[gdb/testsuite] Handle early_flags in gdb_default_target_compile
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
82
83 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
85 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
87 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
89 static void resume (gdb_signal sig);
90
91 static void wait_for_inferior (inferior *inf);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
516 child_inf->pspace = new program_space (child_inf->aspace);
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
558 if (print_inferior_events)
559 {
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
563 target_terminal::ours_for_output ();
564 fprintf_filtered (gdb_stdlog,
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
567 has_vforked ? "vfork" : "fork",
568 child_pid.c_str ());
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
574 child_inf = add_inferior (child_ptid.pid ());
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
584 process_stratum_target *target = parent_inf->process_target ();
585
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
625
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
629
630 /* Note that the detach above makes PARENT_INF dangling. */
631
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
635
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
639
640 thread_info *child_thr = add_thread_silent (target, child_ptid);
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
649
650 exec_on_vfork ();
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
655 child_inf->pspace = new program_space (child_inf->aspace);
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
668
669 switch_to_thread (child_thr);
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673 }
674
675 /* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
679 static bool
680 follow_fork ()
681 {
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
691 struct breakpoint *exception_resume_breakpoint = NULL;
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
694 int current_line = 0;
695 symtab *current_symtab = NULL;
696 struct frame_id step_frame_id = { 0 };
697 struct thread_fsm *thread_fsm = NULL;
698
699 if (!non_stop)
700 {
701 process_stratum_target *wait_target;
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
716 if (wait_ptid != minus_one_ptid
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
725 switch_to_thread (wait_thread);
726 should_resume = false;
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
751 step_frame_id = tp->control.step_frame_id;
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
754 thread_fsm = tp->thread_fsm;
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
765 delete_exception_resume_breakpoint (tp);
766 tp->thread_fsm = NULL;
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
772 process_stratum_target *parent_targ = tp->inf->process_target ();
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
788 tp = find_thread_ptid (parent_targ, parent);
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
796 /* If we followed the child, switch to it... */
797 if (follow_child)
798 {
799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
800 switch_to_thread (child_thr);
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
813 tp->control.step_frame_id = step_frame_id;
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
816 tp->thread_fsm = thread_fsm;
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
826 warning (_("Not resuming: switched threads "
827 "before following fork child."));
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
845
846 return should_resume;
847 }
848
849 static void
850 follow_inferior_reset_breakpoints (void)
851 {
852 struct thread_info *tp = inferior_thread ();
853
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
867 if (tp->control.step_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
874 if (tp->control.exception_resume_breakpoint)
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
879
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
887 }
888
889 /* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892 static int
893 proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895 {
896 int pid = * (int *) arg;
897
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
901 && !thread->stop_requested
902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
907 target_pid_to_str (thread->ptid).c_str ());
908
909 switch_to_thread (thread);
910 clear_proceed_status (0);
911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
912 }
913
914 return 0;
915 }
916
917 /* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920 static void
921 handle_vfork_child_exec_or_exit (int exec)
922 {
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
934
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
938 {
939 struct program_space *pspace;
940 struct address_space *aspace;
941
942 /* follow-fork child, detach-on-fork on. */
943
944 vfork_parent->pending_detach = 0;
945
946 scoped_restore_current_pspace_and_thread restore_thread;
947
948 /* We're letting loose of the parent. */
949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
950 switch_to_thread (tp);
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
969 if (print_inferior_events)
970 {
971 std::string pidstr
972 = target_pid_to_str (ptid_t (vfork_parent->pid));
973
974 target_terminal::ours_for_output ();
975
976 if (exec)
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("[Detaching vfork parent %s "
980 "after child exec]\n"), pidstr.c_str ());
981 }
982 else
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("[Detaching vfork parent %s "
986 "after child exit]\n"), pidstr.c_str ());
987 }
988 }
989
990 target_detach (vfork_parent, 0);
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
1000 inf->pspace = new program_space (maybe_new_address_space ());
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
1005 resume_parent = vfork_parent->pid;
1006 }
1007 else
1008 {
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to no-thread while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
1023
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
1027 inf->removable = 1;
1028 inf->symfile_flags = SYMFILE_NO_READ;
1029 clone_program_space (inf->pspace, vfork_parent->pspace);
1030
1031 resume_parent = vfork_parent->pid;
1032 }
1033
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
1040 scoped_restore_current_thread restore_thread;
1041
1042 if (debug_infrun)
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1048 }
1049 }
1050 }
1051
1052 /* Enum strings for "set|show follow-exec-mode". */
1053
1054 static const char follow_exec_mode_new[] = "new";
1055 static const char follow_exec_mode_same[] = "same";
1056 static const char *const follow_exec_mode_names[] =
1057 {
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061 };
1062
1063 static const char *follow_exec_mode_string = follow_exec_mode_same;
1064 static void
1065 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067 {
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069 }
1070
1071 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1072
1073 static void
1074 follow_exec (ptid_t ptid, const char *exec_file_target)
1075 {
1076 struct inferior *inf = current_inferior ();
1077 int pid = ptid.pid ();
1078 ptid_t process_ptid;
1079
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
1102 value that was overwritten with a TRAP instruction). Since
1103 we now have a new a.out, those shadow contents aren't valid. */
1104
1105 mark_breakpoints_out ();
1106
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
1126 for (thread_info *th : all_threads_safe ())
1127 if (th->ptid.pid () == pid && th->ptid != ptid)
1128 delete_thread (th);
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
1134 thread_info *th = inferior_thread ();
1135 th->control.step_resume_breakpoint = NULL;
1136 th->control.exception_resume_breakpoint = NULL;
1137 th->control.single_step_breakpoints = NULL;
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
1140
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
1144 th->stop_requested = 0;
1145
1146 update_breakpoints_after_exec ();
1147
1148 /* What is this a.out's name? */
1149 process_ptid = ptid_t (pid);
1150 printf_unfiltered (_("%s is executing new program: %s\n"),
1151 target_pid_to_str (process_ptid).c_str (),
1152 exec_file_target);
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1155 inferior has essentially been killed & reborn. */
1156
1157 breakpoint_init_inferior (inf_execd);
1158
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
1161
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
1170
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
1190 exit_inferior_silent (current_inferior ());
1191
1192 inf->pid = pid;
1193 target_follow_exec (inf, exec_file_target);
1194
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
1200 }
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1220
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
1229 solib_create_inferior_hook (0);
1230
1231 jit_inferior_created_hook ();
1232
1233 breakpoint_re_set ();
1234
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1237 to symbol_file_command...). */
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1243 matically get reset there in the new process.). */
1244 }
1245
1246 /* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253 struct thread_info *step_over_queue_head;
1254
1255 /* Bit flags indicating what the thread needs to step over. */
1256
1257 enum step_over_what_flag
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
1267 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1268
1269 /* Info about an instruction that is being stepped over. */
1270
1271 struct step_over_info
1272 {
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
1277 const address_space *aspace;
1278 CORE_ADDR address;
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
1283
1284 /* The thread's global number. */
1285 int thread;
1286 };
1287
1288 /* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312 static struct step_over_info step_over_info;
1313
1314 /* Record the address of the breakpoint/instruction we're currently
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
1318
1319 static void
1320 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1321 int nonsteppable_watchpoint_p,
1322 int thread)
1323 {
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1327 step_over_info.thread = thread;
1328 }
1329
1330 /* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333 static void
1334 clear_step_over_info (void)
1335 {
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
1341 step_over_info.nonsteppable_watchpoint_p = 0;
1342 step_over_info.thread = -1;
1343 }
1344
1345 /* See infrun.h. */
1346
1347 int
1348 stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350 {
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355 }
1356
1357 /* See infrun.h. */
1358
1359 int
1360 thread_is_stepping_over_breakpoint (int thread)
1361 {
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364 }
1365
1366 /* See infrun.h. */
1367
1368 int
1369 stepping_past_nonsteppable_watchpoint (void)
1370 {
1371 return step_over_info.nonsteppable_watchpoint_p;
1372 }
1373
1374 /* Returns true if step-over info is valid. */
1375
1376 static int
1377 step_over_info_valid_p (void)
1378 {
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
1381 }
1382
1383 \f
1384 /* Displaced stepping. */
1385
1386 /* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
1429 we have successfully single-stepped the instruction, to yield the
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
1470 /* Default destructor for displaced_step_closure. */
1471
1472 displaced_step_closure::~displaced_step_closure () = default;
1473
1474 /* Get the displaced stepping state of process PID. */
1475
1476 static displaced_step_inferior_state *
1477 get_displaced_stepping_state (inferior *inf)
1478 {
1479 return &inf->displaced_step_state;
1480 }
1481
1482 /* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
1485 static bool
1486 displaced_step_in_progress_any_inferior ()
1487 {
1488 for (inferior *i : all_inferiors ())
1489 {
1490 if (i->displaced_step_state.step_thread != nullptr)
1491 return true;
1492 }
1493
1494 return false;
1495 }
1496
1497 /* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500 static int
1501 displaced_step_in_progress_thread (thread_info *thread)
1502 {
1503 gdb_assert (thread != NULL);
1504
1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1506 }
1507
1508 /* Return true if process PID has a thread doing a displaced step. */
1509
1510 static int
1511 displaced_step_in_progress (inferior *inf)
1512 {
1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1514 }
1515
1516 /* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520 struct displaced_step_closure*
1521 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522 {
1523 displaced_step_inferior_state *displaced
1524 = get_displaced_stepping_state (current_inferior ());
1525
1526 /* If checking the mode of displaced instruction in copy area. */
1527 if (displaced->step_thread != nullptr
1528 && displaced->step_copy == addr)
1529 return displaced->step_closure.get ();
1530
1531 return NULL;
1532 }
1533
1534 static void
1535 infrun_inferior_exit (struct inferior *inf)
1536 {
1537 inf->displaced_step_state.reset ();
1538 }
1539
1540 /* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 whether the target works in a non-stop way (see use_displaced_stepping). */
1546
1547 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1548
1549 static void
1550 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553 {
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
1558 value, target_is_non_stop_p () ? "on" : "off");
1559 else
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
1563 }
1564
1565 /* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568 static bool
1569 gdbarch_supports_displaced_stepping (gdbarch *arch)
1570 {
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574 }
1575
1576 /* Return non-zero if displaced stepping can/should be used to step
1577 over breakpoints of thread TP. */
1578
1579 static bool
1580 use_displaced_stepping (thread_info *tp)
1581 {
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
1605
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
1612 }
1613
1614 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
1616 static void
1617 displaced_step_reset (displaced_step_inferior_state *displaced)
1618 {
1619 displaced->reset ();
1620 }
1621
1622 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1626
1627 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628 void
1629 displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632 {
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638 }
1639
1640 /* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
1656 static int
1657 displaced_step_prepare_throw (thread_info *tp)
1658 {
1659 regcache *regcache = get_thread_regcache (tp);
1660 struct gdbarch *gdbarch = regcache->arch ();
1661 const address_space *aspace = regcache->aspace ();
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
1664 int status;
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1669
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
1681
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
1684
1685 if (displaced->step_thread != nullptr)
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "displaced: deferring step of %s\n",
1693 target_pid_to_str (tp->ptid).c_str ());
1694
1695 thread_step_over_chain_enqueue (tp);
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
1703 target_pid_to_str (tp->ptid).c_str ());
1704 }
1705
1706 displaced_step_reset (displaced);
1707
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
1711
1712 original = regcache_read_pc (regcache);
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
1735 return -1;
1736 }
1737
1738 /* Save the original contents of the copy area. */
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
1746 if (debug_displaced)
1747 {
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
1750 displaced_step_dump_bytes (gdb_stdlog,
1751 displaced->step_saved_copy.data (),
1752 len);
1753 };
1754
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
1762 return -1;
1763 }
1764
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
1767 displaced->step_thread = tp;
1768 displaced->step_gdbarch = gdbarch;
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
1771
1772 {
1773 displaced_step_reset_cleanup cleanup (displaced);
1774
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
1777
1778 cleanup.release ();
1779 }
1780
1781 if (debug_displaced)
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
1784
1785 return 1;
1786 }
1787
1788 /* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791 static int
1792 displaced_step_prepare (thread_info *thread)
1793 {
1794 int prepared = -1;
1795
1796 try
1797 {
1798 prepared = displaced_step_prepare_throw (thread);
1799 }
1800 catch (const gdb_exception_error &ex)
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
1806 throw;
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
1812 ex.what ());
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
1819 warning (_("disabling displaced stepping: %s"),
1820 ex.what ());
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
1825 = get_displaced_stepping_state (thread->inf);
1826 displaced_state->failed_before = 1;
1827 }
1828
1829 return prepared;
1830 }
1831
1832 static void
1833 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
1835 {
1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1837
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
1840 }
1841
1842 /* Restore the contents of the copy area for thread PTID. */
1843
1844 static void
1845 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847 {
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
1851 displaced->step_saved_copy.data (), len);
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1854 target_pid_to_str (ptid).c_str (),
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857 }
1858
1859 /* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865 static int
1866 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1867 {
1868 struct displaced_step_inferior_state *displaced
1869 = get_displaced_stepping_state (event_thread->inf);
1870 int ret;
1871
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
1874 return 0;
1875
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
1880 switch_to_thread (event_thread);
1881
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
1886 /* Did the instruction complete successfully? */
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
1891 {
1892 /* Fix up the resulting state. */
1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1894 displaced->step_closure.get (),
1895 displaced->step_original,
1896 displaced->step_copy,
1897 get_thread_regcache (displaced->step_thread));
1898 ret = 1;
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
1904 struct regcache *regcache = get_thread_regcache (event_thread);
1905 CORE_ADDR pc = regcache_read_pc (regcache);
1906
1907 pc = displaced->step_original + (pc - displaced->step_copy);
1908 regcache_write_pc (regcache, pc);
1909 ret = -1;
1910 }
1911
1912 return ret;
1913 }
1914
1915 /* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917 struct execution_control_state
1918 {
1919 process_stratum_target *target;
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937 };
1938
1939 /* Clear ECS and set it to point at TP. */
1940
1941 static void
1942 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943 {
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947 }
1948
1949 static void keep_going_pass_signal (struct execution_control_state *ecs);
1950 static void prepare_to_wait (struct execution_control_state *ecs);
1951 static int keep_going_stepped_thread (struct thread_info *tp);
1952 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1953
1954 /* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957 static int
1958 start_step_over (void)
1959 {
1960 struct thread_info *tp, *next;
1961
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
1968 {
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
1971 step_over_what step_what;
1972 int must_be_in_line;
1973
1974 gdb_assert (!tp->stop_requested);
1975
1976 next = thread_step_over_chain_next (tp);
1977
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
1980 if (displaced_step_in_progress (tp->inf))
1981 continue;
1982
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
1986 && !use_displaced_stepping (tp)));
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
2006 {
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
2009 "trap_expected=%d, resumed=%d, executing=%d\n",
2010 target_pid_to_str (tp->ptid).c_str (),
2011 tp->control.trap_expected,
2012 tp->resumed,
2013 tp->executing);
2014 }
2015
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
2019 target_pid_to_str (tp->ptid).c_str ());
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
2027 if (!target_is_non_stop_p () && !step_what)
2028 continue;
2029
2030 switch_to_thread (tp);
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
2033
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
2036
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
2046 if (!target_is_non_stop_p ())
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
2057 }
2058
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
2063 }
2064
2065 return 0;
2066 }
2067
2068 /* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070 static void
2071 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072 {
2073 if (inferior_ptid == old_ptid)
2074 inferior_ptid = new_ptid;
2075 }
2076
2077 \f
2078
2079 static const char schedlock_off[] = "off";
2080 static const char schedlock_on[] = "on";
2081 static const char schedlock_step[] = "step";
2082 static const char schedlock_replay[] = "replay";
2083 static const char *const scheduler_enums[] = {
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
2087 schedlock_replay,
2088 NULL
2089 };
2090 static const char *scheduler_mode = schedlock_replay;
2091 static void
2092 show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094 {
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
2098 value);
2099 }
2100
2101 static void
2102 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2103 {
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
2109 }
2110
2111 /* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
2114 bool sched_multi = false;
2115
2116 /* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122 static int
2123 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124 {
2125 int hw_step = 1;
2126
2127 if (execution_direction == EXEC_FORWARD
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2131 return hw_step;
2132 }
2133
2134 /* See infrun.h. */
2135
2136 ptid_t
2137 user_visible_resume_ptid (int step)
2138 {
2139 ptid_t resume_ptid;
2140
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
2148 || (scheduler_mode == schedlock_step && step))
2149 {
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
2152 resume_ptid = inferior_ptid;
2153 }
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
2165 resume_ptid = ptid_t (inferior_ptid.pid ());
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
2172
2173 return resume_ptid;
2174 }
2175
2176 /* See infrun.h. */
2177
2178 process_stratum_target *
2179 user_visible_resume_target (ptid_t resume_ptid)
2180 {
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184 }
2185
2186 /* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192 static ptid_t
2193 internal_resume_ptid (int user_step)
2194 {
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203 }
2204
2205 /* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208 static void
2209 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210 {
2211 struct thread_info *tp = inferior_thread ();
2212
2213 gdb_assert (!tp->stop_requested);
2214
2215 /* Install inferior's terminal modes. */
2216 target_terminal::inferior ();
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
2242 || displaced_step_in_progress (tp->inf))
2243 target_pass_signals ({});
2244 else
2245 target_pass_signals (signal_pass);
2246
2247 target_resume (resume_ptid, step, sig);
2248
2249 target_commit_resume ();
2250
2251 if (target_can_async_p ())
2252 target_async (1);
2253 }
2254
2255 /* Resume the inferior. SIG is the signal to give the inferior
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
2258
2259 static void
2260 resume_1 (enum gdb_signal sig)
2261 {
2262 struct regcache *regcache = get_current_regcache ();
2263 struct gdbarch *gdbarch = regcache->arch ();
2264 struct thread_info *tp = inferior_thread ();
2265 const address_space *aspace = regcache->aspace ();
2266 ptid_t resume_ptid;
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
2275 int step;
2276
2277 gdb_assert (!tp->stop_requested);
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2286
2287 fprintf_unfiltered (gdb_stdlog,
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
2292 currently_stepping (tp));
2293 }
2294
2295 tp->inf->process_target ()->threads_executing = true;
2296 tp->resumed = true;
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
2303 warning (_("Couldn't deliver signal %s to %s."),
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
2309
2310 if (target_can_async_p ())
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
2340 step = 0;
2341 }
2342
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog,
2347 "infrun: resume (step=%d, signal=%s), "
2348 "trap_expected=%d, current thread [%s] at %s\n",
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
2351 target_pid_to_str (inferior_ptid).c_str (),
2352 paddress (gdbarch, pc));
2353
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2359 {
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
2419 (overstep). */
2420 gdb_assert (!step_over_info_valid_p ());
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
2424 resume_ptid = internal_resume_ptid (user_step);
2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2426 tp->resumed = true;
2427 return;
2428 }
2429 }
2430 }
2431
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
2450 && !step_over_info_valid_p ()
2451 && sig == GDB_SIGNAL_0
2452 && !current_inferior ()->waiting_for_vfork_done)
2453 {
2454 int prepared = displaced_step_prepare (tp);
2455
2456 if (prepared == 0)
2457 {
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
2463 return;
2464 }
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
2472 set_step_over_info (regcache->aspace (),
2473 regcache_read_pc (regcache), 0, tp->global_num);
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
2482
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
2485 pc = regcache_read_pc (get_thread_regcache (tp));
2486
2487 displaced = get_displaced_stepping_state (tp->inf);
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
2490 }
2491 }
2492
2493 /* Do we need to do it the hard way, w/temp breakpoints? */
2494 else if (step)
2495 step = maybe_software_singlestep (gdbarch, pc);
2496
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
2521 if (thread_has_single_step_breakpoints_set (tp)
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
2524 {
2525 /* If we have nested signals or a pending signal is delivered
2526 immediately after a handler returns, might already have
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
2536 delete_single_step_breakpoints (tp);
2537
2538 clear_step_over_info ();
2539 tp->control.trap_expected = 0;
2540
2541 insert_breakpoints ();
2542 }
2543
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2548
2549 /* Decide the set of threads to ask the target to resume. */
2550 if (tp->control.trap_expected)
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
2561 resume_ptid = inferior_ptid;
2562 }
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
2565
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
2568 {
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
2600 target_pid_to_str (tp->ptid).c_str ());
2601
2602 tp->stepped_breakpoint = 1;
2603
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
2608 step = 0;
2609 }
2610
2611 if (debug_displaced
2612 && tp->control.trap_expected
2613 && use_displaced_stepping (tp)
2614 && !step_over_info_valid_p ())
2615 {
2616 struct regcache *resume_regcache = get_thread_regcache (tp);
2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
2626
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
2636
2637 do_target_resume (resume_ptid, step, sig);
2638 tp->resumed = true;
2639 }
2640
2641 /* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
2645 static void
2646 resume (gdb_signal sig)
2647 {
2648 try
2649 {
2650 resume_1 (sig);
2651 }
2652 catch (const gdb_exception &ex)
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
2661 throw;
2662 }
2663 }
2664
2665 \f
2666 /* Proceeding. */
2667
2668 /* See infrun.h. */
2669
2670 /* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677 static ULONGEST current_stop_id;
2678
2679 /* See infrun.h. */
2680
2681 ULONGEST
2682 get_stop_id (void)
2683 {
2684 return current_stop_id;
2685 }
2686
2687 /* Called when we report a user visible stop. */
2688
2689 static void
2690 new_stop_id (void)
2691 {
2692 current_stop_id++;
2693 }
2694
2695 /* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
2698 static void
2699 clear_proceed_status_thread (struct thread_info *tp)
2700 {
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
2704 target_pid_to_str (tp->ptid).c_str ());
2705
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
2717 target_pid_to_str (tp->ptid).c_str ());
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2726
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
2733 currently_stepping (tp));
2734 }
2735 }
2736
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
2742 delete tp->thread_fsm;
2743 tp->thread_fsm = NULL;
2744
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
2748 tp->control.may_range_step = 0;
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2752 tp->control.step_start_function = NULL;
2753 tp->stop_requested = 0;
2754
2755 tp->control.stop_step = 0;
2756
2757 tp->control.proceed_to_finish = 0;
2758
2759 tp->control.stepping_command = 0;
2760
2761 /* Discard any remaining commands or status from previous stop. */
2762 bpstat_clear (&tp->control.stop_bpstat);
2763 }
2764
2765 void
2766 clear_proceed_status (int step)
2767 {
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
2780 if (!non_stop && inferior_ptid != null_ptid)
2781 {
2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2789 clear_proceed_status_thread (tp);
2790 }
2791
2792 if (inferior_ptid != null_ptid)
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
2802
2803 inferior = current_inferior ();
2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
2805 }
2806
2807 gdb::observers::about_to_proceed.notify ();
2808 }
2809
2810 /* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
2813
2814 static int
2815 thread_still_needs_step_over_bp (struct thread_info *tp)
2816 {
2817 if (tp->stepping_over_breakpoint)
2818 {
2819 struct regcache *regcache = get_thread_regcache (tp);
2820
2821 if (breakpoint_here_p (regcache->aspace (),
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830 }
2831
2832 /* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
2836 static step_over_what
2837 thread_still_needs_step_over (struct thread_info *tp)
2838 {
2839 step_over_what what = 0;
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849 }
2850
2851 /* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854 static int
2855 schedlock_applies (struct thread_info *tp)
2856 {
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
2863 }
2864
2865 /* Calls target_commit_resume on all targets. */
2866
2867 static void
2868 commit_resume_all_targets ()
2869 {
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888 }
2889
2890 /* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899 static void
2900 check_multi_target_resumption (process_stratum_target *resume_target)
2901 {
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943 }
2944
2945 /* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953 void
2954 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2955 {
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
2958 CORE_ADDR pc;
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
2961 int started;
2962
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
2970 if (target_can_async_p ())
2971 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2972 return;
2973 }
2974
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
2978 regcache = get_current_regcache ();
2979 gdbarch = regcache->arch ();
2980 const address_space *aspace = regcache->aspace ();
2981
2982 pc = regcache_read_pc_protected (regcache);
2983
2984 thread_info *cur_thr = inferior_thread ();
2985
2986 /* Fill in with reasonable starting values. */
2987 init_thread_stepping_state (cur_thr);
2988
2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2990
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2996 check_multi_target_resumption (resume_target);
2997
2998 if (addr == (CORE_ADDR) -1)
2999 {
3000 if (pc == cur_thr->suspend.stop_pc
3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3002 && execution_direction != EXEC_REVERSE)
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
3011 cur_thr->stepping_over_breakpoint = 1;
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
3017 cur_thr->stepping_over_breakpoint = 1;
3018 }
3019 else
3020 {
3021 regcache_write_pc (regcache, addr);
3022 }
3023
3024 if (siggnal != GDB_SIGNAL_DEFAULT)
3025 cur_thr->suspend.stop_signal = siggnal;
3026
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
3038 if (!cur_thr->control.in_infcall)
3039 set_running (resume_target, resume_ptid, true);
3040
3041 if (debug_infrun)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "infrun: proceed (addr=%s, signal=%s)\n",
3044 paddress (gdbarch, addr),
3045 gdb_signal_to_symbol_string (siggnal));
3046
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
3072 if (!non_stop && !schedlock_applies (cur_thr))
3073 {
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
3076 {
3077 switch_to_thread_no_regs (tp);
3078
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
3081 if (tp == cur_thr)
3082 continue;
3083
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
3088
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
3092 target_pid_to_str (tp->ptid).c_str ());
3093
3094 thread_step_over_chain_enqueue (tp);
3095 }
3096
3097 switch_to_thread (cur_thr);
3098 }
3099
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
3104
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3111
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3114
3115 started = start_step_over ();
3116
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
3146
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
3156
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
3165
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
3170
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
3177 }
3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
3188
3189 commit_resume_all_targets ();
3190
3191 finish_state.release ();
3192
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
3201 if (!target_can_async_p ())
3202 mark_async_event_handler (infrun_async_inferior_event_token);
3203 }
3204 \f
3205
3206 /* Start remote-debugging of a machine over a serial link. */
3207
3208 void
3209 start_remote (int from_tty)
3210 {
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3213
3214 /* Always go on waiting for the target, regardless of the mode. */
3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3216 indicate to wait_for_inferior that a target should timeout if
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
3220 timeout. */
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
3227 for an async run. */
3228 wait_for_inferior (inf);
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
3233 post_create_inferior (current_top_target (), from_tty);
3234
3235 normal_stop ();
3236 }
3237
3238 /* Initialize static vars when a new inferior begins. */
3239
3240 void
3241 init_wait_for_inferior (void)
3242 {
3243 /* These are meaningless until the first time through wait_for_inferior. */
3244
3245 breakpoint_init_inferior (inf_starting);
3246
3247 clear_proceed_status (0);
3248
3249 nullify_last_target_wait_ptid ();
3250
3251 previous_inferior_ptid = inferior_ptid;
3252 }
3253
3254 \f
3255
3256 static void handle_inferior_event (struct execution_control_state *ecs);
3257
3258 static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
3262 static void handle_signal_stop (struct execution_control_state *ecs);
3263 static void check_exception_resume (struct execution_control_state *,
3264 struct frame_info *);
3265
3266 static void end_stepping_range (struct execution_control_state *ecs);
3267 static void stop_waiting (struct execution_control_state *ecs);
3268 static void keep_going (struct execution_control_state *ecs);
3269 static void process_event_stop_test (struct execution_control_state *ecs);
3270 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3271
3272 /* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
3276 static void
3277 infrun_thread_stop_requested (ptid_t ptid)
3278 {
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
3285 for (thread_info *tp : all_threads (curr_target, ptid))
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
3291
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
3297
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
3308
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
3311 clear_inline_frame_state (tp);
3312
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
3323 tp->resumed = true;
3324 }
3325 }
3326
3327 static void
3328 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329 {
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
3332 nullify_last_target_wait_ptid ();
3333 }
3334
3335 /* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
3337
3338 static void
3339 delete_thread_infrun_breakpoints (struct thread_info *tp)
3340 {
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
3343 delete_single_step_breakpoints (tp);
3344 }
3345
3346 /* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350 typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
3352
3353 static void
3354 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3355 {
3356 if (!target_has_execution || inferior_ptid == null_ptid)
3357 return;
3358
3359 if (target_is_non_stop_p ())
3360 {
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
3363 }
3364 else
3365 {
3366 /* In all-stop mode, all threads have stopped. */
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
3369 }
3370 }
3371
3372 /* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375 static void
3376 delete_just_stopped_threads_infrun_breakpoints (void)
3377 {
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3379 }
3380
3381 /* Delete the single-step breakpoints of the threads that just
3382 stopped. */
3383
3384 static void
3385 delete_just_stopped_threads_single_step_breakpoints (void)
3386 {
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
3388 }
3389
3390 /* See infrun.h. */
3391
3392 void
3393 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395 {
3396 std::string status_string = target_waitstatus_to_string (ws);
3397 string_file stb;
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3405 waiton_ptid.pid (),
3406 waiton_ptid.lwp (),
3407 waiton_ptid.tid ());
3408 if (waiton_ptid.pid () != -1)
3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3412 result_ptid.pid (),
3413 result_ptid.lwp (),
3414 result_ptid.tid (),
3415 target_pid_to_str (result_ptid).c_str ());
3416 stb.printf ("infrun: %s\n", status_string.c_str ());
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3421 }
3422
3423 /* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426 static struct thread_info *
3427 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3428 {
3429 int num_events = 0;
3430
3431 auto has_event = [&] (thread_info *tp)
3432 {
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
3435 && tp->suspend.waitstatus_pending_p);
3436 };
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
3440 for (thread_info *tp : inf->non_exited_threads ())
3441 if (has_event (tp))
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
3457 for (thread_info *tp : inf->non_exited_threads ())
3458 if (has_event (tp))
3459 if (random_selector-- == 0)
3460 return tp;
3461
3462 gdb_assert_not_reached ("event thread not found");
3463 }
3464
3465 /* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
3469
3470 static ptid_t
3471 do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
3473 {
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
3485 if (ptid == minus_one_ptid || ptid.is_pid ())
3486 {
3487 tp = random_pending_event_thread (inf, ptid);
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
3494 target_pid_to_str (ptid).c_str ());
3495
3496 /* We have a specific thread to check. */
3497 tp = find_thread_ptid (inf, ptid);
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
3507 struct regcache *regcache = get_thread_regcache (tp);
3508 struct gdbarch *gdbarch = regcache->arch ();
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
3519 target_pid_to_str (tp->ptid).c_str (),
3520 paddress (gdbarch, tp->suspend.stop_pc),
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
3529 target_pid_to_str (tp->ptid).c_str (),
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
3540 target_pid_to_str (tp->ptid).c_str ());
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3553
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
3556 statstr.c_str (),
3557 target_pid_to_str (tp->ptid).c_str ());
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
3570 regcache = get_thread_regcache (tp);
3571 gdbarch = regcache->arch ();
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602 }
3603
3604 /* Returns true if INF has any resumed thread with a status
3605 pending. */
3606
3607 static bool
3608 threads_are_resumed_pending_p (inferior *inf)
3609 {
3610 for (thread_info *tp : inf->non_exited_threads ())
3611 if (tp->resumed
3612 && tp->suspend.waitstatus_pending_p)
3613 return true;
3614
3615 return false;
3616 }
3617
3618 /* Wrapper for target_wait that first checks whether threads have
3619 pending statuses to report before actually asking the target for
3620 more events. Polls for events from all inferiors/targets. */
3621
3622 static bool
3623 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3624 {
3625 int num_inferiors = 0;
3626 int random_selector;
3627
3628 /* For fairness, we pick the first inferior/target to poll at
3629 random, and then continue polling the rest of the inferior list
3630 starting from that one in a circular fashion until the whole list
3631 is polled once. */
3632
3633 auto inferior_matches = [&wait_ptid] (inferior *inf)
3634 {
3635 return (inf->process_target () != NULL
3636 && (threads_are_executing (inf->process_target ())
3637 || threads_are_resumed_pending_p (inf))
3638 && ptid_t (inf->pid).matches (wait_ptid));
3639 };
3640
3641 /* First see how many resumed inferiors we have. */
3642 for (inferior *inf : all_inferiors ())
3643 if (inferior_matches (inf))
3644 num_inferiors++;
3645
3646 if (num_inferiors == 0)
3647 {
3648 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3649 return false;
3650 }
3651
3652 /* Now randomly pick an inferior out of those that were resumed. */
3653 random_selector = (int)
3654 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3655
3656 if (debug_infrun && num_inferiors > 1)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "infrun: Found %d inferiors, starting at #%d\n",
3659 num_inferiors, random_selector);
3660
3661 /* Select the Nth inferior that was resumed. */
3662
3663 inferior *selected = nullptr;
3664
3665 for (inferior *inf : all_inferiors ())
3666 if (inferior_matches (inf))
3667 if (random_selector-- == 0)
3668 {
3669 selected = inf;
3670 break;
3671 }
3672
3673 /* Now poll for events out of each of the resumed inferior's
3674 targets, starting from the selected one. */
3675
3676 auto do_wait = [&] (inferior *inf)
3677 {
3678 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3679 ecs->target = inf->process_target ();
3680 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3681 };
3682
3683 /* Needed in all-stop+target-non-stop mode, because we end up here
3684 spuriously after the target is all stopped and we've already
3685 reported the stop to the user, polling for events. */
3686 scoped_restore_current_thread restore_thread;
3687
3688 int inf_num = selected->num;
3689 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3690 if (inferior_matches (inf))
3691 if (do_wait (inf))
3692 return true;
3693
3694 for (inferior *inf = inferior_list;
3695 inf != NULL && inf->num < inf_num;
3696 inf = inf->next)
3697 if (inferior_matches (inf))
3698 if (do_wait (inf))
3699 return true;
3700
3701 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3702 return false;
3703 }
3704
3705 /* Prepare and stabilize the inferior for detaching it. E.g.,
3706 detaching while a thread is displaced stepping is a recipe for
3707 crashing it, as nothing would readjust the PC out of the scratch
3708 pad. */
3709
3710 void
3711 prepare_for_detach (void)
3712 {
3713 struct inferior *inf = current_inferior ();
3714 ptid_t pid_ptid = ptid_t (inf->pid);
3715
3716 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3717
3718 /* Is any thread of this process displaced stepping? If not,
3719 there's nothing else to do. */
3720 if (displaced->step_thread == nullptr)
3721 return;
3722
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "displaced-stepping in-process while detaching");
3726
3727 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3728
3729 while (displaced->step_thread != nullptr)
3730 {
3731 struct execution_control_state ecss;
3732 struct execution_control_state *ecs;
3733
3734 ecs = &ecss;
3735 memset (ecs, 0, sizeof (*ecs));
3736
3737 overlay_cache_invalid = 1;
3738 /* Flush target cache before starting to handle each event.
3739 Target was running and cache could be stale. This is just a
3740 heuristic. Running threads may modify target memory, but we
3741 don't get any event. */
3742 target_dcache_invalidate ();
3743
3744 do_target_wait (pid_ptid, ecs, 0);
3745
3746 if (debug_infrun)
3747 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3748
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
3752 scoped_finish_thread_state finish_state (inf->process_target (),
3753 minus_one_ptid);
3754
3755 /* Now figure out what to do with the result of the result. */
3756 handle_inferior_event (ecs);
3757
3758 /* No error, don't finish the state yet. */
3759 finish_state.release ();
3760
3761 /* Breakpoints and watchpoints are not installed on the target
3762 at this point, and signals are passed directly to the
3763 inferior, so this must mean the process is gone. */
3764 if (!ecs->wait_some_more)
3765 {
3766 restore_detaching.release ();
3767 error (_("Program exited while detaching"));
3768 }
3769 }
3770
3771 restore_detaching.release ();
3772 }
3773
3774 /* Wait for control to return from inferior to debugger.
3775
3776 If inferior gets a signal, we may decide to start it up again
3777 instead of returning. That is why there is a loop in this function.
3778 When this function actually returns it means the inferior
3779 should be left stopped and GDB should read more commands. */
3780
3781 static void
3782 wait_for_inferior (inferior *inf)
3783 {
3784 if (debug_infrun)
3785 fprintf_unfiltered
3786 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3787
3788 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3789
3790 /* If an error happens while handling the event, propagate GDB's
3791 knowledge of the executing state to the frontend/user running
3792 state. */
3793 scoped_finish_thread_state finish_state
3794 (inf->process_target (), minus_one_ptid);
3795
3796 while (1)
3797 {
3798 struct execution_control_state ecss;
3799 struct execution_control_state *ecs = &ecss;
3800
3801 memset (ecs, 0, sizeof (*ecs));
3802
3803 overlay_cache_invalid = 1;
3804
3805 /* Flush target cache before starting to handle each event.
3806 Target was running and cache could be stale. This is just a
3807 heuristic. Running threads may modify target memory, but we
3808 don't get any event. */
3809 target_dcache_invalidate ();
3810
3811 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3812 ecs->target = inf->process_target ();
3813
3814 if (debug_infrun)
3815 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3816
3817 /* Now figure out what to do with the result of the result. */
3818 handle_inferior_event (ecs);
3819
3820 if (!ecs->wait_some_more)
3821 break;
3822 }
3823
3824 /* No error, don't finish the state yet. */
3825 finish_state.release ();
3826 }
3827
3828 /* Cleanup that reinstalls the readline callback handler, if the
3829 target is running in the background. If while handling the target
3830 event something triggered a secondary prompt, like e.g., a
3831 pagination prompt, we'll have removed the callback handler (see
3832 gdb_readline_wrapper_line). Need to do this as we go back to the
3833 event loop, ready to process further input. Note this has no
3834 effect if the handler hasn't actually been removed, because calling
3835 rl_callback_handler_install resets the line buffer, thus losing
3836 input. */
3837
3838 static void
3839 reinstall_readline_callback_handler_cleanup ()
3840 {
3841 struct ui *ui = current_ui;
3842
3843 if (!ui->async)
3844 {
3845 /* We're not going back to the top level event loop yet. Don't
3846 install the readline callback, as it'd prep the terminal,
3847 readline-style (raw, noecho) (e.g., --batch). We'll install
3848 it the next time the prompt is displayed, when we're ready
3849 for input. */
3850 return;
3851 }
3852
3853 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3854 gdb_rl_callback_handler_reinstall ();
3855 }
3856
3857 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3858 that's just the event thread. In all-stop, that's all threads. */
3859
3860 static void
3861 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3862 {
3863 if (ecs->event_thread != NULL
3864 && ecs->event_thread->thread_fsm != NULL)
3865 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3866
3867 if (!non_stop)
3868 {
3869 for (thread_info *thr : all_non_exited_threads ())
3870 {
3871 if (thr->thread_fsm == NULL)
3872 continue;
3873 if (thr == ecs->event_thread)
3874 continue;
3875
3876 switch_to_thread (thr);
3877 thr->thread_fsm->clean_up (thr);
3878 }
3879
3880 if (ecs->event_thread != NULL)
3881 switch_to_thread (ecs->event_thread);
3882 }
3883 }
3884
3885 /* Helper for all_uis_check_sync_execution_done that works on the
3886 current UI. */
3887
3888 static void
3889 check_curr_ui_sync_execution_done (void)
3890 {
3891 struct ui *ui = current_ui;
3892
3893 if (ui->prompt_state == PROMPT_NEEDED
3894 && ui->async
3895 && !gdb_in_secondary_prompt_p (ui))
3896 {
3897 target_terminal::ours ();
3898 gdb::observers::sync_execution_done.notify ();
3899 ui_register_input_event_handler (ui);
3900 }
3901 }
3902
3903 /* See infrun.h. */
3904
3905 void
3906 all_uis_check_sync_execution_done (void)
3907 {
3908 SWITCH_THRU_ALL_UIS ()
3909 {
3910 check_curr_ui_sync_execution_done ();
3911 }
3912 }
3913
3914 /* See infrun.h. */
3915
3916 void
3917 all_uis_on_sync_execution_starting (void)
3918 {
3919 SWITCH_THRU_ALL_UIS ()
3920 {
3921 if (current_ui->prompt_state == PROMPT_NEEDED)
3922 async_disable_stdin ();
3923 }
3924 }
3925
3926 /* Asynchronous version of wait_for_inferior. It is called by the
3927 event loop whenever a change of state is detected on the file
3928 descriptor corresponding to the target. It can be called more than
3929 once to complete a single execution command. In such cases we need
3930 to keep the state in a global variable ECSS. If it is the last time
3931 that this function is called for a single execution command, then
3932 report to the user that the inferior has stopped, and do the
3933 necessary cleanups. */
3934
3935 void
3936 fetch_inferior_event (void *client_data)
3937 {
3938 struct execution_control_state ecss;
3939 struct execution_control_state *ecs = &ecss;
3940 int cmd_done = 0;
3941
3942 memset (ecs, 0, sizeof (*ecs));
3943
3944 /* Events are always processed with the main UI as current UI. This
3945 way, warnings, debug output, etc. are always consistently sent to
3946 the main console. */
3947 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3948
3949 /* End up with readline processing input, if necessary. */
3950 {
3951 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3952
3953 /* We're handling a live event, so make sure we're doing live
3954 debugging. If we're looking at traceframes while the target is
3955 running, we're going to need to get back to that mode after
3956 handling the event. */
3957 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3958 if (non_stop)
3959 {
3960 maybe_restore_traceframe.emplace ();
3961 set_current_traceframe (-1);
3962 }
3963
3964 /* The user/frontend should not notice a thread switch due to
3965 internal events. Make sure we revert to the user selected
3966 thread and frame after handling the event and running any
3967 breakpoint commands. */
3968 scoped_restore_current_thread restore_thread;
3969
3970 overlay_cache_invalid = 1;
3971 /* Flush target cache before starting to handle each event. Target
3972 was running and cache could be stale. This is just a heuristic.
3973 Running threads may modify target memory, but we don't get any
3974 event. */
3975 target_dcache_invalidate ();
3976
3977 scoped_restore save_exec_dir
3978 = make_scoped_restore (&execution_direction,
3979 target_execution_direction ());
3980
3981 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3982 return;
3983
3984 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3985
3986 /* Switch to the target that generated the event, so we can do
3987 target calls. Any inferior bound to the target will do, so we
3988 just switch to the first we find. */
3989 for (inferior *inf : all_inferiors (ecs->target))
3990 {
3991 switch_to_inferior_no_thread (inf);
3992 break;
3993 }
3994
3995 if (debug_infrun)
3996 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3997
3998 /* If an error happens while handling the event, propagate GDB's
3999 knowledge of the executing state to the frontend/user running
4000 state. */
4001 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4002 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4003
4004 /* Get executed before scoped_restore_current_thread above to apply
4005 still for the thread which has thrown the exception. */
4006 auto defer_bpstat_clear
4007 = make_scope_exit (bpstat_clear_actions);
4008 auto defer_delete_threads
4009 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4010
4011 /* Now figure out what to do with the result of the result. */
4012 handle_inferior_event (ecs);
4013
4014 if (!ecs->wait_some_more)
4015 {
4016 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4017 int should_stop = 1;
4018 struct thread_info *thr = ecs->event_thread;
4019
4020 delete_just_stopped_threads_infrun_breakpoints ();
4021
4022 if (thr != NULL)
4023 {
4024 struct thread_fsm *thread_fsm = thr->thread_fsm;
4025
4026 if (thread_fsm != NULL)
4027 should_stop = thread_fsm->should_stop (thr);
4028 }
4029
4030 if (!should_stop)
4031 {
4032 keep_going (ecs);
4033 }
4034 else
4035 {
4036 bool should_notify_stop = true;
4037 int proceeded = 0;
4038
4039 clean_up_just_stopped_threads_fsms (ecs);
4040
4041 if (thr != NULL && thr->thread_fsm != NULL)
4042 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4043
4044 if (should_notify_stop)
4045 {
4046 /* We may not find an inferior if this was a process exit. */
4047 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4048 proceeded = normal_stop ();
4049 }
4050
4051 if (!proceeded)
4052 {
4053 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4054 cmd_done = 1;
4055 }
4056
4057 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4058 previously selected thread is gone. We have two
4059 choices - switch to no thread selected, or restore the
4060 previously selected thread (now exited). We chose the
4061 later, just because that's what GDB used to do. After
4062 this, "info threads" says "The current thread <Thread
4063 ID 2> has terminated." instead of "No thread
4064 selected.". */
4065 if (!non_stop
4066 && cmd_done
4067 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4068 restore_thread.dont_restore ();
4069 }
4070 }
4071
4072 defer_delete_threads.release ();
4073 defer_bpstat_clear.release ();
4074
4075 /* No error, don't finish the thread states yet. */
4076 finish_state.release ();
4077
4078 /* This scope is used to ensure that readline callbacks are
4079 reinstalled here. */
4080 }
4081
4082 /* If a UI was in sync execution mode, and now isn't, restore its
4083 prompt (a synchronous execution command has finished, and we're
4084 ready for input). */
4085 all_uis_check_sync_execution_done ();
4086
4087 if (cmd_done
4088 && exec_done_display_p
4089 && (inferior_ptid == null_ptid
4090 || inferior_thread ()->state != THREAD_RUNNING))
4091 printf_unfiltered (_("completed.\n"));
4092 }
4093
4094 /* See infrun.h. */
4095
4096 void
4097 set_step_info (thread_info *tp, struct frame_info *frame,
4098 struct symtab_and_line sal)
4099 {
4100 /* This can be removed once this function no longer implicitly relies on the
4101 inferior_ptid value. */
4102 gdb_assert (inferior_ptid == tp->ptid);
4103
4104 tp->control.step_frame_id = get_frame_id (frame);
4105 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4106
4107 tp->current_symtab = sal.symtab;
4108 tp->current_line = sal.line;
4109 }
4110
4111 /* Clear context switchable stepping state. */
4112
4113 void
4114 init_thread_stepping_state (struct thread_info *tss)
4115 {
4116 tss->stepped_breakpoint = 0;
4117 tss->stepping_over_breakpoint = 0;
4118 tss->stepping_over_watchpoint = 0;
4119 tss->step_after_step_resume_breakpoint = 0;
4120 }
4121
4122 /* See infrun.h. */
4123
4124 void
4125 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4126 target_waitstatus status)
4127 {
4128 target_last_proc_target = target;
4129 target_last_wait_ptid = ptid;
4130 target_last_waitstatus = status;
4131 }
4132
4133 /* See infrun.h. */
4134
4135 void
4136 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4137 target_waitstatus *status)
4138 {
4139 if (target != nullptr)
4140 *target = target_last_proc_target;
4141 if (ptid != nullptr)
4142 *ptid = target_last_wait_ptid;
4143 if (status != nullptr)
4144 *status = target_last_waitstatus;
4145 }
4146
4147 /* See infrun.h. */
4148
4149 void
4150 nullify_last_target_wait_ptid (void)
4151 {
4152 target_last_proc_target = nullptr;
4153 target_last_wait_ptid = minus_one_ptid;
4154 target_last_waitstatus = {};
4155 }
4156
4157 /* Switch thread contexts. */
4158
4159 static void
4160 context_switch (execution_control_state *ecs)
4161 {
4162 if (debug_infrun
4163 && ecs->ptid != inferior_ptid
4164 && (inferior_ptid == null_ptid
4165 || ecs->event_thread != inferior_thread ()))
4166 {
4167 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4168 target_pid_to_str (inferior_ptid).c_str ());
4169 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4170 target_pid_to_str (ecs->ptid).c_str ());
4171 }
4172
4173 switch_to_thread (ecs->event_thread);
4174 }
4175
4176 /* If the target can't tell whether we've hit breakpoints
4177 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4178 check whether that could have been caused by a breakpoint. If so,
4179 adjust the PC, per gdbarch_decr_pc_after_break. */
4180
4181 static void
4182 adjust_pc_after_break (struct thread_info *thread,
4183 struct target_waitstatus *ws)
4184 {
4185 struct regcache *regcache;
4186 struct gdbarch *gdbarch;
4187 CORE_ADDR breakpoint_pc, decr_pc;
4188
4189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4190 we aren't, just return.
4191
4192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4194 implemented by software breakpoints should be handled through the normal
4195 breakpoint layer.
4196
4197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4198 different signals (SIGILL or SIGEMT for instance), but it is less
4199 clear where the PC is pointing afterwards. It may not match
4200 gdbarch_decr_pc_after_break. I don't know any specific target that
4201 generates these signals at breakpoints (the code has been in GDB since at
4202 least 1992) so I can not guess how to handle them here.
4203
4204 In earlier versions of GDB, a target with
4205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4207 target with both of these set in GDB history, and it seems unlikely to be
4208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4209
4210 if (ws->kind != TARGET_WAITKIND_STOPPED)
4211 return;
4212
4213 if (ws->value.sig != GDB_SIGNAL_TRAP)
4214 return;
4215
4216 /* In reverse execution, when a breakpoint is hit, the instruction
4217 under it has already been de-executed. The reported PC always
4218 points at the breakpoint address, so adjusting it further would
4219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4220 architecture:
4221
4222 B1 0x08000000 : INSN1
4223 B2 0x08000001 : INSN2
4224 0x08000002 : INSN3
4225 PC -> 0x08000003 : INSN4
4226
4227 Say you're stopped at 0x08000003 as above. Reverse continuing
4228 from that point should hit B2 as below. Reading the PC when the
4229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4230 been de-executed already.
4231
4232 B1 0x08000000 : INSN1
4233 B2 PC -> 0x08000001 : INSN2
4234 0x08000002 : INSN3
4235 0x08000003 : INSN4
4236
4237 We can't apply the same logic as for forward execution, because
4238 we would wrongly adjust the PC to 0x08000000, since there's a
4239 breakpoint at PC - 1. We'd then report a hit on B1, although
4240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4241 behaviour. */
4242 if (execution_direction == EXEC_REVERSE)
4243 return;
4244
4245 /* If the target can tell whether the thread hit a SW breakpoint,
4246 trust it. Targets that can tell also adjust the PC
4247 themselves. */
4248 if (target_supports_stopped_by_sw_breakpoint ())
4249 return;
4250
4251 /* Note that relying on whether a breakpoint is planted in memory to
4252 determine this can fail. E.g,. the breakpoint could have been
4253 removed since. Or the thread could have been told to step an
4254 instruction the size of a breakpoint instruction, and only
4255 _after_ was a breakpoint inserted at its address. */
4256
4257 /* If this target does not decrement the PC after breakpoints, then
4258 we have nothing to do. */
4259 regcache = get_thread_regcache (thread);
4260 gdbarch = regcache->arch ();
4261
4262 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4263 if (decr_pc == 0)
4264 return;
4265
4266 const address_space *aspace = regcache->aspace ();
4267
4268 /* Find the location where (if we've hit a breakpoint) the
4269 breakpoint would be. */
4270 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4271
4272 /* If the target can't tell whether a software breakpoint triggered,
4273 fallback to figuring it out based on breakpoints we think were
4274 inserted in the target, and on whether the thread was stepped or
4275 continued. */
4276
4277 /* Check whether there actually is a software breakpoint inserted at
4278 that location.
4279
4280 If in non-stop mode, a race condition is possible where we've
4281 removed a breakpoint, but stop events for that breakpoint were
4282 already queued and arrive later. To suppress those spurious
4283 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4284 and retire them after a number of stop events are reported. Note
4285 this is an heuristic and can thus get confused. The real fix is
4286 to get the "stopped by SW BP and needs adjustment" info out of
4287 the target/kernel (and thus never reach here; see above). */
4288 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4289 || (target_is_non_stop_p ()
4290 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4291 {
4292 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4293
4294 if (record_full_is_used ())
4295 restore_operation_disable.emplace
4296 (record_full_gdb_operation_disable_set ());
4297
4298 /* When using hardware single-step, a SIGTRAP is reported for both
4299 a completed single-step and a software breakpoint. Need to
4300 differentiate between the two, as the latter needs adjusting
4301 but the former does not.
4302
4303 The SIGTRAP can be due to a completed hardware single-step only if
4304 - we didn't insert software single-step breakpoints
4305 - this thread is currently being stepped
4306
4307 If any of these events did not occur, we must have stopped due
4308 to hitting a software breakpoint, and have to back up to the
4309 breakpoint address.
4310
4311 As a special case, we could have hardware single-stepped a
4312 software breakpoint. In this case (prev_pc == breakpoint_pc),
4313 we also need to back up to the breakpoint address. */
4314
4315 if (thread_has_single_step_breakpoints_set (thread)
4316 || !currently_stepping (thread)
4317 || (thread->stepped_breakpoint
4318 && thread->prev_pc == breakpoint_pc))
4319 regcache_write_pc (regcache, breakpoint_pc);
4320 }
4321 }
4322
4323 static int
4324 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4325 {
4326 for (frame = get_prev_frame (frame);
4327 frame != NULL;
4328 frame = get_prev_frame (frame))
4329 {
4330 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4331 return 1;
4332 if (get_frame_type (frame) != INLINE_FRAME)
4333 break;
4334 }
4335
4336 return 0;
4337 }
4338
4339 /* Look for an inline frame that is marked for skip.
4340 If PREV_FRAME is TRUE start at the previous frame,
4341 otherwise start at the current frame. Stop at the
4342 first non-inline frame, or at the frame where the
4343 step started. */
4344
4345 static bool
4346 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4347 {
4348 struct frame_info *frame = get_current_frame ();
4349
4350 if (prev_frame)
4351 frame = get_prev_frame (frame);
4352
4353 for (; frame != NULL; frame = get_prev_frame (frame))
4354 {
4355 const char *fn = NULL;
4356 symtab_and_line sal;
4357 struct symbol *sym;
4358
4359 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4360 break;
4361 if (get_frame_type (frame) != INLINE_FRAME)
4362 break;
4363
4364 sal = find_frame_sal (frame);
4365 sym = get_frame_function (frame);
4366
4367 if (sym != NULL)
4368 fn = sym->print_name ();
4369
4370 if (sal.line != 0
4371 && function_name_is_marked_for_skip (fn, sal))
4372 return true;
4373 }
4374
4375 return false;
4376 }
4377
4378 /* If the event thread has the stop requested flag set, pretend it
4379 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4380 target_stop). */
4381
4382 static bool
4383 handle_stop_requested (struct execution_control_state *ecs)
4384 {
4385 if (ecs->event_thread->stop_requested)
4386 {
4387 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4388 ecs->ws.value.sig = GDB_SIGNAL_0;
4389 handle_signal_stop (ecs);
4390 return true;
4391 }
4392 return false;
4393 }
4394
4395 /* Auxiliary function that handles syscall entry/return events.
4396 It returns 1 if the inferior should keep going (and GDB
4397 should ignore the event), or 0 if the event deserves to be
4398 processed. */
4399
4400 static int
4401 handle_syscall_event (struct execution_control_state *ecs)
4402 {
4403 struct regcache *regcache;
4404 int syscall_number;
4405
4406 context_switch (ecs);
4407
4408 regcache = get_thread_regcache (ecs->event_thread);
4409 syscall_number = ecs->ws.value.syscall_number;
4410 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4411
4412 if (catch_syscall_enabled () > 0
4413 && catching_syscall_number (syscall_number) > 0)
4414 {
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4417 syscall_number);
4418
4419 ecs->event_thread->control.stop_bpstat
4420 = bpstat_stop_status (regcache->aspace (),
4421 ecs->event_thread->suspend.stop_pc,
4422 ecs->event_thread, &ecs->ws);
4423
4424 if (handle_stop_requested (ecs))
4425 return 0;
4426
4427 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4428 {
4429 /* Catchpoint hit. */
4430 return 0;
4431 }
4432 }
4433
4434 if (handle_stop_requested (ecs))
4435 return 0;
4436
4437 /* If no catchpoint triggered for this, then keep going. */
4438 keep_going (ecs);
4439 return 1;
4440 }
4441
4442 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4443
4444 static void
4445 fill_in_stop_func (struct gdbarch *gdbarch,
4446 struct execution_control_state *ecs)
4447 {
4448 if (!ecs->stop_func_filled_in)
4449 {
4450 const block *block;
4451
4452 /* Don't care about return value; stop_func_start and stop_func_name
4453 will both be 0 if it doesn't work. */
4454 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4455 &ecs->stop_func_name,
4456 &ecs->stop_func_start,
4457 &ecs->stop_func_end,
4458 &block);
4459
4460 /* The call to find_pc_partial_function, above, will set
4461 stop_func_start and stop_func_end to the start and end
4462 of the range containing the stop pc. If this range
4463 contains the entry pc for the block (which is always the
4464 case for contiguous blocks), advance stop_func_start past
4465 the function's start offset and entrypoint. Note that
4466 stop_func_start is NOT advanced when in a range of a
4467 non-contiguous block that does not contain the entry pc. */
4468 if (block != nullptr
4469 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4470 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4471 {
4472 ecs->stop_func_start
4473 += gdbarch_deprecated_function_start_offset (gdbarch);
4474
4475 if (gdbarch_skip_entrypoint_p (gdbarch))
4476 ecs->stop_func_start
4477 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4478 }
4479
4480 ecs->stop_func_filled_in = 1;
4481 }
4482 }
4483
4484
4485 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4486
4487 static enum stop_kind
4488 get_inferior_stop_soon (execution_control_state *ecs)
4489 {
4490 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4491
4492 gdb_assert (inf != NULL);
4493 return inf->control.stop_soon;
4494 }
4495
4496 /* Poll for one event out of the current target. Store the resulting
4497 waitstatus in WS, and return the event ptid. Does not block. */
4498
4499 static ptid_t
4500 poll_one_curr_target (struct target_waitstatus *ws)
4501 {
4502 ptid_t event_ptid;
4503
4504 overlay_cache_invalid = 1;
4505
4506 /* Flush target cache before starting to handle each event.
4507 Target was running and cache could be stale. This is just a
4508 heuristic. Running threads may modify target memory, but we
4509 don't get any event. */
4510 target_dcache_invalidate ();
4511
4512 if (deprecated_target_wait_hook)
4513 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4514 else
4515 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4516
4517 if (debug_infrun)
4518 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4519
4520 return event_ptid;
4521 }
4522
4523 /* An event reported by wait_one. */
4524
4525 struct wait_one_event
4526 {
4527 /* The target the event came out of. */
4528 process_stratum_target *target;
4529
4530 /* The PTID the event was for. */
4531 ptid_t ptid;
4532
4533 /* The waitstatus. */
4534 target_waitstatus ws;
4535 };
4536
4537 /* Wait for one event out of any target. */
4538
4539 static wait_one_event
4540 wait_one ()
4541 {
4542 while (1)
4543 {
4544 for (inferior *inf : all_inferiors ())
4545 {
4546 process_stratum_target *target = inf->process_target ();
4547 if (target == NULL
4548 || !target->is_async_p ()
4549 || !target->threads_executing)
4550 continue;
4551
4552 switch_to_inferior_no_thread (inf);
4553
4554 wait_one_event event;
4555 event.target = target;
4556 event.ptid = poll_one_curr_target (&event.ws);
4557
4558 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4559 {
4560 /* If nothing is resumed, remove the target from the
4561 event loop. */
4562 target_async (0);
4563 }
4564 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4565 return event;
4566 }
4567
4568 /* Block waiting for some event. */
4569
4570 fd_set readfds;
4571 int nfds = 0;
4572
4573 FD_ZERO (&readfds);
4574
4575 for (inferior *inf : all_inferiors ())
4576 {
4577 process_stratum_target *target = inf->process_target ();
4578 if (target == NULL
4579 || !target->is_async_p ()
4580 || !target->threads_executing)
4581 continue;
4582
4583 int fd = target->async_wait_fd ();
4584 FD_SET (fd, &readfds);
4585 if (nfds <= fd)
4586 nfds = fd + 1;
4587 }
4588
4589 if (nfds == 0)
4590 {
4591 /* No waitable targets left. All must be stopped. */
4592 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4593 }
4594
4595 QUIT;
4596
4597 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4598 if (numfds < 0)
4599 {
4600 if (errno == EINTR)
4601 continue;
4602 else
4603 perror_with_name ("interruptible_select");
4604 }
4605 }
4606 }
4607
4608 /* Save the thread's event and stop reason to process it later. */
4609
4610 static void
4611 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4612 {
4613 if (debug_infrun)
4614 {
4615 std::string statstr = target_waitstatus_to_string (ws);
4616
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: saving status %s for %d.%ld.%ld\n",
4619 statstr.c_str (),
4620 tp->ptid.pid (),
4621 tp->ptid.lwp (),
4622 tp->ptid.tid ());
4623 }
4624
4625 /* Record for later. */
4626 tp->suspend.waitstatus = *ws;
4627 tp->suspend.waitstatus_pending_p = 1;
4628
4629 struct regcache *regcache = get_thread_regcache (tp);
4630 const address_space *aspace = regcache->aspace ();
4631
4632 if (ws->kind == TARGET_WAITKIND_STOPPED
4633 && ws->value.sig == GDB_SIGNAL_TRAP)
4634 {
4635 CORE_ADDR pc = regcache_read_pc (regcache);
4636
4637 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4638
4639 scoped_restore_current_thread restore_thread;
4640 switch_to_thread (tp);
4641
4642 if (target_stopped_by_watchpoint ())
4643 {
4644 tp->suspend.stop_reason
4645 = TARGET_STOPPED_BY_WATCHPOINT;
4646 }
4647 else if (target_supports_stopped_by_sw_breakpoint ()
4648 && target_stopped_by_sw_breakpoint ())
4649 {
4650 tp->suspend.stop_reason
4651 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4652 }
4653 else if (target_supports_stopped_by_hw_breakpoint ()
4654 && target_stopped_by_hw_breakpoint ())
4655 {
4656 tp->suspend.stop_reason
4657 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4658 }
4659 else if (!target_supports_stopped_by_hw_breakpoint ()
4660 && hardware_breakpoint_inserted_here_p (aspace,
4661 pc))
4662 {
4663 tp->suspend.stop_reason
4664 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4665 }
4666 else if (!target_supports_stopped_by_sw_breakpoint ()
4667 && software_breakpoint_inserted_here_p (aspace,
4668 pc))
4669 {
4670 tp->suspend.stop_reason
4671 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4672 }
4673 else if (!thread_has_single_step_breakpoints_set (tp)
4674 && currently_stepping (tp))
4675 {
4676 tp->suspend.stop_reason
4677 = TARGET_STOPPED_BY_SINGLE_STEP;
4678 }
4679 }
4680 }
4681
4682 /* Mark the non-executing threads accordingly. In all-stop, all
4683 threads of all processes are stopped when we get any event
4684 reported. In non-stop mode, only the event thread stops. */
4685
4686 static void
4687 mark_non_executing_threads (process_stratum_target *target,
4688 ptid_t event_ptid,
4689 struct target_waitstatus ws)
4690 {
4691 ptid_t mark_ptid;
4692
4693 if (!target_is_non_stop_p ())
4694 mark_ptid = minus_one_ptid;
4695 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4696 || ws.kind == TARGET_WAITKIND_EXITED)
4697 {
4698 /* If we're handling a process exit in non-stop mode, even
4699 though threads haven't been deleted yet, one would think
4700 that there is nothing to do, as threads of the dead process
4701 will be soon deleted, and threads of any other process were
4702 left running. However, on some targets, threads survive a
4703 process exit event. E.g., for the "checkpoint" command,
4704 when the current checkpoint/fork exits, linux-fork.c
4705 automatically switches to another fork from within
4706 target_mourn_inferior, by associating the same
4707 inferior/thread to another fork. We haven't mourned yet at
4708 this point, but we must mark any threads left in the
4709 process as not-executing so that finish_thread_state marks
4710 them stopped (in the user's perspective) if/when we present
4711 the stop to the user. */
4712 mark_ptid = ptid_t (event_ptid.pid ());
4713 }
4714 else
4715 mark_ptid = event_ptid;
4716
4717 set_executing (target, mark_ptid, false);
4718
4719 /* Likewise the resumed flag. */
4720 set_resumed (target, mark_ptid, false);
4721 }
4722
4723 /* See infrun.h. */
4724
4725 void
4726 stop_all_threads (void)
4727 {
4728 /* We may need multiple passes to discover all threads. */
4729 int pass;
4730 int iterations = 0;
4731
4732 gdb_assert (exists_non_stop_target ());
4733
4734 if (debug_infrun)
4735 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4736
4737 scoped_restore_current_thread restore_thread;
4738
4739 /* Enable thread events of all targets. */
4740 for (auto *target : all_non_exited_process_targets ())
4741 {
4742 switch_to_target_no_thread (target);
4743 target_thread_events (true);
4744 }
4745
4746 SCOPE_EXIT
4747 {
4748 /* Disable thread events of all targets. */
4749 for (auto *target : all_non_exited_process_targets ())
4750 {
4751 switch_to_target_no_thread (target);
4752 target_thread_events (false);
4753 }
4754
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4757 };
4758
4759 /* Request threads to stop, and then wait for the stops. Because
4760 threads we already know about can spawn more threads while we're
4761 trying to stop them, and we only learn about new threads when we
4762 update the thread list, do this in a loop, and keep iterating
4763 until two passes find no threads that need to be stopped. */
4764 for (pass = 0; pass < 2; pass++, iterations++)
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stop_all_threads, pass=%d, "
4769 "iterations=%d\n", pass, iterations);
4770 while (1)
4771 {
4772 int waits_needed = 0;
4773
4774 for (auto *target : all_non_exited_process_targets ())
4775 {
4776 switch_to_target_no_thread (target);
4777 update_thread_list ();
4778 }
4779
4780 /* Go through all threads looking for threads that we need
4781 to tell the target to stop. */
4782 for (thread_info *t : all_non_exited_threads ())
4783 {
4784 /* For a single-target setting with an all-stop target,
4785 we would not even arrive here. For a multi-target
4786 setting, until GDB is able to handle a mixture of
4787 all-stop and non-stop targets, simply skip all-stop
4788 targets' threads. This should be fine due to the
4789 protection of 'check_multi_target_resumption'. */
4790
4791 switch_to_thread_no_regs (t);
4792 if (!target_is_non_stop_p ())
4793 continue;
4794
4795 if (t->executing)
4796 {
4797 /* If already stopping, don't request a stop again.
4798 We just haven't seen the notification yet. */
4799 if (!t->stop_requested)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: %s executing, "
4804 "need stop\n",
4805 target_pid_to_str (t->ptid).c_str ());
4806 target_stop (t->ptid);
4807 t->stop_requested = 1;
4808 }
4809 else
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: %s executing, "
4814 "already stopping\n",
4815 target_pid_to_str (t->ptid).c_str ());
4816 }
4817
4818 if (t->stop_requested)
4819 waits_needed++;
4820 }
4821 else
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: %s not executing\n",
4826 target_pid_to_str (t->ptid).c_str ());
4827
4828 /* The thread may be not executing, but still be
4829 resumed with a pending status to process. */
4830 t->resumed = false;
4831 }
4832 }
4833
4834 if (waits_needed == 0)
4835 break;
4836
4837 /* If we find new threads on the second iteration, restart
4838 over. We want to see two iterations in a row with all
4839 threads stopped. */
4840 if (pass > 0)
4841 pass = -1;
4842
4843 for (int i = 0; i < waits_needed; i++)
4844 {
4845 wait_one_event event = wait_one ();
4846
4847 if (debug_infrun)
4848 {
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: stop_all_threads %s %s\n",
4851 target_waitstatus_to_string (&event.ws).c_str (),
4852 target_pid_to_str (event.ptid).c_str ());
4853 }
4854
4855 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4856 {
4857 /* All resumed threads exited. */
4858 break;
4859 }
4860 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4861 || event.ws.kind == TARGET_WAITKIND_EXITED
4862 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4863 {
4864 /* One thread/process exited/signalled. */
4865
4866 thread_info *t = nullptr;
4867
4868 /* The target may have reported just a pid. If so, try
4869 the first non-exited thread. */
4870 if (event.ptid.is_pid ())
4871 {
4872 int pid = event.ptid.pid ();
4873 inferior *inf = find_inferior_pid (event.target, pid);
4874 for (thread_info *tp : inf->non_exited_threads ())
4875 {
4876 t = tp;
4877 break;
4878 }
4879
4880 /* If there is no available thread, the event would
4881 have to be appended to a per-inferior event list,
4882 which does not exist (and if it did, we'd have
4883 to adjust run control command to be able to
4884 resume such an inferior). We assert here instead
4885 of going into an infinite loop. */
4886 gdb_assert (t != nullptr);
4887
4888 if (debug_infrun)
4889 fprintf_unfiltered (gdb_stdlog,
4890 "infrun: stop_all_threads, using %s\n",
4891 target_pid_to_str (t->ptid).c_str ());
4892 }
4893 else
4894 {
4895 t = find_thread_ptid (event.target, event.ptid);
4896 /* Check if this is the first time we see this thread.
4897 Don't bother adding if it individually exited. */
4898 if (t == nullptr
4899 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4900 t = add_thread (event.target, event.ptid);
4901 }
4902
4903 if (t != nullptr)
4904 {
4905 /* Set the threads as non-executing to avoid
4906 another stop attempt on them. */
4907 switch_to_thread_no_regs (t);
4908 mark_non_executing_threads (event.target, event.ptid,
4909 event.ws);
4910 save_waitstatus (t, &event.ws);
4911 t->stop_requested = false;
4912 }
4913 }
4914 else
4915 {
4916 thread_info *t = find_thread_ptid (event.target, event.ptid);
4917 if (t == NULL)
4918 t = add_thread (event.target, event.ptid);
4919
4920 t->stop_requested = 0;
4921 t->executing = 0;
4922 t->resumed = false;
4923 t->control.may_range_step = 0;
4924
4925 /* This may be the first time we see the inferior report
4926 a stop. */
4927 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4928 if (inf->needs_setup)
4929 {
4930 switch_to_thread_no_regs (t);
4931 setup_inferior (0);
4932 }
4933
4934 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4935 && event.ws.value.sig == GDB_SIGNAL_0)
4936 {
4937 /* We caught the event that we intended to catch, so
4938 there's no event pending. */
4939 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4940 t->suspend.waitstatus_pending_p = 0;
4941
4942 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4943 {
4944 /* Add it back to the step-over queue. */
4945 if (debug_infrun)
4946 {
4947 fprintf_unfiltered (gdb_stdlog,
4948 "infrun: displaced-step of %s "
4949 "canceled: adding back to the "
4950 "step-over queue\n",
4951 target_pid_to_str (t->ptid).c_str ());
4952 }
4953 t->control.trap_expected = 0;
4954 thread_step_over_chain_enqueue (t);
4955 }
4956 }
4957 else
4958 {
4959 enum gdb_signal sig;
4960 struct regcache *regcache;
4961
4962 if (debug_infrun)
4963 {
4964 std::string statstr = target_waitstatus_to_string (&event.ws);
4965
4966 fprintf_unfiltered (gdb_stdlog,
4967 "infrun: target_wait %s, saving "
4968 "status for %d.%ld.%ld\n",
4969 statstr.c_str (),
4970 t->ptid.pid (),
4971 t->ptid.lwp (),
4972 t->ptid.tid ());
4973 }
4974
4975 /* Record for later. */
4976 save_waitstatus (t, &event.ws);
4977
4978 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4979 ? event.ws.value.sig : GDB_SIGNAL_0);
4980
4981 if (displaced_step_fixup (t, sig) < 0)
4982 {
4983 /* Add it back to the step-over queue. */
4984 t->control.trap_expected = 0;
4985 thread_step_over_chain_enqueue (t);
4986 }
4987
4988 regcache = get_thread_regcache (t);
4989 t->suspend.stop_pc = regcache_read_pc (regcache);
4990
4991 if (debug_infrun)
4992 {
4993 fprintf_unfiltered (gdb_stdlog,
4994 "infrun: saved stop_pc=%s for %s "
4995 "(currently_stepping=%d)\n",
4996 paddress (target_gdbarch (),
4997 t->suspend.stop_pc),
4998 target_pid_to_str (t->ptid).c_str (),
4999 currently_stepping (t));
5000 }
5001 }
5002 }
5003 }
5004 }
5005 }
5006 }
5007
5008 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5009
5010 static int
5011 handle_no_resumed (struct execution_control_state *ecs)
5012 {
5013 if (target_can_async_p ())
5014 {
5015 int any_sync = 0;
5016
5017 for (ui *ui : all_uis ())
5018 {
5019 if (ui->prompt_state == PROMPT_BLOCKED)
5020 {
5021 any_sync = 1;
5022 break;
5023 }
5024 }
5025 if (!any_sync)
5026 {
5027 /* There were no unwaited-for children left in the target, but,
5028 we're not synchronously waiting for events either. Just
5029 ignore. */
5030
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog,
5033 "infrun: TARGET_WAITKIND_NO_RESUMED "
5034 "(ignoring: bg)\n");
5035 prepare_to_wait (ecs);
5036 return 1;
5037 }
5038 }
5039
5040 /* Otherwise, if we were running a synchronous execution command, we
5041 may need to cancel it and give the user back the terminal.
5042
5043 In non-stop mode, the target can't tell whether we've already
5044 consumed previous stop events, so it can end up sending us a
5045 no-resumed event like so:
5046
5047 #0 - thread 1 is left stopped
5048
5049 #1 - thread 2 is resumed and hits breakpoint
5050 -> TARGET_WAITKIND_STOPPED
5051
5052 #2 - thread 3 is resumed and exits
5053 this is the last resumed thread, so
5054 -> TARGET_WAITKIND_NO_RESUMED
5055
5056 #3 - gdb processes stop for thread 2 and decides to re-resume
5057 it.
5058
5059 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5060 thread 2 is now resumed, so the event should be ignored.
5061
5062 IOW, if the stop for thread 2 doesn't end a foreground command,
5063 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5064 event. But it could be that the event meant that thread 2 itself
5065 (or whatever other thread was the last resumed thread) exited.
5066
5067 To address this we refresh the thread list and check whether we
5068 have resumed threads _now_. In the example above, this removes
5069 thread 3 from the thread list. If thread 2 was re-resumed, we
5070 ignore this event. If we find no thread resumed, then we cancel
5071 the synchronous command show "no unwaited-for " to the user. */
5072 update_thread_list ();
5073
5074 for (thread_info *thread : all_non_exited_threads (ecs->target))
5075 {
5076 if (thread->executing
5077 || thread->suspend.waitstatus_pending_p)
5078 {
5079 /* There were no unwaited-for children left in the target at
5080 some point, but there are now. Just ignore. */
5081 if (debug_infrun)
5082 fprintf_unfiltered (gdb_stdlog,
5083 "infrun: TARGET_WAITKIND_NO_RESUMED "
5084 "(ignoring: found resumed)\n");
5085 prepare_to_wait (ecs);
5086 return 1;
5087 }
5088 }
5089
5090 /* Go ahead and report the event. */
5091 return 0;
5092 }
5093
5094 /* Given an execution control state that has been freshly filled in by
5095 an event from the inferior, figure out what it means and take
5096 appropriate action.
5097
5098 The alternatives are:
5099
5100 1) stop_waiting and return; to really stop and return to the
5101 debugger.
5102
5103 2) keep_going and return; to wait for the next event (set
5104 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5105 once). */
5106
5107 static void
5108 handle_inferior_event (struct execution_control_state *ecs)
5109 {
5110 /* Make sure that all temporary struct value objects that were
5111 created during the handling of the event get deleted at the
5112 end. */
5113 scoped_value_mark free_values;
5114
5115 enum stop_kind stop_soon;
5116
5117 if (debug_infrun)
5118 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5119 target_waitstatus_to_string (&ecs->ws).c_str ());
5120
5121 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5122 {
5123 /* We had an event in the inferior, but we are not interested in
5124 handling it at this level. The lower layers have already
5125 done what needs to be done, if anything.
5126
5127 One of the possible circumstances for this is when the
5128 inferior produces output for the console. The inferior has
5129 not stopped, and we are ignoring the event. Another possible
5130 circumstance is any event which the lower level knows will be
5131 reported multiple times without an intervening resume. */
5132 prepare_to_wait (ecs);
5133 return;
5134 }
5135
5136 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5137 {
5138 prepare_to_wait (ecs);
5139 return;
5140 }
5141
5142 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5143 && handle_no_resumed (ecs))
5144 return;
5145
5146 /* Cache the last target/ptid/waitstatus. */
5147 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5148
5149 /* Always clear state belonging to the previous time we stopped. */
5150 stop_stack_dummy = STOP_NONE;
5151
5152 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5153 {
5154 /* No unwaited-for children left. IOW, all resumed children
5155 have exited. */
5156 stop_print_frame = 0;
5157 stop_waiting (ecs);
5158 return;
5159 }
5160
5161 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5162 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5163 {
5164 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5165 /* If it's a new thread, add it to the thread database. */
5166 if (ecs->event_thread == NULL)
5167 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5168
5169 /* Disable range stepping. If the next step request could use a
5170 range, this will be end up re-enabled then. */
5171 ecs->event_thread->control.may_range_step = 0;
5172 }
5173
5174 /* Dependent on valid ECS->EVENT_THREAD. */
5175 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5176
5177 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5178 reinit_frame_cache ();
5179
5180 breakpoint_retire_moribund ();
5181
5182 /* First, distinguish signals caused by the debugger from signals
5183 that have to do with the program's own actions. Note that
5184 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5185 on the operating system version. Here we detect when a SIGILL or
5186 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5187 something similar for SIGSEGV, since a SIGSEGV will be generated
5188 when we're trying to execute a breakpoint instruction on a
5189 non-executable stack. This happens for call dummy breakpoints
5190 for architectures like SPARC that place call dummies on the
5191 stack. */
5192 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5193 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5194 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5195 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5196 {
5197 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5198
5199 if (breakpoint_inserted_here_p (regcache->aspace (),
5200 regcache_read_pc (regcache)))
5201 {
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: Treating signal as SIGTRAP\n");
5205 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5206 }
5207 }
5208
5209 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5210
5211 switch (ecs->ws.kind)
5212 {
5213 case TARGET_WAITKIND_LOADED:
5214 context_switch (ecs);
5215 /* Ignore gracefully during startup of the inferior, as it might
5216 be the shell which has just loaded some objects, otherwise
5217 add the symbols for the newly loaded objects. Also ignore at
5218 the beginning of an attach or remote session; we will query
5219 the full list of libraries once the connection is
5220 established. */
5221
5222 stop_soon = get_inferior_stop_soon (ecs);
5223 if (stop_soon == NO_STOP_QUIETLY)
5224 {
5225 struct regcache *regcache;
5226
5227 regcache = get_thread_regcache (ecs->event_thread);
5228
5229 handle_solib_event ();
5230
5231 ecs->event_thread->control.stop_bpstat
5232 = bpstat_stop_status (regcache->aspace (),
5233 ecs->event_thread->suspend.stop_pc,
5234 ecs->event_thread, &ecs->ws);
5235
5236 if (handle_stop_requested (ecs))
5237 return;
5238
5239 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5240 {
5241 /* A catchpoint triggered. */
5242 process_event_stop_test (ecs);
5243 return;
5244 }
5245
5246 /* If requested, stop when the dynamic linker notifies
5247 gdb of events. This allows the user to get control
5248 and place breakpoints in initializer routines for
5249 dynamically loaded objects (among other things). */
5250 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5251 if (stop_on_solib_events)
5252 {
5253 /* Make sure we print "Stopped due to solib-event" in
5254 normal_stop. */
5255 stop_print_frame = 1;
5256
5257 stop_waiting (ecs);
5258 return;
5259 }
5260 }
5261
5262 /* If we are skipping through a shell, or through shared library
5263 loading that we aren't interested in, resume the program. If
5264 we're running the program normally, also resume. */
5265 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5266 {
5267 /* Loading of shared libraries might have changed breakpoint
5268 addresses. Make sure new breakpoints are inserted. */
5269 if (stop_soon == NO_STOP_QUIETLY)
5270 insert_breakpoints ();
5271 resume (GDB_SIGNAL_0);
5272 prepare_to_wait (ecs);
5273 return;
5274 }
5275
5276 /* But stop if we're attaching or setting up a remote
5277 connection. */
5278 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5279 || stop_soon == STOP_QUIETLY_REMOTE)
5280 {
5281 if (debug_infrun)
5282 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5283 stop_waiting (ecs);
5284 return;
5285 }
5286
5287 internal_error (__FILE__, __LINE__,
5288 _("unhandled stop_soon: %d"), (int) stop_soon);
5289
5290 case TARGET_WAITKIND_SPURIOUS:
5291 if (handle_stop_requested (ecs))
5292 return;
5293 context_switch (ecs);
5294 resume (GDB_SIGNAL_0);
5295 prepare_to_wait (ecs);
5296 return;
5297
5298 case TARGET_WAITKIND_THREAD_CREATED:
5299 if (handle_stop_requested (ecs))
5300 return;
5301 context_switch (ecs);
5302 if (!switch_back_to_stepped_thread (ecs))
5303 keep_going (ecs);
5304 return;
5305
5306 case TARGET_WAITKIND_EXITED:
5307 case TARGET_WAITKIND_SIGNALLED:
5308 {
5309 /* Depending on the system, ecs->ptid may point to a thread or
5310 to a process. On some targets, target_mourn_inferior may
5311 need to have access to the just-exited thread. That is the
5312 case of GNU/Linux's "checkpoint" support, for example.
5313 Call the switch_to_xxx routine as appropriate. */
5314 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5315 if (thr != nullptr)
5316 switch_to_thread (thr);
5317 else
5318 {
5319 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5320 switch_to_inferior_no_thread (inf);
5321 }
5322 }
5323 handle_vfork_child_exec_or_exit (0);
5324 target_terminal::ours (); /* Must do this before mourn anyway. */
5325
5326 /* Clearing any previous state of convenience variables. */
5327 clear_exit_convenience_vars ();
5328
5329 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5330 {
5331 /* Record the exit code in the convenience variable $_exitcode, so
5332 that the user can inspect this again later. */
5333 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5334 (LONGEST) ecs->ws.value.integer);
5335
5336 /* Also record this in the inferior itself. */
5337 current_inferior ()->has_exit_code = 1;
5338 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5339
5340 /* Support the --return-child-result option. */
5341 return_child_result_value = ecs->ws.value.integer;
5342
5343 gdb::observers::exited.notify (ecs->ws.value.integer);
5344 }
5345 else
5346 {
5347 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5348
5349 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5350 {
5351 /* Set the value of the internal variable $_exitsignal,
5352 which holds the signal uncaught by the inferior. */
5353 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5354 gdbarch_gdb_signal_to_target (gdbarch,
5355 ecs->ws.value.sig));
5356 }
5357 else
5358 {
5359 /* We don't have access to the target's method used for
5360 converting between signal numbers (GDB's internal
5361 representation <-> target's representation).
5362 Therefore, we cannot do a good job at displaying this
5363 information to the user. It's better to just warn
5364 her about it (if infrun debugging is enabled), and
5365 give up. */
5366 if (debug_infrun)
5367 fprintf_filtered (gdb_stdlog, _("\
5368 Cannot fill $_exitsignal with the correct signal number.\n"));
5369 }
5370
5371 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5372 }
5373
5374 gdb_flush (gdb_stdout);
5375 target_mourn_inferior (inferior_ptid);
5376 stop_print_frame = 0;
5377 stop_waiting (ecs);
5378 return;
5379
5380 case TARGET_WAITKIND_FORKED:
5381 case TARGET_WAITKIND_VFORKED:
5382 /* Check whether the inferior is displaced stepping. */
5383 {
5384 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5385 struct gdbarch *gdbarch = regcache->arch ();
5386
5387 /* If checking displaced stepping is supported, and thread
5388 ecs->ptid is displaced stepping. */
5389 if (displaced_step_in_progress_thread (ecs->event_thread))
5390 {
5391 struct inferior *parent_inf
5392 = find_inferior_ptid (ecs->target, ecs->ptid);
5393 struct regcache *child_regcache;
5394 CORE_ADDR parent_pc;
5395
5396 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5397 {
5398 struct displaced_step_inferior_state *displaced
5399 = get_displaced_stepping_state (parent_inf);
5400
5401 /* Restore scratch pad for child process. */
5402 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5403 }
5404
5405 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5406 indicating that the displaced stepping of syscall instruction
5407 has been done. Perform cleanup for parent process here. Note
5408 that this operation also cleans up the child process for vfork,
5409 because their pages are shared. */
5410 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5411 /* Start a new step-over in another thread if there's one
5412 that needs it. */
5413 start_step_over ();
5414
5415 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5416 the child's PC is also within the scratchpad. Set the child's PC
5417 to the parent's PC value, which has already been fixed up.
5418 FIXME: we use the parent's aspace here, although we're touching
5419 the child, because the child hasn't been added to the inferior
5420 list yet at this point. */
5421
5422 child_regcache
5423 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5424 ecs->ws.value.related_pid,
5425 gdbarch,
5426 parent_inf->aspace);
5427 /* Read PC value of parent process. */
5428 parent_pc = regcache_read_pc (regcache);
5429
5430 if (debug_displaced)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "displaced: write child pc from %s to %s\n",
5433 paddress (gdbarch,
5434 regcache_read_pc (child_regcache)),
5435 paddress (gdbarch, parent_pc));
5436
5437 regcache_write_pc (child_regcache, parent_pc);
5438 }
5439 }
5440
5441 context_switch (ecs);
5442
5443 /* Immediately detach breakpoints from the child before there's
5444 any chance of letting the user delete breakpoints from the
5445 breakpoint lists. If we don't do this early, it's easy to
5446 leave left over traps in the child, vis: "break foo; catch
5447 fork; c; <fork>; del; c; <child calls foo>". We only follow
5448 the fork on the last `continue', and by that time the
5449 breakpoint at "foo" is long gone from the breakpoint table.
5450 If we vforked, then we don't need to unpatch here, since both
5451 parent and child are sharing the same memory pages; we'll
5452 need to unpatch at follow/detach time instead to be certain
5453 that new breakpoints added between catchpoint hit time and
5454 vfork follow are detached. */
5455 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5456 {
5457 /* This won't actually modify the breakpoint list, but will
5458 physically remove the breakpoints from the child. */
5459 detach_breakpoints (ecs->ws.value.related_pid);
5460 }
5461
5462 delete_just_stopped_threads_single_step_breakpoints ();
5463
5464 /* In case the event is caught by a catchpoint, remember that
5465 the event is to be followed at the next resume of the thread,
5466 and not immediately. */
5467 ecs->event_thread->pending_follow = ecs->ws;
5468
5469 ecs->event_thread->suspend.stop_pc
5470 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5471
5472 ecs->event_thread->control.stop_bpstat
5473 = bpstat_stop_status (get_current_regcache ()->aspace (),
5474 ecs->event_thread->suspend.stop_pc,
5475 ecs->event_thread, &ecs->ws);
5476
5477 if (handle_stop_requested (ecs))
5478 return;
5479
5480 /* If no catchpoint triggered for this, then keep going. Note
5481 that we're interested in knowing the bpstat actually causes a
5482 stop, not just if it may explain the signal. Software
5483 watchpoints, for example, always appear in the bpstat. */
5484 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5485 {
5486 bool follow_child
5487 = (follow_fork_mode_string == follow_fork_mode_child);
5488
5489 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5490
5491 process_stratum_target *targ
5492 = ecs->event_thread->inf->process_target ();
5493
5494 bool should_resume = follow_fork ();
5495
5496 /* Note that one of these may be an invalid pointer,
5497 depending on detach_fork. */
5498 thread_info *parent = ecs->event_thread;
5499 thread_info *child
5500 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5501
5502 /* At this point, the parent is marked running, and the
5503 child is marked stopped. */
5504
5505 /* If not resuming the parent, mark it stopped. */
5506 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5507 parent->set_running (false);
5508
5509 /* If resuming the child, mark it running. */
5510 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5511 child->set_running (true);
5512
5513 /* In non-stop mode, also resume the other branch. */
5514 if (!detach_fork && (non_stop
5515 || (sched_multi && target_is_non_stop_p ())))
5516 {
5517 if (follow_child)
5518 switch_to_thread (parent);
5519 else
5520 switch_to_thread (child);
5521
5522 ecs->event_thread = inferior_thread ();
5523 ecs->ptid = inferior_ptid;
5524 keep_going (ecs);
5525 }
5526
5527 if (follow_child)
5528 switch_to_thread (child);
5529 else
5530 switch_to_thread (parent);
5531
5532 ecs->event_thread = inferior_thread ();
5533 ecs->ptid = inferior_ptid;
5534
5535 if (should_resume)
5536 keep_going (ecs);
5537 else
5538 stop_waiting (ecs);
5539 return;
5540 }
5541 process_event_stop_test (ecs);
5542 return;
5543
5544 case TARGET_WAITKIND_VFORK_DONE:
5545 /* Done with the shared memory region. Re-insert breakpoints in
5546 the parent, and keep going. */
5547
5548 context_switch (ecs);
5549
5550 current_inferior ()->waiting_for_vfork_done = 0;
5551 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5552
5553 if (handle_stop_requested (ecs))
5554 return;
5555
5556 /* This also takes care of reinserting breakpoints in the
5557 previously locked inferior. */
5558 keep_going (ecs);
5559 return;
5560
5561 case TARGET_WAITKIND_EXECD:
5562
5563 /* Note we can't read registers yet (the stop_pc), because we
5564 don't yet know the inferior's post-exec architecture.
5565 'stop_pc' is explicitly read below instead. */
5566 switch_to_thread_no_regs (ecs->event_thread);
5567
5568 /* Do whatever is necessary to the parent branch of the vfork. */
5569 handle_vfork_child_exec_or_exit (1);
5570
5571 /* This causes the eventpoints and symbol table to be reset.
5572 Must do this now, before trying to determine whether to
5573 stop. */
5574 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5575
5576 /* In follow_exec we may have deleted the original thread and
5577 created a new one. Make sure that the event thread is the
5578 execd thread for that case (this is a nop otherwise). */
5579 ecs->event_thread = inferior_thread ();
5580
5581 ecs->event_thread->suspend.stop_pc
5582 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5583
5584 ecs->event_thread->control.stop_bpstat
5585 = bpstat_stop_status (get_current_regcache ()->aspace (),
5586 ecs->event_thread->suspend.stop_pc,
5587 ecs->event_thread, &ecs->ws);
5588
5589 /* Note that this may be referenced from inside
5590 bpstat_stop_status above, through inferior_has_execd. */
5591 xfree (ecs->ws.value.execd_pathname);
5592 ecs->ws.value.execd_pathname = NULL;
5593
5594 if (handle_stop_requested (ecs))
5595 return;
5596
5597 /* If no catchpoint triggered for this, then keep going. */
5598 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5599 {
5600 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5601 keep_going (ecs);
5602 return;
5603 }
5604 process_event_stop_test (ecs);
5605 return;
5606
5607 /* Be careful not to try to gather much state about a thread
5608 that's in a syscall. It's frequently a losing proposition. */
5609 case TARGET_WAITKIND_SYSCALL_ENTRY:
5610 /* Getting the current syscall number. */
5611 if (handle_syscall_event (ecs) == 0)
5612 process_event_stop_test (ecs);
5613 return;
5614
5615 /* Before examining the threads further, step this thread to
5616 get it entirely out of the syscall. (We get notice of the
5617 event when the thread is just on the verge of exiting a
5618 syscall. Stepping one instruction seems to get it back
5619 into user code.) */
5620 case TARGET_WAITKIND_SYSCALL_RETURN:
5621 if (handle_syscall_event (ecs) == 0)
5622 process_event_stop_test (ecs);
5623 return;
5624
5625 case TARGET_WAITKIND_STOPPED:
5626 handle_signal_stop (ecs);
5627 return;
5628
5629 case TARGET_WAITKIND_NO_HISTORY:
5630 /* Reverse execution: target ran out of history info. */
5631
5632 /* Switch to the stopped thread. */
5633 context_switch (ecs);
5634 if (debug_infrun)
5635 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5636
5637 delete_just_stopped_threads_single_step_breakpoints ();
5638 ecs->event_thread->suspend.stop_pc
5639 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5640
5641 if (handle_stop_requested (ecs))
5642 return;
5643
5644 gdb::observers::no_history.notify ();
5645 stop_waiting (ecs);
5646 return;
5647 }
5648 }
5649
5650 /* Restart threads back to what they were trying to do back when we
5651 paused them for an in-line step-over. The EVENT_THREAD thread is
5652 ignored. */
5653
5654 static void
5655 restart_threads (struct thread_info *event_thread)
5656 {
5657 /* In case the instruction just stepped spawned a new thread. */
5658 update_thread_list ();
5659
5660 for (thread_info *tp : all_non_exited_threads ())
5661 {
5662 switch_to_thread_no_regs (tp);
5663
5664 if (tp == event_thread)
5665 {
5666 if (debug_infrun)
5667 fprintf_unfiltered (gdb_stdlog,
5668 "infrun: restart threads: "
5669 "[%s] is event thread\n",
5670 target_pid_to_str (tp->ptid).c_str ());
5671 continue;
5672 }
5673
5674 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5675 {
5676 if (debug_infrun)
5677 fprintf_unfiltered (gdb_stdlog,
5678 "infrun: restart threads: "
5679 "[%s] not meant to be running\n",
5680 target_pid_to_str (tp->ptid).c_str ());
5681 continue;
5682 }
5683
5684 if (tp->resumed)
5685 {
5686 if (debug_infrun)
5687 fprintf_unfiltered (gdb_stdlog,
5688 "infrun: restart threads: [%s] resumed\n",
5689 target_pid_to_str (tp->ptid).c_str ());
5690 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5691 continue;
5692 }
5693
5694 if (thread_is_in_step_over_chain (tp))
5695 {
5696 if (debug_infrun)
5697 fprintf_unfiltered (gdb_stdlog,
5698 "infrun: restart threads: "
5699 "[%s] needs step-over\n",
5700 target_pid_to_str (tp->ptid).c_str ());
5701 gdb_assert (!tp->resumed);
5702 continue;
5703 }
5704
5705
5706 if (tp->suspend.waitstatus_pending_p)
5707 {
5708 if (debug_infrun)
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: restart threads: "
5711 "[%s] has pending status\n",
5712 target_pid_to_str (tp->ptid).c_str ());
5713 tp->resumed = true;
5714 continue;
5715 }
5716
5717 gdb_assert (!tp->stop_requested);
5718
5719 /* If some thread needs to start a step-over at this point, it
5720 should still be in the step-over queue, and thus skipped
5721 above. */
5722 if (thread_still_needs_step_over (tp))
5723 {
5724 internal_error (__FILE__, __LINE__,
5725 "thread [%s] needs a step-over, but not in "
5726 "step-over queue\n",
5727 target_pid_to_str (tp->ptid).c_str ());
5728 }
5729
5730 if (currently_stepping (tp))
5731 {
5732 if (debug_infrun)
5733 fprintf_unfiltered (gdb_stdlog,
5734 "infrun: restart threads: [%s] was stepping\n",
5735 target_pid_to_str (tp->ptid).c_str ());
5736 keep_going_stepped_thread (tp);
5737 }
5738 else
5739 {
5740 struct execution_control_state ecss;
5741 struct execution_control_state *ecs = &ecss;
5742
5743 if (debug_infrun)
5744 fprintf_unfiltered (gdb_stdlog,
5745 "infrun: restart threads: [%s] continuing\n",
5746 target_pid_to_str (tp->ptid).c_str ());
5747 reset_ecs (ecs, tp);
5748 switch_to_thread (tp);
5749 keep_going_pass_signal (ecs);
5750 }
5751 }
5752 }
5753
5754 /* Callback for iterate_over_threads. Find a resumed thread that has
5755 a pending waitstatus. */
5756
5757 static int
5758 resumed_thread_with_pending_status (struct thread_info *tp,
5759 void *arg)
5760 {
5761 return (tp->resumed
5762 && tp->suspend.waitstatus_pending_p);
5763 }
5764
5765 /* Called when we get an event that may finish an in-line or
5766 out-of-line (displaced stepping) step-over started previously.
5767 Return true if the event is processed and we should go back to the
5768 event loop; false if the caller should continue processing the
5769 event. */
5770
5771 static int
5772 finish_step_over (struct execution_control_state *ecs)
5773 {
5774 int had_step_over_info;
5775
5776 displaced_step_fixup (ecs->event_thread,
5777 ecs->event_thread->suspend.stop_signal);
5778
5779 had_step_over_info = step_over_info_valid_p ();
5780
5781 if (had_step_over_info)
5782 {
5783 /* If we're stepping over a breakpoint with all threads locked,
5784 then only the thread that was stepped should be reporting
5785 back an event. */
5786 gdb_assert (ecs->event_thread->control.trap_expected);
5787
5788 clear_step_over_info ();
5789 }
5790
5791 if (!target_is_non_stop_p ())
5792 return 0;
5793
5794 /* Start a new step-over in another thread if there's one that
5795 needs it. */
5796 start_step_over ();
5797
5798 /* If we were stepping over a breakpoint before, and haven't started
5799 a new in-line step-over sequence, then restart all other threads
5800 (except the event thread). We can't do this in all-stop, as then
5801 e.g., we wouldn't be able to issue any other remote packet until
5802 these other threads stop. */
5803 if (had_step_over_info && !step_over_info_valid_p ())
5804 {
5805 struct thread_info *pending;
5806
5807 /* If we only have threads with pending statuses, the restart
5808 below won't restart any thread and so nothing re-inserts the
5809 breakpoint we just stepped over. But we need it inserted
5810 when we later process the pending events, otherwise if
5811 another thread has a pending event for this breakpoint too,
5812 we'd discard its event (because the breakpoint that
5813 originally caused the event was no longer inserted). */
5814 context_switch (ecs);
5815 insert_breakpoints ();
5816
5817 restart_threads (ecs->event_thread);
5818
5819 /* If we have events pending, go through handle_inferior_event
5820 again, picking up a pending event at random. This avoids
5821 thread starvation. */
5822
5823 /* But not if we just stepped over a watchpoint in order to let
5824 the instruction execute so we can evaluate its expression.
5825 The set of watchpoints that triggered is recorded in the
5826 breakpoint objects themselves (see bp->watchpoint_triggered).
5827 If we processed another event first, that other event could
5828 clobber this info. */
5829 if (ecs->event_thread->stepping_over_watchpoint)
5830 return 0;
5831
5832 pending = iterate_over_threads (resumed_thread_with_pending_status,
5833 NULL);
5834 if (pending != NULL)
5835 {
5836 struct thread_info *tp = ecs->event_thread;
5837 struct regcache *regcache;
5838
5839 if (debug_infrun)
5840 {
5841 fprintf_unfiltered (gdb_stdlog,
5842 "infrun: found resumed threads with "
5843 "pending events, saving status\n");
5844 }
5845
5846 gdb_assert (pending != tp);
5847
5848 /* Record the event thread's event for later. */
5849 save_waitstatus (tp, &ecs->ws);
5850 /* This was cleared early, by handle_inferior_event. Set it
5851 so this pending event is considered by
5852 do_target_wait. */
5853 tp->resumed = true;
5854
5855 gdb_assert (!tp->executing);
5856
5857 regcache = get_thread_regcache (tp);
5858 tp->suspend.stop_pc = regcache_read_pc (regcache);
5859
5860 if (debug_infrun)
5861 {
5862 fprintf_unfiltered (gdb_stdlog,
5863 "infrun: saved stop_pc=%s for %s "
5864 "(currently_stepping=%d)\n",
5865 paddress (target_gdbarch (),
5866 tp->suspend.stop_pc),
5867 target_pid_to_str (tp->ptid).c_str (),
5868 currently_stepping (tp));
5869 }
5870
5871 /* This in-line step-over finished; clear this so we won't
5872 start a new one. This is what handle_signal_stop would
5873 do, if we returned false. */
5874 tp->stepping_over_breakpoint = 0;
5875
5876 /* Wake up the event loop again. */
5877 mark_async_event_handler (infrun_async_inferior_event_token);
5878
5879 prepare_to_wait (ecs);
5880 return 1;
5881 }
5882 }
5883
5884 return 0;
5885 }
5886
5887 /* Come here when the program has stopped with a signal. */
5888
5889 static void
5890 handle_signal_stop (struct execution_control_state *ecs)
5891 {
5892 struct frame_info *frame;
5893 struct gdbarch *gdbarch;
5894 int stopped_by_watchpoint;
5895 enum stop_kind stop_soon;
5896 int random_signal;
5897
5898 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5899
5900 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5901
5902 /* Do we need to clean up the state of a thread that has
5903 completed a displaced single-step? (Doing so usually affects
5904 the PC, so do it here, before we set stop_pc.) */
5905 if (finish_step_over (ecs))
5906 return;
5907
5908 /* If we either finished a single-step or hit a breakpoint, but
5909 the user wanted this thread to be stopped, pretend we got a
5910 SIG0 (generic unsignaled stop). */
5911 if (ecs->event_thread->stop_requested
5912 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5913 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5914
5915 ecs->event_thread->suspend.stop_pc
5916 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5917
5918 if (debug_infrun)
5919 {
5920 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5921 struct gdbarch *reg_gdbarch = regcache->arch ();
5922
5923 switch_to_thread (ecs->event_thread);
5924
5925 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5926 paddress (reg_gdbarch,
5927 ecs->event_thread->suspend.stop_pc));
5928 if (target_stopped_by_watchpoint ())
5929 {
5930 CORE_ADDR addr;
5931
5932 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5933
5934 if (target_stopped_data_address (current_top_target (), &addr))
5935 fprintf_unfiltered (gdb_stdlog,
5936 "infrun: stopped data address = %s\n",
5937 paddress (reg_gdbarch, addr));
5938 else
5939 fprintf_unfiltered (gdb_stdlog,
5940 "infrun: (no data address available)\n");
5941 }
5942 }
5943
5944 /* This is originated from start_remote(), start_inferior() and
5945 shared libraries hook functions. */
5946 stop_soon = get_inferior_stop_soon (ecs);
5947 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5948 {
5949 context_switch (ecs);
5950 if (debug_infrun)
5951 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5952 stop_print_frame = 1;
5953 stop_waiting (ecs);
5954 return;
5955 }
5956
5957 /* This originates from attach_command(). We need to overwrite
5958 the stop_signal here, because some kernels don't ignore a
5959 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5960 See more comments in inferior.h. On the other hand, if we
5961 get a non-SIGSTOP, report it to the user - assume the backend
5962 will handle the SIGSTOP if it should show up later.
5963
5964 Also consider that the attach is complete when we see a
5965 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5966 target extended-remote report it instead of a SIGSTOP
5967 (e.g. gdbserver). We already rely on SIGTRAP being our
5968 signal, so this is no exception.
5969
5970 Also consider that the attach is complete when we see a
5971 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5972 the target to stop all threads of the inferior, in case the
5973 low level attach operation doesn't stop them implicitly. If
5974 they weren't stopped implicitly, then the stub will report a
5975 GDB_SIGNAL_0, meaning: stopped for no particular reason
5976 other than GDB's request. */
5977 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5978 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5979 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5980 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5981 {
5982 stop_print_frame = 1;
5983 stop_waiting (ecs);
5984 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5985 return;
5986 }
5987
5988 /* See if something interesting happened to the non-current thread. If
5989 so, then switch to that thread. */
5990 if (ecs->ptid != inferior_ptid)
5991 {
5992 if (debug_infrun)
5993 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5994
5995 context_switch (ecs);
5996
5997 if (deprecated_context_hook)
5998 deprecated_context_hook (ecs->event_thread->global_num);
5999 }
6000
6001 /* At this point, get hold of the now-current thread's frame. */
6002 frame = get_current_frame ();
6003 gdbarch = get_frame_arch (frame);
6004
6005 /* Pull the single step breakpoints out of the target. */
6006 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6007 {
6008 struct regcache *regcache;
6009 CORE_ADDR pc;
6010
6011 regcache = get_thread_regcache (ecs->event_thread);
6012 const address_space *aspace = regcache->aspace ();
6013
6014 pc = regcache_read_pc (regcache);
6015
6016 /* However, before doing so, if this single-step breakpoint was
6017 actually for another thread, set this thread up for moving
6018 past it. */
6019 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6020 aspace, pc))
6021 {
6022 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6023 {
6024 if (debug_infrun)
6025 {
6026 fprintf_unfiltered (gdb_stdlog,
6027 "infrun: [%s] hit another thread's "
6028 "single-step breakpoint\n",
6029 target_pid_to_str (ecs->ptid).c_str ());
6030 }
6031 ecs->hit_singlestep_breakpoint = 1;
6032 }
6033 }
6034 else
6035 {
6036 if (debug_infrun)
6037 {
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: [%s] hit its "
6040 "single-step breakpoint\n",
6041 target_pid_to_str (ecs->ptid).c_str ());
6042 }
6043 }
6044 }
6045 delete_just_stopped_threads_single_step_breakpoints ();
6046
6047 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6048 && ecs->event_thread->control.trap_expected
6049 && ecs->event_thread->stepping_over_watchpoint)
6050 stopped_by_watchpoint = 0;
6051 else
6052 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6053
6054 /* If necessary, step over this watchpoint. We'll be back to display
6055 it in a moment. */
6056 if (stopped_by_watchpoint
6057 && (target_have_steppable_watchpoint
6058 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6059 {
6060 /* At this point, we are stopped at an instruction which has
6061 attempted to write to a piece of memory under control of
6062 a watchpoint. The instruction hasn't actually executed
6063 yet. If we were to evaluate the watchpoint expression
6064 now, we would get the old value, and therefore no change
6065 would seem to have occurred.
6066
6067 In order to make watchpoints work `right', we really need
6068 to complete the memory write, and then evaluate the
6069 watchpoint expression. We do this by single-stepping the
6070 target.
6071
6072 It may not be necessary to disable the watchpoint to step over
6073 it. For example, the PA can (with some kernel cooperation)
6074 single step over a watchpoint without disabling the watchpoint.
6075
6076 It is far more common to need to disable a watchpoint to step
6077 the inferior over it. If we have non-steppable watchpoints,
6078 we must disable the current watchpoint; it's simplest to
6079 disable all watchpoints.
6080
6081 Any breakpoint at PC must also be stepped over -- if there's
6082 one, it will have already triggered before the watchpoint
6083 triggered, and we either already reported it to the user, or
6084 it didn't cause a stop and we called keep_going. In either
6085 case, if there was a breakpoint at PC, we must be trying to
6086 step past it. */
6087 ecs->event_thread->stepping_over_watchpoint = 1;
6088 keep_going (ecs);
6089 return;
6090 }
6091
6092 ecs->event_thread->stepping_over_breakpoint = 0;
6093 ecs->event_thread->stepping_over_watchpoint = 0;
6094 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6095 ecs->event_thread->control.stop_step = 0;
6096 stop_print_frame = 1;
6097 stopped_by_random_signal = 0;
6098 bpstat stop_chain = NULL;
6099
6100 /* Hide inlined functions starting here, unless we just performed stepi or
6101 nexti. After stepi and nexti, always show the innermost frame (not any
6102 inline function call sites). */
6103 if (ecs->event_thread->control.step_range_end != 1)
6104 {
6105 const address_space *aspace
6106 = get_thread_regcache (ecs->event_thread)->aspace ();
6107
6108 /* skip_inline_frames is expensive, so we avoid it if we can
6109 determine that the address is one where functions cannot have
6110 been inlined. This improves performance with inferiors that
6111 load a lot of shared libraries, because the solib event
6112 breakpoint is defined as the address of a function (i.e. not
6113 inline). Note that we have to check the previous PC as well
6114 as the current one to catch cases when we have just
6115 single-stepped off a breakpoint prior to reinstating it.
6116 Note that we're assuming that the code we single-step to is
6117 not inline, but that's not definitive: there's nothing
6118 preventing the event breakpoint function from containing
6119 inlined code, and the single-step ending up there. If the
6120 user had set a breakpoint on that inlined code, the missing
6121 skip_inline_frames call would break things. Fortunately
6122 that's an extremely unlikely scenario. */
6123 if (!pc_at_non_inline_function (aspace,
6124 ecs->event_thread->suspend.stop_pc,
6125 &ecs->ws)
6126 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6127 && ecs->event_thread->control.trap_expected
6128 && pc_at_non_inline_function (aspace,
6129 ecs->event_thread->prev_pc,
6130 &ecs->ws)))
6131 {
6132 stop_chain = build_bpstat_chain (aspace,
6133 ecs->event_thread->suspend.stop_pc,
6134 &ecs->ws);
6135 skip_inline_frames (ecs->event_thread, stop_chain);
6136
6137 /* Re-fetch current thread's frame in case that invalidated
6138 the frame cache. */
6139 frame = get_current_frame ();
6140 gdbarch = get_frame_arch (frame);
6141 }
6142 }
6143
6144 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6145 && ecs->event_thread->control.trap_expected
6146 && gdbarch_single_step_through_delay_p (gdbarch)
6147 && currently_stepping (ecs->event_thread))
6148 {
6149 /* We're trying to step off a breakpoint. Turns out that we're
6150 also on an instruction that needs to be stepped multiple
6151 times before it's been fully executing. E.g., architectures
6152 with a delay slot. It needs to be stepped twice, once for
6153 the instruction and once for the delay slot. */
6154 int step_through_delay
6155 = gdbarch_single_step_through_delay (gdbarch, frame);
6156
6157 if (debug_infrun && step_through_delay)
6158 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6159 if (ecs->event_thread->control.step_range_end == 0
6160 && step_through_delay)
6161 {
6162 /* The user issued a continue when stopped at a breakpoint.
6163 Set up for another trap and get out of here. */
6164 ecs->event_thread->stepping_over_breakpoint = 1;
6165 keep_going (ecs);
6166 return;
6167 }
6168 else if (step_through_delay)
6169 {
6170 /* The user issued a step when stopped at a breakpoint.
6171 Maybe we should stop, maybe we should not - the delay
6172 slot *might* correspond to a line of source. In any
6173 case, don't decide that here, just set
6174 ecs->stepping_over_breakpoint, making sure we
6175 single-step again before breakpoints are re-inserted. */
6176 ecs->event_thread->stepping_over_breakpoint = 1;
6177 }
6178 }
6179
6180 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6181 handles this event. */
6182 ecs->event_thread->control.stop_bpstat
6183 = bpstat_stop_status (get_current_regcache ()->aspace (),
6184 ecs->event_thread->suspend.stop_pc,
6185 ecs->event_thread, &ecs->ws, stop_chain);
6186
6187 /* Following in case break condition called a
6188 function. */
6189 stop_print_frame = 1;
6190
6191 /* This is where we handle "moribund" watchpoints. Unlike
6192 software breakpoints traps, hardware watchpoint traps are
6193 always distinguishable from random traps. If no high-level
6194 watchpoint is associated with the reported stop data address
6195 anymore, then the bpstat does not explain the signal ---
6196 simply make sure to ignore it if `stopped_by_watchpoint' is
6197 set. */
6198
6199 if (debug_infrun
6200 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6201 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6202 GDB_SIGNAL_TRAP)
6203 && stopped_by_watchpoint)
6204 fprintf_unfiltered (gdb_stdlog,
6205 "infrun: no user watchpoint explains "
6206 "watchpoint SIGTRAP, ignoring\n");
6207
6208 /* NOTE: cagney/2003-03-29: These checks for a random signal
6209 at one stage in the past included checks for an inferior
6210 function call's call dummy's return breakpoint. The original
6211 comment, that went with the test, read:
6212
6213 ``End of a stack dummy. Some systems (e.g. Sony news) give
6214 another signal besides SIGTRAP, so check here as well as
6215 above.''
6216
6217 If someone ever tries to get call dummys on a
6218 non-executable stack to work (where the target would stop
6219 with something like a SIGSEGV), then those tests might need
6220 to be re-instated. Given, however, that the tests were only
6221 enabled when momentary breakpoints were not being used, I
6222 suspect that it won't be the case.
6223
6224 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6225 be necessary for call dummies on a non-executable stack on
6226 SPARC. */
6227
6228 /* See if the breakpoints module can explain the signal. */
6229 random_signal
6230 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6231 ecs->event_thread->suspend.stop_signal);
6232
6233 /* Maybe this was a trap for a software breakpoint that has since
6234 been removed. */
6235 if (random_signal && target_stopped_by_sw_breakpoint ())
6236 {
6237 if (gdbarch_program_breakpoint_here_p (gdbarch,
6238 ecs->event_thread->suspend.stop_pc))
6239 {
6240 struct regcache *regcache;
6241 int decr_pc;
6242
6243 /* Re-adjust PC to what the program would see if GDB was not
6244 debugging it. */
6245 regcache = get_thread_regcache (ecs->event_thread);
6246 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6247 if (decr_pc != 0)
6248 {
6249 gdb::optional<scoped_restore_tmpl<int>>
6250 restore_operation_disable;
6251
6252 if (record_full_is_used ())
6253 restore_operation_disable.emplace
6254 (record_full_gdb_operation_disable_set ());
6255
6256 regcache_write_pc (regcache,
6257 ecs->event_thread->suspend.stop_pc + decr_pc);
6258 }
6259 }
6260 else
6261 {
6262 /* A delayed software breakpoint event. Ignore the trap. */
6263 if (debug_infrun)
6264 fprintf_unfiltered (gdb_stdlog,
6265 "infrun: delayed software breakpoint "
6266 "trap, ignoring\n");
6267 random_signal = 0;
6268 }
6269 }
6270
6271 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6272 has since been removed. */
6273 if (random_signal && target_stopped_by_hw_breakpoint ())
6274 {
6275 /* A delayed hardware breakpoint event. Ignore the trap. */
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: delayed hardware breakpoint/watchpoint "
6279 "trap, ignoring\n");
6280 random_signal = 0;
6281 }
6282
6283 /* If not, perhaps stepping/nexting can. */
6284 if (random_signal)
6285 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6286 && currently_stepping (ecs->event_thread));
6287
6288 /* Perhaps the thread hit a single-step breakpoint of _another_
6289 thread. Single-step breakpoints are transparent to the
6290 breakpoints module. */
6291 if (random_signal)
6292 random_signal = !ecs->hit_singlestep_breakpoint;
6293
6294 /* No? Perhaps we got a moribund watchpoint. */
6295 if (random_signal)
6296 random_signal = !stopped_by_watchpoint;
6297
6298 /* Always stop if the user explicitly requested this thread to
6299 remain stopped. */
6300 if (ecs->event_thread->stop_requested)
6301 {
6302 random_signal = 1;
6303 if (debug_infrun)
6304 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6305 }
6306
6307 /* For the program's own signals, act according to
6308 the signal handling tables. */
6309
6310 if (random_signal)
6311 {
6312 /* Signal not for debugging purposes. */
6313 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6314 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6315
6316 if (debug_infrun)
6317 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6318 gdb_signal_to_symbol_string (stop_signal));
6319
6320 stopped_by_random_signal = 1;
6321
6322 /* Always stop on signals if we're either just gaining control
6323 of the program, or the user explicitly requested this thread
6324 to remain stopped. */
6325 if (stop_soon != NO_STOP_QUIETLY
6326 || ecs->event_thread->stop_requested
6327 || (!inf->detaching
6328 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6329 {
6330 stop_waiting (ecs);
6331 return;
6332 }
6333
6334 /* Notify observers the signal has "handle print" set. Note we
6335 returned early above if stopping; normal_stop handles the
6336 printing in that case. */
6337 if (signal_print[ecs->event_thread->suspend.stop_signal])
6338 {
6339 /* The signal table tells us to print about this signal. */
6340 target_terminal::ours_for_output ();
6341 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6342 target_terminal::inferior ();
6343 }
6344
6345 /* Clear the signal if it should not be passed. */
6346 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6347 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6348
6349 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6350 && ecs->event_thread->control.trap_expected
6351 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6352 {
6353 /* We were just starting a new sequence, attempting to
6354 single-step off of a breakpoint and expecting a SIGTRAP.
6355 Instead this signal arrives. This signal will take us out
6356 of the stepping range so GDB needs to remember to, when
6357 the signal handler returns, resume stepping off that
6358 breakpoint. */
6359 /* To simplify things, "continue" is forced to use the same
6360 code paths as single-step - set a breakpoint at the
6361 signal return address and then, once hit, step off that
6362 breakpoint. */
6363 if (debug_infrun)
6364 fprintf_unfiltered (gdb_stdlog,
6365 "infrun: signal arrived while stepping over "
6366 "breakpoint\n");
6367
6368 insert_hp_step_resume_breakpoint_at_frame (frame);
6369 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6370 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6371 ecs->event_thread->control.trap_expected = 0;
6372
6373 /* If we were nexting/stepping some other thread, switch to
6374 it, so that we don't continue it, losing control. */
6375 if (!switch_back_to_stepped_thread (ecs))
6376 keep_going (ecs);
6377 return;
6378 }
6379
6380 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6381 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6382 ecs->event_thread)
6383 || ecs->event_thread->control.step_range_end == 1)
6384 && frame_id_eq (get_stack_frame_id (frame),
6385 ecs->event_thread->control.step_stack_frame_id)
6386 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6387 {
6388 /* The inferior is about to take a signal that will take it
6389 out of the single step range. Set a breakpoint at the
6390 current PC (which is presumably where the signal handler
6391 will eventually return) and then allow the inferior to
6392 run free.
6393
6394 Note that this is only needed for a signal delivered
6395 while in the single-step range. Nested signals aren't a
6396 problem as they eventually all return. */
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog,
6399 "infrun: signal may take us out of "
6400 "single-step range\n");
6401
6402 clear_step_over_info ();
6403 insert_hp_step_resume_breakpoint_at_frame (frame);
6404 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6405 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6406 ecs->event_thread->control.trap_expected = 0;
6407 keep_going (ecs);
6408 return;
6409 }
6410
6411 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6412 when either there's a nested signal, or when there's a
6413 pending signal enabled just as the signal handler returns
6414 (leaving the inferior at the step-resume-breakpoint without
6415 actually executing it). Either way continue until the
6416 breakpoint is really hit. */
6417
6418 if (!switch_back_to_stepped_thread (ecs))
6419 {
6420 if (debug_infrun)
6421 fprintf_unfiltered (gdb_stdlog,
6422 "infrun: random signal, keep going\n");
6423
6424 keep_going (ecs);
6425 }
6426 return;
6427 }
6428
6429 process_event_stop_test (ecs);
6430 }
6431
6432 /* Come here when we've got some debug event / signal we can explain
6433 (IOW, not a random signal), and test whether it should cause a
6434 stop, or whether we should resume the inferior (transparently).
6435 E.g., could be a breakpoint whose condition evaluates false; we
6436 could be still stepping within the line; etc. */
6437
6438 static void
6439 process_event_stop_test (struct execution_control_state *ecs)
6440 {
6441 struct symtab_and_line stop_pc_sal;
6442 struct frame_info *frame;
6443 struct gdbarch *gdbarch;
6444 CORE_ADDR jmp_buf_pc;
6445 struct bpstat_what what;
6446
6447 /* Handle cases caused by hitting a breakpoint. */
6448
6449 frame = get_current_frame ();
6450 gdbarch = get_frame_arch (frame);
6451
6452 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6453
6454 if (what.call_dummy)
6455 {
6456 stop_stack_dummy = what.call_dummy;
6457 }
6458
6459 /* A few breakpoint types have callbacks associated (e.g.,
6460 bp_jit_event). Run them now. */
6461 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6462
6463 /* If we hit an internal event that triggers symbol changes, the
6464 current frame will be invalidated within bpstat_what (e.g., if we
6465 hit an internal solib event). Re-fetch it. */
6466 frame = get_current_frame ();
6467 gdbarch = get_frame_arch (frame);
6468
6469 switch (what.main_action)
6470 {
6471 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6472 /* If we hit the breakpoint at longjmp while stepping, we
6473 install a momentary breakpoint at the target of the
6474 jmp_buf. */
6475
6476 if (debug_infrun)
6477 fprintf_unfiltered (gdb_stdlog,
6478 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6479
6480 ecs->event_thread->stepping_over_breakpoint = 1;
6481
6482 if (what.is_longjmp)
6483 {
6484 struct value *arg_value;
6485
6486 /* If we set the longjmp breakpoint via a SystemTap probe,
6487 then use it to extract the arguments. The destination PC
6488 is the third argument to the probe. */
6489 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6490 if (arg_value)
6491 {
6492 jmp_buf_pc = value_as_address (arg_value);
6493 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6494 }
6495 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6496 || !gdbarch_get_longjmp_target (gdbarch,
6497 frame, &jmp_buf_pc))
6498 {
6499 if (debug_infrun)
6500 fprintf_unfiltered (gdb_stdlog,
6501 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6502 "(!gdbarch_get_longjmp_target)\n");
6503 keep_going (ecs);
6504 return;
6505 }
6506
6507 /* Insert a breakpoint at resume address. */
6508 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6509 }
6510 else
6511 check_exception_resume (ecs, frame);
6512 keep_going (ecs);
6513 return;
6514
6515 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6516 {
6517 struct frame_info *init_frame;
6518
6519 /* There are several cases to consider.
6520
6521 1. The initiating frame no longer exists. In this case we
6522 must stop, because the exception or longjmp has gone too
6523 far.
6524
6525 2. The initiating frame exists, and is the same as the
6526 current frame. We stop, because the exception or longjmp
6527 has been caught.
6528
6529 3. The initiating frame exists and is different from the
6530 current frame. This means the exception or longjmp has
6531 been caught beneath the initiating frame, so keep going.
6532
6533 4. longjmp breakpoint has been placed just to protect
6534 against stale dummy frames and user is not interested in
6535 stopping around longjmps. */
6536
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog,
6539 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6540
6541 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6542 != NULL);
6543 delete_exception_resume_breakpoint (ecs->event_thread);
6544
6545 if (what.is_longjmp)
6546 {
6547 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6548
6549 if (!frame_id_p (ecs->event_thread->initiating_frame))
6550 {
6551 /* Case 4. */
6552 keep_going (ecs);
6553 return;
6554 }
6555 }
6556
6557 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6558
6559 if (init_frame)
6560 {
6561 struct frame_id current_id
6562 = get_frame_id (get_current_frame ());
6563 if (frame_id_eq (current_id,
6564 ecs->event_thread->initiating_frame))
6565 {
6566 /* Case 2. Fall through. */
6567 }
6568 else
6569 {
6570 /* Case 3. */
6571 keep_going (ecs);
6572 return;
6573 }
6574 }
6575
6576 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6577 exists. */
6578 delete_step_resume_breakpoint (ecs->event_thread);
6579
6580 end_stepping_range (ecs);
6581 }
6582 return;
6583
6584 case BPSTAT_WHAT_SINGLE:
6585 if (debug_infrun)
6586 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6587 ecs->event_thread->stepping_over_breakpoint = 1;
6588 /* Still need to check other stuff, at least the case where we
6589 are stepping and step out of the right range. */
6590 break;
6591
6592 case BPSTAT_WHAT_STEP_RESUME:
6593 if (debug_infrun)
6594 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6595
6596 delete_step_resume_breakpoint (ecs->event_thread);
6597 if (ecs->event_thread->control.proceed_to_finish
6598 && execution_direction == EXEC_REVERSE)
6599 {
6600 struct thread_info *tp = ecs->event_thread;
6601
6602 /* We are finishing a function in reverse, and just hit the
6603 step-resume breakpoint at the start address of the
6604 function, and we're almost there -- just need to back up
6605 by one more single-step, which should take us back to the
6606 function call. */
6607 tp->control.step_range_start = tp->control.step_range_end = 1;
6608 keep_going (ecs);
6609 return;
6610 }
6611 fill_in_stop_func (gdbarch, ecs);
6612 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6613 && execution_direction == EXEC_REVERSE)
6614 {
6615 /* We are stepping over a function call in reverse, and just
6616 hit the step-resume breakpoint at the start address of
6617 the function. Go back to single-stepping, which should
6618 take us back to the function call. */
6619 ecs->event_thread->stepping_over_breakpoint = 1;
6620 keep_going (ecs);
6621 return;
6622 }
6623 break;
6624
6625 case BPSTAT_WHAT_STOP_NOISY:
6626 if (debug_infrun)
6627 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6628 stop_print_frame = 1;
6629
6630 /* Assume the thread stopped for a breapoint. We'll still check
6631 whether a/the breakpoint is there when the thread is next
6632 resumed. */
6633 ecs->event_thread->stepping_over_breakpoint = 1;
6634
6635 stop_waiting (ecs);
6636 return;
6637
6638 case BPSTAT_WHAT_STOP_SILENT:
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6641 stop_print_frame = 0;
6642
6643 /* Assume the thread stopped for a breapoint. We'll still check
6644 whether a/the breakpoint is there when the thread is next
6645 resumed. */
6646 ecs->event_thread->stepping_over_breakpoint = 1;
6647 stop_waiting (ecs);
6648 return;
6649
6650 case BPSTAT_WHAT_HP_STEP_RESUME:
6651 if (debug_infrun)
6652 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6653
6654 delete_step_resume_breakpoint (ecs->event_thread);
6655 if (ecs->event_thread->step_after_step_resume_breakpoint)
6656 {
6657 /* Back when the step-resume breakpoint was inserted, we
6658 were trying to single-step off a breakpoint. Go back to
6659 doing that. */
6660 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6661 ecs->event_thread->stepping_over_breakpoint = 1;
6662 keep_going (ecs);
6663 return;
6664 }
6665 break;
6666
6667 case BPSTAT_WHAT_KEEP_CHECKING:
6668 break;
6669 }
6670
6671 /* If we stepped a permanent breakpoint and we had a high priority
6672 step-resume breakpoint for the address we stepped, but we didn't
6673 hit it, then we must have stepped into the signal handler. The
6674 step-resume was only necessary to catch the case of _not_
6675 stepping into the handler, so delete it, and fall through to
6676 checking whether the step finished. */
6677 if (ecs->event_thread->stepped_breakpoint)
6678 {
6679 struct breakpoint *sr_bp
6680 = ecs->event_thread->control.step_resume_breakpoint;
6681
6682 if (sr_bp != NULL
6683 && sr_bp->loc->permanent
6684 && sr_bp->type == bp_hp_step_resume
6685 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6686 {
6687 if (debug_infrun)
6688 fprintf_unfiltered (gdb_stdlog,
6689 "infrun: stepped permanent breakpoint, stopped in "
6690 "handler\n");
6691 delete_step_resume_breakpoint (ecs->event_thread);
6692 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6693 }
6694 }
6695
6696 /* We come here if we hit a breakpoint but should not stop for it.
6697 Possibly we also were stepping and should stop for that. So fall
6698 through and test for stepping. But, if not stepping, do not
6699 stop. */
6700
6701 /* In all-stop mode, if we're currently stepping but have stopped in
6702 some other thread, we need to switch back to the stepped thread. */
6703 if (switch_back_to_stepped_thread (ecs))
6704 return;
6705
6706 if (ecs->event_thread->control.step_resume_breakpoint)
6707 {
6708 if (debug_infrun)
6709 fprintf_unfiltered (gdb_stdlog,
6710 "infrun: step-resume breakpoint is inserted\n");
6711
6712 /* Having a step-resume breakpoint overrides anything
6713 else having to do with stepping commands until
6714 that breakpoint is reached. */
6715 keep_going (ecs);
6716 return;
6717 }
6718
6719 if (ecs->event_thread->control.step_range_end == 0)
6720 {
6721 if (debug_infrun)
6722 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6723 /* Likewise if we aren't even stepping. */
6724 keep_going (ecs);
6725 return;
6726 }
6727
6728 /* Re-fetch current thread's frame in case the code above caused
6729 the frame cache to be re-initialized, making our FRAME variable
6730 a dangling pointer. */
6731 frame = get_current_frame ();
6732 gdbarch = get_frame_arch (frame);
6733 fill_in_stop_func (gdbarch, ecs);
6734
6735 /* If stepping through a line, keep going if still within it.
6736
6737 Note that step_range_end is the address of the first instruction
6738 beyond the step range, and NOT the address of the last instruction
6739 within it!
6740
6741 Note also that during reverse execution, we may be stepping
6742 through a function epilogue and therefore must detect when
6743 the current-frame changes in the middle of a line. */
6744
6745 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6746 ecs->event_thread)
6747 && (execution_direction != EXEC_REVERSE
6748 || frame_id_eq (get_frame_id (frame),
6749 ecs->event_thread->control.step_frame_id)))
6750 {
6751 if (debug_infrun)
6752 fprintf_unfiltered
6753 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6754 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6755 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6756
6757 /* Tentatively re-enable range stepping; `resume' disables it if
6758 necessary (e.g., if we're stepping over a breakpoint or we
6759 have software watchpoints). */
6760 ecs->event_thread->control.may_range_step = 1;
6761
6762 /* When stepping backward, stop at beginning of line range
6763 (unless it's the function entry point, in which case
6764 keep going back to the call point). */
6765 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6766 if (stop_pc == ecs->event_thread->control.step_range_start
6767 && stop_pc != ecs->stop_func_start
6768 && execution_direction == EXEC_REVERSE)
6769 end_stepping_range (ecs);
6770 else
6771 keep_going (ecs);
6772
6773 return;
6774 }
6775
6776 /* We stepped out of the stepping range. */
6777
6778 /* If we are stepping at the source level and entered the runtime
6779 loader dynamic symbol resolution code...
6780
6781 EXEC_FORWARD: we keep on single stepping until we exit the run
6782 time loader code and reach the callee's address.
6783
6784 EXEC_REVERSE: we've already executed the callee (backward), and
6785 the runtime loader code is handled just like any other
6786 undebuggable function call. Now we need only keep stepping
6787 backward through the trampoline code, and that's handled further
6788 down, so there is nothing for us to do here. */
6789
6790 if (execution_direction != EXEC_REVERSE
6791 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6792 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6793 {
6794 CORE_ADDR pc_after_resolver =
6795 gdbarch_skip_solib_resolver (gdbarch,
6796 ecs->event_thread->suspend.stop_pc);
6797
6798 if (debug_infrun)
6799 fprintf_unfiltered (gdb_stdlog,
6800 "infrun: stepped into dynsym resolve code\n");
6801
6802 if (pc_after_resolver)
6803 {
6804 /* Set up a step-resume breakpoint at the address
6805 indicated by SKIP_SOLIB_RESOLVER. */
6806 symtab_and_line sr_sal;
6807 sr_sal.pc = pc_after_resolver;
6808 sr_sal.pspace = get_frame_program_space (frame);
6809
6810 insert_step_resume_breakpoint_at_sal (gdbarch,
6811 sr_sal, null_frame_id);
6812 }
6813
6814 keep_going (ecs);
6815 return;
6816 }
6817
6818 /* Step through an indirect branch thunk. */
6819 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6820 && gdbarch_in_indirect_branch_thunk (gdbarch,
6821 ecs->event_thread->suspend.stop_pc))
6822 {
6823 if (debug_infrun)
6824 fprintf_unfiltered (gdb_stdlog,
6825 "infrun: stepped into indirect branch thunk\n");
6826 keep_going (ecs);
6827 return;
6828 }
6829
6830 if (ecs->event_thread->control.step_range_end != 1
6831 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6832 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6833 && get_frame_type (frame) == SIGTRAMP_FRAME)
6834 {
6835 if (debug_infrun)
6836 fprintf_unfiltered (gdb_stdlog,
6837 "infrun: stepped into signal trampoline\n");
6838 /* The inferior, while doing a "step" or "next", has ended up in
6839 a signal trampoline (either by a signal being delivered or by
6840 the signal handler returning). Just single-step until the
6841 inferior leaves the trampoline (either by calling the handler
6842 or returning). */
6843 keep_going (ecs);
6844 return;
6845 }
6846
6847 /* If we're in the return path from a shared library trampoline,
6848 we want to proceed through the trampoline when stepping. */
6849 /* macro/2012-04-25: This needs to come before the subroutine
6850 call check below as on some targets return trampolines look
6851 like subroutine calls (MIPS16 return thunks). */
6852 if (gdbarch_in_solib_return_trampoline (gdbarch,
6853 ecs->event_thread->suspend.stop_pc,
6854 ecs->stop_func_name)
6855 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6856 {
6857 /* Determine where this trampoline returns. */
6858 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6859 CORE_ADDR real_stop_pc
6860 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6861
6862 if (debug_infrun)
6863 fprintf_unfiltered (gdb_stdlog,
6864 "infrun: stepped into solib return tramp\n");
6865
6866 /* Only proceed through if we know where it's going. */
6867 if (real_stop_pc)
6868 {
6869 /* And put the step-breakpoint there and go until there. */
6870 symtab_and_line sr_sal;
6871 sr_sal.pc = real_stop_pc;
6872 sr_sal.section = find_pc_overlay (sr_sal.pc);
6873 sr_sal.pspace = get_frame_program_space (frame);
6874
6875 /* Do not specify what the fp should be when we stop since
6876 on some machines the prologue is where the new fp value
6877 is established. */
6878 insert_step_resume_breakpoint_at_sal (gdbarch,
6879 sr_sal, null_frame_id);
6880
6881 /* Restart without fiddling with the step ranges or
6882 other state. */
6883 keep_going (ecs);
6884 return;
6885 }
6886 }
6887
6888 /* Check for subroutine calls. The check for the current frame
6889 equalling the step ID is not necessary - the check of the
6890 previous frame's ID is sufficient - but it is a common case and
6891 cheaper than checking the previous frame's ID.
6892
6893 NOTE: frame_id_eq will never report two invalid frame IDs as
6894 being equal, so to get into this block, both the current and
6895 previous frame must have valid frame IDs. */
6896 /* The outer_frame_id check is a heuristic to detect stepping
6897 through startup code. If we step over an instruction which
6898 sets the stack pointer from an invalid value to a valid value,
6899 we may detect that as a subroutine call from the mythical
6900 "outermost" function. This could be fixed by marking
6901 outermost frames as !stack_p,code_p,special_p. Then the
6902 initial outermost frame, before sp was valid, would
6903 have code_addr == &_start. See the comment in frame_id_eq
6904 for more. */
6905 if (!frame_id_eq (get_stack_frame_id (frame),
6906 ecs->event_thread->control.step_stack_frame_id)
6907 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6908 ecs->event_thread->control.step_stack_frame_id)
6909 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6910 outer_frame_id)
6911 || (ecs->event_thread->control.step_start_function
6912 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6913 {
6914 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6915 CORE_ADDR real_stop_pc;
6916
6917 if (debug_infrun)
6918 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6919
6920 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6921 {
6922 /* I presume that step_over_calls is only 0 when we're
6923 supposed to be stepping at the assembly language level
6924 ("stepi"). Just stop. */
6925 /* And this works the same backward as frontward. MVS */
6926 end_stepping_range (ecs);
6927 return;
6928 }
6929
6930 /* Reverse stepping through solib trampolines. */
6931
6932 if (execution_direction == EXEC_REVERSE
6933 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6934 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6935 || (ecs->stop_func_start == 0
6936 && in_solib_dynsym_resolve_code (stop_pc))))
6937 {
6938 /* Any solib trampoline code can be handled in reverse
6939 by simply continuing to single-step. We have already
6940 executed the solib function (backwards), and a few
6941 steps will take us back through the trampoline to the
6942 caller. */
6943 keep_going (ecs);
6944 return;
6945 }
6946
6947 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6948 {
6949 /* We're doing a "next".
6950
6951 Normal (forward) execution: set a breakpoint at the
6952 callee's return address (the address at which the caller
6953 will resume).
6954
6955 Reverse (backward) execution. set the step-resume
6956 breakpoint at the start of the function that we just
6957 stepped into (backwards), and continue to there. When we
6958 get there, we'll need to single-step back to the caller. */
6959
6960 if (execution_direction == EXEC_REVERSE)
6961 {
6962 /* If we're already at the start of the function, we've either
6963 just stepped backward into a single instruction function,
6964 or stepped back out of a signal handler to the first instruction
6965 of the function. Just keep going, which will single-step back
6966 to the caller. */
6967 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6968 {
6969 /* Normal function call return (static or dynamic). */
6970 symtab_and_line sr_sal;
6971 sr_sal.pc = ecs->stop_func_start;
6972 sr_sal.pspace = get_frame_program_space (frame);
6973 insert_step_resume_breakpoint_at_sal (gdbarch,
6974 sr_sal, null_frame_id);
6975 }
6976 }
6977 else
6978 insert_step_resume_breakpoint_at_caller (frame);
6979
6980 keep_going (ecs);
6981 return;
6982 }
6983
6984 /* If we are in a function call trampoline (a stub between the
6985 calling routine and the real function), locate the real
6986 function. That's what tells us (a) whether we want to step
6987 into it at all, and (b) what prologue we want to run to the
6988 end of, if we do step into it. */
6989 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6990 if (real_stop_pc == 0)
6991 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6992 if (real_stop_pc != 0)
6993 ecs->stop_func_start = real_stop_pc;
6994
6995 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6996 {
6997 symtab_and_line sr_sal;
6998 sr_sal.pc = ecs->stop_func_start;
6999 sr_sal.pspace = get_frame_program_space (frame);
7000
7001 insert_step_resume_breakpoint_at_sal (gdbarch,
7002 sr_sal, null_frame_id);
7003 keep_going (ecs);
7004 return;
7005 }
7006
7007 /* If we have line number information for the function we are
7008 thinking of stepping into and the function isn't on the skip
7009 list, step into it.
7010
7011 If there are several symtabs at that PC (e.g. with include
7012 files), just want to know whether *any* of them have line
7013 numbers. find_pc_line handles this. */
7014 {
7015 struct symtab_and_line tmp_sal;
7016
7017 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7018 if (tmp_sal.line != 0
7019 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7020 tmp_sal)
7021 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7022 {
7023 if (execution_direction == EXEC_REVERSE)
7024 handle_step_into_function_backward (gdbarch, ecs);
7025 else
7026 handle_step_into_function (gdbarch, ecs);
7027 return;
7028 }
7029 }
7030
7031 /* If we have no line number and the step-stop-if-no-debug is
7032 set, we stop the step so that the user has a chance to switch
7033 in assembly mode. */
7034 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7035 && step_stop_if_no_debug)
7036 {
7037 end_stepping_range (ecs);
7038 return;
7039 }
7040
7041 if (execution_direction == EXEC_REVERSE)
7042 {
7043 /* If we're already at the start of the function, we've either just
7044 stepped backward into a single instruction function without line
7045 number info, or stepped back out of a signal handler to the first
7046 instruction of the function without line number info. Just keep
7047 going, which will single-step back to the caller. */
7048 if (ecs->stop_func_start != stop_pc)
7049 {
7050 /* Set a breakpoint at callee's start address.
7051 From there we can step once and be back in the caller. */
7052 symtab_and_line sr_sal;
7053 sr_sal.pc = ecs->stop_func_start;
7054 sr_sal.pspace = get_frame_program_space (frame);
7055 insert_step_resume_breakpoint_at_sal (gdbarch,
7056 sr_sal, null_frame_id);
7057 }
7058 }
7059 else
7060 /* Set a breakpoint at callee's return address (the address
7061 at which the caller will resume). */
7062 insert_step_resume_breakpoint_at_caller (frame);
7063
7064 keep_going (ecs);
7065 return;
7066 }
7067
7068 /* Reverse stepping through solib trampolines. */
7069
7070 if (execution_direction == EXEC_REVERSE
7071 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7072 {
7073 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7074
7075 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7076 || (ecs->stop_func_start == 0
7077 && in_solib_dynsym_resolve_code (stop_pc)))
7078 {
7079 /* Any solib trampoline code can be handled in reverse
7080 by simply continuing to single-step. We have already
7081 executed the solib function (backwards), and a few
7082 steps will take us back through the trampoline to the
7083 caller. */
7084 keep_going (ecs);
7085 return;
7086 }
7087 else if (in_solib_dynsym_resolve_code (stop_pc))
7088 {
7089 /* Stepped backward into the solib dynsym resolver.
7090 Set a breakpoint at its start and continue, then
7091 one more step will take us out. */
7092 symtab_and_line sr_sal;
7093 sr_sal.pc = ecs->stop_func_start;
7094 sr_sal.pspace = get_frame_program_space (frame);
7095 insert_step_resume_breakpoint_at_sal (gdbarch,
7096 sr_sal, null_frame_id);
7097 keep_going (ecs);
7098 return;
7099 }
7100 }
7101
7102 /* This always returns the sal for the inner-most frame when we are in a
7103 stack of inlined frames, even if GDB actually believes that it is in a
7104 more outer frame. This is checked for below by calls to
7105 inline_skipped_frames. */
7106 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7107
7108 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7109 the trampoline processing logic, however, there are some trampolines
7110 that have no names, so we should do trampoline handling first. */
7111 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7112 && ecs->stop_func_name == NULL
7113 && stop_pc_sal.line == 0)
7114 {
7115 if (debug_infrun)
7116 fprintf_unfiltered (gdb_stdlog,
7117 "infrun: stepped into undebuggable function\n");
7118
7119 /* The inferior just stepped into, or returned to, an
7120 undebuggable function (where there is no debugging information
7121 and no line number corresponding to the address where the
7122 inferior stopped). Since we want to skip this kind of code,
7123 we keep going until the inferior returns from this
7124 function - unless the user has asked us not to (via
7125 set step-mode) or we no longer know how to get back
7126 to the call site. */
7127 if (step_stop_if_no_debug
7128 || !frame_id_p (frame_unwind_caller_id (frame)))
7129 {
7130 /* If we have no line number and the step-stop-if-no-debug
7131 is set, we stop the step so that the user has a chance to
7132 switch in assembly mode. */
7133 end_stepping_range (ecs);
7134 return;
7135 }
7136 else
7137 {
7138 /* Set a breakpoint at callee's return address (the address
7139 at which the caller will resume). */
7140 insert_step_resume_breakpoint_at_caller (frame);
7141 keep_going (ecs);
7142 return;
7143 }
7144 }
7145
7146 if (ecs->event_thread->control.step_range_end == 1)
7147 {
7148 /* It is stepi or nexti. We always want to stop stepping after
7149 one instruction. */
7150 if (debug_infrun)
7151 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7152 end_stepping_range (ecs);
7153 return;
7154 }
7155
7156 if (stop_pc_sal.line == 0)
7157 {
7158 /* We have no line number information. That means to stop
7159 stepping (does this always happen right after one instruction,
7160 when we do "s" in a function with no line numbers,
7161 or can this happen as a result of a return or longjmp?). */
7162 if (debug_infrun)
7163 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7164 end_stepping_range (ecs);
7165 return;
7166 }
7167
7168 /* Look for "calls" to inlined functions, part one. If the inline
7169 frame machinery detected some skipped call sites, we have entered
7170 a new inline function. */
7171
7172 if (frame_id_eq (get_frame_id (get_current_frame ()),
7173 ecs->event_thread->control.step_frame_id)
7174 && inline_skipped_frames (ecs->event_thread))
7175 {
7176 if (debug_infrun)
7177 fprintf_unfiltered (gdb_stdlog,
7178 "infrun: stepped into inlined function\n");
7179
7180 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7181
7182 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7183 {
7184 /* For "step", we're going to stop. But if the call site
7185 for this inlined function is on the same source line as
7186 we were previously stepping, go down into the function
7187 first. Otherwise stop at the call site. */
7188
7189 if (call_sal.line == ecs->event_thread->current_line
7190 && call_sal.symtab == ecs->event_thread->current_symtab)
7191 {
7192 step_into_inline_frame (ecs->event_thread);
7193 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7194 {
7195 keep_going (ecs);
7196 return;
7197 }
7198 }
7199
7200 end_stepping_range (ecs);
7201 return;
7202 }
7203 else
7204 {
7205 /* For "next", we should stop at the call site if it is on a
7206 different source line. Otherwise continue through the
7207 inlined function. */
7208 if (call_sal.line == ecs->event_thread->current_line
7209 && call_sal.symtab == ecs->event_thread->current_symtab)
7210 keep_going (ecs);
7211 else
7212 end_stepping_range (ecs);
7213 return;
7214 }
7215 }
7216
7217 /* Look for "calls" to inlined functions, part two. If we are still
7218 in the same real function we were stepping through, but we have
7219 to go further up to find the exact frame ID, we are stepping
7220 through a more inlined call beyond its call site. */
7221
7222 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7223 && !frame_id_eq (get_frame_id (get_current_frame ()),
7224 ecs->event_thread->control.step_frame_id)
7225 && stepped_in_from (get_current_frame (),
7226 ecs->event_thread->control.step_frame_id))
7227 {
7228 if (debug_infrun)
7229 fprintf_unfiltered (gdb_stdlog,
7230 "infrun: stepping through inlined function\n");
7231
7232 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7233 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7234 keep_going (ecs);
7235 else
7236 end_stepping_range (ecs);
7237 return;
7238 }
7239
7240 bool refresh_step_info = true;
7241 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7242 && (ecs->event_thread->current_line != stop_pc_sal.line
7243 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7244 {
7245 if (stop_pc_sal.is_stmt)
7246 {
7247 /* We are at the start of a different line. So stop. Note that
7248 we don't stop if we step into the middle of a different line.
7249 That is said to make things like for (;;) statements work
7250 better. */
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: stepped to a different line\n");
7254 end_stepping_range (ecs);
7255 return;
7256 }
7257 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7258 ecs->event_thread->control.step_frame_id))
7259 {
7260 /* We are at the start of a different line, however, this line is
7261 not marked as a statement, and we have not changed frame. We
7262 ignore this line table entry, and continue stepping forward,
7263 looking for a better place to stop. */
7264 refresh_step_info = false;
7265 if (debug_infrun)
7266 fprintf_unfiltered (gdb_stdlog,
7267 "infrun: stepped to a different line, but "
7268 "it's not the start of a statement\n");
7269 }
7270 }
7271
7272 /* We aren't done stepping.
7273
7274 Optimize by setting the stepping range to the line.
7275 (We might not be in the original line, but if we entered a
7276 new line in mid-statement, we continue stepping. This makes
7277 things like for(;;) statements work better.)
7278
7279 If we entered a SAL that indicates a non-statement line table entry,
7280 then we update the stepping range, but we don't update the step info,
7281 which includes things like the line number we are stepping away from.
7282 This means we will stop when we find a line table entry that is marked
7283 as is-statement, even if it matches the non-statement one we just
7284 stepped into. */
7285
7286 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7287 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7288 ecs->event_thread->control.may_range_step = 1;
7289 if (refresh_step_info)
7290 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7291
7292 if (debug_infrun)
7293 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7294 keep_going (ecs);
7295 }
7296
7297 /* In all-stop mode, if we're currently stepping but have stopped in
7298 some other thread, we may need to switch back to the stepped
7299 thread. Returns true we set the inferior running, false if we left
7300 it stopped (and the event needs further processing). */
7301
7302 static int
7303 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7304 {
7305 if (!target_is_non_stop_p ())
7306 {
7307 struct thread_info *stepping_thread;
7308
7309 /* If any thread is blocked on some internal breakpoint, and we
7310 simply need to step over that breakpoint to get it going
7311 again, do that first. */
7312
7313 /* However, if we see an event for the stepping thread, then we
7314 know all other threads have been moved past their breakpoints
7315 already. Let the caller check whether the step is finished,
7316 etc., before deciding to move it past a breakpoint. */
7317 if (ecs->event_thread->control.step_range_end != 0)
7318 return 0;
7319
7320 /* Check if the current thread is blocked on an incomplete
7321 step-over, interrupted by a random signal. */
7322 if (ecs->event_thread->control.trap_expected
7323 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7324 {
7325 if (debug_infrun)
7326 {
7327 fprintf_unfiltered (gdb_stdlog,
7328 "infrun: need to finish step-over of [%s]\n",
7329 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7330 }
7331 keep_going (ecs);
7332 return 1;
7333 }
7334
7335 /* Check if the current thread is blocked by a single-step
7336 breakpoint of another thread. */
7337 if (ecs->hit_singlestep_breakpoint)
7338 {
7339 if (debug_infrun)
7340 {
7341 fprintf_unfiltered (gdb_stdlog,
7342 "infrun: need to step [%s] over single-step "
7343 "breakpoint\n",
7344 target_pid_to_str (ecs->ptid).c_str ());
7345 }
7346 keep_going (ecs);
7347 return 1;
7348 }
7349
7350 /* If this thread needs yet another step-over (e.g., stepping
7351 through a delay slot), do it first before moving on to
7352 another thread. */
7353 if (thread_still_needs_step_over (ecs->event_thread))
7354 {
7355 if (debug_infrun)
7356 {
7357 fprintf_unfiltered (gdb_stdlog,
7358 "infrun: thread [%s] still needs step-over\n",
7359 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7360 }
7361 keep_going (ecs);
7362 return 1;
7363 }
7364
7365 /* If scheduler locking applies even if not stepping, there's no
7366 need to walk over threads. Above we've checked whether the
7367 current thread is stepping. If some other thread not the
7368 event thread is stepping, then it must be that scheduler
7369 locking is not in effect. */
7370 if (schedlock_applies (ecs->event_thread))
7371 return 0;
7372
7373 /* Otherwise, we no longer expect a trap in the current thread.
7374 Clear the trap_expected flag before switching back -- this is
7375 what keep_going does as well, if we call it. */
7376 ecs->event_thread->control.trap_expected = 0;
7377
7378 /* Likewise, clear the signal if it should not be passed. */
7379 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7380 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7381
7382 /* Do all pending step-overs before actually proceeding with
7383 step/next/etc. */
7384 if (start_step_over ())
7385 {
7386 prepare_to_wait (ecs);
7387 return 1;
7388 }
7389
7390 /* Look for the stepping/nexting thread. */
7391 stepping_thread = NULL;
7392
7393 for (thread_info *tp : all_non_exited_threads ())
7394 {
7395 switch_to_thread_no_regs (tp);
7396
7397 /* Ignore threads of processes the caller is not
7398 resuming. */
7399 if (!sched_multi
7400 && (tp->inf->process_target () != ecs->target
7401 || tp->inf->pid != ecs->ptid.pid ()))
7402 continue;
7403
7404 /* When stepping over a breakpoint, we lock all threads
7405 except the one that needs to move past the breakpoint.
7406 If a non-event thread has this set, the "incomplete
7407 step-over" check above should have caught it earlier. */
7408 if (tp->control.trap_expected)
7409 {
7410 internal_error (__FILE__, __LINE__,
7411 "[%s] has inconsistent state: "
7412 "trap_expected=%d\n",
7413 target_pid_to_str (tp->ptid).c_str (),
7414 tp->control.trap_expected);
7415 }
7416
7417 /* Did we find the stepping thread? */
7418 if (tp->control.step_range_end)
7419 {
7420 /* Yep. There should only one though. */
7421 gdb_assert (stepping_thread == NULL);
7422
7423 /* The event thread is handled at the top, before we
7424 enter this loop. */
7425 gdb_assert (tp != ecs->event_thread);
7426
7427 /* If some thread other than the event thread is
7428 stepping, then scheduler locking can't be in effect,
7429 otherwise we wouldn't have resumed the current event
7430 thread in the first place. */
7431 gdb_assert (!schedlock_applies (tp));
7432
7433 stepping_thread = tp;
7434 }
7435 }
7436
7437 if (stepping_thread != NULL)
7438 {
7439 if (debug_infrun)
7440 fprintf_unfiltered (gdb_stdlog,
7441 "infrun: switching back to stepped thread\n");
7442
7443 if (keep_going_stepped_thread (stepping_thread))
7444 {
7445 prepare_to_wait (ecs);
7446 return 1;
7447 }
7448 }
7449
7450 switch_to_thread (ecs->event_thread);
7451 }
7452
7453 return 0;
7454 }
7455
7456 /* Set a previously stepped thread back to stepping. Returns true on
7457 success, false if the resume is not possible (e.g., the thread
7458 vanished). */
7459
7460 static int
7461 keep_going_stepped_thread (struct thread_info *tp)
7462 {
7463 struct frame_info *frame;
7464 struct execution_control_state ecss;
7465 struct execution_control_state *ecs = &ecss;
7466
7467 /* If the stepping thread exited, then don't try to switch back and
7468 resume it, which could fail in several different ways depending
7469 on the target. Instead, just keep going.
7470
7471 We can find a stepping dead thread in the thread list in two
7472 cases:
7473
7474 - The target supports thread exit events, and when the target
7475 tries to delete the thread from the thread list, inferior_ptid
7476 pointed at the exiting thread. In such case, calling
7477 delete_thread does not really remove the thread from the list;
7478 instead, the thread is left listed, with 'exited' state.
7479
7480 - The target's debug interface does not support thread exit
7481 events, and so we have no idea whatsoever if the previously
7482 stepping thread is still alive. For that reason, we need to
7483 synchronously query the target now. */
7484
7485 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7486 {
7487 if (debug_infrun)
7488 fprintf_unfiltered (gdb_stdlog,
7489 "infrun: not resuming previously "
7490 "stepped thread, it has vanished\n");
7491
7492 delete_thread (tp);
7493 return 0;
7494 }
7495
7496 if (debug_infrun)
7497 fprintf_unfiltered (gdb_stdlog,
7498 "infrun: resuming previously stepped thread\n");
7499
7500 reset_ecs (ecs, tp);
7501 switch_to_thread (tp);
7502
7503 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7504 frame = get_current_frame ();
7505
7506 /* If the PC of the thread we were trying to single-step has
7507 changed, then that thread has trapped or been signaled, but the
7508 event has not been reported to GDB yet. Re-poll the target
7509 looking for this particular thread's event (i.e. temporarily
7510 enable schedlock) by:
7511
7512 - setting a break at the current PC
7513 - resuming that particular thread, only (by setting trap
7514 expected)
7515
7516 This prevents us continuously moving the single-step breakpoint
7517 forward, one instruction at a time, overstepping. */
7518
7519 if (tp->suspend.stop_pc != tp->prev_pc)
7520 {
7521 ptid_t resume_ptid;
7522
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: expected thread advanced also (%s -> %s)\n",
7526 paddress (target_gdbarch (), tp->prev_pc),
7527 paddress (target_gdbarch (), tp->suspend.stop_pc));
7528
7529 /* Clear the info of the previous step-over, as it's no longer
7530 valid (if the thread was trying to step over a breakpoint, it
7531 has already succeeded). It's what keep_going would do too,
7532 if we called it. Do this before trying to insert the sss
7533 breakpoint, otherwise if we were previously trying to step
7534 over this exact address in another thread, the breakpoint is
7535 skipped. */
7536 clear_step_over_info ();
7537 tp->control.trap_expected = 0;
7538
7539 insert_single_step_breakpoint (get_frame_arch (frame),
7540 get_frame_address_space (frame),
7541 tp->suspend.stop_pc);
7542
7543 tp->resumed = true;
7544 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7545 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7546 }
7547 else
7548 {
7549 if (debug_infrun)
7550 fprintf_unfiltered (gdb_stdlog,
7551 "infrun: expected thread still hasn't advanced\n");
7552
7553 keep_going_pass_signal (ecs);
7554 }
7555 return 1;
7556 }
7557
7558 /* Is thread TP in the middle of (software or hardware)
7559 single-stepping? (Note the result of this function must never be
7560 passed directly as target_resume's STEP parameter.) */
7561
7562 static int
7563 currently_stepping (struct thread_info *tp)
7564 {
7565 return ((tp->control.step_range_end
7566 && tp->control.step_resume_breakpoint == NULL)
7567 || tp->control.trap_expected
7568 || tp->stepped_breakpoint
7569 || bpstat_should_step ());
7570 }
7571
7572 /* Inferior has stepped into a subroutine call with source code that
7573 we should not step over. Do step to the first line of code in
7574 it. */
7575
7576 static void
7577 handle_step_into_function (struct gdbarch *gdbarch,
7578 struct execution_control_state *ecs)
7579 {
7580 fill_in_stop_func (gdbarch, ecs);
7581
7582 compunit_symtab *cust
7583 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7584 if (cust != NULL && compunit_language (cust) != language_asm)
7585 ecs->stop_func_start
7586 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7587
7588 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7589 /* Use the step_resume_break to step until the end of the prologue,
7590 even if that involves jumps (as it seems to on the vax under
7591 4.2). */
7592 /* If the prologue ends in the middle of a source line, continue to
7593 the end of that source line (if it is still within the function).
7594 Otherwise, just go to end of prologue. */
7595 if (stop_func_sal.end
7596 && stop_func_sal.pc != ecs->stop_func_start
7597 && stop_func_sal.end < ecs->stop_func_end)
7598 ecs->stop_func_start = stop_func_sal.end;
7599
7600 /* Architectures which require breakpoint adjustment might not be able
7601 to place a breakpoint at the computed address. If so, the test
7602 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7603 ecs->stop_func_start to an address at which a breakpoint may be
7604 legitimately placed.
7605
7606 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7607 made, GDB will enter an infinite loop when stepping through
7608 optimized code consisting of VLIW instructions which contain
7609 subinstructions corresponding to different source lines. On
7610 FR-V, it's not permitted to place a breakpoint on any but the
7611 first subinstruction of a VLIW instruction. When a breakpoint is
7612 set, GDB will adjust the breakpoint address to the beginning of
7613 the VLIW instruction. Thus, we need to make the corresponding
7614 adjustment here when computing the stop address. */
7615
7616 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7617 {
7618 ecs->stop_func_start
7619 = gdbarch_adjust_breakpoint_address (gdbarch,
7620 ecs->stop_func_start);
7621 }
7622
7623 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7624 {
7625 /* We are already there: stop now. */
7626 end_stepping_range (ecs);
7627 return;
7628 }
7629 else
7630 {
7631 /* Put the step-breakpoint there and go until there. */
7632 symtab_and_line sr_sal;
7633 sr_sal.pc = ecs->stop_func_start;
7634 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7635 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7636
7637 /* Do not specify what the fp should be when we stop since on
7638 some machines the prologue is where the new fp value is
7639 established. */
7640 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7641
7642 /* And make sure stepping stops right away then. */
7643 ecs->event_thread->control.step_range_end
7644 = ecs->event_thread->control.step_range_start;
7645 }
7646 keep_going (ecs);
7647 }
7648
7649 /* Inferior has stepped backward into a subroutine call with source
7650 code that we should not step over. Do step to the beginning of the
7651 last line of code in it. */
7652
7653 static void
7654 handle_step_into_function_backward (struct gdbarch *gdbarch,
7655 struct execution_control_state *ecs)
7656 {
7657 struct compunit_symtab *cust;
7658 struct symtab_and_line stop_func_sal;
7659
7660 fill_in_stop_func (gdbarch, ecs);
7661
7662 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7663 if (cust != NULL && compunit_language (cust) != language_asm)
7664 ecs->stop_func_start
7665 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7666
7667 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7668
7669 /* OK, we're just going to keep stepping here. */
7670 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7671 {
7672 /* We're there already. Just stop stepping now. */
7673 end_stepping_range (ecs);
7674 }
7675 else
7676 {
7677 /* Else just reset the step range and keep going.
7678 No step-resume breakpoint, they don't work for
7679 epilogues, which can have multiple entry paths. */
7680 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7681 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7682 keep_going (ecs);
7683 }
7684 return;
7685 }
7686
7687 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7688 This is used to both functions and to skip over code. */
7689
7690 static void
7691 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7692 struct symtab_and_line sr_sal,
7693 struct frame_id sr_id,
7694 enum bptype sr_type)
7695 {
7696 /* There should never be more than one step-resume or longjmp-resume
7697 breakpoint per thread, so we should never be setting a new
7698 step_resume_breakpoint when one is already active. */
7699 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7700 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7701
7702 if (debug_infrun)
7703 fprintf_unfiltered (gdb_stdlog,
7704 "infrun: inserting step-resume breakpoint at %s\n",
7705 paddress (gdbarch, sr_sal.pc));
7706
7707 inferior_thread ()->control.step_resume_breakpoint
7708 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7709 }
7710
7711 void
7712 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7713 struct symtab_and_line sr_sal,
7714 struct frame_id sr_id)
7715 {
7716 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7717 sr_sal, sr_id,
7718 bp_step_resume);
7719 }
7720
7721 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7722 This is used to skip a potential signal handler.
7723
7724 This is called with the interrupted function's frame. The signal
7725 handler, when it returns, will resume the interrupted function at
7726 RETURN_FRAME.pc. */
7727
7728 static void
7729 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7730 {
7731 gdb_assert (return_frame != NULL);
7732
7733 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7734
7735 symtab_and_line sr_sal;
7736 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7737 sr_sal.section = find_pc_overlay (sr_sal.pc);
7738 sr_sal.pspace = get_frame_program_space (return_frame);
7739
7740 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7741 get_stack_frame_id (return_frame),
7742 bp_hp_step_resume);
7743 }
7744
7745 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7746 is used to skip a function after stepping into it (for "next" or if
7747 the called function has no debugging information).
7748
7749 The current function has almost always been reached by single
7750 stepping a call or return instruction. NEXT_FRAME belongs to the
7751 current function, and the breakpoint will be set at the caller's
7752 resume address.
7753
7754 This is a separate function rather than reusing
7755 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7756 get_prev_frame, which may stop prematurely (see the implementation
7757 of frame_unwind_caller_id for an example). */
7758
7759 static void
7760 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7761 {
7762 /* We shouldn't have gotten here if we don't know where the call site
7763 is. */
7764 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7765
7766 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7767
7768 symtab_and_line sr_sal;
7769 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7770 frame_unwind_caller_pc (next_frame));
7771 sr_sal.section = find_pc_overlay (sr_sal.pc);
7772 sr_sal.pspace = frame_unwind_program_space (next_frame);
7773
7774 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7775 frame_unwind_caller_id (next_frame));
7776 }
7777
7778 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7779 new breakpoint at the target of a jmp_buf. The handling of
7780 longjmp-resume uses the same mechanisms used for handling
7781 "step-resume" breakpoints. */
7782
7783 static void
7784 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7785 {
7786 /* There should never be more than one longjmp-resume breakpoint per
7787 thread, so we should never be setting a new
7788 longjmp_resume_breakpoint when one is already active. */
7789 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7790
7791 if (debug_infrun)
7792 fprintf_unfiltered (gdb_stdlog,
7793 "infrun: inserting longjmp-resume breakpoint at %s\n",
7794 paddress (gdbarch, pc));
7795
7796 inferior_thread ()->control.exception_resume_breakpoint =
7797 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7798 }
7799
7800 /* Insert an exception resume breakpoint. TP is the thread throwing
7801 the exception. The block B is the block of the unwinder debug hook
7802 function. FRAME is the frame corresponding to the call to this
7803 function. SYM is the symbol of the function argument holding the
7804 target PC of the exception. */
7805
7806 static void
7807 insert_exception_resume_breakpoint (struct thread_info *tp,
7808 const struct block *b,
7809 struct frame_info *frame,
7810 struct symbol *sym)
7811 {
7812 try
7813 {
7814 struct block_symbol vsym;
7815 struct value *value;
7816 CORE_ADDR handler;
7817 struct breakpoint *bp;
7818
7819 vsym = lookup_symbol_search_name (sym->search_name (),
7820 b, VAR_DOMAIN);
7821 value = read_var_value (vsym.symbol, vsym.block, frame);
7822 /* If the value was optimized out, revert to the old behavior. */
7823 if (! value_optimized_out (value))
7824 {
7825 handler = value_as_address (value);
7826
7827 if (debug_infrun)
7828 fprintf_unfiltered (gdb_stdlog,
7829 "infrun: exception resume at %lx\n",
7830 (unsigned long) handler);
7831
7832 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7833 handler,
7834 bp_exception_resume).release ();
7835
7836 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7837 frame = NULL;
7838
7839 bp->thread = tp->global_num;
7840 inferior_thread ()->control.exception_resume_breakpoint = bp;
7841 }
7842 }
7843 catch (const gdb_exception_error &e)
7844 {
7845 /* We want to ignore errors here. */
7846 }
7847 }
7848
7849 /* A helper for check_exception_resume that sets an
7850 exception-breakpoint based on a SystemTap probe. */
7851
7852 static void
7853 insert_exception_resume_from_probe (struct thread_info *tp,
7854 const struct bound_probe *probe,
7855 struct frame_info *frame)
7856 {
7857 struct value *arg_value;
7858 CORE_ADDR handler;
7859 struct breakpoint *bp;
7860
7861 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7862 if (!arg_value)
7863 return;
7864
7865 handler = value_as_address (arg_value);
7866
7867 if (debug_infrun)
7868 fprintf_unfiltered (gdb_stdlog,
7869 "infrun: exception resume at %s\n",
7870 paddress (probe->objfile->arch (),
7871 handler));
7872
7873 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7874 handler, bp_exception_resume).release ();
7875 bp->thread = tp->global_num;
7876 inferior_thread ()->control.exception_resume_breakpoint = bp;
7877 }
7878
7879 /* This is called when an exception has been intercepted. Check to
7880 see whether the exception's destination is of interest, and if so,
7881 set an exception resume breakpoint there. */
7882
7883 static void
7884 check_exception_resume (struct execution_control_state *ecs,
7885 struct frame_info *frame)
7886 {
7887 struct bound_probe probe;
7888 struct symbol *func;
7889
7890 /* First see if this exception unwinding breakpoint was set via a
7891 SystemTap probe point. If so, the probe has two arguments: the
7892 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7893 set a breakpoint there. */
7894 probe = find_probe_by_pc (get_frame_pc (frame));
7895 if (probe.prob)
7896 {
7897 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7898 return;
7899 }
7900
7901 func = get_frame_function (frame);
7902 if (!func)
7903 return;
7904
7905 try
7906 {
7907 const struct block *b;
7908 struct block_iterator iter;
7909 struct symbol *sym;
7910 int argno = 0;
7911
7912 /* The exception breakpoint is a thread-specific breakpoint on
7913 the unwinder's debug hook, declared as:
7914
7915 void _Unwind_DebugHook (void *cfa, void *handler);
7916
7917 The CFA argument indicates the frame to which control is
7918 about to be transferred. HANDLER is the destination PC.
7919
7920 We ignore the CFA and set a temporary breakpoint at HANDLER.
7921 This is not extremely efficient but it avoids issues in gdb
7922 with computing the DWARF CFA, and it also works even in weird
7923 cases such as throwing an exception from inside a signal
7924 handler. */
7925
7926 b = SYMBOL_BLOCK_VALUE (func);
7927 ALL_BLOCK_SYMBOLS (b, iter, sym)
7928 {
7929 if (!SYMBOL_IS_ARGUMENT (sym))
7930 continue;
7931
7932 if (argno == 0)
7933 ++argno;
7934 else
7935 {
7936 insert_exception_resume_breakpoint (ecs->event_thread,
7937 b, frame, sym);
7938 break;
7939 }
7940 }
7941 }
7942 catch (const gdb_exception_error &e)
7943 {
7944 }
7945 }
7946
7947 static void
7948 stop_waiting (struct execution_control_state *ecs)
7949 {
7950 if (debug_infrun)
7951 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7952
7953 /* Let callers know we don't want to wait for the inferior anymore. */
7954 ecs->wait_some_more = 0;
7955
7956 /* If all-stop, but there exists a non-stop target, stop all
7957 threads now that we're presenting the stop to the user. */
7958 if (!non_stop && exists_non_stop_target ())
7959 stop_all_threads ();
7960 }
7961
7962 /* Like keep_going, but passes the signal to the inferior, even if the
7963 signal is set to nopass. */
7964
7965 static void
7966 keep_going_pass_signal (struct execution_control_state *ecs)
7967 {
7968 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7969 gdb_assert (!ecs->event_thread->resumed);
7970
7971 /* Save the pc before execution, to compare with pc after stop. */
7972 ecs->event_thread->prev_pc
7973 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7974
7975 if (ecs->event_thread->control.trap_expected)
7976 {
7977 struct thread_info *tp = ecs->event_thread;
7978
7979 if (debug_infrun)
7980 fprintf_unfiltered (gdb_stdlog,
7981 "infrun: %s has trap_expected set, "
7982 "resuming to collect trap\n",
7983 target_pid_to_str (tp->ptid).c_str ());
7984
7985 /* We haven't yet gotten our trap, and either: intercepted a
7986 non-signal event (e.g., a fork); or took a signal which we
7987 are supposed to pass through to the inferior. Simply
7988 continue. */
7989 resume (ecs->event_thread->suspend.stop_signal);
7990 }
7991 else if (step_over_info_valid_p ())
7992 {
7993 /* Another thread is stepping over a breakpoint in-line. If
7994 this thread needs a step-over too, queue the request. In
7995 either case, this resume must be deferred for later. */
7996 struct thread_info *tp = ecs->event_thread;
7997
7998 if (ecs->hit_singlestep_breakpoint
7999 || thread_still_needs_step_over (tp))
8000 {
8001 if (debug_infrun)
8002 fprintf_unfiltered (gdb_stdlog,
8003 "infrun: step-over already in progress: "
8004 "step-over for %s deferred\n",
8005 target_pid_to_str (tp->ptid).c_str ());
8006 thread_step_over_chain_enqueue (tp);
8007 }
8008 else
8009 {
8010 if (debug_infrun)
8011 fprintf_unfiltered (gdb_stdlog,
8012 "infrun: step-over in progress: "
8013 "resume of %s deferred\n",
8014 target_pid_to_str (tp->ptid).c_str ());
8015 }
8016 }
8017 else
8018 {
8019 struct regcache *regcache = get_current_regcache ();
8020 int remove_bp;
8021 int remove_wps;
8022 step_over_what step_what;
8023
8024 /* Either the trap was not expected, but we are continuing
8025 anyway (if we got a signal, the user asked it be passed to
8026 the child)
8027 -- or --
8028 We got our expected trap, but decided we should resume from
8029 it.
8030
8031 We're going to run this baby now!
8032
8033 Note that insert_breakpoints won't try to re-insert
8034 already inserted breakpoints. Therefore, we don't
8035 care if breakpoints were already inserted, or not. */
8036
8037 /* If we need to step over a breakpoint, and we're not using
8038 displaced stepping to do so, insert all breakpoints
8039 (watchpoints, etc.) but the one we're stepping over, step one
8040 instruction, and then re-insert the breakpoint when that step
8041 is finished. */
8042
8043 step_what = thread_still_needs_step_over (ecs->event_thread);
8044
8045 remove_bp = (ecs->hit_singlestep_breakpoint
8046 || (step_what & STEP_OVER_BREAKPOINT));
8047 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8048
8049 /* We can't use displaced stepping if we need to step past a
8050 watchpoint. The instruction copied to the scratch pad would
8051 still trigger the watchpoint. */
8052 if (remove_bp
8053 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8054 {
8055 set_step_over_info (regcache->aspace (),
8056 regcache_read_pc (regcache), remove_wps,
8057 ecs->event_thread->global_num);
8058 }
8059 else if (remove_wps)
8060 set_step_over_info (NULL, 0, remove_wps, -1);
8061
8062 /* If we now need to do an in-line step-over, we need to stop
8063 all other threads. Note this must be done before
8064 insert_breakpoints below, because that removes the breakpoint
8065 we're about to step over, otherwise other threads could miss
8066 it. */
8067 if (step_over_info_valid_p () && target_is_non_stop_p ())
8068 stop_all_threads ();
8069
8070 /* Stop stepping if inserting breakpoints fails. */
8071 try
8072 {
8073 insert_breakpoints ();
8074 }
8075 catch (const gdb_exception_error &e)
8076 {
8077 exception_print (gdb_stderr, e);
8078 stop_waiting (ecs);
8079 clear_step_over_info ();
8080 return;
8081 }
8082
8083 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8084
8085 resume (ecs->event_thread->suspend.stop_signal);
8086 }
8087
8088 prepare_to_wait (ecs);
8089 }
8090
8091 /* Called when we should continue running the inferior, because the
8092 current event doesn't cause a user visible stop. This does the
8093 resuming part; waiting for the next event is done elsewhere. */
8094
8095 static void
8096 keep_going (struct execution_control_state *ecs)
8097 {
8098 if (ecs->event_thread->control.trap_expected
8099 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8100 ecs->event_thread->control.trap_expected = 0;
8101
8102 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8103 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8104 keep_going_pass_signal (ecs);
8105 }
8106
8107 /* This function normally comes after a resume, before
8108 handle_inferior_event exits. It takes care of any last bits of
8109 housekeeping, and sets the all-important wait_some_more flag. */
8110
8111 static void
8112 prepare_to_wait (struct execution_control_state *ecs)
8113 {
8114 if (debug_infrun)
8115 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8116
8117 ecs->wait_some_more = 1;
8118
8119 if (!target_is_async_p ())
8120 mark_infrun_async_event_handler ();
8121 }
8122
8123 /* We are done with the step range of a step/next/si/ni command.
8124 Called once for each n of a "step n" operation. */
8125
8126 static void
8127 end_stepping_range (struct execution_control_state *ecs)
8128 {
8129 ecs->event_thread->control.stop_step = 1;
8130 stop_waiting (ecs);
8131 }
8132
8133 /* Several print_*_reason functions to print why the inferior has stopped.
8134 We always print something when the inferior exits, or receives a signal.
8135 The rest of the cases are dealt with later on in normal_stop and
8136 print_it_typical. Ideally there should be a call to one of these
8137 print_*_reason functions functions from handle_inferior_event each time
8138 stop_waiting is called.
8139
8140 Note that we don't call these directly, instead we delegate that to
8141 the interpreters, through observers. Interpreters then call these
8142 with whatever uiout is right. */
8143
8144 void
8145 print_end_stepping_range_reason (struct ui_out *uiout)
8146 {
8147 /* For CLI-like interpreters, print nothing. */
8148
8149 if (uiout->is_mi_like_p ())
8150 {
8151 uiout->field_string ("reason",
8152 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8153 }
8154 }
8155
8156 void
8157 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8158 {
8159 annotate_signalled ();
8160 if (uiout->is_mi_like_p ())
8161 uiout->field_string
8162 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8163 uiout->text ("\nProgram terminated with signal ");
8164 annotate_signal_name ();
8165 uiout->field_string ("signal-name",
8166 gdb_signal_to_name (siggnal));
8167 annotate_signal_name_end ();
8168 uiout->text (", ");
8169 annotate_signal_string ();
8170 uiout->field_string ("signal-meaning",
8171 gdb_signal_to_string (siggnal));
8172 annotate_signal_string_end ();
8173 uiout->text (".\n");
8174 uiout->text ("The program no longer exists.\n");
8175 }
8176
8177 void
8178 print_exited_reason (struct ui_out *uiout, int exitstatus)
8179 {
8180 struct inferior *inf = current_inferior ();
8181 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8182
8183 annotate_exited (exitstatus);
8184 if (exitstatus)
8185 {
8186 if (uiout->is_mi_like_p ())
8187 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8188 std::string exit_code_str
8189 = string_printf ("0%o", (unsigned int) exitstatus);
8190 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8191 plongest (inf->num), pidstr.c_str (),
8192 string_field ("exit-code", exit_code_str.c_str ()));
8193 }
8194 else
8195 {
8196 if (uiout->is_mi_like_p ())
8197 uiout->field_string
8198 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8199 uiout->message ("[Inferior %s (%s) exited normally]\n",
8200 plongest (inf->num), pidstr.c_str ());
8201 }
8202 }
8203
8204 /* Some targets/architectures can do extra processing/display of
8205 segmentation faults. E.g., Intel MPX boundary faults.
8206 Call the architecture dependent function to handle the fault. */
8207
8208 static void
8209 handle_segmentation_fault (struct ui_out *uiout)
8210 {
8211 struct regcache *regcache = get_current_regcache ();
8212 struct gdbarch *gdbarch = regcache->arch ();
8213
8214 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8215 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8216 }
8217
8218 void
8219 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8220 {
8221 struct thread_info *thr = inferior_thread ();
8222
8223 annotate_signal ();
8224
8225 if (uiout->is_mi_like_p ())
8226 ;
8227 else if (show_thread_that_caused_stop ())
8228 {
8229 const char *name;
8230
8231 uiout->text ("\nThread ");
8232 uiout->field_string ("thread-id", print_thread_id (thr));
8233
8234 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8235 if (name != NULL)
8236 {
8237 uiout->text (" \"");
8238 uiout->field_string ("name", name);
8239 uiout->text ("\"");
8240 }
8241 }
8242 else
8243 uiout->text ("\nProgram");
8244
8245 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8246 uiout->text (" stopped");
8247 else
8248 {
8249 uiout->text (" received signal ");
8250 annotate_signal_name ();
8251 if (uiout->is_mi_like_p ())
8252 uiout->field_string
8253 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8254 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8255 annotate_signal_name_end ();
8256 uiout->text (", ");
8257 annotate_signal_string ();
8258 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8259
8260 if (siggnal == GDB_SIGNAL_SEGV)
8261 handle_segmentation_fault (uiout);
8262
8263 annotate_signal_string_end ();
8264 }
8265 uiout->text (".\n");
8266 }
8267
8268 void
8269 print_no_history_reason (struct ui_out *uiout)
8270 {
8271 uiout->text ("\nNo more reverse-execution history.\n");
8272 }
8273
8274 /* Print current location without a level number, if we have changed
8275 functions or hit a breakpoint. Print source line if we have one.
8276 bpstat_print contains the logic deciding in detail what to print,
8277 based on the event(s) that just occurred. */
8278
8279 static void
8280 print_stop_location (struct target_waitstatus *ws)
8281 {
8282 int bpstat_ret;
8283 enum print_what source_flag;
8284 int do_frame_printing = 1;
8285 struct thread_info *tp = inferior_thread ();
8286
8287 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8288 switch (bpstat_ret)
8289 {
8290 case PRINT_UNKNOWN:
8291 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8292 should) carry around the function and does (or should) use
8293 that when doing a frame comparison. */
8294 if (tp->control.stop_step
8295 && frame_id_eq (tp->control.step_frame_id,
8296 get_frame_id (get_current_frame ()))
8297 && (tp->control.step_start_function
8298 == find_pc_function (tp->suspend.stop_pc)))
8299 {
8300 /* Finished step, just print source line. */
8301 source_flag = SRC_LINE;
8302 }
8303 else
8304 {
8305 /* Print location and source line. */
8306 source_flag = SRC_AND_LOC;
8307 }
8308 break;
8309 case PRINT_SRC_AND_LOC:
8310 /* Print location and source line. */
8311 source_flag = SRC_AND_LOC;
8312 break;
8313 case PRINT_SRC_ONLY:
8314 source_flag = SRC_LINE;
8315 break;
8316 case PRINT_NOTHING:
8317 /* Something bogus. */
8318 source_flag = SRC_LINE;
8319 do_frame_printing = 0;
8320 break;
8321 default:
8322 internal_error (__FILE__, __LINE__, _("Unknown value."));
8323 }
8324
8325 /* The behavior of this routine with respect to the source
8326 flag is:
8327 SRC_LINE: Print only source line
8328 LOCATION: Print only location
8329 SRC_AND_LOC: Print location and source line. */
8330 if (do_frame_printing)
8331 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8332 }
8333
8334 /* See infrun.h. */
8335
8336 void
8337 print_stop_event (struct ui_out *uiout, bool displays)
8338 {
8339 struct target_waitstatus last;
8340 struct thread_info *tp;
8341
8342 get_last_target_status (nullptr, nullptr, &last);
8343
8344 {
8345 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8346
8347 print_stop_location (&last);
8348
8349 /* Display the auto-display expressions. */
8350 if (displays)
8351 do_displays ();
8352 }
8353
8354 tp = inferior_thread ();
8355 if (tp->thread_fsm != NULL
8356 && tp->thread_fsm->finished_p ())
8357 {
8358 struct return_value_info *rv;
8359
8360 rv = tp->thread_fsm->return_value ();
8361 if (rv != NULL)
8362 print_return_value (uiout, rv);
8363 }
8364 }
8365
8366 /* See infrun.h. */
8367
8368 void
8369 maybe_remove_breakpoints (void)
8370 {
8371 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8372 {
8373 if (remove_breakpoints ())
8374 {
8375 target_terminal::ours_for_output ();
8376 printf_filtered (_("Cannot remove breakpoints because "
8377 "program is no longer writable.\nFurther "
8378 "execution is probably impossible.\n"));
8379 }
8380 }
8381 }
8382
8383 /* The execution context that just caused a normal stop. */
8384
8385 struct stop_context
8386 {
8387 stop_context ();
8388 ~stop_context ();
8389
8390 DISABLE_COPY_AND_ASSIGN (stop_context);
8391
8392 bool changed () const;
8393
8394 /* The stop ID. */
8395 ULONGEST stop_id;
8396
8397 /* The event PTID. */
8398
8399 ptid_t ptid;
8400
8401 /* If stopp for a thread event, this is the thread that caused the
8402 stop. */
8403 struct thread_info *thread;
8404
8405 /* The inferior that caused the stop. */
8406 int inf_num;
8407 };
8408
8409 /* Initializes a new stop context. If stopped for a thread event, this
8410 takes a strong reference to the thread. */
8411
8412 stop_context::stop_context ()
8413 {
8414 stop_id = get_stop_id ();
8415 ptid = inferior_ptid;
8416 inf_num = current_inferior ()->num;
8417
8418 if (inferior_ptid != null_ptid)
8419 {
8420 /* Take a strong reference so that the thread can't be deleted
8421 yet. */
8422 thread = inferior_thread ();
8423 thread->incref ();
8424 }
8425 else
8426 thread = NULL;
8427 }
8428
8429 /* Release a stop context previously created with save_stop_context.
8430 Releases the strong reference to the thread as well. */
8431
8432 stop_context::~stop_context ()
8433 {
8434 if (thread != NULL)
8435 thread->decref ();
8436 }
8437
8438 /* Return true if the current context no longer matches the saved stop
8439 context. */
8440
8441 bool
8442 stop_context::changed () const
8443 {
8444 if (ptid != inferior_ptid)
8445 return true;
8446 if (inf_num != current_inferior ()->num)
8447 return true;
8448 if (thread != NULL && thread->state != THREAD_STOPPED)
8449 return true;
8450 if (get_stop_id () != stop_id)
8451 return true;
8452 return false;
8453 }
8454
8455 /* See infrun.h. */
8456
8457 int
8458 normal_stop (void)
8459 {
8460 struct target_waitstatus last;
8461
8462 get_last_target_status (nullptr, nullptr, &last);
8463
8464 new_stop_id ();
8465
8466 /* If an exception is thrown from this point on, make sure to
8467 propagate GDB's knowledge of the executing state to the
8468 frontend/user running state. A QUIT is an easy exception to see
8469 here, so do this before any filtered output. */
8470
8471 ptid_t finish_ptid = null_ptid;
8472
8473 if (!non_stop)
8474 finish_ptid = minus_one_ptid;
8475 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8476 || last.kind == TARGET_WAITKIND_EXITED)
8477 {
8478 /* On some targets, we may still have live threads in the
8479 inferior when we get a process exit event. E.g., for
8480 "checkpoint", when the current checkpoint/fork exits,
8481 linux-fork.c automatically switches to another fork from
8482 within target_mourn_inferior. */
8483 if (inferior_ptid != null_ptid)
8484 finish_ptid = ptid_t (inferior_ptid.pid ());
8485 }
8486 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8487 finish_ptid = inferior_ptid;
8488
8489 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8490 if (finish_ptid != null_ptid)
8491 {
8492 maybe_finish_thread_state.emplace
8493 (user_visible_resume_target (finish_ptid), finish_ptid);
8494 }
8495
8496 /* As we're presenting a stop, and potentially removing breakpoints,
8497 update the thread list so we can tell whether there are threads
8498 running on the target. With target remote, for example, we can
8499 only learn about new threads when we explicitly update the thread
8500 list. Do this before notifying the interpreters about signal
8501 stops, end of stepping ranges, etc., so that the "new thread"
8502 output is emitted before e.g., "Program received signal FOO",
8503 instead of after. */
8504 update_thread_list ();
8505
8506 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8507 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8508
8509 /* As with the notification of thread events, we want to delay
8510 notifying the user that we've switched thread context until
8511 the inferior actually stops.
8512
8513 There's no point in saying anything if the inferior has exited.
8514 Note that SIGNALLED here means "exited with a signal", not
8515 "received a signal".
8516
8517 Also skip saying anything in non-stop mode. In that mode, as we
8518 don't want GDB to switch threads behind the user's back, to avoid
8519 races where the user is typing a command to apply to thread x,
8520 but GDB switches to thread y before the user finishes entering
8521 the command, fetch_inferior_event installs a cleanup to restore
8522 the current thread back to the thread the user had selected right
8523 after this event is handled, so we're not really switching, only
8524 informing of a stop. */
8525 if (!non_stop
8526 && previous_inferior_ptid != inferior_ptid
8527 && target_has_execution
8528 && last.kind != TARGET_WAITKIND_SIGNALLED
8529 && last.kind != TARGET_WAITKIND_EXITED
8530 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8531 {
8532 SWITCH_THRU_ALL_UIS ()
8533 {
8534 target_terminal::ours_for_output ();
8535 printf_filtered (_("[Switching to %s]\n"),
8536 target_pid_to_str (inferior_ptid).c_str ());
8537 annotate_thread_changed ();
8538 }
8539 previous_inferior_ptid = inferior_ptid;
8540 }
8541
8542 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8543 {
8544 SWITCH_THRU_ALL_UIS ()
8545 if (current_ui->prompt_state == PROMPT_BLOCKED)
8546 {
8547 target_terminal::ours_for_output ();
8548 printf_filtered (_("No unwaited-for children left.\n"));
8549 }
8550 }
8551
8552 /* Note: this depends on the update_thread_list call above. */
8553 maybe_remove_breakpoints ();
8554
8555 /* If an auto-display called a function and that got a signal,
8556 delete that auto-display to avoid an infinite recursion. */
8557
8558 if (stopped_by_random_signal)
8559 disable_current_display ();
8560
8561 SWITCH_THRU_ALL_UIS ()
8562 {
8563 async_enable_stdin ();
8564 }
8565
8566 /* Let the user/frontend see the threads as stopped. */
8567 maybe_finish_thread_state.reset ();
8568
8569 /* Select innermost stack frame - i.e., current frame is frame 0,
8570 and current location is based on that. Handle the case where the
8571 dummy call is returning after being stopped. E.g. the dummy call
8572 previously hit a breakpoint. (If the dummy call returns
8573 normally, we won't reach here.) Do this before the stop hook is
8574 run, so that it doesn't get to see the temporary dummy frame,
8575 which is not where we'll present the stop. */
8576 if (has_stack_frames ())
8577 {
8578 if (stop_stack_dummy == STOP_STACK_DUMMY)
8579 {
8580 /* Pop the empty frame that contains the stack dummy. This
8581 also restores inferior state prior to the call (struct
8582 infcall_suspend_state). */
8583 struct frame_info *frame = get_current_frame ();
8584
8585 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8586 frame_pop (frame);
8587 /* frame_pop calls reinit_frame_cache as the last thing it
8588 does which means there's now no selected frame. */
8589 }
8590
8591 select_frame (get_current_frame ());
8592
8593 /* Set the current source location. */
8594 set_current_sal_from_frame (get_current_frame ());
8595 }
8596
8597 /* Look up the hook_stop and run it (CLI internally handles problem
8598 of stop_command's pre-hook not existing). */
8599 if (stop_command != NULL)
8600 {
8601 stop_context saved_context;
8602
8603 try
8604 {
8605 execute_cmd_pre_hook (stop_command);
8606 }
8607 catch (const gdb_exception &ex)
8608 {
8609 exception_fprintf (gdb_stderr, ex,
8610 "Error while running hook_stop:\n");
8611 }
8612
8613 /* If the stop hook resumes the target, then there's no point in
8614 trying to notify about the previous stop; its context is
8615 gone. Likewise if the command switches thread or inferior --
8616 the observers would print a stop for the wrong
8617 thread/inferior. */
8618 if (saved_context.changed ())
8619 return 1;
8620 }
8621
8622 /* Notify observers about the stop. This is where the interpreters
8623 print the stop event. */
8624 if (inferior_ptid != null_ptid)
8625 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8626 stop_print_frame);
8627 else
8628 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8629
8630 annotate_stopped ();
8631
8632 if (target_has_execution)
8633 {
8634 if (last.kind != TARGET_WAITKIND_SIGNALLED
8635 && last.kind != TARGET_WAITKIND_EXITED
8636 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8637 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8638 Delete any breakpoint that is to be deleted at the next stop. */
8639 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8640 }
8641
8642 /* Try to get rid of automatically added inferiors that are no
8643 longer needed. Keeping those around slows down things linearly.
8644 Note that this never removes the current inferior. */
8645 prune_inferiors ();
8646
8647 return 0;
8648 }
8649 \f
8650 int
8651 signal_stop_state (int signo)
8652 {
8653 return signal_stop[signo];
8654 }
8655
8656 int
8657 signal_print_state (int signo)
8658 {
8659 return signal_print[signo];
8660 }
8661
8662 int
8663 signal_pass_state (int signo)
8664 {
8665 return signal_program[signo];
8666 }
8667
8668 static void
8669 signal_cache_update (int signo)
8670 {
8671 if (signo == -1)
8672 {
8673 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8674 signal_cache_update (signo);
8675
8676 return;
8677 }
8678
8679 signal_pass[signo] = (signal_stop[signo] == 0
8680 && signal_print[signo] == 0
8681 && signal_program[signo] == 1
8682 && signal_catch[signo] == 0);
8683 }
8684
8685 int
8686 signal_stop_update (int signo, int state)
8687 {
8688 int ret = signal_stop[signo];
8689
8690 signal_stop[signo] = state;
8691 signal_cache_update (signo);
8692 return ret;
8693 }
8694
8695 int
8696 signal_print_update (int signo, int state)
8697 {
8698 int ret = signal_print[signo];
8699
8700 signal_print[signo] = state;
8701 signal_cache_update (signo);
8702 return ret;
8703 }
8704
8705 int
8706 signal_pass_update (int signo, int state)
8707 {
8708 int ret = signal_program[signo];
8709
8710 signal_program[signo] = state;
8711 signal_cache_update (signo);
8712 return ret;
8713 }
8714
8715 /* Update the global 'signal_catch' from INFO and notify the
8716 target. */
8717
8718 void
8719 signal_catch_update (const unsigned int *info)
8720 {
8721 int i;
8722
8723 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8724 signal_catch[i] = info[i] > 0;
8725 signal_cache_update (-1);
8726 target_pass_signals (signal_pass);
8727 }
8728
8729 static void
8730 sig_print_header (void)
8731 {
8732 printf_filtered (_("Signal Stop\tPrint\tPass "
8733 "to program\tDescription\n"));
8734 }
8735
8736 static void
8737 sig_print_info (enum gdb_signal oursig)
8738 {
8739 const char *name = gdb_signal_to_name (oursig);
8740 int name_padding = 13 - strlen (name);
8741
8742 if (name_padding <= 0)
8743 name_padding = 0;
8744
8745 printf_filtered ("%s", name);
8746 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8747 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8748 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8749 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8750 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8751 }
8752
8753 /* Specify how various signals in the inferior should be handled. */
8754
8755 static void
8756 handle_command (const char *args, int from_tty)
8757 {
8758 int digits, wordlen;
8759 int sigfirst, siglast;
8760 enum gdb_signal oursig;
8761 int allsigs;
8762
8763 if (args == NULL)
8764 {
8765 error_no_arg (_("signal to handle"));
8766 }
8767
8768 /* Allocate and zero an array of flags for which signals to handle. */
8769
8770 const size_t nsigs = GDB_SIGNAL_LAST;
8771 unsigned char sigs[nsigs] {};
8772
8773 /* Break the command line up into args. */
8774
8775 gdb_argv built_argv (args);
8776
8777 /* Walk through the args, looking for signal oursigs, signal names, and
8778 actions. Signal numbers and signal names may be interspersed with
8779 actions, with the actions being performed for all signals cumulatively
8780 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8781
8782 for (char *arg : built_argv)
8783 {
8784 wordlen = strlen (arg);
8785 for (digits = 0; isdigit (arg[digits]); digits++)
8786 {;
8787 }
8788 allsigs = 0;
8789 sigfirst = siglast = -1;
8790
8791 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8792 {
8793 /* Apply action to all signals except those used by the
8794 debugger. Silently skip those. */
8795 allsigs = 1;
8796 sigfirst = 0;
8797 siglast = nsigs - 1;
8798 }
8799 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8800 {
8801 SET_SIGS (nsigs, sigs, signal_stop);
8802 SET_SIGS (nsigs, sigs, signal_print);
8803 }
8804 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8805 {
8806 UNSET_SIGS (nsigs, sigs, signal_program);
8807 }
8808 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8809 {
8810 SET_SIGS (nsigs, sigs, signal_print);
8811 }
8812 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8813 {
8814 SET_SIGS (nsigs, sigs, signal_program);
8815 }
8816 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8817 {
8818 UNSET_SIGS (nsigs, sigs, signal_stop);
8819 }
8820 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8821 {
8822 SET_SIGS (nsigs, sigs, signal_program);
8823 }
8824 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8825 {
8826 UNSET_SIGS (nsigs, sigs, signal_print);
8827 UNSET_SIGS (nsigs, sigs, signal_stop);
8828 }
8829 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8830 {
8831 UNSET_SIGS (nsigs, sigs, signal_program);
8832 }
8833 else if (digits > 0)
8834 {
8835 /* It is numeric. The numeric signal refers to our own
8836 internal signal numbering from target.h, not to host/target
8837 signal number. This is a feature; users really should be
8838 using symbolic names anyway, and the common ones like
8839 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8840
8841 sigfirst = siglast = (int)
8842 gdb_signal_from_command (atoi (arg));
8843 if (arg[digits] == '-')
8844 {
8845 siglast = (int)
8846 gdb_signal_from_command (atoi (arg + digits + 1));
8847 }
8848 if (sigfirst > siglast)
8849 {
8850 /* Bet he didn't figure we'd think of this case... */
8851 std::swap (sigfirst, siglast);
8852 }
8853 }
8854 else
8855 {
8856 oursig = gdb_signal_from_name (arg);
8857 if (oursig != GDB_SIGNAL_UNKNOWN)
8858 {
8859 sigfirst = siglast = (int) oursig;
8860 }
8861 else
8862 {
8863 /* Not a number and not a recognized flag word => complain. */
8864 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8865 }
8866 }
8867
8868 /* If any signal numbers or symbol names were found, set flags for
8869 which signals to apply actions to. */
8870
8871 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8872 {
8873 switch ((enum gdb_signal) signum)
8874 {
8875 case GDB_SIGNAL_TRAP:
8876 case GDB_SIGNAL_INT:
8877 if (!allsigs && !sigs[signum])
8878 {
8879 if (query (_("%s is used by the debugger.\n\
8880 Are you sure you want to change it? "),
8881 gdb_signal_to_name ((enum gdb_signal) signum)))
8882 {
8883 sigs[signum] = 1;
8884 }
8885 else
8886 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8887 }
8888 break;
8889 case GDB_SIGNAL_0:
8890 case GDB_SIGNAL_DEFAULT:
8891 case GDB_SIGNAL_UNKNOWN:
8892 /* Make sure that "all" doesn't print these. */
8893 break;
8894 default:
8895 sigs[signum] = 1;
8896 break;
8897 }
8898 }
8899 }
8900
8901 for (int signum = 0; signum < nsigs; signum++)
8902 if (sigs[signum])
8903 {
8904 signal_cache_update (-1);
8905 target_pass_signals (signal_pass);
8906 target_program_signals (signal_program);
8907
8908 if (from_tty)
8909 {
8910 /* Show the results. */
8911 sig_print_header ();
8912 for (; signum < nsigs; signum++)
8913 if (sigs[signum])
8914 sig_print_info ((enum gdb_signal) signum);
8915 }
8916
8917 break;
8918 }
8919 }
8920
8921 /* Complete the "handle" command. */
8922
8923 static void
8924 handle_completer (struct cmd_list_element *ignore,
8925 completion_tracker &tracker,
8926 const char *text, const char *word)
8927 {
8928 static const char * const keywords[] =
8929 {
8930 "all",
8931 "stop",
8932 "ignore",
8933 "print",
8934 "pass",
8935 "nostop",
8936 "noignore",
8937 "noprint",
8938 "nopass",
8939 NULL,
8940 };
8941
8942 signal_completer (ignore, tracker, text, word);
8943 complete_on_enum (tracker, keywords, word, word);
8944 }
8945
8946 enum gdb_signal
8947 gdb_signal_from_command (int num)
8948 {
8949 if (num >= 1 && num <= 15)
8950 return (enum gdb_signal) num;
8951 error (_("Only signals 1-15 are valid as numeric signals.\n\
8952 Use \"info signals\" for a list of symbolic signals."));
8953 }
8954
8955 /* Print current contents of the tables set by the handle command.
8956 It is possible we should just be printing signals actually used
8957 by the current target (but for things to work right when switching
8958 targets, all signals should be in the signal tables). */
8959
8960 static void
8961 info_signals_command (const char *signum_exp, int from_tty)
8962 {
8963 enum gdb_signal oursig;
8964
8965 sig_print_header ();
8966
8967 if (signum_exp)
8968 {
8969 /* First see if this is a symbol name. */
8970 oursig = gdb_signal_from_name (signum_exp);
8971 if (oursig == GDB_SIGNAL_UNKNOWN)
8972 {
8973 /* No, try numeric. */
8974 oursig =
8975 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8976 }
8977 sig_print_info (oursig);
8978 return;
8979 }
8980
8981 printf_filtered ("\n");
8982 /* These ugly casts brought to you by the native VAX compiler. */
8983 for (oursig = GDB_SIGNAL_FIRST;
8984 (int) oursig < (int) GDB_SIGNAL_LAST;
8985 oursig = (enum gdb_signal) ((int) oursig + 1))
8986 {
8987 QUIT;
8988
8989 if (oursig != GDB_SIGNAL_UNKNOWN
8990 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8991 sig_print_info (oursig);
8992 }
8993
8994 printf_filtered (_("\nUse the \"handle\" command "
8995 "to change these tables.\n"));
8996 }
8997
8998 /* The $_siginfo convenience variable is a bit special. We don't know
8999 for sure the type of the value until we actually have a chance to
9000 fetch the data. The type can change depending on gdbarch, so it is
9001 also dependent on which thread you have selected.
9002
9003 1. making $_siginfo be an internalvar that creates a new value on
9004 access.
9005
9006 2. making the value of $_siginfo be an lval_computed value. */
9007
9008 /* This function implements the lval_computed support for reading a
9009 $_siginfo value. */
9010
9011 static void
9012 siginfo_value_read (struct value *v)
9013 {
9014 LONGEST transferred;
9015
9016 /* If we can access registers, so can we access $_siginfo. Likewise
9017 vice versa. */
9018 validate_registers_access ();
9019
9020 transferred =
9021 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
9022 NULL,
9023 value_contents_all_raw (v),
9024 value_offset (v),
9025 TYPE_LENGTH (value_type (v)));
9026
9027 if (transferred != TYPE_LENGTH (value_type (v)))
9028 error (_("Unable to read siginfo"));
9029 }
9030
9031 /* This function implements the lval_computed support for writing a
9032 $_siginfo value. */
9033
9034 static void
9035 siginfo_value_write (struct value *v, struct value *fromval)
9036 {
9037 LONGEST transferred;
9038
9039 /* If we can access registers, so can we access $_siginfo. Likewise
9040 vice versa. */
9041 validate_registers_access ();
9042
9043 transferred = target_write (current_top_target (),
9044 TARGET_OBJECT_SIGNAL_INFO,
9045 NULL,
9046 value_contents_all_raw (fromval),
9047 value_offset (v),
9048 TYPE_LENGTH (value_type (fromval)));
9049
9050 if (transferred != TYPE_LENGTH (value_type (fromval)))
9051 error (_("Unable to write siginfo"));
9052 }
9053
9054 static const struct lval_funcs siginfo_value_funcs =
9055 {
9056 siginfo_value_read,
9057 siginfo_value_write
9058 };
9059
9060 /* Return a new value with the correct type for the siginfo object of
9061 the current thread using architecture GDBARCH. Return a void value
9062 if there's no object available. */
9063
9064 static struct value *
9065 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9066 void *ignore)
9067 {
9068 if (target_has_stack
9069 && inferior_ptid != null_ptid
9070 && gdbarch_get_siginfo_type_p (gdbarch))
9071 {
9072 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9073
9074 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9075 }
9076
9077 return allocate_value (builtin_type (gdbarch)->builtin_void);
9078 }
9079
9080 \f
9081 /* infcall_suspend_state contains state about the program itself like its
9082 registers and any signal it received when it last stopped.
9083 This state must be restored regardless of how the inferior function call
9084 ends (either successfully, or after it hits a breakpoint or signal)
9085 if the program is to properly continue where it left off. */
9086
9087 class infcall_suspend_state
9088 {
9089 public:
9090 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9091 once the inferior function call has finished. */
9092 infcall_suspend_state (struct gdbarch *gdbarch,
9093 const struct thread_info *tp,
9094 struct regcache *regcache)
9095 : m_thread_suspend (tp->suspend),
9096 m_registers (new readonly_detached_regcache (*regcache))
9097 {
9098 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9099
9100 if (gdbarch_get_siginfo_type_p (gdbarch))
9101 {
9102 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9103 size_t len = TYPE_LENGTH (type);
9104
9105 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9106
9107 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9108 siginfo_data.get (), 0, len) != len)
9109 {
9110 /* Errors ignored. */
9111 siginfo_data.reset (nullptr);
9112 }
9113 }
9114
9115 if (siginfo_data)
9116 {
9117 m_siginfo_gdbarch = gdbarch;
9118 m_siginfo_data = std::move (siginfo_data);
9119 }
9120 }
9121
9122 /* Return a pointer to the stored register state. */
9123
9124 readonly_detached_regcache *registers () const
9125 {
9126 return m_registers.get ();
9127 }
9128
9129 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9130
9131 void restore (struct gdbarch *gdbarch,
9132 struct thread_info *tp,
9133 struct regcache *regcache) const
9134 {
9135 tp->suspend = m_thread_suspend;
9136
9137 if (m_siginfo_gdbarch == gdbarch)
9138 {
9139 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9140
9141 /* Errors ignored. */
9142 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9143 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9144 }
9145
9146 /* The inferior can be gone if the user types "print exit(0)"
9147 (and perhaps other times). */
9148 if (target_has_execution)
9149 /* NB: The register write goes through to the target. */
9150 regcache->restore (registers ());
9151 }
9152
9153 private:
9154 /* How the current thread stopped before the inferior function call was
9155 executed. */
9156 struct thread_suspend_state m_thread_suspend;
9157
9158 /* The registers before the inferior function call was executed. */
9159 std::unique_ptr<readonly_detached_regcache> m_registers;
9160
9161 /* Format of SIGINFO_DATA or NULL if it is not present. */
9162 struct gdbarch *m_siginfo_gdbarch = nullptr;
9163
9164 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9165 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9166 content would be invalid. */
9167 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9168 };
9169
9170 infcall_suspend_state_up
9171 save_infcall_suspend_state ()
9172 {
9173 struct thread_info *tp = inferior_thread ();
9174 struct regcache *regcache = get_current_regcache ();
9175 struct gdbarch *gdbarch = regcache->arch ();
9176
9177 infcall_suspend_state_up inf_state
9178 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9179
9180 /* Having saved the current state, adjust the thread state, discarding
9181 any stop signal information. The stop signal is not useful when
9182 starting an inferior function call, and run_inferior_call will not use
9183 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9184 tp->suspend.stop_signal = GDB_SIGNAL_0;
9185
9186 return inf_state;
9187 }
9188
9189 /* Restore inferior session state to INF_STATE. */
9190
9191 void
9192 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9193 {
9194 struct thread_info *tp = inferior_thread ();
9195 struct regcache *regcache = get_current_regcache ();
9196 struct gdbarch *gdbarch = regcache->arch ();
9197
9198 inf_state->restore (gdbarch, tp, regcache);
9199 discard_infcall_suspend_state (inf_state);
9200 }
9201
9202 void
9203 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9204 {
9205 delete inf_state;
9206 }
9207
9208 readonly_detached_regcache *
9209 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9210 {
9211 return inf_state->registers ();
9212 }
9213
9214 /* infcall_control_state contains state regarding gdb's control of the
9215 inferior itself like stepping control. It also contains session state like
9216 the user's currently selected frame. */
9217
9218 struct infcall_control_state
9219 {
9220 struct thread_control_state thread_control;
9221 struct inferior_control_state inferior_control;
9222
9223 /* Other fields: */
9224 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9225 int stopped_by_random_signal = 0;
9226
9227 /* ID if the selected frame when the inferior function call was made. */
9228 struct frame_id selected_frame_id {};
9229 };
9230
9231 /* Save all of the information associated with the inferior<==>gdb
9232 connection. */
9233
9234 infcall_control_state_up
9235 save_infcall_control_state ()
9236 {
9237 infcall_control_state_up inf_status (new struct infcall_control_state);
9238 struct thread_info *tp = inferior_thread ();
9239 struct inferior *inf = current_inferior ();
9240
9241 inf_status->thread_control = tp->control;
9242 inf_status->inferior_control = inf->control;
9243
9244 tp->control.step_resume_breakpoint = NULL;
9245 tp->control.exception_resume_breakpoint = NULL;
9246
9247 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9248 chain. If caller's caller is walking the chain, they'll be happier if we
9249 hand them back the original chain when restore_infcall_control_state is
9250 called. */
9251 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9252
9253 /* Other fields: */
9254 inf_status->stop_stack_dummy = stop_stack_dummy;
9255 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9256
9257 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9258
9259 return inf_status;
9260 }
9261
9262 static void
9263 restore_selected_frame (const frame_id &fid)
9264 {
9265 frame_info *frame = frame_find_by_id (fid);
9266
9267 /* If inf_status->selected_frame_id is NULL, there was no previously
9268 selected frame. */
9269 if (frame == NULL)
9270 {
9271 warning (_("Unable to restore previously selected frame."));
9272 return;
9273 }
9274
9275 select_frame (frame);
9276 }
9277
9278 /* Restore inferior session state to INF_STATUS. */
9279
9280 void
9281 restore_infcall_control_state (struct infcall_control_state *inf_status)
9282 {
9283 struct thread_info *tp = inferior_thread ();
9284 struct inferior *inf = current_inferior ();
9285
9286 if (tp->control.step_resume_breakpoint)
9287 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9288
9289 if (tp->control.exception_resume_breakpoint)
9290 tp->control.exception_resume_breakpoint->disposition
9291 = disp_del_at_next_stop;
9292
9293 /* Handle the bpstat_copy of the chain. */
9294 bpstat_clear (&tp->control.stop_bpstat);
9295
9296 tp->control = inf_status->thread_control;
9297 inf->control = inf_status->inferior_control;
9298
9299 /* Other fields: */
9300 stop_stack_dummy = inf_status->stop_stack_dummy;
9301 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9302
9303 if (target_has_stack)
9304 {
9305 /* The point of the try/catch is that if the stack is clobbered,
9306 walking the stack might encounter a garbage pointer and
9307 error() trying to dereference it. */
9308 try
9309 {
9310 restore_selected_frame (inf_status->selected_frame_id);
9311 }
9312 catch (const gdb_exception_error &ex)
9313 {
9314 exception_fprintf (gdb_stderr, ex,
9315 "Unable to restore previously selected frame:\n");
9316 /* Error in restoring the selected frame. Select the
9317 innermost frame. */
9318 select_frame (get_current_frame ());
9319 }
9320 }
9321
9322 delete inf_status;
9323 }
9324
9325 void
9326 discard_infcall_control_state (struct infcall_control_state *inf_status)
9327 {
9328 if (inf_status->thread_control.step_resume_breakpoint)
9329 inf_status->thread_control.step_resume_breakpoint->disposition
9330 = disp_del_at_next_stop;
9331
9332 if (inf_status->thread_control.exception_resume_breakpoint)
9333 inf_status->thread_control.exception_resume_breakpoint->disposition
9334 = disp_del_at_next_stop;
9335
9336 /* See save_infcall_control_state for info on stop_bpstat. */
9337 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9338
9339 delete inf_status;
9340 }
9341 \f
9342 /* See infrun.h. */
9343
9344 void
9345 clear_exit_convenience_vars (void)
9346 {
9347 clear_internalvar (lookup_internalvar ("_exitsignal"));
9348 clear_internalvar (lookup_internalvar ("_exitcode"));
9349 }
9350 \f
9351
9352 /* User interface for reverse debugging:
9353 Set exec-direction / show exec-direction commands
9354 (returns error unless target implements to_set_exec_direction method). */
9355
9356 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9357 static const char exec_forward[] = "forward";
9358 static const char exec_reverse[] = "reverse";
9359 static const char *exec_direction = exec_forward;
9360 static const char *const exec_direction_names[] = {
9361 exec_forward,
9362 exec_reverse,
9363 NULL
9364 };
9365
9366 static void
9367 set_exec_direction_func (const char *args, int from_tty,
9368 struct cmd_list_element *cmd)
9369 {
9370 if (target_can_execute_reverse)
9371 {
9372 if (!strcmp (exec_direction, exec_forward))
9373 execution_direction = EXEC_FORWARD;
9374 else if (!strcmp (exec_direction, exec_reverse))
9375 execution_direction = EXEC_REVERSE;
9376 }
9377 else
9378 {
9379 exec_direction = exec_forward;
9380 error (_("Target does not support this operation."));
9381 }
9382 }
9383
9384 static void
9385 show_exec_direction_func (struct ui_file *out, int from_tty,
9386 struct cmd_list_element *cmd, const char *value)
9387 {
9388 switch (execution_direction) {
9389 case EXEC_FORWARD:
9390 fprintf_filtered (out, _("Forward.\n"));
9391 break;
9392 case EXEC_REVERSE:
9393 fprintf_filtered (out, _("Reverse.\n"));
9394 break;
9395 default:
9396 internal_error (__FILE__, __LINE__,
9397 _("bogus execution_direction value: %d"),
9398 (int) execution_direction);
9399 }
9400 }
9401
9402 static void
9403 show_schedule_multiple (struct ui_file *file, int from_tty,
9404 struct cmd_list_element *c, const char *value)
9405 {
9406 fprintf_filtered (file, _("Resuming the execution of threads "
9407 "of all processes is %s.\n"), value);
9408 }
9409
9410 /* Implementation of `siginfo' variable. */
9411
9412 static const struct internalvar_funcs siginfo_funcs =
9413 {
9414 siginfo_make_value,
9415 NULL,
9416 NULL
9417 };
9418
9419 /* Callback for infrun's target events source. This is marked when a
9420 thread has a pending status to process. */
9421
9422 static void
9423 infrun_async_inferior_event_handler (gdb_client_data data)
9424 {
9425 inferior_event_handler (INF_REG_EVENT, NULL);
9426 }
9427
9428 void _initialize_infrun ();
9429 void
9430 _initialize_infrun ()
9431 {
9432 struct cmd_list_element *c;
9433
9434 /* Register extra event sources in the event loop. */
9435 infrun_async_inferior_event_token
9436 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9437
9438 add_info ("signals", info_signals_command, _("\
9439 What debugger does when program gets various signals.\n\
9440 Specify a signal as argument to print info on that signal only."));
9441 add_info_alias ("handle", "signals", 0);
9442
9443 c = add_com ("handle", class_run, handle_command, _("\
9444 Specify how to handle signals.\n\
9445 Usage: handle SIGNAL [ACTIONS]\n\
9446 Args are signals and actions to apply to those signals.\n\
9447 If no actions are specified, the current settings for the specified signals\n\
9448 will be displayed instead.\n\
9449 \n\
9450 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9451 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9452 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9453 The special arg \"all\" is recognized to mean all signals except those\n\
9454 used by the debugger, typically SIGTRAP and SIGINT.\n\
9455 \n\
9456 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9457 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9458 Stop means reenter debugger if this signal happens (implies print).\n\
9459 Print means print a message if this signal happens.\n\
9460 Pass means let program see this signal; otherwise program doesn't know.\n\
9461 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9462 Pass and Stop may be combined.\n\
9463 \n\
9464 Multiple signals may be specified. Signal numbers and signal names\n\
9465 may be interspersed with actions, with the actions being performed for\n\
9466 all signals cumulatively specified."));
9467 set_cmd_completer (c, handle_completer);
9468
9469 if (!dbx_commands)
9470 stop_command = add_cmd ("stop", class_obscure,
9471 not_just_help_class_command, _("\
9472 There is no `stop' command, but you can set a hook on `stop'.\n\
9473 This allows you to set a list of commands to be run each time execution\n\
9474 of the program stops."), &cmdlist);
9475
9476 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9477 Set inferior debugging."), _("\
9478 Show inferior debugging."), _("\
9479 When non-zero, inferior specific debugging is enabled."),
9480 NULL,
9481 show_debug_infrun,
9482 &setdebuglist, &showdebuglist);
9483
9484 add_setshow_boolean_cmd ("displaced", class_maintenance,
9485 &debug_displaced, _("\
9486 Set displaced stepping debugging."), _("\
9487 Show displaced stepping debugging."), _("\
9488 When non-zero, displaced stepping specific debugging is enabled."),
9489 NULL,
9490 show_debug_displaced,
9491 &setdebuglist, &showdebuglist);
9492
9493 add_setshow_boolean_cmd ("non-stop", no_class,
9494 &non_stop_1, _("\
9495 Set whether gdb controls the inferior in non-stop mode."), _("\
9496 Show whether gdb controls the inferior in non-stop mode."), _("\
9497 When debugging a multi-threaded program and this setting is\n\
9498 off (the default, also called all-stop mode), when one thread stops\n\
9499 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9500 all other threads in the program while you interact with the thread of\n\
9501 interest. When you continue or step a thread, you can allow the other\n\
9502 threads to run, or have them remain stopped, but while you inspect any\n\
9503 thread's state, all threads stop.\n\
9504 \n\
9505 In non-stop mode, when one thread stops, other threads can continue\n\
9506 to run freely. You'll be able to step each thread independently,\n\
9507 leave it stopped or free to run as needed."),
9508 set_non_stop,
9509 show_non_stop,
9510 &setlist,
9511 &showlist);
9512
9513 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9514 {
9515 signal_stop[i] = 1;
9516 signal_print[i] = 1;
9517 signal_program[i] = 1;
9518 signal_catch[i] = 0;
9519 }
9520
9521 /* Signals caused by debugger's own actions should not be given to
9522 the program afterwards.
9523
9524 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9525 explicitly specifies that it should be delivered to the target
9526 program. Typically, that would occur when a user is debugging a
9527 target monitor on a simulator: the target monitor sets a
9528 breakpoint; the simulator encounters this breakpoint and halts
9529 the simulation handing control to GDB; GDB, noting that the stop
9530 address doesn't map to any known breakpoint, returns control back
9531 to the simulator; the simulator then delivers the hardware
9532 equivalent of a GDB_SIGNAL_TRAP to the program being
9533 debugged. */
9534 signal_program[GDB_SIGNAL_TRAP] = 0;
9535 signal_program[GDB_SIGNAL_INT] = 0;
9536
9537 /* Signals that are not errors should not normally enter the debugger. */
9538 signal_stop[GDB_SIGNAL_ALRM] = 0;
9539 signal_print[GDB_SIGNAL_ALRM] = 0;
9540 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9541 signal_print[GDB_SIGNAL_VTALRM] = 0;
9542 signal_stop[GDB_SIGNAL_PROF] = 0;
9543 signal_print[GDB_SIGNAL_PROF] = 0;
9544 signal_stop[GDB_SIGNAL_CHLD] = 0;
9545 signal_print[GDB_SIGNAL_CHLD] = 0;
9546 signal_stop[GDB_SIGNAL_IO] = 0;
9547 signal_print[GDB_SIGNAL_IO] = 0;
9548 signal_stop[GDB_SIGNAL_POLL] = 0;
9549 signal_print[GDB_SIGNAL_POLL] = 0;
9550 signal_stop[GDB_SIGNAL_URG] = 0;
9551 signal_print[GDB_SIGNAL_URG] = 0;
9552 signal_stop[GDB_SIGNAL_WINCH] = 0;
9553 signal_print[GDB_SIGNAL_WINCH] = 0;
9554 signal_stop[GDB_SIGNAL_PRIO] = 0;
9555 signal_print[GDB_SIGNAL_PRIO] = 0;
9556
9557 /* These signals are used internally by user-level thread
9558 implementations. (See signal(5) on Solaris.) Like the above
9559 signals, a healthy program receives and handles them as part of
9560 its normal operation. */
9561 signal_stop[GDB_SIGNAL_LWP] = 0;
9562 signal_print[GDB_SIGNAL_LWP] = 0;
9563 signal_stop[GDB_SIGNAL_WAITING] = 0;
9564 signal_print[GDB_SIGNAL_WAITING] = 0;
9565 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9566 signal_print[GDB_SIGNAL_CANCEL] = 0;
9567 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9568 signal_print[GDB_SIGNAL_LIBRT] = 0;
9569
9570 /* Update cached state. */
9571 signal_cache_update (-1);
9572
9573 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9574 &stop_on_solib_events, _("\
9575 Set stopping for shared library events."), _("\
9576 Show stopping for shared library events."), _("\
9577 If nonzero, gdb will give control to the user when the dynamic linker\n\
9578 notifies gdb of shared library events. The most common event of interest\n\
9579 to the user would be loading/unloading of a new library."),
9580 set_stop_on_solib_events,
9581 show_stop_on_solib_events,
9582 &setlist, &showlist);
9583
9584 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9585 follow_fork_mode_kind_names,
9586 &follow_fork_mode_string, _("\
9587 Set debugger response to a program call of fork or vfork."), _("\
9588 Show debugger response to a program call of fork or vfork."), _("\
9589 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9590 parent - the original process is debugged after a fork\n\
9591 child - the new process is debugged after a fork\n\
9592 The unfollowed process will continue to run.\n\
9593 By default, the debugger will follow the parent process."),
9594 NULL,
9595 show_follow_fork_mode_string,
9596 &setlist, &showlist);
9597
9598 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9599 follow_exec_mode_names,
9600 &follow_exec_mode_string, _("\
9601 Set debugger response to a program call of exec."), _("\
9602 Show debugger response to a program call of exec."), _("\
9603 An exec call replaces the program image of a process.\n\
9604 \n\
9605 follow-exec-mode can be:\n\
9606 \n\
9607 new - the debugger creates a new inferior and rebinds the process\n\
9608 to this new inferior. The program the process was running before\n\
9609 the exec call can be restarted afterwards by restarting the original\n\
9610 inferior.\n\
9611 \n\
9612 same - the debugger keeps the process bound to the same inferior.\n\
9613 The new executable image replaces the previous executable loaded in\n\
9614 the inferior. Restarting the inferior after the exec call restarts\n\
9615 the executable the process was running after the exec call.\n\
9616 \n\
9617 By default, the debugger will use the same inferior."),
9618 NULL,
9619 show_follow_exec_mode_string,
9620 &setlist, &showlist);
9621
9622 add_setshow_enum_cmd ("scheduler-locking", class_run,
9623 scheduler_enums, &scheduler_mode, _("\
9624 Set mode for locking scheduler during execution."), _("\
9625 Show mode for locking scheduler during execution."), _("\
9626 off == no locking (threads may preempt at any time)\n\
9627 on == full locking (no thread except the current thread may run)\n\
9628 This applies to both normal execution and replay mode.\n\
9629 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9630 In this mode, other threads may run during other commands.\n\
9631 This applies to both normal execution and replay mode.\n\
9632 replay == scheduler locked in replay mode and unlocked during normal execution."),
9633 set_schedlock_func, /* traps on target vector */
9634 show_scheduler_mode,
9635 &setlist, &showlist);
9636
9637 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9638 Set mode for resuming threads of all processes."), _("\
9639 Show mode for resuming threads of all processes."), _("\
9640 When on, execution commands (such as 'continue' or 'next') resume all\n\
9641 threads of all processes. When off (which is the default), execution\n\
9642 commands only resume the threads of the current process. The set of\n\
9643 threads that are resumed is further refined by the scheduler-locking\n\
9644 mode (see help set scheduler-locking)."),
9645 NULL,
9646 show_schedule_multiple,
9647 &setlist, &showlist);
9648
9649 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9650 Set mode of the step operation."), _("\
9651 Show mode of the step operation."), _("\
9652 When set, doing a step over a function without debug line information\n\
9653 will stop at the first instruction of that function. Otherwise, the\n\
9654 function is skipped and the step command stops at a different source line."),
9655 NULL,
9656 show_step_stop_if_no_debug,
9657 &setlist, &showlist);
9658
9659 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9660 &can_use_displaced_stepping, _("\
9661 Set debugger's willingness to use displaced stepping."), _("\
9662 Show debugger's willingness to use displaced stepping."), _("\
9663 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9664 supported by the target architecture. If off, gdb will not use displaced\n\
9665 stepping to step over breakpoints, even if such is supported by the target\n\
9666 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9667 if the target architecture supports it and non-stop mode is active, but will not\n\
9668 use it in all-stop mode (see help set non-stop)."),
9669 NULL,
9670 show_can_use_displaced_stepping,
9671 &setlist, &showlist);
9672
9673 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9674 &exec_direction, _("Set direction of execution.\n\
9675 Options are 'forward' or 'reverse'."),
9676 _("Show direction of execution (forward/reverse)."),
9677 _("Tells gdb whether to execute forward or backward."),
9678 set_exec_direction_func, show_exec_direction_func,
9679 &setlist, &showlist);
9680
9681 /* Set/show detach-on-fork: user-settable mode. */
9682
9683 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9684 Set whether gdb will detach the child of a fork."), _("\
9685 Show whether gdb will detach the child of a fork."), _("\
9686 Tells gdb whether to detach the child of a fork."),
9687 NULL, NULL, &setlist, &showlist);
9688
9689 /* Set/show disable address space randomization mode. */
9690
9691 add_setshow_boolean_cmd ("disable-randomization", class_support,
9692 &disable_randomization, _("\
9693 Set disabling of debuggee's virtual address space randomization."), _("\
9694 Show disabling of debuggee's virtual address space randomization."), _("\
9695 When this mode is on (which is the default), randomization of the virtual\n\
9696 address space is disabled. Standalone programs run with the randomization\n\
9697 enabled by default on some platforms."),
9698 &set_disable_randomization,
9699 &show_disable_randomization,
9700 &setlist, &showlist);
9701
9702 /* ptid initializations */
9703 inferior_ptid = null_ptid;
9704 target_last_wait_ptid = minus_one_ptid;
9705
9706 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9707 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9708 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9709 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9710
9711 /* Explicitly create without lookup, since that tries to create a
9712 value with a void typed value, and when we get here, gdbarch
9713 isn't initialized yet. At this point, we're quite sure there
9714 isn't another convenience variable of the same name. */
9715 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9716
9717 add_setshow_boolean_cmd ("observer", no_class,
9718 &observer_mode_1, _("\
9719 Set whether gdb controls the inferior in observer mode."), _("\
9720 Show whether gdb controls the inferior in observer mode."), _("\
9721 In observer mode, GDB can get data from the inferior, but not\n\
9722 affect its execution. Registers and memory may not be changed,\n\
9723 breakpoints may not be set, and the program cannot be interrupted\n\
9724 or signalled."),
9725 set_observer_mode,
9726 show_observer_mode,
9727 &setlist,
9728 &showlist);
9729 }
This page took 0.266512 seconds and 4 git commands to generate.