struct regcache *child_regcache;
5537 CORE_ADDR parent_pc;
5538
5539 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5540 indicating that the displaced stepping of syscall instruction
5541 has been done. Perform cleanup for parent process here. Note
5542 that this operation also cleans up the child process for vfork,
5543 because their pages are shared. */
5544 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5545 /* Start a new step-over in another thread if there's one
5546 that needs it. */
5547 start_step_over ();
5548
5549 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5550 the child's PC is also within the scratchpad. Set the child's PC
5551 to the parent's PC value, which has already been fixed up.
5552 FIXME: we use the parent's aspace here, although we're touching
5553 the child, because the child hasn't been added to the inferior
5554 list yet at this point. */
5555
5556 child_regcache
5557 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5558 ecs->ws.value.related_pid,
5559 gdbarch,
5560 parent_inf->aspace);
5561 /* Read PC value of parent process. */
5562 parent_pc = regcache_read_pc (regcache);
5563
5564 displaced_debug_printf ("write child pc from %s to %s",
5565 paddress (gdbarch,
5566 regcache_read_pc (child_regcache)),
5567 paddress (gdbarch, parent_pc));
5568
5569 regcache_write_pc (child_regcache, parent_pc);
5570 }
5571 }
5572
5573 context_switch (ecs);
5574
5575 /* Immediately detach breakpoints from the child before there's
5576 any chance of letting the user delete breakpoints from the
5577 breakpoint lists. If we don't do this early, it's easy to
5578 leave left over traps in the child, vis: "break foo; catch
5579 fork; c; <fork>; del; c; <child calls foo>". We only follow
5580 the fork on the last `continue', and by that time the
5581 breakpoint at "foo" is long gone from the breakpoint table.
5582 If we vforked, then we don't need to unpatch here, since both
5583 parent and child are sharing the same memory pages; we'll
5584 need to unpatch at follow/detach time instead to be certain
5585 that new breakpoints added between catchpoint hit time and
5586 vfork follow are detached. */
5587 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5588 {
5589 /* This won't actually modify the breakpoint list, but will
5590 physically remove the breakpoints from the child. */
5591 detach_breakpoints (ecs->ws.value.related_pid);
5592 }
5593
5594 delete_just_stopped_threads_single_step_breakpoints ();
5595
5596 /* In case the event is caught by a catchpoint, remember that
5597 the event is to be followed at the next resume of the thread,
5598 and not immediately. */
5599 ecs->event_thread->pending_follow = ecs->ws;
5600
5601 ecs->event_thread->suspend.stop_pc
5602 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5603
5604 ecs->event_thread->control.stop_bpstat
5605 = bpstat_stop_status (get_current_regcache ()->aspace (),
5606 ecs->event_thread->suspend.stop_pc,
5607 ecs->event_thread, &ecs->ws);
5608
5609 if (handle_stop_requested (ecs))
5610 return;
5611
5612 /* If no catchpoint triggered for this, then keep going. Note
5613 that we're interested in knowing the bpstat actually causes a
5614 stop, not just if it may explain the signal. Software
5615 watchpoints, for example, always appear in the bpstat. */
5616 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5617 {
5618 bool follow_child
5619 = (follow_fork_mode_string == follow_fork_mode_child);
5620
5621 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5622
5623 process_stratum_target *targ
5624 = ecs->event_thread->inf->process_target ();
5625
5626 bool should_resume = follow_fork ();
5627
5628 /* Note that one of these may be an invalid pointer,
5629 depending on detach_fork. */
5630 thread_info *parent = ecs->event_thread;
5631 thread_info *child
5632 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5633
5634 /* At this point, the parent is marked running, and the
5635 child is marked stopped. */
5636
5637 /* If not resuming the parent, mark it stopped. */
5638 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5639 parent->set_running (false);
5640
5641 /* If resuming the child, mark it running. */
5642 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5643 child->set_running (true);
5644
5645 /* In non-stop mode, also resume the other branch. */
5646 if (!detach_fork && (non_stop
5647 || (sched_multi && target_is_non_stop_p ())))
5648 {
5649 if (follow_child)
5650 switch_to_thread (parent);
5651 else
5652 switch_to_thread (child);
5653
5654 ecs->event_thread = inferior_thread ();
5655 ecs->ptid = inferior_ptid;
5656 keep_going (ecs);
5657 }
5658
5659 if (follow_child)
5660 switch_to_thread (child);
5661 else
5662 switch_to_thread (parent);
5663
5664 ecs->event_thread = inferior_thread ();
5665 ecs->ptid = inferior_ptid;
5666
5667 if (should_resume)
5668 keep_going (ecs);
5669 else
5670 stop_waiting (ecs);
5671 return;
5672 }
5673 process_event_stop_test (ecs);
5674 return;
5675
5676 case TARGET_WAITKIND_VFORK_DONE:
5677 /* Done with the shared memory region. Re-insert breakpoints in
5678 the parent, and keep going. */
5679
5680 context_switch (ecs);
5681
5682 current_inferior ()->thread_waiting_for_vfork_done = nullptr;
5683 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5684
5685 if (handle_stop_requested (ecs))
5686 return;
5687
5688 /* This also takes care of reinserting breakpoints in the
5689 previously locked inferior. */
5690 keep_going (ecs);
5691 return;
5692
5693 case TARGET_WAITKIND_EXECD:
5694
5695 /* Note we can't read registers yet (the stop_pc), because we
5696 don't yet know the inferior's post-exec architecture.
5697 'stop_pc' is explicitly read below instead. */
5698 switch_to_thread_no_regs (ecs->event_thread);
5699
5700 /* Do whatever is necessary to the parent branch of the vfork. */
5701 handle_vfork_child_exec_or_exit (1);
5702
5703 /* This causes the eventpoints and symbol table to be reset.
5704 Must do this now, before trying to determine whether to
5705 stop. */
5706 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5707
5708 /* In follow_exec we may have deleted the original thread and
5709 created a new one. Make sure that the event thread is the
5710 execd thread for that case (this is a nop otherwise). */
5711 ecs->event_thread = inferior_thread ();
5712
5713 ecs->event_thread->suspend.stop_pc
5714 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5715
5716 ecs->event_thread->control.stop_bpstat
5717 = bpstat_stop_status (get_current_regcache ()->aspace (),
5718 ecs->event_thread->suspend.stop_pc,
5719 ecs->event_thread, &ecs->ws);
5720
5721 /* Note that this may be referenced from inside
5722 bpstat_stop_status above, through inferior_has_execd. */
5723 xfree (ecs->ws.value.execd_pathname);
5724 ecs->ws.value.execd_pathname = NULL;
5725
5726 if (handle_stop_requested (ecs))
5727 return;
5728
5729 /* If no catchpoint triggered for this, then keep going. */
5730 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5731 {
5732 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5733 keep_going (ecs);
5734 return;
5735 }
5736 process_event_stop_test (ecs);
5737 return;
5738
5739 /* Be careful not to try to gather much state about a thread
5740 that's in a syscall. It's frequently a losing proposition. */
5741 case TARGET_WAITKIND_SYSCALL_ENTRY:
5742 /* Getting the current syscall number. */
5743 if (handle_syscall_event (ecs) == 0)
5744 process_event_stop_test (ecs);
5745 return;
5746
5747 /* Before examining the threads further, step this thread to
5748 get it entirely out of the syscall. (We get notice of the
5749 event when the thread is just on the verge of exiting a
5750 syscall. Stepping one instruction seems to get it back
5751 into user code.) */
5752 case TARGET_WAITKIND_SYSCALL_RETURN:
5753 if (handle_syscall_event (ecs) == 0)
5754 process_event_stop_test (ecs);
5755 return;
5756
5757 case TARGET_WAITKIND_STOPPED:
5758 handle_signal_stop (ecs);
5759 return;
5760
5761 case TARGET_WAITKIND_NO_HISTORY:
5762 /* Reverse execution: target ran out of history info. */
5763
5764 /* Switch to the stopped thread. */
5765 context_switch (ecs);
5766 infrun_debug_printf ("stopped");
5767
5768 delete_just_stopped_threads_single_step_breakpoints ();
5769 ecs->event_thread->suspend.stop_pc
5770 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5771
5772 if (handle_stop_requested (ecs))
5773 return;
5774
5775 gdb::observers::no_history.notify ();
5776 stop_waiting (ecs);
5777 return;
5778 }
5779 }
5780
5781 /* Restart threads back to what they were trying to do back when we
5782 paused them (because of an in-line step-over or vfork, for example).
5783 The EVENT_THREAD thread is ignored (not restarted).
5784
5785 If INF is non-nullptr, only resume threads from INF. */
5786
5787 static void
5788 restart_threads (struct thread_info *event_thread, inferior *inf)
5789 {
5790 INFRUN_SCOPED_DEBUG_START_END ("event_thread=%s, inf=%d",
5791 event_thread->ptid.to_string ().c_str (),
5792 inf != nullptr ? inf->num : -1);
5793
5794 /* In case the instruction just stepped spawned a new thread. */
5795 update_thread_list ();
5796
5797 for (thread_info *tp : all_non_exited_threads ())
5798 {
5799 if (inf != nullptr && tp->inf != inf)
5800 continue;
5801
5802 if (tp->inf->detaching)
5803 {
5804 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5805 target_pid_to_str (tp->ptid).c_str ());
5806 continue;
5807 }
5808
5809 switch_to_thread_no_regs (tp);
5810
5811 if (tp == event_thread)
5812 {
5813 infrun_debug_printf ("restart threads: [%s] is event thread",
5814 target_pid_to_str (tp->ptid).c_str ());
5815 continue;
5816 }
5817
5818 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5819 {
5820 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5821 target_pid_to_str (tp->ptid).c_str ());
5822 continue;
5823 }
5824
5825 if (tp->resumed)
5826 {
5827 infrun_debug_printf ("restart threads: [%s] resumed",
5828 target_pid_to_str (tp->ptid).c_str ());
5829 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5830 continue;
5831 }
5832
5833 if (thread_is_in_step_over_chain (tp))
5834 {
5835 infrun_debug_printf ("restart threads: [%s] needs step-over",
5836 target_pid_to_str (tp->ptid).c_str ());
5837 gdb_assert (!tp->resumed);
5838 continue;
5839 }
5840
5841
5842 if (tp->suspend.waitstatus_pending_p)
5843 {
5844 infrun_debug_printf ("restart threads: [%s] has pending status",
5845 target_pid_to_str (tp->ptid).c_str ());
5846 tp->resumed = true;
5847 continue;
5848 }
5849
5850 gdb_assert (!tp->stop_requested);
5851
5852 /* If some thread needs to start a step-over at this point, it
5853 should still be in the step-over queue, and thus skipped
5854 above. */
5855 if (thread_still_needs_step_over (tp))
5856 {
5857 internal_error (__FILE__, __LINE__,
5858 "thread [%s] needs a step-over, but not in "
5859 "step-over queue\n",
5860 target_pid_to_str (tp->ptid).c_str ());
5861 }
5862
5863 if (currently_stepping (tp))
5864 {
5865 infrun_debug_printf ("restart threads: [%s] was stepping",
5866 target_pid_to_str (tp->ptid).c_str ());
5867 keep_going_stepped_thread (tp);
5868 }
5869 else
5870 {
5871 struct execution_control_state ecss;
5872 struct execution_control_state *ecs = &ecss;
5873
5874 infrun_debug_printf ("restart threads: [%s] continuing",
5875 target_pid_to_str (tp->ptid).c_str ());
5876 reset_ecs (ecs, tp);
5877 switch_to_thread (tp);
5878 keep_going_pass_signal (ecs);
5879 }
5880 }
5881 }
5882
5883 /* Callback for iterate_over_threads. Find a resumed thread that has
5884 a pending waitstatus. */
5885
5886 static int
5887 resumed_thread_with_pending_status (struct thread_info *tp,
5888 void *arg)
5889 {
5890 return (tp->resumed
5891 && tp->suspend.waitstatus_pending_p);
5892 }
5893
5894 /* Called when we get an event that may finish an in-line or
5895 out-of-line (displaced stepping) step-over started previously.
5896 Return true if the event is processed and we should go back to the
5897 event loop; false if the caller should continue processing the
5898 event. */
5899
5900 static int
5901 finish_step_over (struct execution_control_state *ecs)
5902 {
5903 displaced_step_finish (ecs->event_thread,
5904 ecs->event_thread->suspend.stop_signal);
5905
5906 bool had_step_over_info = step_over_info_valid_p ();
5907
5908 if (had_step_over_info)
5909 {
5910 /* If we're stepping over a breakpoint with all threads locked,
5911 then only the thread that was stepped should be reporting
5912 back an event. */
5913 gdb_assert (ecs->event_thread->control.trap_expected);
5914
5915 clear_step_over_info ();
5916 }
5917
5918 if (!target_is_non_stop_p ())
5919 return 0;
5920
5921 /* Start a new step-over in another thread if there's one that
5922 needs it. */
5923 start_step_over ();
5924
5925 /* If we were stepping over a breakpoint before, and haven't started
5926 a new in-line step-over sequence, then restart all other threads
5927 (except the event thread). We can't do this in all-stop, as then
5928 e.g., we wouldn't be able to issue any other remote packet until
5929 these other threads stop. */
5930 if (had_step_over_info && !step_over_info_valid_p ())
5931 {
5932 struct thread_info *pending;
5933
5934 /* If we only have threads with pending statuses, the restart
5935 below won't restart any thread and so nothing re-inserts the
5936 breakpoint we just stepped over. But we need it inserted
5937 when we later process the pending events, otherwise if
5938 another thread has a pending event for this breakpoint too,
5939 we'd discard its event (because the breakpoint that
5940 originally caused the event was no longer inserted). */
5941 context_switch (ecs);
5942 insert_breakpoints ();
5943
5944 restart_threads (ecs->event_thread);
5945
5946 /* If we have events pending, go through handle_inferior_event
5947 again, picking up a pending event at random. This avoids
5948 thread starvation. */
5949
5950 /* But not if we just stepped over a watchpoint in order to let
5951 the instruction execute so we can evaluate its expression.
5952 The set of watchpoints that triggered is recorded in the
5953 breakpoint objects themselves (see bp->watchpoint_triggered).
5954 If we processed another event first, that other event could
5955 clobber this info. */
5956 if (ecs->event_thread->stepping_over_watchpoint)
5957 return 0;
5958
5959 pending = iterate_over_threads (resumed_thread_with_pending_status,
5960 NULL);
5961 if (pending != NULL)
5962 {
5963 struct thread_info *tp = ecs->event_thread;
5964 struct regcache *regcache;
5965
5966 infrun_debug_printf ("found resumed threads with "
5967 "pending events, saving status");
5968
5969 gdb_assert (pending != tp);
5970
5971 /* Record the event thread's event for later. */
5972 save_waitstatus (tp, &ecs->ws);
5973 /* This was cleared early, by handle_inferior_event. Set it
5974 so this pending event is considered by
5975 do_target_wait. */
5976 tp->resumed = true;
5977
5978 gdb_assert (!tp->executing);
5979
5980 regcache = get_thread_regcache (tp);
5981 tp->suspend.stop_pc = regcache_read_pc (regcache);
5982
5983 infrun_debug_printf ("saved stop_pc=%s for %s "
5984 "(currently_stepping=%d)",
5985 paddress (target_gdbarch (),
5986 tp->suspend.stop_pc),
5987 target_pid_to_str (tp->ptid).c_str (),
5988 currently_stepping (tp));
5989
5990 /* This in-line step-over finished; clear this so we won't
5991 start a new one. This is what handle_signal_stop would
5992 do, if we returned false. */
5993 tp->stepping_over_breakpoint = 0;
5994
5995 /* Wake up the event loop again. */
5996 mark_async_event_handler (infrun_async_inferior_event_token);
5997
5998 prepare_to_wait (ecs);
5999 return 1;
6000 }
6001 }
6002
6003 return 0;
6004 }
6005
6006 /* Come here when the program has stopped with a signal. */
6007
6008 static void
6009 handle_signal_stop (struct execution_control_state *ecs)
6010 {
6011 struct frame_info *frame;
6012 struct gdbarch *gdbarch;
6013 int stopped_by_watchpoint;
6014 enum stop_kind stop_soon;
6015 int random_signal;
6016
6017 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
6018
6019 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
6020
6021 /* Do we need to clean up the state of a thread that has
6022 completed a displaced single-step? (Doing so usually affects
6023 the PC, so do it here, before we set stop_pc.) */
6024 if (finish_step_over (ecs))
6025 return;
6026
6027 /* If we either finished a single-step or hit a breakpoint, but
6028 the user wanted this thread to be stopped, pretend we got a
6029 SIG0 (generic unsignaled stop). */
6030 if (ecs->event_thread->stop_requested
6031 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6032 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6033
6034 ecs->event_thread->suspend.stop_pc
6035 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
6036
6037 context_switch (ecs);
6038
6039 if (deprecated_context_hook)
6040 deprecated_context_hook (ecs->event_thread->global_num);
6041
6042 if (debug_infrun)
6043 {
6044 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
6045 struct gdbarch *reg_gdbarch = regcache->arch ();
6046
6047 infrun_debug_printf ("stop_pc=%s",
6048 paddress (reg_gdbarch,
6049 ecs->event_thread->suspend.stop_pc));
6050 if (target_stopped_by_watchpoint ())
6051 {
6052 CORE_ADDR addr;
6053
6054 infrun_debug_printf ("stopped by watchpoint");
6055
6056 if (target_stopped_data_address (current_inferior ()->top_target (),
6057 &addr))
6058 infrun_debug_printf ("stopped data address=%s",
6059 paddress (reg_gdbarch, addr));
6060 else
6061 infrun_debug_printf ("(no data address available)");
6062 }
6063 }
6064
6065 /* This is originated from start_remote(), start_inferior() and
6066 shared libraries hook functions. */
6067 stop_soon = get_inferior_stop_soon (ecs);
6068 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6069 {
6070 infrun_debug_printf ("quietly stopped");
6071 stop_print_frame = true;
6072 stop_waiting (ecs);
6073 return;
6074 }
6075
6076 /* This originates from attach_command(). We need to overwrite
6077 the stop_signal here, because some kernels don't ignore a
6078 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6079 See more comments in inferior.h. On the other hand, if we
6080 get a non-SIGSTOP, report it to the user - assume the backend
6081 will handle the SIGSTOP if it should show up later.
6082
6083 Also consider that the attach is complete when we see a
6084 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6085 target extended-remote report it instead of a SIGSTOP
6086 (e.g. gdbserver). We already rely on SIGTRAP being our
6087 signal, so this is no exception.
6088
6089 Also consider that the attach is complete when we see a
6090 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6091 the target to stop all threads of the inferior, in case the
6092 low level attach operation doesn't stop them implicitly. If
6093 they weren't stopped implicitly, then the stub will report a
6094 GDB_SIGNAL_0, meaning: stopped for no particular reason
6095 other than GDB's request. */
6096 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6097 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6098 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6099 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6100 {
6101 stop_print_frame = true;
6102 stop_waiting (ecs);
6103 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6104 return;
6105 }
6106
6107 /* At this point, get hold of the now-current thread's frame. */
6108 frame = get_current_frame ();
6109 gdbarch = get_frame_arch (frame);
6110
6111 /* Pull the single step breakpoints out of the target. */
6112 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6113 {
6114 struct regcache *regcache;
6115 CORE_ADDR pc;
6116
6117 regcache = get_thread_regcache (ecs->event_thread);
6118 const address_space *aspace = regcache->aspace ();
6119
6120 pc = regcache_read_pc (regcache);
6121
6122 /* However, before doing so, if this single-step breakpoint was
6123 actually for another thread, set this thread up for moving
6124 past it. */
6125 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6126 aspace, pc))
6127 {
6128 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6129 {
6130 infrun_debug_printf ("[%s] hit another thread's single-step "
6131 "breakpoint",
6132 target_pid_to_str (ecs->ptid).c_str ());
6133 ecs->hit_singlestep_breakpoint = 1;
6134 }
6135 }
6136 else
6137 {
6138 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6139 target_pid_to_str (ecs->ptid).c_str ());
6140 }
6141 }
6142 delete_just_stopped_threads_single_step_breakpoints ();
6143
6144 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6145 && ecs->event_thread->control.trap_expected
6146 && ecs->event_thread->stepping_over_watchpoint)
6147 stopped_by_watchpoint = 0;
6148 else
6149 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6150
6151 /* If necessary, step over this watchpoint. We'll be back to display
6152 it in a moment. */
6153 if (stopped_by_watchpoint
6154 && (target_have_steppable_watchpoint ()
6155 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6156 {
6157 /* At this point, we are stopped at an instruction which has
6158 attempted to write to a piece of memory under control of
6159 a watchpoint. The instruction hasn't actually executed
6160 yet. If we were to evaluate the watchpoint expression
6161 now, we would get the old value, and therefore no change
6162 would seem to have occurred.
6163
6164 In order to make watchpoints work `right', we really need
6165 to complete the memory write, and then evaluate the
6166 watchpoint expression. We do this by single-stepping the
6167 target.
6168
6169 It may not be necessary to disable the watchpoint to step over
6170 it. For example, the PA can (with some kernel cooperation)
6171 single step over a watchpoint without disabling the watchpoint.
6172
6173 It is far more common to need to disable a watchpoint to step
6174 the inferior over it. If we have non-steppable watchpoints,
6175 we must disable the current watchpoint; it's simplest to
6176 disable all watchpoints.
6177
6178 Any breakpoint at PC must also be stepped over -- if there's
6179 one, it will have already triggered before the watchpoint
6180 triggered, and we either already reported it to the user, or
6181 it didn't cause a stop and we called keep_going. In either
6182 case, if there was a breakpoint at PC, we must be trying to
6183 step past it. */
6184 ecs->event_thread->stepping_over_watchpoint = 1;
6185 keep_going (ecs);
6186 return;
6187 }
6188
6189 ecs->event_thread->stepping_over_breakpoint = 0;
6190 ecs->event_thread->stepping_over_watchpoint = 0;
6191 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6192 ecs->event_thread->control.stop_step = 0;
6193 stop_print_frame = true;
6194 stopped_by_random_signal = 0;
6195 bpstat stop_chain = NULL;
6196
6197 /* Hide inlined functions starting here, unless we just performed stepi or
6198 nexti. After stepi and nexti, always show the innermost frame (not any
6199 inline function call sites). */
6200 if (ecs->event_thread->control.step_range_end != 1)
6201 {
6202 const address_space *aspace
6203 = get_thread_regcache (ecs->event_thread)->aspace ();
6204
6205 /* skip_inline_frames is expensive, so we avoid it if we can
6206 determine that the address is one where functions cannot have
6207 been inlined. This improves performance with inferiors that
6208 load a lot of shared libraries, because the solib event
6209 breakpoint is defined as the address of a function (i.e. not
6210 inline). Note that we have to check the previous PC as well
6211 as the current one to catch cases when we have just
6212 single-stepped off a breakpoint prior to reinstating it.
6213 Note that we're assuming that the code we single-step to is
6214 not inline, but that's not definitive: there's nothing
6215 preventing the event breakpoint function from containing
6216 inlined code, and the single-step ending up there. If the
6217 user had set a breakpoint on that inlined code, the missing
6218 skip_inline_frames call would break things. Fortunately
6219 that's an extremely unlikely scenario. */
6220 if (!pc_at_non_inline_function (aspace,
6221 ecs->event_thread->suspend.stop_pc,
6222 &ecs->ws)
6223 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6224 && ecs->event_thread->control.trap_expected
6225 && pc_at_non_inline_function (aspace,
6226 ecs->event_thread->prev_pc,
6227 &ecs->ws)))
6228 {
6229 stop_chain = build_bpstat_chain (aspace,
6230 ecs->event_thread->suspend.stop_pc,
6231 &ecs->ws);
6232 skip_inline_frames (ecs->event_thread, stop_chain);
6233
6234 /* Re-fetch current thread's frame in case that invalidated
6235 the frame cache. */
6236 frame = get_current_frame ();
6237 gdbarch = get_frame_arch (frame);
6238 }
6239 }
6240
6241 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6242 && ecs->event_thread->control.trap_expected
6243 && gdbarch_single_step_through_delay_p (gdbarch)
6244 && currently_stepping (ecs->event_thread))
6245 {
6246 /* We're trying to step off a breakpoint. Turns out that we're
6247 also on an instruction that needs to be stepped multiple
6248 times before it's been fully executing. E.g., architectures
6249 with a delay slot. It needs to be stepped twice, once for
6250 the instruction and once for the delay slot. */
6251 int step_through_delay
6252 = gdbarch_single_step_through_delay (gdbarch, frame);
6253
6254 if (step_through_delay)
6255 infrun_debug_printf ("step through delay");
6256
6257 if (ecs->event_thread->control.step_range_end == 0
6258 && step_through_delay)
6259 {
6260 /* The user issued a continue when stopped at a breakpoint.
6261 Set up for another trap and get out of here. */
6262 ecs->event_thread->stepping_over_breakpoint = 1;
6263 keep_going (ecs);
6264 return;
6265 }
6266 else if (step_through_delay)
6267 {
6268 /* The user issued a step when stopped at a breakpoint.
6269 Maybe we should stop, maybe we should not - the delay
6270 slot *might* correspond to a line of source. In any
6271 case, don't decide that here, just set
6272 ecs->stepping_over_breakpoint, making sure we
6273 single-step again before breakpoints are re-inserted. */
6274 ecs->event_thread->stepping_over_breakpoint = 1;
6275 }
6276 }
6277
6278 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6279 handles this event. */
6280 ecs->event_thread->control.stop_bpstat
6281 = bpstat_stop_status (get_current_regcache ()->aspace (),
6282 ecs->event_thread->suspend.stop_pc,
6283 ecs->event_thread, &ecs->ws, stop_chain);
6284
6285 /* Following in case break condition called a
6286 function. */
6287 stop_print_frame = true;
6288
6289 /* This is where we handle "moribund" watchpoints. Unlike
6290 software breakpoints traps, hardware watchpoint traps are
6291 always distinguishable from random traps. If no high-level
6292 watchpoint is associated with the reported stop data address
6293 anymore, then the bpstat does not explain the signal ---
6294 simply make sure to ignore it if `stopped_by_watchpoint' is
6295 set. */
6296
6297 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6298 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6299 GDB_SIGNAL_TRAP)
6300 && stopped_by_watchpoint)
6301 {
6302 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6303 "ignoring");
6304 }
6305
6306 /* NOTE: cagney/2003-03-29: These checks for a random signal
6307 at one stage in the past included checks for an inferior
6308 function call's call dummy's return breakpoint. The original
6309 comment, that went with the test, read:
6310
6311 ``End of a stack dummy. Some systems (e.g. Sony news) give
6312 another signal besides SIGTRAP, so check here as well as
6313 above.''
6314
6315 If someone ever tries to get call dummys on a
6316 non-executable stack to work (where the target would stop
6317 with something like a SIGSEGV), then those tests might need
6318 to be re-instated. Given, however, that the tests were only
6319 enabled when momentary breakpoints were not being used, I
6320 suspect that it won't be the case.
6321
6322 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6323 be necessary for call dummies on a non-executable stack on
6324 SPARC. */
6325
6326 /* See if the breakpoints module can explain the signal. */
6327 random_signal
6328 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6329 ecs->event_thread->suspend.stop_signal);
6330
6331 /* Maybe this was a trap for a software breakpoint that has since
6332 been removed. */
6333 if (random_signal && target_stopped_by_sw_breakpoint ())
6334 {
6335 if (gdbarch_program_breakpoint_here_p (gdbarch,
6336 ecs->event_thread->suspend.stop_pc))
6337 {
6338 struct regcache *regcache;
6339 int decr_pc;
6340
6341 /* Re-adjust PC to what the program would see if GDB was not
6342 debugging it. */
6343 regcache = get_thread_regcache (ecs->event_thread);
6344 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6345 if (decr_pc != 0)
6346 {
6347 gdb::optional<scoped_restore_tmpl<int>>
6348 restore_operation_disable;
6349
6350 if (record_full_is_used ())
6351 restore_operation_disable.emplace
6352 (record_full_gdb_operation_disable_set ());
6353
6354 regcache_write_pc (regcache,
6355 ecs->event_thread->suspend.stop_pc + decr_pc);
6356 }
6357 }
6358 else
6359 {
6360 /* A delayed software breakpoint event. Ignore the trap. */
6361 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6362 random_signal = 0;
6363 }
6364 }
6365
6366 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6367 has since been removed. */
6368 if (random_signal && target_stopped_by_hw_breakpoint ())
6369 {
6370 /* A delayed hardware breakpoint event. Ignore the trap. */
6371 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6372 "trap, ignoring");
6373 random_signal = 0;
6374 }
6375
6376 /* If not, perhaps stepping/nexting can. */
6377 if (random_signal)
6378 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6379 && currently_stepping (ecs->event_thread));
6380
6381 /* Perhaps the thread hit a single-step breakpoint of _another_
6382 thread. Single-step breakpoints are transparent to the
6383 breakpoints module. */
6384 if (random_signal)
6385 random_signal = !ecs->hit_singlestep_breakpoint;
6386
6387 /* No? Perhaps we got a moribund watchpoint. */
6388 if (random_signal)
6389 random_signal = !stopped_by_watchpoint;
6390
6391 /* Always stop if the user explicitly requested this thread to
6392 remain stopped. */
6393 if (ecs->event_thread->stop_requested)
6394 {
6395 random_signal = 1;
6396 infrun_debug_printf ("user-requested stop");
6397 }
6398
6399 /* For the program's own signals, act according to
6400 the signal handling tables. */
6401
6402 if (random_signal)
6403 {
6404 /* Signal not for debugging purposes. */
6405 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6406
6407 infrun_debug_printf ("random signal (%s)",
6408 gdb_signal_to_symbol_string (stop_signal));
6409
6410 stopped_by_random_signal = 1;
6411
6412 /* Always stop on signals if we're either just gaining control
6413 of the program, or the user explicitly requested this thread
6414 to remain stopped. */
6415 if (stop_soon != NO_STOP_QUIETLY
6416 || ecs->event_thread->stop_requested
6417 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
6418 {
6419 stop_waiting (ecs);
6420 return;
6421 }
6422
6423 /* Notify observers the signal has "handle print" set. Note we
6424 returned early above if stopping; normal_stop handles the
6425 printing in that case. */
6426 if (signal_print[ecs->event_thread->suspend.stop_signal])
6427 {
6428 /* The signal table tells us to print about this signal. */
6429 target_terminal::ours_for_output ();
6430 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6431 target_terminal::inferior ();
6432 }
6433
6434 /* Clear the signal if it should not be passed. */
6435 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6436 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6437
6438 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6439 && ecs->event_thread->control.trap_expected
6440 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6441 {
6442 /* We were just starting a new sequence, attempting to
6443 single-step off of a breakpoint and expecting a SIGTRAP.
6444 Instead this signal arrives. This signal will take us out
6445 of the stepping range so GDB needs to remember to, when
6446 the signal handler returns, resume stepping off that
6447 breakpoint. */
6448 /* To simplify things, "continue" is forced to use the same
6449 code paths as single-step - set a breakpoint at the
6450 signal return address and then, once hit, step off that
6451 breakpoint. */
6452 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6453
6454 insert_hp_step_resume_breakpoint_at_frame (frame);
6455 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6456 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6457 ecs->event_thread->control.trap_expected = 0;
6458
6459 /* If we were nexting/stepping some other thread, switch to
6460 it, so that we don't continue it, losing control. */
6461 if (!switch_back_to_stepped_thread (ecs))
6462 keep_going (ecs);
6463 return;
6464 }
6465
6466 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6467 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6468 ecs->event_thread)
6469 || ecs->event_thread->control.step_range_end == 1)
6470 && frame_id_eq (get_stack_frame_id (frame),
6471 ecs->event_thread->control.step_stack_frame_id)
6472 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6473 {
6474 /* The inferior is about to take a signal that will take it
6475 out of the single step range. Set a breakpoint at the
6476 current PC (which is presumably where the signal handler
6477 will eventually return) and then allow the inferior to
6478 run free.
6479
6480 Note that this is only needed for a signal delivered
6481 while in the single-step range. Nested signals aren't a
6482 problem as they eventually all return. */
6483 infrun_debug_printf ("signal may take us out of single-step range");
6484
6485 clear_step_over_info ();
6486 insert_hp_step_resume_breakpoint_at_frame (frame);
6487 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6488 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6489 ecs->event_thread->control.trap_expected = 0;
6490 keep_going (ecs);
6491 return;
6492 }
6493
6494 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6495 when either there's a nested signal, or when there's a
6496 pending signal enabled just as the signal handler returns
6497 (leaving the inferior at the step-resume-breakpoint without
6498 actually executing it). Either way continue until the
6499 breakpoint is really hit. */
6500
6501 if (!switch_back_to_stepped_thread (ecs))
6502 {
6503 infrun_debug_printf ("random signal, keep going");
6504
6505 keep_going (ecs);
6506 }
6507 return;
6508 }
6509
6510 process_event_stop_test (ecs);
6511 }
6512
6513 /* Come here when we've got some debug event / signal we can explain
6514 (IOW, not a random signal), and test whether it should cause a
6515 stop, or whether we should resume the inferior (transparently).
6516 E.g., could be a breakpoint whose condition evaluates false; we
6517 could be still stepping within the line; etc. */
6518
6519 static void
6520 process_event_stop_test (struct execution_control_state *ecs)
6521 {
6522 struct symtab_and_line stop_pc_sal;
6523 struct frame_info *frame;
6524 struct gdbarch *gdbarch;
6525 CORE_ADDR jmp_buf_pc;
6526 struct bpstat_what what;
6527
6528 /* Handle cases caused by hitting a breakpoint. */
6529
6530 frame = get_current_frame ();
6531 gdbarch = get_frame_arch (frame);
6532
6533 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6534
6535 if (what.call_dummy)
6536 {
6537 stop_stack_dummy = what.call_dummy;
6538 }
6539
6540 /* A few breakpoint types have callbacks associated (e.g.,
6541 bp_jit_event). Run them now. */
6542 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6543
6544 /* If we hit an internal event that triggers symbol changes, the
6545 current frame will be invalidated within bpstat_what (e.g., if we
6546 hit an internal solib event). Re-fetch it. */
6547 frame = get_current_frame ();
6548 gdbarch = get_frame_arch (frame);
6549
6550 switch (what.main_action)
6551 {
6552 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6553 /* If we hit the breakpoint at longjmp while stepping, we
6554 install a momentary breakpoint at the target of the
6555 jmp_buf. */
6556
6557 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6558
6559 ecs->event_thread->stepping_over_breakpoint = 1;
6560
6561 if (what.is_longjmp)
6562 {
6563 struct value *arg_value;
6564
6565 /* If we set the longjmp breakpoint via a SystemTap probe,
6566 then use it to extract the arguments. The destination PC
6567 is the third argument to the probe. */
6568 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6569 if (arg_value)
6570 {
6571 jmp_buf_pc = value_as_address (arg_value);
6572 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6573 }
6574 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6575 || !gdbarch_get_longjmp_target (gdbarch,
6576 frame, &jmp_buf_pc))
6577 {
6578 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6579 "(!gdbarch_get_longjmp_target)");
6580 keep_going (ecs);
6581 return;
6582 }
6583
6584 /* Insert a breakpoint at resume address. */
6585 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6586 }
6587 else
6588 check_exception_resume (ecs, frame);
6589 keep_going (ecs);
6590 return;
6591
6592 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6593 {
6594 struct frame_info *init_frame;
6595
6596 /* There are several cases to consider.
6597
6598 1. The initiating frame no longer exists. In this case we
6599 must stop, because the exception or longjmp has gone too
6600 far.
6601
6602 2. The initiating frame exists, and is the same as the
6603 current frame. We stop, because the exception or longjmp
6604 has been caught.
6605
6606 3. The initiating frame exists and is different from the
6607 current frame. This means the exception or longjmp has
6608 been caught beneath the initiating frame, so keep going.
6609
6610 4. longjmp breakpoint has been placed just to protect
6611 against stale dummy frames and user is not interested in
6612 stopping around longjmps. */
6613
6614 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6615
6616 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6617 != NULL);
6618 delete_exception_resume_breakpoint (ecs->event_thread);
6619
6620 if (what.is_longjmp)
6621 {
6622 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6623
6624 if (!frame_id_p (ecs->event_thread->initiating_frame))
6625 {
6626 /* Case 4. */
6627 keep_going (ecs);
6628 return;
6629 }
6630 }
6631
6632 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6633
6634 if (init_frame)
6635 {
6636 struct frame_id current_id
6637 = get_frame_id (get_current_frame ());
6638 if (frame_id_eq (current_id,
6639 ecs->event_thread->initiating_frame))
6640 {
6641 /* Case 2. Fall through. */
6642 }
6643 else
6644 {
6645 /* Case 3. */
6646 keep_going (ecs);
6647 return;
6648 }
6649 }
6650
6651 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6652 exists. */
6653 delete_step_resume_breakpoint (ecs->event_thread);
6654
6655 end_stepping_range (ecs);
6656 }
6657 return;
6658
6659 case BPSTAT_WHAT_SINGLE:
6660 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6661 ecs->event_thread->stepping_over_breakpoint = 1;
6662 /* Still need to check other stuff, at least the case where we
6663 are stepping and step out of the right range. */
6664 break;
6665
6666 case BPSTAT_WHAT_STEP_RESUME:
6667 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6668
6669 delete_step_resume_breakpoint (ecs->event_thread);
6670 if (ecs->event_thread->control.proceed_to_finish
6671 && execution_direction == EXEC_REVERSE)
6672 {
6673 struct thread_info *tp = ecs->event_thread;
6674
6675 /* We are finishing a function in reverse, and just hit the
6676 step-resume breakpoint at the start address of the
6677 function, and we're almost there -- just need to back up
6678 by one more single-step, which should take us back to the
6679 function call. */
6680 tp->control.step_range_start = tp->control.step_range_end = 1;
6681 keep_going (ecs);
6682 return;
6683 }
6684 fill_in_stop_func (gdbarch, ecs);
6685 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6686 && execution_direction == EXEC_REVERSE)
6687 {
6688 /* We are stepping over a function call in reverse, and just
6689 hit the step-resume breakpoint at the start address of
6690 the function. Go back to single-stepping, which should
6691 take us back to the function call. */
6692 ecs->event_thread->stepping_over_breakpoint = 1;
6693 keep_going (ecs);
6694 return;
6695 }
6696 break;
6697
6698 case BPSTAT_WHAT_STOP_NOISY:
6699 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6700 stop_print_frame = true;
6701
6702 /* Assume the thread stopped for a breakpoint. We'll still check
6703 whether a/the breakpoint is there when the thread is next
6704 resumed. */
6705 ecs->event_thread->stepping_over_breakpoint = 1;
6706
6707 stop_waiting (ecs);
6708 return;
6709
6710 case BPSTAT_WHAT_STOP_SILENT:
6711 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6712 stop_print_frame = false;
6713
6714 /* Assume the thread stopped for a breakpoint. We'll still check
6715 whether a/the breakpoint is there when the thread is next
6716 resumed. */
6717 ecs->event_thread->stepping_over_breakpoint = 1;
6718 stop_waiting (ecs);
6719 return;
6720
6721 case BPSTAT_WHAT_HP_STEP_RESUME:
6722 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6723
6724 delete_step_resume_breakpoint (ecs->event_thread);
6725 if (ecs->event_thread->step_after_step_resume_breakpoint)
6726 {
6727 /* Back when the step-resume breakpoint was inserted, we
6728 were trying to single-step off a breakpoint. Go back to
6729 doing that. */
6730 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6731 ecs->event_thread->stepping_over_breakpoint = 1;
6732 keep_going (ecs);
6733 return;
6734 }
6735 break;
6736
6737 case BPSTAT_WHAT_KEEP_CHECKING:
6738 break;
6739 }
6740
6741 /* If we stepped a permanent breakpoint and we had a high priority
6742 step-resume breakpoint for the address we stepped, but we didn't
6743 hit it, then we must have stepped into the signal handler. The
6744 step-resume was only necessary to catch the case of _not_
6745 stepping into the handler, so delete it, and fall through to
6746 checking whether the step finished. */
6747 if (ecs->event_thread->stepped_breakpoint)
6748 {
6749 struct breakpoint *sr_bp
6750 = ecs->event_thread->control.step_resume_breakpoint;
6751
6752 if (sr_bp != NULL
6753 && sr_bp->loc->permanent
6754 && sr_bp->type == bp_hp_step_resume
6755 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6756 {
6757 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6758 delete_step_resume_breakpoint (ecs->event_thread);
6759 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6760 }
6761 }
6762
6763 /* We come here if we hit a breakpoint but should not stop for it.
6764 Possibly we also were stepping and should stop for that. So fall
6765 through and test for stepping. But, if not stepping, do not
6766 stop. */
6767
6768 /* In all-stop mode, if we're currently stepping but have stopped in
6769 some other thread, we need to switch back to the stepped thread. */
6770 if (switch_back_to_stepped_thread (ecs))
6771 return;
6772
6773 if (ecs->event_thread->control.step_resume_breakpoint)
6774 {
6775 infrun_debug_printf ("step-resume breakpoint is inserted");
6776
6777 /* Having a step-resume breakpoint overrides anything
6778 else having to do with stepping commands until
6779 that breakpoint is reached. */
6780 keep_going (ecs);
6781 return;
6782 }
6783
6784 if (ecs->event_thread->control.step_range_end == 0)
6785 {
6786 infrun_debug_printf ("no stepping, continue");
6787 /* Likewise if we aren't even stepping. */
6788 keep_going (ecs);
6789 return;
6790 }
6791
6792 /* Re-fetch current thread's frame in case the code above caused
6793 the frame cache to be re-initialized, making our FRAME variable
6794 a dangling pointer. */
6795 frame = get_current_frame ();
6796 gdbarch = get_frame_arch (frame);
6797 fill_in_stop_func (gdbarch, ecs);
6798
6799 /* If stepping through a line, keep going if still within it.
6800
6801 Note that step_range_end is the address of the first instruction
6802 beyond the step range, and NOT the address of the last instruction
6803 within it!
6804
6805 Note also that during reverse execution, we may be stepping
6806 through a function epilogue and therefore must detect when
6807 the current-frame changes in the middle of a line. */
6808
6809 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6810 ecs->event_thread)
6811 && (execution_direction != EXEC_REVERSE
6812 || frame_id_eq (get_frame_id (frame),
6813 ecs->event_thread->control.step_frame_id)))
6814 {
6815 infrun_debug_printf
6816 ("stepping inside range [%s-%s]",
6817 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6818 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6819
6820 /* Tentatively re-enable range stepping; `resume' disables it if
6821 necessary (e.g., if we're stepping over a breakpoint or we
6822 have software watchpoints). */
6823 ecs->event_thread->control.may_range_step = 1;
6824
6825 /* When stepping backward, stop at beginning of line range
6826 (unless it's the function entry point, in which case
6827 keep going back to the call point). */
6828 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6829 if (stop_pc == ecs->event_thread->control.step_range_start
6830 && stop_pc != ecs->stop_func_start
6831 && execution_direction == EXEC_REVERSE)
6832 end_stepping_range (ecs);
6833 else
6834 keep_going (ecs);
6835
6836 return;
6837 }
6838
6839 /* We stepped out of the stepping range. */
6840
6841 /* If we are stepping at the source level and entered the runtime
6842 loader dynamic symbol resolution code...
6843
6844 EXEC_FORWARD: we keep on single stepping until we exit the run
6845 time loader code and reach the callee's address.
6846
6847 EXEC_REVERSE: we've already executed the callee (backward), and
6848 the runtime loader code is handled just like any other
6849 undebuggable function call. Now we need only keep stepping
6850 backward through the trampoline code, and that's handled further
6851 down, so there is nothing for us to do here. */
6852
6853 if (execution_direction != EXEC_REVERSE
6854 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6855 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6856 {
6857 CORE_ADDR pc_after_resolver =
6858 gdbarch_skip_solib_resolver (gdbarch,
6859 ecs->event_thread->suspend.stop_pc);
6860
6861 infrun_debug_printf ("stepped into dynsym resolve code");
6862
6863 if (pc_after_resolver)
6864 {
6865 /* Set up a step-resume breakpoint at the address
6866 indicated by SKIP_SOLIB_RESOLVER. */
6867 symtab_and_line sr_sal;
6868 sr_sal.pc = pc_after_resolver;
6869 sr_sal.pspace = get_frame_program_space (frame);
6870
6871 insert_step_resume_breakpoint_at_sal (gdbarch,
6872 sr_sal, null_frame_id);
6873 }
6874
6875 keep_going (ecs);
6876 return;
6877 }
6878
6879 /* Step through an indirect branch thunk. */
6880 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6881 && gdbarch_in_indirect_branch_thunk (gdbarch,
6882 ecs->event_thread->suspend.stop_pc))
6883 {
6884 infrun_debug_printf ("stepped into indirect branch thunk");
6885 keep_going (ecs);
6886 return;
6887 }
6888
6889 if (ecs->event_thread->control.step_range_end != 1
6890 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6891 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6892 && get_frame_type (frame) == SIGTRAMP_FRAME)
6893 {
6894 infrun_debug_printf ("stepped into signal trampoline");
6895 /* The inferior, while doing a "step" or "next", has ended up in
6896 a signal trampoline (either by a signal being delivered or by
6897 the signal handler returning). Just single-step until the
6898 inferior leaves the trampoline (either by calling the handler
6899 or returning). */
6900 keep_going (ecs);
6901 return;
6902 }
6903
6904 /* If we're in the return path from a shared library trampoline,
6905 we want to proceed through the trampoline when stepping. */
6906 /* macro/2012-04-25: This needs to come before the subroutine
6907 call check below as on some targets return trampolines look
6908 like subroutine calls (MIPS16 return thunks). */
6909 if (gdbarch_in_solib_return_trampoline (gdbarch,
6910 ecs->event_thread->suspend.stop_pc,
6911 ecs->stop_func_name)
6912 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6913 {
6914 /* Determine where this trampoline returns. */
6915 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6916 CORE_ADDR real_stop_pc
6917 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6918
6919 infrun_debug_printf ("stepped into solib return tramp");
6920
6921 /* Only proceed through if we know where it's going. */
6922 if (real_stop_pc)
6923 {
6924 /* And put the step-breakpoint there and go until there. */
6925 symtab_and_line sr_sal;
6926 sr_sal.pc = real_stop_pc;
6927 sr_sal.section = find_pc_overlay (sr_sal.pc);
6928 sr_sal.pspace = get_frame_program_space (frame);
6929
6930 /* Do not specify what the fp should be when we stop since
6931 on some machines the prologue is where the new fp value
6932 is established. */
6933 insert_step_resume_breakpoint_at_sal (gdbarch,
6934 sr_sal, null_frame_id);
6935
6936 /* Restart without fiddling with the step ranges or
6937 other state. */
6938 keep_going (ecs);
6939 return;
6940 }
6941 }
6942
6943 /* Check for subroutine calls. The check for the current frame
6944 equalling the step ID is not necessary - the check of the
6945 previous frame's ID is sufficient - but it is a common case and
6946 cheaper than checking the previous frame's ID.
6947
6948 NOTE: frame_id_eq will never report two invalid frame IDs as
6949 being equal, so to get into this block, both the current and
6950 previous frame must have valid frame IDs. */
6951 /* The outer_frame_id check is a heuristic to detect stepping
6952 through startup code. If we step over an instruction which
6953 sets the stack pointer from an invalid value to a valid value,
6954 we may detect that as a subroutine call from the mythical
6955 "outermost" function. This could be fixed by marking
6956 outermost frames as !stack_p,code_p,special_p. Then the
6957 initial outermost frame, before sp was valid, would
6958 have code_addr == &_start. See the comment in frame_id_eq
6959 for more. */
6960 if (!frame_id_eq (get_stack_frame_id (frame),
6961 ecs->event_thread->control.step_stack_frame_id)
6962 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6963 ecs->event_thread->control.step_stack_frame_id)
6964 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6965 outer_frame_id)
6966 || (ecs->event_thread->control.step_start_function
6967 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6968 {
6969 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6970 CORE_ADDR real_stop_pc;
6971
6972 infrun_debug_printf ("stepped into subroutine");
6973
6974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6975 {
6976 /* I presume that step_over_calls is only 0 when we're
6977 supposed to be stepping at the assembly language level
6978 ("stepi"). Just stop. */
6979 /* And this works the same backward as frontward. MVS */
6980 end_stepping_range (ecs);
6981 return;
6982 }
6983
6984 /* Reverse stepping through solib trampolines. */
6985
6986 if (execution_direction == EXEC_REVERSE
6987 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6988 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6989 || (ecs->stop_func_start == 0
6990 && in_solib_dynsym_resolve_code (stop_pc))))
6991 {
6992 /* Any solib trampoline code can be handled in reverse
6993 by simply continuing to single-step. We have already
6994 executed the solib function (backwards), and a few
6995 steps will take us back through the trampoline to the
6996 caller. */
6997 keep_going (ecs);
6998 return;
6999 }
7000
7001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7002 {
7003 /* We're doing a "next".
7004
7005 Normal (forward) execution: set a breakpoint at the
7006 callee's return address (the address at which the caller
7007 will resume).
7008
7009 Reverse (backward) execution. set the step-resume
7010 breakpoint at the start of the function that we just
7011 stepped into (backwards), and continue to there. When we
7012 get there, we'll need to single-step back to the caller. */
7013
7014 if (execution_direction == EXEC_REVERSE)
7015 {
7016 /* If we're already at the start of the function, we've either
7017 just stepped backward into a single instruction function,
7018 or stepped back out of a signal handler to the first instruction
7019 of the function. Just keep going, which will single-step back
7020 to the caller. */
7021 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
7022 {
7023 /* Normal function call return (static or dynamic). */
7024 symtab_and_line sr_sal;
7025 sr_sal.pc = ecs->stop_func_start;
7026 sr_sal.pspace = get_frame_program_space (frame);
7027 insert_step_resume_breakpoint_at_sal (gdbarch,
7028 sr_sal, null_frame_id);
7029 }
7030 }
7031 else
7032 insert_step_resume_breakpoint_at_caller (frame);
7033
7034 keep_going (ecs);
7035 return;
7036 }
7037
7038 /* If we are in a function call trampoline (a stub between the
7039 calling routine and the real function), locate the real
7040 function. That's what tells us (a) whether we want to step
7041 into it at all, and (b) what prologue we want to run to the
7042 end of, if we do step into it. */
7043 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7044 if (real_stop_pc == 0)
7045 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7046 if (real_stop_pc != 0)
7047 ecs->stop_func_start = real_stop_pc;
7048
7049 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7050 {
7051 symtab_and_line sr_sal;
7052 sr_sal.pc = ecs->stop_func_start;
7053 sr_sal.pspace = get_frame_program_space (frame);
7054
7055 insert_step_resume_breakpoint_at_sal (gdbarch,
7056 sr_sal, null_frame_id);
7057 keep_going (ecs);
7058 return;
7059 }
7060
7061 /* If we have line number information for the function we are
7062 thinking of stepping into and the function isn't on the skip
7063 list, step into it.
7064
7065 If there are several symtabs at that PC (e.g. with include
7066 files), just want to know whether *any* of them have line
7067 numbers. find_pc_line handles this. */
7068 {
7069 struct symtab_and_line tmp_sal;
7070
7071 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7072 if (tmp_sal.line != 0
7073 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7074 tmp_sal)
7075 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7076 {
7077 if (execution_direction == EXEC_REVERSE)
7078 handle_step_into_function_backward (gdbarch, ecs);
7079 else
7080 handle_step_into_function (gdbarch, ecs);
7081 return;
7082 }
7083 }
7084
7085 /* If we have no line number and the step-stop-if-no-debug is
7086 set, we stop the step so that the user has a chance to switch
7087 in assembly mode. */
7088 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7089 && step_stop_if_no_debug)
7090 {
7091 end_stepping_range (ecs);
7092 return;
7093 }
7094
7095 if (execution_direction == EXEC_REVERSE)
7096 {
7097 /* If we're already at the start of the function, we've either just
7098 stepped backward into a single instruction function without line
7099 number info, or stepped back out of a signal handler to the first
7100 instruction of the function without line number info. Just keep
7101 going, which will single-step back to the caller. */
7102 if (ecs->stop_func_start != stop_pc)
7103 {
7104 /* Set a breakpoint at callee's start address.
7105 From there we can step once and be back in the caller. */
7106 symtab_and_line sr_sal;
7107 sr_sal.pc = ecs->stop_func_start;
7108 sr_sal.pspace = get_frame_program_space (frame);
7109 insert_step_resume_breakpoint_at_sal (gdbarch,
7110 sr_sal, null_frame_id);
7111 }
7112 }
7113 else
7114 /* Set a breakpoint at callee's return address (the address
7115 at which the caller will resume). */
7116 insert_step_resume_breakpoint_at_caller (frame);
7117
7118 keep_going (ecs);
7119 return;
7120 }
7121
7122 /* Reverse stepping through solib trampolines. */
7123
7124 if (execution_direction == EXEC_REVERSE
7125 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7126 {
7127 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7128
7129 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7130 || (ecs->stop_func_start == 0
7131 && in_solib_dynsym_resolve_code (stop_pc)))
7132 {
7133 /* Any solib trampoline code can be handled in reverse
7134 by simply continuing to single-step. We have already
7135 executed the solib function (backwards), and a few
7136 steps will take us back through the trampoline to the
7137 caller. */
7138 keep_going (ecs);
7139 return;
7140 }
7141 else if (in_solib_dynsym_resolve_code (stop_pc))
7142 {
7143 /* Stepped backward into the solib dynsym resolver.
7144 Set a breakpoint at its start and continue, then
7145 one more step will take us out. */
7146 symtab_and_line sr_sal;
7147 sr_sal.pc = ecs->stop_func_start;
7148 sr_sal.pspace = get_frame_program_space (frame);
7149 insert_step_resume_breakpoint_at_sal (gdbarch,
7150 sr_sal, null_frame_id);
7151 keep_going (ecs);
7152 return;
7153 }
7154 }
7155
7156 /* This always returns the sal for the inner-most frame when we are in a
7157 stack of inlined frames, even if GDB actually believes that it is in a
7158 more outer frame. This is checked for below by calls to
7159 inline_skipped_frames. */
7160 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7161
7162 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7163 the trampoline processing logic, however, there are some trampolines
7164 that have no names, so we should do trampoline handling first. */
7165 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7166 && ecs->stop_func_name == NULL
7167 && stop_pc_sal.line == 0)
7168 {
7169 infrun_debug_printf ("stepped into undebuggable function");
7170
7171 /* The inferior just stepped into, or returned to, an
7172 undebuggable function (where there is no debugging information
7173 and no line number corresponding to the address where the
7174 inferior stopped). Since we want to skip this kind of code,
7175 we keep going until the inferior returns from this
7176 function - unless the user has asked us not to (via
7177 set step-mode) or we no longer know how to get back
7178 to the call site. */
7179 if (step_stop_if_no_debug
7180 || !frame_id_p (frame_unwind_caller_id (frame)))
7181 {
7182 /* If we have no line number and the step-stop-if-no-debug
7183 is set, we stop the step so that the user has a chance to
7184 switch in assembly mode. */
7185 end_stepping_range (ecs);
7186 return;
7187 }
7188 else
7189 {
7190 /* Set a breakpoint at callee's return address (the address
7191 at which the caller will resume). */
7192 insert_step_resume_breakpoint_at_caller (frame);
7193 keep_going (ecs);
7194 return;
7195 }
7196 }
7197
7198 if (ecs->event_thread->control.step_range_end == 1)
7199 {
7200 /* It is stepi or nexti. We always want to stop stepping after
7201 one instruction. */
7202 infrun_debug_printf ("stepi/nexti");
7203 end_stepping_range (ecs);
7204 return;
7205 }
7206
7207 if (stop_pc_sal.line == 0)
7208 {
7209 /* We have no line number information. That means to stop
7210 stepping (does this always happen right after one instruction,
7211 when we do "s" in a function with no line numbers,
7212 or can this happen as a result of a return or longjmp?). */
7213 infrun_debug_printf ("line number info");
7214 end_stepping_range (ecs);
7215 return;
7216 }
7217
7218 /* Look for "calls" to inlined functions, part one. If the inline
7219 frame machinery detected some skipped call sites, we have entered
7220 a new inline function. */
7221
7222 if (frame_id_eq (get_frame_id (get_current_frame ()),
7223 ecs->event_thread->control.step_frame_id)
7224 && inline_skipped_frames (ecs->event_thread))
7225 {
7226 infrun_debug_printf ("stepped into inlined function");
7227
7228 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7229
7230 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7231 {
7232 /* For "step", we're going to stop. But if the call site
7233 for this inlined function is on the same source line as
7234 we were previously stepping, go down into the function
7235 first. Otherwise stop at the call site. */
7236
7237 if (call_sal.line == ecs->event_thread->current_line
7238 && call_sal.symtab == ecs->event_thread->current_symtab)
7239 {
7240 step_into_inline_frame (ecs->event_thread);
7241 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7242 {
7243 keep_going (ecs);
7244 return;
7245 }
7246 }
7247
7248 end_stepping_range (ecs);
7249 return;
7250 }
7251 else
7252 {
7253 /* For "next", we should stop at the call site if it is on a
7254 different source line. Otherwise continue through the
7255 inlined function. */
7256 if (call_sal.line == ecs->event_thread->current_line
7257 && call_sal.symtab == ecs->event_thread->current_symtab)
7258 keep_going (ecs);
7259 else
7260 end_stepping_range (ecs);
7261 return;
7262 }
7263 }
7264
7265 /* Look for "calls" to inlined functions, part two. If we are still
7266 in the same real function we were stepping through, but we have
7267 to go further up to find the exact frame ID, we are stepping
7268 through a more inlined call beyond its call site. */
7269
7270 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7271 && !frame_id_eq (get_frame_id (get_current_frame ()),
7272 ecs->event_thread->control.step_frame_id)
7273 && stepped_in_from (get_current_frame (),
7274 ecs->event_thread->control.step_frame_id))
7275 {
7276 infrun_debug_printf ("stepping through inlined function");
7277
7278 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7279 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7280 keep_going (ecs);
7281 else
7282 end_stepping_range (ecs);
7283 return;
7284 }
7285
7286 bool refresh_step_info = true;
7287 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7288 && (ecs->event_thread->current_line != stop_pc_sal.line
7289 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7290 {
7291 /* We are at a different line. */
7292
7293 if (stop_pc_sal.is_stmt)
7294 {
7295 /* We are at the start of a statement.
7296
7297 So stop. Note that we don't stop if we step into the middle of a
7298 statement. That is said to make things like for (;;) statements
7299 work better. */
7300 infrun_debug_printf ("stepped to a different line");
7301 end_stepping_range (ecs);
7302 return;
7303 }
7304 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7305 ecs->event_thread->control.step_frame_id))
7306 {
7307 /* We are not at the start of a statement, and we have not changed
7308 frame.
7309
7310 We ignore this line table entry, and continue stepping forward,
7311 looking for a better place to stop. */
7312 refresh_step_info = false;
7313 infrun_debug_printf ("stepped to a different line, but "
7314 "it's not the start of a statement");
7315 }
7316 else
7317 {
7318 /* We are not the start of a statement, and we have changed frame.
7319
7320 We ignore this line table entry, and continue stepping forward,
7321 looking for a better place to stop. Keep refresh_step_info at
7322 true to note that the frame has changed, but ignore the line
7323 number to make sure we don't ignore a subsequent entry with the
7324 same line number. */
7325 stop_pc_sal.line = 0;
7326 infrun_debug_printf ("stepped to a different frame, but "
7327 "it's not the start of a statement");
7328 }
7329 }
7330
7331 /* We aren't done stepping.
7332
7333 Optimize by setting the stepping range to the line.
7334 (We might not be in the original line, but if we entered a
7335 new line in mid-statement, we continue stepping. This makes
7336 things like for(;;) statements work better.)
7337
7338 If we entered a SAL that indicates a non-statement line table entry,
7339 then we update the stepping range, but we don't update the step info,
7340 which includes things like the line number we are stepping away from.
7341 This means we will stop when we find a line table entry that is marked
7342 as is-statement, even if it matches the non-statement one we just
7343 stepped into. */
7344
7345 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7346 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7347 ecs->event_thread->control.may_range_step = 1;
7348 if (refresh_step_info)
7349 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7350
7351 infrun_debug_printf ("keep going");
7352 keep_going (ecs);
7353 }
7354
7355 static bool restart_stepped_thread (process_stratum_target *resume_target,
7356 ptid_t resume_ptid);
7357
7358 /* In all-stop mode, if we're currently stepping but have stopped in
7359 some other thread, we may need to switch back to the stepped
7360 thread. Returns true we set the inferior running, false if we left
7361 it stopped (and the event needs further processing). */
7362
7363 static bool
7364 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7365 {
7366 if (!target_is_non_stop_p ())
7367 {
7368 /* If any thread is blocked on some internal breakpoint, and we
7369 simply need to step over that breakpoint to get it going
7370 again, do that first. */
7371
7372 /* However, if we see an event for the stepping thread, then we
7373 know all other threads have been moved past their breakpoints
7374 already. Let the caller check whether the step is finished,
7375 etc., before deciding to move it past a breakpoint. */
7376 if (ecs->event_thread->control.step_range_end != 0)
7377 return false;
7378
7379 /* Check if the current thread is blocked on an incomplete
7380 step-over, interrupted by a random signal. */
7381 if (ecs->event_thread->control.trap_expected
7382 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7383 {
7384 infrun_debug_printf
7385 ("need to finish step-over of [%s]",
7386 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7387 keep_going (ecs);
7388 return true;
7389 }
7390
7391 /* Check if the current thread is blocked by a single-step
7392 breakpoint of another thread. */
7393 if (ecs->hit_singlestep_breakpoint)
7394 {
7395 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7396 target_pid_to_str (ecs->ptid).c_str ());
7397 keep_going (ecs);
7398 return true;
7399 }
7400
7401 /* If this thread needs yet another step-over (e.g., stepping
7402 through a delay slot), do it first before moving on to
7403 another thread. */
7404 if (thread_still_needs_step_over (ecs->event_thread))
7405 {
7406 infrun_debug_printf
7407 ("thread [%s] still needs step-over",
7408 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7409 keep_going (ecs);
7410 return true;
7411 }
7412
7413 /* If scheduler locking applies even if not stepping, there's no
7414 need to walk over threads. Above we've checked whether the
7415 current thread is stepping. If some other thread not the
7416 event thread is stepping, then it must be that scheduler
7417 locking is not in effect. */
7418 if (schedlock_applies (ecs->event_thread))
7419 return false;
7420
7421 /* Otherwise, we no longer expect a trap in the current thread.
7422 Clear the trap_expected flag before switching back -- this is
7423 what keep_going does as well, if we call it. */
7424 ecs->event_thread->control.trap_expected = 0;
7425
7426 /* Likewise, clear the signal if it should not be passed. */
7427 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7428 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7429
7430 if (restart_stepped_thread (ecs->target, ecs->ptid))
7431 {
7432 prepare_to_wait (ecs);
7433 return true;
7434 }
7435
7436 switch_to_thread (ecs->event_thread);
7437 }
7438
7439 return false;
7440 }
7441
7442 /* Look for the thread that was stepping, and resume it.
7443 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7444 is resuming. Return true if a thread was started, false
7445 otherwise. */
7446
7447 static bool
7448 restart_stepped_thread (process_stratum_target *resume_target,
7449 ptid_t resume_ptid)
7450 {
7451 /* Do all pending step-overs before actually proceeding with
7452 step/next/etc. */
7453 if (start_step_over ())
7454 return true;
7455
7456 for (thread_info *tp : all_threads_safe ())
7457 {
7458 if (tp->state == THREAD_EXITED)
7459 continue;
7460
7461 if (tp->suspend.waitstatus_pending_p)
7462 continue;
7463
7464 /* Ignore threads of processes the caller is not
7465 resuming. */
7466 if (!sched_multi
7467 && (tp->inf->process_target () != resume_target
7468 || tp->inf->pid != resume_ptid.pid ()))
7469 continue;
7470
7471 if (tp->control.trap_expected)
7472 {
7473 infrun_debug_printf ("switching back to stepped thread (step-over)");
7474
7475 if (keep_going_stepped_thread (tp))
7476 return true;
7477 }
7478 }
7479
7480 for (thread_info *tp : all_threads_safe ())
7481 {
7482 if (tp->state == THREAD_EXITED)
7483 continue;
7484
7485 if (tp->suspend.waitstatus_pending_p)
7486 continue;
7487
7488 /* Ignore threads of processes the caller is not
7489 resuming. */
7490 if (!sched_multi
7491 && (tp->inf->process_target () != resume_target
7492 || tp->inf->pid != resume_ptid.pid ()))
7493 continue;
7494
7495 /* Did we find the stepping thread? */
7496 if (tp->control.step_range_end)
7497 {
7498 infrun_debug_printf ("switching back to stepped thread (stepping)");
7499
7500 if (keep_going_stepped_thread (tp))
7501 return true;
7502 }
7503 }
7504
7505 return false;
7506 }
7507
7508 /* See infrun.h. */
7509
7510 void
7511 restart_after_all_stop_detach (process_stratum_target *proc_target)
7512 {
7513 /* Note we don't check target_is_non_stop_p() here, because the
7514 current inferior may no longer have a process_stratum target
7515 pushed, as we just detached. */
7516
7517 /* See if we have a THREAD_RUNNING thread that need to be
7518 re-resumed. If we have any thread that is already executing,
7519 then we don't need to resume the target -- it is already been
7520 resumed. With the remote target (in all-stop), it's even
7521 impossible to issue another resumption if the target is already
7522 resumed, until the target reports a stop. */
7523 for (thread_info *thr : all_threads (proc_target))
7524 {
7525 if (thr->state != THREAD_RUNNING)
7526 continue;
7527
7528 /* If we have any thread that is already executing, then we
7529 don't need to resume the target -- it is already been
7530 resumed. */
7531 if (thr->executing)
7532 return;
7533
7534 /* If we have a pending event to process, skip resuming the
7535 target and go straight to processing it. */
7536 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7537 return;
7538 }
7539
7540 /* Alright, we need to re-resume the target. If a thread was
7541 stepping, we need to restart it stepping. */
7542 if (restart_stepped_thread (proc_target, minus_one_ptid))
7543 return;
7544
7545 /* Otherwise, find the first THREAD_RUNNING thread and resume
7546 it. */
7547 for (thread_info *thr : all_threads (proc_target))
7548 {
7549 if (thr->state != THREAD_RUNNING)
7550 continue;
7551
7552 execution_control_state ecs;
7553 reset_ecs (&ecs, thr);
7554 switch_to_thread (thr);
7555 keep_going (&ecs);
7556 return;
7557 }
7558 }
7559
7560 /* Set a previously stepped thread back to stepping. Returns true on
7561 success, false if the resume is not possible (e.g., the thread
7562 vanished). */
7563
7564 static bool
7565 keep_going_stepped_thread (struct thread_info *tp)
7566 {
7567 struct frame_info *frame;
7568 struct execution_control_state ecss;
7569 struct execution_control_state *ecs = &ecss;
7570
7571 /* If the stepping thread exited, then don't try to switch back and
7572 resume it, which could fail in several different ways depending
7573 on the target. Instead, just keep going.
7574
7575 We can find a stepping dead thread in the thread list in two
7576 cases:
7577
7578 - The target supports thread exit events, and when the target
7579 tries to delete the thread from the thread list, inferior_ptid
7580 pointed at the exiting thread. In such case, calling
7581 delete_thread does not really remove the thread from the list;
7582 instead, the thread is left listed, with 'exited' state.
7583
7584 - The target's debug interface does not support thread exit
7585 events, and so we have no idea whatsoever if the previously
7586 stepping thread is still alive. For that reason, we need to
7587 synchronously query the target now. */
7588
7589 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7590 {
7591 infrun_debug_printf ("not resuming previously stepped thread, it has "
7592 "vanished");
7593
7594 delete_thread (tp);
7595 return false;
7596 }
7597
7598 infrun_debug_printf ("resuming previously stepped thread");
7599
7600 reset_ecs (ecs, tp);
7601 switch_to_thread (tp);
7602
7603 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7604 frame = get_current_frame ();
7605
7606 /* If the PC of the thread we were trying to single-step has
7607 changed, then that thread has trapped or been signaled, but the
7608 event has not been reported to GDB yet. Re-poll the target
7609 looking for this particular thread's event (i.e. temporarily
7610 enable schedlock) by:
7611
7612 - setting a break at the current PC
7613 - resuming that particular thread, only (by setting trap
7614 expected)
7615
7616 This prevents us continuously moving the single-step breakpoint
7617 forward, one instruction at a time, overstepping. */
7618
7619 if (tp->suspend.stop_pc != tp->prev_pc)
7620 {
7621 ptid_t resume_ptid;
7622
7623 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7624 paddress (target_gdbarch (), tp->prev_pc),
7625 paddress (target_gdbarch (), tp->suspend.stop_pc));
7626
7627 /* Clear the info of the previous step-over, as it's no longer
7628 valid (if the thread was trying to step over a breakpoint, it
7629 has already succeeded). It's what keep_going would do too,
7630 if we called it. Do this before trying to insert the sss
7631 breakpoint, otherwise if we were previously trying to step
7632 over this exact address in another thread, the breakpoint is
7633 skipped. */
7634 clear_step_over_info ();
7635 tp->control.trap_expected = 0;
7636
7637 insert_single_step_breakpoint (get_frame_arch (frame),
7638 get_frame_address_space (frame),
7639 tp->suspend.stop_pc);
7640
7641 tp->resumed = true;
7642 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7643 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7644 }
7645 else
7646 {
7647 infrun_debug_printf ("expected thread still hasn't advanced");
7648
7649 keep_going_pass_signal (ecs);
7650 }
7651
7652 return true;
7653 }
7654
7655 /* Is thread TP in the middle of (software or hardware)
7656 single-stepping? (Note the result of this function must never be
7657 passed directly as target_resume's STEP parameter.) */
7658
7659 static bool
7660 currently_stepping (struct thread_info *tp)
7661 {
7662 return ((tp->control.step_range_end
7663 && tp->control.step_resume_breakpoint == NULL)
7664 || tp->control.trap_expected
7665 || tp->stepped_breakpoint
7666 || bpstat_should_step ());
7667 }
7668
7669 /* Inferior has stepped into a subroutine call with source code that
7670 we should not step over. Do step to the first line of code in
7671 it. */
7672
7673 static void
7674 handle_step_into_function (struct gdbarch *gdbarch,
7675 struct execution_control_state *ecs)
7676 {
7677 fill_in_stop_func (gdbarch, ecs);
7678
7679 compunit_symtab *cust
7680 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7681 if (cust != NULL && compunit_language (cust) != language_asm)
7682 ecs->stop_func_start
7683 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7684
7685 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7686 /* Use the step_resume_break to step until the end of the prologue,
7687 even if that involves jumps (as it seems to on the vax under
7688 4.2). */
7689 /* If the prologue ends in the middle of a source line, continue to
7690 the end of that source line (if it is still within the function).
7691 Otherwise, just go to end of prologue. */
7692 if (stop_func_sal.end
7693 && stop_func_sal.pc != ecs->stop_func_start
7694 && stop_func_sal.end < ecs->stop_func_end)
7695 ecs->stop_func_start = stop_func_sal.end;
7696
7697 /* Architectures which require breakpoint adjustment might not be able
7698 to place a breakpoint at the computed address. If so, the test
7699 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7700 ecs->stop_func_start to an address at which a breakpoint may be
7701 legitimately placed.
7702
7703 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7704 made, GDB will enter an infinite loop when stepping through
7705 optimized code consisting of VLIW instructions which contain
7706 subinstructions corresponding to different source lines. On
7707 FR-V, it's not permitted to place a breakpoint on any but the
7708 first subinstruction of a VLIW instruction. When a breakpoint is
7709 set, GDB will adjust the breakpoint address to the beginning of
7710 the VLIW instruction. Thus, we need to make the corresponding
7711 adjustment here when computing the stop address. */
7712
7713 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7714 {
7715 ecs->stop_func_start
7716 = gdbarch_adjust_breakpoint_address (gdbarch,
7717 ecs->stop_func_start);
7718 }
7719
7720 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7721 {
7722 /* We are already there: stop now. */
7723 end_stepping_range (ecs);
7724 return;
7725 }
7726 else
7727 {
7728 /* Put the step-breakpoint there and go until there. */
7729 symtab_and_line sr_sal;
7730 sr_sal.pc = ecs->stop_func_start;
7731 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7732 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7733
7734 /* Do not specify what the fp should be when we stop since on
7735 some machines the prologue is where the new fp value is
7736 established. */
7737 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7738
7739 /* And make sure stepping stops right away then. */
7740 ecs->event_thread->control.step_range_end
7741 = ecs->event_thread->control.step_range_start;
7742 }
7743 keep_going (ecs);
7744 }
7745
7746 /* Inferior has stepped backward into a subroutine call with source
7747 code that we should not step over. Do step to the beginning of the
7748 last line of code in it. */
7749
7750 static void
7751 handle_step_into_function_backward (struct gdbarch *gdbarch,
7752 struct execution_control_state *ecs)
7753 {
7754 struct compunit_symtab *cust;
7755 struct symtab_and_line stop_func_sal;
7756
7757 fill_in_stop_func (gdbarch, ecs);
7758
7759 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7760 if (cust != NULL && compunit_language (cust) != language_asm)
7761 ecs->stop_func_start
7762 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7763
7764 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7765
7766 /* OK, we're just going to keep stepping here. */
7767 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7768 {
7769 /* We're there already. Just stop stepping now. */
7770 end_stepping_range (ecs);
7771 }
7772 else
7773 {
7774 /* Else just reset the step range and keep going.
7775 No step-resume breakpoint, they don't work for
7776 epilogues, which can have multiple entry paths. */
7777 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7778 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7779 keep_going (ecs);
7780 }
7781 return;
7782 }
7783
7784 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7785 This is used to both functions and to skip over code. */
7786
7787 static void
7788 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7789 struct symtab_and_line sr_sal,
7790 struct frame_id sr_id,
7791 enum bptype sr_type)
7792 {
7793 /* There should never be more than one step-resume or longjmp-resume
7794 breakpoint per thread, so we should never be setting a new
7795 step_resume_breakpoint when one is already active. */
7796 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7797 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7798
7799 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7800 paddress (gdbarch, sr_sal.pc));
7801
7802 inferior_thread ()->control.step_resume_breakpoint
7803 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7804 }
7805
7806 void
7807 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7808 struct symtab_and_line sr_sal,
7809 struct frame_id sr_id)
7810 {
7811 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7812 sr_sal, sr_id,
7813 bp_step_resume);
7814 }
7815
7816 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7817 This is used to skip a potential signal handler.
7818
7819 This is called with the interrupted function's frame. The signal
7820 handler, when it returns, will resume the interrupted function at
7821 RETURN_FRAME.pc. */
7822
7823 static void
7824 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7825 {
7826 gdb_assert (return_frame != NULL);
7827
7828 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7829
7830 symtab_and_line sr_sal;
7831 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7832 sr_sal.section = find_pc_overlay (sr_sal.pc);
7833 sr_sal.pspace = get_frame_program_space (return_frame);
7834
7835 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7836 get_stack_frame_id (return_frame),
7837 bp_hp_step_resume);
7838 }
7839
7840 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7841 is used to skip a function after stepping into it (for "next" or if
7842 the called function has no debugging information).
7843
7844 The current function has almost always been reached by single
7845 stepping a call or return instruction. NEXT_FRAME belongs to the
7846 current function, and the breakpoint will be set at the caller's
7847 resume address.
7848
7849 This is a separate function rather than reusing
7850 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7851 get_prev_frame, which may stop prematurely (see the implementation
7852 of frame_unwind_caller_id for an example). */
7853
7854 static void
7855 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7856 {
7857 /* We shouldn't have gotten here if we don't know where the call site
7858 is. */
7859 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7860
7861 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7862
7863 symtab_and_line sr_sal;
7864 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7865 frame_unwind_caller_pc (next_frame));
7866 sr_sal.section = find_pc_overlay (sr_sal.pc);
7867 sr_sal.pspace = frame_unwind_program_space (next_frame);
7868
7869 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7870 frame_unwind_caller_id (next_frame));
7871 }
7872
7873 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7874 new breakpoint at the target of a jmp_buf. The handling of
7875 longjmp-resume uses the same mechanisms used for handling
7876 "step-resume" breakpoints. */
7877
7878 static void
7879 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7880 {
7881 /* There should never be more than one longjmp-resume breakpoint per
7882 thread, so we should never be setting a new
7883 longjmp_resume_breakpoint when one is already active. */
7884 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7885
7886 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7887 paddress (gdbarch, pc));
7888
7889 inferior_thread ()->control.exception_resume_breakpoint =
7890 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7891 }
7892
7893 /* Insert an exception resume breakpoint. TP is the thread throwing
7894 the exception. The block B is the block of the unwinder debug hook
7895 function. FRAME is the frame corresponding to the call to this
7896 function. SYM is the symbol of the function argument holding the
7897 target PC of the exception. */
7898
7899 static void
7900 insert_exception_resume_breakpoint (struct thread_info *tp,
7901 const struct block *b,
7902 struct frame_info *frame,
7903 struct symbol *sym)
7904 {
7905 try
7906 {
7907 struct block_symbol vsym;
7908 struct value *value;
7909 CORE_ADDR handler;
7910 struct breakpoint *bp;
7911
7912 vsym = lookup_symbol_search_name (sym->search_name (),
7913 b, VAR_DOMAIN);
7914 value = read_var_value (vsym.symbol, vsym.block, frame);
7915 /* If the value was optimized out, revert to the old behavior. */
7916 if (! value_optimized_out (value))
7917 {
7918 handler = value_as_address (value);
7919
7920 infrun_debug_printf ("exception resume at %lx",
7921 (unsigned long) handler);
7922
7923 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7924 handler,
7925 bp_exception_resume).release ();
7926
7927 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7928 frame = NULL;
7929
7930 bp->thread = tp->global_num;
7931 inferior_thread ()->control.exception_resume_breakpoint = bp;
7932 }
7933 }
7934 catch (const gdb_exception_error &e)
7935 {
7936 /* We want to ignore errors here. */
7937 }
7938 }
7939
7940 /* A helper for check_exception_resume that sets an
7941 exception-breakpoint based on a SystemTap probe. */
7942
7943 static void
7944 insert_exception_resume_from_probe (struct thread_info *tp,
7945 const struct bound_probe *probe,
7946 struct frame_info *frame)
7947 {
7948 struct value *arg_value;
7949 CORE_ADDR handler;
7950 struct breakpoint *bp;
7951
7952 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7953 if (!arg_value)
7954 return;
7955
7956 handler = value_as_address (arg_value);
7957
7958 infrun_debug_printf ("exception resume at %s",
7959 paddress (probe->objfile->arch (), handler));
7960
7961 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7962 handler, bp_exception_resume).release ();
7963 bp->thread = tp->global_num;
7964 inferior_thread ()->control.exception_resume_breakpoint = bp;
7965 }
7966
7967 /* This is called when an exception has been intercepted. Check to
7968 see whether the exception's destination is of interest, and if so,
7969 set an exception resume breakpoint there. */
7970
7971 static void
7972 check_exception_resume (struct execution_control_state *ecs,
7973 struct frame_info *frame)
7974 {
7975 struct bound_probe probe;
7976 struct symbol *func;
7977
7978 /* First see if this exception unwinding breakpoint was set via a
7979 SystemTap probe point. If so, the probe has two arguments: the
7980 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7981 set a breakpoint there. */
7982 probe = find_probe_by_pc (get_frame_pc (frame));
7983 if (probe.prob)
7984 {
7985 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7986 return;
7987 }
7988
7989 func = get_frame_function (frame);
7990 if (!func)
7991 return;
7992
7993 try
7994 {
7995 const struct block *b;
7996 struct block_iterator iter;
7997 struct symbol *sym;
7998 int argno = 0;
7999
8000 /* The exception breakpoint is a thread-specific breakpoint on
8001 the unwinder's debug hook, declared as:
8002
8003 void _Unwind_DebugHook (void *cfa, void *handler);
8004
8005 The CFA argument indicates the frame to which control is
8006 about to be transferred. HANDLER is the destination PC.
8007
8008 We ignore the CFA and set a temporary breakpoint at HANDLER.
8009 This is not extremely efficient but it avoids issues in gdb
8010 with computing the DWARF CFA, and it also works even in weird
8011 cases such as throwing an exception from inside a signal
8012 handler. */
8013
8014 b = SYMBOL_BLOCK_VALUE (func);
8015 ALL_BLOCK_SYMBOLS (b, iter, sym)
8016 {
8017 if (!SYMBOL_IS_ARGUMENT (sym))
8018 continue;
8019
8020 if (argno == 0)
8021 ++argno;
8022 else
8023 {
8024 insert_exception_resume_breakpoint (ecs->event_thread,
8025 b, frame, sym);
8026 break;
8027 }
8028 }
8029 }
8030 catch (const gdb_exception_error &e)
8031 {
8032 }
8033 }
8034
8035 static void
8036 stop_waiting (struct execution_control_state *ecs)
8037 {
8038 infrun_debug_printf ("stop_waiting");
8039
8040 /* Let callers know we don't want to wait for the inferior anymore. */
8041 ecs->wait_some_more = 0;
8042
8043 /* If all-stop, but there exists a non-stop target, stop all
8044 threads now that we're presenting the stop to the user. */
8045 if (!non_stop && exists_non_stop_target ())
8046 stop_all_threads ("presenting stop to user in all-stop");
8047 }
8048
8049 /* Like keep_going, but passes the signal to the inferior, even if the
8050 signal is set to nopass. */
8051
8052 static void
8053 keep_going_pass_signal (struct execution_control_state *ecs)
8054 {
8055 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8056 gdb_assert (!ecs->event_thread->resumed);
8057
8058 /* Save the pc before execution, to compare with pc after stop. */
8059 ecs->event_thread->prev_pc
8060 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8061
8062 if (ecs->event_thread->control.trap_expected)
8063 {
8064 struct thread_info *tp = ecs->event_thread;
8065
8066 infrun_debug_printf ("%s has trap_expected set, "
8067 "resuming to collect trap",
8068 target_pid_to_str (tp->ptid).c_str ());
8069
8070 /* We haven't yet gotten our trap, and either: intercepted a
8071 non-signal event (e.g., a fork); or took a signal which we
8072 are supposed to pass through to the inferior. Simply
8073 continue. */
8074 resume (ecs->event_thread->suspend.stop_signal);
8075 }
8076 else if (step_over_info_valid_p ())
8077 {
8078 /* Another thread is stepping over a breakpoint in-line. If
8079 this thread needs a step-over too, queue the request. In
8080 either case, this resume must be deferred for later. */
8081 struct thread_info *tp = ecs->event_thread;
8082
8083 if (ecs->hit_singlestep_breakpoint
8084 || thread_still_needs_step_over (tp))
8085 {
8086 infrun_debug_printf ("step-over already in progress: "
8087 "step-over for %s deferred",
8088 target_pid_to_str (tp->ptid).c_str ());
8089 global_thread_step_over_chain_enqueue (tp);
8090 }
8091 else
8092 {
8093 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8094 target_pid_to_str (tp->ptid).c_str ());
8095 }
8096 }
8097 else
8098 {
8099 struct regcache *regcache = get_current_regcache ();
8100 int remove_bp;
8101 int remove_wps;
8102 step_over_what step_what;
8103
8104 /* Either the trap was not expected, but we are continuing
8105 anyway (if we got a signal, the user asked it be passed to
8106 the child)
8107 -- or --
8108 We got our expected trap, but decided we should resume from
8109 it.
8110
8111 We're going to run this baby now!
8112
8113 Note that insert_breakpoints won't try to re-insert
8114 already inserted breakpoints. Therefore, we don't
8115 care if breakpoints were already inserted, or not. */
8116
8117 /* If we need to step over a breakpoint, and we're not using
8118 displaced stepping to do so, insert all breakpoints
8119 (watchpoints, etc.) but the one we're stepping over, step one
8120 instruction, and then re-insert the breakpoint when that step
8121 is finished. */
8122
8123 step_what = thread_still_needs_step_over (ecs->event_thread);
8124
8125 remove_bp = (ecs->hit_singlestep_breakpoint
8126 || (step_what & STEP_OVER_BREAKPOINT));
8127 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8128
8129 /* We can't use displaced stepping if we need to step past a
8130 watchpoint. The instruction copied to the scratch pad would
8131 still trigger the watchpoint. */
8132 if (remove_bp
8133 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8134 {
8135 set_step_over_info (regcache->aspace (),
8136 regcache_read_pc (regcache), remove_wps,
8137 ecs->event_thread->global_num);
8138 }
8139 else if (remove_wps)
8140 set_step_over_info (NULL, 0, remove_wps, -1);
8141
8142 /* If we now need to do an in-line step-over, we need to stop
8143 all other threads. Note this must be done before
8144 insert_breakpoints below, because that removes the breakpoint
8145 we're about to step over, otherwise other threads could miss
8146 it. */
8147 if (step_over_info_valid_p () && target_is_non_stop_p ())
8148 stop_all_threads ("starting in-line step-over");
8149
8150 /* Stop stepping if inserting breakpoints fails. */
8151 try
8152 {
8153 insert_breakpoints ();
8154 }
8155 catch (const gdb_exception_error &e)
8156 {
8157 exception_print (gdb_stderr, e);
8158 stop_waiting (ecs);
8159 clear_step_over_info ();
8160 return;
8161 }
8162
8163 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8164
8165 resume (ecs->event_thread->suspend.stop_signal);
8166 }
8167
8168 prepare_to_wait (ecs);
8169 }
8170
8171 /* Called when we should continue running the inferior, because the
8172 current event doesn't cause a user visible stop. This does the
8173 resuming part; waiting for the next event is done elsewhere. */
8174
8175 static void
8176 keep_going (struct execution_control_state *ecs)
8177 {
8178 if (ecs->event_thread->control.trap_expected
8179 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8180 ecs->event_thread->control.trap_expected = 0;
8181
8182 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8183 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8184 keep_going_pass_signal (ecs);
8185 }
8186
8187 /* This function normally comes after a resume, before
8188 handle_inferior_event exits. It takes care of any last bits of
8189 housekeeping, and sets the all-important wait_some_more flag. */
8190
8191 static void
8192 prepare_to_wait (struct execution_control_state *ecs)
8193 {
8194 infrun_debug_printf ("prepare_to_wait");
8195
8196 ecs->wait_some_more = 1;
8197
8198 /* If the target can't async, emulate it by marking the infrun event
8199 handler such that as soon as we get back to the event-loop, we
8200 immediately end up in fetch_inferior_event again calling
8201 target_wait. */
8202 if (!target_can_async_p ())
8203 mark_infrun_async_event_handler ();
8204 }
8205
8206 /* We are done with the step range of a step/next/si/ni command.
8207 Called once for each n of a "step n" operation. */
8208
8209 static void
8210 end_stepping_range (struct execution_control_state *ecs)
8211 {
8212 ecs->event_thread->control.stop_step = 1;
8213 stop_waiting (ecs);
8214 }
8215
8216 /* Several print_*_reason functions to print why the inferior has stopped.
8217 We always print something when the inferior exits, or receives a signal.
8218 The rest of the cases are dealt with later on in normal_stop and
8219 print_it_typical. Ideally there should be a call to one of these
8220 print_*_reason functions functions from handle_inferior_event each time
8221 stop_waiting is called.
8222
8223 Note that we don't call these directly, instead we delegate that to
8224 the interpreters, through observers. Interpreters then call these
8225 with whatever uiout is right. */
8226
8227 void
8228 print_end_stepping_range_reason (struct ui_out *uiout)
8229 {
8230 /* For CLI-like interpreters, print nothing. */
8231
8232 if (uiout->is_mi_like_p ())
8233 {
8234 uiout->field_string ("reason",
8235 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8236 }
8237 }
8238
8239 void
8240 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8241 {
8242 annotate_signalled ();
8243 if (uiout->is_mi_like_p ())
8244 uiout->field_string
8245 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8246 uiout->text ("\nProgram terminated with signal ");
8247 annotate_signal_name ();
8248 uiout->field_string ("signal-name",
8249 gdb_signal_to_name (siggnal));
8250 annotate_signal_name_end ();
8251 uiout->text (", ");
8252 annotate_signal_string ();
8253 uiout->field_string ("signal-meaning",
8254 gdb_signal_to_string (siggnal));
8255 annotate_signal_string_end ();
8256 uiout->text (".\n");
8257 uiout->text ("The program no longer exists.\n");
8258 }
8259
8260 void
8261 print_exited_reason (struct ui_out *uiout, int exitstatus)
8262 {
8263 struct inferior *inf = current_inferior ();
8264 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8265
8266 annotate_exited (exitstatus);
8267 if (exitstatus)
8268 {
8269 if (uiout->is_mi_like_p ())
8270 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8271 std::string exit_code_str
8272 = string_printf ("0%o", (unsigned int) exitstatus);
8273 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8274 plongest (inf->num), pidstr.c_str (),
8275 string_field ("exit-code", exit_code_str.c_str ()));
8276 }
8277 else
8278 {
8279 if (uiout->is_mi_like_p ())
8280 uiout->field_string
8281 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8282 uiout->message ("[Inferior %s (%s) exited normally]\n",
8283 plongest (inf->num), pidstr.c_str ());
8284 }
8285 }
8286
8287 void
8288 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8289 {
8290 struct thread_info *thr = inferior_thread ();
8291
8292 annotate_signal ();
8293
8294 if (uiout->is_mi_like_p ())
8295 ;
8296 else if (show_thread_that_caused_stop ())
8297 {
8298 const char *name;
8299
8300 uiout->text ("\nThread ");
8301 uiout->field_string ("thread-id", print_thread_id (thr));
8302
8303 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8304 if (name != NULL)
8305 {
8306 uiout->text (" \"");
8307 uiout->field_string ("name", name);
8308 uiout->text ("\"");
8309 }
8310 }
8311 else
8312 uiout->text ("\nProgram");
8313
8314 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8315 uiout->text (" stopped");
8316 else
8317 {
8318 uiout->text (" received signal ");
8319 annotate_signal_name ();
8320 if (uiout->is_mi_like_p ())
8321 uiout->field_string
8322 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8323 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8324 annotate_signal_name_end ();
8325 uiout->text (", ");
8326 annotate_signal_string ();
8327 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8328
8329 struct regcache *regcache = get_current_regcache ();
8330 struct gdbarch *gdbarch = regcache->arch ();
8331 if (gdbarch_report_signal_info_p (gdbarch))
8332 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8333
8334 annotate_signal_string_end ();
8335 }
8336 uiout->text (".\n");
8337 }
8338
8339 void
8340 print_no_history_reason (struct ui_out *uiout)
8341 {
8342 uiout->text ("\nNo more reverse-execution history.\n");
8343 }
8344
8345 /* Print current location without a level number, if we have changed
8346 functions or hit a breakpoint. Print source line if we have one.
8347 bpstat_print contains the logic deciding in detail what to print,
8348 based on the event(s) that just occurred. */
8349
8350 static void
8351 print_stop_location (struct target_waitstatus *ws)
8352 {
8353 int bpstat_ret;
8354 enum print_what source_flag;
8355 int do_frame_printing = 1;
8356 struct thread_info *tp = inferior_thread ();
8357
8358 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8359 switch (bpstat_ret)
8360 {
8361 case PRINT_UNKNOWN:
8362 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8363 should) carry around the function and does (or should) use
8364 that when doing a frame comparison. */
8365 if (tp->control.stop_step
8366 && frame_id_eq (tp->control.step_frame_id,
8367 get_frame_id (get_current_frame ()))
8368 && (tp->control.step_start_function
8369 == find_pc_function (tp->suspend.stop_pc)))
8370 {
8371 /* Finished step, just print source line. */
8372 source_flag = SRC_LINE;
8373 }
8374 else
8375 {
8376 /* Print location and source line. */
8377 source_flag = SRC_AND_LOC;
8378 }
8379 break;
8380 case PRINT_SRC_AND_LOC:
8381 /* Print location and source line. */
8382 source_flag = SRC_AND_LOC;
8383 break;
8384 case PRINT_SRC_ONLY:
8385 source_flag = SRC_LINE;
8386 break;
8387 case PRINT_NOTHING:
8388 /* Something bogus. */
8389 source_flag = SRC_LINE;
8390 do_frame_printing = 0;
8391 break;
8392 default:
8393 internal_error (__FILE__, __LINE__, _("Unknown value."));
8394 }
8395
8396 /* The behavior of this routine with respect to the source
8397 flag is:
8398 SRC_LINE: Print only source line
8399 LOCATION: Print only location
8400 SRC_AND_LOC: Print location and source line. */
8401 if (do_frame_printing)
8402 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8403 }
8404
8405 /* See infrun.h. */
8406
8407 void
8408 print_stop_event (struct ui_out *uiout, bool displays)
8409 {
8410 struct target_waitstatus last;
8411 struct thread_info *tp;
8412
8413 get_last_target_status (nullptr, nullptr, &last);
8414
8415 {
8416 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8417
8418 print_stop_location (&last);
8419
8420 /* Display the auto-display expressions. */
8421 if (displays)
8422 do_displays ();
8423 }
8424
8425 tp = inferior_thread ();
8426 if (tp->thread_fsm != NULL
8427 && tp->thread_fsm->finished_p ())
8428 {
8429 struct return_value_info *rv;
8430
8431 rv = tp->thread_fsm->return_value ();
8432 if (rv != NULL)
8433 print_return_value (uiout, rv);
8434 }
8435 }
8436
8437 /* See infrun.h. */
8438
8439 void
8440 maybe_remove_breakpoints (void)
8441 {
8442 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8443 {
8444 if (remove_breakpoints ())
8445 {
8446 target_terminal::ours_for_output ();
8447 printf_filtered (_("Cannot remove breakpoints because "
8448 "program is no longer writable.\nFurther "
8449 "execution is probably impossible.\n"));
8450 }
8451 }
8452 }
8453
8454 /* The execution context that just caused a normal stop. */
8455
8456 struct stop_context
8457 {
8458 stop_context ();
8459
8460 DISABLE_COPY_AND_ASSIGN (stop_context);
8461
8462 bool changed () const;
8463
8464 /* The stop ID. */
8465 ULONGEST stop_id;
8466
8467 /* The event PTID. */
8468
8469 ptid_t ptid;
8470
8471 /* If stopp for a thread event, this is the thread that caused the
8472 stop. */
8473 thread_info_ref thread;
8474
8475 /* The inferior that caused the stop. */
8476 int inf_num;
8477 };
8478
8479 /* Initializes a new stop context. If stopped for a thread event, this
8480 takes a strong reference to the thread. */
8481
8482 stop_context::stop_context ()
8483 {
8484 stop_id = get_stop_id ();
8485 ptid = inferior_ptid;
8486 inf_num = current_inferior ()->num;
8487
8488 if (inferior_ptid != null_ptid)
8489 {
8490 /* Take a strong reference so that the thread can't be deleted
8491 yet. */
8492 thread = thread_info_ref::new_reference (inferior_thread ());
8493 }
8494 }
8495
8496 /* Return true if the current context no longer matches the saved stop
8497 context. */
8498
8499 bool
8500 stop_context::changed () const
8501 {
8502 if (ptid != inferior_ptid)
8503 return true;
8504 if (inf_num != current_inferior ()->num)
8505 return true;
8506 if (thread != NULL && thread->state != THREAD_STOPPED)
8507 return true;
8508 if (get_stop_id () != stop_id)
8509 return true;
8510 return false;
8511 }
8512
8513 /* See infrun.h. */
8514
8515 int
8516 normal_stop (void)
8517 {
8518 struct target_waitstatus last;
8519
8520 get_last_target_status (nullptr, nullptr, &last);
8521
8522 new_stop_id ();
8523
8524 /* If an exception is thrown from this point on, make sure to
8525 propagate GDB's knowledge of the executing state to the
8526 frontend/user running state. A QUIT is an easy exception to see
8527 here, so do this before any filtered output. */
8528
8529 ptid_t finish_ptid = null_ptid;
8530
8531 if (!non_stop)
8532 finish_ptid = minus_one_ptid;
8533 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8534 || last.kind == TARGET_WAITKIND_EXITED)
8535 {
8536 /* On some targets, we may still have live threads in the
8537 inferior when we get a process exit event. E.g., for
8538 "checkpoint", when the current checkpoint/fork exits,
8539 linux-fork.c automatically switches to another fork from
8540 within target_mourn_inferior. */
8541 if (inferior_ptid != null_ptid)
8542 finish_ptid = ptid_t (inferior_ptid.pid ());
8543 }
8544 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8545 finish_ptid = inferior_ptid;
8546
8547 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8548 if (finish_ptid != null_ptid)
8549 {
8550 maybe_finish_thread_state.emplace
8551 (user_visible_resume_target (finish_ptid), finish_ptid);
8552 }
8553
8554 /* As we're presenting a stop, and potentially removing breakpoints,
8555 update the thread list so we can tell whether there are threads
8556 running on the target. With target remote, for example, we can
8557 only learn about new threads when we explicitly update the thread
8558 list. Do this before notifying the interpreters about signal
8559 stops, end of stepping ranges, etc., so that the "new thread"
8560 output is emitted before e.g., "Program received signal FOO",
8561 instead of after. */
8562 update_thread_list ();
8563
8564 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8565 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8566
8567 /* As with the notification of thread events, we want to delay
8568 notifying the user that we've switched thread context until
8569 the inferior actually stops.
8570
8571 There's no point in saying anything if the inferior has exited.
8572 Note that SIGNALLED here means "exited with a signal", not
8573 "received a signal".
8574
8575 Also skip saying anything in non-stop mode. In that mode, as we
8576 don't want GDB to switch threads behind the user's back, to avoid
8577 races where the user is typing a command to apply to thread x,
8578 but GDB switches to thread y before the user finishes entering
8579 the command, fetch_inferior_event installs a cleanup to restore
8580 the current thread back to the thread the user had selected right
8581 after this event is handled, so we're not really switching, only
8582 informing of a stop. */
8583 if (!non_stop
8584 && previous_inferior_ptid != inferior_ptid
8585 && target_has_execution ()
8586 && last.kind != TARGET_WAITKIND_SIGNALLED
8587 && last.kind != TARGET_WAITKIND_EXITED
8588 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8589 {
8590 SWITCH_THRU_ALL_UIS ()
8591 {
8592 target_terminal::ours_for_output ();
8593 printf_filtered (_("[Switching to %s]\n"),
8594 target_pid_to_str (inferior_ptid).c_str ());
8595 annotate_thread_changed ();
8596 }
8597 previous_inferior_ptid = inferior_ptid;
8598 }
8599
8600 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8601 {
8602 SWITCH_THRU_ALL_UIS ()
8603 if (current_ui->prompt_state == PROMPT_BLOCKED)
8604 {
8605 target_terminal::ours_for_output ();
8606 printf_filtered (_("No unwaited-for children left.\n"));
8607 }
8608 }
8609
8610 /* Note: this depends on the update_thread_list call above. */
8611 maybe_remove_breakpoints ();
8612
8613 /* If an auto-display called a function and that got a signal,
8614 delete that auto-display to avoid an infinite recursion. */
8615
8616 if (stopped_by_random_signal)
8617 disable_current_display ();
8618
8619 SWITCH_THRU_ALL_UIS ()
8620 {
8621 async_enable_stdin ();
8622 }
8623
8624 /* Let the user/frontend see the threads as stopped. */
8625 maybe_finish_thread_state.reset ();
8626
8627 /* Select innermost stack frame - i.e., current frame is frame 0,
8628 and current location is based on that. Handle the case where the
8629 dummy call is returning after being stopped. E.g. the dummy call
8630 previously hit a breakpoint. (If the dummy call returns
8631 normally, we won't reach here.) Do this before the stop hook is
8632 run, so that it doesn't get to see the temporary dummy frame,
8633 which is not where we'll present the stop. */
8634 if (has_stack_frames ())
8635 {
8636 if (stop_stack_dummy == STOP_STACK_DUMMY)
8637 {
8638 /* Pop the empty frame that contains the stack dummy. This
8639 also restores inferior state prior to the call (struct
8640 infcall_suspend_state). */
8641 struct frame_info *frame = get_current_frame ();
8642
8643 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8644 frame_pop (frame);
8645 /* frame_pop calls reinit_frame_cache as the last thing it
8646 does which means there's now no selected frame. */
8647 }
8648
8649 select_frame (get_current_frame ());
8650
8651 /* Set the current source location. */
8652 set_current_sal_from_frame (get_current_frame ());
8653 }
8654
8655 /* Look up the hook_stop and run it (CLI internally handles problem
8656 of stop_command's pre-hook not existing). */
8657 if (stop_command != NULL)
8658 {
8659 stop_context saved_context;
8660
8661 try
8662 {
8663 execute_cmd_pre_hook (stop_command);
8664 }
8665 catch (const gdb_exception &ex)
8666 {
8667 exception_fprintf (gdb_stderr, ex,
8668 "Error while running hook_stop:\n");
8669 }
8670
8671 /* If the stop hook resumes the target, then there's no point in
8672 trying to notify about the previous stop; its context is
8673 gone. Likewise if the command switches thread or inferior --
8674 the observers would print a stop for the wrong
8675 thread/inferior. */
8676 if (saved_context.changed ())
8677 return 1;
8678 }
8679
8680 /* Notify observers about the stop. This is where the interpreters
8681 print the stop event. */
8682 if (inferior_ptid != null_ptid)
8683 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8684 stop_print_frame);
8685 else
8686 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8687
8688 annotate_stopped ();
8689
8690 if (target_has_execution ())
8691 {
8692 if (last.kind != TARGET_WAITKIND_SIGNALLED
8693 && last.kind != TARGET_WAITKIND_EXITED
8694 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8695 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8696 Delete any breakpoint that is to be deleted at the next stop. */
8697 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8698 }
8699
8700 /* Try to get rid of automatically added inferiors that are no
8701 longer needed. Keeping those around slows down things linearly.
8702 Note that this never removes the current inferior. */
8703 prune_inferiors ();
8704
8705 return 0;
8706 }
8707 \f
8708 int
8709 signal_stop_state (int signo)
8710 {
8711 return signal_stop[signo];
8712 }
8713
8714 int
8715 signal_print_state (int signo)
8716 {
8717 return signal_print[signo];
8718 }
8719
8720 int
8721 signal_pass_state (int signo)
8722 {
8723 return signal_program[signo];
8724 }
8725
8726 static void
8727 signal_cache_update (int signo)
8728 {
8729 if (signo == -1)
8730 {
8731 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8732 signal_cache_update (signo);
8733
8734 return;
8735 }
8736
8737 signal_pass[signo] = (signal_stop[signo] == 0
8738 && signal_print[signo] == 0
8739 && signal_program[signo] == 1
8740 && signal_catch[signo] == 0);
8741 }
8742
8743 int
8744 signal_stop_update (int signo, int state)
8745 {
8746 int ret = signal_stop[signo];
8747
8748 signal_stop[signo] = state;
8749 signal_cache_update (signo);
8750 return ret;
8751 }
8752
8753 int
8754 signal_print_update (int signo, int state)
8755 {
8756 int ret = signal_print[signo];
8757
8758 signal_print[signo] = state;
8759 signal_cache_update (signo);
8760 return ret;
8761 }
8762
8763 int
8764 signal_pass_update (int signo, int state)
8765 {
8766 int ret = signal_program[signo];
8767
8768 signal_program[signo] = state;
8769 signal_cache_update (signo);
8770 return ret;
8771 }
8772
8773 /* Update the global 'signal_catch' from INFO and notify the
8774 target. */
8775
8776 void
8777 signal_catch_update (const unsigned int *info)
8778 {
8779 int i;
8780
8781 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8782 signal_catch[i] = info[i] > 0;
8783 signal_cache_update (-1);
8784 target_pass_signals (signal_pass);
8785 }
8786
8787 static void
8788 sig_print_header (void)
8789 {
8790 printf_filtered (_("Signal Stop\tPrint\tPass "
8791 "to program\tDescription\n"));
8792 }
8793
8794 static void
8795 sig_print_info (enum gdb_signal oursig)
8796 {
8797 const char *name = gdb_signal_to_name (oursig);
8798 int name_padding = 13 - strlen (name);
8799
8800 if (name_padding <= 0)
8801 name_padding = 0;
8802
8803 printf_filtered ("%s", name);
8804 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8805 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8806 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8807 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8808 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8809 }
8810
8811 /* Specify how various signals in the inferior should be handled. */
8812
8813 static void
8814 handle_command (const char *args, int from_tty)
8815 {
8816 int digits, wordlen;
8817 int sigfirst, siglast;
8818 enum gdb_signal oursig;
8819 int allsigs;
8820
8821 if (args == NULL)
8822 {
8823 error_no_arg (_("signal to handle"));
8824 }
8825
8826 /* Allocate and zero an array of flags for which signals to handle. */
8827
8828 const size_t nsigs = GDB_SIGNAL_LAST;
8829 unsigned char sigs[nsigs] {};
8830
8831 /* Break the command line up into args. */
8832
8833 gdb_argv built_argv (args);
8834
8835 /* Walk through the args, looking for signal oursigs, signal names, and
8836 actions. Signal numbers and signal names may be interspersed with
8837 actions, with the actions being performed for all signals cumulatively
8838 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8839
8840 for (char *arg : built_argv)
8841 {
8842 wordlen = strlen (arg);
8843 for (digits = 0; isdigit (arg[digits]); digits++)
8844 {;
8845 }
8846 allsigs = 0;
8847 sigfirst = siglast = -1;
8848
8849 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8850 {
8851 /* Apply action to all signals except those used by the
8852 debugger. Silently skip those. */
8853 allsigs = 1;
8854 sigfirst = 0;
8855 siglast = nsigs - 1;
8856 }
8857 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8858 {
8859 SET_SIGS (nsigs, sigs, signal_stop);
8860 SET_SIGS (nsigs, sigs, signal_print);
8861 }
8862 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8863 {
8864 UNSET_SIGS (nsigs, sigs, signal_program);
8865 }
8866 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8867 {
8868 SET_SIGS (nsigs, sigs, signal_print);
8869 }
8870 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8871 {
8872 SET_SIGS (nsigs, sigs, signal_program);
8873 }
8874 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8875 {
8876 UNSET_SIGS (nsigs, sigs, signal_stop);
8877 }
8878 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8879 {
8880 SET_SIGS (nsigs, sigs, signal_program);
8881 }
8882 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8883 {
8884 UNSET_SIGS (nsigs, sigs, signal_print);
8885 UNSET_SIGS (nsigs, sigs, signal_stop);
8886 }
8887 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8888 {
8889 UNSET_SIGS (nsigs, sigs, signal_program);
8890 }
8891 else if (digits > 0)
8892 {
8893 /* It is numeric. The numeric signal refers to our own
8894 internal signal numbering from target.h, not to host/target
8895 signal number. This is a feature; users really should be
8896 using symbolic names anyway, and the common ones like
8897 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8898
8899 sigfirst = siglast = (int)
8900 gdb_signal_from_command (atoi (arg));
8901 if (arg[digits] == '-')
8902 {
8903 siglast = (int)
8904 gdb_signal_from_command (atoi (arg + digits + 1));
8905 }
8906 if (sigfirst > siglast)
8907 {
8908 /* Bet he didn't figure we'd think of this case... */
8909 std::swap (sigfirst, siglast);
8910 }
8911 }
8912 else
8913 {
8914 oursig = gdb_signal_from_name (arg);
8915 if (oursig != GDB_SIGNAL_UNKNOWN)
8916 {
8917 sigfirst = siglast = (int) oursig;
8918 }
8919 else
8920 {
8921 /* Not a number and not a recognized flag word => complain. */
8922 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8923 }
8924 }
8925
8926 /* If any signal numbers or symbol names were found, set flags for
8927 which signals to apply actions to. */
8928
8929 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8930 {
8931 switch ((enum gdb_signal) signum)
8932 {
8933 case GDB_SIGNAL_TRAP:
8934 case GDB_SIGNAL_INT:
8935 if (!allsigs && !sigs[signum])
8936 {
8937 if (query (_("%s is used by the debugger.\n\
8938 Are you sure you want to change it? "),
8939 gdb_signal_to_name ((enum gdb_signal) signum)))
8940 {
8941 sigs[signum] = 1;
8942 }
8943 else
8944 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8945 }
8946 break;
8947 case GDB_SIGNAL_0:
8948 case GDB_SIGNAL_DEFAULT:
8949 case GDB_SIGNAL_UNKNOWN:
8950 /* Make sure that "all" doesn't print these. */
8951 break;
8952 default:
8953 sigs[signum] = 1;
8954 break;
8955 }
8956 }
8957 }
8958
8959 for (int signum = 0; signum < nsigs; signum++)
8960 if (sigs[signum])
8961 {
8962 signal_cache_update (-1);
8963 target_pass_signals (signal_pass);
8964 target_program_signals (signal_program);
8965
8966 if (from_tty)
8967 {
8968 /* Show the results. */
8969 sig_print_header ();
8970 for (; signum < nsigs; signum++)
8971 if (sigs[signum])
8972 sig_print_info ((enum gdb_signal) signum);
8973 }
8974
8975 break;
8976 }
8977 }
8978
8979 /* Complete the "handle" command. */
8980
8981 static void
8982 handle_completer (struct cmd_list_element *ignore,
8983 completion_tracker &tracker,
8984 const char *text, const char *word)
8985 {
8986 static const char * const keywords[] =
8987 {
8988 "all",
8989 "stop",
8990 "ignore",
8991 "print",
8992 "pass",
8993 "nostop",
8994 "noignore",
8995 "noprint",
8996 "nopass",
8997 NULL,
8998 };
8999
9000 signal_completer (ignore, tracker, text, word);
9001 complete_on_enum (tracker, keywords, word, word);
9002 }
9003
9004 enum gdb_signal
9005 gdb_signal_from_command (int num)
9006 {
9007 if (num >= 1 && num <= 15)
9008 return (enum gdb_signal) num;
9009 error (_("Only signals 1-15 are valid as numeric signals.\n\
9010 Use \"info signals\" for a list of symbolic signals."));
9011 }
9012
9013 /* Print current contents of the tables set by the handle command.
9014 It is possible we should just be printing signals actually used
9015 by the current target (but for things to work right when switching
9016 targets, all signals should be in the signal tables). */
9017
9018 static void
9019 info_signals_command (const char *signum_exp, int from_tty)
9020 {
9021 enum gdb_signal oursig;
9022
9023 sig_print_header ();
9024
9025 if (signum_exp)
9026 {
9027 /* First see if this is a symbol name. */
9028 oursig = gdb_signal_from_name (signum_exp);
9029 if (oursig == GDB_SIGNAL_UNKNOWN)
9030 {
9031 /* No, try numeric. */
9032 oursig =
9033 gdb_signal_from_command (parse_and_eval_long (signum_exp));
9034 }
9035 sig_print_info (oursig);
9036 return;
9037 }
9038
9039 printf_filtered ("\n");
9040 /* These ugly casts brought to you by the native VAX compiler. */
9041 for (oursig = GDB_SIGNAL_FIRST;
9042 (int) oursig < (int) GDB_SIGNAL_LAST;
9043 oursig = (enum gdb_signal) ((int) oursig + 1))
9044 {
9045 QUIT;
9046
9047 if (oursig != GDB_SIGNAL_UNKNOWN
9048 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9049 sig_print_info (oursig);
9050 }
9051
9052 printf_filtered (_("\nUse the \"handle\" command "
9053 "to change these tables.\n"));
9054 }
9055
9056 /* The $_siginfo convenience variable is a bit special. We don't know
9057 for sure the type of the value until we actually have a chance to
9058 fetch the data. The type can change depending on gdbarch, so it is
9059 also dependent on which thread you have selected.
9060
9061 1. making $_siginfo be an internalvar that creates a new value on
9062 access.
9063
9064 2. making the value of $_siginfo be an lval_computed value. */
9065
9066 /* This function implements the lval_computed support for reading a
9067 $_siginfo value. */
9068
9069 static void
9070 siginfo_value_read (struct value *v)
9071 {
9072 LONGEST transferred;
9073
9074 /* If we can access registers, so can we access $_siginfo. Likewise
9075 vice versa. */
9076 validate_registers_access ();
9077
9078 transferred =
9079 target_read (current_inferior ()->top_target (),
9080 TARGET_OBJECT_SIGNAL_INFO,
9081 NULL,
9082 value_contents_all_raw (v),
9083 value_offset (v),
9084 TYPE_LENGTH (value_type (v)));
9085
9086 if (transferred != TYPE_LENGTH (value_type (v)))
9087 error (_("Unable to read siginfo"));
9088 }
9089
9090 /* This function implements the lval_computed support for writing a
9091 $_siginfo value. */
9092
9093 static void
9094 siginfo_value_write (struct value *v, struct value *fromval)
9095 {
9096 LONGEST transferred;
9097
9098 /* If we can access registers, so can we access $_siginfo. Likewise
9099 vice versa. */
9100 validate_registers_access ();
9101
9102 transferred = target_write (current_inferior ()->top_target (),
9103 TARGET_OBJECT_SIGNAL_INFO,
9104 NULL,
9105 value_contents_all_raw (fromval),
9106 value_offset (v),
9107 TYPE_LENGTH (value_type (fromval)));
9108
9109 if (transferred != TYPE_LENGTH (value_type (fromval)))
9110 error (_("Unable to write siginfo"));
9111 }
9112
9113 static const struct lval_funcs siginfo_value_funcs =
9114 {
9115 siginfo_value_read,
9116 siginfo_value_write
9117 };
9118
9119 /* Return a new value with the correct type for the siginfo object of
9120 the current thread using architecture GDBARCH. Return a void value
9121 if there's no object available. */
9122
9123 static struct value *
9124 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9125 void *ignore)
9126 {
9127 if (target_has_stack ()
9128 && inferior_ptid != null_ptid
9129 && gdbarch_get_siginfo_type_p (gdbarch))
9130 {
9131 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9132
9133 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9134 }
9135
9136 return allocate_value (builtin_type (gdbarch)->builtin_void);
9137 }
9138
9139 \f
9140 /* infcall_suspend_state contains state about the program itself like its
9141 registers and any signal it received when it last stopped.
9142 This state must be restored regardless of how the inferior function call
9143 ends (either successfully, or after it hits a breakpoint or signal)
9144 if the program is to properly continue where it left off. */
9145
9146 class infcall_suspend_state
9147 {
9148 public:
9149 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9150 once the inferior function call has finished. */
9151 infcall_suspend_state (struct gdbarch *gdbarch,
9152 const struct thread_info *tp,
9153 struct regcache *regcache)
9154 : m_thread_suspend (tp->suspend),
9155 m_registers (new readonly_detached_regcache (*regcache))
9156 {
9157 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9158
9159 if (gdbarch_get_siginfo_type_p (gdbarch))
9160 {
9161 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9162 size_t len = TYPE_LENGTH (type);
9163
9164 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9165
9166 if (target_read (current_inferior ()->top_target (),
9167 TARGET_OBJECT_SIGNAL_INFO, NULL,
9168 siginfo_data.get (), 0, len) != len)
9169 {
9170 /* Errors ignored. */
9171 siginfo_data.reset (nullptr);
9172 }
9173 }
9174
9175 if (siginfo_data)
9176 {
9177 m_siginfo_gdbarch = gdbarch;
9178 m_siginfo_data = std::move (siginfo_data);
9179 }
9180 }
9181
9182 /* Return a pointer to the stored register state. */
9183
9184 readonly_detached_regcache *registers () const
9185 {
9186 return m_registers.get ();
9187 }
9188
9189 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9190
9191 void restore (struct gdbarch *gdbarch,
9192 struct thread_info *tp,
9193 struct regcache *regcache) const
9194 {
9195 tp->suspend = m_thread_suspend;
9196
9197 if (m_siginfo_gdbarch == gdbarch)
9198 {
9199 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9200
9201 /* Errors ignored. */
9202 target_write (current_inferior ()->top_target (),
9203 TARGET_OBJECT_SIGNAL_INFO, NULL,
9204 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9205 }
9206
9207 /* The inferior can be gone if the user types "print exit(0)"
9208 (and perhaps other times). */
9209 if (target_has_execution ())
9210 /* NB: The register write goes through to the target. */
9211 regcache->restore (registers ());
9212 }
9213
9214 private:
9215 /* How the current thread stopped before the inferior function call was
9216 executed. */
9217 struct thread_suspend_state m_thread_suspend;
9218
9219 /* The registers before the inferior function call was executed. */
9220 std::unique_ptr<readonly_detached_regcache> m_registers;
9221
9222 /* Format of SIGINFO_DATA or NULL if it is not present. */
9223 struct gdbarch *m_siginfo_gdbarch = nullptr;
9224
9225 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9226 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9227 content would be invalid. */
9228 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9229 };
9230
9231 infcall_suspend_state_up
9232 save_infcall_suspend_state ()
9233 {
9234 struct thread_info *tp = inferior_thread ();
9235 struct regcache *regcache = get_current_regcache ();
9236 struct gdbarch *gdbarch = regcache->arch ();
9237
9238 infcall_suspend_state_up inf_state
9239 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9240
9241 /* Having saved the current state, adjust the thread state, discarding
9242 any stop signal information. The stop signal is not useful when
9243 starting an inferior function call, and run_inferior_call will not use
9244 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9245 tp->suspend.stop_signal = GDB_SIGNAL_0;
9246
9247 return inf_state;
9248 }
9249
9250 /* Restore inferior session state to INF_STATE. */
9251
9252 void
9253 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9254 {
9255 struct thread_info *tp = inferior_thread ();
9256 struct regcache *regcache = get_current_regcache ();
9257 struct gdbarch *gdbarch = regcache->arch ();
9258
9259 inf_state->restore (gdbarch, tp, regcache);
9260 discard_infcall_suspend_state (inf_state);
9261 }
9262
9263 void
9264 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9265 {
9266 delete inf_state;
9267 }
9268
9269 readonly_detached_regcache *
9270 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9271 {
9272 return inf_state->registers ();
9273 }
9274
9275 /* infcall_control_state contains state regarding gdb's control of the
9276 inferior itself like stepping control. It also contains session state like
9277 the user's currently selected frame. */
9278
9279 struct infcall_control_state
9280 {
9281 struct thread_control_state thread_control;
9282 struct inferior_control_state inferior_control;
9283
9284 /* Other fields: */
9285 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9286 int stopped_by_random_signal = 0;
9287
9288 /* ID and level of the selected frame when the inferior function
9289 call was made. */
9290 struct frame_id selected_frame_id {};
9291 int selected_frame_level = -1;
9292 };
9293
9294 /* Save all of the information associated with the inferior<==>gdb
9295 connection. */
9296
9297 infcall_control_state_up
9298 save_infcall_control_state ()
9299 {
9300 infcall_control_state_up inf_status (new struct infcall_control_state);
9301 struct thread_info *tp = inferior_thread ();
9302 struct inferior *inf = current_inferior ();
9303
9304 inf_status->thread_control = tp->control;
9305 inf_status->inferior_control = inf->control;
9306
9307 tp->control.step_resume_breakpoint = NULL;
9308 tp->control.exception_resume_breakpoint = NULL;
9309
9310 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9311 chain. If caller's caller is walking the chain, they'll be happier if we
9312 hand them back the original chain when restore_infcall_control_state is
9313 called. */
9314 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9315
9316 /* Other fields: */
9317 inf_status->stop_stack_dummy = stop_stack_dummy;
9318 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9319
9320 save_selected_frame (&inf_status->selected_frame_id,
9321 &inf_status->selected_frame_level);
9322
9323 return inf_status;
9324 }
9325
9326 /* Restore inferior session state to INF_STATUS. */
9327
9328 void
9329 restore_infcall_control_state (struct infcall_control_state *inf_status)
9330 {
9331 struct thread_info *tp = inferior_thread ();
9332 struct inferior *inf = current_inferior ();
9333
9334 if (tp->control.step_resume_breakpoint)
9335 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9336
9337 if (tp->control.exception_resume_breakpoint)
9338 tp->control.exception_resume_breakpoint->disposition
9339 = disp_del_at_next_stop;
9340
9341 /* Handle the bpstat_copy of the chain. */
9342 bpstat_clear (&tp->control.stop_bpstat);
9343
9344 tp->control = inf_status->thread_control;
9345 inf->control = inf_status->inferior_control;
9346
9347 /* Other fields: */
9348 stop_stack_dummy = inf_status->stop_stack_dummy;
9349 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9350
9351 if (target_has_stack ())
9352 {
9353 restore_selected_frame (inf_status->selected_frame_id,
9354 inf_status->selected_frame_level);
9355 }
9356
9357 delete inf_status;
9358 }
9359
9360 void
9361 discard_infcall_control_state (struct infcall_control_state *inf_status)
9362 {
9363 if (inf_status->thread_control.step_resume_breakpoint)
9364 inf_status->thread_control.step_resume_breakpoint->disposition
9365 = disp_del_at_next_stop;
9366
9367 if (inf_status->thread_control.exception_resume_breakpoint)
9368 inf_status->thread_control.exception_resume_breakpoint->disposition
9369 = disp_del_at_next_stop;
9370
9371 /* See save_infcall_control_state for info on stop_bpstat. */
9372 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9373
9374 delete inf_status;
9375 }
9376 \f
9377 /* See infrun.h. */
9378
9379 void
9380 clear_exit_convenience_vars (void)
9381 {
9382 clear_internalvar (lookup_internalvar ("_exitsignal"));
9383 clear_internalvar (lookup_internalvar ("_exitcode"));
9384 }
9385 \f
9386
9387 /* User interface for reverse debugging:
9388 Set exec-direction / show exec-direction commands
9389 (returns error unless target implements to_set_exec_direction method). */
9390
9391 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9392 static const char exec_forward[] = "forward";
9393 static const char exec_reverse[] = "reverse";
9394 static const char *exec_direction = exec_forward;
9395 static const char *const exec_direction_names[] = {
9396 exec_forward,
9397 exec_reverse,
9398 NULL
9399 };
9400
9401 static void
9402 set_exec_direction_func (const char *args, int from_tty,
9403 struct cmd_list_element *cmd)
9404 {
9405 if (target_can_execute_reverse ())
9406 {
9407 if (!strcmp (exec_direction, exec_forward))
9408 execution_direction = EXEC_FORWARD;
9409 else if (!strcmp (exec_direction, exec_reverse))
9410 execution_direction = EXEC_REVERSE;
9411 }
9412 else
9413 {
9414 exec_direction = exec_forward;
9415 error (_("Target does not support this operation."));
9416 }
9417 }
9418
9419 static void
9420 show_exec_direction_func (struct ui_file *out, int from_tty,
9421 struct cmd_list_element *cmd, const char *value)
9422 {
9423 switch (execution_direction) {
9424 case EXEC_FORWARD:
9425 fprintf_filtered (out, _("Forward.\n"));
9426 break;
9427 case EXEC_REVERSE:
9428 fprintf_filtered (out, _("Reverse.\n"));
9429 break;
9430 default:
9431 internal_error (__FILE__, __LINE__,
9432 _("bogus execution_direction value: %d"),
9433 (int) execution_direction);
9434 }
9435 }
9436
9437 static void
9438 show_schedule_multiple (struct ui_file *file, int from_tty,
9439 struct cmd_list_element *c, const char *value)
9440 {
9441 fprintf_filtered (file, _("Resuming the execution of threads "
9442 "of all processes is %s.\n"), value);
9443 }
9444
9445 /* Implementation of `siginfo' variable. */
9446
9447 static const struct internalvar_funcs siginfo_funcs =
9448 {
9449 siginfo_make_value,
9450 NULL,
9451 NULL
9452 };
9453
9454 /* Callback for infrun's target events source. This is marked when a
9455 thread has a pending status to process. */
9456
9457 static void
9458 infrun_async_inferior_event_handler (gdb_client_data data)
9459 {
9460 clear_async_event_handler (infrun_async_inferior_event_token);
9461 inferior_event_handler (INF_REG_EVENT);
9462 }
9463
9464 #if GDB_SELF_TEST
9465 namespace selftests
9466 {
9467
9468 /* Verify that when two threads with the same ptid exist (from two different
9469 targets) and one of them changes ptid, we only update inferior_ptid if
9470 it is appropriate. */
9471
9472 static void
9473 infrun_thread_ptid_changed ()
9474 {
9475 gdbarch *arch = current_inferior ()->gdbarch;
9476
9477 /* The thread which inferior_ptid represents changes ptid. */
9478 {
9479 scoped_restore_current_pspace_and_thread restore;
9480
9481 scoped_mock_context<test_target_ops> target1 (arch);
9482 scoped_mock_context<test_target_ops> target2 (arch);
9483 target2.mock_inferior.next = &target1.mock_inferior;
9484
9485 ptid_t old_ptid (111, 222);
9486 ptid_t new_ptid (111, 333);
9487
9488 target1.mock_inferior.pid = old_ptid.pid ();
9489 target1.mock_thread.ptid = old_ptid;
9490 target2.mock_inferior.pid = old_ptid.pid ();
9491 target2.mock_thread.ptid = old_ptid;
9492
9493 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9494 set_current_inferior (&target1.mock_inferior);
9495
9496 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9497
9498 gdb_assert (inferior_ptid == new_ptid);
9499 }
9500
9501 /* A thread with the same ptid as inferior_ptid, but from another target,
9502 changes ptid. */
9503 {
9504 scoped_restore_current_pspace_and_thread restore;
9505
9506 scoped_mock_context<test_target_ops> target1 (arch);
9507 scoped_mock_context<test_target_ops> target2 (arch);
9508 target2.mock_inferior.next = &target1.mock_inferior;
9509
9510 ptid_t old_ptid (111, 222);
9511 ptid_t new_ptid (111, 333);
9512
9513 target1.mock_inferior.pid = old_ptid.pid ();
9514 target1.mock_thread.ptid = old_ptid;
9515 target2.mock_inferior.pid = old_ptid.pid ();
9516 target2.mock_thread.ptid = old_ptid;
9517
9518 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9519 set_current_inferior (&target2.mock_inferior);
9520
9521 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9522
9523 gdb_assert (inferior_ptid == old_ptid);
9524 }
9525 }
9526
9527 } /* namespace selftests */
9528
9529 #endif /* GDB_SELF_TEST */
9530
9531 void _initialize_infrun ();
9532 void
9533 _initialize_infrun ()
9534 {
9535 struct cmd_list_element *c;
9536
9537 /* Register extra event sources in the event loop. */
9538 infrun_async_inferior_event_token
9539 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9540 "infrun");
9541
9542 cmd_list_element *info_signals_cmd
9543 = add_info ("signals", info_signals_command, _("\
9544 What debugger does when program gets various signals.\n\
9545 Specify a signal as argument to print info on that signal only."));
9546 add_info_alias ("handle", info_signals_cmd, 0);
9547
9548 c = add_com ("handle", class_run, handle_command, _("\
9549 Specify how to handle signals.\n\
9550 Usage: handle SIGNAL [ACTIONS]\n\
9551 Args are signals and actions to apply to those signals.\n\
9552 If no actions are specified, the current settings for the specified signals\n\
9553 will be displayed instead.\n\
9554 \n\
9555 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9556 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9557 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9558 The special arg \"all\" is recognized to mean all signals except those\n\
9559 used by the debugger, typically SIGTRAP and SIGINT.\n\
9560 \n\
9561 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9562 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9563 Stop means reenter debugger if this signal happens (implies print).\n\
9564 Print means print a message if this signal happens.\n\
9565 Pass means let program see this signal; otherwise program doesn't know.\n\
9566 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9567 Pass and Stop may be combined.\n\
9568 \n\
9569 Multiple signals may be specified. Signal numbers and signal names\n\
9570 may be interspersed with actions, with the actions being performed for\n\
9571 all signals cumulatively specified."));
9572 set_cmd_completer (c, handle_completer);
9573
9574 if (!dbx_commands)
9575 stop_command = add_cmd ("stop", class_obscure,
9576 not_just_help_class_command, _("\
9577 There is no `stop' command, but you can set a hook on `stop'.\n\
9578 This allows you to set a list of commands to be run each time execution\n\
9579 of the program stops."), &cmdlist);
9580
9581 add_setshow_boolean_cmd
9582 ("infrun", class_maintenance, &debug_infrun,
9583 _("Set inferior debugging."),
9584 _("Show inferior debugging."),
9585 _("When non-zero, inferior specific debugging is enabled."),
9586 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9587
9588 add_setshow_boolean_cmd ("non-stop", no_class,
9589 &non_stop_1, _("\
9590 Set whether gdb controls the inferior in non-stop mode."), _("\
9591 Show whether gdb controls the inferior in non-stop mode."), _("\
9592 When debugging a multi-threaded program and this setting is\n\
9593 off (the default, also called all-stop mode), when one thread stops\n\
9594 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9595 all other threads in the program while you interact with the thread of\n\
9596 interest. When you continue or step a thread, you can allow the other\n\
9597 threads to run, or have them remain stopped, but while you inspect any\n\
9598 thread's state, all threads stop.\n\
9599 \n\
9600 In non-stop mode, when one thread stops, other threads can continue\n\
9601 to run freely. You'll be able to step each thread independently,\n\
9602 leave it stopped or free to run as needed."),
9603 set_non_stop,
9604 show_non_stop,
9605 &setlist,
9606 &showlist);
9607
9608 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9609 {
9610 signal_stop[i] = 1;
9611 signal_print[i] = 1;
9612 signal_program[i] = 1;
9613 signal_catch[i] = 0;
9614 }
9615
9616 /* Signals caused by debugger's own actions should not be given to
9617 the program afterwards.
9618
9619 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9620 explicitly specifies that it should be delivered to the target
9621 program. Typically, that would occur when a user is debugging a
9622 target monitor on a simulator: the target monitor sets a
9623 breakpoint; the simulator encounters this breakpoint and halts
9624 the simulation handing control to GDB; GDB, noting that the stop
9625 address doesn't map to any known breakpoint, returns control back
9626 to the simulator; the simulator then delivers the hardware
9627 equivalent of a GDB_SIGNAL_TRAP to the program being
9628 debugged. */
9629 signal_program[GDB_SIGNAL_TRAP] = 0;
9630 signal_program[GDB_SIGNAL_INT] = 0;
9631
9632 /* Signals that are not errors should not normally enter the debugger. */
9633 signal_stop[GDB_SIGNAL_ALRM] = 0;
9634 signal_print[GDB_SIGNAL_ALRM] = 0;
9635 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9636 signal_print[GDB_SIGNAL_VTALRM] = 0;
9637 signal_stop[GDB_SIGNAL_PROF] = 0;
9638 signal_print[GDB_SIGNAL_PROF] = 0;
9639 signal_stop[GDB_SIGNAL_CHLD] = 0;
9640 signal_print[GDB_SIGNAL_CHLD] = 0;
9641 signal_stop[GDB_SIGNAL_IO] = 0;
9642 signal_print[GDB_SIGNAL_IO] = 0;
9643 signal_stop[GDB_SIGNAL_POLL] = 0;
9644 signal_print[GDB_SIGNAL_POLL] = 0;
9645 signal_stop[GDB_SIGNAL_URG] = 0;
9646 signal_print[GDB_SIGNAL_URG] = 0;
9647 signal_stop[GDB_SIGNAL_WINCH] = 0;
9648 signal_print[GDB_SIGNAL_WINCH] = 0;
9649 signal_stop[GDB_SIGNAL_PRIO] = 0;
9650 signal_print[GDB_SIGNAL_PRIO] = 0;
9651
9652 /* These signals are used internally by user-level thread
9653 implementations. (See signal(5) on Solaris.) Like the above
9654 signals, a healthy program receives and handles them as part of
9655 its normal operation. */
9656 signal_stop[GDB_SIGNAL_LWP] = 0;
9657 signal_print[GDB_SIGNAL_LWP] = 0;
9658 signal_stop[GDB_SIGNAL_WAITING] = 0;
9659 signal_print[GDB_SIGNAL_WAITING] = 0;
9660 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9661 signal_print[GDB_SIGNAL_CANCEL] = 0;
9662 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9663 signal_print[GDB_SIGNAL_LIBRT] = 0;
9664
9665 /* Update cached state. */
9666 signal_cache_update (-1);
9667
9668 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9669 &stop_on_solib_events, _("\
9670 Set stopping for shared library events."), _("\
9671 Show stopping for shared library events."), _("\
9672 If nonzero, gdb will give control to the user when the dynamic linker\n\
9673 notifies gdb of shared library events. The most common event of interest\n\
9674 to the user would be loading/unloading of a new library."),
9675 set_stop_on_solib_events,
9676 show_stop_on_solib_events,
9677 &setlist, &showlist);
9678
9679 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9680 follow_fork_mode_kind_names,
9681 &follow_fork_mode_string, _("\
9682 Set debugger response to a program call of fork or vfork."), _("\
9683 Show debugger response to a program call of fork or vfork."), _("\
9684 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9685 parent - the original process is debugged after a fork\n\
9686 child - the new process is debugged after a fork\n\
9687 The unfollowed process will continue to run.\n\
9688 By default, the debugger will follow the parent process."),
9689 NULL,
9690 show_follow_fork_mode_string,
9691 &setlist, &showlist);
9692
9693 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9694 follow_exec_mode_names,
9695 &follow_exec_mode_string, _("\
9696 Set debugger response to a program call of exec."), _("\
9697 Show debugger response to a program call of exec."), _("\
9698 An exec call replaces the program image of a process.\n\
9699 \n\
9700 follow-exec-mode can be:\n\
9701 \n\
9702 new - the debugger creates a new inferior and rebinds the process\n\
9703 to this new inferior. The program the process was running before\n\
9704 the exec call can be restarted afterwards by restarting the original\n\
9705 inferior.\n\
9706 \n\
9707 same - the debugger keeps the process bound to the same inferior.\n\
9708 The new executable image replaces the previous executable loaded in\n\
9709 the inferior. Restarting the inferior after the exec call restarts\n\
9710 the executable the process was running after the exec call.\n\
9711 \n\
9712 By default, the debugger will use the same inferior."),
9713 NULL,
9714 show_follow_exec_mode_string,
9715 &setlist, &showlist);
9716
9717 add_setshow_enum_cmd ("scheduler-locking", class_run,
9718 scheduler_enums, &scheduler_mode, _("\
9719 Set mode for locking scheduler during execution."), _("\
9720 Show mode for locking scheduler during execution."), _("\
9721 off == no locking (threads may preempt at any time)\n\
9722 on == full locking (no thread except the current thread may run)\n\
9723 This applies to both normal execution and replay mode.\n\
9724 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9725 In this mode, other threads may run during other commands.\n\
9726 This applies to both normal execution and replay mode.\n\
9727 replay == scheduler locked in replay mode and unlocked during normal execution."),
9728 set_schedlock_func, /* traps on target vector */
9729 show_scheduler_mode,
9730 &setlist, &showlist);
9731
9732 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9733 Set mode for resuming threads of all processes."), _("\
9734 Show mode for resuming threads of all processes."), _("\
9735 When on, execution commands (such as 'continue' or 'next') resume all\n\
9736 threads of all processes. When off (which is the default), execution\n\
9737 commands only resume the threads of the current process. The set of\n\
9738 threads that are resumed is further refined by the scheduler-locking\n\
9739 mode (see help set scheduler-locking)."),
9740 NULL,
9741 show_schedule_multiple,
9742 &setlist, &showlist);
9743
9744 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9745 Set mode of the step operation."), _("\
9746 Show mode of the step operation."), _("\
9747 When set, doing a step over a function without debug line information\n\
9748 will stop at the first instruction of that function. Otherwise, the\n\
9749 function is skipped and the step command stops at a different source line."),
9750 NULL,
9751 show_step_stop_if_no_debug,
9752 &setlist, &showlist);
9753
9754 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9755 &can_use_displaced_stepping, _("\
9756 Set debugger's willingness to use displaced stepping."), _("\
9757 Show debugger's willingness to use displaced stepping."), _("\
9758 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9759 supported by the target architecture. If off, gdb will not use displaced\n\
9760 stepping to step over breakpoints, even if such is supported by the target\n\
9761 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9762 if the target architecture supports it and non-stop mode is active, but will not\n\
9763 use it in all-stop mode (see help set non-stop)."),
9764 NULL,
9765 show_can_use_displaced_stepping,
9766 &setlist, &showlist);
9767
9768 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9769 &exec_direction, _("Set direction of execution.\n\
9770 Options are 'forward' or 'reverse'."),
9771 _("Show direction of execution (forward/reverse)."),
9772 _("Tells gdb whether to execute forward or backward."),
9773 set_exec_direction_func, show_exec_direction_func,
9774 &setlist, &showlist);
9775
9776 /* Set/show detach-on-fork: user-settable mode. */
9777
9778 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9779 Set whether gdb will detach the child of a fork."), _("\
9780 Show whether gdb will detach the child of a fork."), _("\
9781 Tells gdb whether to detach the child of a fork."),
9782 NULL, NULL, &setlist, &showlist);
9783
9784 /* Set/show disable address space randomization mode. */
9785
9786 add_setshow_boolean_cmd ("disable-randomization", class_support,
9787 &disable_randomization, _("\
9788 Set disabling of debuggee's virtual address space randomization."), _("\
9789 Show disabling of debuggee's virtual address space randomization."), _("\
9790 When this mode is on (which is the default), randomization of the virtual\n\
9791 address space is disabled. Standalone programs run with the randomization\n\
9792 enabled by default on some platforms."),
9793 &set_disable_randomization,
9794 &show_disable_randomization,
9795 &setlist, &showlist);
9796
9797 /* ptid initializations */
9798 inferior_ptid = null_ptid;
9799 target_last_wait_ptid = minus_one_ptid;
9800
9801 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9802 "infrun");
9803 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9804 "infrun");
9805 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9806 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9807 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
9808
9809 /* Explicitly create without lookup, since that tries to create a
9810 value with a void typed value, and when we get here, gdbarch
9811 isn't initialized yet. At this point, we're quite sure there
9812 isn't another convenience variable of the same name. */
9813 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9814
9815 add_setshow_boolean_cmd ("observer", no_class,
9816 &observer_mode_1, _("\
9817 Set whether gdb controls the inferior in observer mode."), _("\
9818 Show whether gdb controls the inferior in observer mode."), _("\
9819 In observer mode, GDB can get data from the inferior, but not\n\
9820 affect its execution. Registers and memory may not be changed,\n\
9821 breakpoints may not be set, and the program cannot be interrupted\n\
9822 or signalled."),
9823 set_observer_mode,
9824 show_observer_mode,
9825 &setlist,
9826 &showlist);
9827
9828 #if GDB_SELF_TEST
9829 selftests::register_test ("infrun_thread_ptid_changed",
9830 selftests::infrun_thread_ptid_changed);
9831 #endif
9832 }
This page took 0.290265 seconds and 4 git commands to generate.