Convert infcalls to thread_fsm mechanism
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66
67 /* Prototypes for local functions */
68
69 static void signals_info (char *, int);
70
71 static void handle_command (char *, int);
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void resume_cleanups (void *);
78
79 static int hook_stop_stub (void *);
80
81 static int restore_selected_frame (void *);
82
83 static int follow_fork (void);
84
85 static int follow_fork_inferior (int follow_child, int detach_fork);
86
87 static void follow_inferior_reset_breakpoints (void);
88
89 static void set_schedlock_func (char *args, int from_tty,
90 struct cmd_list_element *c);
91
92 static int currently_stepping (struct thread_info *tp);
93
94 void _initialize_infrun (void);
95
96 void nullify_last_target_wait_ptid (void);
97
98 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
99
100 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
102 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
104 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
106 /* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108 static struct async_event_handler *infrun_async_inferior_event_token;
109
110 /* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112 static int infrun_is_async = -1;
113
114 /* See infrun.h. */
115
116 void
117 infrun_async (int enable)
118 {
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133 }
134
135 /* See infrun.h. */
136
137 void
138 mark_infrun_async_event_handler (void)
139 {
140 mark_async_event_handler (infrun_async_inferior_event_token);
141 }
142
143 /* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146 int step_stop_if_no_debug = 0;
147 static void
148 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152 }
153
154 /* In asynchronous mode, but simulating synchronous execution. */
155
156 int sync_execution = 0;
157
158 /* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162 static ptid_t previous_inferior_ptid;
163
164 /* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169 static int detach_fork = 1;
170
171 int debug_displaced = 0;
172 static void
173 show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177 }
178
179 unsigned int debug_infrun = 0;
180 static void
181 show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185 }
186
187
188 /* Support for disabling address space randomization. */
189
190 int disable_randomization = 1;
191
192 static void
193 show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205 }
206
207 static void
208 set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215 }
216
217 /* User interface for non-stop mode. */
218
219 int non_stop = 0;
220 static int non_stop_1 = 0;
221
222 static void
223 set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233 }
234
235 static void
236 show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242 }
243
244 /* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248 int observer_mode = 0;
249 static int observer_mode_1 = 0;
250
251 static void
252 set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254 {
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285 }
286
287 static void
288 show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292 }
293
294 /* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300 void
301 update_observer_mode (void)
302 {
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char *signal_stop;
322 static unsigned char *signal_print;
323 static unsigned char *signal_program;
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329 static unsigned char *signal_catch;
330
331 /* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334 static unsigned char *signal_pass;
335
336 #define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344 #define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355 void
356 update_signals_program_target (void)
357 {
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359 }
360
361 /* Value to pass to target_resume() to cause all threads to resume. */
362
363 #define RESUME_ALL minus_one_ptid
364
365 /* Command list pointer for the "stop" placeholder. */
366
367 static struct cmd_list_element *stop_command;
368
369 /* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371 int stop_on_solib_events;
372
373 /* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376 static void
377 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393 int stop_after_trap;
394
395 /* Nonzero after stop if current stack frame should be printed. */
396
397 static int stop_print_frame;
398
399 /* This is a cached copy of the pid/waitstatus of the last event
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
402 static ptid_t target_last_wait_ptid;
403 static struct target_waitstatus target_last_waitstatus;
404
405 static void context_switch (ptid_t ptid);
406
407 void init_thread_stepping_state (struct thread_info *tss);
408
409 static const char follow_fork_mode_child[] = "child";
410 static const char follow_fork_mode_parent[] = "parent";
411
412 static const char *const follow_fork_mode_kind_names[] = {
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
416 };
417
418 static const char *follow_fork_mode_string = follow_fork_mode_parent;
419 static void
420 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422 {
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
426 value);
427 }
428 \f
429
430 /* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436 static int
437 follow_fork_inferior (int follow_child, int detach_fork)
438 {
439 int has_vforked;
440 ptid_t parent_ptid, child_ptid;
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458 Can not resume the parent process over vfork in the foreground while\n\
459 holding the child stopped. Try \"set detach-on-fork\" or \
460 \"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
490 target_terminal_ours_for_output ();
491 fprintf_filtered (gdb_stdlog,
492 _("Detaching after %s from child %s.\n"),
493 has_vforked ? "vfork" : "fork",
494 target_pid_to_str (process_ptid));
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
503 child_inf = add_inferior (ptid_get_pid (child_ptid));
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
514 inferior_ptid = child_ptid;
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
582 has_vforked ? "vfork" : "fork",
583 target_pid_to_str (child_ptid));
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
589 child_inf = add_inferior (ptid_get_pid (child_ptid));
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
620 {
621 if (info_verbose || debug_infrun)
622 {
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
629 "child %s.\n"),
630 target_pid_to_str (process_ptid));
631 }
632
633 target_detach (NULL, 0);
634 }
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
642 inferior_ptid = child_ptid;
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672 }
673
674 /* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
678 static int
679 follow_fork (void)
680 {
681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
690 struct breakpoint *exception_resume_breakpoint = NULL;
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
694 struct interp *command_interp = NULL;
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
746 command_interp = tp->control.command_interp;
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
757 delete_exception_resume_breakpoint (tp);
758 tp->control.command_interp = NULL;
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
779 tp = find_thread_ptid (parent);
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
787 /* If we followed the child, switch to it... */
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
804 tp->control.command_interp = command_interp;
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
814 warning (_("Not resuming: switched threads "
815 "before following fork child."));
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
835
836 return should_resume;
837 }
838
839 static void
840 follow_inferior_reset_breakpoints (void)
841 {
842 struct thread_info *tp = inferior_thread ();
843
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
857 if (tp->control.step_resume_breakpoint)
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
862
863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
864 if (tp->control.exception_resume_breakpoint)
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
869
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
877 }
878
879 /* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882 static int
883 proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885 {
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
900 clear_proceed_status (0);
901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
902 }
903
904 return 0;
905 }
906
907 /* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910 static void
911 handle_vfork_child_exec_or_exit (int exec)
912 {
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
930 /* follow-fork child, detach-on-fork on. */
931
932 inf->vfork_parent->pending_detach = 0;
933
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
968 target_terminal_ours_for_output ();
969
970 if (exec)
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
977 else
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
1035 inf->symfile_flags = SYMFILE_NO_READ;
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1041 inferior. */
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069 }
1070
1071 /* Enum strings for "set|show follow-exec-mode". */
1072
1073 static const char follow_exec_mode_new[] = "new";
1074 static const char follow_exec_mode_same[] = "same";
1075 static const char *const follow_exec_mode_names[] =
1076 {
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080 };
1081
1082 static const char *follow_exec_mode_string = follow_exec_mode_same;
1083 static void
1084 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086 {
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088 }
1089
1090 /* EXECD_PATHNAME is assumed to be non-NULL. */
1091
1092 static void
1093 follow_exec (ptid_t ptid, char *execd_pathname)
1094 {
1095 struct thread_info *th, *tmp;
1096 struct inferior *inf = current_inferior ();
1097 int pid = ptid_get_pid (ptid);
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 ALL_THREADS_SAFE (th, tmp)
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (inferior_ptid),
1166 execd_pathname);
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1169 inferior has essentially been killed & reborn. */
1170
1171 gdb_flush (gdb_stdout);
1172
1173 breakpoint_init_inferior (inf_execd);
1174
1175 if (*gdb_sysroot != '\0')
1176 {
1177 char *name = exec_file_find (execd_pathname, NULL);
1178
1179 execd_pathname = alloca (strlen (name) + 1);
1180 strcpy (execd_pathname, name);
1181 xfree (name);
1182 }
1183
1184 /* Reset the shared library package. This ensures that we get a
1185 shlib event when the child reaches "_start", at which point the
1186 dld will have had a chance to initialize the child. */
1187 /* Also, loading a symbol file below may trigger symbol lookups, and
1188 we don't want those to be satisfied by the libraries of the
1189 previous incarnation of this process. */
1190 no_shared_libraries (NULL, 0);
1191
1192 if (follow_exec_mode_string == follow_exec_mode_new)
1193 {
1194 struct program_space *pspace;
1195
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
1204 inf = add_inferior (pid);
1205 pspace = add_program_space (maybe_new_address_space ());
1206 inf->pspace = pspace;
1207 inf->aspace = pspace->aspace;
1208 add_thread (ptid);
1209
1210 set_current_inferior (inf);
1211 set_current_program_space (pspace);
1212 }
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
1226 /* That a.out is now the one to use. */
1227 exec_file_attach (execd_pathname, 0);
1228
1229 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1230 (Position Independent Executable) main symbol file will get applied by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1232 the breakpoints with the zero displacement. */
1233
1234 symbol_file_add (execd_pathname,
1235 (inf->symfile_flags
1236 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1237 NULL, 0);
1238
1239 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1240 set_initial_language ();
1241
1242 /* If the target can specify a description, read it. Must do this
1243 after flipping to the new executable (because the target supplied
1244 description must be compatible with the executable's
1245 architecture, and the old executable may e.g., be 32-bit, while
1246 the new one 64-bit), and before anything involving memory or
1247 registers. */
1248 target_find_description ();
1249
1250 solib_create_inferior_hook (0);
1251
1252 jit_inferior_created_hook ();
1253
1254 breakpoint_re_set ();
1255
1256 /* Reinsert all breakpoints. (Those which were symbolic have
1257 been reset to the proper address in the new a.out, thanks
1258 to symbol_file_command...). */
1259 insert_breakpoints ();
1260
1261 /* The next resume of this inferior should bring it to the shlib
1262 startup breakpoints. (If the user had also set bp's on
1263 "main" from the old (parent) process, then they'll auto-
1264 matically get reset there in the new process.). */
1265 }
1266
1267 /* The queue of threads that need to do a step-over operation to get
1268 past e.g., a breakpoint. What technique is used to step over the
1269 breakpoint/watchpoint does not matter -- all threads end up in the
1270 same queue, to maintain rough temporal order of execution, in order
1271 to avoid starvation, otherwise, we could e.g., find ourselves
1272 constantly stepping the same couple threads past their breakpoints
1273 over and over, if the single-step finish fast enough. */
1274 struct thread_info *step_over_queue_head;
1275
1276 /* Bit flags indicating what the thread needs to step over. */
1277
1278 enum step_over_what
1279 {
1280 /* Step over a breakpoint. */
1281 STEP_OVER_BREAKPOINT = 1,
1282
1283 /* Step past a non-continuable watchpoint, in order to let the
1284 instruction execute so we can evaluate the watchpoint
1285 expression. */
1286 STEP_OVER_WATCHPOINT = 2
1287 };
1288
1289 /* Info about an instruction that is being stepped over. */
1290
1291 struct step_over_info
1292 {
1293 /* If we're stepping past a breakpoint, this is the address space
1294 and address of the instruction the breakpoint is set at. We'll
1295 skip inserting all breakpoints here. Valid iff ASPACE is
1296 non-NULL. */
1297 struct address_space *aspace;
1298 CORE_ADDR address;
1299
1300 /* The instruction being stepped over triggers a nonsteppable
1301 watchpoint. If true, we'll skip inserting watchpoints. */
1302 int nonsteppable_watchpoint_p;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over. */
1333
1334 static void
1335 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1336 int nonsteppable_watchpoint_p)
1337 {
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341 }
1342
1343 /* Called when we're not longer stepping over a breakpoint / an
1344 instruction, so all breakpoints are free to be (re)inserted. */
1345
1346 static void
1347 clear_step_over_info (void)
1348 {
1349 if (debug_infrun)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "infrun: clear_step_over_info\n");
1352 step_over_info.aspace = NULL;
1353 step_over_info.address = 0;
1354 step_over_info.nonsteppable_watchpoint_p = 0;
1355 }
1356
1357 /* See infrun.h. */
1358
1359 int
1360 stepping_past_instruction_at (struct address_space *aspace,
1361 CORE_ADDR address)
1362 {
1363 return (step_over_info.aspace != NULL
1364 && breakpoint_address_match (aspace, address,
1365 step_over_info.aspace,
1366 step_over_info.address));
1367 }
1368
1369 /* See infrun.h. */
1370
1371 int
1372 stepping_past_nonsteppable_watchpoint (void)
1373 {
1374 return step_over_info.nonsteppable_watchpoint_p;
1375 }
1376
1377 /* Returns true if step-over info is valid. */
1378
1379 static int
1380 step_over_info_valid_p (void)
1381 {
1382 return (step_over_info.aspace != NULL
1383 || stepping_past_nonsteppable_watchpoint ());
1384 }
1385
1386 \f
1387 /* Displaced stepping. */
1388
1389 /* In non-stop debugging mode, we must take special care to manage
1390 breakpoints properly; in particular, the traditional strategy for
1391 stepping a thread past a breakpoint it has hit is unsuitable.
1392 'Displaced stepping' is a tactic for stepping one thread past a
1393 breakpoint it has hit while ensuring that other threads running
1394 concurrently will hit the breakpoint as they should.
1395
1396 The traditional way to step a thread T off a breakpoint in a
1397 multi-threaded program in all-stop mode is as follows:
1398
1399 a0) Initially, all threads are stopped, and breakpoints are not
1400 inserted.
1401 a1) We single-step T, leaving breakpoints uninserted.
1402 a2) We insert breakpoints, and resume all threads.
1403
1404 In non-stop debugging, however, this strategy is unsuitable: we
1405 don't want to have to stop all threads in the system in order to
1406 continue or step T past a breakpoint. Instead, we use displaced
1407 stepping:
1408
1409 n0) Initially, T is stopped, other threads are running, and
1410 breakpoints are inserted.
1411 n1) We copy the instruction "under" the breakpoint to a separate
1412 location, outside the main code stream, making any adjustments
1413 to the instruction, register, and memory state as directed by
1414 T's architecture.
1415 n2) We single-step T over the instruction at its new location.
1416 n3) We adjust the resulting register and memory state as directed
1417 by T's architecture. This includes resetting T's PC to point
1418 back into the main instruction stream.
1419 n4) We resume T.
1420
1421 This approach depends on the following gdbarch methods:
1422
1423 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1424 indicate where to copy the instruction, and how much space must
1425 be reserved there. We use these in step n1.
1426
1427 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1428 address, and makes any necessary adjustments to the instruction,
1429 register contents, and memory. We use this in step n1.
1430
1431 - gdbarch_displaced_step_fixup adjusts registers and memory after
1432 we have successfuly single-stepped the instruction, to yield the
1433 same effect the instruction would have had if we had executed it
1434 at its original address. We use this in step n3.
1435
1436 - gdbarch_displaced_step_free_closure provides cleanup.
1437
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
1475 /* Per-inferior displaced stepping state. */
1476 struct displaced_step_inferior_state
1477 {
1478 /* Pointer to next in linked list. */
1479 struct displaced_step_inferior_state *next;
1480
1481 /* The process this displaced step state refers to. */
1482 int pid;
1483
1484 /* True if preparing a displaced step ever failed. If so, we won't
1485 try displaced stepping for this inferior again. */
1486 int failed_before;
1487
1488 /* If this is not null_ptid, this is the thread carrying out a
1489 displaced single-step in process PID. This thread's state will
1490 require fixing up once it has completed its step. */
1491 ptid_t step_ptid;
1492
1493 /* The architecture the thread had when we stepped it. */
1494 struct gdbarch *step_gdbarch;
1495
1496 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1497 for post-step cleanup. */
1498 struct displaced_step_closure *step_closure;
1499
1500 /* The address of the original instruction, and the copy we
1501 made. */
1502 CORE_ADDR step_original, step_copy;
1503
1504 /* Saved contents of copy area. */
1505 gdb_byte *step_saved_copy;
1506 };
1507
1508 /* The list of states of processes involved in displaced stepping
1509 presently. */
1510 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1511
1512 /* Get the displaced stepping state of process PID. */
1513
1514 static struct displaced_step_inferior_state *
1515 get_displaced_stepping_state (int pid)
1516 {
1517 struct displaced_step_inferior_state *state;
1518
1519 for (state = displaced_step_inferior_states;
1520 state != NULL;
1521 state = state->next)
1522 if (state->pid == pid)
1523 return state;
1524
1525 return NULL;
1526 }
1527
1528 /* Returns true if any inferior has a thread doing a displaced
1529 step. */
1530
1531 static int
1532 displaced_step_in_progress_any_inferior (void)
1533 {
1534 struct displaced_step_inferior_state *state;
1535
1536 for (state = displaced_step_inferior_states;
1537 state != NULL;
1538 state = state->next)
1539 if (!ptid_equal (state->step_ptid, null_ptid))
1540 return 1;
1541
1542 return 0;
1543 }
1544
1545 /* Return true if process PID has a thread doing a displaced step. */
1546
1547 static int
1548 displaced_step_in_progress (int pid)
1549 {
1550 struct displaced_step_inferior_state *displaced;
1551
1552 displaced = get_displaced_stepping_state (pid);
1553 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1554 return 1;
1555
1556 return 0;
1557 }
1558
1559 /* Add a new displaced stepping state for process PID to the displaced
1560 stepping state list, or return a pointer to an already existing
1561 entry, if it already exists. Never returns NULL. */
1562
1563 static struct displaced_step_inferior_state *
1564 add_displaced_stepping_state (int pid)
1565 {
1566 struct displaced_step_inferior_state *state;
1567
1568 for (state = displaced_step_inferior_states;
1569 state != NULL;
1570 state = state->next)
1571 if (state->pid == pid)
1572 return state;
1573
1574 state = XCNEW (struct displaced_step_inferior_state);
1575 state->pid = pid;
1576 state->next = displaced_step_inferior_states;
1577 displaced_step_inferior_states = state;
1578
1579 return state;
1580 }
1581
1582 /* If inferior is in displaced stepping, and ADDR equals to starting address
1583 of copy area, return corresponding displaced_step_closure. Otherwise,
1584 return NULL. */
1585
1586 struct displaced_step_closure*
1587 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1588 {
1589 struct displaced_step_inferior_state *displaced
1590 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1591
1592 /* If checking the mode of displaced instruction in copy area. */
1593 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1594 && (displaced->step_copy == addr))
1595 return displaced->step_closure;
1596
1597 return NULL;
1598 }
1599
1600 /* Remove the displaced stepping state of process PID. */
1601
1602 static void
1603 remove_displaced_stepping_state (int pid)
1604 {
1605 struct displaced_step_inferior_state *it, **prev_next_p;
1606
1607 gdb_assert (pid != 0);
1608
1609 it = displaced_step_inferior_states;
1610 prev_next_p = &displaced_step_inferior_states;
1611 while (it)
1612 {
1613 if (it->pid == pid)
1614 {
1615 *prev_next_p = it->next;
1616 xfree (it);
1617 return;
1618 }
1619
1620 prev_next_p = &it->next;
1621 it = *prev_next_p;
1622 }
1623 }
1624
1625 static void
1626 infrun_inferior_exit (struct inferior *inf)
1627 {
1628 remove_displaced_stepping_state (inf->pid);
1629 }
1630
1631 /* If ON, and the architecture supports it, GDB will use displaced
1632 stepping to step over breakpoints. If OFF, or if the architecture
1633 doesn't support it, GDB will instead use the traditional
1634 hold-and-step approach. If AUTO (which is the default), GDB will
1635 decide which technique to use to step over breakpoints depending on
1636 which of all-stop or non-stop mode is active --- displaced stepping
1637 in non-stop mode; hold-and-step in all-stop mode. */
1638
1639 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1640
1641 static void
1642 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1643 struct cmd_list_element *c,
1644 const char *value)
1645 {
1646 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1647 fprintf_filtered (file,
1648 _("Debugger's willingness to use displaced stepping "
1649 "to step over breakpoints is %s (currently %s).\n"),
1650 value, target_is_non_stop_p () ? "on" : "off");
1651 else
1652 fprintf_filtered (file,
1653 _("Debugger's willingness to use displaced stepping "
1654 "to step over breakpoints is %s.\n"), value);
1655 }
1656
1657 /* Return non-zero if displaced stepping can/should be used to step
1658 over breakpoints of thread TP. */
1659
1660 static int
1661 use_displaced_stepping (struct thread_info *tp)
1662 {
1663 struct regcache *regcache = get_thread_regcache (tp->ptid);
1664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1665 struct displaced_step_inferior_state *displaced_state;
1666
1667 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1668
1669 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1670 && target_is_non_stop_p ())
1671 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1672 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1673 && find_record_target () == NULL
1674 && (displaced_state == NULL
1675 || !displaced_state->failed_before));
1676 }
1677
1678 /* Clean out any stray displaced stepping state. */
1679 static void
1680 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1681 {
1682 /* Indicate that there is no cleanup pending. */
1683 displaced->step_ptid = null_ptid;
1684
1685 if (displaced->step_closure)
1686 {
1687 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1688 displaced->step_closure);
1689 displaced->step_closure = NULL;
1690 }
1691 }
1692
1693 static void
1694 displaced_step_clear_cleanup (void *arg)
1695 {
1696 struct displaced_step_inferior_state *state = arg;
1697
1698 displaced_step_clear (state);
1699 }
1700
1701 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1702 void
1703 displaced_step_dump_bytes (struct ui_file *file,
1704 const gdb_byte *buf,
1705 size_t len)
1706 {
1707 int i;
1708
1709 for (i = 0; i < len; i++)
1710 fprintf_unfiltered (file, "%02x ", buf[i]);
1711 fputs_unfiltered ("\n", file);
1712 }
1713
1714 /* Prepare to single-step, using displaced stepping.
1715
1716 Note that we cannot use displaced stepping when we have a signal to
1717 deliver. If we have a signal to deliver and an instruction to step
1718 over, then after the step, there will be no indication from the
1719 target whether the thread entered a signal handler or ignored the
1720 signal and stepped over the instruction successfully --- both cases
1721 result in a simple SIGTRAP. In the first case we mustn't do a
1722 fixup, and in the second case we must --- but we can't tell which.
1723 Comments in the code for 'random signals' in handle_inferior_event
1724 explain how we handle this case instead.
1725
1726 Returns 1 if preparing was successful -- this thread is going to be
1727 stepped now; 0 if displaced stepping this thread got queued; or -1
1728 if this instruction can't be displaced stepped. */
1729
1730 static int
1731 displaced_step_prepare_throw (ptid_t ptid)
1732 {
1733 struct cleanup *old_cleanups, *ignore_cleanups;
1734 struct thread_info *tp = find_thread_ptid (ptid);
1735 struct regcache *regcache = get_thread_regcache (ptid);
1736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1737 CORE_ADDR original, copy;
1738 ULONGEST len;
1739 struct displaced_step_closure *closure;
1740 struct displaced_step_inferior_state *displaced;
1741 int status;
1742
1743 /* We should never reach this function if the architecture does not
1744 support displaced stepping. */
1745 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1746
1747 /* Nor if the thread isn't meant to step over a breakpoint. */
1748 gdb_assert (tp->control.trap_expected);
1749
1750 /* Disable range stepping while executing in the scratch pad. We
1751 want a single-step even if executing the displaced instruction in
1752 the scratch buffer lands within the stepping range (e.g., a
1753 jump/branch). */
1754 tp->control.may_range_step = 0;
1755
1756 /* We have to displaced step one thread at a time, as we only have
1757 access to a single scratch space per inferior. */
1758
1759 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1760
1761 if (!ptid_equal (displaced->step_ptid, null_ptid))
1762 {
1763 /* Already waiting for a displaced step to finish. Defer this
1764 request and place in queue. */
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
1768 "displaced: deferring step of %s\n",
1769 target_pid_to_str (ptid));
1770
1771 thread_step_over_chain_enqueue (tp);
1772 return 0;
1773 }
1774 else
1775 {
1776 if (debug_displaced)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "displaced: stepping %s now\n",
1779 target_pid_to_str (ptid));
1780 }
1781
1782 displaced_step_clear (displaced);
1783
1784 old_cleanups = save_inferior_ptid ();
1785 inferior_ptid = ptid;
1786
1787 original = regcache_read_pc (regcache);
1788
1789 copy = gdbarch_displaced_step_location (gdbarch);
1790 len = gdbarch_max_insn_length (gdbarch);
1791
1792 /* Save the original contents of the copy area. */
1793 displaced->step_saved_copy = xmalloc (len);
1794 ignore_cleanups = make_cleanup (free_current_contents,
1795 &displaced->step_saved_copy);
1796 status = target_read_memory (copy, displaced->step_saved_copy, len);
1797 if (status != 0)
1798 throw_error (MEMORY_ERROR,
1799 _("Error accessing memory address %s (%s) for "
1800 "displaced-stepping scratch space."),
1801 paddress (gdbarch, copy), safe_strerror (status));
1802 if (debug_displaced)
1803 {
1804 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1805 paddress (gdbarch, copy));
1806 displaced_step_dump_bytes (gdb_stdlog,
1807 displaced->step_saved_copy,
1808 len);
1809 };
1810
1811 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1812 original, copy, regcache);
1813 if (closure == NULL)
1814 {
1815 /* The architecture doesn't know how or want to displaced step
1816 this instruction or instruction sequence. Fallback to
1817 stepping over the breakpoint in-line. */
1818 do_cleanups (old_cleanups);
1819 return -1;
1820 }
1821
1822 /* Save the information we need to fix things up if the step
1823 succeeds. */
1824 displaced->step_ptid = ptid;
1825 displaced->step_gdbarch = gdbarch;
1826 displaced->step_closure = closure;
1827 displaced->step_original = original;
1828 displaced->step_copy = copy;
1829
1830 make_cleanup (displaced_step_clear_cleanup, displaced);
1831
1832 /* Resume execution at the copy. */
1833 regcache_write_pc (regcache, copy);
1834
1835 discard_cleanups (ignore_cleanups);
1836
1837 do_cleanups (old_cleanups);
1838
1839 if (debug_displaced)
1840 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1841 paddress (gdbarch, copy));
1842
1843 return 1;
1844 }
1845
1846 /* Wrapper for displaced_step_prepare_throw that disabled further
1847 attempts at displaced stepping if we get a memory error. */
1848
1849 static int
1850 displaced_step_prepare (ptid_t ptid)
1851 {
1852 int prepared = -1;
1853
1854 TRY
1855 {
1856 prepared = displaced_step_prepare_throw (ptid);
1857 }
1858 CATCH (ex, RETURN_MASK_ERROR)
1859 {
1860 struct displaced_step_inferior_state *displaced_state;
1861
1862 if (ex.error != MEMORY_ERROR)
1863 throw_exception (ex);
1864
1865 if (debug_infrun)
1866 {
1867 fprintf_unfiltered (gdb_stdlog,
1868 "infrun: disabling displaced stepping: %s\n",
1869 ex.message);
1870 }
1871
1872 /* Be verbose if "set displaced-stepping" is "on", silent if
1873 "auto". */
1874 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1875 {
1876 warning (_("disabling displaced stepping: %s"),
1877 ex.message);
1878 }
1879
1880 /* Disable further displaced stepping attempts. */
1881 displaced_state
1882 = get_displaced_stepping_state (ptid_get_pid (ptid));
1883 displaced_state->failed_before = 1;
1884 }
1885 END_CATCH
1886
1887 return prepared;
1888 }
1889
1890 static void
1891 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1892 const gdb_byte *myaddr, int len)
1893 {
1894 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1895
1896 inferior_ptid = ptid;
1897 write_memory (memaddr, myaddr, len);
1898 do_cleanups (ptid_cleanup);
1899 }
1900
1901 /* Restore the contents of the copy area for thread PTID. */
1902
1903 static void
1904 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1905 ptid_t ptid)
1906 {
1907 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1908
1909 write_memory_ptid (ptid, displaced->step_copy,
1910 displaced->step_saved_copy, len);
1911 if (debug_displaced)
1912 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1913 target_pid_to_str (ptid),
1914 paddress (displaced->step_gdbarch,
1915 displaced->step_copy));
1916 }
1917
1918 /* If we displaced stepped an instruction successfully, adjust
1919 registers and memory to yield the same effect the instruction would
1920 have had if we had executed it at its original address, and return
1921 1. If the instruction didn't complete, relocate the PC and return
1922 -1. If the thread wasn't displaced stepping, return 0. */
1923
1924 static int
1925 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1926 {
1927 struct cleanup *old_cleanups;
1928 struct displaced_step_inferior_state *displaced
1929 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1930 int ret;
1931
1932 /* Was any thread of this process doing a displaced step? */
1933 if (displaced == NULL)
1934 return 0;
1935
1936 /* Was this event for the pid we displaced? */
1937 if (ptid_equal (displaced->step_ptid, null_ptid)
1938 || ! ptid_equal (displaced->step_ptid, event_ptid))
1939 return 0;
1940
1941 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1942
1943 displaced_step_restore (displaced, displaced->step_ptid);
1944
1945 /* Fixup may need to read memory/registers. Switch to the thread
1946 that we're fixing up. Also, target_stopped_by_watchpoint checks
1947 the current thread. */
1948 switch_to_thread (event_ptid);
1949
1950 /* Did the instruction complete successfully? */
1951 if (signal == GDB_SIGNAL_TRAP
1952 && !(target_stopped_by_watchpoint ()
1953 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1954 || target_have_steppable_watchpoint)))
1955 {
1956 /* Fix up the resulting state. */
1957 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1958 displaced->step_closure,
1959 displaced->step_original,
1960 displaced->step_copy,
1961 get_thread_regcache (displaced->step_ptid));
1962 ret = 1;
1963 }
1964 else
1965 {
1966 /* Since the instruction didn't complete, all we can do is
1967 relocate the PC. */
1968 struct regcache *regcache = get_thread_regcache (event_ptid);
1969 CORE_ADDR pc = regcache_read_pc (regcache);
1970
1971 pc = displaced->step_original + (pc - displaced->step_copy);
1972 regcache_write_pc (regcache, pc);
1973 ret = -1;
1974 }
1975
1976 do_cleanups (old_cleanups);
1977
1978 displaced->step_ptid = null_ptid;
1979
1980 return ret;
1981 }
1982
1983 /* Data to be passed around while handling an event. This data is
1984 discarded between events. */
1985 struct execution_control_state
1986 {
1987 ptid_t ptid;
1988 /* The thread that got the event, if this was a thread event; NULL
1989 otherwise. */
1990 struct thread_info *event_thread;
1991
1992 struct target_waitstatus ws;
1993 int stop_func_filled_in;
1994 CORE_ADDR stop_func_start;
1995 CORE_ADDR stop_func_end;
1996 const char *stop_func_name;
1997 int wait_some_more;
1998
1999 /* True if the event thread hit the single-step breakpoint of
2000 another thread. Thus the event doesn't cause a stop, the thread
2001 needs to be single-stepped past the single-step breakpoint before
2002 we can switch back to the original stepping thread. */
2003 int hit_singlestep_breakpoint;
2004 };
2005
2006 /* Clear ECS and set it to point at TP. */
2007
2008 static void
2009 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2010 {
2011 memset (ecs, 0, sizeof (*ecs));
2012 ecs->event_thread = tp;
2013 ecs->ptid = tp->ptid;
2014 }
2015
2016 static void keep_going_pass_signal (struct execution_control_state *ecs);
2017 static void prepare_to_wait (struct execution_control_state *ecs);
2018 static int keep_going_stepped_thread (struct thread_info *tp);
2019 static int thread_still_needs_step_over (struct thread_info *tp);
2020 static void stop_all_threads (void);
2021
2022 /* Are there any pending step-over requests? If so, run all we can
2023 now and return true. Otherwise, return false. */
2024
2025 static int
2026 start_step_over (void)
2027 {
2028 struct thread_info *tp, *next;
2029
2030 /* Don't start a new step-over if we already have an in-line
2031 step-over operation ongoing. */
2032 if (step_over_info_valid_p ())
2033 return 0;
2034
2035 for (tp = step_over_queue_head; tp != NULL; tp = next)
2036 {
2037 struct execution_control_state ecss;
2038 struct execution_control_state *ecs = &ecss;
2039 enum step_over_what step_what;
2040 int must_be_in_line;
2041
2042 next = thread_step_over_chain_next (tp);
2043
2044 /* If this inferior already has a displaced step in process,
2045 don't start a new one. */
2046 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2047 continue;
2048
2049 step_what = thread_still_needs_step_over (tp);
2050 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2051 || ((step_what & STEP_OVER_BREAKPOINT)
2052 && !use_displaced_stepping (tp)));
2053
2054 /* We currently stop all threads of all processes to step-over
2055 in-line. If we need to start a new in-line step-over, let
2056 any pending displaced steps finish first. */
2057 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2058 return 0;
2059
2060 thread_step_over_chain_remove (tp);
2061
2062 if (step_over_queue_head == NULL)
2063 {
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: step-over queue now empty\n");
2067 }
2068
2069 if (tp->control.trap_expected
2070 || tp->resumed
2071 || tp->executing)
2072 {
2073 internal_error (__FILE__, __LINE__,
2074 "[%s] has inconsistent state: "
2075 "trap_expected=%d, resumed=%d, executing=%d\n",
2076 target_pid_to_str (tp->ptid),
2077 tp->control.trap_expected,
2078 tp->resumed,
2079 tp->executing);
2080 }
2081
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: resuming [%s] for step-over\n",
2085 target_pid_to_str (tp->ptid));
2086
2087 /* keep_going_pass_signal skips the step-over if the breakpoint
2088 is no longer inserted. In all-stop, we want to keep looking
2089 for a thread that needs a step-over instead of resuming TP,
2090 because we wouldn't be able to resume anything else until the
2091 target stops again. In non-stop, the resume always resumes
2092 only TP, so it's OK to let the thread resume freely. */
2093 if (!target_is_non_stop_p () && !step_what)
2094 continue;
2095
2096 switch_to_thread (tp->ptid);
2097 reset_ecs (ecs, tp);
2098 keep_going_pass_signal (ecs);
2099
2100 if (!ecs->wait_some_more)
2101 error (_("Command aborted."));
2102
2103 gdb_assert (tp->resumed);
2104
2105 /* If we started a new in-line step-over, we're done. */
2106 if (step_over_info_valid_p ())
2107 {
2108 gdb_assert (tp->control.trap_expected);
2109 return 1;
2110 }
2111
2112 if (!target_is_non_stop_p ())
2113 {
2114 /* On all-stop, shouldn't have resumed unless we needed a
2115 step over. */
2116 gdb_assert (tp->control.trap_expected
2117 || tp->step_after_step_resume_breakpoint);
2118
2119 /* With remote targets (at least), in all-stop, we can't
2120 issue any further remote commands until the program stops
2121 again. */
2122 return 1;
2123 }
2124
2125 /* Either the thread no longer needed a step-over, or a new
2126 displaced stepping sequence started. Even in the latter
2127 case, continue looking. Maybe we can also start another
2128 displaced step on a thread of other process. */
2129 }
2130
2131 return 0;
2132 }
2133
2134 /* Update global variables holding ptids to hold NEW_PTID if they were
2135 holding OLD_PTID. */
2136 static void
2137 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2138 {
2139 struct displaced_step_request *it;
2140 struct displaced_step_inferior_state *displaced;
2141
2142 if (ptid_equal (inferior_ptid, old_ptid))
2143 inferior_ptid = new_ptid;
2144
2145 for (displaced = displaced_step_inferior_states;
2146 displaced;
2147 displaced = displaced->next)
2148 {
2149 if (ptid_equal (displaced->step_ptid, old_ptid))
2150 displaced->step_ptid = new_ptid;
2151 }
2152 }
2153
2154 \f
2155 /* Resuming. */
2156
2157 /* Things to clean up if we QUIT out of resume (). */
2158 static void
2159 resume_cleanups (void *ignore)
2160 {
2161 if (!ptid_equal (inferior_ptid, null_ptid))
2162 delete_single_step_breakpoints (inferior_thread ());
2163
2164 normal_stop ();
2165 }
2166
2167 static const char schedlock_off[] = "off";
2168 static const char schedlock_on[] = "on";
2169 static const char schedlock_step[] = "step";
2170 static const char *const scheduler_enums[] = {
2171 schedlock_off,
2172 schedlock_on,
2173 schedlock_step,
2174 NULL
2175 };
2176 static const char *scheduler_mode = schedlock_off;
2177 static void
2178 show_scheduler_mode (struct ui_file *file, int from_tty,
2179 struct cmd_list_element *c, const char *value)
2180 {
2181 fprintf_filtered (file,
2182 _("Mode for locking scheduler "
2183 "during execution is \"%s\".\n"),
2184 value);
2185 }
2186
2187 static void
2188 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2189 {
2190 if (!target_can_lock_scheduler)
2191 {
2192 scheduler_mode = schedlock_off;
2193 error (_("Target '%s' cannot support this command."), target_shortname);
2194 }
2195 }
2196
2197 /* True if execution commands resume all threads of all processes by
2198 default; otherwise, resume only threads of the current inferior
2199 process. */
2200 int sched_multi = 0;
2201
2202 /* Try to setup for software single stepping over the specified location.
2203 Return 1 if target_resume() should use hardware single step.
2204
2205 GDBARCH the current gdbarch.
2206 PC the location to step over. */
2207
2208 static int
2209 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2210 {
2211 int hw_step = 1;
2212
2213 if (execution_direction == EXEC_FORWARD
2214 && gdbarch_software_single_step_p (gdbarch)
2215 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2216 {
2217 hw_step = 0;
2218 }
2219 return hw_step;
2220 }
2221
2222 /* See infrun.h. */
2223
2224 ptid_t
2225 user_visible_resume_ptid (int step)
2226 {
2227 ptid_t resume_ptid;
2228
2229 if (non_stop)
2230 {
2231 /* With non-stop mode on, threads are always handled
2232 individually. */
2233 resume_ptid = inferior_ptid;
2234 }
2235 else if ((scheduler_mode == schedlock_on)
2236 || (scheduler_mode == schedlock_step && step))
2237 {
2238 /* User-settable 'scheduler' mode requires solo thread
2239 resume. */
2240 resume_ptid = inferior_ptid;
2241 }
2242 else if (!sched_multi && target_supports_multi_process ())
2243 {
2244 /* Resume all threads of the current process (and none of other
2245 processes). */
2246 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2247 }
2248 else
2249 {
2250 /* Resume all threads of all processes. */
2251 resume_ptid = RESUME_ALL;
2252 }
2253
2254 return resume_ptid;
2255 }
2256
2257 /* Return a ptid representing the set of threads that we will resume,
2258 in the perspective of the target, assuming run control handling
2259 does not require leaving some threads stopped (e.g., stepping past
2260 breakpoint). USER_STEP indicates whether we're about to start the
2261 target for a stepping command. */
2262
2263 static ptid_t
2264 internal_resume_ptid (int user_step)
2265 {
2266 /* In non-stop, we always control threads individually. Note that
2267 the target may always work in non-stop mode even with "set
2268 non-stop off", in which case user_visible_resume_ptid could
2269 return a wildcard ptid. */
2270 if (target_is_non_stop_p ())
2271 return inferior_ptid;
2272 else
2273 return user_visible_resume_ptid (user_step);
2274 }
2275
2276 /* Wrapper for target_resume, that handles infrun-specific
2277 bookkeeping. */
2278
2279 static void
2280 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2281 {
2282 struct thread_info *tp = inferior_thread ();
2283
2284 /* Install inferior's terminal modes. */
2285 target_terminal_inferior ();
2286
2287 /* Avoid confusing the next resume, if the next stop/resume
2288 happens to apply to another thread. */
2289 tp->suspend.stop_signal = GDB_SIGNAL_0;
2290
2291 /* Advise target which signals may be handled silently.
2292
2293 If we have removed breakpoints because we are stepping over one
2294 in-line (in any thread), we need to receive all signals to avoid
2295 accidentally skipping a breakpoint during execution of a signal
2296 handler.
2297
2298 Likewise if we're displaced stepping, otherwise a trap for a
2299 breakpoint in a signal handler might be confused with the
2300 displaced step finishing. We don't make the displaced_step_fixup
2301 step distinguish the cases instead, because:
2302
2303 - a backtrace while stopped in the signal handler would show the
2304 scratch pad as frame older than the signal handler, instead of
2305 the real mainline code.
2306
2307 - when the thread is later resumed, the signal handler would
2308 return to the scratch pad area, which would no longer be
2309 valid. */
2310 if (step_over_info_valid_p ()
2311 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2312 target_pass_signals (0, NULL);
2313 else
2314 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2315
2316 target_resume (resume_ptid, step, sig);
2317 }
2318
2319 /* Resume the inferior, but allow a QUIT. This is useful if the user
2320 wants to interrupt some lengthy single-stepping operation
2321 (for child processes, the SIGINT goes to the inferior, and so
2322 we get a SIGINT random_signal, but for remote debugging and perhaps
2323 other targets, that's not true).
2324
2325 SIG is the signal to give the inferior (zero for none). */
2326 void
2327 resume (enum gdb_signal sig)
2328 {
2329 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2330 struct regcache *regcache = get_current_regcache ();
2331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2332 struct thread_info *tp = inferior_thread ();
2333 CORE_ADDR pc = regcache_read_pc (regcache);
2334 struct address_space *aspace = get_regcache_aspace (regcache);
2335 ptid_t resume_ptid;
2336 /* This represents the user's step vs continue request. When
2337 deciding whether "set scheduler-locking step" applies, it's the
2338 user's intention that counts. */
2339 const int user_step = tp->control.stepping_command;
2340 /* This represents what we'll actually request the target to do.
2341 This can decay from a step to a continue, if e.g., we need to
2342 implement single-stepping with breakpoints (software
2343 single-step). */
2344 int step;
2345
2346 gdb_assert (!thread_is_in_step_over_chain (tp));
2347
2348 QUIT;
2349
2350 if (tp->suspend.waitstatus_pending_p)
2351 {
2352 if (debug_infrun)
2353 {
2354 char *statstr;
2355
2356 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: thread %s has pending wait status %s "
2359 "(currently_stepping=%d).\n",
2360 target_pid_to_str (tp->ptid), statstr,
2361 currently_stepping (tp));
2362 xfree (statstr);
2363 }
2364
2365 tp->resumed = 1;
2366
2367 /* FIXME: What should we do if we are supposed to resume this
2368 thread with a signal? Maybe we should maintain a queue of
2369 pending signals to deliver. */
2370 if (sig != GDB_SIGNAL_0)
2371 {
2372 warning (_("Couldn't deliver signal %s to %s."),
2373 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2374 }
2375
2376 tp->suspend.stop_signal = GDB_SIGNAL_0;
2377 discard_cleanups (old_cleanups);
2378
2379 if (target_can_async_p ())
2380 target_async (1);
2381 return;
2382 }
2383
2384 tp->stepped_breakpoint = 0;
2385
2386 /* Depends on stepped_breakpoint. */
2387 step = currently_stepping (tp);
2388
2389 if (current_inferior ()->waiting_for_vfork_done)
2390 {
2391 /* Don't try to single-step a vfork parent that is waiting for
2392 the child to get out of the shared memory region (by exec'ing
2393 or exiting). This is particularly important on software
2394 single-step archs, as the child process would trip on the
2395 software single step breakpoint inserted for the parent
2396 process. Since the parent will not actually execute any
2397 instruction until the child is out of the shared region (such
2398 are vfork's semantics), it is safe to simply continue it.
2399 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2400 the parent, and tell it to `keep_going', which automatically
2401 re-sets it stepping. */
2402 if (debug_infrun)
2403 fprintf_unfiltered (gdb_stdlog,
2404 "infrun: resume : clear step\n");
2405 step = 0;
2406 }
2407
2408 if (debug_infrun)
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume (step=%d, signal=%s), "
2411 "trap_expected=%d, current thread [%s] at %s\n",
2412 step, gdb_signal_to_symbol_string (sig),
2413 tp->control.trap_expected,
2414 target_pid_to_str (inferior_ptid),
2415 paddress (gdbarch, pc));
2416
2417 /* Normally, by the time we reach `resume', the breakpoints are either
2418 removed or inserted, as appropriate. The exception is if we're sitting
2419 at a permanent breakpoint; we need to step over it, but permanent
2420 breakpoints can't be removed. So we have to test for it here. */
2421 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2422 {
2423 if (sig != GDB_SIGNAL_0)
2424 {
2425 /* We have a signal to pass to the inferior. The resume
2426 may, or may not take us to the signal handler. If this
2427 is a step, we'll need to stop in the signal handler, if
2428 there's one, (if the target supports stepping into
2429 handlers), or in the next mainline instruction, if
2430 there's no handler. If this is a continue, we need to be
2431 sure to run the handler with all breakpoints inserted.
2432 In all cases, set a breakpoint at the current address
2433 (where the handler returns to), and once that breakpoint
2434 is hit, resume skipping the permanent breakpoint. If
2435 that breakpoint isn't hit, then we've stepped into the
2436 signal handler (or hit some other event). We'll delete
2437 the step-resume breakpoint then. */
2438
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog,
2441 "infrun: resume: skipping permanent breakpoint, "
2442 "deliver signal first\n");
2443
2444 clear_step_over_info ();
2445 tp->control.trap_expected = 0;
2446
2447 if (tp->control.step_resume_breakpoint == NULL)
2448 {
2449 /* Set a "high-priority" step-resume, as we don't want
2450 user breakpoints at PC to trigger (again) when this
2451 hits. */
2452 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2453 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2454
2455 tp->step_after_step_resume_breakpoint = step;
2456 }
2457
2458 insert_breakpoints ();
2459 }
2460 else
2461 {
2462 /* There's no signal to pass, we can go ahead and skip the
2463 permanent breakpoint manually. */
2464 if (debug_infrun)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "infrun: resume: skipping permanent breakpoint\n");
2467 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2468 /* Update pc to reflect the new address from which we will
2469 execute instructions. */
2470 pc = regcache_read_pc (regcache);
2471
2472 if (step)
2473 {
2474 /* We've already advanced the PC, so the stepping part
2475 is done. Now we need to arrange for a trap to be
2476 reported to handle_inferior_event. Set a breakpoint
2477 at the current PC, and run to it. Don't update
2478 prev_pc, because if we end in
2479 switch_back_to_stepped_thread, we want the "expected
2480 thread advanced also" branch to be taken. IOW, we
2481 don't want this thread to step further from PC
2482 (overstep). */
2483 gdb_assert (!step_over_info_valid_p ());
2484 insert_single_step_breakpoint (gdbarch, aspace, pc);
2485 insert_breakpoints ();
2486
2487 resume_ptid = internal_resume_ptid (user_step);
2488 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2489 discard_cleanups (old_cleanups);
2490 tp->resumed = 1;
2491 return;
2492 }
2493 }
2494 }
2495
2496 /* If we have a breakpoint to step over, make sure to do a single
2497 step only. Same if we have software watchpoints. */
2498 if (tp->control.trap_expected || bpstat_should_step ())
2499 tp->control.may_range_step = 0;
2500
2501 /* If enabled, step over breakpoints by executing a copy of the
2502 instruction at a different address.
2503
2504 We can't use displaced stepping when we have a signal to deliver;
2505 the comments for displaced_step_prepare explain why. The
2506 comments in the handle_inferior event for dealing with 'random
2507 signals' explain what we do instead.
2508
2509 We can't use displaced stepping when we are waiting for vfork_done
2510 event, displaced stepping breaks the vfork child similarly as single
2511 step software breakpoint. */
2512 if (tp->control.trap_expected
2513 && use_displaced_stepping (tp)
2514 && !step_over_info_valid_p ()
2515 && sig == GDB_SIGNAL_0
2516 && !current_inferior ()->waiting_for_vfork_done)
2517 {
2518 int prepared = displaced_step_prepare (inferior_ptid);
2519
2520 if (prepared == 0)
2521 {
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "Got placed in step-over queue\n");
2525
2526 tp->control.trap_expected = 0;
2527 discard_cleanups (old_cleanups);
2528 return;
2529 }
2530 else if (prepared < 0)
2531 {
2532 /* Fallback to stepping over the breakpoint in-line. */
2533
2534 if (target_is_non_stop_p ())
2535 stop_all_threads ();
2536
2537 set_step_over_info (get_regcache_aspace (regcache),
2538 regcache_read_pc (regcache), 0);
2539
2540 step = maybe_software_singlestep (gdbarch, pc);
2541
2542 insert_breakpoints ();
2543 }
2544 else if (prepared > 0)
2545 {
2546 struct displaced_step_inferior_state *displaced;
2547
2548 /* Update pc to reflect the new address from which we will
2549 execute instructions due to displaced stepping. */
2550 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2551
2552 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2553 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2554 displaced->step_closure);
2555 }
2556 }
2557
2558 /* Do we need to do it the hard way, w/temp breakpoints? */
2559 else if (step)
2560 step = maybe_software_singlestep (gdbarch, pc);
2561
2562 /* Currently, our software single-step implementation leads to different
2563 results than hardware single-stepping in one situation: when stepping
2564 into delivering a signal which has an associated signal handler,
2565 hardware single-step will stop at the first instruction of the handler,
2566 while software single-step will simply skip execution of the handler.
2567
2568 For now, this difference in behavior is accepted since there is no
2569 easy way to actually implement single-stepping into a signal handler
2570 without kernel support.
2571
2572 However, there is one scenario where this difference leads to follow-on
2573 problems: if we're stepping off a breakpoint by removing all breakpoints
2574 and then single-stepping. In this case, the software single-step
2575 behavior means that even if there is a *breakpoint* in the signal
2576 handler, GDB still would not stop.
2577
2578 Fortunately, we can at least fix this particular issue. We detect
2579 here the case where we are about to deliver a signal while software
2580 single-stepping with breakpoints removed. In this situation, we
2581 revert the decisions to remove all breakpoints and insert single-
2582 step breakpoints, and instead we install a step-resume breakpoint
2583 at the current address, deliver the signal without stepping, and
2584 once we arrive back at the step-resume breakpoint, actually step
2585 over the breakpoint we originally wanted to step over. */
2586 if (thread_has_single_step_breakpoints_set (tp)
2587 && sig != GDB_SIGNAL_0
2588 && step_over_info_valid_p ())
2589 {
2590 /* If we have nested signals or a pending signal is delivered
2591 immediately after a handler returns, might might already have
2592 a step-resume breakpoint set on the earlier handler. We cannot
2593 set another step-resume breakpoint; just continue on until the
2594 original breakpoint is hit. */
2595 if (tp->control.step_resume_breakpoint == NULL)
2596 {
2597 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2598 tp->step_after_step_resume_breakpoint = 1;
2599 }
2600
2601 delete_single_step_breakpoints (tp);
2602
2603 clear_step_over_info ();
2604 tp->control.trap_expected = 0;
2605
2606 insert_breakpoints ();
2607 }
2608
2609 /* If STEP is set, it's a request to use hardware stepping
2610 facilities. But in that case, we should never
2611 use singlestep breakpoint. */
2612 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2613
2614 /* Decide the set of threads to ask the target to resume. */
2615 if ((step || thread_has_single_step_breakpoints_set (tp))
2616 && tp->control.trap_expected)
2617 {
2618 /* We're allowing a thread to run past a breakpoint it has
2619 hit, by single-stepping the thread with the breakpoint
2620 removed. In which case, we need to single-step only this
2621 thread, and keep others stopped, as they can miss this
2622 breakpoint if allowed to run. */
2623 resume_ptid = inferior_ptid;
2624 }
2625 else
2626 resume_ptid = internal_resume_ptid (user_step);
2627
2628 if (execution_direction != EXEC_REVERSE
2629 && step && breakpoint_inserted_here_p (aspace, pc))
2630 {
2631 /* There are two cases where we currently need to step a
2632 breakpoint instruction when we have a signal to deliver:
2633
2634 - See handle_signal_stop where we handle random signals that
2635 could take out us out of the stepping range. Normally, in
2636 that case we end up continuing (instead of stepping) over the
2637 signal handler with a breakpoint at PC, but there are cases
2638 where we should _always_ single-step, even if we have a
2639 step-resume breakpoint, like when a software watchpoint is
2640 set. Assuming single-stepping and delivering a signal at the
2641 same time would takes us to the signal handler, then we could
2642 have removed the breakpoint at PC to step over it. However,
2643 some hardware step targets (like e.g., Mac OS) can't step
2644 into signal handlers, and for those, we need to leave the
2645 breakpoint at PC inserted, as otherwise if the handler
2646 recurses and executes PC again, it'll miss the breakpoint.
2647 So we leave the breakpoint inserted anyway, but we need to
2648 record that we tried to step a breakpoint instruction, so
2649 that adjust_pc_after_break doesn't end up confused.
2650
2651 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2652 in one thread after another thread that was stepping had been
2653 momentarily paused for a step-over. When we re-resume the
2654 stepping thread, it may be resumed from that address with a
2655 breakpoint that hasn't trapped yet. Seen with
2656 gdb.threads/non-stop-fair-events.exp, on targets that don't
2657 do displaced stepping. */
2658
2659 if (debug_infrun)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "infrun: resume: [%s] stepped breakpoint\n",
2662 target_pid_to_str (tp->ptid));
2663
2664 tp->stepped_breakpoint = 1;
2665
2666 /* Most targets can step a breakpoint instruction, thus
2667 executing it normally. But if this one cannot, just
2668 continue and we will hit it anyway. */
2669 if (gdbarch_cannot_step_breakpoint (gdbarch))
2670 step = 0;
2671 }
2672
2673 if (debug_displaced
2674 && tp->control.trap_expected
2675 && use_displaced_stepping (tp)
2676 && !step_over_info_valid_p ())
2677 {
2678 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2679 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2680 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2681 gdb_byte buf[4];
2682
2683 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2684 paddress (resume_gdbarch, actual_pc));
2685 read_memory (actual_pc, buf, sizeof (buf));
2686 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2687 }
2688
2689 if (tp->control.may_range_step)
2690 {
2691 /* If we're resuming a thread with the PC out of the step
2692 range, then we're doing some nested/finer run control
2693 operation, like stepping the thread out of the dynamic
2694 linker or the displaced stepping scratch pad. We
2695 shouldn't have allowed a range step then. */
2696 gdb_assert (pc_in_thread_step_range (pc, tp));
2697 }
2698
2699 do_target_resume (resume_ptid, step, sig);
2700 tp->resumed = 1;
2701 discard_cleanups (old_cleanups);
2702 }
2703 \f
2704 /* Proceeding. */
2705
2706 /* Clear out all variables saying what to do when inferior is continued.
2707 First do this, then set the ones you want, then call `proceed'. */
2708
2709 static void
2710 clear_proceed_status_thread (struct thread_info *tp)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status_thread (%s)\n",
2715 target_pid_to_str (tp->ptid));
2716
2717 /* If we're starting a new sequence, then the previous finished
2718 single-step is no longer relevant. */
2719 if (tp->suspend.waitstatus_pending_p)
2720 {
2721 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2722 {
2723 if (debug_infrun)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "infrun: clear_proceed_status: pending "
2726 "event of %s was a finished step. "
2727 "Discarding.\n",
2728 target_pid_to_str (tp->ptid));
2729
2730 tp->suspend.waitstatus_pending_p = 0;
2731 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2732 }
2733 else if (debug_infrun)
2734 {
2735 char *statstr;
2736
2737 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2738 fprintf_unfiltered (gdb_stdlog,
2739 "infrun: clear_proceed_status_thread: thread %s "
2740 "has pending wait status %s "
2741 "(currently_stepping=%d).\n",
2742 target_pid_to_str (tp->ptid), statstr,
2743 currently_stepping (tp));
2744 xfree (statstr);
2745 }
2746 }
2747
2748 /* If this signal should not be seen by program, give it zero.
2749 Used for debugging signals. */
2750 if (!signal_pass_state (tp->suspend.stop_signal))
2751 tp->suspend.stop_signal = GDB_SIGNAL_0;
2752
2753 thread_fsm_delete (tp->thread_fsm);
2754 tp->thread_fsm = NULL;
2755
2756 tp->control.trap_expected = 0;
2757 tp->control.step_range_start = 0;
2758 tp->control.step_range_end = 0;
2759 tp->control.may_range_step = 0;
2760 tp->control.step_frame_id = null_frame_id;
2761 tp->control.step_stack_frame_id = null_frame_id;
2762 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2763 tp->control.step_start_function = NULL;
2764 tp->stop_requested = 0;
2765
2766 tp->control.stop_step = 0;
2767
2768 tp->control.proceed_to_finish = 0;
2769
2770 tp->control.command_interp = NULL;
2771 tp->control.stepping_command = 0;
2772
2773 /* Discard any remaining commands or status from previous stop. */
2774 bpstat_clear (&tp->control.stop_bpstat);
2775 }
2776
2777 void
2778 clear_proceed_status (int step)
2779 {
2780 if (!non_stop)
2781 {
2782 struct thread_info *tp;
2783 ptid_t resume_ptid;
2784
2785 resume_ptid = user_visible_resume_ptid (step);
2786
2787 /* In all-stop mode, delete the per-thread status of all threads
2788 we're about to resume, implicitly and explicitly. */
2789 ALL_NON_EXITED_THREADS (tp)
2790 {
2791 if (!ptid_match (tp->ptid, resume_ptid))
2792 continue;
2793 clear_proceed_status_thread (tp);
2794 }
2795 }
2796
2797 if (!ptid_equal (inferior_ptid, null_ptid))
2798 {
2799 struct inferior *inferior;
2800
2801 if (non_stop)
2802 {
2803 /* If in non-stop mode, only delete the per-thread status of
2804 the current thread. */
2805 clear_proceed_status_thread (inferior_thread ());
2806 }
2807
2808 inferior = current_inferior ();
2809 inferior->control.stop_soon = NO_STOP_QUIETLY;
2810 }
2811
2812 stop_after_trap = 0;
2813
2814 observer_notify_about_to_proceed ();
2815 }
2816
2817 /* Returns true if TP is still stopped at a breakpoint that needs
2818 stepping-over in order to make progress. If the breakpoint is gone
2819 meanwhile, we can skip the whole step-over dance. */
2820
2821 static int
2822 thread_still_needs_step_over_bp (struct thread_info *tp)
2823 {
2824 if (tp->stepping_over_breakpoint)
2825 {
2826 struct regcache *regcache = get_thread_regcache (tp->ptid);
2827
2828 if (breakpoint_here_p (get_regcache_aspace (regcache),
2829 regcache_read_pc (regcache))
2830 == ordinary_breakpoint_here)
2831 return 1;
2832
2833 tp->stepping_over_breakpoint = 0;
2834 }
2835
2836 return 0;
2837 }
2838
2839 /* Check whether thread TP still needs to start a step-over in order
2840 to make progress when resumed. Returns an bitwise or of enum
2841 step_over_what bits, indicating what needs to be stepped over. */
2842
2843 static int
2844 thread_still_needs_step_over (struct thread_info *tp)
2845 {
2846 struct inferior *inf = find_inferior_ptid (tp->ptid);
2847 int what = 0;
2848
2849 if (thread_still_needs_step_over_bp (tp))
2850 what |= STEP_OVER_BREAKPOINT;
2851
2852 if (tp->stepping_over_watchpoint
2853 && !target_have_steppable_watchpoint)
2854 what |= STEP_OVER_WATCHPOINT;
2855
2856 return what;
2857 }
2858
2859 /* Returns true if scheduler locking applies. STEP indicates whether
2860 we're about to do a step/next-like command to a thread. */
2861
2862 static int
2863 schedlock_applies (struct thread_info *tp)
2864 {
2865 return (scheduler_mode == schedlock_on
2866 || (scheduler_mode == schedlock_step
2867 && tp->control.stepping_command));
2868 }
2869
2870 /* Basic routine for continuing the program in various fashions.
2871
2872 ADDR is the address to resume at, or -1 for resume where stopped.
2873 SIGGNAL is the signal to give it, or 0 for none,
2874 or -1 for act according to how it stopped.
2875 STEP is nonzero if should trap after one instruction.
2876 -1 means return after that and print nothing.
2877 You should probably set various step_... variables
2878 before calling here, if you are stepping.
2879
2880 You should call clear_proceed_status before calling proceed. */
2881
2882 void
2883 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2884 {
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
2887 struct thread_info *tp;
2888 CORE_ADDR pc;
2889 struct address_space *aspace;
2890 ptid_t resume_ptid;
2891 struct execution_control_state ecss;
2892 struct execution_control_state *ecs = &ecss;
2893 struct cleanup *old_chain;
2894 int started;
2895
2896 /* If we're stopped at a fork/vfork, follow the branch set by the
2897 "set follow-fork-mode" command; otherwise, we'll just proceed
2898 resuming the current thread. */
2899 if (!follow_fork ())
2900 {
2901 /* The target for some reason decided not to resume. */
2902 normal_stop ();
2903 if (target_can_async_p ())
2904 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2905 return;
2906 }
2907
2908 /* We'll update this if & when we switch to a new thread. */
2909 previous_inferior_ptid = inferior_ptid;
2910
2911 regcache = get_current_regcache ();
2912 gdbarch = get_regcache_arch (regcache);
2913 aspace = get_regcache_aspace (regcache);
2914 pc = regcache_read_pc (regcache);
2915 tp = inferior_thread ();
2916
2917 /* Fill in with reasonable starting values. */
2918 init_thread_stepping_state (tp);
2919
2920 gdb_assert (!thread_is_in_step_over_chain (tp));
2921
2922 if (addr == (CORE_ADDR) -1)
2923 {
2924 if (pc == stop_pc
2925 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2926 && execution_direction != EXEC_REVERSE)
2927 /* There is a breakpoint at the address we will resume at,
2928 step one instruction before inserting breakpoints so that
2929 we do not stop right away (and report a second hit at this
2930 breakpoint).
2931
2932 Note, we don't do this in reverse, because we won't
2933 actually be executing the breakpoint insn anyway.
2934 We'll be (un-)executing the previous instruction. */
2935 tp->stepping_over_breakpoint = 1;
2936 else if (gdbarch_single_step_through_delay_p (gdbarch)
2937 && gdbarch_single_step_through_delay (gdbarch,
2938 get_current_frame ()))
2939 /* We stepped onto an instruction that needs to be stepped
2940 again before re-inserting the breakpoint, do so. */
2941 tp->stepping_over_breakpoint = 1;
2942 }
2943 else
2944 {
2945 regcache_write_pc (regcache, addr);
2946 }
2947
2948 if (siggnal != GDB_SIGNAL_DEFAULT)
2949 tp->suspend.stop_signal = siggnal;
2950
2951 /* Record the interpreter that issued the execution command that
2952 caused this thread to resume. If the top level interpreter is
2953 MI/async, and the execution command was a CLI command
2954 (next/step/etc.), we'll want to print stop event output to the MI
2955 console channel (the stepped-to line, etc.), as if the user
2956 entered the execution command on a real GDB console. */
2957 tp->control.command_interp = command_interp ();
2958
2959 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2960
2961 /* If an exception is thrown from this point on, make sure to
2962 propagate GDB's knowledge of the executing state to the
2963 frontend/user running state. */
2964 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2965
2966 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2967 threads (e.g., we might need to set threads stepping over
2968 breakpoints first), from the user/frontend's point of view, all
2969 threads in RESUME_PTID are now running. Unless we're calling an
2970 inferior function, as in that case we pretend the inferior
2971 doesn't run at all. */
2972 if (!tp->control.in_infcall)
2973 set_running (resume_ptid, 1);
2974
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog,
2977 "infrun: proceed (addr=%s, signal=%s)\n",
2978 paddress (gdbarch, addr),
2979 gdb_signal_to_symbol_string (siggnal));
2980
2981 annotate_starting ();
2982
2983 /* Make sure that output from GDB appears before output from the
2984 inferior. */
2985 gdb_flush (gdb_stdout);
2986
2987 /* In a multi-threaded task we may select another thread and
2988 then continue or step.
2989
2990 But if a thread that we're resuming had stopped at a breakpoint,
2991 it will immediately cause another breakpoint stop without any
2992 execution (i.e. it will report a breakpoint hit incorrectly). So
2993 we must step over it first.
2994
2995 Look for threads other than the current (TP) that reported a
2996 breakpoint hit and haven't been resumed yet since. */
2997
2998 /* If scheduler locking applies, we can avoid iterating over all
2999 threads. */
3000 if (!non_stop && !schedlock_applies (tp))
3001 {
3002 struct thread_info *current = tp;
3003
3004 ALL_NON_EXITED_THREADS (tp)
3005 {
3006 /* Ignore the current thread here. It's handled
3007 afterwards. */
3008 if (tp == current)
3009 continue;
3010
3011 /* Ignore threads of processes we're not resuming. */
3012 if (!ptid_match (tp->ptid, resume_ptid))
3013 continue;
3014
3015 if (!thread_still_needs_step_over (tp))
3016 continue;
3017
3018 gdb_assert (!thread_is_in_step_over_chain (tp));
3019
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "infrun: need to step-over [%s] first\n",
3023 target_pid_to_str (tp->ptid));
3024
3025 thread_step_over_chain_enqueue (tp);
3026 }
3027
3028 tp = current;
3029 }
3030
3031 /* Enqueue the current thread last, so that we move all other
3032 threads over their breakpoints first. */
3033 if (tp->stepping_over_breakpoint)
3034 thread_step_over_chain_enqueue (tp);
3035
3036 /* If the thread isn't started, we'll still need to set its prev_pc,
3037 so that switch_back_to_stepped_thread knows the thread hasn't
3038 advanced. Must do this before resuming any thread, as in
3039 all-stop/remote, once we resume we can't send any other packet
3040 until the target stops again. */
3041 tp->prev_pc = regcache_read_pc (regcache);
3042
3043 started = start_step_over ();
3044
3045 if (step_over_info_valid_p ())
3046 {
3047 /* Either this thread started a new in-line step over, or some
3048 other thread was already doing one. In either case, don't
3049 resume anything else until the step-over is finished. */
3050 }
3051 else if (started && !target_is_non_stop_p ())
3052 {
3053 /* A new displaced stepping sequence was started. In all-stop,
3054 we can't talk to the target anymore until it next stops. */
3055 }
3056 else if (!non_stop && target_is_non_stop_p ())
3057 {
3058 /* In all-stop, but the target is always in non-stop mode.
3059 Start all other threads that are implicitly resumed too. */
3060 ALL_NON_EXITED_THREADS (tp)
3061 {
3062 /* Ignore threads of processes we're not resuming. */
3063 if (!ptid_match (tp->ptid, resume_ptid))
3064 continue;
3065
3066 if (tp->resumed)
3067 {
3068 if (debug_infrun)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "infrun: proceed: [%s] resumed\n",
3071 target_pid_to_str (tp->ptid));
3072 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3073 continue;
3074 }
3075
3076 if (thread_is_in_step_over_chain (tp))
3077 {
3078 if (debug_infrun)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "infrun: proceed: [%s] needs step-over\n",
3081 target_pid_to_str (tp->ptid));
3082 continue;
3083 }
3084
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "infrun: proceed: resuming %s\n",
3088 target_pid_to_str (tp->ptid));
3089
3090 reset_ecs (ecs, tp);
3091 switch_to_thread (tp->ptid);
3092 keep_going_pass_signal (ecs);
3093 if (!ecs->wait_some_more)
3094 error (_("Command aborted."));
3095 }
3096 }
3097 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3098 {
3099 /* The thread wasn't started, and isn't queued, run it now. */
3100 reset_ecs (ecs, tp);
3101 switch_to_thread (tp->ptid);
3102 keep_going_pass_signal (ecs);
3103 if (!ecs->wait_some_more)
3104 error (_("Command aborted."));
3105 }
3106
3107 discard_cleanups (old_chain);
3108
3109 /* Tell the event loop to wait for it to stop. If the target
3110 supports asynchronous execution, it'll do this from within
3111 target_resume. */
3112 if (!target_can_async_p ())
3113 mark_async_event_handler (infrun_async_inferior_event_token);
3114 }
3115 \f
3116
3117 /* Start remote-debugging of a machine over a serial link. */
3118
3119 void
3120 start_remote (int from_tty)
3121 {
3122 struct inferior *inferior;
3123
3124 inferior = current_inferior ();
3125 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3126
3127 /* Always go on waiting for the target, regardless of the mode. */
3128 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3129 indicate to wait_for_inferior that a target should timeout if
3130 nothing is returned (instead of just blocking). Because of this,
3131 targets expecting an immediate response need to, internally, set
3132 things up so that the target_wait() is forced to eventually
3133 timeout. */
3134 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3135 differentiate to its caller what the state of the target is after
3136 the initial open has been performed. Here we're assuming that
3137 the target has stopped. It should be possible to eventually have
3138 target_open() return to the caller an indication that the target
3139 is currently running and GDB state should be set to the same as
3140 for an async run. */
3141 wait_for_inferior ();
3142
3143 /* Now that the inferior has stopped, do any bookkeeping like
3144 loading shared libraries. We want to do this before normal_stop,
3145 so that the displayed frame is up to date. */
3146 post_create_inferior (&current_target, from_tty);
3147
3148 normal_stop ();
3149 }
3150
3151 /* Initialize static vars when a new inferior begins. */
3152
3153 void
3154 init_wait_for_inferior (void)
3155 {
3156 /* These are meaningless until the first time through wait_for_inferior. */
3157
3158 breakpoint_init_inferior (inf_starting);
3159
3160 clear_proceed_status (0);
3161
3162 target_last_wait_ptid = minus_one_ptid;
3163
3164 previous_inferior_ptid = inferior_ptid;
3165
3166 /* Discard any skipped inlined frames. */
3167 clear_inline_frame_state (minus_one_ptid);
3168 }
3169
3170 \f
3171
3172 static void handle_inferior_event (struct execution_control_state *ecs);
3173
3174 static void handle_step_into_function (struct gdbarch *gdbarch,
3175 struct execution_control_state *ecs);
3176 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3177 struct execution_control_state *ecs);
3178 static void handle_signal_stop (struct execution_control_state *ecs);
3179 static void check_exception_resume (struct execution_control_state *,
3180 struct frame_info *);
3181
3182 static void end_stepping_range (struct execution_control_state *ecs);
3183 static void stop_waiting (struct execution_control_state *ecs);
3184 static void keep_going (struct execution_control_state *ecs);
3185 static void process_event_stop_test (struct execution_control_state *ecs);
3186 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3187
3188 /* Callback for iterate over threads. If the thread is stopped, but
3189 the user/frontend doesn't know about that yet, go through
3190 normal_stop, as if the thread had just stopped now. ARG points at
3191 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3192 ptid_is_pid(PTID) is true, applies to all threads of the process
3193 pointed at by PTID. Otherwise, apply only to the thread pointed by
3194 PTID. */
3195
3196 static int
3197 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3198 {
3199 ptid_t ptid = * (ptid_t *) arg;
3200
3201 if ((ptid_equal (info->ptid, ptid)
3202 || ptid_equal (minus_one_ptid, ptid)
3203 || (ptid_is_pid (ptid)
3204 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3205 && is_running (info->ptid)
3206 && !is_executing (info->ptid))
3207 {
3208 struct cleanup *old_chain;
3209 struct execution_control_state ecss;
3210 struct execution_control_state *ecs = &ecss;
3211
3212 memset (ecs, 0, sizeof (*ecs));
3213
3214 old_chain = make_cleanup_restore_current_thread ();
3215
3216 overlay_cache_invalid = 1;
3217 /* Flush target cache before starting to handle each event.
3218 Target was running and cache could be stale. This is just a
3219 heuristic. Running threads may modify target memory, but we
3220 don't get any event. */
3221 target_dcache_invalidate ();
3222
3223 /* Go through handle_inferior_event/normal_stop, so we always
3224 have consistent output as if the stop event had been
3225 reported. */
3226 ecs->ptid = info->ptid;
3227 ecs->event_thread = info;
3228 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3229 ecs->ws.value.sig = GDB_SIGNAL_0;
3230
3231 handle_inferior_event (ecs);
3232
3233 if (!ecs->wait_some_more)
3234 {
3235 struct thread_info *tp;
3236
3237 /* Cancel any running execution command. */
3238 thread_cancel_execution_command (info);
3239
3240 normal_stop ();
3241
3242 /* Finish off the continuations. */
3243 tp = inferior_thread ();
3244 do_all_intermediate_continuations_thread (tp, 1);
3245 do_all_continuations_thread (tp, 1);
3246 }
3247
3248 do_cleanups (old_chain);
3249 }
3250
3251 return 0;
3252 }
3253
3254 /* This function is attached as a "thread_stop_requested" observer.
3255 Cleanup local state that assumed the PTID was to be resumed, and
3256 report the stop to the frontend. */
3257
3258 static void
3259 infrun_thread_stop_requested (ptid_t ptid)
3260 {
3261 struct thread_info *tp;
3262
3263 /* PTID was requested to stop. Remove matching threads from the
3264 step-over queue, so we don't try to resume them
3265 automatically. */
3266 ALL_NON_EXITED_THREADS (tp)
3267 if (ptid_match (tp->ptid, ptid))
3268 {
3269 if (thread_is_in_step_over_chain (tp))
3270 thread_step_over_chain_remove (tp);
3271 }
3272
3273 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3274 }
3275
3276 static void
3277 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3278 {
3279 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3280 nullify_last_target_wait_ptid ();
3281 }
3282
3283 /* Delete the step resume, single-step and longjmp/exception resume
3284 breakpoints of TP. */
3285
3286 static void
3287 delete_thread_infrun_breakpoints (struct thread_info *tp)
3288 {
3289 delete_step_resume_breakpoint (tp);
3290 delete_exception_resume_breakpoint (tp);
3291 delete_single_step_breakpoints (tp);
3292 }
3293
3294 /* If the target still has execution, call FUNC for each thread that
3295 just stopped. In all-stop, that's all the non-exited threads; in
3296 non-stop, that's the current thread, only. */
3297
3298 typedef void (*for_each_just_stopped_thread_callback_func)
3299 (struct thread_info *tp);
3300
3301 static void
3302 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3303 {
3304 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3305 return;
3306
3307 if (target_is_non_stop_p ())
3308 {
3309 /* If in non-stop mode, only the current thread stopped. */
3310 func (inferior_thread ());
3311 }
3312 else
3313 {
3314 struct thread_info *tp;
3315
3316 /* In all-stop mode, all threads have stopped. */
3317 ALL_NON_EXITED_THREADS (tp)
3318 {
3319 func (tp);
3320 }
3321 }
3322 }
3323
3324 /* Delete the step resume and longjmp/exception resume breakpoints of
3325 the threads that just stopped. */
3326
3327 static void
3328 delete_just_stopped_threads_infrun_breakpoints (void)
3329 {
3330 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3331 }
3332
3333 /* Delete the single-step breakpoints of the threads that just
3334 stopped. */
3335
3336 static void
3337 delete_just_stopped_threads_single_step_breakpoints (void)
3338 {
3339 for_each_just_stopped_thread (delete_single_step_breakpoints);
3340 }
3341
3342 /* A cleanup wrapper. */
3343
3344 static void
3345 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3346 {
3347 delete_just_stopped_threads_infrun_breakpoints ();
3348 }
3349
3350 /* See infrun.h. */
3351
3352 void
3353 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3354 const struct target_waitstatus *ws)
3355 {
3356 char *status_string = target_waitstatus_to_string (ws);
3357 struct ui_file *tmp_stream = mem_fileopen ();
3358 char *text;
3359
3360 /* The text is split over several lines because it was getting too long.
3361 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3362 output as a unit; we want only one timestamp printed if debug_timestamp
3363 is set. */
3364
3365 fprintf_unfiltered (tmp_stream,
3366 "infrun: target_wait (%d.%ld.%ld",
3367 ptid_get_pid (waiton_ptid),
3368 ptid_get_lwp (waiton_ptid),
3369 ptid_get_tid (waiton_ptid));
3370 if (ptid_get_pid (waiton_ptid) != -1)
3371 fprintf_unfiltered (tmp_stream,
3372 " [%s]", target_pid_to_str (waiton_ptid));
3373 fprintf_unfiltered (tmp_stream, ", status) =\n");
3374 fprintf_unfiltered (tmp_stream,
3375 "infrun: %d.%ld.%ld [%s],\n",
3376 ptid_get_pid (result_ptid),
3377 ptid_get_lwp (result_ptid),
3378 ptid_get_tid (result_ptid),
3379 target_pid_to_str (result_ptid));
3380 fprintf_unfiltered (tmp_stream,
3381 "infrun: %s\n",
3382 status_string);
3383
3384 text = ui_file_xstrdup (tmp_stream, NULL);
3385
3386 /* This uses %s in part to handle %'s in the text, but also to avoid
3387 a gcc error: the format attribute requires a string literal. */
3388 fprintf_unfiltered (gdb_stdlog, "%s", text);
3389
3390 xfree (status_string);
3391 xfree (text);
3392 ui_file_delete (tmp_stream);
3393 }
3394
3395 /* Select a thread at random, out of those which are resumed and have
3396 had events. */
3397
3398 static struct thread_info *
3399 random_pending_event_thread (ptid_t waiton_ptid)
3400 {
3401 struct thread_info *event_tp;
3402 int num_events = 0;
3403 int random_selector;
3404
3405 /* First see how many events we have. Count only resumed threads
3406 that have an event pending. */
3407 ALL_NON_EXITED_THREADS (event_tp)
3408 if (ptid_match (event_tp->ptid, waiton_ptid)
3409 && event_tp->resumed
3410 && event_tp->suspend.waitstatus_pending_p)
3411 num_events++;
3412
3413 if (num_events == 0)
3414 return NULL;
3415
3416 /* Now randomly pick a thread out of those that have had events. */
3417 random_selector = (int)
3418 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3419
3420 if (debug_infrun && num_events > 1)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: Found %d events, selecting #%d\n",
3423 num_events, random_selector);
3424
3425 /* Select the Nth thread that has had an event. */
3426 ALL_NON_EXITED_THREADS (event_tp)
3427 if (ptid_match (event_tp->ptid, waiton_ptid)
3428 && event_tp->resumed
3429 && event_tp->suspend.waitstatus_pending_p)
3430 if (random_selector-- == 0)
3431 break;
3432
3433 return event_tp;
3434 }
3435
3436 /* Wrapper for target_wait that first checks whether threads have
3437 pending statuses to report before actually asking the target for
3438 more events. */
3439
3440 static ptid_t
3441 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3442 {
3443 ptid_t event_ptid;
3444 struct thread_info *tp;
3445
3446 /* First check if there is a resumed thread with a wait status
3447 pending. */
3448 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3449 {
3450 tp = random_pending_event_thread (ptid);
3451 }
3452 else
3453 {
3454 if (debug_infrun)
3455 fprintf_unfiltered (gdb_stdlog,
3456 "infrun: Waiting for specific thread %s.\n",
3457 target_pid_to_str (ptid));
3458
3459 /* We have a specific thread to check. */
3460 tp = find_thread_ptid (ptid);
3461 gdb_assert (tp != NULL);
3462 if (!tp->suspend.waitstatus_pending_p)
3463 tp = NULL;
3464 }
3465
3466 if (tp != NULL
3467 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3468 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3469 {
3470 struct regcache *regcache = get_thread_regcache (tp->ptid);
3471 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3472 CORE_ADDR pc;
3473 int discard = 0;
3474
3475 pc = regcache_read_pc (regcache);
3476
3477 if (pc != tp->suspend.stop_pc)
3478 {
3479 if (debug_infrun)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "infrun: PC of %s changed. was=%s, now=%s\n",
3482 target_pid_to_str (tp->ptid),
3483 paddress (gdbarch, tp->prev_pc),
3484 paddress (gdbarch, pc));
3485 discard = 1;
3486 }
3487 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3488 {
3489 if (debug_infrun)
3490 fprintf_unfiltered (gdb_stdlog,
3491 "infrun: previous breakpoint of %s, at %s gone\n",
3492 target_pid_to_str (tp->ptid),
3493 paddress (gdbarch, pc));
3494
3495 discard = 1;
3496 }
3497
3498 if (discard)
3499 {
3500 if (debug_infrun)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: pending event of %s cancelled.\n",
3503 target_pid_to_str (tp->ptid));
3504
3505 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3506 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3507 }
3508 }
3509
3510 if (tp != NULL)
3511 {
3512 if (debug_infrun)
3513 {
3514 char *statstr;
3515
3516 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: Using pending wait status %s for %s.\n",
3519 statstr,
3520 target_pid_to_str (tp->ptid));
3521 xfree (statstr);
3522 }
3523
3524 /* Now that we've selected our final event LWP, un-adjust its PC
3525 if it was a software breakpoint (and the target doesn't
3526 always adjust the PC itself). */
3527 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3528 && !target_supports_stopped_by_sw_breakpoint ())
3529 {
3530 struct regcache *regcache;
3531 struct gdbarch *gdbarch;
3532 int decr_pc;
3533
3534 regcache = get_thread_regcache (tp->ptid);
3535 gdbarch = get_regcache_arch (regcache);
3536
3537 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3538 if (decr_pc != 0)
3539 {
3540 CORE_ADDR pc;
3541
3542 pc = regcache_read_pc (regcache);
3543 regcache_write_pc (regcache, pc + decr_pc);
3544 }
3545 }
3546
3547 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3548 *status = tp->suspend.waitstatus;
3549 tp->suspend.waitstatus_pending_p = 0;
3550
3551 /* Wake up the event loop again, until all pending events are
3552 processed. */
3553 if (target_is_async_p ())
3554 mark_async_event_handler (infrun_async_inferior_event_token);
3555 return tp->ptid;
3556 }
3557
3558 /* But if we don't find one, we'll have to wait. */
3559
3560 if (deprecated_target_wait_hook)
3561 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3562 else
3563 event_ptid = target_wait (ptid, status, options);
3564
3565 return event_ptid;
3566 }
3567
3568 /* Prepare and stabilize the inferior for detaching it. E.g.,
3569 detaching while a thread is displaced stepping is a recipe for
3570 crashing it, as nothing would readjust the PC out of the scratch
3571 pad. */
3572
3573 void
3574 prepare_for_detach (void)
3575 {
3576 struct inferior *inf = current_inferior ();
3577 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3578 struct cleanup *old_chain_1;
3579 struct displaced_step_inferior_state *displaced;
3580
3581 displaced = get_displaced_stepping_state (inf->pid);
3582
3583 /* Is any thread of this process displaced stepping? If not,
3584 there's nothing else to do. */
3585 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3586 return;
3587
3588 if (debug_infrun)
3589 fprintf_unfiltered (gdb_stdlog,
3590 "displaced-stepping in-process while detaching");
3591
3592 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3593 inf->detaching = 1;
3594
3595 while (!ptid_equal (displaced->step_ptid, null_ptid))
3596 {
3597 struct cleanup *old_chain_2;
3598 struct execution_control_state ecss;
3599 struct execution_control_state *ecs;
3600
3601 ecs = &ecss;
3602 memset (ecs, 0, sizeof (*ecs));
3603
3604 overlay_cache_invalid = 1;
3605 /* Flush target cache before starting to handle each event.
3606 Target was running and cache could be stale. This is just a
3607 heuristic. Running threads may modify target memory, but we
3608 don't get any event. */
3609 target_dcache_invalidate ();
3610
3611 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3612
3613 if (debug_infrun)
3614 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3615
3616 /* If an error happens while handling the event, propagate GDB's
3617 knowledge of the executing state to the frontend/user running
3618 state. */
3619 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3620 &minus_one_ptid);
3621
3622 /* Now figure out what to do with the result of the result. */
3623 handle_inferior_event (ecs);
3624
3625 /* No error, don't finish the state yet. */
3626 discard_cleanups (old_chain_2);
3627
3628 /* Breakpoints and watchpoints are not installed on the target
3629 at this point, and signals are passed directly to the
3630 inferior, so this must mean the process is gone. */
3631 if (!ecs->wait_some_more)
3632 {
3633 discard_cleanups (old_chain_1);
3634 error (_("Program exited while detaching"));
3635 }
3636 }
3637
3638 discard_cleanups (old_chain_1);
3639 }
3640
3641 /* Wait for control to return from inferior to debugger.
3642
3643 If inferior gets a signal, we may decide to start it up again
3644 instead of returning. That is why there is a loop in this function.
3645 When this function actually returns it means the inferior
3646 should be left stopped and GDB should read more commands. */
3647
3648 void
3649 wait_for_inferior (void)
3650 {
3651 struct cleanup *old_cleanups;
3652 struct cleanup *thread_state_chain;
3653
3654 if (debug_infrun)
3655 fprintf_unfiltered
3656 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3657
3658 old_cleanups
3659 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3660 NULL);
3661
3662 /* If an error happens while handling the event, propagate GDB's
3663 knowledge of the executing state to the frontend/user running
3664 state. */
3665 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3666
3667 while (1)
3668 {
3669 struct execution_control_state ecss;
3670 struct execution_control_state *ecs = &ecss;
3671 ptid_t waiton_ptid = minus_one_ptid;
3672
3673 memset (ecs, 0, sizeof (*ecs));
3674
3675 overlay_cache_invalid = 1;
3676
3677 /* Flush target cache before starting to handle each event.
3678 Target was running and cache could be stale. This is just a
3679 heuristic. Running threads may modify target memory, but we
3680 don't get any event. */
3681 target_dcache_invalidate ();
3682
3683 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3684
3685 if (debug_infrun)
3686 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3687
3688 /* Now figure out what to do with the result of the result. */
3689 handle_inferior_event (ecs);
3690
3691 if (!ecs->wait_some_more)
3692 break;
3693 }
3694
3695 /* No error, don't finish the state yet. */
3696 discard_cleanups (thread_state_chain);
3697
3698 do_cleanups (old_cleanups);
3699 }
3700
3701 /* Cleanup that reinstalls the readline callback handler, if the
3702 target is running in the background. If while handling the target
3703 event something triggered a secondary prompt, like e.g., a
3704 pagination prompt, we'll have removed the callback handler (see
3705 gdb_readline_wrapper_line). Need to do this as we go back to the
3706 event loop, ready to process further input. Note this has no
3707 effect if the handler hasn't actually been removed, because calling
3708 rl_callback_handler_install resets the line buffer, thus losing
3709 input. */
3710
3711 static void
3712 reinstall_readline_callback_handler_cleanup (void *arg)
3713 {
3714 if (!interpreter_async)
3715 {
3716 /* We're not going back to the top level event loop yet. Don't
3717 install the readline callback, as it'd prep the terminal,
3718 readline-style (raw, noecho) (e.g., --batch). We'll install
3719 it the next time the prompt is displayed, when we're ready
3720 for input. */
3721 return;
3722 }
3723
3724 if (async_command_editing_p && !sync_execution)
3725 gdb_rl_callback_handler_reinstall ();
3726 }
3727
3728 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3729 that's just the event thread. In all-stop, that's all threads. */
3730
3731 static void
3732 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3733 {
3734 struct thread_info *thr = ecs->event_thread;
3735
3736 if (thr != NULL && thr->thread_fsm != NULL)
3737 thread_fsm_clean_up (thr->thread_fsm);
3738
3739 if (!non_stop)
3740 {
3741 ALL_NON_EXITED_THREADS (thr)
3742 {
3743 if (thr->thread_fsm == NULL)
3744 continue;
3745 if (thr == ecs->event_thread)
3746 continue;
3747
3748 switch_to_thread (thr->ptid);
3749 thread_fsm_clean_up (thr->thread_fsm);
3750 }
3751
3752 if (ecs->event_thread != NULL)
3753 switch_to_thread (ecs->event_thread->ptid);
3754 }
3755 }
3756
3757 /* Asynchronous version of wait_for_inferior. It is called by the
3758 event loop whenever a change of state is detected on the file
3759 descriptor corresponding to the target. It can be called more than
3760 once to complete a single execution command. In such cases we need
3761 to keep the state in a global variable ECSS. If it is the last time
3762 that this function is called for a single execution command, then
3763 report to the user that the inferior has stopped, and do the
3764 necessary cleanups. */
3765
3766 void
3767 fetch_inferior_event (void *client_data)
3768 {
3769 struct execution_control_state ecss;
3770 struct execution_control_state *ecs = &ecss;
3771 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3772 struct cleanup *ts_old_chain;
3773 int was_sync = sync_execution;
3774 int cmd_done = 0;
3775 ptid_t waiton_ptid = minus_one_ptid;
3776
3777 memset (ecs, 0, sizeof (*ecs));
3778
3779 /* End up with readline processing input, if necessary. */
3780 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3781
3782 /* We're handling a live event, so make sure we're doing live
3783 debugging. If we're looking at traceframes while the target is
3784 running, we're going to need to get back to that mode after
3785 handling the event. */
3786 if (non_stop)
3787 {
3788 make_cleanup_restore_current_traceframe ();
3789 set_current_traceframe (-1);
3790 }
3791
3792 if (non_stop)
3793 /* In non-stop mode, the user/frontend should not notice a thread
3794 switch due to internal events. Make sure we reverse to the
3795 user selected thread and frame after handling the event and
3796 running any breakpoint commands. */
3797 make_cleanup_restore_current_thread ();
3798
3799 overlay_cache_invalid = 1;
3800 /* Flush target cache before starting to handle each event. Target
3801 was running and cache could be stale. This is just a heuristic.
3802 Running threads may modify target memory, but we don't get any
3803 event. */
3804 target_dcache_invalidate ();
3805
3806 make_cleanup_restore_integer (&execution_direction);
3807 execution_direction = target_execution_direction ();
3808
3809 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3810 target_can_async_p () ? TARGET_WNOHANG : 0);
3811
3812 if (debug_infrun)
3813 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3814
3815 /* If an error happens while handling the event, propagate GDB's
3816 knowledge of the executing state to the frontend/user running
3817 state. */
3818 if (!target_is_non_stop_p ())
3819 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3820 else
3821 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3822
3823 /* Get executed before make_cleanup_restore_current_thread above to apply
3824 still for the thread which has thrown the exception. */
3825 make_bpstat_clear_actions_cleanup ();
3826
3827 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3828
3829 /* Now figure out what to do with the result of the result. */
3830 handle_inferior_event (ecs);
3831
3832 if (!ecs->wait_some_more)
3833 {
3834 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3835 int should_stop = 1;
3836 struct thread_info *thr = ecs->event_thread;
3837 int should_notify_stop = 1;
3838
3839 delete_just_stopped_threads_infrun_breakpoints ();
3840
3841 if (thr != NULL)
3842 {
3843 struct thread_fsm *thread_fsm = thr->thread_fsm;
3844
3845 if (thread_fsm != NULL)
3846 should_stop = thread_fsm_should_stop (thread_fsm);
3847 }
3848
3849 if (!should_stop)
3850 {
3851 keep_going (ecs);
3852 }
3853 else
3854 {
3855 clean_up_just_stopped_threads_fsms (ecs);
3856
3857 if (thr != NULL && thr->thread_fsm != NULL)
3858 {
3859 should_notify_stop
3860 = thread_fsm_should_notify_stop (thr->thread_fsm);
3861 }
3862
3863 if (should_notify_stop)
3864 {
3865 /* We may not find an inferior if this was a process exit. */
3866 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3867 normal_stop ();
3868
3869 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3870 cmd_done = 1;
3871 }
3872 }
3873 }
3874
3875 /* No error, don't finish the thread states yet. */
3876 discard_cleanups (ts_old_chain);
3877
3878 /* Revert thread and frame. */
3879 do_cleanups (old_chain);
3880
3881 /* If the inferior was in sync execution mode, and now isn't,
3882 restore the prompt (a synchronous execution command has finished,
3883 and we're ready for input). */
3884 if (interpreter_async && was_sync && !sync_execution)
3885 observer_notify_sync_execution_done ();
3886
3887 if (cmd_done
3888 && !was_sync
3889 && exec_done_display_p
3890 && (ptid_equal (inferior_ptid, null_ptid)
3891 || !is_running (inferior_ptid)))
3892 printf_unfiltered (_("completed.\n"));
3893 }
3894
3895 /* Record the frame and location we're currently stepping through. */
3896 void
3897 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3898 {
3899 struct thread_info *tp = inferior_thread ();
3900
3901 tp->control.step_frame_id = get_frame_id (frame);
3902 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3903
3904 tp->current_symtab = sal.symtab;
3905 tp->current_line = sal.line;
3906 }
3907
3908 /* Clear context switchable stepping state. */
3909
3910 void
3911 init_thread_stepping_state (struct thread_info *tss)
3912 {
3913 tss->stepped_breakpoint = 0;
3914 tss->stepping_over_breakpoint = 0;
3915 tss->stepping_over_watchpoint = 0;
3916 tss->step_after_step_resume_breakpoint = 0;
3917 }
3918
3919 /* Set the cached copy of the last ptid/waitstatus. */
3920
3921 static void
3922 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3923 {
3924 target_last_wait_ptid = ptid;
3925 target_last_waitstatus = status;
3926 }
3927
3928 /* Return the cached copy of the last pid/waitstatus returned by
3929 target_wait()/deprecated_target_wait_hook(). The data is actually
3930 cached by handle_inferior_event(), which gets called immediately
3931 after target_wait()/deprecated_target_wait_hook(). */
3932
3933 void
3934 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3935 {
3936 *ptidp = target_last_wait_ptid;
3937 *status = target_last_waitstatus;
3938 }
3939
3940 void
3941 nullify_last_target_wait_ptid (void)
3942 {
3943 target_last_wait_ptid = minus_one_ptid;
3944 }
3945
3946 /* Switch thread contexts. */
3947
3948 static void
3949 context_switch (ptid_t ptid)
3950 {
3951 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3952 {
3953 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3954 target_pid_to_str (inferior_ptid));
3955 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3956 target_pid_to_str (ptid));
3957 }
3958
3959 switch_to_thread (ptid);
3960 }
3961
3962 /* If the target can't tell whether we've hit breakpoints
3963 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3964 check whether that could have been caused by a breakpoint. If so,
3965 adjust the PC, per gdbarch_decr_pc_after_break. */
3966
3967 static void
3968 adjust_pc_after_break (struct thread_info *thread,
3969 struct target_waitstatus *ws)
3970 {
3971 struct regcache *regcache;
3972 struct gdbarch *gdbarch;
3973 struct address_space *aspace;
3974 CORE_ADDR breakpoint_pc, decr_pc;
3975
3976 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3977 we aren't, just return.
3978
3979 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3980 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3981 implemented by software breakpoints should be handled through the normal
3982 breakpoint layer.
3983
3984 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3985 different signals (SIGILL or SIGEMT for instance), but it is less
3986 clear where the PC is pointing afterwards. It may not match
3987 gdbarch_decr_pc_after_break. I don't know any specific target that
3988 generates these signals at breakpoints (the code has been in GDB since at
3989 least 1992) so I can not guess how to handle them here.
3990
3991 In earlier versions of GDB, a target with
3992 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3993 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3994 target with both of these set in GDB history, and it seems unlikely to be
3995 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3996
3997 if (ws->kind != TARGET_WAITKIND_STOPPED)
3998 return;
3999
4000 if (ws->value.sig != GDB_SIGNAL_TRAP)
4001 return;
4002
4003 /* In reverse execution, when a breakpoint is hit, the instruction
4004 under it has already been de-executed. The reported PC always
4005 points at the breakpoint address, so adjusting it further would
4006 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4007 architecture:
4008
4009 B1 0x08000000 : INSN1
4010 B2 0x08000001 : INSN2
4011 0x08000002 : INSN3
4012 PC -> 0x08000003 : INSN4
4013
4014 Say you're stopped at 0x08000003 as above. Reverse continuing
4015 from that point should hit B2 as below. Reading the PC when the
4016 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4017 been de-executed already.
4018
4019 B1 0x08000000 : INSN1
4020 B2 PC -> 0x08000001 : INSN2
4021 0x08000002 : INSN3
4022 0x08000003 : INSN4
4023
4024 We can't apply the same logic as for forward execution, because
4025 we would wrongly adjust the PC to 0x08000000, since there's a
4026 breakpoint at PC - 1. We'd then report a hit on B1, although
4027 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4028 behaviour. */
4029 if (execution_direction == EXEC_REVERSE)
4030 return;
4031
4032 /* If the target can tell whether the thread hit a SW breakpoint,
4033 trust it. Targets that can tell also adjust the PC
4034 themselves. */
4035 if (target_supports_stopped_by_sw_breakpoint ())
4036 return;
4037
4038 /* Note that relying on whether a breakpoint is planted in memory to
4039 determine this can fail. E.g,. the breakpoint could have been
4040 removed since. Or the thread could have been told to step an
4041 instruction the size of a breakpoint instruction, and only
4042 _after_ was a breakpoint inserted at its address. */
4043
4044 /* If this target does not decrement the PC after breakpoints, then
4045 we have nothing to do. */
4046 regcache = get_thread_regcache (thread->ptid);
4047 gdbarch = get_regcache_arch (regcache);
4048
4049 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4050 if (decr_pc == 0)
4051 return;
4052
4053 aspace = get_regcache_aspace (regcache);
4054
4055 /* Find the location where (if we've hit a breakpoint) the
4056 breakpoint would be. */
4057 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4058
4059 /* If the target can't tell whether a software breakpoint triggered,
4060 fallback to figuring it out based on breakpoints we think were
4061 inserted in the target, and on whether the thread was stepped or
4062 continued. */
4063
4064 /* Check whether there actually is a software breakpoint inserted at
4065 that location.
4066
4067 If in non-stop mode, a race condition is possible where we've
4068 removed a breakpoint, but stop events for that breakpoint were
4069 already queued and arrive later. To suppress those spurious
4070 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4071 and retire them after a number of stop events are reported. Note
4072 this is an heuristic and can thus get confused. The real fix is
4073 to get the "stopped by SW BP and needs adjustment" info out of
4074 the target/kernel (and thus never reach here; see above). */
4075 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4076 || (target_is_non_stop_p ()
4077 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4078 {
4079 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4080
4081 if (record_full_is_used ())
4082 record_full_gdb_operation_disable_set ();
4083
4084 /* When using hardware single-step, a SIGTRAP is reported for both
4085 a completed single-step and a software breakpoint. Need to
4086 differentiate between the two, as the latter needs adjusting
4087 but the former does not.
4088
4089 The SIGTRAP can be due to a completed hardware single-step only if
4090 - we didn't insert software single-step breakpoints
4091 - this thread is currently being stepped
4092
4093 If any of these events did not occur, we must have stopped due
4094 to hitting a software breakpoint, and have to back up to the
4095 breakpoint address.
4096
4097 As a special case, we could have hardware single-stepped a
4098 software breakpoint. In this case (prev_pc == breakpoint_pc),
4099 we also need to back up to the breakpoint address. */
4100
4101 if (thread_has_single_step_breakpoints_set (thread)
4102 || !currently_stepping (thread)
4103 || (thread->stepped_breakpoint
4104 && thread->prev_pc == breakpoint_pc))
4105 regcache_write_pc (regcache, breakpoint_pc);
4106
4107 do_cleanups (old_cleanups);
4108 }
4109 }
4110
4111 static int
4112 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4113 {
4114 for (frame = get_prev_frame (frame);
4115 frame != NULL;
4116 frame = get_prev_frame (frame))
4117 {
4118 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4119 return 1;
4120 if (get_frame_type (frame) != INLINE_FRAME)
4121 break;
4122 }
4123
4124 return 0;
4125 }
4126
4127 /* Auxiliary function that handles syscall entry/return events.
4128 It returns 1 if the inferior should keep going (and GDB
4129 should ignore the event), or 0 if the event deserves to be
4130 processed. */
4131
4132 static int
4133 handle_syscall_event (struct execution_control_state *ecs)
4134 {
4135 struct regcache *regcache;
4136 int syscall_number;
4137
4138 if (!ptid_equal (ecs->ptid, inferior_ptid))
4139 context_switch (ecs->ptid);
4140
4141 regcache = get_thread_regcache (ecs->ptid);
4142 syscall_number = ecs->ws.value.syscall_number;
4143 stop_pc = regcache_read_pc (regcache);
4144
4145 if (catch_syscall_enabled () > 0
4146 && catching_syscall_number (syscall_number) > 0)
4147 {
4148 if (debug_infrun)
4149 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4150 syscall_number);
4151
4152 ecs->event_thread->control.stop_bpstat
4153 = bpstat_stop_status (get_regcache_aspace (regcache),
4154 stop_pc, ecs->ptid, &ecs->ws);
4155
4156 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4157 {
4158 /* Catchpoint hit. */
4159 return 0;
4160 }
4161 }
4162
4163 /* If no catchpoint triggered for this, then keep going. */
4164 keep_going (ecs);
4165 return 1;
4166 }
4167
4168 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4169
4170 static void
4171 fill_in_stop_func (struct gdbarch *gdbarch,
4172 struct execution_control_state *ecs)
4173 {
4174 if (!ecs->stop_func_filled_in)
4175 {
4176 /* Don't care about return value; stop_func_start and stop_func_name
4177 will both be 0 if it doesn't work. */
4178 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4179 &ecs->stop_func_start, &ecs->stop_func_end);
4180 ecs->stop_func_start
4181 += gdbarch_deprecated_function_start_offset (gdbarch);
4182
4183 if (gdbarch_skip_entrypoint_p (gdbarch))
4184 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4185 ecs->stop_func_start);
4186
4187 ecs->stop_func_filled_in = 1;
4188 }
4189 }
4190
4191
4192 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4193
4194 static enum stop_kind
4195 get_inferior_stop_soon (ptid_t ptid)
4196 {
4197 struct inferior *inf = find_inferior_ptid (ptid);
4198
4199 gdb_assert (inf != NULL);
4200 return inf->control.stop_soon;
4201 }
4202
4203 /* Wait for one event. Store the resulting waitstatus in WS, and
4204 return the event ptid. */
4205
4206 static ptid_t
4207 wait_one (struct target_waitstatus *ws)
4208 {
4209 ptid_t event_ptid;
4210 ptid_t wait_ptid = minus_one_ptid;
4211
4212 overlay_cache_invalid = 1;
4213
4214 /* Flush target cache before starting to handle each event.
4215 Target was running and cache could be stale. This is just a
4216 heuristic. Running threads may modify target memory, but we
4217 don't get any event. */
4218 target_dcache_invalidate ();
4219
4220 if (deprecated_target_wait_hook)
4221 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4222 else
4223 event_ptid = target_wait (wait_ptid, ws, 0);
4224
4225 if (debug_infrun)
4226 print_target_wait_results (wait_ptid, event_ptid, ws);
4227
4228 return event_ptid;
4229 }
4230
4231 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4232 instead of the current thread. */
4233 #define THREAD_STOPPED_BY(REASON) \
4234 static int \
4235 thread_stopped_by_ ## REASON (ptid_t ptid) \
4236 { \
4237 struct cleanup *old_chain; \
4238 int res; \
4239 \
4240 old_chain = save_inferior_ptid (); \
4241 inferior_ptid = ptid; \
4242 \
4243 res = target_stopped_by_ ## REASON (); \
4244 \
4245 do_cleanups (old_chain); \
4246 \
4247 return res; \
4248 }
4249
4250 /* Generate thread_stopped_by_watchpoint. */
4251 THREAD_STOPPED_BY (watchpoint)
4252 /* Generate thread_stopped_by_sw_breakpoint. */
4253 THREAD_STOPPED_BY (sw_breakpoint)
4254 /* Generate thread_stopped_by_hw_breakpoint. */
4255 THREAD_STOPPED_BY (hw_breakpoint)
4256
4257 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4258
4259 static void
4260 switch_to_thread_cleanup (void *ptid_p)
4261 {
4262 ptid_t ptid = *(ptid_t *) ptid_p;
4263
4264 switch_to_thread (ptid);
4265 }
4266
4267 /* Save the thread's event and stop reason to process it later. */
4268
4269 static void
4270 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4271 {
4272 struct regcache *regcache;
4273 struct address_space *aspace;
4274
4275 if (debug_infrun)
4276 {
4277 char *statstr;
4278
4279 statstr = target_waitstatus_to_string (ws);
4280 fprintf_unfiltered (gdb_stdlog,
4281 "infrun: saving status %s for %d.%ld.%ld\n",
4282 statstr,
4283 ptid_get_pid (tp->ptid),
4284 ptid_get_lwp (tp->ptid),
4285 ptid_get_tid (tp->ptid));
4286 xfree (statstr);
4287 }
4288
4289 /* Record for later. */
4290 tp->suspend.waitstatus = *ws;
4291 tp->suspend.waitstatus_pending_p = 1;
4292
4293 regcache = get_thread_regcache (tp->ptid);
4294 aspace = get_regcache_aspace (regcache);
4295
4296 if (ws->kind == TARGET_WAITKIND_STOPPED
4297 && ws->value.sig == GDB_SIGNAL_TRAP)
4298 {
4299 CORE_ADDR pc = regcache_read_pc (regcache);
4300
4301 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4302
4303 if (thread_stopped_by_watchpoint (tp->ptid))
4304 {
4305 tp->suspend.stop_reason
4306 = TARGET_STOPPED_BY_WATCHPOINT;
4307 }
4308 else if (target_supports_stopped_by_sw_breakpoint ()
4309 && thread_stopped_by_sw_breakpoint (tp->ptid))
4310 {
4311 tp->suspend.stop_reason
4312 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4313 }
4314 else if (target_supports_stopped_by_hw_breakpoint ()
4315 && thread_stopped_by_hw_breakpoint (tp->ptid))
4316 {
4317 tp->suspend.stop_reason
4318 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4319 }
4320 else if (!target_supports_stopped_by_hw_breakpoint ()
4321 && hardware_breakpoint_inserted_here_p (aspace,
4322 pc))
4323 {
4324 tp->suspend.stop_reason
4325 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4326 }
4327 else if (!target_supports_stopped_by_sw_breakpoint ()
4328 && software_breakpoint_inserted_here_p (aspace,
4329 pc))
4330 {
4331 tp->suspend.stop_reason
4332 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4333 }
4334 else if (!thread_has_single_step_breakpoints_set (tp)
4335 && currently_stepping (tp))
4336 {
4337 tp->suspend.stop_reason
4338 = TARGET_STOPPED_BY_SINGLE_STEP;
4339 }
4340 }
4341 }
4342
4343 /* Stop all threads. */
4344
4345 static void
4346 stop_all_threads (void)
4347 {
4348 /* We may need multiple passes to discover all threads. */
4349 int pass;
4350 int iterations = 0;
4351 ptid_t entry_ptid;
4352 struct cleanup *old_chain;
4353
4354 gdb_assert (target_is_non_stop_p ());
4355
4356 if (debug_infrun)
4357 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4358
4359 entry_ptid = inferior_ptid;
4360 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4361
4362 /* Request threads to stop, and then wait for the stops. Because
4363 threads we already know about can spawn more threads while we're
4364 trying to stop them, and we only learn about new threads when we
4365 update the thread list, do this in a loop, and keep iterating
4366 until two passes find no threads that need to be stopped. */
4367 for (pass = 0; pass < 2; pass++, iterations++)
4368 {
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: stop_all_threads, pass=%d, "
4372 "iterations=%d\n", pass, iterations);
4373 while (1)
4374 {
4375 ptid_t event_ptid;
4376 struct target_waitstatus ws;
4377 int need_wait = 0;
4378 struct thread_info *t;
4379
4380 update_thread_list ();
4381
4382 /* Go through all threads looking for threads that we need
4383 to tell the target to stop. */
4384 ALL_NON_EXITED_THREADS (t)
4385 {
4386 if (t->executing)
4387 {
4388 /* If already stopping, don't request a stop again.
4389 We just haven't seen the notification yet. */
4390 if (!t->stop_requested)
4391 {
4392 if (debug_infrun)
4393 fprintf_unfiltered (gdb_stdlog,
4394 "infrun: %s executing, "
4395 "need stop\n",
4396 target_pid_to_str (t->ptid));
4397 target_stop (t->ptid);
4398 t->stop_requested = 1;
4399 }
4400 else
4401 {
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog,
4404 "infrun: %s executing, "
4405 "already stopping\n",
4406 target_pid_to_str (t->ptid));
4407 }
4408
4409 if (t->stop_requested)
4410 need_wait = 1;
4411 }
4412 else
4413 {
4414 if (debug_infrun)
4415 fprintf_unfiltered (gdb_stdlog,
4416 "infrun: %s not executing\n",
4417 target_pid_to_str (t->ptid));
4418
4419 /* The thread may be not executing, but still be
4420 resumed with a pending status to process. */
4421 t->resumed = 0;
4422 }
4423 }
4424
4425 if (!need_wait)
4426 break;
4427
4428 /* If we find new threads on the second iteration, restart
4429 over. We want to see two iterations in a row with all
4430 threads stopped. */
4431 if (pass > 0)
4432 pass = -1;
4433
4434 event_ptid = wait_one (&ws);
4435 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4436 {
4437 /* All resumed threads exited. */
4438 }
4439 else if (ws.kind == TARGET_WAITKIND_EXITED
4440 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4441 {
4442 if (debug_infrun)
4443 {
4444 ptid_t ptid = pid_to_ptid (ws.value.integer);
4445
4446 fprintf_unfiltered (gdb_stdlog,
4447 "infrun: %s exited while "
4448 "stopping threads\n",
4449 target_pid_to_str (ptid));
4450 }
4451 }
4452 else
4453 {
4454 t = find_thread_ptid (event_ptid);
4455 if (t == NULL)
4456 t = add_thread (event_ptid);
4457
4458 t->stop_requested = 0;
4459 t->executing = 0;
4460 t->resumed = 0;
4461 t->control.may_range_step = 0;
4462
4463 if (ws.kind == TARGET_WAITKIND_STOPPED
4464 && ws.value.sig == GDB_SIGNAL_0)
4465 {
4466 /* We caught the event that we intended to catch, so
4467 there's no event pending. */
4468 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4469 t->suspend.waitstatus_pending_p = 0;
4470
4471 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4472 {
4473 /* Add it back to the step-over queue. */
4474 if (debug_infrun)
4475 {
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: displaced-step of %s "
4478 "canceled: adding back to the "
4479 "step-over queue\n",
4480 target_pid_to_str (t->ptid));
4481 }
4482 t->control.trap_expected = 0;
4483 thread_step_over_chain_enqueue (t);
4484 }
4485 }
4486 else
4487 {
4488 enum gdb_signal sig;
4489 struct regcache *regcache;
4490 struct address_space *aspace;
4491
4492 if (debug_infrun)
4493 {
4494 char *statstr;
4495
4496 statstr = target_waitstatus_to_string (&ws);
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: target_wait %s, saving "
4499 "status for %d.%ld.%ld\n",
4500 statstr,
4501 ptid_get_pid (t->ptid),
4502 ptid_get_lwp (t->ptid),
4503 ptid_get_tid (t->ptid));
4504 xfree (statstr);
4505 }
4506
4507 /* Record for later. */
4508 save_waitstatus (t, &ws);
4509
4510 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4511 ? ws.value.sig : GDB_SIGNAL_0);
4512
4513 if (displaced_step_fixup (t->ptid, sig) < 0)
4514 {
4515 /* Add it back to the step-over queue. */
4516 t->control.trap_expected = 0;
4517 thread_step_over_chain_enqueue (t);
4518 }
4519
4520 regcache = get_thread_regcache (t->ptid);
4521 t->suspend.stop_pc = regcache_read_pc (regcache);
4522
4523 if (debug_infrun)
4524 {
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: saved stop_pc=%s for %s "
4527 "(currently_stepping=%d)\n",
4528 paddress (target_gdbarch (),
4529 t->suspend.stop_pc),
4530 target_pid_to_str (t->ptid),
4531 currently_stepping (t));
4532 }
4533 }
4534 }
4535 }
4536 }
4537
4538 do_cleanups (old_chain);
4539
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4542 }
4543
4544 /* Given an execution control state that has been freshly filled in by
4545 an event from the inferior, figure out what it means and take
4546 appropriate action.
4547
4548 The alternatives are:
4549
4550 1) stop_waiting and return; to really stop and return to the
4551 debugger.
4552
4553 2) keep_going and return; to wait for the next event (set
4554 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4555 once). */
4556
4557 static void
4558 handle_inferior_event_1 (struct execution_control_state *ecs)
4559 {
4560 enum stop_kind stop_soon;
4561
4562 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4563 {
4564 /* We had an event in the inferior, but we are not interested in
4565 handling it at this level. The lower layers have already
4566 done what needs to be done, if anything.
4567
4568 One of the possible circumstances for this is when the
4569 inferior produces output for the console. The inferior has
4570 not stopped, and we are ignoring the event. Another possible
4571 circumstance is any event which the lower level knows will be
4572 reported multiple times without an intervening resume. */
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4575 prepare_to_wait (ecs);
4576 return;
4577 }
4578
4579 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4580 && target_can_async_p () && !sync_execution)
4581 {
4582 /* There were no unwaited-for children left in the target, but,
4583 we're not synchronously waiting for events either. Just
4584 ignore. Otherwise, if we were running a synchronous
4585 execution command, we need to cancel it and give the user
4586 back the terminal. */
4587 if (debug_infrun)
4588 fprintf_unfiltered (gdb_stdlog,
4589 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4590 prepare_to_wait (ecs);
4591 return;
4592 }
4593
4594 /* Cache the last pid/waitstatus. */
4595 set_last_target_status (ecs->ptid, ecs->ws);
4596
4597 /* Always clear state belonging to the previous time we stopped. */
4598 stop_stack_dummy = STOP_NONE;
4599
4600 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4601 {
4602 /* No unwaited-for children left. IOW, all resumed children
4603 have exited. */
4604 if (debug_infrun)
4605 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4606
4607 stop_print_frame = 0;
4608 stop_waiting (ecs);
4609 return;
4610 }
4611
4612 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4613 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4614 {
4615 ecs->event_thread = find_thread_ptid (ecs->ptid);
4616 /* If it's a new thread, add it to the thread database. */
4617 if (ecs->event_thread == NULL)
4618 ecs->event_thread = add_thread (ecs->ptid);
4619
4620 /* Disable range stepping. If the next step request could use a
4621 range, this will be end up re-enabled then. */
4622 ecs->event_thread->control.may_range_step = 0;
4623 }
4624
4625 /* Dependent on valid ECS->EVENT_THREAD. */
4626 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4627
4628 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4629 reinit_frame_cache ();
4630
4631 breakpoint_retire_moribund ();
4632
4633 /* First, distinguish signals caused by the debugger from signals
4634 that have to do with the program's own actions. Note that
4635 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4636 on the operating system version. Here we detect when a SIGILL or
4637 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4638 something similar for SIGSEGV, since a SIGSEGV will be generated
4639 when we're trying to execute a breakpoint instruction on a
4640 non-executable stack. This happens for call dummy breakpoints
4641 for architectures like SPARC that place call dummies on the
4642 stack. */
4643 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4644 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4645 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4646 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4647 {
4648 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4649
4650 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4651 regcache_read_pc (regcache)))
4652 {
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog,
4655 "infrun: Treating signal as SIGTRAP\n");
4656 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4657 }
4658 }
4659
4660 /* Mark the non-executing threads accordingly. In all-stop, all
4661 threads of all processes are stopped when we get any event
4662 reported. In non-stop mode, only the event thread stops. */
4663 {
4664 ptid_t mark_ptid;
4665
4666 if (!target_is_non_stop_p ())
4667 mark_ptid = minus_one_ptid;
4668 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4669 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4670 {
4671 /* If we're handling a process exit in non-stop mode, even
4672 though threads haven't been deleted yet, one would think
4673 that there is nothing to do, as threads of the dead process
4674 will be soon deleted, and threads of any other process were
4675 left running. However, on some targets, threads survive a
4676 process exit event. E.g., for the "checkpoint" command,
4677 when the current checkpoint/fork exits, linux-fork.c
4678 automatically switches to another fork from within
4679 target_mourn_inferior, by associating the same
4680 inferior/thread to another fork. We haven't mourned yet at
4681 this point, but we must mark any threads left in the
4682 process as not-executing so that finish_thread_state marks
4683 them stopped (in the user's perspective) if/when we present
4684 the stop to the user. */
4685 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4686 }
4687 else
4688 mark_ptid = ecs->ptid;
4689
4690 set_executing (mark_ptid, 0);
4691
4692 /* Likewise the resumed flag. */
4693 set_resumed (mark_ptid, 0);
4694 }
4695
4696 switch (ecs->ws.kind)
4697 {
4698 case TARGET_WAITKIND_LOADED:
4699 if (debug_infrun)
4700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4701 if (!ptid_equal (ecs->ptid, inferior_ptid))
4702 context_switch (ecs->ptid);
4703 /* Ignore gracefully during startup of the inferior, as it might
4704 be the shell which has just loaded some objects, otherwise
4705 add the symbols for the newly loaded objects. Also ignore at
4706 the beginning of an attach or remote session; we will query
4707 the full list of libraries once the connection is
4708 established. */
4709
4710 stop_soon = get_inferior_stop_soon (ecs->ptid);
4711 if (stop_soon == NO_STOP_QUIETLY)
4712 {
4713 struct regcache *regcache;
4714
4715 regcache = get_thread_regcache (ecs->ptid);
4716
4717 handle_solib_event ();
4718
4719 ecs->event_thread->control.stop_bpstat
4720 = bpstat_stop_status (get_regcache_aspace (regcache),
4721 stop_pc, ecs->ptid, &ecs->ws);
4722
4723 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4724 {
4725 /* A catchpoint triggered. */
4726 process_event_stop_test (ecs);
4727 return;
4728 }
4729
4730 /* If requested, stop when the dynamic linker notifies
4731 gdb of events. This allows the user to get control
4732 and place breakpoints in initializer routines for
4733 dynamically loaded objects (among other things). */
4734 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4735 if (stop_on_solib_events)
4736 {
4737 /* Make sure we print "Stopped due to solib-event" in
4738 normal_stop. */
4739 stop_print_frame = 1;
4740
4741 stop_waiting (ecs);
4742 return;
4743 }
4744 }
4745
4746 /* If we are skipping through a shell, or through shared library
4747 loading that we aren't interested in, resume the program. If
4748 we're running the program normally, also resume. */
4749 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4750 {
4751 /* Loading of shared libraries might have changed breakpoint
4752 addresses. Make sure new breakpoints are inserted. */
4753 if (stop_soon == NO_STOP_QUIETLY)
4754 insert_breakpoints ();
4755 resume (GDB_SIGNAL_0);
4756 prepare_to_wait (ecs);
4757 return;
4758 }
4759
4760 /* But stop if we're attaching or setting up a remote
4761 connection. */
4762 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4763 || stop_soon == STOP_QUIETLY_REMOTE)
4764 {
4765 if (debug_infrun)
4766 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4767 stop_waiting (ecs);
4768 return;
4769 }
4770
4771 internal_error (__FILE__, __LINE__,
4772 _("unhandled stop_soon: %d"), (int) stop_soon);
4773
4774 case TARGET_WAITKIND_SPURIOUS:
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4777 if (!ptid_equal (ecs->ptid, inferior_ptid))
4778 context_switch (ecs->ptid);
4779 resume (GDB_SIGNAL_0);
4780 prepare_to_wait (ecs);
4781 return;
4782
4783 case TARGET_WAITKIND_EXITED:
4784 case TARGET_WAITKIND_SIGNALLED:
4785 if (debug_infrun)
4786 {
4787 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: TARGET_WAITKIND_EXITED\n");
4790 else
4791 fprintf_unfiltered (gdb_stdlog,
4792 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4793 }
4794
4795 inferior_ptid = ecs->ptid;
4796 set_current_inferior (find_inferior_ptid (ecs->ptid));
4797 set_current_program_space (current_inferior ()->pspace);
4798 handle_vfork_child_exec_or_exit (0);
4799 target_terminal_ours (); /* Must do this before mourn anyway. */
4800
4801 /* Clearing any previous state of convenience variables. */
4802 clear_exit_convenience_vars ();
4803
4804 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4805 {
4806 /* Record the exit code in the convenience variable $_exitcode, so
4807 that the user can inspect this again later. */
4808 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4809 (LONGEST) ecs->ws.value.integer);
4810
4811 /* Also record this in the inferior itself. */
4812 current_inferior ()->has_exit_code = 1;
4813 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4814
4815 /* Support the --return-child-result option. */
4816 return_child_result_value = ecs->ws.value.integer;
4817
4818 observer_notify_exited (ecs->ws.value.integer);
4819 }
4820 else
4821 {
4822 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4824
4825 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4826 {
4827 /* Set the value of the internal variable $_exitsignal,
4828 which holds the signal uncaught by the inferior. */
4829 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4830 gdbarch_gdb_signal_to_target (gdbarch,
4831 ecs->ws.value.sig));
4832 }
4833 else
4834 {
4835 /* We don't have access to the target's method used for
4836 converting between signal numbers (GDB's internal
4837 representation <-> target's representation).
4838 Therefore, we cannot do a good job at displaying this
4839 information to the user. It's better to just warn
4840 her about it (if infrun debugging is enabled), and
4841 give up. */
4842 if (debug_infrun)
4843 fprintf_filtered (gdb_stdlog, _("\
4844 Cannot fill $_exitsignal with the correct signal number.\n"));
4845 }
4846
4847 observer_notify_signal_exited (ecs->ws.value.sig);
4848 }
4849
4850 gdb_flush (gdb_stdout);
4851 target_mourn_inferior ();
4852 stop_print_frame = 0;
4853 stop_waiting (ecs);
4854 return;
4855
4856 /* The following are the only cases in which we keep going;
4857 the above cases end in a continue or goto. */
4858 case TARGET_WAITKIND_FORKED:
4859 case TARGET_WAITKIND_VFORKED:
4860 if (debug_infrun)
4861 {
4862 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4864 else
4865 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4866 }
4867
4868 /* Check whether the inferior is displaced stepping. */
4869 {
4870 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4872 struct displaced_step_inferior_state *displaced
4873 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4874
4875 /* If checking displaced stepping is supported, and thread
4876 ecs->ptid is displaced stepping. */
4877 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4878 {
4879 struct inferior *parent_inf
4880 = find_inferior_ptid (ecs->ptid);
4881 struct regcache *child_regcache;
4882 CORE_ADDR parent_pc;
4883
4884 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4885 indicating that the displaced stepping of syscall instruction
4886 has been done. Perform cleanup for parent process here. Note
4887 that this operation also cleans up the child process for vfork,
4888 because their pages are shared. */
4889 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4890 /* Start a new step-over in another thread if there's one
4891 that needs it. */
4892 start_step_over ();
4893
4894 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4895 {
4896 /* Restore scratch pad for child process. */
4897 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4898 }
4899
4900 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4901 the child's PC is also within the scratchpad. Set the child's PC
4902 to the parent's PC value, which has already been fixed up.
4903 FIXME: we use the parent's aspace here, although we're touching
4904 the child, because the child hasn't been added to the inferior
4905 list yet at this point. */
4906
4907 child_regcache
4908 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4909 gdbarch,
4910 parent_inf->aspace);
4911 /* Read PC value of parent process. */
4912 parent_pc = regcache_read_pc (regcache);
4913
4914 if (debug_displaced)
4915 fprintf_unfiltered (gdb_stdlog,
4916 "displaced: write child pc from %s to %s\n",
4917 paddress (gdbarch,
4918 regcache_read_pc (child_regcache)),
4919 paddress (gdbarch, parent_pc));
4920
4921 regcache_write_pc (child_regcache, parent_pc);
4922 }
4923 }
4924
4925 if (!ptid_equal (ecs->ptid, inferior_ptid))
4926 context_switch (ecs->ptid);
4927
4928 /* Immediately detach breakpoints from the child before there's
4929 any chance of letting the user delete breakpoints from the
4930 breakpoint lists. If we don't do this early, it's easy to
4931 leave left over traps in the child, vis: "break foo; catch
4932 fork; c; <fork>; del; c; <child calls foo>". We only follow
4933 the fork on the last `continue', and by that time the
4934 breakpoint at "foo" is long gone from the breakpoint table.
4935 If we vforked, then we don't need to unpatch here, since both
4936 parent and child are sharing the same memory pages; we'll
4937 need to unpatch at follow/detach time instead to be certain
4938 that new breakpoints added between catchpoint hit time and
4939 vfork follow are detached. */
4940 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4941 {
4942 /* This won't actually modify the breakpoint list, but will
4943 physically remove the breakpoints from the child. */
4944 detach_breakpoints (ecs->ws.value.related_pid);
4945 }
4946
4947 delete_just_stopped_threads_single_step_breakpoints ();
4948
4949 /* In case the event is caught by a catchpoint, remember that
4950 the event is to be followed at the next resume of the thread,
4951 and not immediately. */
4952 ecs->event_thread->pending_follow = ecs->ws;
4953
4954 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4955
4956 ecs->event_thread->control.stop_bpstat
4957 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4958 stop_pc, ecs->ptid, &ecs->ws);
4959
4960 /* If no catchpoint triggered for this, then keep going. Note
4961 that we're interested in knowing the bpstat actually causes a
4962 stop, not just if it may explain the signal. Software
4963 watchpoints, for example, always appear in the bpstat. */
4964 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4965 {
4966 ptid_t parent;
4967 ptid_t child;
4968 int should_resume;
4969 int follow_child
4970 = (follow_fork_mode_string == follow_fork_mode_child);
4971
4972 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4973
4974 should_resume = follow_fork ();
4975
4976 parent = ecs->ptid;
4977 child = ecs->ws.value.related_pid;
4978
4979 /* In non-stop mode, also resume the other branch. */
4980 if (!detach_fork && (non_stop
4981 || (sched_multi && target_is_non_stop_p ())))
4982 {
4983 if (follow_child)
4984 switch_to_thread (parent);
4985 else
4986 switch_to_thread (child);
4987
4988 ecs->event_thread = inferior_thread ();
4989 ecs->ptid = inferior_ptid;
4990 keep_going (ecs);
4991 }
4992
4993 if (follow_child)
4994 switch_to_thread (child);
4995 else
4996 switch_to_thread (parent);
4997
4998 ecs->event_thread = inferior_thread ();
4999 ecs->ptid = inferior_ptid;
5000
5001 if (should_resume)
5002 keep_going (ecs);
5003 else
5004 stop_waiting (ecs);
5005 return;
5006 }
5007 process_event_stop_test (ecs);
5008 return;
5009
5010 case TARGET_WAITKIND_VFORK_DONE:
5011 /* Done with the shared memory region. Re-insert breakpoints in
5012 the parent, and keep going. */
5013
5014 if (debug_infrun)
5015 fprintf_unfiltered (gdb_stdlog,
5016 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5017
5018 if (!ptid_equal (ecs->ptid, inferior_ptid))
5019 context_switch (ecs->ptid);
5020
5021 current_inferior ()->waiting_for_vfork_done = 0;
5022 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5023 /* This also takes care of reinserting breakpoints in the
5024 previously locked inferior. */
5025 keep_going (ecs);
5026 return;
5027
5028 case TARGET_WAITKIND_EXECD:
5029 if (debug_infrun)
5030 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5031
5032 if (!ptid_equal (ecs->ptid, inferior_ptid))
5033 context_switch (ecs->ptid);
5034
5035 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5036
5037 /* Do whatever is necessary to the parent branch of the vfork. */
5038 handle_vfork_child_exec_or_exit (1);
5039
5040 /* This causes the eventpoints and symbol table to be reset.
5041 Must do this now, before trying to determine whether to
5042 stop. */
5043 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5044
5045 /* In follow_exec we may have deleted the original thread and
5046 created a new one. Make sure that the event thread is the
5047 execd thread for that case (this is a nop otherwise). */
5048 ecs->event_thread = inferior_thread ();
5049
5050 ecs->event_thread->control.stop_bpstat
5051 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5052 stop_pc, ecs->ptid, &ecs->ws);
5053
5054 /* Note that this may be referenced from inside
5055 bpstat_stop_status above, through inferior_has_execd. */
5056 xfree (ecs->ws.value.execd_pathname);
5057 ecs->ws.value.execd_pathname = NULL;
5058
5059 /* If no catchpoint triggered for this, then keep going. */
5060 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5061 {
5062 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5063 keep_going (ecs);
5064 return;
5065 }
5066 process_event_stop_test (ecs);
5067 return;
5068
5069 /* Be careful not to try to gather much state about a thread
5070 that's in a syscall. It's frequently a losing proposition. */
5071 case TARGET_WAITKIND_SYSCALL_ENTRY:
5072 if (debug_infrun)
5073 fprintf_unfiltered (gdb_stdlog,
5074 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5075 /* Getting the current syscall number. */
5076 if (handle_syscall_event (ecs) == 0)
5077 process_event_stop_test (ecs);
5078 return;
5079
5080 /* Before examining the threads further, step this thread to
5081 get it entirely out of the syscall. (We get notice of the
5082 event when the thread is just on the verge of exiting a
5083 syscall. Stepping one instruction seems to get it back
5084 into user code.) */
5085 case TARGET_WAITKIND_SYSCALL_RETURN:
5086 if (debug_infrun)
5087 fprintf_unfiltered (gdb_stdlog,
5088 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5089 if (handle_syscall_event (ecs) == 0)
5090 process_event_stop_test (ecs);
5091 return;
5092
5093 case TARGET_WAITKIND_STOPPED:
5094 if (debug_infrun)
5095 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5096 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5097 handle_signal_stop (ecs);
5098 return;
5099
5100 case TARGET_WAITKIND_NO_HISTORY:
5101 if (debug_infrun)
5102 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5103 /* Reverse execution: target ran out of history info. */
5104
5105 delete_just_stopped_threads_single_step_breakpoints ();
5106 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5107 observer_notify_no_history ();
5108 stop_waiting (ecs);
5109 return;
5110 }
5111 }
5112
5113 /* A wrapper around handle_inferior_event_1, which also makes sure
5114 that all temporary struct value objects that were created during
5115 the handling of the event get deleted at the end. */
5116
5117 static void
5118 handle_inferior_event (struct execution_control_state *ecs)
5119 {
5120 struct value *mark = value_mark ();
5121
5122 handle_inferior_event_1 (ecs);
5123 /* Purge all temporary values created during the event handling,
5124 as it could be a long time before we return to the command level
5125 where such values would otherwise be purged. */
5126 value_free_to_mark (mark);
5127 }
5128
5129 /* Restart threads back to what they were trying to do back when we
5130 paused them for an in-line step-over. The EVENT_THREAD thread is
5131 ignored. */
5132
5133 static void
5134 restart_threads (struct thread_info *event_thread)
5135 {
5136 struct thread_info *tp;
5137 struct thread_info *step_over = NULL;
5138
5139 /* In case the instruction just stepped spawned a new thread. */
5140 update_thread_list ();
5141
5142 ALL_NON_EXITED_THREADS (tp)
5143 {
5144 if (tp == event_thread)
5145 {
5146 if (debug_infrun)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "infrun: restart threads: "
5149 "[%s] is event thread\n",
5150 target_pid_to_str (tp->ptid));
5151 continue;
5152 }
5153
5154 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5155 {
5156 if (debug_infrun)
5157 fprintf_unfiltered (gdb_stdlog,
5158 "infrun: restart threads: "
5159 "[%s] not meant to be running\n",
5160 target_pid_to_str (tp->ptid));
5161 continue;
5162 }
5163
5164 if (tp->resumed)
5165 {
5166 if (debug_infrun)
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: restart threads: [%s] resumed\n",
5169 target_pid_to_str (tp->ptid));
5170 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5171 continue;
5172 }
5173
5174 if (thread_is_in_step_over_chain (tp))
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: restart threads: "
5179 "[%s] needs step-over\n",
5180 target_pid_to_str (tp->ptid));
5181 gdb_assert (!tp->resumed);
5182 continue;
5183 }
5184
5185
5186 if (tp->suspend.waitstatus_pending_p)
5187 {
5188 if (debug_infrun)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: restart threads: "
5191 "[%s] has pending status\n",
5192 target_pid_to_str (tp->ptid));
5193 tp->resumed = 1;
5194 continue;
5195 }
5196
5197 /* If some thread needs to start a step-over at this point, it
5198 should still be in the step-over queue, and thus skipped
5199 above. */
5200 if (thread_still_needs_step_over (tp))
5201 {
5202 internal_error (__FILE__, __LINE__,
5203 "thread [%s] needs a step-over, but not in "
5204 "step-over queue\n",
5205 target_pid_to_str (tp->ptid));
5206 }
5207
5208 if (currently_stepping (tp))
5209 {
5210 if (debug_infrun)
5211 fprintf_unfiltered (gdb_stdlog,
5212 "infrun: restart threads: [%s] was stepping\n",
5213 target_pid_to_str (tp->ptid));
5214 keep_going_stepped_thread (tp);
5215 }
5216 else
5217 {
5218 struct execution_control_state ecss;
5219 struct execution_control_state *ecs = &ecss;
5220
5221 if (debug_infrun)
5222 fprintf_unfiltered (gdb_stdlog,
5223 "infrun: restart threads: [%s] continuing\n",
5224 target_pid_to_str (tp->ptid));
5225 reset_ecs (ecs, tp);
5226 switch_to_thread (tp->ptid);
5227 keep_going_pass_signal (ecs);
5228 }
5229 }
5230 }
5231
5232 /* Callback for iterate_over_threads. Find a resumed thread that has
5233 a pending waitstatus. */
5234
5235 static int
5236 resumed_thread_with_pending_status (struct thread_info *tp,
5237 void *arg)
5238 {
5239 return (tp->resumed
5240 && tp->suspend.waitstatus_pending_p);
5241 }
5242
5243 /* Called when we get an event that may finish an in-line or
5244 out-of-line (displaced stepping) step-over started previously.
5245 Return true if the event is processed and we should go back to the
5246 event loop; false if the caller should continue processing the
5247 event. */
5248
5249 static int
5250 finish_step_over (struct execution_control_state *ecs)
5251 {
5252 int had_step_over_info;
5253
5254 displaced_step_fixup (ecs->ptid,
5255 ecs->event_thread->suspend.stop_signal);
5256
5257 had_step_over_info = step_over_info_valid_p ();
5258
5259 if (had_step_over_info)
5260 {
5261 /* If we're stepping over a breakpoint with all threads locked,
5262 then only the thread that was stepped should be reporting
5263 back an event. */
5264 gdb_assert (ecs->event_thread->control.trap_expected);
5265
5266 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5267 clear_step_over_info ();
5268 }
5269
5270 if (!target_is_non_stop_p ())
5271 return 0;
5272
5273 /* Start a new step-over in another thread if there's one that
5274 needs it. */
5275 start_step_over ();
5276
5277 /* If we were stepping over a breakpoint before, and haven't started
5278 a new in-line step-over sequence, then restart all other threads
5279 (except the event thread). We can't do this in all-stop, as then
5280 e.g., we wouldn't be able to issue any other remote packet until
5281 these other threads stop. */
5282 if (had_step_over_info && !step_over_info_valid_p ())
5283 {
5284 struct thread_info *pending;
5285
5286 /* If we only have threads with pending statuses, the restart
5287 below won't restart any thread and so nothing re-inserts the
5288 breakpoint we just stepped over. But we need it inserted
5289 when we later process the pending events, otherwise if
5290 another thread has a pending event for this breakpoint too,
5291 we'd discard its event (because the breakpoint that
5292 originally caused the event was no longer inserted). */
5293 context_switch (ecs->ptid);
5294 insert_breakpoints ();
5295
5296 restart_threads (ecs->event_thread);
5297
5298 /* If we have events pending, go through handle_inferior_event
5299 again, picking up a pending event at random. This avoids
5300 thread starvation. */
5301
5302 /* But not if we just stepped over a watchpoint in order to let
5303 the instruction execute so we can evaluate its expression.
5304 The set of watchpoints that triggered is recorded in the
5305 breakpoint objects themselves (see bp->watchpoint_triggered).
5306 If we processed another event first, that other event could
5307 clobber this info. */
5308 if (ecs->event_thread->stepping_over_watchpoint)
5309 return 0;
5310
5311 pending = iterate_over_threads (resumed_thread_with_pending_status,
5312 NULL);
5313 if (pending != NULL)
5314 {
5315 struct thread_info *tp = ecs->event_thread;
5316 struct regcache *regcache;
5317
5318 if (debug_infrun)
5319 {
5320 fprintf_unfiltered (gdb_stdlog,
5321 "infrun: found resumed threads with "
5322 "pending events, saving status\n");
5323 }
5324
5325 gdb_assert (pending != tp);
5326
5327 /* Record the event thread's event for later. */
5328 save_waitstatus (tp, &ecs->ws);
5329 /* This was cleared early, by handle_inferior_event. Set it
5330 so this pending event is considered by
5331 do_target_wait. */
5332 tp->resumed = 1;
5333
5334 gdb_assert (!tp->executing);
5335
5336 regcache = get_thread_regcache (tp->ptid);
5337 tp->suspend.stop_pc = regcache_read_pc (regcache);
5338
5339 if (debug_infrun)
5340 {
5341 fprintf_unfiltered (gdb_stdlog,
5342 "infrun: saved stop_pc=%s for %s "
5343 "(currently_stepping=%d)\n",
5344 paddress (target_gdbarch (),
5345 tp->suspend.stop_pc),
5346 target_pid_to_str (tp->ptid),
5347 currently_stepping (tp));
5348 }
5349
5350 /* This in-line step-over finished; clear this so we won't
5351 start a new one. This is what handle_signal_stop would
5352 do, if we returned false. */
5353 tp->stepping_over_breakpoint = 0;
5354
5355 /* Wake up the event loop again. */
5356 mark_async_event_handler (infrun_async_inferior_event_token);
5357
5358 prepare_to_wait (ecs);
5359 return 1;
5360 }
5361 }
5362
5363 return 0;
5364 }
5365
5366 /* Come here when the program has stopped with a signal. */
5367
5368 static void
5369 handle_signal_stop (struct execution_control_state *ecs)
5370 {
5371 struct frame_info *frame;
5372 struct gdbarch *gdbarch;
5373 int stopped_by_watchpoint;
5374 enum stop_kind stop_soon;
5375 int random_signal;
5376
5377 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5378
5379 /* Do we need to clean up the state of a thread that has
5380 completed a displaced single-step? (Doing so usually affects
5381 the PC, so do it here, before we set stop_pc.) */
5382 if (finish_step_over (ecs))
5383 return;
5384
5385 /* If we either finished a single-step or hit a breakpoint, but
5386 the user wanted this thread to be stopped, pretend we got a
5387 SIG0 (generic unsignaled stop). */
5388 if (ecs->event_thread->stop_requested
5389 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5390 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5391
5392 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5393
5394 if (debug_infrun)
5395 {
5396 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5397 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5398 struct cleanup *old_chain = save_inferior_ptid ();
5399
5400 inferior_ptid = ecs->ptid;
5401
5402 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5403 paddress (gdbarch, stop_pc));
5404 if (target_stopped_by_watchpoint ())
5405 {
5406 CORE_ADDR addr;
5407
5408 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5409
5410 if (target_stopped_data_address (&current_target, &addr))
5411 fprintf_unfiltered (gdb_stdlog,
5412 "infrun: stopped data address = %s\n",
5413 paddress (gdbarch, addr));
5414 else
5415 fprintf_unfiltered (gdb_stdlog,
5416 "infrun: (no data address available)\n");
5417 }
5418
5419 do_cleanups (old_chain);
5420 }
5421
5422 /* This is originated from start_remote(), start_inferior() and
5423 shared libraries hook functions. */
5424 stop_soon = get_inferior_stop_soon (ecs->ptid);
5425 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5426 {
5427 if (!ptid_equal (ecs->ptid, inferior_ptid))
5428 context_switch (ecs->ptid);
5429 if (debug_infrun)
5430 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5431 stop_print_frame = 1;
5432 stop_waiting (ecs);
5433 return;
5434 }
5435
5436 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5437 && stop_after_trap)
5438 {
5439 if (!ptid_equal (ecs->ptid, inferior_ptid))
5440 context_switch (ecs->ptid);
5441 if (debug_infrun)
5442 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5443 stop_print_frame = 0;
5444 stop_waiting (ecs);
5445 return;
5446 }
5447
5448 /* This originates from attach_command(). We need to overwrite
5449 the stop_signal here, because some kernels don't ignore a
5450 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5451 See more comments in inferior.h. On the other hand, if we
5452 get a non-SIGSTOP, report it to the user - assume the backend
5453 will handle the SIGSTOP if it should show up later.
5454
5455 Also consider that the attach is complete when we see a
5456 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5457 target extended-remote report it instead of a SIGSTOP
5458 (e.g. gdbserver). We already rely on SIGTRAP being our
5459 signal, so this is no exception.
5460
5461 Also consider that the attach is complete when we see a
5462 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5463 the target to stop all threads of the inferior, in case the
5464 low level attach operation doesn't stop them implicitly. If
5465 they weren't stopped implicitly, then the stub will report a
5466 GDB_SIGNAL_0, meaning: stopped for no particular reason
5467 other than GDB's request. */
5468 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5469 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5470 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5471 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5472 {
5473 stop_print_frame = 1;
5474 stop_waiting (ecs);
5475 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5476 return;
5477 }
5478
5479 /* See if something interesting happened to the non-current thread. If
5480 so, then switch to that thread. */
5481 if (!ptid_equal (ecs->ptid, inferior_ptid))
5482 {
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5485
5486 context_switch (ecs->ptid);
5487
5488 if (deprecated_context_hook)
5489 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5490 }
5491
5492 /* At this point, get hold of the now-current thread's frame. */
5493 frame = get_current_frame ();
5494 gdbarch = get_frame_arch (frame);
5495
5496 /* Pull the single step breakpoints out of the target. */
5497 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5498 {
5499 struct regcache *regcache;
5500 struct address_space *aspace;
5501 CORE_ADDR pc;
5502
5503 regcache = get_thread_regcache (ecs->ptid);
5504 aspace = get_regcache_aspace (regcache);
5505 pc = regcache_read_pc (regcache);
5506
5507 /* However, before doing so, if this single-step breakpoint was
5508 actually for another thread, set this thread up for moving
5509 past it. */
5510 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5511 aspace, pc))
5512 {
5513 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5514 {
5515 if (debug_infrun)
5516 {
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: [%s] hit another thread's "
5519 "single-step breakpoint\n",
5520 target_pid_to_str (ecs->ptid));
5521 }
5522 ecs->hit_singlestep_breakpoint = 1;
5523 }
5524 }
5525 else
5526 {
5527 if (debug_infrun)
5528 {
5529 fprintf_unfiltered (gdb_stdlog,
5530 "infrun: [%s] hit its "
5531 "single-step breakpoint\n",
5532 target_pid_to_str (ecs->ptid));
5533 }
5534 }
5535 }
5536 delete_just_stopped_threads_single_step_breakpoints ();
5537
5538 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5539 && ecs->event_thread->control.trap_expected
5540 && ecs->event_thread->stepping_over_watchpoint)
5541 stopped_by_watchpoint = 0;
5542 else
5543 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5544
5545 /* If necessary, step over this watchpoint. We'll be back to display
5546 it in a moment. */
5547 if (stopped_by_watchpoint
5548 && (target_have_steppable_watchpoint
5549 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5550 {
5551 /* At this point, we are stopped at an instruction which has
5552 attempted to write to a piece of memory under control of
5553 a watchpoint. The instruction hasn't actually executed
5554 yet. If we were to evaluate the watchpoint expression
5555 now, we would get the old value, and therefore no change
5556 would seem to have occurred.
5557
5558 In order to make watchpoints work `right', we really need
5559 to complete the memory write, and then evaluate the
5560 watchpoint expression. We do this by single-stepping the
5561 target.
5562
5563 It may not be necessary to disable the watchpoint to step over
5564 it. For example, the PA can (with some kernel cooperation)
5565 single step over a watchpoint without disabling the watchpoint.
5566
5567 It is far more common to need to disable a watchpoint to step
5568 the inferior over it. If we have non-steppable watchpoints,
5569 we must disable the current watchpoint; it's simplest to
5570 disable all watchpoints.
5571
5572 Any breakpoint at PC must also be stepped over -- if there's
5573 one, it will have already triggered before the watchpoint
5574 triggered, and we either already reported it to the user, or
5575 it didn't cause a stop and we called keep_going. In either
5576 case, if there was a breakpoint at PC, we must be trying to
5577 step past it. */
5578 ecs->event_thread->stepping_over_watchpoint = 1;
5579 keep_going (ecs);
5580 return;
5581 }
5582
5583 ecs->event_thread->stepping_over_breakpoint = 0;
5584 ecs->event_thread->stepping_over_watchpoint = 0;
5585 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5586 ecs->event_thread->control.stop_step = 0;
5587 stop_print_frame = 1;
5588 stopped_by_random_signal = 0;
5589
5590 /* Hide inlined functions starting here, unless we just performed stepi or
5591 nexti. After stepi and nexti, always show the innermost frame (not any
5592 inline function call sites). */
5593 if (ecs->event_thread->control.step_range_end != 1)
5594 {
5595 struct address_space *aspace =
5596 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5597
5598 /* skip_inline_frames is expensive, so we avoid it if we can
5599 determine that the address is one where functions cannot have
5600 been inlined. This improves performance with inferiors that
5601 load a lot of shared libraries, because the solib event
5602 breakpoint is defined as the address of a function (i.e. not
5603 inline). Note that we have to check the previous PC as well
5604 as the current one to catch cases when we have just
5605 single-stepped off a breakpoint prior to reinstating it.
5606 Note that we're assuming that the code we single-step to is
5607 not inline, but that's not definitive: there's nothing
5608 preventing the event breakpoint function from containing
5609 inlined code, and the single-step ending up there. If the
5610 user had set a breakpoint on that inlined code, the missing
5611 skip_inline_frames call would break things. Fortunately
5612 that's an extremely unlikely scenario. */
5613 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5614 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5615 && ecs->event_thread->control.trap_expected
5616 && pc_at_non_inline_function (aspace,
5617 ecs->event_thread->prev_pc,
5618 &ecs->ws)))
5619 {
5620 skip_inline_frames (ecs->ptid);
5621
5622 /* Re-fetch current thread's frame in case that invalidated
5623 the frame cache. */
5624 frame = get_current_frame ();
5625 gdbarch = get_frame_arch (frame);
5626 }
5627 }
5628
5629 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5630 && ecs->event_thread->control.trap_expected
5631 && gdbarch_single_step_through_delay_p (gdbarch)
5632 && currently_stepping (ecs->event_thread))
5633 {
5634 /* We're trying to step off a breakpoint. Turns out that we're
5635 also on an instruction that needs to be stepped multiple
5636 times before it's been fully executing. E.g., architectures
5637 with a delay slot. It needs to be stepped twice, once for
5638 the instruction and once for the delay slot. */
5639 int step_through_delay
5640 = gdbarch_single_step_through_delay (gdbarch, frame);
5641
5642 if (debug_infrun && step_through_delay)
5643 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5644 if (ecs->event_thread->control.step_range_end == 0
5645 && step_through_delay)
5646 {
5647 /* The user issued a continue when stopped at a breakpoint.
5648 Set up for another trap and get out of here. */
5649 ecs->event_thread->stepping_over_breakpoint = 1;
5650 keep_going (ecs);
5651 return;
5652 }
5653 else if (step_through_delay)
5654 {
5655 /* The user issued a step when stopped at a breakpoint.
5656 Maybe we should stop, maybe we should not - the delay
5657 slot *might* correspond to a line of source. In any
5658 case, don't decide that here, just set
5659 ecs->stepping_over_breakpoint, making sure we
5660 single-step again before breakpoints are re-inserted. */
5661 ecs->event_thread->stepping_over_breakpoint = 1;
5662 }
5663 }
5664
5665 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5666 handles this event. */
5667 ecs->event_thread->control.stop_bpstat
5668 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5669 stop_pc, ecs->ptid, &ecs->ws);
5670
5671 /* Following in case break condition called a
5672 function. */
5673 stop_print_frame = 1;
5674
5675 /* This is where we handle "moribund" watchpoints. Unlike
5676 software breakpoints traps, hardware watchpoint traps are
5677 always distinguishable from random traps. If no high-level
5678 watchpoint is associated with the reported stop data address
5679 anymore, then the bpstat does not explain the signal ---
5680 simply make sure to ignore it if `stopped_by_watchpoint' is
5681 set. */
5682
5683 if (debug_infrun
5684 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5685 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5686 GDB_SIGNAL_TRAP)
5687 && stopped_by_watchpoint)
5688 fprintf_unfiltered (gdb_stdlog,
5689 "infrun: no user watchpoint explains "
5690 "watchpoint SIGTRAP, ignoring\n");
5691
5692 /* NOTE: cagney/2003-03-29: These checks for a random signal
5693 at one stage in the past included checks for an inferior
5694 function call's call dummy's return breakpoint. The original
5695 comment, that went with the test, read:
5696
5697 ``End of a stack dummy. Some systems (e.g. Sony news) give
5698 another signal besides SIGTRAP, so check here as well as
5699 above.''
5700
5701 If someone ever tries to get call dummys on a
5702 non-executable stack to work (where the target would stop
5703 with something like a SIGSEGV), then those tests might need
5704 to be re-instated. Given, however, that the tests were only
5705 enabled when momentary breakpoints were not being used, I
5706 suspect that it won't be the case.
5707
5708 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5709 be necessary for call dummies on a non-executable stack on
5710 SPARC. */
5711
5712 /* See if the breakpoints module can explain the signal. */
5713 random_signal
5714 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5715 ecs->event_thread->suspend.stop_signal);
5716
5717 /* Maybe this was a trap for a software breakpoint that has since
5718 been removed. */
5719 if (random_signal && target_stopped_by_sw_breakpoint ())
5720 {
5721 if (program_breakpoint_here_p (gdbarch, stop_pc))
5722 {
5723 struct regcache *regcache;
5724 int decr_pc;
5725
5726 /* Re-adjust PC to what the program would see if GDB was not
5727 debugging it. */
5728 regcache = get_thread_regcache (ecs->event_thread->ptid);
5729 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5730 if (decr_pc != 0)
5731 {
5732 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5733
5734 if (record_full_is_used ())
5735 record_full_gdb_operation_disable_set ();
5736
5737 regcache_write_pc (regcache, stop_pc + decr_pc);
5738
5739 do_cleanups (old_cleanups);
5740 }
5741 }
5742 else
5743 {
5744 /* A delayed software breakpoint event. Ignore the trap. */
5745 if (debug_infrun)
5746 fprintf_unfiltered (gdb_stdlog,
5747 "infrun: delayed software breakpoint "
5748 "trap, ignoring\n");
5749 random_signal = 0;
5750 }
5751 }
5752
5753 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5754 has since been removed. */
5755 if (random_signal && target_stopped_by_hw_breakpoint ())
5756 {
5757 /* A delayed hardware breakpoint event. Ignore the trap. */
5758 if (debug_infrun)
5759 fprintf_unfiltered (gdb_stdlog,
5760 "infrun: delayed hardware breakpoint/watchpoint "
5761 "trap, ignoring\n");
5762 random_signal = 0;
5763 }
5764
5765 /* If not, perhaps stepping/nexting can. */
5766 if (random_signal)
5767 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5768 && currently_stepping (ecs->event_thread));
5769
5770 /* Perhaps the thread hit a single-step breakpoint of _another_
5771 thread. Single-step breakpoints are transparent to the
5772 breakpoints module. */
5773 if (random_signal)
5774 random_signal = !ecs->hit_singlestep_breakpoint;
5775
5776 /* No? Perhaps we got a moribund watchpoint. */
5777 if (random_signal)
5778 random_signal = !stopped_by_watchpoint;
5779
5780 /* For the program's own signals, act according to
5781 the signal handling tables. */
5782
5783 if (random_signal)
5784 {
5785 /* Signal not for debugging purposes. */
5786 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5787 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5788
5789 if (debug_infrun)
5790 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5791 gdb_signal_to_symbol_string (stop_signal));
5792
5793 stopped_by_random_signal = 1;
5794
5795 /* Always stop on signals if we're either just gaining control
5796 of the program, or the user explicitly requested this thread
5797 to remain stopped. */
5798 if (stop_soon != NO_STOP_QUIETLY
5799 || ecs->event_thread->stop_requested
5800 || (!inf->detaching
5801 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5802 {
5803 stop_waiting (ecs);
5804 return;
5805 }
5806
5807 /* Notify observers the signal has "handle print" set. Note we
5808 returned early above if stopping; normal_stop handles the
5809 printing in that case. */
5810 if (signal_print[ecs->event_thread->suspend.stop_signal])
5811 {
5812 /* The signal table tells us to print about this signal. */
5813 target_terminal_ours_for_output ();
5814 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5815 target_terminal_inferior ();
5816 }
5817
5818 /* Clear the signal if it should not be passed. */
5819 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5820 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5821
5822 if (ecs->event_thread->prev_pc == stop_pc
5823 && ecs->event_thread->control.trap_expected
5824 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5825 {
5826 int was_in_line;
5827
5828 /* We were just starting a new sequence, attempting to
5829 single-step off of a breakpoint and expecting a SIGTRAP.
5830 Instead this signal arrives. This signal will take us out
5831 of the stepping range so GDB needs to remember to, when
5832 the signal handler returns, resume stepping off that
5833 breakpoint. */
5834 /* To simplify things, "continue" is forced to use the same
5835 code paths as single-step - set a breakpoint at the
5836 signal return address and then, once hit, step off that
5837 breakpoint. */
5838 if (debug_infrun)
5839 fprintf_unfiltered (gdb_stdlog,
5840 "infrun: signal arrived while stepping over "
5841 "breakpoint\n");
5842
5843 was_in_line = step_over_info_valid_p ();
5844 clear_step_over_info ();
5845 insert_hp_step_resume_breakpoint_at_frame (frame);
5846 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5847 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5848 ecs->event_thread->control.trap_expected = 0;
5849
5850 if (target_is_non_stop_p ())
5851 {
5852 /* Either "set non-stop" is "on", or the target is
5853 always in non-stop mode. In this case, we have a bit
5854 more work to do. Resume the current thread, and if
5855 we had paused all threads, restart them while the
5856 signal handler runs. */
5857 keep_going (ecs);
5858
5859 if (was_in_line)
5860 {
5861 restart_threads (ecs->event_thread);
5862 }
5863 else if (debug_infrun)
5864 {
5865 fprintf_unfiltered (gdb_stdlog,
5866 "infrun: no need to restart threads\n");
5867 }
5868 return;
5869 }
5870
5871 /* If we were nexting/stepping some other thread, switch to
5872 it, so that we don't continue it, losing control. */
5873 if (!switch_back_to_stepped_thread (ecs))
5874 keep_going (ecs);
5875 return;
5876 }
5877
5878 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5879 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5880 || ecs->event_thread->control.step_range_end == 1)
5881 && frame_id_eq (get_stack_frame_id (frame),
5882 ecs->event_thread->control.step_stack_frame_id)
5883 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5884 {
5885 /* The inferior is about to take a signal that will take it
5886 out of the single step range. Set a breakpoint at the
5887 current PC (which is presumably where the signal handler
5888 will eventually return) and then allow the inferior to
5889 run free.
5890
5891 Note that this is only needed for a signal delivered
5892 while in the single-step range. Nested signals aren't a
5893 problem as they eventually all return. */
5894 if (debug_infrun)
5895 fprintf_unfiltered (gdb_stdlog,
5896 "infrun: signal may take us out of "
5897 "single-step range\n");
5898
5899 clear_step_over_info ();
5900 insert_hp_step_resume_breakpoint_at_frame (frame);
5901 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5902 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5903 ecs->event_thread->control.trap_expected = 0;
5904 keep_going (ecs);
5905 return;
5906 }
5907
5908 /* Note: step_resume_breakpoint may be non-NULL. This occures
5909 when either there's a nested signal, or when there's a
5910 pending signal enabled just as the signal handler returns
5911 (leaving the inferior at the step-resume-breakpoint without
5912 actually executing it). Either way continue until the
5913 breakpoint is really hit. */
5914
5915 if (!switch_back_to_stepped_thread (ecs))
5916 {
5917 if (debug_infrun)
5918 fprintf_unfiltered (gdb_stdlog,
5919 "infrun: random signal, keep going\n");
5920
5921 keep_going (ecs);
5922 }
5923 return;
5924 }
5925
5926 process_event_stop_test (ecs);
5927 }
5928
5929 /* Come here when we've got some debug event / signal we can explain
5930 (IOW, not a random signal), and test whether it should cause a
5931 stop, or whether we should resume the inferior (transparently).
5932 E.g., could be a breakpoint whose condition evaluates false; we
5933 could be still stepping within the line; etc. */
5934
5935 static void
5936 process_event_stop_test (struct execution_control_state *ecs)
5937 {
5938 struct symtab_and_line stop_pc_sal;
5939 struct frame_info *frame;
5940 struct gdbarch *gdbarch;
5941 CORE_ADDR jmp_buf_pc;
5942 struct bpstat_what what;
5943
5944 /* Handle cases caused by hitting a breakpoint. */
5945
5946 frame = get_current_frame ();
5947 gdbarch = get_frame_arch (frame);
5948
5949 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5950
5951 if (what.call_dummy)
5952 {
5953 stop_stack_dummy = what.call_dummy;
5954 }
5955
5956 /* A few breakpoint types have callbacks associated (e.g.,
5957 bp_jit_event). Run them now. */
5958 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5959
5960 /* If we hit an internal event that triggers symbol changes, the
5961 current frame will be invalidated within bpstat_what (e.g., if we
5962 hit an internal solib event). Re-fetch it. */
5963 frame = get_current_frame ();
5964 gdbarch = get_frame_arch (frame);
5965
5966 switch (what.main_action)
5967 {
5968 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5969 /* If we hit the breakpoint at longjmp while stepping, we
5970 install a momentary breakpoint at the target of the
5971 jmp_buf. */
5972
5973 if (debug_infrun)
5974 fprintf_unfiltered (gdb_stdlog,
5975 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5976
5977 ecs->event_thread->stepping_over_breakpoint = 1;
5978
5979 if (what.is_longjmp)
5980 {
5981 struct value *arg_value;
5982
5983 /* If we set the longjmp breakpoint via a SystemTap probe,
5984 then use it to extract the arguments. The destination PC
5985 is the third argument to the probe. */
5986 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5987 if (arg_value)
5988 {
5989 jmp_buf_pc = value_as_address (arg_value);
5990 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5991 }
5992 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5993 || !gdbarch_get_longjmp_target (gdbarch,
5994 frame, &jmp_buf_pc))
5995 {
5996 if (debug_infrun)
5997 fprintf_unfiltered (gdb_stdlog,
5998 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5999 "(!gdbarch_get_longjmp_target)\n");
6000 keep_going (ecs);
6001 return;
6002 }
6003
6004 /* Insert a breakpoint at resume address. */
6005 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6006 }
6007 else
6008 check_exception_resume (ecs, frame);
6009 keep_going (ecs);
6010 return;
6011
6012 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6013 {
6014 struct frame_info *init_frame;
6015
6016 /* There are several cases to consider.
6017
6018 1. The initiating frame no longer exists. In this case we
6019 must stop, because the exception or longjmp has gone too
6020 far.
6021
6022 2. The initiating frame exists, and is the same as the
6023 current frame. We stop, because the exception or longjmp
6024 has been caught.
6025
6026 3. The initiating frame exists and is different from the
6027 current frame. This means the exception or longjmp has
6028 been caught beneath the initiating frame, so keep going.
6029
6030 4. longjmp breakpoint has been placed just to protect
6031 against stale dummy frames and user is not interested in
6032 stopping around longjmps. */
6033
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6037
6038 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6039 != NULL);
6040 delete_exception_resume_breakpoint (ecs->event_thread);
6041
6042 if (what.is_longjmp)
6043 {
6044 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6045
6046 if (!frame_id_p (ecs->event_thread->initiating_frame))
6047 {
6048 /* Case 4. */
6049 keep_going (ecs);
6050 return;
6051 }
6052 }
6053
6054 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6055
6056 if (init_frame)
6057 {
6058 struct frame_id current_id
6059 = get_frame_id (get_current_frame ());
6060 if (frame_id_eq (current_id,
6061 ecs->event_thread->initiating_frame))
6062 {
6063 /* Case 2. Fall through. */
6064 }
6065 else
6066 {
6067 /* Case 3. */
6068 keep_going (ecs);
6069 return;
6070 }
6071 }
6072
6073 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6074 exists. */
6075 delete_step_resume_breakpoint (ecs->event_thread);
6076
6077 end_stepping_range (ecs);
6078 }
6079 return;
6080
6081 case BPSTAT_WHAT_SINGLE:
6082 if (debug_infrun)
6083 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6084 ecs->event_thread->stepping_over_breakpoint = 1;
6085 /* Still need to check other stuff, at least the case where we
6086 are stepping and step out of the right range. */
6087 break;
6088
6089 case BPSTAT_WHAT_STEP_RESUME:
6090 if (debug_infrun)
6091 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6092
6093 delete_step_resume_breakpoint (ecs->event_thread);
6094 if (ecs->event_thread->control.proceed_to_finish
6095 && execution_direction == EXEC_REVERSE)
6096 {
6097 struct thread_info *tp = ecs->event_thread;
6098
6099 /* We are finishing a function in reverse, and just hit the
6100 step-resume breakpoint at the start address of the
6101 function, and we're almost there -- just need to back up
6102 by one more single-step, which should take us back to the
6103 function call. */
6104 tp->control.step_range_start = tp->control.step_range_end = 1;
6105 keep_going (ecs);
6106 return;
6107 }
6108 fill_in_stop_func (gdbarch, ecs);
6109 if (stop_pc == ecs->stop_func_start
6110 && execution_direction == EXEC_REVERSE)
6111 {
6112 /* We are stepping over a function call in reverse, and just
6113 hit the step-resume breakpoint at the start address of
6114 the function. Go back to single-stepping, which should
6115 take us back to the function call. */
6116 ecs->event_thread->stepping_over_breakpoint = 1;
6117 keep_going (ecs);
6118 return;
6119 }
6120 break;
6121
6122 case BPSTAT_WHAT_STOP_NOISY:
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6125 stop_print_frame = 1;
6126
6127 /* Assume the thread stopped for a breapoint. We'll still check
6128 whether a/the breakpoint is there when the thread is next
6129 resumed. */
6130 ecs->event_thread->stepping_over_breakpoint = 1;
6131
6132 stop_waiting (ecs);
6133 return;
6134
6135 case BPSTAT_WHAT_STOP_SILENT:
6136 if (debug_infrun)
6137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6138 stop_print_frame = 0;
6139
6140 /* Assume the thread stopped for a breapoint. We'll still check
6141 whether a/the breakpoint is there when the thread is next
6142 resumed. */
6143 ecs->event_thread->stepping_over_breakpoint = 1;
6144 stop_waiting (ecs);
6145 return;
6146
6147 case BPSTAT_WHAT_HP_STEP_RESUME:
6148 if (debug_infrun)
6149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6150
6151 delete_step_resume_breakpoint (ecs->event_thread);
6152 if (ecs->event_thread->step_after_step_resume_breakpoint)
6153 {
6154 /* Back when the step-resume breakpoint was inserted, we
6155 were trying to single-step off a breakpoint. Go back to
6156 doing that. */
6157 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6158 ecs->event_thread->stepping_over_breakpoint = 1;
6159 keep_going (ecs);
6160 return;
6161 }
6162 break;
6163
6164 case BPSTAT_WHAT_KEEP_CHECKING:
6165 break;
6166 }
6167
6168 /* If we stepped a permanent breakpoint and we had a high priority
6169 step-resume breakpoint for the address we stepped, but we didn't
6170 hit it, then we must have stepped into the signal handler. The
6171 step-resume was only necessary to catch the case of _not_
6172 stepping into the handler, so delete it, and fall through to
6173 checking whether the step finished. */
6174 if (ecs->event_thread->stepped_breakpoint)
6175 {
6176 struct breakpoint *sr_bp
6177 = ecs->event_thread->control.step_resume_breakpoint;
6178
6179 if (sr_bp != NULL
6180 && sr_bp->loc->permanent
6181 && sr_bp->type == bp_hp_step_resume
6182 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6183 {
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog,
6186 "infrun: stepped permanent breakpoint, stopped in "
6187 "handler\n");
6188 delete_step_resume_breakpoint (ecs->event_thread);
6189 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6190 }
6191 }
6192
6193 /* We come here if we hit a breakpoint but should not stop for it.
6194 Possibly we also were stepping and should stop for that. So fall
6195 through and test for stepping. But, if not stepping, do not
6196 stop. */
6197
6198 /* In all-stop mode, if we're currently stepping but have stopped in
6199 some other thread, we need to switch back to the stepped thread. */
6200 if (switch_back_to_stepped_thread (ecs))
6201 return;
6202
6203 if (ecs->event_thread->control.step_resume_breakpoint)
6204 {
6205 if (debug_infrun)
6206 fprintf_unfiltered (gdb_stdlog,
6207 "infrun: step-resume breakpoint is inserted\n");
6208
6209 /* Having a step-resume breakpoint overrides anything
6210 else having to do with stepping commands until
6211 that breakpoint is reached. */
6212 keep_going (ecs);
6213 return;
6214 }
6215
6216 if (ecs->event_thread->control.step_range_end == 0)
6217 {
6218 if (debug_infrun)
6219 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6220 /* Likewise if we aren't even stepping. */
6221 keep_going (ecs);
6222 return;
6223 }
6224
6225 /* Re-fetch current thread's frame in case the code above caused
6226 the frame cache to be re-initialized, making our FRAME variable
6227 a dangling pointer. */
6228 frame = get_current_frame ();
6229 gdbarch = get_frame_arch (frame);
6230 fill_in_stop_func (gdbarch, ecs);
6231
6232 /* If stepping through a line, keep going if still within it.
6233
6234 Note that step_range_end is the address of the first instruction
6235 beyond the step range, and NOT the address of the last instruction
6236 within it!
6237
6238 Note also that during reverse execution, we may be stepping
6239 through a function epilogue and therefore must detect when
6240 the current-frame changes in the middle of a line. */
6241
6242 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6243 && (execution_direction != EXEC_REVERSE
6244 || frame_id_eq (get_frame_id (frame),
6245 ecs->event_thread->control.step_frame_id)))
6246 {
6247 if (debug_infrun)
6248 fprintf_unfiltered
6249 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6250 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6251 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6252
6253 /* Tentatively re-enable range stepping; `resume' disables it if
6254 necessary (e.g., if we're stepping over a breakpoint or we
6255 have software watchpoints). */
6256 ecs->event_thread->control.may_range_step = 1;
6257
6258 /* When stepping backward, stop at beginning of line range
6259 (unless it's the function entry point, in which case
6260 keep going back to the call point). */
6261 if (stop_pc == ecs->event_thread->control.step_range_start
6262 && stop_pc != ecs->stop_func_start
6263 && execution_direction == EXEC_REVERSE)
6264 end_stepping_range (ecs);
6265 else
6266 keep_going (ecs);
6267
6268 return;
6269 }
6270
6271 /* We stepped out of the stepping range. */
6272
6273 /* If we are stepping at the source level and entered the runtime
6274 loader dynamic symbol resolution code...
6275
6276 EXEC_FORWARD: we keep on single stepping until we exit the run
6277 time loader code and reach the callee's address.
6278
6279 EXEC_REVERSE: we've already executed the callee (backward), and
6280 the runtime loader code is handled just like any other
6281 undebuggable function call. Now we need only keep stepping
6282 backward through the trampoline code, and that's handled further
6283 down, so there is nothing for us to do here. */
6284
6285 if (execution_direction != EXEC_REVERSE
6286 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6287 && in_solib_dynsym_resolve_code (stop_pc))
6288 {
6289 CORE_ADDR pc_after_resolver =
6290 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6291
6292 if (debug_infrun)
6293 fprintf_unfiltered (gdb_stdlog,
6294 "infrun: stepped into dynsym resolve code\n");
6295
6296 if (pc_after_resolver)
6297 {
6298 /* Set up a step-resume breakpoint at the address
6299 indicated by SKIP_SOLIB_RESOLVER. */
6300 struct symtab_and_line sr_sal;
6301
6302 init_sal (&sr_sal);
6303 sr_sal.pc = pc_after_resolver;
6304 sr_sal.pspace = get_frame_program_space (frame);
6305
6306 insert_step_resume_breakpoint_at_sal (gdbarch,
6307 sr_sal, null_frame_id);
6308 }
6309
6310 keep_going (ecs);
6311 return;
6312 }
6313
6314 if (ecs->event_thread->control.step_range_end != 1
6315 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6316 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6317 && get_frame_type (frame) == SIGTRAMP_FRAME)
6318 {
6319 if (debug_infrun)
6320 fprintf_unfiltered (gdb_stdlog,
6321 "infrun: stepped into signal trampoline\n");
6322 /* The inferior, while doing a "step" or "next", has ended up in
6323 a signal trampoline (either by a signal being delivered or by
6324 the signal handler returning). Just single-step until the
6325 inferior leaves the trampoline (either by calling the handler
6326 or returning). */
6327 keep_going (ecs);
6328 return;
6329 }
6330
6331 /* If we're in the return path from a shared library trampoline,
6332 we want to proceed through the trampoline when stepping. */
6333 /* macro/2012-04-25: This needs to come before the subroutine
6334 call check below as on some targets return trampolines look
6335 like subroutine calls (MIPS16 return thunks). */
6336 if (gdbarch_in_solib_return_trampoline (gdbarch,
6337 stop_pc, ecs->stop_func_name)
6338 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6339 {
6340 /* Determine where this trampoline returns. */
6341 CORE_ADDR real_stop_pc;
6342
6343 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6344
6345 if (debug_infrun)
6346 fprintf_unfiltered (gdb_stdlog,
6347 "infrun: stepped into solib return tramp\n");
6348
6349 /* Only proceed through if we know where it's going. */
6350 if (real_stop_pc)
6351 {
6352 /* And put the step-breakpoint there and go until there. */
6353 struct symtab_and_line sr_sal;
6354
6355 init_sal (&sr_sal); /* initialize to zeroes */
6356 sr_sal.pc = real_stop_pc;
6357 sr_sal.section = find_pc_overlay (sr_sal.pc);
6358 sr_sal.pspace = get_frame_program_space (frame);
6359
6360 /* Do not specify what the fp should be when we stop since
6361 on some machines the prologue is where the new fp value
6362 is established. */
6363 insert_step_resume_breakpoint_at_sal (gdbarch,
6364 sr_sal, null_frame_id);
6365
6366 /* Restart without fiddling with the step ranges or
6367 other state. */
6368 keep_going (ecs);
6369 return;
6370 }
6371 }
6372
6373 /* Check for subroutine calls. The check for the current frame
6374 equalling the step ID is not necessary - the check of the
6375 previous frame's ID is sufficient - but it is a common case and
6376 cheaper than checking the previous frame's ID.
6377
6378 NOTE: frame_id_eq will never report two invalid frame IDs as
6379 being equal, so to get into this block, both the current and
6380 previous frame must have valid frame IDs. */
6381 /* The outer_frame_id check is a heuristic to detect stepping
6382 through startup code. If we step over an instruction which
6383 sets the stack pointer from an invalid value to a valid value,
6384 we may detect that as a subroutine call from the mythical
6385 "outermost" function. This could be fixed by marking
6386 outermost frames as !stack_p,code_p,special_p. Then the
6387 initial outermost frame, before sp was valid, would
6388 have code_addr == &_start. See the comment in frame_id_eq
6389 for more. */
6390 if (!frame_id_eq (get_stack_frame_id (frame),
6391 ecs->event_thread->control.step_stack_frame_id)
6392 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6393 ecs->event_thread->control.step_stack_frame_id)
6394 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6395 outer_frame_id)
6396 || (ecs->event_thread->control.step_start_function
6397 != find_pc_function (stop_pc)))))
6398 {
6399 CORE_ADDR real_stop_pc;
6400
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6403
6404 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6405 {
6406 /* I presume that step_over_calls is only 0 when we're
6407 supposed to be stepping at the assembly language level
6408 ("stepi"). Just stop. */
6409 /* And this works the same backward as frontward. MVS */
6410 end_stepping_range (ecs);
6411 return;
6412 }
6413
6414 /* Reverse stepping through solib trampolines. */
6415
6416 if (execution_direction == EXEC_REVERSE
6417 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6418 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6419 || (ecs->stop_func_start == 0
6420 && in_solib_dynsym_resolve_code (stop_pc))))
6421 {
6422 /* Any solib trampoline code can be handled in reverse
6423 by simply continuing to single-step. We have already
6424 executed the solib function (backwards), and a few
6425 steps will take us back through the trampoline to the
6426 caller. */
6427 keep_going (ecs);
6428 return;
6429 }
6430
6431 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6432 {
6433 /* We're doing a "next".
6434
6435 Normal (forward) execution: set a breakpoint at the
6436 callee's return address (the address at which the caller
6437 will resume).
6438
6439 Reverse (backward) execution. set the step-resume
6440 breakpoint at the start of the function that we just
6441 stepped into (backwards), and continue to there. When we
6442 get there, we'll need to single-step back to the caller. */
6443
6444 if (execution_direction == EXEC_REVERSE)
6445 {
6446 /* If we're already at the start of the function, we've either
6447 just stepped backward into a single instruction function,
6448 or stepped back out of a signal handler to the first instruction
6449 of the function. Just keep going, which will single-step back
6450 to the caller. */
6451 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6452 {
6453 struct symtab_and_line sr_sal;
6454
6455 /* Normal function call return (static or dynamic). */
6456 init_sal (&sr_sal);
6457 sr_sal.pc = ecs->stop_func_start;
6458 sr_sal.pspace = get_frame_program_space (frame);
6459 insert_step_resume_breakpoint_at_sal (gdbarch,
6460 sr_sal, null_frame_id);
6461 }
6462 }
6463 else
6464 insert_step_resume_breakpoint_at_caller (frame);
6465
6466 keep_going (ecs);
6467 return;
6468 }
6469
6470 /* If we are in a function call trampoline (a stub between the
6471 calling routine and the real function), locate the real
6472 function. That's what tells us (a) whether we want to step
6473 into it at all, and (b) what prologue we want to run to the
6474 end of, if we do step into it. */
6475 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6476 if (real_stop_pc == 0)
6477 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6478 if (real_stop_pc != 0)
6479 ecs->stop_func_start = real_stop_pc;
6480
6481 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6482 {
6483 struct symtab_and_line sr_sal;
6484
6485 init_sal (&sr_sal);
6486 sr_sal.pc = ecs->stop_func_start;
6487 sr_sal.pspace = get_frame_program_space (frame);
6488
6489 insert_step_resume_breakpoint_at_sal (gdbarch,
6490 sr_sal, null_frame_id);
6491 keep_going (ecs);
6492 return;
6493 }
6494
6495 /* If we have line number information for the function we are
6496 thinking of stepping into and the function isn't on the skip
6497 list, step into it.
6498
6499 If there are several symtabs at that PC (e.g. with include
6500 files), just want to know whether *any* of them have line
6501 numbers. find_pc_line handles this. */
6502 {
6503 struct symtab_and_line tmp_sal;
6504
6505 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6506 if (tmp_sal.line != 0
6507 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6508 &tmp_sal))
6509 {
6510 if (execution_direction == EXEC_REVERSE)
6511 handle_step_into_function_backward (gdbarch, ecs);
6512 else
6513 handle_step_into_function (gdbarch, ecs);
6514 return;
6515 }
6516 }
6517
6518 /* If we have no line number and the step-stop-if-no-debug is
6519 set, we stop the step so that the user has a chance to switch
6520 in assembly mode. */
6521 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6522 && step_stop_if_no_debug)
6523 {
6524 end_stepping_range (ecs);
6525 return;
6526 }
6527
6528 if (execution_direction == EXEC_REVERSE)
6529 {
6530 /* If we're already at the start of the function, we've either just
6531 stepped backward into a single instruction function without line
6532 number info, or stepped back out of a signal handler to the first
6533 instruction of the function without line number info. Just keep
6534 going, which will single-step back to the caller. */
6535 if (ecs->stop_func_start != stop_pc)
6536 {
6537 /* Set a breakpoint at callee's start address.
6538 From there we can step once and be back in the caller. */
6539 struct symtab_and_line sr_sal;
6540
6541 init_sal (&sr_sal);
6542 sr_sal.pc = ecs->stop_func_start;
6543 sr_sal.pspace = get_frame_program_space (frame);
6544 insert_step_resume_breakpoint_at_sal (gdbarch,
6545 sr_sal, null_frame_id);
6546 }
6547 }
6548 else
6549 /* Set a breakpoint at callee's return address (the address
6550 at which the caller will resume). */
6551 insert_step_resume_breakpoint_at_caller (frame);
6552
6553 keep_going (ecs);
6554 return;
6555 }
6556
6557 /* Reverse stepping through solib trampolines. */
6558
6559 if (execution_direction == EXEC_REVERSE
6560 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6561 {
6562 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6563 || (ecs->stop_func_start == 0
6564 && in_solib_dynsym_resolve_code (stop_pc)))
6565 {
6566 /* Any solib trampoline code can be handled in reverse
6567 by simply continuing to single-step. We have already
6568 executed the solib function (backwards), and a few
6569 steps will take us back through the trampoline to the
6570 caller. */
6571 keep_going (ecs);
6572 return;
6573 }
6574 else if (in_solib_dynsym_resolve_code (stop_pc))
6575 {
6576 /* Stepped backward into the solib dynsym resolver.
6577 Set a breakpoint at its start and continue, then
6578 one more step will take us out. */
6579 struct symtab_and_line sr_sal;
6580
6581 init_sal (&sr_sal);
6582 sr_sal.pc = ecs->stop_func_start;
6583 sr_sal.pspace = get_frame_program_space (frame);
6584 insert_step_resume_breakpoint_at_sal (gdbarch,
6585 sr_sal, null_frame_id);
6586 keep_going (ecs);
6587 return;
6588 }
6589 }
6590
6591 stop_pc_sal = find_pc_line (stop_pc, 0);
6592
6593 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6594 the trampoline processing logic, however, there are some trampolines
6595 that have no names, so we should do trampoline handling first. */
6596 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6597 && ecs->stop_func_name == NULL
6598 && stop_pc_sal.line == 0)
6599 {
6600 if (debug_infrun)
6601 fprintf_unfiltered (gdb_stdlog,
6602 "infrun: stepped into undebuggable function\n");
6603
6604 /* The inferior just stepped into, or returned to, an
6605 undebuggable function (where there is no debugging information
6606 and no line number corresponding to the address where the
6607 inferior stopped). Since we want to skip this kind of code,
6608 we keep going until the inferior returns from this
6609 function - unless the user has asked us not to (via
6610 set step-mode) or we no longer know how to get back
6611 to the call site. */
6612 if (step_stop_if_no_debug
6613 || !frame_id_p (frame_unwind_caller_id (frame)))
6614 {
6615 /* If we have no line number and the step-stop-if-no-debug
6616 is set, we stop the step so that the user has a chance to
6617 switch in assembly mode. */
6618 end_stepping_range (ecs);
6619 return;
6620 }
6621 else
6622 {
6623 /* Set a breakpoint at callee's return address (the address
6624 at which the caller will resume). */
6625 insert_step_resume_breakpoint_at_caller (frame);
6626 keep_going (ecs);
6627 return;
6628 }
6629 }
6630
6631 if (ecs->event_thread->control.step_range_end == 1)
6632 {
6633 /* It is stepi or nexti. We always want to stop stepping after
6634 one instruction. */
6635 if (debug_infrun)
6636 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6637 end_stepping_range (ecs);
6638 return;
6639 }
6640
6641 if (stop_pc_sal.line == 0)
6642 {
6643 /* We have no line number information. That means to stop
6644 stepping (does this always happen right after one instruction,
6645 when we do "s" in a function with no line numbers,
6646 or can this happen as a result of a return or longjmp?). */
6647 if (debug_infrun)
6648 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6649 end_stepping_range (ecs);
6650 return;
6651 }
6652
6653 /* Look for "calls" to inlined functions, part one. If the inline
6654 frame machinery detected some skipped call sites, we have entered
6655 a new inline function. */
6656
6657 if (frame_id_eq (get_frame_id (get_current_frame ()),
6658 ecs->event_thread->control.step_frame_id)
6659 && inline_skipped_frames (ecs->ptid))
6660 {
6661 struct symtab_and_line call_sal;
6662
6663 if (debug_infrun)
6664 fprintf_unfiltered (gdb_stdlog,
6665 "infrun: stepped into inlined function\n");
6666
6667 find_frame_sal (get_current_frame (), &call_sal);
6668
6669 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6670 {
6671 /* For "step", we're going to stop. But if the call site
6672 for this inlined function is on the same source line as
6673 we were previously stepping, go down into the function
6674 first. Otherwise stop at the call site. */
6675
6676 if (call_sal.line == ecs->event_thread->current_line
6677 && call_sal.symtab == ecs->event_thread->current_symtab)
6678 step_into_inline_frame (ecs->ptid);
6679
6680 end_stepping_range (ecs);
6681 return;
6682 }
6683 else
6684 {
6685 /* For "next", we should stop at the call site if it is on a
6686 different source line. Otherwise continue through the
6687 inlined function. */
6688 if (call_sal.line == ecs->event_thread->current_line
6689 && call_sal.symtab == ecs->event_thread->current_symtab)
6690 keep_going (ecs);
6691 else
6692 end_stepping_range (ecs);
6693 return;
6694 }
6695 }
6696
6697 /* Look for "calls" to inlined functions, part two. If we are still
6698 in the same real function we were stepping through, but we have
6699 to go further up to find the exact frame ID, we are stepping
6700 through a more inlined call beyond its call site. */
6701
6702 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6703 && !frame_id_eq (get_frame_id (get_current_frame ()),
6704 ecs->event_thread->control.step_frame_id)
6705 && stepped_in_from (get_current_frame (),
6706 ecs->event_thread->control.step_frame_id))
6707 {
6708 if (debug_infrun)
6709 fprintf_unfiltered (gdb_stdlog,
6710 "infrun: stepping through inlined function\n");
6711
6712 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6713 keep_going (ecs);
6714 else
6715 end_stepping_range (ecs);
6716 return;
6717 }
6718
6719 if ((stop_pc == stop_pc_sal.pc)
6720 && (ecs->event_thread->current_line != stop_pc_sal.line
6721 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6722 {
6723 /* We are at the start of a different line. So stop. Note that
6724 we don't stop if we step into the middle of a different line.
6725 That is said to make things like for (;;) statements work
6726 better. */
6727 if (debug_infrun)
6728 fprintf_unfiltered (gdb_stdlog,
6729 "infrun: stepped to a different line\n");
6730 end_stepping_range (ecs);
6731 return;
6732 }
6733
6734 /* We aren't done stepping.
6735
6736 Optimize by setting the stepping range to the line.
6737 (We might not be in the original line, but if we entered a
6738 new line in mid-statement, we continue stepping. This makes
6739 things like for(;;) statements work better.) */
6740
6741 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6742 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6743 ecs->event_thread->control.may_range_step = 1;
6744 set_step_info (frame, stop_pc_sal);
6745
6746 if (debug_infrun)
6747 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6748 keep_going (ecs);
6749 }
6750
6751 /* In all-stop mode, if we're currently stepping but have stopped in
6752 some other thread, we may need to switch back to the stepped
6753 thread. Returns true we set the inferior running, false if we left
6754 it stopped (and the event needs further processing). */
6755
6756 static int
6757 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6758 {
6759 if (!target_is_non_stop_p ())
6760 {
6761 struct thread_info *tp;
6762 struct thread_info *stepping_thread;
6763
6764 /* If any thread is blocked on some internal breakpoint, and we
6765 simply need to step over that breakpoint to get it going
6766 again, do that first. */
6767
6768 /* However, if we see an event for the stepping thread, then we
6769 know all other threads have been moved past their breakpoints
6770 already. Let the caller check whether the step is finished,
6771 etc., before deciding to move it past a breakpoint. */
6772 if (ecs->event_thread->control.step_range_end != 0)
6773 return 0;
6774
6775 /* Check if the current thread is blocked on an incomplete
6776 step-over, interrupted by a random signal. */
6777 if (ecs->event_thread->control.trap_expected
6778 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6779 {
6780 if (debug_infrun)
6781 {
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: need to finish step-over of [%s]\n",
6784 target_pid_to_str (ecs->event_thread->ptid));
6785 }
6786 keep_going (ecs);
6787 return 1;
6788 }
6789
6790 /* Check if the current thread is blocked by a single-step
6791 breakpoint of another thread. */
6792 if (ecs->hit_singlestep_breakpoint)
6793 {
6794 if (debug_infrun)
6795 {
6796 fprintf_unfiltered (gdb_stdlog,
6797 "infrun: need to step [%s] over single-step "
6798 "breakpoint\n",
6799 target_pid_to_str (ecs->ptid));
6800 }
6801 keep_going (ecs);
6802 return 1;
6803 }
6804
6805 /* If this thread needs yet another step-over (e.g., stepping
6806 through a delay slot), do it first before moving on to
6807 another thread. */
6808 if (thread_still_needs_step_over (ecs->event_thread))
6809 {
6810 if (debug_infrun)
6811 {
6812 fprintf_unfiltered (gdb_stdlog,
6813 "infrun: thread [%s] still needs step-over\n",
6814 target_pid_to_str (ecs->event_thread->ptid));
6815 }
6816 keep_going (ecs);
6817 return 1;
6818 }
6819
6820 /* If scheduler locking applies even if not stepping, there's no
6821 need to walk over threads. Above we've checked whether the
6822 current thread is stepping. If some other thread not the
6823 event thread is stepping, then it must be that scheduler
6824 locking is not in effect. */
6825 if (schedlock_applies (ecs->event_thread))
6826 return 0;
6827
6828 /* Otherwise, we no longer expect a trap in the current thread.
6829 Clear the trap_expected flag before switching back -- this is
6830 what keep_going does as well, if we call it. */
6831 ecs->event_thread->control.trap_expected = 0;
6832
6833 /* Likewise, clear the signal if it should not be passed. */
6834 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6835 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6836
6837 /* Do all pending step-overs before actually proceeding with
6838 step/next/etc. */
6839 if (start_step_over ())
6840 {
6841 prepare_to_wait (ecs);
6842 return 1;
6843 }
6844
6845 /* Look for the stepping/nexting thread. */
6846 stepping_thread = NULL;
6847
6848 ALL_NON_EXITED_THREADS (tp)
6849 {
6850 /* Ignore threads of processes the caller is not
6851 resuming. */
6852 if (!sched_multi
6853 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6854 continue;
6855
6856 /* When stepping over a breakpoint, we lock all threads
6857 except the one that needs to move past the breakpoint.
6858 If a non-event thread has this set, the "incomplete
6859 step-over" check above should have caught it earlier. */
6860 if (tp->control.trap_expected)
6861 {
6862 internal_error (__FILE__, __LINE__,
6863 "[%s] has inconsistent state: "
6864 "trap_expected=%d\n",
6865 target_pid_to_str (tp->ptid),
6866 tp->control.trap_expected);
6867 }
6868
6869 /* Did we find the stepping thread? */
6870 if (tp->control.step_range_end)
6871 {
6872 /* Yep. There should only one though. */
6873 gdb_assert (stepping_thread == NULL);
6874
6875 /* The event thread is handled at the top, before we
6876 enter this loop. */
6877 gdb_assert (tp != ecs->event_thread);
6878
6879 /* If some thread other than the event thread is
6880 stepping, then scheduler locking can't be in effect,
6881 otherwise we wouldn't have resumed the current event
6882 thread in the first place. */
6883 gdb_assert (!schedlock_applies (tp));
6884
6885 stepping_thread = tp;
6886 }
6887 }
6888
6889 if (stepping_thread != NULL)
6890 {
6891 if (debug_infrun)
6892 fprintf_unfiltered (gdb_stdlog,
6893 "infrun: switching back to stepped thread\n");
6894
6895 if (keep_going_stepped_thread (stepping_thread))
6896 {
6897 prepare_to_wait (ecs);
6898 return 1;
6899 }
6900 }
6901 }
6902
6903 return 0;
6904 }
6905
6906 /* Set a previously stepped thread back to stepping. Returns true on
6907 success, false if the resume is not possible (e.g., the thread
6908 vanished). */
6909
6910 static int
6911 keep_going_stepped_thread (struct thread_info *tp)
6912 {
6913 struct frame_info *frame;
6914 struct gdbarch *gdbarch;
6915 struct execution_control_state ecss;
6916 struct execution_control_state *ecs = &ecss;
6917
6918 /* If the stepping thread exited, then don't try to switch back and
6919 resume it, which could fail in several different ways depending
6920 on the target. Instead, just keep going.
6921
6922 We can find a stepping dead thread in the thread list in two
6923 cases:
6924
6925 - The target supports thread exit events, and when the target
6926 tries to delete the thread from the thread list, inferior_ptid
6927 pointed at the exiting thread. In such case, calling
6928 delete_thread does not really remove the thread from the list;
6929 instead, the thread is left listed, with 'exited' state.
6930
6931 - The target's debug interface does not support thread exit
6932 events, and so we have no idea whatsoever if the previously
6933 stepping thread is still alive. For that reason, we need to
6934 synchronously query the target now. */
6935
6936 if (is_exited (tp->ptid)
6937 || !target_thread_alive (tp->ptid))
6938 {
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: not resuming previously "
6942 "stepped thread, it has vanished\n");
6943
6944 delete_thread (tp->ptid);
6945 return 0;
6946 }
6947
6948 if (debug_infrun)
6949 fprintf_unfiltered (gdb_stdlog,
6950 "infrun: resuming previously stepped thread\n");
6951
6952 reset_ecs (ecs, tp);
6953 switch_to_thread (tp->ptid);
6954
6955 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6956 frame = get_current_frame ();
6957 gdbarch = get_frame_arch (frame);
6958
6959 /* If the PC of the thread we were trying to single-step has
6960 changed, then that thread has trapped or been signaled, but the
6961 event has not been reported to GDB yet. Re-poll the target
6962 looking for this particular thread's event (i.e. temporarily
6963 enable schedlock) by:
6964
6965 - setting a break at the current PC
6966 - resuming that particular thread, only (by setting trap
6967 expected)
6968
6969 This prevents us continuously moving the single-step breakpoint
6970 forward, one instruction at a time, overstepping. */
6971
6972 if (stop_pc != tp->prev_pc)
6973 {
6974 ptid_t resume_ptid;
6975
6976 if (debug_infrun)
6977 fprintf_unfiltered (gdb_stdlog,
6978 "infrun: expected thread advanced also (%s -> %s)\n",
6979 paddress (target_gdbarch (), tp->prev_pc),
6980 paddress (target_gdbarch (), stop_pc));
6981
6982 /* Clear the info of the previous step-over, as it's no longer
6983 valid (if the thread was trying to step over a breakpoint, it
6984 has already succeeded). It's what keep_going would do too,
6985 if we called it. Do this before trying to insert the sss
6986 breakpoint, otherwise if we were previously trying to step
6987 over this exact address in another thread, the breakpoint is
6988 skipped. */
6989 clear_step_over_info ();
6990 tp->control.trap_expected = 0;
6991
6992 insert_single_step_breakpoint (get_frame_arch (frame),
6993 get_frame_address_space (frame),
6994 stop_pc);
6995
6996 tp->resumed = 1;
6997 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
6998 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6999 }
7000 else
7001 {
7002 if (debug_infrun)
7003 fprintf_unfiltered (gdb_stdlog,
7004 "infrun: expected thread still hasn't advanced\n");
7005
7006 keep_going_pass_signal (ecs);
7007 }
7008 return 1;
7009 }
7010
7011 /* Is thread TP in the middle of (software or hardware)
7012 single-stepping? (Note the result of this function must never be
7013 passed directly as target_resume's STEP parameter.) */
7014
7015 static int
7016 currently_stepping (struct thread_info *tp)
7017 {
7018 return ((tp->control.step_range_end
7019 && tp->control.step_resume_breakpoint == NULL)
7020 || tp->control.trap_expected
7021 || tp->stepped_breakpoint
7022 || bpstat_should_step ());
7023 }
7024
7025 /* Inferior has stepped into a subroutine call with source code that
7026 we should not step over. Do step to the first line of code in
7027 it. */
7028
7029 static void
7030 handle_step_into_function (struct gdbarch *gdbarch,
7031 struct execution_control_state *ecs)
7032 {
7033 struct compunit_symtab *cust;
7034 struct symtab_and_line stop_func_sal, sr_sal;
7035
7036 fill_in_stop_func (gdbarch, ecs);
7037
7038 cust = find_pc_compunit_symtab (stop_pc);
7039 if (cust != NULL && compunit_language (cust) != language_asm)
7040 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7041 ecs->stop_func_start);
7042
7043 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7044 /* Use the step_resume_break to step until the end of the prologue,
7045 even if that involves jumps (as it seems to on the vax under
7046 4.2). */
7047 /* If the prologue ends in the middle of a source line, continue to
7048 the end of that source line (if it is still within the function).
7049 Otherwise, just go to end of prologue. */
7050 if (stop_func_sal.end
7051 && stop_func_sal.pc != ecs->stop_func_start
7052 && stop_func_sal.end < ecs->stop_func_end)
7053 ecs->stop_func_start = stop_func_sal.end;
7054
7055 /* Architectures which require breakpoint adjustment might not be able
7056 to place a breakpoint at the computed address. If so, the test
7057 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7058 ecs->stop_func_start to an address at which a breakpoint may be
7059 legitimately placed.
7060
7061 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7062 made, GDB will enter an infinite loop when stepping through
7063 optimized code consisting of VLIW instructions which contain
7064 subinstructions corresponding to different source lines. On
7065 FR-V, it's not permitted to place a breakpoint on any but the
7066 first subinstruction of a VLIW instruction. When a breakpoint is
7067 set, GDB will adjust the breakpoint address to the beginning of
7068 the VLIW instruction. Thus, we need to make the corresponding
7069 adjustment here when computing the stop address. */
7070
7071 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7072 {
7073 ecs->stop_func_start
7074 = gdbarch_adjust_breakpoint_address (gdbarch,
7075 ecs->stop_func_start);
7076 }
7077
7078 if (ecs->stop_func_start == stop_pc)
7079 {
7080 /* We are already there: stop now. */
7081 end_stepping_range (ecs);
7082 return;
7083 }
7084 else
7085 {
7086 /* Put the step-breakpoint there and go until there. */
7087 init_sal (&sr_sal); /* initialize to zeroes */
7088 sr_sal.pc = ecs->stop_func_start;
7089 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7090 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7091
7092 /* Do not specify what the fp should be when we stop since on
7093 some machines the prologue is where the new fp value is
7094 established. */
7095 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7096
7097 /* And make sure stepping stops right away then. */
7098 ecs->event_thread->control.step_range_end
7099 = ecs->event_thread->control.step_range_start;
7100 }
7101 keep_going (ecs);
7102 }
7103
7104 /* Inferior has stepped backward into a subroutine call with source
7105 code that we should not step over. Do step to the beginning of the
7106 last line of code in it. */
7107
7108 static void
7109 handle_step_into_function_backward (struct gdbarch *gdbarch,
7110 struct execution_control_state *ecs)
7111 {
7112 struct compunit_symtab *cust;
7113 struct symtab_and_line stop_func_sal;
7114
7115 fill_in_stop_func (gdbarch, ecs);
7116
7117 cust = find_pc_compunit_symtab (stop_pc);
7118 if (cust != NULL && compunit_language (cust) != language_asm)
7119 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7120 ecs->stop_func_start);
7121
7122 stop_func_sal = find_pc_line (stop_pc, 0);
7123
7124 /* OK, we're just going to keep stepping here. */
7125 if (stop_func_sal.pc == stop_pc)
7126 {
7127 /* We're there already. Just stop stepping now. */
7128 end_stepping_range (ecs);
7129 }
7130 else
7131 {
7132 /* Else just reset the step range and keep going.
7133 No step-resume breakpoint, they don't work for
7134 epilogues, which can have multiple entry paths. */
7135 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7136 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7137 keep_going (ecs);
7138 }
7139 return;
7140 }
7141
7142 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7143 This is used to both functions and to skip over code. */
7144
7145 static void
7146 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7147 struct symtab_and_line sr_sal,
7148 struct frame_id sr_id,
7149 enum bptype sr_type)
7150 {
7151 /* There should never be more than one step-resume or longjmp-resume
7152 breakpoint per thread, so we should never be setting a new
7153 step_resume_breakpoint when one is already active. */
7154 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7155 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7156
7157 if (debug_infrun)
7158 fprintf_unfiltered (gdb_stdlog,
7159 "infrun: inserting step-resume breakpoint at %s\n",
7160 paddress (gdbarch, sr_sal.pc));
7161
7162 inferior_thread ()->control.step_resume_breakpoint
7163 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7164 }
7165
7166 void
7167 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7168 struct symtab_and_line sr_sal,
7169 struct frame_id sr_id)
7170 {
7171 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7172 sr_sal, sr_id,
7173 bp_step_resume);
7174 }
7175
7176 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7177 This is used to skip a potential signal handler.
7178
7179 This is called with the interrupted function's frame. The signal
7180 handler, when it returns, will resume the interrupted function at
7181 RETURN_FRAME.pc. */
7182
7183 static void
7184 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7185 {
7186 struct symtab_and_line sr_sal;
7187 struct gdbarch *gdbarch;
7188
7189 gdb_assert (return_frame != NULL);
7190 init_sal (&sr_sal); /* initialize to zeros */
7191
7192 gdbarch = get_frame_arch (return_frame);
7193 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7194 sr_sal.section = find_pc_overlay (sr_sal.pc);
7195 sr_sal.pspace = get_frame_program_space (return_frame);
7196
7197 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7198 get_stack_frame_id (return_frame),
7199 bp_hp_step_resume);
7200 }
7201
7202 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7203 is used to skip a function after stepping into it (for "next" or if
7204 the called function has no debugging information).
7205
7206 The current function has almost always been reached by single
7207 stepping a call or return instruction. NEXT_FRAME belongs to the
7208 current function, and the breakpoint will be set at the caller's
7209 resume address.
7210
7211 This is a separate function rather than reusing
7212 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7213 get_prev_frame, which may stop prematurely (see the implementation
7214 of frame_unwind_caller_id for an example). */
7215
7216 static void
7217 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7218 {
7219 struct symtab_and_line sr_sal;
7220 struct gdbarch *gdbarch;
7221
7222 /* We shouldn't have gotten here if we don't know where the call site
7223 is. */
7224 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7225
7226 init_sal (&sr_sal); /* initialize to zeros */
7227
7228 gdbarch = frame_unwind_caller_arch (next_frame);
7229 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7230 frame_unwind_caller_pc (next_frame));
7231 sr_sal.section = find_pc_overlay (sr_sal.pc);
7232 sr_sal.pspace = frame_unwind_program_space (next_frame);
7233
7234 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7235 frame_unwind_caller_id (next_frame));
7236 }
7237
7238 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7239 new breakpoint at the target of a jmp_buf. The handling of
7240 longjmp-resume uses the same mechanisms used for handling
7241 "step-resume" breakpoints. */
7242
7243 static void
7244 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7245 {
7246 /* There should never be more than one longjmp-resume breakpoint per
7247 thread, so we should never be setting a new
7248 longjmp_resume_breakpoint when one is already active. */
7249 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7250
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: inserting longjmp-resume breakpoint at %s\n",
7254 paddress (gdbarch, pc));
7255
7256 inferior_thread ()->control.exception_resume_breakpoint =
7257 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7258 }
7259
7260 /* Insert an exception resume breakpoint. TP is the thread throwing
7261 the exception. The block B is the block of the unwinder debug hook
7262 function. FRAME is the frame corresponding to the call to this
7263 function. SYM is the symbol of the function argument holding the
7264 target PC of the exception. */
7265
7266 static void
7267 insert_exception_resume_breakpoint (struct thread_info *tp,
7268 const struct block *b,
7269 struct frame_info *frame,
7270 struct symbol *sym)
7271 {
7272 TRY
7273 {
7274 struct block_symbol vsym;
7275 struct value *value;
7276 CORE_ADDR handler;
7277 struct breakpoint *bp;
7278
7279 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7280 value = read_var_value (vsym.symbol, vsym.block, frame);
7281 /* If the value was optimized out, revert to the old behavior. */
7282 if (! value_optimized_out (value))
7283 {
7284 handler = value_as_address (value);
7285
7286 if (debug_infrun)
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: exception resume at %lx\n",
7289 (unsigned long) handler);
7290
7291 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7292 handler, bp_exception_resume);
7293
7294 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7295 frame = NULL;
7296
7297 bp->thread = tp->num;
7298 inferior_thread ()->control.exception_resume_breakpoint = bp;
7299 }
7300 }
7301 CATCH (e, RETURN_MASK_ERROR)
7302 {
7303 /* We want to ignore errors here. */
7304 }
7305 END_CATCH
7306 }
7307
7308 /* A helper for check_exception_resume that sets an
7309 exception-breakpoint based on a SystemTap probe. */
7310
7311 static void
7312 insert_exception_resume_from_probe (struct thread_info *tp,
7313 const struct bound_probe *probe,
7314 struct frame_info *frame)
7315 {
7316 struct value *arg_value;
7317 CORE_ADDR handler;
7318 struct breakpoint *bp;
7319
7320 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7321 if (!arg_value)
7322 return;
7323
7324 handler = value_as_address (arg_value);
7325
7326 if (debug_infrun)
7327 fprintf_unfiltered (gdb_stdlog,
7328 "infrun: exception resume at %s\n",
7329 paddress (get_objfile_arch (probe->objfile),
7330 handler));
7331
7332 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7333 handler, bp_exception_resume);
7334 bp->thread = tp->num;
7335 inferior_thread ()->control.exception_resume_breakpoint = bp;
7336 }
7337
7338 /* This is called when an exception has been intercepted. Check to
7339 see whether the exception's destination is of interest, and if so,
7340 set an exception resume breakpoint there. */
7341
7342 static void
7343 check_exception_resume (struct execution_control_state *ecs,
7344 struct frame_info *frame)
7345 {
7346 struct bound_probe probe;
7347 struct symbol *func;
7348
7349 /* First see if this exception unwinding breakpoint was set via a
7350 SystemTap probe point. If so, the probe has two arguments: the
7351 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7352 set a breakpoint there. */
7353 probe = find_probe_by_pc (get_frame_pc (frame));
7354 if (probe.probe)
7355 {
7356 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7357 return;
7358 }
7359
7360 func = get_frame_function (frame);
7361 if (!func)
7362 return;
7363
7364 TRY
7365 {
7366 const struct block *b;
7367 struct block_iterator iter;
7368 struct symbol *sym;
7369 int argno = 0;
7370
7371 /* The exception breakpoint is a thread-specific breakpoint on
7372 the unwinder's debug hook, declared as:
7373
7374 void _Unwind_DebugHook (void *cfa, void *handler);
7375
7376 The CFA argument indicates the frame to which control is
7377 about to be transferred. HANDLER is the destination PC.
7378
7379 We ignore the CFA and set a temporary breakpoint at HANDLER.
7380 This is not extremely efficient but it avoids issues in gdb
7381 with computing the DWARF CFA, and it also works even in weird
7382 cases such as throwing an exception from inside a signal
7383 handler. */
7384
7385 b = SYMBOL_BLOCK_VALUE (func);
7386 ALL_BLOCK_SYMBOLS (b, iter, sym)
7387 {
7388 if (!SYMBOL_IS_ARGUMENT (sym))
7389 continue;
7390
7391 if (argno == 0)
7392 ++argno;
7393 else
7394 {
7395 insert_exception_resume_breakpoint (ecs->event_thread,
7396 b, frame, sym);
7397 break;
7398 }
7399 }
7400 }
7401 CATCH (e, RETURN_MASK_ERROR)
7402 {
7403 }
7404 END_CATCH
7405 }
7406
7407 static void
7408 stop_waiting (struct execution_control_state *ecs)
7409 {
7410 if (debug_infrun)
7411 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7412
7413 clear_step_over_info ();
7414
7415 /* Let callers know we don't want to wait for the inferior anymore. */
7416 ecs->wait_some_more = 0;
7417
7418 /* If all-stop, but the target is always in non-stop mode, stop all
7419 threads now that we're presenting the stop to the user. */
7420 if (!non_stop && target_is_non_stop_p ())
7421 stop_all_threads ();
7422 }
7423
7424 /* Like keep_going, but passes the signal to the inferior, even if the
7425 signal is set to nopass. */
7426
7427 static void
7428 keep_going_pass_signal (struct execution_control_state *ecs)
7429 {
7430 /* Make sure normal_stop is called if we get a QUIT handled before
7431 reaching resume. */
7432 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7433
7434 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7435 gdb_assert (!ecs->event_thread->resumed);
7436
7437 /* Save the pc before execution, to compare with pc after stop. */
7438 ecs->event_thread->prev_pc
7439 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7440
7441 if (ecs->event_thread->control.trap_expected)
7442 {
7443 struct thread_info *tp = ecs->event_thread;
7444
7445 if (debug_infrun)
7446 fprintf_unfiltered (gdb_stdlog,
7447 "infrun: %s has trap_expected set, "
7448 "resuming to collect trap\n",
7449 target_pid_to_str (tp->ptid));
7450
7451 /* We haven't yet gotten our trap, and either: intercepted a
7452 non-signal event (e.g., a fork); or took a signal which we
7453 are supposed to pass through to the inferior. Simply
7454 continue. */
7455 discard_cleanups (old_cleanups);
7456 resume (ecs->event_thread->suspend.stop_signal);
7457 }
7458 else if (step_over_info_valid_p ())
7459 {
7460 /* Another thread is stepping over a breakpoint in-line. If
7461 this thread needs a step-over too, queue the request. In
7462 either case, this resume must be deferred for later. */
7463 struct thread_info *tp = ecs->event_thread;
7464
7465 if (ecs->hit_singlestep_breakpoint
7466 || thread_still_needs_step_over (tp))
7467 {
7468 if (debug_infrun)
7469 fprintf_unfiltered (gdb_stdlog,
7470 "infrun: step-over already in progress: "
7471 "step-over for %s deferred\n",
7472 target_pid_to_str (tp->ptid));
7473 thread_step_over_chain_enqueue (tp);
7474 }
7475 else
7476 {
7477 if (debug_infrun)
7478 fprintf_unfiltered (gdb_stdlog,
7479 "infrun: step-over in progress: "
7480 "resume of %s deferred\n",
7481 target_pid_to_str (tp->ptid));
7482 }
7483
7484 discard_cleanups (old_cleanups);
7485 }
7486 else
7487 {
7488 struct regcache *regcache = get_current_regcache ();
7489 int remove_bp;
7490 int remove_wps;
7491 enum step_over_what step_what;
7492
7493 /* Either the trap was not expected, but we are continuing
7494 anyway (if we got a signal, the user asked it be passed to
7495 the child)
7496 -- or --
7497 We got our expected trap, but decided we should resume from
7498 it.
7499
7500 We're going to run this baby now!
7501
7502 Note that insert_breakpoints won't try to re-insert
7503 already inserted breakpoints. Therefore, we don't
7504 care if breakpoints were already inserted, or not. */
7505
7506 /* If we need to step over a breakpoint, and we're not using
7507 displaced stepping to do so, insert all breakpoints
7508 (watchpoints, etc.) but the one we're stepping over, step one
7509 instruction, and then re-insert the breakpoint when that step
7510 is finished. */
7511
7512 step_what = thread_still_needs_step_over (ecs->event_thread);
7513
7514 remove_bp = (ecs->hit_singlestep_breakpoint
7515 || (step_what & STEP_OVER_BREAKPOINT));
7516 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7517
7518 /* We can't use displaced stepping if we need to step past a
7519 watchpoint. The instruction copied to the scratch pad would
7520 still trigger the watchpoint. */
7521 if (remove_bp
7522 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7523 {
7524 set_step_over_info (get_regcache_aspace (regcache),
7525 regcache_read_pc (regcache), remove_wps);
7526 }
7527 else if (remove_wps)
7528 set_step_over_info (NULL, 0, remove_wps);
7529
7530 /* If we now need to do an in-line step-over, we need to stop
7531 all other threads. Note this must be done before
7532 insert_breakpoints below, because that removes the breakpoint
7533 we're about to step over, otherwise other threads could miss
7534 it. */
7535 if (step_over_info_valid_p () && target_is_non_stop_p ())
7536 stop_all_threads ();
7537
7538 /* Stop stepping if inserting breakpoints fails. */
7539 TRY
7540 {
7541 insert_breakpoints ();
7542 }
7543 CATCH (e, RETURN_MASK_ERROR)
7544 {
7545 exception_print (gdb_stderr, e);
7546 stop_waiting (ecs);
7547 discard_cleanups (old_cleanups);
7548 return;
7549 }
7550 END_CATCH
7551
7552 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7553
7554 discard_cleanups (old_cleanups);
7555 resume (ecs->event_thread->suspend.stop_signal);
7556 }
7557
7558 prepare_to_wait (ecs);
7559 }
7560
7561 /* Called when we should continue running the inferior, because the
7562 current event doesn't cause a user visible stop. This does the
7563 resuming part; waiting for the next event is done elsewhere. */
7564
7565 static void
7566 keep_going (struct execution_control_state *ecs)
7567 {
7568 if (ecs->event_thread->control.trap_expected
7569 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7570 ecs->event_thread->control.trap_expected = 0;
7571
7572 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7574 keep_going_pass_signal (ecs);
7575 }
7576
7577 /* This function normally comes after a resume, before
7578 handle_inferior_event exits. It takes care of any last bits of
7579 housekeeping, and sets the all-important wait_some_more flag. */
7580
7581 static void
7582 prepare_to_wait (struct execution_control_state *ecs)
7583 {
7584 if (debug_infrun)
7585 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7586
7587 ecs->wait_some_more = 1;
7588
7589 if (!target_is_async_p ())
7590 mark_infrun_async_event_handler ();
7591 }
7592
7593 /* We are done with the step range of a step/next/si/ni command.
7594 Called once for each n of a "step n" operation. */
7595
7596 static void
7597 end_stepping_range (struct execution_control_state *ecs)
7598 {
7599 ecs->event_thread->control.stop_step = 1;
7600 stop_waiting (ecs);
7601 }
7602
7603 /* Several print_*_reason functions to print why the inferior has stopped.
7604 We always print something when the inferior exits, or receives a signal.
7605 The rest of the cases are dealt with later on in normal_stop and
7606 print_it_typical. Ideally there should be a call to one of these
7607 print_*_reason functions functions from handle_inferior_event each time
7608 stop_waiting is called.
7609
7610 Note that we don't call these directly, instead we delegate that to
7611 the interpreters, through observers. Interpreters then call these
7612 with whatever uiout is right. */
7613
7614 void
7615 print_end_stepping_range_reason (struct ui_out *uiout)
7616 {
7617 /* For CLI-like interpreters, print nothing. */
7618
7619 if (ui_out_is_mi_like_p (uiout))
7620 {
7621 ui_out_field_string (uiout, "reason",
7622 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7623 }
7624 }
7625
7626 void
7627 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7628 {
7629 annotate_signalled ();
7630 if (ui_out_is_mi_like_p (uiout))
7631 ui_out_field_string
7632 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7633 ui_out_text (uiout, "\nProgram terminated with signal ");
7634 annotate_signal_name ();
7635 ui_out_field_string (uiout, "signal-name",
7636 gdb_signal_to_name (siggnal));
7637 annotate_signal_name_end ();
7638 ui_out_text (uiout, ", ");
7639 annotate_signal_string ();
7640 ui_out_field_string (uiout, "signal-meaning",
7641 gdb_signal_to_string (siggnal));
7642 annotate_signal_string_end ();
7643 ui_out_text (uiout, ".\n");
7644 ui_out_text (uiout, "The program no longer exists.\n");
7645 }
7646
7647 void
7648 print_exited_reason (struct ui_out *uiout, int exitstatus)
7649 {
7650 struct inferior *inf = current_inferior ();
7651 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7652
7653 annotate_exited (exitstatus);
7654 if (exitstatus)
7655 {
7656 if (ui_out_is_mi_like_p (uiout))
7657 ui_out_field_string (uiout, "reason",
7658 async_reason_lookup (EXEC_ASYNC_EXITED));
7659 ui_out_text (uiout, "[Inferior ");
7660 ui_out_text (uiout, plongest (inf->num));
7661 ui_out_text (uiout, " (");
7662 ui_out_text (uiout, pidstr);
7663 ui_out_text (uiout, ") exited with code ");
7664 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7665 ui_out_text (uiout, "]\n");
7666 }
7667 else
7668 {
7669 if (ui_out_is_mi_like_p (uiout))
7670 ui_out_field_string
7671 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7672 ui_out_text (uiout, "[Inferior ");
7673 ui_out_text (uiout, plongest (inf->num));
7674 ui_out_text (uiout, " (");
7675 ui_out_text (uiout, pidstr);
7676 ui_out_text (uiout, ") exited normally]\n");
7677 }
7678 }
7679
7680 void
7681 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7682 {
7683 annotate_signal ();
7684
7685 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7686 {
7687 struct thread_info *t = inferior_thread ();
7688
7689 ui_out_text (uiout, "\n[");
7690 ui_out_field_string (uiout, "thread-name",
7691 target_pid_to_str (t->ptid));
7692 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7693 ui_out_text (uiout, " stopped");
7694 }
7695 else
7696 {
7697 ui_out_text (uiout, "\nProgram received signal ");
7698 annotate_signal_name ();
7699 if (ui_out_is_mi_like_p (uiout))
7700 ui_out_field_string
7701 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7702 ui_out_field_string (uiout, "signal-name",
7703 gdb_signal_to_name (siggnal));
7704 annotate_signal_name_end ();
7705 ui_out_text (uiout, ", ");
7706 annotate_signal_string ();
7707 ui_out_field_string (uiout, "signal-meaning",
7708 gdb_signal_to_string (siggnal));
7709 annotate_signal_string_end ();
7710 }
7711 ui_out_text (uiout, ".\n");
7712 }
7713
7714 void
7715 print_no_history_reason (struct ui_out *uiout)
7716 {
7717 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7718 }
7719
7720 /* Print current location without a level number, if we have changed
7721 functions or hit a breakpoint. Print source line if we have one.
7722 bpstat_print contains the logic deciding in detail what to print,
7723 based on the event(s) that just occurred. */
7724
7725 static void
7726 print_stop_location (struct target_waitstatus *ws)
7727 {
7728 int bpstat_ret;
7729 enum print_what source_flag;
7730 int do_frame_printing = 1;
7731 struct thread_info *tp = inferior_thread ();
7732
7733 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7734 switch (bpstat_ret)
7735 {
7736 case PRINT_UNKNOWN:
7737 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7738 should) carry around the function and does (or should) use
7739 that when doing a frame comparison. */
7740 if (tp->control.stop_step
7741 && frame_id_eq (tp->control.step_frame_id,
7742 get_frame_id (get_current_frame ()))
7743 && tp->control.step_start_function == find_pc_function (stop_pc))
7744 {
7745 /* Finished step, just print source line. */
7746 source_flag = SRC_LINE;
7747 }
7748 else
7749 {
7750 /* Print location and source line. */
7751 source_flag = SRC_AND_LOC;
7752 }
7753 break;
7754 case PRINT_SRC_AND_LOC:
7755 /* Print location and source line. */
7756 source_flag = SRC_AND_LOC;
7757 break;
7758 case PRINT_SRC_ONLY:
7759 source_flag = SRC_LINE;
7760 break;
7761 case PRINT_NOTHING:
7762 /* Something bogus. */
7763 source_flag = SRC_LINE;
7764 do_frame_printing = 0;
7765 break;
7766 default:
7767 internal_error (__FILE__, __LINE__, _("Unknown value."));
7768 }
7769
7770 /* The behavior of this routine with respect to the source
7771 flag is:
7772 SRC_LINE: Print only source line
7773 LOCATION: Print only location
7774 SRC_AND_LOC: Print location and source line. */
7775 if (do_frame_printing)
7776 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7777 }
7778
7779 /* Cleanup that restores a previous current uiout. */
7780
7781 static void
7782 restore_current_uiout_cleanup (void *arg)
7783 {
7784 struct ui_out *saved_uiout = arg;
7785
7786 current_uiout = saved_uiout;
7787 }
7788
7789 /* See infrun.h. */
7790
7791 void
7792 print_stop_event (struct ui_out *uiout)
7793 {
7794 struct cleanup *old_chain;
7795 struct target_waitstatus last;
7796 ptid_t last_ptid;
7797 struct thread_info *tp;
7798
7799 get_last_target_status (&last_ptid, &last);
7800
7801 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7802 current_uiout = uiout;
7803
7804 print_stop_location (&last);
7805
7806 /* Display the auto-display expressions. */
7807 do_displays ();
7808
7809 do_cleanups (old_chain);
7810
7811 tp = inferior_thread ();
7812 if (tp->thread_fsm != NULL
7813 && thread_fsm_finished_p (tp->thread_fsm))
7814 {
7815 struct return_value_info *rv;
7816
7817 rv = thread_fsm_return_value (tp->thread_fsm);
7818 if (rv != NULL)
7819 print_return_value (uiout, rv);
7820 }
7821 }
7822
7823 /* See infrun.h. */
7824
7825 void
7826 maybe_remove_breakpoints (void)
7827 {
7828 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7829 {
7830 if (remove_breakpoints ())
7831 {
7832 target_terminal_ours_for_output ();
7833 printf_filtered (_("Cannot remove breakpoints because "
7834 "program is no longer writable.\nFurther "
7835 "execution is probably impossible.\n"));
7836 }
7837 }
7838 }
7839
7840 /* Here to return control to GDB when the inferior stops for real.
7841 Print appropriate messages, remove breakpoints, give terminal our modes.
7842
7843 STOP_PRINT_FRAME nonzero means print the executing frame
7844 (pc, function, args, file, line number and line text).
7845 BREAKPOINTS_FAILED nonzero means stop was due to error
7846 attempting to insert breakpoints. */
7847
7848 void
7849 normal_stop (void)
7850 {
7851 struct target_waitstatus last;
7852 ptid_t last_ptid;
7853 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
7854 ptid_t pid_ptid;
7855
7856 get_last_target_status (&last_ptid, &last);
7857
7858 /* If an exception is thrown from this point on, make sure to
7859 propagate GDB's knowledge of the executing state to the
7860 frontend/user running state. A QUIT is an easy exception to see
7861 here, so do this before any filtered output. */
7862 if (!non_stop)
7863 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
7864 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7865 || last.kind == TARGET_WAITKIND_EXITED)
7866 {
7867 /* On some targets, we may still have live threads in the
7868 inferior when we get a process exit event. E.g., for
7869 "checkpoint", when the current checkpoint/fork exits,
7870 linux-fork.c automatically switches to another fork from
7871 within target_mourn_inferior. */
7872 if (!ptid_equal (inferior_ptid, null_ptid))
7873 {
7874 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7875 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7876 }
7877 }
7878 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7879 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
7880
7881 /* As we're presenting a stop, and potentially removing breakpoints,
7882 update the thread list so we can tell whether there are threads
7883 running on the target. With target remote, for example, we can
7884 only learn about new threads when we explicitly update the thread
7885 list. Do this before notifying the interpreters about signal
7886 stops, end of stepping ranges, etc., so that the "new thread"
7887 output is emitted before e.g., "Program received signal FOO",
7888 instead of after. */
7889 update_thread_list ();
7890
7891 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7892 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7893
7894 /* As with the notification of thread events, we want to delay
7895 notifying the user that we've switched thread context until
7896 the inferior actually stops.
7897
7898 There's no point in saying anything if the inferior has exited.
7899 Note that SIGNALLED here means "exited with a signal", not
7900 "received a signal".
7901
7902 Also skip saying anything in non-stop mode. In that mode, as we
7903 don't want GDB to switch threads behind the user's back, to avoid
7904 races where the user is typing a command to apply to thread x,
7905 but GDB switches to thread y before the user finishes entering
7906 the command, fetch_inferior_event installs a cleanup to restore
7907 the current thread back to the thread the user had selected right
7908 after this event is handled, so we're not really switching, only
7909 informing of a stop. */
7910 if (!non_stop
7911 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
7912 && target_has_execution
7913 && last.kind != TARGET_WAITKIND_SIGNALLED
7914 && last.kind != TARGET_WAITKIND_EXITED
7915 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7916 {
7917 target_terminal_ours_for_output ();
7918 printf_filtered (_("[Switching to %s]\n"),
7919 target_pid_to_str (inferior_ptid));
7920 annotate_thread_changed ();
7921 previous_inferior_ptid = inferior_ptid;
7922 }
7923
7924 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7925 {
7926 gdb_assert (sync_execution || !target_can_async_p ());
7927
7928 target_terminal_ours_for_output ();
7929 printf_filtered (_("No unwaited-for children left.\n"));
7930 }
7931
7932 /* Note: this depends on the update_thread_list call above. */
7933 maybe_remove_breakpoints ();
7934
7935 /* If an auto-display called a function and that got a signal,
7936 delete that auto-display to avoid an infinite recursion. */
7937
7938 if (stopped_by_random_signal)
7939 disable_current_display ();
7940
7941 target_terminal_ours ();
7942 async_enable_stdin ();
7943
7944 /* Let the user/frontend see the threads as stopped. */
7945 do_cleanups (old_chain);
7946
7947 /* Select innermost stack frame - i.e., current frame is frame 0,
7948 and current location is based on that. Handle the case where the
7949 dummy call is returning after being stopped. E.g. the dummy call
7950 previously hit a breakpoint. (If the dummy call returns
7951 normally, we won't reach here.) Do this before the stop hook is
7952 run, so that it doesn't get to see the temporary dummy frame,
7953 which is not where we'll present the stop. */
7954 if (has_stack_frames ())
7955 {
7956 if (stop_stack_dummy == STOP_STACK_DUMMY)
7957 {
7958 /* Pop the empty frame that contains the stack dummy. This
7959 also restores inferior state prior to the call (struct
7960 infcall_suspend_state). */
7961 struct frame_info *frame = get_current_frame ();
7962
7963 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7964 frame_pop (frame);
7965 /* frame_pop calls reinit_frame_cache as the last thing it
7966 does which means there's now no selected frame. */
7967 }
7968
7969 select_frame (get_current_frame ());
7970
7971 /* Set the current source location. */
7972 set_current_sal_from_frame (get_current_frame ());
7973 }
7974
7975 /* Look up the hook_stop and run it (CLI internally handles problem
7976 of stop_command's pre-hook not existing). */
7977 if (stop_command)
7978 catch_errors (hook_stop_stub, stop_command,
7979 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7980
7981 /* Notify observers about the stop. This is where the interpreters
7982 print the stop event. */
7983 if (!ptid_equal (inferior_ptid, null_ptid))
7984 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
7985 stop_print_frame);
7986 else
7987 observer_notify_normal_stop (NULL, stop_print_frame);
7988
7989 annotate_stopped ();
7990
7991 if (target_has_execution)
7992 {
7993 if (last.kind != TARGET_WAITKIND_SIGNALLED
7994 && last.kind != TARGET_WAITKIND_EXITED)
7995 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7996 Delete any breakpoint that is to be deleted at the next stop. */
7997 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
7998 }
7999
8000 /* Try to get rid of automatically added inferiors that are no
8001 longer needed. Keeping those around slows down things linearly.
8002 Note that this never removes the current inferior. */
8003 prune_inferiors ();
8004 }
8005
8006 static int
8007 hook_stop_stub (void *cmd)
8008 {
8009 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8010 return (0);
8011 }
8012 \f
8013 int
8014 signal_stop_state (int signo)
8015 {
8016 return signal_stop[signo];
8017 }
8018
8019 int
8020 signal_print_state (int signo)
8021 {
8022 return signal_print[signo];
8023 }
8024
8025 int
8026 signal_pass_state (int signo)
8027 {
8028 return signal_program[signo];
8029 }
8030
8031 static void
8032 signal_cache_update (int signo)
8033 {
8034 if (signo == -1)
8035 {
8036 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8037 signal_cache_update (signo);
8038
8039 return;
8040 }
8041
8042 signal_pass[signo] = (signal_stop[signo] == 0
8043 && signal_print[signo] == 0
8044 && signal_program[signo] == 1
8045 && signal_catch[signo] == 0);
8046 }
8047
8048 int
8049 signal_stop_update (int signo, int state)
8050 {
8051 int ret = signal_stop[signo];
8052
8053 signal_stop[signo] = state;
8054 signal_cache_update (signo);
8055 return ret;
8056 }
8057
8058 int
8059 signal_print_update (int signo, int state)
8060 {
8061 int ret = signal_print[signo];
8062
8063 signal_print[signo] = state;
8064 signal_cache_update (signo);
8065 return ret;
8066 }
8067
8068 int
8069 signal_pass_update (int signo, int state)
8070 {
8071 int ret = signal_program[signo];
8072
8073 signal_program[signo] = state;
8074 signal_cache_update (signo);
8075 return ret;
8076 }
8077
8078 /* Update the global 'signal_catch' from INFO and notify the
8079 target. */
8080
8081 void
8082 signal_catch_update (const unsigned int *info)
8083 {
8084 int i;
8085
8086 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8087 signal_catch[i] = info[i] > 0;
8088 signal_cache_update (-1);
8089 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8090 }
8091
8092 static void
8093 sig_print_header (void)
8094 {
8095 printf_filtered (_("Signal Stop\tPrint\tPass "
8096 "to program\tDescription\n"));
8097 }
8098
8099 static void
8100 sig_print_info (enum gdb_signal oursig)
8101 {
8102 const char *name = gdb_signal_to_name (oursig);
8103 int name_padding = 13 - strlen (name);
8104
8105 if (name_padding <= 0)
8106 name_padding = 0;
8107
8108 printf_filtered ("%s", name);
8109 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8110 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8111 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8112 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8113 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8114 }
8115
8116 /* Specify how various signals in the inferior should be handled. */
8117
8118 static void
8119 handle_command (char *args, int from_tty)
8120 {
8121 char **argv;
8122 int digits, wordlen;
8123 int sigfirst, signum, siglast;
8124 enum gdb_signal oursig;
8125 int allsigs;
8126 int nsigs;
8127 unsigned char *sigs;
8128 struct cleanup *old_chain;
8129
8130 if (args == NULL)
8131 {
8132 error_no_arg (_("signal to handle"));
8133 }
8134
8135 /* Allocate and zero an array of flags for which signals to handle. */
8136
8137 nsigs = (int) GDB_SIGNAL_LAST;
8138 sigs = (unsigned char *) alloca (nsigs);
8139 memset (sigs, 0, nsigs);
8140
8141 /* Break the command line up into args. */
8142
8143 argv = gdb_buildargv (args);
8144 old_chain = make_cleanup_freeargv (argv);
8145
8146 /* Walk through the args, looking for signal oursigs, signal names, and
8147 actions. Signal numbers and signal names may be interspersed with
8148 actions, with the actions being performed for all signals cumulatively
8149 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8150
8151 while (*argv != NULL)
8152 {
8153 wordlen = strlen (*argv);
8154 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8155 {;
8156 }
8157 allsigs = 0;
8158 sigfirst = siglast = -1;
8159
8160 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8161 {
8162 /* Apply action to all signals except those used by the
8163 debugger. Silently skip those. */
8164 allsigs = 1;
8165 sigfirst = 0;
8166 siglast = nsigs - 1;
8167 }
8168 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8169 {
8170 SET_SIGS (nsigs, sigs, signal_stop);
8171 SET_SIGS (nsigs, sigs, signal_print);
8172 }
8173 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8174 {
8175 UNSET_SIGS (nsigs, sigs, signal_program);
8176 }
8177 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8178 {
8179 SET_SIGS (nsigs, sigs, signal_print);
8180 }
8181 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8182 {
8183 SET_SIGS (nsigs, sigs, signal_program);
8184 }
8185 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8186 {
8187 UNSET_SIGS (nsigs, sigs, signal_stop);
8188 }
8189 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8190 {
8191 SET_SIGS (nsigs, sigs, signal_program);
8192 }
8193 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8194 {
8195 UNSET_SIGS (nsigs, sigs, signal_print);
8196 UNSET_SIGS (nsigs, sigs, signal_stop);
8197 }
8198 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8199 {
8200 UNSET_SIGS (nsigs, sigs, signal_program);
8201 }
8202 else if (digits > 0)
8203 {
8204 /* It is numeric. The numeric signal refers to our own
8205 internal signal numbering from target.h, not to host/target
8206 signal number. This is a feature; users really should be
8207 using symbolic names anyway, and the common ones like
8208 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8209
8210 sigfirst = siglast = (int)
8211 gdb_signal_from_command (atoi (*argv));
8212 if ((*argv)[digits] == '-')
8213 {
8214 siglast = (int)
8215 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8216 }
8217 if (sigfirst > siglast)
8218 {
8219 /* Bet he didn't figure we'd think of this case... */
8220 signum = sigfirst;
8221 sigfirst = siglast;
8222 siglast = signum;
8223 }
8224 }
8225 else
8226 {
8227 oursig = gdb_signal_from_name (*argv);
8228 if (oursig != GDB_SIGNAL_UNKNOWN)
8229 {
8230 sigfirst = siglast = (int) oursig;
8231 }
8232 else
8233 {
8234 /* Not a number and not a recognized flag word => complain. */
8235 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8236 }
8237 }
8238
8239 /* If any signal numbers or symbol names were found, set flags for
8240 which signals to apply actions to. */
8241
8242 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8243 {
8244 switch ((enum gdb_signal) signum)
8245 {
8246 case GDB_SIGNAL_TRAP:
8247 case GDB_SIGNAL_INT:
8248 if (!allsigs && !sigs[signum])
8249 {
8250 if (query (_("%s is used by the debugger.\n\
8251 Are you sure you want to change it? "),
8252 gdb_signal_to_name ((enum gdb_signal) signum)))
8253 {
8254 sigs[signum] = 1;
8255 }
8256 else
8257 {
8258 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8259 gdb_flush (gdb_stdout);
8260 }
8261 }
8262 break;
8263 case GDB_SIGNAL_0:
8264 case GDB_SIGNAL_DEFAULT:
8265 case GDB_SIGNAL_UNKNOWN:
8266 /* Make sure that "all" doesn't print these. */
8267 break;
8268 default:
8269 sigs[signum] = 1;
8270 break;
8271 }
8272 }
8273
8274 argv++;
8275 }
8276
8277 for (signum = 0; signum < nsigs; signum++)
8278 if (sigs[signum])
8279 {
8280 signal_cache_update (-1);
8281 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8282 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8283
8284 if (from_tty)
8285 {
8286 /* Show the results. */
8287 sig_print_header ();
8288 for (; signum < nsigs; signum++)
8289 if (sigs[signum])
8290 sig_print_info ((enum gdb_signal) signum);
8291 }
8292
8293 break;
8294 }
8295
8296 do_cleanups (old_chain);
8297 }
8298
8299 /* Complete the "handle" command. */
8300
8301 static VEC (char_ptr) *
8302 handle_completer (struct cmd_list_element *ignore,
8303 const char *text, const char *word)
8304 {
8305 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8306 static const char * const keywords[] =
8307 {
8308 "all",
8309 "stop",
8310 "ignore",
8311 "print",
8312 "pass",
8313 "nostop",
8314 "noignore",
8315 "noprint",
8316 "nopass",
8317 NULL,
8318 };
8319
8320 vec_signals = signal_completer (ignore, text, word);
8321 vec_keywords = complete_on_enum (keywords, word, word);
8322
8323 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8324 VEC_free (char_ptr, vec_signals);
8325 VEC_free (char_ptr, vec_keywords);
8326 return return_val;
8327 }
8328
8329 enum gdb_signal
8330 gdb_signal_from_command (int num)
8331 {
8332 if (num >= 1 && num <= 15)
8333 return (enum gdb_signal) num;
8334 error (_("Only signals 1-15 are valid as numeric signals.\n\
8335 Use \"info signals\" for a list of symbolic signals."));
8336 }
8337
8338 /* Print current contents of the tables set by the handle command.
8339 It is possible we should just be printing signals actually used
8340 by the current target (but for things to work right when switching
8341 targets, all signals should be in the signal tables). */
8342
8343 static void
8344 signals_info (char *signum_exp, int from_tty)
8345 {
8346 enum gdb_signal oursig;
8347
8348 sig_print_header ();
8349
8350 if (signum_exp)
8351 {
8352 /* First see if this is a symbol name. */
8353 oursig = gdb_signal_from_name (signum_exp);
8354 if (oursig == GDB_SIGNAL_UNKNOWN)
8355 {
8356 /* No, try numeric. */
8357 oursig =
8358 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8359 }
8360 sig_print_info (oursig);
8361 return;
8362 }
8363
8364 printf_filtered ("\n");
8365 /* These ugly casts brought to you by the native VAX compiler. */
8366 for (oursig = GDB_SIGNAL_FIRST;
8367 (int) oursig < (int) GDB_SIGNAL_LAST;
8368 oursig = (enum gdb_signal) ((int) oursig + 1))
8369 {
8370 QUIT;
8371
8372 if (oursig != GDB_SIGNAL_UNKNOWN
8373 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8374 sig_print_info (oursig);
8375 }
8376
8377 printf_filtered (_("\nUse the \"handle\" command "
8378 "to change these tables.\n"));
8379 }
8380
8381 /* Check if it makes sense to read $_siginfo from the current thread
8382 at this point. If not, throw an error. */
8383
8384 static void
8385 validate_siginfo_access (void)
8386 {
8387 /* No current inferior, no siginfo. */
8388 if (ptid_equal (inferior_ptid, null_ptid))
8389 error (_("No thread selected."));
8390
8391 /* Don't try to read from a dead thread. */
8392 if (is_exited (inferior_ptid))
8393 error (_("The current thread has terminated"));
8394
8395 /* ... or from a spinning thread. */
8396 if (is_running (inferior_ptid))
8397 error (_("Selected thread is running."));
8398 }
8399
8400 /* The $_siginfo convenience variable is a bit special. We don't know
8401 for sure the type of the value until we actually have a chance to
8402 fetch the data. The type can change depending on gdbarch, so it is
8403 also dependent on which thread you have selected.
8404
8405 1. making $_siginfo be an internalvar that creates a new value on
8406 access.
8407
8408 2. making the value of $_siginfo be an lval_computed value. */
8409
8410 /* This function implements the lval_computed support for reading a
8411 $_siginfo value. */
8412
8413 static void
8414 siginfo_value_read (struct value *v)
8415 {
8416 LONGEST transferred;
8417
8418 validate_siginfo_access ();
8419
8420 transferred =
8421 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8422 NULL,
8423 value_contents_all_raw (v),
8424 value_offset (v),
8425 TYPE_LENGTH (value_type (v)));
8426
8427 if (transferred != TYPE_LENGTH (value_type (v)))
8428 error (_("Unable to read siginfo"));
8429 }
8430
8431 /* This function implements the lval_computed support for writing a
8432 $_siginfo value. */
8433
8434 static void
8435 siginfo_value_write (struct value *v, struct value *fromval)
8436 {
8437 LONGEST transferred;
8438
8439 validate_siginfo_access ();
8440
8441 transferred = target_write (&current_target,
8442 TARGET_OBJECT_SIGNAL_INFO,
8443 NULL,
8444 value_contents_all_raw (fromval),
8445 value_offset (v),
8446 TYPE_LENGTH (value_type (fromval)));
8447
8448 if (transferred != TYPE_LENGTH (value_type (fromval)))
8449 error (_("Unable to write siginfo"));
8450 }
8451
8452 static const struct lval_funcs siginfo_value_funcs =
8453 {
8454 siginfo_value_read,
8455 siginfo_value_write
8456 };
8457
8458 /* Return a new value with the correct type for the siginfo object of
8459 the current thread using architecture GDBARCH. Return a void value
8460 if there's no object available. */
8461
8462 static struct value *
8463 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8464 void *ignore)
8465 {
8466 if (target_has_stack
8467 && !ptid_equal (inferior_ptid, null_ptid)
8468 && gdbarch_get_siginfo_type_p (gdbarch))
8469 {
8470 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8471
8472 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8473 }
8474
8475 return allocate_value (builtin_type (gdbarch)->builtin_void);
8476 }
8477
8478 \f
8479 /* infcall_suspend_state contains state about the program itself like its
8480 registers and any signal it received when it last stopped.
8481 This state must be restored regardless of how the inferior function call
8482 ends (either successfully, or after it hits a breakpoint or signal)
8483 if the program is to properly continue where it left off. */
8484
8485 struct infcall_suspend_state
8486 {
8487 struct thread_suspend_state thread_suspend;
8488
8489 /* Other fields: */
8490 CORE_ADDR stop_pc;
8491 struct regcache *registers;
8492
8493 /* Format of SIGINFO_DATA or NULL if it is not present. */
8494 struct gdbarch *siginfo_gdbarch;
8495
8496 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8497 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8498 content would be invalid. */
8499 gdb_byte *siginfo_data;
8500 };
8501
8502 struct infcall_suspend_state *
8503 save_infcall_suspend_state (void)
8504 {
8505 struct infcall_suspend_state *inf_state;
8506 struct thread_info *tp = inferior_thread ();
8507 struct regcache *regcache = get_current_regcache ();
8508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8509 gdb_byte *siginfo_data = NULL;
8510
8511 if (gdbarch_get_siginfo_type_p (gdbarch))
8512 {
8513 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8514 size_t len = TYPE_LENGTH (type);
8515 struct cleanup *back_to;
8516
8517 siginfo_data = xmalloc (len);
8518 back_to = make_cleanup (xfree, siginfo_data);
8519
8520 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8521 siginfo_data, 0, len) == len)
8522 discard_cleanups (back_to);
8523 else
8524 {
8525 /* Errors ignored. */
8526 do_cleanups (back_to);
8527 siginfo_data = NULL;
8528 }
8529 }
8530
8531 inf_state = XCNEW (struct infcall_suspend_state);
8532
8533 if (siginfo_data)
8534 {
8535 inf_state->siginfo_gdbarch = gdbarch;
8536 inf_state->siginfo_data = siginfo_data;
8537 }
8538
8539 inf_state->thread_suspend = tp->suspend;
8540
8541 /* run_inferior_call will not use the signal due to its `proceed' call with
8542 GDB_SIGNAL_0 anyway. */
8543 tp->suspend.stop_signal = GDB_SIGNAL_0;
8544
8545 inf_state->stop_pc = stop_pc;
8546
8547 inf_state->registers = regcache_dup (regcache);
8548
8549 return inf_state;
8550 }
8551
8552 /* Restore inferior session state to INF_STATE. */
8553
8554 void
8555 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8556 {
8557 struct thread_info *tp = inferior_thread ();
8558 struct regcache *regcache = get_current_regcache ();
8559 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8560
8561 tp->suspend = inf_state->thread_suspend;
8562
8563 stop_pc = inf_state->stop_pc;
8564
8565 if (inf_state->siginfo_gdbarch == gdbarch)
8566 {
8567 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8568
8569 /* Errors ignored. */
8570 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8571 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8572 }
8573
8574 /* The inferior can be gone if the user types "print exit(0)"
8575 (and perhaps other times). */
8576 if (target_has_execution)
8577 /* NB: The register write goes through to the target. */
8578 regcache_cpy (regcache, inf_state->registers);
8579
8580 discard_infcall_suspend_state (inf_state);
8581 }
8582
8583 static void
8584 do_restore_infcall_suspend_state_cleanup (void *state)
8585 {
8586 restore_infcall_suspend_state (state);
8587 }
8588
8589 struct cleanup *
8590 make_cleanup_restore_infcall_suspend_state
8591 (struct infcall_suspend_state *inf_state)
8592 {
8593 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8594 }
8595
8596 void
8597 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8598 {
8599 regcache_xfree (inf_state->registers);
8600 xfree (inf_state->siginfo_data);
8601 xfree (inf_state);
8602 }
8603
8604 struct regcache *
8605 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8606 {
8607 return inf_state->registers;
8608 }
8609
8610 /* infcall_control_state contains state regarding gdb's control of the
8611 inferior itself like stepping control. It also contains session state like
8612 the user's currently selected frame. */
8613
8614 struct infcall_control_state
8615 {
8616 struct thread_control_state thread_control;
8617 struct inferior_control_state inferior_control;
8618
8619 /* Other fields: */
8620 enum stop_stack_kind stop_stack_dummy;
8621 int stopped_by_random_signal;
8622 int stop_after_trap;
8623
8624 /* ID if the selected frame when the inferior function call was made. */
8625 struct frame_id selected_frame_id;
8626 };
8627
8628 /* Save all of the information associated with the inferior<==>gdb
8629 connection. */
8630
8631 struct infcall_control_state *
8632 save_infcall_control_state (void)
8633 {
8634 struct infcall_control_state *inf_status =
8635 XNEW (struct infcall_control_state);
8636 struct thread_info *tp = inferior_thread ();
8637 struct inferior *inf = current_inferior ();
8638
8639 inf_status->thread_control = tp->control;
8640 inf_status->inferior_control = inf->control;
8641
8642 tp->control.step_resume_breakpoint = NULL;
8643 tp->control.exception_resume_breakpoint = NULL;
8644
8645 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8646 chain. If caller's caller is walking the chain, they'll be happier if we
8647 hand them back the original chain when restore_infcall_control_state is
8648 called. */
8649 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8650
8651 /* Other fields: */
8652 inf_status->stop_stack_dummy = stop_stack_dummy;
8653 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8654 inf_status->stop_after_trap = stop_after_trap;
8655
8656 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8657
8658 return inf_status;
8659 }
8660
8661 static int
8662 restore_selected_frame (void *args)
8663 {
8664 struct frame_id *fid = (struct frame_id *) args;
8665 struct frame_info *frame;
8666
8667 frame = frame_find_by_id (*fid);
8668
8669 /* If inf_status->selected_frame_id is NULL, there was no previously
8670 selected frame. */
8671 if (frame == NULL)
8672 {
8673 warning (_("Unable to restore previously selected frame."));
8674 return 0;
8675 }
8676
8677 select_frame (frame);
8678
8679 return (1);
8680 }
8681
8682 /* Restore inferior session state to INF_STATUS. */
8683
8684 void
8685 restore_infcall_control_state (struct infcall_control_state *inf_status)
8686 {
8687 struct thread_info *tp = inferior_thread ();
8688 struct inferior *inf = current_inferior ();
8689
8690 if (tp->control.step_resume_breakpoint)
8691 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8692
8693 if (tp->control.exception_resume_breakpoint)
8694 tp->control.exception_resume_breakpoint->disposition
8695 = disp_del_at_next_stop;
8696
8697 /* Handle the bpstat_copy of the chain. */
8698 bpstat_clear (&tp->control.stop_bpstat);
8699
8700 tp->control = inf_status->thread_control;
8701 inf->control = inf_status->inferior_control;
8702
8703 /* Other fields: */
8704 stop_stack_dummy = inf_status->stop_stack_dummy;
8705 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8706 stop_after_trap = inf_status->stop_after_trap;
8707
8708 if (target_has_stack)
8709 {
8710 /* The point of catch_errors is that if the stack is clobbered,
8711 walking the stack might encounter a garbage pointer and
8712 error() trying to dereference it. */
8713 if (catch_errors
8714 (restore_selected_frame, &inf_status->selected_frame_id,
8715 "Unable to restore previously selected frame:\n",
8716 RETURN_MASK_ERROR) == 0)
8717 /* Error in restoring the selected frame. Select the innermost
8718 frame. */
8719 select_frame (get_current_frame ());
8720 }
8721
8722 xfree (inf_status);
8723 }
8724
8725 static void
8726 do_restore_infcall_control_state_cleanup (void *sts)
8727 {
8728 restore_infcall_control_state (sts);
8729 }
8730
8731 struct cleanup *
8732 make_cleanup_restore_infcall_control_state
8733 (struct infcall_control_state *inf_status)
8734 {
8735 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8736 }
8737
8738 void
8739 discard_infcall_control_state (struct infcall_control_state *inf_status)
8740 {
8741 if (inf_status->thread_control.step_resume_breakpoint)
8742 inf_status->thread_control.step_resume_breakpoint->disposition
8743 = disp_del_at_next_stop;
8744
8745 if (inf_status->thread_control.exception_resume_breakpoint)
8746 inf_status->thread_control.exception_resume_breakpoint->disposition
8747 = disp_del_at_next_stop;
8748
8749 /* See save_infcall_control_state for info on stop_bpstat. */
8750 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8751
8752 xfree (inf_status);
8753 }
8754 \f
8755 /* restore_inferior_ptid() will be used by the cleanup machinery
8756 to restore the inferior_ptid value saved in a call to
8757 save_inferior_ptid(). */
8758
8759 static void
8760 restore_inferior_ptid (void *arg)
8761 {
8762 ptid_t *saved_ptid_ptr = arg;
8763
8764 inferior_ptid = *saved_ptid_ptr;
8765 xfree (arg);
8766 }
8767
8768 /* Save the value of inferior_ptid so that it may be restored by a
8769 later call to do_cleanups(). Returns the struct cleanup pointer
8770 needed for later doing the cleanup. */
8771
8772 struct cleanup *
8773 save_inferior_ptid (void)
8774 {
8775 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8776
8777 *saved_ptid_ptr = inferior_ptid;
8778 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8779 }
8780
8781 /* See infrun.h. */
8782
8783 void
8784 clear_exit_convenience_vars (void)
8785 {
8786 clear_internalvar (lookup_internalvar ("_exitsignal"));
8787 clear_internalvar (lookup_internalvar ("_exitcode"));
8788 }
8789 \f
8790
8791 /* User interface for reverse debugging:
8792 Set exec-direction / show exec-direction commands
8793 (returns error unless target implements to_set_exec_direction method). */
8794
8795 int execution_direction = EXEC_FORWARD;
8796 static const char exec_forward[] = "forward";
8797 static const char exec_reverse[] = "reverse";
8798 static const char *exec_direction = exec_forward;
8799 static const char *const exec_direction_names[] = {
8800 exec_forward,
8801 exec_reverse,
8802 NULL
8803 };
8804
8805 static void
8806 set_exec_direction_func (char *args, int from_tty,
8807 struct cmd_list_element *cmd)
8808 {
8809 if (target_can_execute_reverse)
8810 {
8811 if (!strcmp (exec_direction, exec_forward))
8812 execution_direction = EXEC_FORWARD;
8813 else if (!strcmp (exec_direction, exec_reverse))
8814 execution_direction = EXEC_REVERSE;
8815 }
8816 else
8817 {
8818 exec_direction = exec_forward;
8819 error (_("Target does not support this operation."));
8820 }
8821 }
8822
8823 static void
8824 show_exec_direction_func (struct ui_file *out, int from_tty,
8825 struct cmd_list_element *cmd, const char *value)
8826 {
8827 switch (execution_direction) {
8828 case EXEC_FORWARD:
8829 fprintf_filtered (out, _("Forward.\n"));
8830 break;
8831 case EXEC_REVERSE:
8832 fprintf_filtered (out, _("Reverse.\n"));
8833 break;
8834 default:
8835 internal_error (__FILE__, __LINE__,
8836 _("bogus execution_direction value: %d"),
8837 (int) execution_direction);
8838 }
8839 }
8840
8841 static void
8842 show_schedule_multiple (struct ui_file *file, int from_tty,
8843 struct cmd_list_element *c, const char *value)
8844 {
8845 fprintf_filtered (file, _("Resuming the execution of threads "
8846 "of all processes is %s.\n"), value);
8847 }
8848
8849 /* Implementation of `siginfo' variable. */
8850
8851 static const struct internalvar_funcs siginfo_funcs =
8852 {
8853 siginfo_make_value,
8854 NULL,
8855 NULL
8856 };
8857
8858 /* Callback for infrun's target events source. This is marked when a
8859 thread has a pending status to process. */
8860
8861 static void
8862 infrun_async_inferior_event_handler (gdb_client_data data)
8863 {
8864 inferior_event_handler (INF_REG_EVENT, NULL);
8865 }
8866
8867 void
8868 _initialize_infrun (void)
8869 {
8870 int i;
8871 int numsigs;
8872 struct cmd_list_element *c;
8873
8874 /* Register extra event sources in the event loop. */
8875 infrun_async_inferior_event_token
8876 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8877
8878 add_info ("signals", signals_info, _("\
8879 What debugger does when program gets various signals.\n\
8880 Specify a signal as argument to print info on that signal only."));
8881 add_info_alias ("handle", "signals", 0);
8882
8883 c = add_com ("handle", class_run, handle_command, _("\
8884 Specify how to handle signals.\n\
8885 Usage: handle SIGNAL [ACTIONS]\n\
8886 Args are signals and actions to apply to those signals.\n\
8887 If no actions are specified, the current settings for the specified signals\n\
8888 will be displayed instead.\n\
8889 \n\
8890 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8891 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8892 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8893 The special arg \"all\" is recognized to mean all signals except those\n\
8894 used by the debugger, typically SIGTRAP and SIGINT.\n\
8895 \n\
8896 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8897 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8898 Stop means reenter debugger if this signal happens (implies print).\n\
8899 Print means print a message if this signal happens.\n\
8900 Pass means let program see this signal; otherwise program doesn't know.\n\
8901 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8902 Pass and Stop may be combined.\n\
8903 \n\
8904 Multiple signals may be specified. Signal numbers and signal names\n\
8905 may be interspersed with actions, with the actions being performed for\n\
8906 all signals cumulatively specified."));
8907 set_cmd_completer (c, handle_completer);
8908
8909 if (!dbx_commands)
8910 stop_command = add_cmd ("stop", class_obscure,
8911 not_just_help_class_command, _("\
8912 There is no `stop' command, but you can set a hook on `stop'.\n\
8913 This allows you to set a list of commands to be run each time execution\n\
8914 of the program stops."), &cmdlist);
8915
8916 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8917 Set inferior debugging."), _("\
8918 Show inferior debugging."), _("\
8919 When non-zero, inferior specific debugging is enabled."),
8920 NULL,
8921 show_debug_infrun,
8922 &setdebuglist, &showdebuglist);
8923
8924 add_setshow_boolean_cmd ("displaced", class_maintenance,
8925 &debug_displaced, _("\
8926 Set displaced stepping debugging."), _("\
8927 Show displaced stepping debugging."), _("\
8928 When non-zero, displaced stepping specific debugging is enabled."),
8929 NULL,
8930 show_debug_displaced,
8931 &setdebuglist, &showdebuglist);
8932
8933 add_setshow_boolean_cmd ("non-stop", no_class,
8934 &non_stop_1, _("\
8935 Set whether gdb controls the inferior in non-stop mode."), _("\
8936 Show whether gdb controls the inferior in non-stop mode."), _("\
8937 When debugging a multi-threaded program and this setting is\n\
8938 off (the default, also called all-stop mode), when one thread stops\n\
8939 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8940 all other threads in the program while you interact with the thread of\n\
8941 interest. When you continue or step a thread, you can allow the other\n\
8942 threads to run, or have them remain stopped, but while you inspect any\n\
8943 thread's state, all threads stop.\n\
8944 \n\
8945 In non-stop mode, when one thread stops, other threads can continue\n\
8946 to run freely. You'll be able to step each thread independently,\n\
8947 leave it stopped or free to run as needed."),
8948 set_non_stop,
8949 show_non_stop,
8950 &setlist,
8951 &showlist);
8952
8953 numsigs = (int) GDB_SIGNAL_LAST;
8954 signal_stop = XNEWVEC (unsigned char, numsigs);
8955 signal_print = XNEWVEC (unsigned char, numsigs);
8956 signal_program = XNEWVEC (unsigned char, numsigs);
8957 signal_catch = XNEWVEC (unsigned char, numsigs);
8958 signal_pass = XNEWVEC (unsigned char, numsigs);
8959 for (i = 0; i < numsigs; i++)
8960 {
8961 signal_stop[i] = 1;
8962 signal_print[i] = 1;
8963 signal_program[i] = 1;
8964 signal_catch[i] = 0;
8965 }
8966
8967 /* Signals caused by debugger's own actions should not be given to
8968 the program afterwards.
8969
8970 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8971 explicitly specifies that it should be delivered to the target
8972 program. Typically, that would occur when a user is debugging a
8973 target monitor on a simulator: the target monitor sets a
8974 breakpoint; the simulator encounters this breakpoint and halts
8975 the simulation handing control to GDB; GDB, noting that the stop
8976 address doesn't map to any known breakpoint, returns control back
8977 to the simulator; the simulator then delivers the hardware
8978 equivalent of a GDB_SIGNAL_TRAP to the program being
8979 debugged. */
8980 signal_program[GDB_SIGNAL_TRAP] = 0;
8981 signal_program[GDB_SIGNAL_INT] = 0;
8982
8983 /* Signals that are not errors should not normally enter the debugger. */
8984 signal_stop[GDB_SIGNAL_ALRM] = 0;
8985 signal_print[GDB_SIGNAL_ALRM] = 0;
8986 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8987 signal_print[GDB_SIGNAL_VTALRM] = 0;
8988 signal_stop[GDB_SIGNAL_PROF] = 0;
8989 signal_print[GDB_SIGNAL_PROF] = 0;
8990 signal_stop[GDB_SIGNAL_CHLD] = 0;
8991 signal_print[GDB_SIGNAL_CHLD] = 0;
8992 signal_stop[GDB_SIGNAL_IO] = 0;
8993 signal_print[GDB_SIGNAL_IO] = 0;
8994 signal_stop[GDB_SIGNAL_POLL] = 0;
8995 signal_print[GDB_SIGNAL_POLL] = 0;
8996 signal_stop[GDB_SIGNAL_URG] = 0;
8997 signal_print[GDB_SIGNAL_URG] = 0;
8998 signal_stop[GDB_SIGNAL_WINCH] = 0;
8999 signal_print[GDB_SIGNAL_WINCH] = 0;
9000 signal_stop[GDB_SIGNAL_PRIO] = 0;
9001 signal_print[GDB_SIGNAL_PRIO] = 0;
9002
9003 /* These signals are used internally by user-level thread
9004 implementations. (See signal(5) on Solaris.) Like the above
9005 signals, a healthy program receives and handles them as part of
9006 its normal operation. */
9007 signal_stop[GDB_SIGNAL_LWP] = 0;
9008 signal_print[GDB_SIGNAL_LWP] = 0;
9009 signal_stop[GDB_SIGNAL_WAITING] = 0;
9010 signal_print[GDB_SIGNAL_WAITING] = 0;
9011 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9012 signal_print[GDB_SIGNAL_CANCEL] = 0;
9013
9014 /* Update cached state. */
9015 signal_cache_update (-1);
9016
9017 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9018 &stop_on_solib_events, _("\
9019 Set stopping for shared library events."), _("\
9020 Show stopping for shared library events."), _("\
9021 If nonzero, gdb will give control to the user when the dynamic linker\n\
9022 notifies gdb of shared library events. The most common event of interest\n\
9023 to the user would be loading/unloading of a new library."),
9024 set_stop_on_solib_events,
9025 show_stop_on_solib_events,
9026 &setlist, &showlist);
9027
9028 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9029 follow_fork_mode_kind_names,
9030 &follow_fork_mode_string, _("\
9031 Set debugger response to a program call of fork or vfork."), _("\
9032 Show debugger response to a program call of fork or vfork."), _("\
9033 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9034 parent - the original process is debugged after a fork\n\
9035 child - the new process is debugged after a fork\n\
9036 The unfollowed process will continue to run.\n\
9037 By default, the debugger will follow the parent process."),
9038 NULL,
9039 show_follow_fork_mode_string,
9040 &setlist, &showlist);
9041
9042 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9043 follow_exec_mode_names,
9044 &follow_exec_mode_string, _("\
9045 Set debugger response to a program call of exec."), _("\
9046 Show debugger response to a program call of exec."), _("\
9047 An exec call replaces the program image of a process.\n\
9048 \n\
9049 follow-exec-mode can be:\n\
9050 \n\
9051 new - the debugger creates a new inferior and rebinds the process\n\
9052 to this new inferior. The program the process was running before\n\
9053 the exec call can be restarted afterwards by restarting the original\n\
9054 inferior.\n\
9055 \n\
9056 same - the debugger keeps the process bound to the same inferior.\n\
9057 The new executable image replaces the previous executable loaded in\n\
9058 the inferior. Restarting the inferior after the exec call restarts\n\
9059 the executable the process was running after the exec call.\n\
9060 \n\
9061 By default, the debugger will use the same inferior."),
9062 NULL,
9063 show_follow_exec_mode_string,
9064 &setlist, &showlist);
9065
9066 add_setshow_enum_cmd ("scheduler-locking", class_run,
9067 scheduler_enums, &scheduler_mode, _("\
9068 Set mode for locking scheduler during execution."), _("\
9069 Show mode for locking scheduler during execution."), _("\
9070 off == no locking (threads may preempt at any time)\n\
9071 on == full locking (no thread except the current thread may run)\n\
9072 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9073 In this mode, other threads may run during other commands."),
9074 set_schedlock_func, /* traps on target vector */
9075 show_scheduler_mode,
9076 &setlist, &showlist);
9077
9078 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9079 Set mode for resuming threads of all processes."), _("\
9080 Show mode for resuming threads of all processes."), _("\
9081 When on, execution commands (such as 'continue' or 'next') resume all\n\
9082 threads of all processes. When off (which is the default), execution\n\
9083 commands only resume the threads of the current process. The set of\n\
9084 threads that are resumed is further refined by the scheduler-locking\n\
9085 mode (see help set scheduler-locking)."),
9086 NULL,
9087 show_schedule_multiple,
9088 &setlist, &showlist);
9089
9090 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9091 Set mode of the step operation."), _("\
9092 Show mode of the step operation."), _("\
9093 When set, doing a step over a function without debug line information\n\
9094 will stop at the first instruction of that function. Otherwise, the\n\
9095 function is skipped and the step command stops at a different source line."),
9096 NULL,
9097 show_step_stop_if_no_debug,
9098 &setlist, &showlist);
9099
9100 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9101 &can_use_displaced_stepping, _("\
9102 Set debugger's willingness to use displaced stepping."), _("\
9103 Show debugger's willingness to use displaced stepping."), _("\
9104 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9105 supported by the target architecture. If off, gdb will not use displaced\n\
9106 stepping to step over breakpoints, even if such is supported by the target\n\
9107 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9108 if the target architecture supports it and non-stop mode is active, but will not\n\
9109 use it in all-stop mode (see help set non-stop)."),
9110 NULL,
9111 show_can_use_displaced_stepping,
9112 &setlist, &showlist);
9113
9114 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9115 &exec_direction, _("Set direction of execution.\n\
9116 Options are 'forward' or 'reverse'."),
9117 _("Show direction of execution (forward/reverse)."),
9118 _("Tells gdb whether to execute forward or backward."),
9119 set_exec_direction_func, show_exec_direction_func,
9120 &setlist, &showlist);
9121
9122 /* Set/show detach-on-fork: user-settable mode. */
9123
9124 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9125 Set whether gdb will detach the child of a fork."), _("\
9126 Show whether gdb will detach the child of a fork."), _("\
9127 Tells gdb whether to detach the child of a fork."),
9128 NULL, NULL, &setlist, &showlist);
9129
9130 /* Set/show disable address space randomization mode. */
9131
9132 add_setshow_boolean_cmd ("disable-randomization", class_support,
9133 &disable_randomization, _("\
9134 Set disabling of debuggee's virtual address space randomization."), _("\
9135 Show disabling of debuggee's virtual address space randomization."), _("\
9136 When this mode is on (which is the default), randomization of the virtual\n\
9137 address space is disabled. Standalone programs run with the randomization\n\
9138 enabled by default on some platforms."),
9139 &set_disable_randomization,
9140 &show_disable_randomization,
9141 &setlist, &showlist);
9142
9143 /* ptid initializations */
9144 inferior_ptid = null_ptid;
9145 target_last_wait_ptid = minus_one_ptid;
9146
9147 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9148 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9149 observer_attach_thread_exit (infrun_thread_thread_exit);
9150 observer_attach_inferior_exit (infrun_inferior_exit);
9151
9152 /* Explicitly create without lookup, since that tries to create a
9153 value with a void typed value, and when we get here, gdbarch
9154 isn't initialized yet. At this point, we're quite sure there
9155 isn't another convenience variable of the same name. */
9156 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9157
9158 add_setshow_boolean_cmd ("observer", no_class,
9159 &observer_mode_1, _("\
9160 Set whether gdb controls the inferior in observer mode."), _("\
9161 Show whether gdb controls the inferior in observer mode."), _("\
9162 In observer mode, GDB can get data from the inferior, but not\n\
9163 affect its execution. Registers and memory may not be changed,\n\
9164 breakpoints may not be set, and the program cannot be interrupted\n\
9165 or signalled."),
9166 set_observer_mode,
9167 show_observer_mode,
9168 &setlist,
9169 &showlist);
9170 }
This page took 0.305826 seconds and 4 git commands to generate.