a8c3cce7aaeec1b453b931af95905d4a39ca5de1
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Nonzero if we want to give control to the user when we're notified
330 of shared library events by the dynamic linker. */
331 int stop_on_solib_events;
332
333 /* Enable or disable optional shared library event breakpoints
334 as appropriate when the above flag is changed. */
335
336 static void
337 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
338 {
339 update_solib_breakpoints ();
340 }
341
342 static void
343 show_stop_on_solib_events (struct ui_file *file, int from_tty,
344 struct cmd_list_element *c, const char *value)
345 {
346 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
347 value);
348 }
349
350 /* Nonzero means expecting a trace trap
351 and should stop the inferior and return silently when it happens. */
352
353 int stop_after_trap;
354
355 /* Save register contents here when executing a "finish" command or are
356 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
357 Thus this contains the return value from the called function (assuming
358 values are returned in a register). */
359
360 struct regcache *stop_registers;
361
362 /* Nonzero after stop if current stack frame should be printed. */
363
364 static int stop_print_frame;
365
366 /* This is a cached copy of the pid/waitstatus of the last event
367 returned by target_wait()/deprecated_target_wait_hook(). This
368 information is returned by get_last_target_status(). */
369 static ptid_t target_last_wait_ptid;
370 static struct target_waitstatus target_last_waitstatus;
371
372 static void context_switch (ptid_t ptid);
373
374 void init_thread_stepping_state (struct thread_info *tss);
375
376 static const char follow_fork_mode_child[] = "child";
377 static const char follow_fork_mode_parent[] = "parent";
378
379 static const char *const follow_fork_mode_kind_names[] = {
380 follow_fork_mode_child,
381 follow_fork_mode_parent,
382 NULL
383 };
384
385 static const char *follow_fork_mode_string = follow_fork_mode_parent;
386 static void
387 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
388 struct cmd_list_element *c, const char *value)
389 {
390 fprintf_filtered (file,
391 _("Debugger response to a program "
392 "call of fork or vfork is \"%s\".\n"),
393 value);
394 }
395 \f
396
397 /* Handle changes to the inferior list based on the type of fork,
398 which process is being followed, and whether the other process
399 should be detached. On entry inferior_ptid must be the ptid of
400 the fork parent. At return inferior_ptid is the ptid of the
401 followed inferior. */
402
403 static int
404 follow_fork_inferior (int follow_child, int detach_fork)
405 {
406 int has_vforked;
407 ptid_t parent_ptid, child_ptid;
408
409 has_vforked = (inferior_thread ()->pending_follow.kind
410 == TARGET_WAITKIND_VFORKED);
411 parent_ptid = inferior_ptid;
412 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
413
414 if (has_vforked
415 && !non_stop /* Non-stop always resumes both branches. */
416 && (!target_is_async_p () || sync_execution)
417 && !(follow_child || detach_fork || sched_multi))
418 {
419 /* The parent stays blocked inside the vfork syscall until the
420 child execs or exits. If we don't let the child run, then
421 the parent stays blocked. If we're telling the parent to run
422 in the foreground, the user will not be able to ctrl-c to get
423 back the terminal, effectively hanging the debug session. */
424 fprintf_filtered (gdb_stderr, _("\
425 Can not resume the parent process over vfork in the foreground while\n\
426 holding the child stopped. Try \"set detach-on-fork\" or \
427 \"set schedule-multiple\".\n"));
428 /* FIXME output string > 80 columns. */
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 struct cleanup *old_chain;
438
439 /* Before detaching from the child, remove all breakpoints
440 from it. If we forked, then this has already been taken
441 care of by infrun.c. If we vforked however, any
442 breakpoint inserted in the parent is visible in the
443 child, even those added while stopped in a vfork
444 catchpoint. This will remove the breakpoints from the
445 parent also, but they'll be reinserted below. */
446 if (has_vforked)
447 {
448 /* Keep breakpoints list in sync. */
449 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
450 }
451
452 if (info_verbose || debug_infrun)
453 {
454 target_terminal_ours_for_output ();
455 fprintf_filtered (gdb_stdlog,
456 _("Detaching after %s from child %s.\n"),
457 has_vforked ? "vfork" : "fork",
458 target_pid_to_str (child_ptid));
459 }
460 }
461 else
462 {
463 struct inferior *parent_inf, *child_inf;
464 struct cleanup *old_chain;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (ptid_get_pid (child_ptid));
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 old_chain = save_inferior_ptid ();
476 save_current_program_space ();
477
478 inferior_ptid = child_ptid;
479 add_thread (inferior_ptid);
480 child_inf->symfile_flags = SYMFILE_NO_READ;
481
482 /* If this is a vfork child, then the address-space is
483 shared with the parent. */
484 if (has_vforked)
485 {
486 child_inf->pspace = parent_inf->pspace;
487 child_inf->aspace = parent_inf->aspace;
488
489 /* The parent will be frozen until the child is done
490 with the shared region. Keep track of the
491 parent. */
492 child_inf->vfork_parent = parent_inf;
493 child_inf->pending_detach = 0;
494 parent_inf->vfork_child = child_inf;
495 parent_inf->pending_detach = 0;
496 }
497 else
498 {
499 child_inf->aspace = new_address_space ();
500 child_inf->pspace = add_program_space (child_inf->aspace);
501 child_inf->removable = 1;
502 set_current_program_space (child_inf->pspace);
503 clone_program_space (child_inf->pspace, parent_inf->pspace);
504
505 /* Let the shared library layer (e.g., solib-svr4) learn
506 about this new process, relocate the cloned exec, pull
507 in shared libraries, and install the solib event
508 breakpoint. If a "cloned-VM" event was propagated
509 better throughout the core, this wouldn't be
510 required. */
511 solib_create_inferior_hook (0);
512 }
513
514 do_cleanups (old_chain);
515 }
516
517 if (has_vforked)
518 {
519 struct inferior *parent_inf;
520
521 parent_inf = current_inferior ();
522
523 /* If we detached from the child, then we have to be careful
524 to not insert breakpoints in the parent until the child
525 is done with the shared memory region. However, if we're
526 staying attached to the child, then we can and should
527 insert breakpoints, so that we can debug it. A
528 subsequent child exec or exit is enough to know when does
529 the child stops using the parent's address space. */
530 parent_inf->waiting_for_vfork_done = detach_fork;
531 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
532 }
533 }
534 else
535 {
536 /* Follow the child. */
537 struct inferior *parent_inf, *child_inf;
538 struct program_space *parent_pspace;
539
540 if (info_verbose || debug_infrun)
541 {
542 target_terminal_ours_for_output ();
543 fprintf_filtered (gdb_stdlog,
544 _("Attaching after %s %s to child %s.\n"),
545 target_pid_to_str (parent_ptid),
546 has_vforked ? "vfork" : "fork",
547 target_pid_to_str (child_ptid));
548 }
549
550 /* Add the new inferior first, so that the target_detach below
551 doesn't unpush the target. */
552
553 child_inf = add_inferior (ptid_get_pid (child_ptid));
554
555 parent_inf = current_inferior ();
556 child_inf->attach_flag = parent_inf->attach_flag;
557 copy_terminal_info (child_inf, parent_inf);
558 child_inf->gdbarch = parent_inf->gdbarch;
559 copy_inferior_target_desc_info (child_inf, parent_inf);
560
561 parent_pspace = parent_inf->pspace;
562
563 /* If we're vforking, we want to hold on to the parent until the
564 child exits or execs. At child exec or exit time we can
565 remove the old breakpoints from the parent and detach or
566 resume debugging it. Otherwise, detach the parent now; we'll
567 want to reuse it's program/address spaces, but we can't set
568 them to the child before removing breakpoints from the
569 parent, otherwise, the breakpoints module could decide to
570 remove breakpoints from the wrong process (since they'd be
571 assigned to the same address space). */
572
573 if (has_vforked)
574 {
575 gdb_assert (child_inf->vfork_parent == NULL);
576 gdb_assert (parent_inf->vfork_child == NULL);
577 child_inf->vfork_parent = parent_inf;
578 child_inf->pending_detach = 0;
579 parent_inf->vfork_child = child_inf;
580 parent_inf->pending_detach = detach_fork;
581 parent_inf->waiting_for_vfork_done = 0;
582 }
583 else if (detach_fork)
584 {
585 if (info_verbose || debug_infrun)
586 {
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
590 "child %s.\n"),
591 target_pid_to_str (child_ptid));
592 }
593
594 target_detach (NULL, 0);
595 }
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
603 inferior_ptid = child_ptid;
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633 }
634
635 /* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
639 static int
640 follow_fork (void)
641 {
642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
651 struct breakpoint *exception_resume_breakpoint = NULL;
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
655 struct interp *command_interp = NULL;
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
707 command_interp = tp->control.command_interp;
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
718 delete_exception_resume_breakpoint (tp);
719 tp->control.command_interp = NULL;
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
740 tp = find_thread_ptid (parent);
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
748 /* If we followed the child, switch to it... */
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
765 tp->control.command_interp = command_interp;
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
796
797 return should_resume;
798 }
799
800 static void
801 follow_inferior_reset_breakpoints (void)
802 {
803 struct thread_info *tp = inferior_thread ();
804
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
818 if (tp->control.step_resume_breakpoint)
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
823
824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
825 if (tp->control.exception_resume_breakpoint)
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
830
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
838 }
839
840 /* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843 static int
844 proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846 {
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
861 clear_proceed_status (0);
862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
863 }
864
865 return 0;
866 }
867
868 /* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871 static void
872 handle_vfork_child_exec_or_exit (int exec)
873 {
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
891 /* follow-fork child, detach-on-fork on. */
892
893 inf->vfork_parent->pending_detach = 0;
894
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
929 target_terminal_ours_for_output ();
930
931 if (exec)
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
938 else
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
996 inf->symfile_flags = SYMFILE_NO_READ;
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1002 inferior. */
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Enum strings for "set|show follow-exec-mode". */
1033
1034 static const char follow_exec_mode_new[] = "new";
1035 static const char follow_exec_mode_same[] = "same";
1036 static const char *const follow_exec_mode_names[] =
1037 {
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041 };
1042
1043 static const char *follow_exec_mode_string = follow_exec_mode_same;
1044 static void
1045 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047 {
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049 }
1050
1051 /* EXECD_PATHNAME is assumed to be non-NULL. */
1052
1053 static void
1054 follow_exec (ptid_t ptid, char *execd_pathname)
1055 {
1056 struct thread_info *th, *tmp;
1057 struct inferior *inf = current_inferior ();
1058 int pid = ptid_get_pid (ptid);
1059
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1079 we now have a new a.out, those shadow contents aren't valid. */
1080
1081 mark_breakpoints_out ();
1082
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
1102 ALL_NON_EXITED_THREADS_SAFE (th, tmp)
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
1111 th->control.step_resume_breakpoint = NULL;
1112 th->control.exception_resume_breakpoint = NULL;
1113 th->control.single_step_breakpoints = NULL;
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
1116
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
1120 th->stop_requested = 0;
1121
1122 update_breakpoints_after_exec ();
1123
1124 /* What is this a.out's name? */
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1130 inferior has essentially been killed & reborn. */
1131
1132 gdb_flush (gdb_stdout);
1133
1134 breakpoint_init_inferior (inf_execd);
1135
1136 if (gdb_sysroot && *gdb_sysroot)
1137 {
1138 char *name = alloca (strlen (gdb_sysroot)
1139 + strlen (execd_pathname)
1140 + 1);
1141
1142 strcpy (name, gdb_sysroot);
1143 strcat (name, execd_pathname);
1144 execd_pathname = name;
1145 }
1146
1147 /* Reset the shared library package. This ensures that we get a
1148 shlib event when the child reaches "_start", at which point the
1149 dld will have had a chance to initialize the child. */
1150 /* Also, loading a symbol file below may trigger symbol lookups, and
1151 we don't want those to be satisfied by the libraries of the
1152 previous incarnation of this process. */
1153 no_shared_libraries (NULL, 0);
1154
1155 if (follow_exec_mode_string == follow_exec_mode_new)
1156 {
1157 struct program_space *pspace;
1158
1159 /* The user wants to keep the old inferior and program spaces
1160 around. Create a new fresh one, and switch to it. */
1161
1162 inf = add_inferior (current_inferior ()->pid);
1163 pspace = add_program_space (maybe_new_address_space ());
1164 inf->pspace = pspace;
1165 inf->aspace = pspace->aspace;
1166
1167 exit_inferior_num_silent (current_inferior ()->num);
1168
1169 set_current_inferior (inf);
1170 set_current_program_space (pspace);
1171 }
1172 else
1173 {
1174 /* The old description may no longer be fit for the new image.
1175 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1176 old description; we'll read a new one below. No need to do
1177 this on "follow-exec-mode new", as the old inferior stays
1178 around (its description is later cleared/refetched on
1179 restart). */
1180 target_clear_description ();
1181 }
1182
1183 gdb_assert (current_program_space == inf->pspace);
1184
1185 /* That a.out is now the one to use. */
1186 exec_file_attach (execd_pathname, 0);
1187
1188 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1189 (Position Independent Executable) main symbol file will get applied by
1190 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1191 the breakpoints with the zero displacement. */
1192
1193 symbol_file_add (execd_pathname,
1194 (inf->symfile_flags
1195 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1196 NULL, 0);
1197
1198 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1199 set_initial_language ();
1200
1201 /* If the target can specify a description, read it. Must do this
1202 after flipping to the new executable (because the target supplied
1203 description must be compatible with the executable's
1204 architecture, and the old executable may e.g., be 32-bit, while
1205 the new one 64-bit), and before anything involving memory or
1206 registers. */
1207 target_find_description ();
1208
1209 solib_create_inferior_hook (0);
1210
1211 jit_inferior_created_hook ();
1212
1213 breakpoint_re_set ();
1214
1215 /* Reinsert all breakpoints. (Those which were symbolic have
1216 been reset to the proper address in the new a.out, thanks
1217 to symbol_file_command...). */
1218 insert_breakpoints ();
1219
1220 /* The next resume of this inferior should bring it to the shlib
1221 startup breakpoints. (If the user had also set bp's on
1222 "main" from the old (parent) process, then they'll auto-
1223 matically get reset there in the new process.). */
1224 }
1225
1226 /* Info about an instruction that is being stepped over. */
1227
1228 struct step_over_info
1229 {
1230 /* If we're stepping past a breakpoint, this is the address space
1231 and address of the instruction the breakpoint is set at. We'll
1232 skip inserting all breakpoints here. Valid iff ASPACE is
1233 non-NULL. */
1234 struct address_space *aspace;
1235 CORE_ADDR address;
1236
1237 /* The instruction being stepped over triggers a nonsteppable
1238 watchpoint. If true, we'll skip inserting watchpoints. */
1239 int nonsteppable_watchpoint_p;
1240 };
1241
1242 /* The step-over info of the location that is being stepped over.
1243
1244 Note that with async/breakpoint always-inserted mode, a user might
1245 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1246 being stepped over. As setting a new breakpoint inserts all
1247 breakpoints, we need to make sure the breakpoint being stepped over
1248 isn't inserted then. We do that by only clearing the step-over
1249 info when the step-over is actually finished (or aborted).
1250
1251 Presently GDB can only step over one breakpoint at any given time.
1252 Given threads that can't run code in the same address space as the
1253 breakpoint's can't really miss the breakpoint, GDB could be taught
1254 to step-over at most one breakpoint per address space (so this info
1255 could move to the address space object if/when GDB is extended).
1256 The set of breakpoints being stepped over will normally be much
1257 smaller than the set of all breakpoints, so a flag in the
1258 breakpoint location structure would be wasteful. A separate list
1259 also saves complexity and run-time, as otherwise we'd have to go
1260 through all breakpoint locations clearing their flag whenever we
1261 start a new sequence. Similar considerations weigh against storing
1262 this info in the thread object. Plus, not all step overs actually
1263 have breakpoint locations -- e.g., stepping past a single-step
1264 breakpoint, or stepping to complete a non-continuable
1265 watchpoint. */
1266 static struct step_over_info step_over_info;
1267
1268 /* Record the address of the breakpoint/instruction we're currently
1269 stepping over. */
1270
1271 static void
1272 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1273 int nonsteppable_watchpoint_p)
1274 {
1275 step_over_info.aspace = aspace;
1276 step_over_info.address = address;
1277 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1278 }
1279
1280 /* Called when we're not longer stepping over a breakpoint / an
1281 instruction, so all breakpoints are free to be (re)inserted. */
1282
1283 static void
1284 clear_step_over_info (void)
1285 {
1286 step_over_info.aspace = NULL;
1287 step_over_info.address = 0;
1288 step_over_info.nonsteppable_watchpoint_p = 0;
1289 }
1290
1291 /* See infrun.h. */
1292
1293 int
1294 stepping_past_instruction_at (struct address_space *aspace,
1295 CORE_ADDR address)
1296 {
1297 return (step_over_info.aspace != NULL
1298 && breakpoint_address_match (aspace, address,
1299 step_over_info.aspace,
1300 step_over_info.address));
1301 }
1302
1303 /* See infrun.h. */
1304
1305 int
1306 stepping_past_nonsteppable_watchpoint (void)
1307 {
1308 return step_over_info.nonsteppable_watchpoint_p;
1309 }
1310
1311 /* Returns true if step-over info is valid. */
1312
1313 static int
1314 step_over_info_valid_p (void)
1315 {
1316 return (step_over_info.aspace != NULL
1317 || stepping_past_nonsteppable_watchpoint ());
1318 }
1319
1320 \f
1321 /* Displaced stepping. */
1322
1323 /* In non-stop debugging mode, we must take special care to manage
1324 breakpoints properly; in particular, the traditional strategy for
1325 stepping a thread past a breakpoint it has hit is unsuitable.
1326 'Displaced stepping' is a tactic for stepping one thread past a
1327 breakpoint it has hit while ensuring that other threads running
1328 concurrently will hit the breakpoint as they should.
1329
1330 The traditional way to step a thread T off a breakpoint in a
1331 multi-threaded program in all-stop mode is as follows:
1332
1333 a0) Initially, all threads are stopped, and breakpoints are not
1334 inserted.
1335 a1) We single-step T, leaving breakpoints uninserted.
1336 a2) We insert breakpoints, and resume all threads.
1337
1338 In non-stop debugging, however, this strategy is unsuitable: we
1339 don't want to have to stop all threads in the system in order to
1340 continue or step T past a breakpoint. Instead, we use displaced
1341 stepping:
1342
1343 n0) Initially, T is stopped, other threads are running, and
1344 breakpoints are inserted.
1345 n1) We copy the instruction "under" the breakpoint to a separate
1346 location, outside the main code stream, making any adjustments
1347 to the instruction, register, and memory state as directed by
1348 T's architecture.
1349 n2) We single-step T over the instruction at its new location.
1350 n3) We adjust the resulting register and memory state as directed
1351 by T's architecture. This includes resetting T's PC to point
1352 back into the main instruction stream.
1353 n4) We resume T.
1354
1355 This approach depends on the following gdbarch methods:
1356
1357 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1358 indicate where to copy the instruction, and how much space must
1359 be reserved there. We use these in step n1.
1360
1361 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1362 address, and makes any necessary adjustments to the instruction,
1363 register contents, and memory. We use this in step n1.
1364
1365 - gdbarch_displaced_step_fixup adjusts registers and memory after
1366 we have successfuly single-stepped the instruction, to yield the
1367 same effect the instruction would have had if we had executed it
1368 at its original address. We use this in step n3.
1369
1370 - gdbarch_displaced_step_free_closure provides cleanup.
1371
1372 The gdbarch_displaced_step_copy_insn and
1373 gdbarch_displaced_step_fixup functions must be written so that
1374 copying an instruction with gdbarch_displaced_step_copy_insn,
1375 single-stepping across the copied instruction, and then applying
1376 gdbarch_displaced_insn_fixup should have the same effects on the
1377 thread's memory and registers as stepping the instruction in place
1378 would have. Exactly which responsibilities fall to the copy and
1379 which fall to the fixup is up to the author of those functions.
1380
1381 See the comments in gdbarch.sh for details.
1382
1383 Note that displaced stepping and software single-step cannot
1384 currently be used in combination, although with some care I think
1385 they could be made to. Software single-step works by placing
1386 breakpoints on all possible subsequent instructions; if the
1387 displaced instruction is a PC-relative jump, those breakpoints
1388 could fall in very strange places --- on pages that aren't
1389 executable, or at addresses that are not proper instruction
1390 boundaries. (We do generally let other threads run while we wait
1391 to hit the software single-step breakpoint, and they might
1392 encounter such a corrupted instruction.) One way to work around
1393 this would be to have gdbarch_displaced_step_copy_insn fully
1394 simulate the effect of PC-relative instructions (and return NULL)
1395 on architectures that use software single-stepping.
1396
1397 In non-stop mode, we can have independent and simultaneous step
1398 requests, so more than one thread may need to simultaneously step
1399 over a breakpoint. The current implementation assumes there is
1400 only one scratch space per process. In this case, we have to
1401 serialize access to the scratch space. If thread A wants to step
1402 over a breakpoint, but we are currently waiting for some other
1403 thread to complete a displaced step, we leave thread A stopped and
1404 place it in the displaced_step_request_queue. Whenever a displaced
1405 step finishes, we pick the next thread in the queue and start a new
1406 displaced step operation on it. See displaced_step_prepare and
1407 displaced_step_fixup for details. */
1408
1409 struct displaced_step_request
1410 {
1411 ptid_t ptid;
1412 struct displaced_step_request *next;
1413 };
1414
1415 /* Per-inferior displaced stepping state. */
1416 struct displaced_step_inferior_state
1417 {
1418 /* Pointer to next in linked list. */
1419 struct displaced_step_inferior_state *next;
1420
1421 /* The process this displaced step state refers to. */
1422 int pid;
1423
1424 /* A queue of pending displaced stepping requests. One entry per
1425 thread that needs to do a displaced step. */
1426 struct displaced_step_request *step_request_queue;
1427
1428 /* If this is not null_ptid, this is the thread carrying out a
1429 displaced single-step in process PID. This thread's state will
1430 require fixing up once it has completed its step. */
1431 ptid_t step_ptid;
1432
1433 /* The architecture the thread had when we stepped it. */
1434 struct gdbarch *step_gdbarch;
1435
1436 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1437 for post-step cleanup. */
1438 struct displaced_step_closure *step_closure;
1439
1440 /* The address of the original instruction, and the copy we
1441 made. */
1442 CORE_ADDR step_original, step_copy;
1443
1444 /* Saved contents of copy area. */
1445 gdb_byte *step_saved_copy;
1446 };
1447
1448 /* The list of states of processes involved in displaced stepping
1449 presently. */
1450 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1451
1452 /* Get the displaced stepping state of process PID. */
1453
1454 static struct displaced_step_inferior_state *
1455 get_displaced_stepping_state (int pid)
1456 {
1457 struct displaced_step_inferior_state *state;
1458
1459 for (state = displaced_step_inferior_states;
1460 state != NULL;
1461 state = state->next)
1462 if (state->pid == pid)
1463 return state;
1464
1465 return NULL;
1466 }
1467
1468 /* Add a new displaced stepping state for process PID to the displaced
1469 stepping state list, or return a pointer to an already existing
1470 entry, if it already exists. Never returns NULL. */
1471
1472 static struct displaced_step_inferior_state *
1473 add_displaced_stepping_state (int pid)
1474 {
1475 struct displaced_step_inferior_state *state;
1476
1477 for (state = displaced_step_inferior_states;
1478 state != NULL;
1479 state = state->next)
1480 if (state->pid == pid)
1481 return state;
1482
1483 state = xcalloc (1, sizeof (*state));
1484 state->pid = pid;
1485 state->next = displaced_step_inferior_states;
1486 displaced_step_inferior_states = state;
1487
1488 return state;
1489 }
1490
1491 /* If inferior is in displaced stepping, and ADDR equals to starting address
1492 of copy area, return corresponding displaced_step_closure. Otherwise,
1493 return NULL. */
1494
1495 struct displaced_step_closure*
1496 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1497 {
1498 struct displaced_step_inferior_state *displaced
1499 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1500
1501 /* If checking the mode of displaced instruction in copy area. */
1502 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1503 && (displaced->step_copy == addr))
1504 return displaced->step_closure;
1505
1506 return NULL;
1507 }
1508
1509 /* Remove the displaced stepping state of process PID. */
1510
1511 static void
1512 remove_displaced_stepping_state (int pid)
1513 {
1514 struct displaced_step_inferior_state *it, **prev_next_p;
1515
1516 gdb_assert (pid != 0);
1517
1518 it = displaced_step_inferior_states;
1519 prev_next_p = &displaced_step_inferior_states;
1520 while (it)
1521 {
1522 if (it->pid == pid)
1523 {
1524 *prev_next_p = it->next;
1525 xfree (it);
1526 return;
1527 }
1528
1529 prev_next_p = &it->next;
1530 it = *prev_next_p;
1531 }
1532 }
1533
1534 static void
1535 infrun_inferior_exit (struct inferior *inf)
1536 {
1537 remove_displaced_stepping_state (inf->pid);
1538 }
1539
1540 /* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 which of all-stop or non-stop mode is active --- displaced stepping
1546 in non-stop mode; hold-and-step in all-stop mode. */
1547
1548 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1549
1550 static void
1551 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1552 struct cmd_list_element *c,
1553 const char *value)
1554 {
1555 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1556 fprintf_filtered (file,
1557 _("Debugger's willingness to use displaced stepping "
1558 "to step over breakpoints is %s (currently %s).\n"),
1559 value, non_stop ? "on" : "off");
1560 else
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s.\n"), value);
1564 }
1565
1566 /* Return non-zero if displaced stepping can/should be used to step
1567 over breakpoints. */
1568
1569 static int
1570 use_displaced_stepping (struct gdbarch *gdbarch)
1571 {
1572 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1573 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1574 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1575 && find_record_target () == NULL);
1576 }
1577
1578 /* Clean out any stray displaced stepping state. */
1579 static void
1580 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1581 {
1582 /* Indicate that there is no cleanup pending. */
1583 displaced->step_ptid = null_ptid;
1584
1585 if (displaced->step_closure)
1586 {
1587 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1588 displaced->step_closure);
1589 displaced->step_closure = NULL;
1590 }
1591 }
1592
1593 static void
1594 displaced_step_clear_cleanup (void *arg)
1595 {
1596 struct displaced_step_inferior_state *state = arg;
1597
1598 displaced_step_clear (state);
1599 }
1600
1601 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1602 void
1603 displaced_step_dump_bytes (struct ui_file *file,
1604 const gdb_byte *buf,
1605 size_t len)
1606 {
1607 int i;
1608
1609 for (i = 0; i < len; i++)
1610 fprintf_unfiltered (file, "%02x ", buf[i]);
1611 fputs_unfiltered ("\n", file);
1612 }
1613
1614 /* Prepare to single-step, using displaced stepping.
1615
1616 Note that we cannot use displaced stepping when we have a signal to
1617 deliver. If we have a signal to deliver and an instruction to step
1618 over, then after the step, there will be no indication from the
1619 target whether the thread entered a signal handler or ignored the
1620 signal and stepped over the instruction successfully --- both cases
1621 result in a simple SIGTRAP. In the first case we mustn't do a
1622 fixup, and in the second case we must --- but we can't tell which.
1623 Comments in the code for 'random signals' in handle_inferior_event
1624 explain how we handle this case instead.
1625
1626 Returns 1 if preparing was successful -- this thread is going to be
1627 stepped now; or 0 if displaced stepping this thread got queued. */
1628 static int
1629 displaced_step_prepare (ptid_t ptid)
1630 {
1631 struct cleanup *old_cleanups, *ignore_cleanups;
1632 struct thread_info *tp = find_thread_ptid (ptid);
1633 struct regcache *regcache = get_thread_regcache (ptid);
1634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1635 CORE_ADDR original, copy;
1636 ULONGEST len;
1637 struct displaced_step_closure *closure;
1638 struct displaced_step_inferior_state *displaced;
1639 int status;
1640
1641 /* We should never reach this function if the architecture does not
1642 support displaced stepping. */
1643 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1644
1645 /* Disable range stepping while executing in the scratch pad. We
1646 want a single-step even if executing the displaced instruction in
1647 the scratch buffer lands within the stepping range (e.g., a
1648 jump/branch). */
1649 tp->control.may_range_step = 0;
1650
1651 /* We have to displaced step one thread at a time, as we only have
1652 access to a single scratch space per inferior. */
1653
1654 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1655
1656 if (!ptid_equal (displaced->step_ptid, null_ptid))
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660 struct displaced_step_request *req, *new_req;
1661
1662 if (debug_displaced)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "displaced: defering step of %s\n",
1665 target_pid_to_str (ptid));
1666
1667 new_req = xmalloc (sizeof (*new_req));
1668 new_req->ptid = ptid;
1669 new_req->next = NULL;
1670
1671 if (displaced->step_request_queue)
1672 {
1673 for (req = displaced->step_request_queue;
1674 req && req->next;
1675 req = req->next)
1676 ;
1677 req->next = new_req;
1678 }
1679 else
1680 displaced->step_request_queue = new_req;
1681
1682 return 0;
1683 }
1684 else
1685 {
1686 if (debug_displaced)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "displaced: stepping %s now\n",
1689 target_pid_to_str (ptid));
1690 }
1691
1692 displaced_step_clear (displaced);
1693
1694 old_cleanups = save_inferior_ptid ();
1695 inferior_ptid = ptid;
1696
1697 original = regcache_read_pc (regcache);
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
1702 /* Save the original contents of the copy area. */
1703 displaced->step_saved_copy = xmalloc (len);
1704 ignore_cleanups = make_cleanup (free_current_contents,
1705 &displaced->step_saved_copy);
1706 status = target_read_memory (copy, displaced->step_saved_copy, len);
1707 if (status != 0)
1708 throw_error (MEMORY_ERROR,
1709 _("Error accessing memory address %s (%s) for "
1710 "displaced-stepping scratch space."),
1711 paddress (gdbarch, copy), safe_strerror (status));
1712 if (debug_displaced)
1713 {
1714 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1715 paddress (gdbarch, copy));
1716 displaced_step_dump_bytes (gdb_stdlog,
1717 displaced->step_saved_copy,
1718 len);
1719 };
1720
1721 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1722 original, copy, regcache);
1723
1724 /* We don't support the fully-simulated case at present. */
1725 gdb_assert (closure);
1726
1727 /* Save the information we need to fix things up if the step
1728 succeeds. */
1729 displaced->step_ptid = ptid;
1730 displaced->step_gdbarch = gdbarch;
1731 displaced->step_closure = closure;
1732 displaced->step_original = original;
1733 displaced->step_copy = copy;
1734
1735 make_cleanup (displaced_step_clear_cleanup, displaced);
1736
1737 /* Resume execution at the copy. */
1738 regcache_write_pc (regcache, copy);
1739
1740 discard_cleanups (ignore_cleanups);
1741
1742 do_cleanups (old_cleanups);
1743
1744 if (debug_displaced)
1745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1746 paddress (gdbarch, copy));
1747
1748 return 1;
1749 }
1750
1751 static void
1752 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1753 const gdb_byte *myaddr, int len)
1754 {
1755 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1756
1757 inferior_ptid = ptid;
1758 write_memory (memaddr, myaddr, len);
1759 do_cleanups (ptid_cleanup);
1760 }
1761
1762 /* Restore the contents of the copy area for thread PTID. */
1763
1764 static void
1765 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1766 ptid_t ptid)
1767 {
1768 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1769
1770 write_memory_ptid (ptid, displaced->step_copy,
1771 displaced->step_saved_copy, len);
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1774 target_pid_to_str (ptid),
1775 paddress (displaced->step_gdbarch,
1776 displaced->step_copy));
1777 }
1778
1779 static void
1780 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1781 {
1782 struct cleanup *old_cleanups;
1783 struct displaced_step_inferior_state *displaced
1784 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1785
1786 /* Was any thread of this process doing a displaced step? */
1787 if (displaced == NULL)
1788 return;
1789
1790 /* Was this event for the pid we displaced? */
1791 if (ptid_equal (displaced->step_ptid, null_ptid)
1792 || ! ptid_equal (displaced->step_ptid, event_ptid))
1793 return;
1794
1795 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1796
1797 displaced_step_restore (displaced, displaced->step_ptid);
1798
1799 /* Did the instruction complete successfully? */
1800 if (signal == GDB_SIGNAL_TRAP)
1801 {
1802 /* Fixup may need to read memory/registers. Switch to the
1803 thread that we're fixing up. */
1804 switch_to_thread (event_ptid);
1805
1806 /* Fix up the resulting state. */
1807 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1808 displaced->step_closure,
1809 displaced->step_original,
1810 displaced->step_copy,
1811 get_thread_regcache (displaced->step_ptid));
1812 }
1813 else
1814 {
1815 /* Since the instruction didn't complete, all we can do is
1816 relocate the PC. */
1817 struct regcache *regcache = get_thread_regcache (event_ptid);
1818 CORE_ADDR pc = regcache_read_pc (regcache);
1819
1820 pc = displaced->step_original + (pc - displaced->step_copy);
1821 regcache_write_pc (regcache, pc);
1822 }
1823
1824 do_cleanups (old_cleanups);
1825
1826 displaced->step_ptid = null_ptid;
1827
1828 /* Are there any pending displaced stepping requests? If so, run
1829 one now. Leave the state object around, since we're likely to
1830 need it again soon. */
1831 while (displaced->step_request_queue)
1832 {
1833 struct displaced_step_request *head;
1834 ptid_t ptid;
1835 struct regcache *regcache;
1836 struct gdbarch *gdbarch;
1837 CORE_ADDR actual_pc;
1838 struct address_space *aspace;
1839
1840 head = displaced->step_request_queue;
1841 ptid = head->ptid;
1842 displaced->step_request_queue = head->next;
1843 xfree (head);
1844
1845 context_switch (ptid);
1846
1847 regcache = get_thread_regcache (ptid);
1848 actual_pc = regcache_read_pc (regcache);
1849 aspace = get_regcache_aspace (regcache);
1850
1851 if (breakpoint_here_p (aspace, actual_pc))
1852 {
1853 if (debug_displaced)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "displaced: stepping queued %s now\n",
1856 target_pid_to_str (ptid));
1857
1858 displaced_step_prepare (ptid);
1859
1860 gdbarch = get_regcache_arch (regcache);
1861
1862 if (debug_displaced)
1863 {
1864 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1865 gdb_byte buf[4];
1866
1867 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1868 paddress (gdbarch, actual_pc));
1869 read_memory (actual_pc, buf, sizeof (buf));
1870 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1871 }
1872
1873 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1874 displaced->step_closure))
1875 target_resume (ptid, 1, GDB_SIGNAL_0);
1876 else
1877 target_resume (ptid, 0, GDB_SIGNAL_0);
1878
1879 /* Done, we're stepping a thread. */
1880 break;
1881 }
1882 else
1883 {
1884 int step;
1885 struct thread_info *tp = inferior_thread ();
1886
1887 /* The breakpoint we were sitting under has since been
1888 removed. */
1889 tp->control.trap_expected = 0;
1890
1891 /* Go back to what we were trying to do. */
1892 step = currently_stepping (tp);
1893
1894 if (debug_displaced)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "displaced: breakpoint is gone: %s, step(%d)\n",
1897 target_pid_to_str (tp->ptid), step);
1898
1899 target_resume (ptid, step, GDB_SIGNAL_0);
1900 tp->suspend.stop_signal = GDB_SIGNAL_0;
1901
1902 /* This request was discarded. See if there's any other
1903 thread waiting for its turn. */
1904 }
1905 }
1906 }
1907
1908 /* Update global variables holding ptids to hold NEW_PTID if they were
1909 holding OLD_PTID. */
1910 static void
1911 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1912 {
1913 struct displaced_step_request *it;
1914 struct displaced_step_inferior_state *displaced;
1915
1916 if (ptid_equal (inferior_ptid, old_ptid))
1917 inferior_ptid = new_ptid;
1918
1919 for (displaced = displaced_step_inferior_states;
1920 displaced;
1921 displaced = displaced->next)
1922 {
1923 if (ptid_equal (displaced->step_ptid, old_ptid))
1924 displaced->step_ptid = new_ptid;
1925
1926 for (it = displaced->step_request_queue; it; it = it->next)
1927 if (ptid_equal (it->ptid, old_ptid))
1928 it->ptid = new_ptid;
1929 }
1930 }
1931
1932 \f
1933 /* Resuming. */
1934
1935 /* Things to clean up if we QUIT out of resume (). */
1936 static void
1937 resume_cleanups (void *ignore)
1938 {
1939 if (!ptid_equal (inferior_ptid, null_ptid))
1940 delete_single_step_breakpoints (inferior_thread ());
1941
1942 normal_stop ();
1943 }
1944
1945 static const char schedlock_off[] = "off";
1946 static const char schedlock_on[] = "on";
1947 static const char schedlock_step[] = "step";
1948 static const char *const scheduler_enums[] = {
1949 schedlock_off,
1950 schedlock_on,
1951 schedlock_step,
1952 NULL
1953 };
1954 static const char *scheduler_mode = schedlock_off;
1955 static void
1956 show_scheduler_mode (struct ui_file *file, int from_tty,
1957 struct cmd_list_element *c, const char *value)
1958 {
1959 fprintf_filtered (file,
1960 _("Mode for locking scheduler "
1961 "during execution is \"%s\".\n"),
1962 value);
1963 }
1964
1965 static void
1966 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1967 {
1968 if (!target_can_lock_scheduler)
1969 {
1970 scheduler_mode = schedlock_off;
1971 error (_("Target '%s' cannot support this command."), target_shortname);
1972 }
1973 }
1974
1975 /* True if execution commands resume all threads of all processes by
1976 default; otherwise, resume only threads of the current inferior
1977 process. */
1978 int sched_multi = 0;
1979
1980 /* Try to setup for software single stepping over the specified location.
1981 Return 1 if target_resume() should use hardware single step.
1982
1983 GDBARCH the current gdbarch.
1984 PC the location to step over. */
1985
1986 static int
1987 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1988 {
1989 int hw_step = 1;
1990
1991 if (execution_direction == EXEC_FORWARD
1992 && gdbarch_software_single_step_p (gdbarch)
1993 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1994 {
1995 hw_step = 0;
1996 }
1997 return hw_step;
1998 }
1999
2000 ptid_t
2001 user_visible_resume_ptid (int step)
2002 {
2003 /* By default, resume all threads of all processes. */
2004 ptid_t resume_ptid = RESUME_ALL;
2005
2006 /* Maybe resume only all threads of the current process. */
2007 if (!sched_multi && target_supports_multi_process ())
2008 {
2009 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2010 }
2011
2012 /* Maybe resume a single thread after all. */
2013 if (non_stop)
2014 {
2015 /* With non-stop mode on, threads are always handled
2016 individually. */
2017 resume_ptid = inferior_ptid;
2018 }
2019 else if ((scheduler_mode == schedlock_on)
2020 || (scheduler_mode == schedlock_step && step))
2021 {
2022 /* User-settable 'scheduler' mode requires solo thread resume. */
2023 resume_ptid = inferior_ptid;
2024 }
2025
2026 /* We may actually resume fewer threads at first, e.g., if a thread
2027 is stopped at a breakpoint that needs stepping-off, but that
2028 should not be visible to the user/frontend, and neither should
2029 the frontend/user be allowed to proceed any of the threads that
2030 happen to be stopped for internal run control handling, if a
2031 previous command wanted them resumed. */
2032 return resume_ptid;
2033 }
2034
2035 /* Resume the inferior, but allow a QUIT. This is useful if the user
2036 wants to interrupt some lengthy single-stepping operation
2037 (for child processes, the SIGINT goes to the inferior, and so
2038 we get a SIGINT random_signal, but for remote debugging and perhaps
2039 other targets, that's not true).
2040
2041 SIG is the signal to give the inferior (zero for none). */
2042 void
2043 resume (int step, enum gdb_signal sig)
2044 {
2045 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2046 struct regcache *regcache = get_current_regcache ();
2047 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2048 struct thread_info *tp = inferior_thread ();
2049 CORE_ADDR pc = regcache_read_pc (regcache);
2050 struct address_space *aspace = get_regcache_aspace (regcache);
2051 ptid_t resume_ptid;
2052 /* This represents the user's step vs continue request. When
2053 deciding whether "set scheduler-locking step" applies, it's the
2054 user's intention that counts. */
2055 const int user_step = tp->control.stepping_command;
2056
2057 tp->stepped_breakpoint = 0;
2058
2059 QUIT;
2060
2061 if (current_inferior ()->waiting_for_vfork_done)
2062 {
2063 /* Don't try to single-step a vfork parent that is waiting for
2064 the child to get out of the shared memory region (by exec'ing
2065 or exiting). This is particularly important on software
2066 single-step archs, as the child process would trip on the
2067 software single step breakpoint inserted for the parent
2068 process. Since the parent will not actually execute any
2069 instruction until the child is out of the shared region (such
2070 are vfork's semantics), it is safe to simply continue it.
2071 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2072 the parent, and tell it to `keep_going', which automatically
2073 re-sets it stepping. */
2074 if (debug_infrun)
2075 fprintf_unfiltered (gdb_stdlog,
2076 "infrun: resume : clear step\n");
2077 step = 0;
2078 }
2079
2080 if (debug_infrun)
2081 fprintf_unfiltered (gdb_stdlog,
2082 "infrun: resume (step=%d, signal=%s), "
2083 "trap_expected=%d, current thread [%s] at %s\n",
2084 step, gdb_signal_to_symbol_string (sig),
2085 tp->control.trap_expected,
2086 target_pid_to_str (inferior_ptid),
2087 paddress (gdbarch, pc));
2088
2089 /* Normally, by the time we reach `resume', the breakpoints are either
2090 removed or inserted, as appropriate. The exception is if we're sitting
2091 at a permanent breakpoint; we need to step over it, but permanent
2092 breakpoints can't be removed. So we have to test for it here. */
2093 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2094 {
2095 if (sig != GDB_SIGNAL_0)
2096 {
2097 /* We have a signal to pass to the inferior. The resume
2098 may, or may not take us to the signal handler. If this
2099 is a step, we'll need to stop in the signal handler, if
2100 there's one, (if the target supports stepping into
2101 handlers), or in the next mainline instruction, if
2102 there's no handler. If this is a continue, we need to be
2103 sure to run the handler with all breakpoints inserted.
2104 In all cases, set a breakpoint at the current address
2105 (where the handler returns to), and once that breakpoint
2106 is hit, resume skipping the permanent breakpoint. If
2107 that breakpoint isn't hit, then we've stepped into the
2108 signal handler (or hit some other event). We'll delete
2109 the step-resume breakpoint then. */
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: resume: skipping permanent breakpoint, "
2114 "deliver signal first\n");
2115
2116 clear_step_over_info ();
2117 tp->control.trap_expected = 0;
2118
2119 if (tp->control.step_resume_breakpoint == NULL)
2120 {
2121 /* Set a "high-priority" step-resume, as we don't want
2122 user breakpoints at PC to trigger (again) when this
2123 hits. */
2124 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2125 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2126
2127 tp->step_after_step_resume_breakpoint = step;
2128 }
2129
2130 insert_breakpoints ();
2131 }
2132 else
2133 {
2134 /* There's no signal to pass, we can go ahead and skip the
2135 permanent breakpoint manually. */
2136 if (debug_infrun)
2137 fprintf_unfiltered (gdb_stdlog,
2138 "infrun: resume: skipping permanent breakpoint\n");
2139 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2140 /* Update pc to reflect the new address from which we will
2141 execute instructions. */
2142 pc = regcache_read_pc (regcache);
2143
2144 if (step)
2145 {
2146 /* We've already advanced the PC, so the stepping part
2147 is done. Now we need to arrange for a trap to be
2148 reported to handle_inferior_event. Set a breakpoint
2149 at the current PC, and run to it. Don't update
2150 prev_pc, because if we end in
2151 switch_back_to_stepping, we want the "expected thread
2152 advanced also" branch to be taken. IOW, we don't
2153 want this thread to step further from PC
2154 (overstep). */
2155 insert_single_step_breakpoint (gdbarch, aspace, pc);
2156 insert_breakpoints ();
2157
2158 tp->suspend.stop_signal = GDB_SIGNAL_0;
2159 /* We're continuing with all breakpoints inserted. It's
2160 safe to let the target bypass signals. */
2161 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2162 /* ... and safe to let other threads run, according to
2163 schedlock. */
2164 resume_ptid = user_visible_resume_ptid (user_step);
2165 target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2166 discard_cleanups (old_cleanups);
2167 return;
2168 }
2169 }
2170 }
2171
2172 /* If we have a breakpoint to step over, make sure to do a single
2173 step only. Same if we have software watchpoints. */
2174 if (tp->control.trap_expected || bpstat_should_step ())
2175 tp->control.may_range_step = 0;
2176
2177 /* If enabled, step over breakpoints by executing a copy of the
2178 instruction at a different address.
2179
2180 We can't use displaced stepping when we have a signal to deliver;
2181 the comments for displaced_step_prepare explain why. The
2182 comments in the handle_inferior event for dealing with 'random
2183 signals' explain what we do instead.
2184
2185 We can't use displaced stepping when we are waiting for vfork_done
2186 event, displaced stepping breaks the vfork child similarly as single
2187 step software breakpoint. */
2188 if (use_displaced_stepping (gdbarch)
2189 && tp->control.trap_expected
2190 && sig == GDB_SIGNAL_0
2191 && !current_inferior ()->waiting_for_vfork_done)
2192 {
2193 struct displaced_step_inferior_state *displaced;
2194
2195 if (!displaced_step_prepare (inferior_ptid))
2196 {
2197 /* Got placed in displaced stepping queue. Will be resumed
2198 later when all the currently queued displaced stepping
2199 requests finish. The thread is not executing at this
2200 point, and the call to set_executing will be made later.
2201 But we need to call set_running here, since from the
2202 user/frontend's point of view, threads were set running.
2203 Unless we're calling an inferior function, as in that
2204 case we pretend the inferior doesn't run at all. */
2205 if (!tp->control.in_infcall)
2206 set_running (user_visible_resume_ptid (user_step), 1);
2207 discard_cleanups (old_cleanups);
2208 return;
2209 }
2210
2211 /* Update pc to reflect the new address from which we will execute
2212 instructions due to displaced stepping. */
2213 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2214
2215 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2216 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2217 displaced->step_closure);
2218 }
2219
2220 /* Do we need to do it the hard way, w/temp breakpoints? */
2221 else if (step)
2222 step = maybe_software_singlestep (gdbarch, pc);
2223
2224 /* Currently, our software single-step implementation leads to different
2225 results than hardware single-stepping in one situation: when stepping
2226 into delivering a signal which has an associated signal handler,
2227 hardware single-step will stop at the first instruction of the handler,
2228 while software single-step will simply skip execution of the handler.
2229
2230 For now, this difference in behavior is accepted since there is no
2231 easy way to actually implement single-stepping into a signal handler
2232 without kernel support.
2233
2234 However, there is one scenario where this difference leads to follow-on
2235 problems: if we're stepping off a breakpoint by removing all breakpoints
2236 and then single-stepping. In this case, the software single-step
2237 behavior means that even if there is a *breakpoint* in the signal
2238 handler, GDB still would not stop.
2239
2240 Fortunately, we can at least fix this particular issue. We detect
2241 here the case where we are about to deliver a signal while software
2242 single-stepping with breakpoints removed. In this situation, we
2243 revert the decisions to remove all breakpoints and insert single-
2244 step breakpoints, and instead we install a step-resume breakpoint
2245 at the current address, deliver the signal without stepping, and
2246 once we arrive back at the step-resume breakpoint, actually step
2247 over the breakpoint we originally wanted to step over. */
2248 if (thread_has_single_step_breakpoints_set (tp)
2249 && sig != GDB_SIGNAL_0
2250 && step_over_info_valid_p ())
2251 {
2252 /* If we have nested signals or a pending signal is delivered
2253 immediately after a handler returns, might might already have
2254 a step-resume breakpoint set on the earlier handler. We cannot
2255 set another step-resume breakpoint; just continue on until the
2256 original breakpoint is hit. */
2257 if (tp->control.step_resume_breakpoint == NULL)
2258 {
2259 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2260 tp->step_after_step_resume_breakpoint = 1;
2261 }
2262
2263 delete_single_step_breakpoints (tp);
2264
2265 clear_step_over_info ();
2266 tp->control.trap_expected = 0;
2267
2268 insert_breakpoints ();
2269 }
2270
2271 /* If STEP is set, it's a request to use hardware stepping
2272 facilities. But in that case, we should never
2273 use singlestep breakpoint. */
2274 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2275
2276 /* Decide the set of threads to ask the target to resume. Start
2277 by assuming everything will be resumed, than narrow the set
2278 by applying increasingly restricting conditions. */
2279 resume_ptid = user_visible_resume_ptid (user_step);
2280
2281 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2282 (e.g., we might need to step over a breakpoint), from the
2283 user/frontend's point of view, all threads in RESUME_PTID are now
2284 running. Unless we're calling an inferior function, as in that
2285 case pretend we inferior doesn't run at all. */
2286 if (!tp->control.in_infcall)
2287 set_running (resume_ptid, 1);
2288
2289 /* Maybe resume a single thread after all. */
2290 if ((step || thread_has_single_step_breakpoints_set (tp))
2291 && tp->control.trap_expected)
2292 {
2293 /* We're allowing a thread to run past a breakpoint it has
2294 hit, by single-stepping the thread with the breakpoint
2295 removed. In which case, we need to single-step only this
2296 thread, and keep others stopped, as they can miss this
2297 breakpoint if allowed to run. */
2298 resume_ptid = inferior_ptid;
2299 }
2300
2301 if (execution_direction != EXEC_REVERSE
2302 && step && breakpoint_inserted_here_p (aspace, pc))
2303 {
2304 /* The only case we currently need to step a breakpoint
2305 instruction is when we have a signal to deliver. See
2306 handle_signal_stop where we handle random signals that could
2307 take out us out of the stepping range. Normally, in that
2308 case we end up continuing (instead of stepping) over the
2309 signal handler with a breakpoint at PC, but there are cases
2310 where we should _always_ single-step, even if we have a
2311 step-resume breakpoint, like when a software watchpoint is
2312 set. Assuming single-stepping and delivering a signal at the
2313 same time would takes us to the signal handler, then we could
2314 have removed the breakpoint at PC to step over it. However,
2315 some hardware step targets (like e.g., Mac OS) can't step
2316 into signal handlers, and for those, we need to leave the
2317 breakpoint at PC inserted, as otherwise if the handler
2318 recurses and executes PC again, it'll miss the breakpoint.
2319 So we leave the breakpoint inserted anyway, but we need to
2320 record that we tried to step a breakpoint instruction, so
2321 that adjust_pc_after_break doesn't end up confused. */
2322 gdb_assert (sig != GDB_SIGNAL_0);
2323
2324 tp->stepped_breakpoint = 1;
2325
2326 /* Most targets can step a breakpoint instruction, thus
2327 executing it normally. But if this one cannot, just
2328 continue and we will hit it anyway. */
2329 if (gdbarch_cannot_step_breakpoint (gdbarch))
2330 step = 0;
2331 }
2332
2333 if (debug_displaced
2334 && use_displaced_stepping (gdbarch)
2335 && tp->control.trap_expected)
2336 {
2337 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2338 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2339 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2340 gdb_byte buf[4];
2341
2342 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2343 paddress (resume_gdbarch, actual_pc));
2344 read_memory (actual_pc, buf, sizeof (buf));
2345 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2346 }
2347
2348 if (tp->control.may_range_step)
2349 {
2350 /* If we're resuming a thread with the PC out of the step
2351 range, then we're doing some nested/finer run control
2352 operation, like stepping the thread out of the dynamic
2353 linker or the displaced stepping scratch pad. We
2354 shouldn't have allowed a range step then. */
2355 gdb_assert (pc_in_thread_step_range (pc, tp));
2356 }
2357
2358 /* Install inferior's terminal modes. */
2359 target_terminal_inferior ();
2360
2361 /* Avoid confusing the next resume, if the next stop/resume
2362 happens to apply to another thread. */
2363 tp->suspend.stop_signal = GDB_SIGNAL_0;
2364
2365 /* Advise target which signals may be handled silently. If we have
2366 removed breakpoints because we are stepping over one (in any
2367 thread), we need to receive all signals to avoid accidentally
2368 skipping a breakpoint during execution of a signal handler. */
2369 if (step_over_info_valid_p ())
2370 target_pass_signals (0, NULL);
2371 else
2372 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2373
2374 target_resume (resume_ptid, step, sig);
2375
2376 discard_cleanups (old_cleanups);
2377 }
2378 \f
2379 /* Proceeding. */
2380
2381 /* Clear out all variables saying what to do when inferior is continued.
2382 First do this, then set the ones you want, then call `proceed'. */
2383
2384 static void
2385 clear_proceed_status_thread (struct thread_info *tp)
2386 {
2387 if (debug_infrun)
2388 fprintf_unfiltered (gdb_stdlog,
2389 "infrun: clear_proceed_status_thread (%s)\n",
2390 target_pid_to_str (tp->ptid));
2391
2392 /* If this signal should not be seen by program, give it zero.
2393 Used for debugging signals. */
2394 if (!signal_pass_state (tp->suspend.stop_signal))
2395 tp->suspend.stop_signal = GDB_SIGNAL_0;
2396
2397 tp->control.trap_expected = 0;
2398 tp->control.step_range_start = 0;
2399 tp->control.step_range_end = 0;
2400 tp->control.may_range_step = 0;
2401 tp->control.step_frame_id = null_frame_id;
2402 tp->control.step_stack_frame_id = null_frame_id;
2403 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2404 tp->control.step_start_function = NULL;
2405 tp->stop_requested = 0;
2406
2407 tp->control.stop_step = 0;
2408
2409 tp->control.proceed_to_finish = 0;
2410
2411 tp->control.command_interp = NULL;
2412 tp->control.stepping_command = 0;
2413
2414 /* Discard any remaining commands or status from previous stop. */
2415 bpstat_clear (&tp->control.stop_bpstat);
2416 }
2417
2418 void
2419 clear_proceed_status (int step)
2420 {
2421 if (!non_stop)
2422 {
2423 struct thread_info *tp;
2424 ptid_t resume_ptid;
2425
2426 resume_ptid = user_visible_resume_ptid (step);
2427
2428 /* In all-stop mode, delete the per-thread status of all threads
2429 we're about to resume, implicitly and explicitly. */
2430 ALL_NON_EXITED_THREADS (tp)
2431 {
2432 if (!ptid_match (tp->ptid, resume_ptid))
2433 continue;
2434 clear_proceed_status_thread (tp);
2435 }
2436 }
2437
2438 if (!ptid_equal (inferior_ptid, null_ptid))
2439 {
2440 struct inferior *inferior;
2441
2442 if (non_stop)
2443 {
2444 /* If in non-stop mode, only delete the per-thread status of
2445 the current thread. */
2446 clear_proceed_status_thread (inferior_thread ());
2447 }
2448
2449 inferior = current_inferior ();
2450 inferior->control.stop_soon = NO_STOP_QUIETLY;
2451 }
2452
2453 stop_after_trap = 0;
2454
2455 clear_step_over_info ();
2456
2457 observer_notify_about_to_proceed ();
2458
2459 if (stop_registers)
2460 {
2461 regcache_xfree (stop_registers);
2462 stop_registers = NULL;
2463 }
2464 }
2465
2466 /* Returns true if TP is still stopped at a breakpoint that needs
2467 stepping-over in order to make progress. If the breakpoint is gone
2468 meanwhile, we can skip the whole step-over dance. */
2469
2470 static int
2471 thread_still_needs_step_over (struct thread_info *tp)
2472 {
2473 if (tp->stepping_over_breakpoint)
2474 {
2475 struct regcache *regcache = get_thread_regcache (tp->ptid);
2476
2477 if (breakpoint_here_p (get_regcache_aspace (regcache),
2478 regcache_read_pc (regcache))
2479 == ordinary_breakpoint_here)
2480 return 1;
2481
2482 tp->stepping_over_breakpoint = 0;
2483 }
2484
2485 return 0;
2486 }
2487
2488 /* Returns true if scheduler locking applies. STEP indicates whether
2489 we're about to do a step/next-like command to a thread. */
2490
2491 static int
2492 schedlock_applies (struct thread_info *tp)
2493 {
2494 return (scheduler_mode == schedlock_on
2495 || (scheduler_mode == schedlock_step
2496 && tp->control.stepping_command));
2497 }
2498
2499 /* Look a thread other than EXCEPT that has previously reported a
2500 breakpoint event, and thus needs a step-over in order to make
2501 progress. Returns NULL is none is found. */
2502
2503 static struct thread_info *
2504 find_thread_needs_step_over (struct thread_info *except)
2505 {
2506 struct thread_info *tp, *current;
2507
2508 /* With non-stop mode on, threads are always handled individually. */
2509 gdb_assert (! non_stop);
2510
2511 current = inferior_thread ();
2512
2513 /* If scheduler locking applies, we can avoid iterating over all
2514 threads. */
2515 if (schedlock_applies (except))
2516 {
2517 if (except != current
2518 && thread_still_needs_step_over (current))
2519 return current;
2520
2521 return NULL;
2522 }
2523
2524 ALL_NON_EXITED_THREADS (tp)
2525 {
2526 /* Ignore the EXCEPT thread. */
2527 if (tp == except)
2528 continue;
2529 /* Ignore threads of processes we're not resuming. */
2530 if (!sched_multi
2531 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2532 continue;
2533
2534 if (thread_still_needs_step_over (tp))
2535 return tp;
2536 }
2537
2538 return NULL;
2539 }
2540
2541 /* Basic routine for continuing the program in various fashions.
2542
2543 ADDR is the address to resume at, or -1 for resume where stopped.
2544 SIGGNAL is the signal to give it, or 0 for none,
2545 or -1 for act according to how it stopped.
2546 STEP is nonzero if should trap after one instruction.
2547 -1 means return after that and print nothing.
2548 You should probably set various step_... variables
2549 before calling here, if you are stepping.
2550
2551 You should call clear_proceed_status before calling proceed. */
2552
2553 void
2554 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2555 {
2556 struct regcache *regcache;
2557 struct gdbarch *gdbarch;
2558 struct thread_info *tp;
2559 CORE_ADDR pc;
2560 struct address_space *aspace;
2561
2562 /* If we're stopped at a fork/vfork, follow the branch set by the
2563 "set follow-fork-mode" command; otherwise, we'll just proceed
2564 resuming the current thread. */
2565 if (!follow_fork ())
2566 {
2567 /* The target for some reason decided not to resume. */
2568 normal_stop ();
2569 if (target_can_async_p ())
2570 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2571 return;
2572 }
2573
2574 /* We'll update this if & when we switch to a new thread. */
2575 previous_inferior_ptid = inferior_ptid;
2576
2577 regcache = get_current_regcache ();
2578 gdbarch = get_regcache_arch (regcache);
2579 aspace = get_regcache_aspace (regcache);
2580 pc = regcache_read_pc (regcache);
2581 tp = inferior_thread ();
2582
2583 if (step)
2584 tp->control.step_start_function = find_pc_function (pc);
2585
2586 /* Fill in with reasonable starting values. */
2587 init_thread_stepping_state (tp);
2588
2589 if (addr == (CORE_ADDR) -1)
2590 {
2591 if (pc == stop_pc
2592 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2593 && execution_direction != EXEC_REVERSE)
2594 /* There is a breakpoint at the address we will resume at,
2595 step one instruction before inserting breakpoints so that
2596 we do not stop right away (and report a second hit at this
2597 breakpoint).
2598
2599 Note, we don't do this in reverse, because we won't
2600 actually be executing the breakpoint insn anyway.
2601 We'll be (un-)executing the previous instruction. */
2602 tp->stepping_over_breakpoint = 1;
2603 else if (gdbarch_single_step_through_delay_p (gdbarch)
2604 && gdbarch_single_step_through_delay (gdbarch,
2605 get_current_frame ()))
2606 /* We stepped onto an instruction that needs to be stepped
2607 again before re-inserting the breakpoint, do so. */
2608 tp->stepping_over_breakpoint = 1;
2609 }
2610 else
2611 {
2612 regcache_write_pc (regcache, addr);
2613 }
2614
2615 if (siggnal != GDB_SIGNAL_DEFAULT)
2616 tp->suspend.stop_signal = siggnal;
2617
2618 /* Record the interpreter that issued the execution command that
2619 caused this thread to resume. If the top level interpreter is
2620 MI/async, and the execution command was a CLI command
2621 (next/step/etc.), we'll want to print stop event output to the MI
2622 console channel (the stepped-to line, etc.), as if the user
2623 entered the execution command on a real GDB console. */
2624 inferior_thread ()->control.command_interp = command_interp ();
2625
2626 if (debug_infrun)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2629 paddress (gdbarch, addr),
2630 gdb_signal_to_symbol_string (siggnal), step);
2631
2632 if (non_stop)
2633 /* In non-stop, each thread is handled individually. The context
2634 must already be set to the right thread here. */
2635 ;
2636 else
2637 {
2638 struct thread_info *step_over;
2639
2640 /* In a multi-threaded task we may select another thread and
2641 then continue or step.
2642
2643 But if the old thread was stopped at a breakpoint, it will
2644 immediately cause another breakpoint stop without any
2645 execution (i.e. it will report a breakpoint hit incorrectly).
2646 So we must step over it first.
2647
2648 Look for a thread other than the current (TP) that reported a
2649 breakpoint hit and hasn't been resumed yet since. */
2650 step_over = find_thread_needs_step_over (tp);
2651 if (step_over != NULL)
2652 {
2653 if (debug_infrun)
2654 fprintf_unfiltered (gdb_stdlog,
2655 "infrun: need to step-over [%s] first\n",
2656 target_pid_to_str (step_over->ptid));
2657
2658 /* Store the prev_pc for the stepping thread too, needed by
2659 switch_back_to_stepping thread. */
2660 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2661 switch_to_thread (step_over->ptid);
2662 tp = step_over;
2663 }
2664 }
2665
2666 /* If we need to step over a breakpoint, and we're not using
2667 displaced stepping to do so, insert all breakpoints (watchpoints,
2668 etc.) but the one we're stepping over, step one instruction, and
2669 then re-insert the breakpoint when that step is finished. */
2670 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2671 {
2672 struct regcache *regcache = get_current_regcache ();
2673
2674 set_step_over_info (get_regcache_aspace (regcache),
2675 regcache_read_pc (regcache), 0);
2676 }
2677 else
2678 clear_step_over_info ();
2679
2680 insert_breakpoints ();
2681
2682 tp->control.trap_expected = tp->stepping_over_breakpoint;
2683
2684 annotate_starting ();
2685
2686 /* Make sure that output from GDB appears before output from the
2687 inferior. */
2688 gdb_flush (gdb_stdout);
2689
2690 /* Refresh prev_pc value just prior to resuming. This used to be
2691 done in stop_waiting, however, setting prev_pc there did not handle
2692 scenarios such as inferior function calls or returning from
2693 a function via the return command. In those cases, the prev_pc
2694 value was not set properly for subsequent commands. The prev_pc value
2695 is used to initialize the starting line number in the ecs. With an
2696 invalid value, the gdb next command ends up stopping at the position
2697 represented by the next line table entry past our start position.
2698 On platforms that generate one line table entry per line, this
2699 is not a problem. However, on the ia64, the compiler generates
2700 extraneous line table entries that do not increase the line number.
2701 When we issue the gdb next command on the ia64 after an inferior call
2702 or a return command, we often end up a few instructions forward, still
2703 within the original line we started.
2704
2705 An attempt was made to refresh the prev_pc at the same time the
2706 execution_control_state is initialized (for instance, just before
2707 waiting for an inferior event). But this approach did not work
2708 because of platforms that use ptrace, where the pc register cannot
2709 be read unless the inferior is stopped. At that point, we are not
2710 guaranteed the inferior is stopped and so the regcache_read_pc() call
2711 can fail. Setting the prev_pc value here ensures the value is updated
2712 correctly when the inferior is stopped. */
2713 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2714
2715 /* Resume inferior. */
2716 resume (tp->control.trap_expected || step || bpstat_should_step (),
2717 tp->suspend.stop_signal);
2718
2719 /* Wait for it to stop (if not standalone)
2720 and in any case decode why it stopped, and act accordingly. */
2721 /* Do this only if we are not using the event loop, or if the target
2722 does not support asynchronous execution. */
2723 if (!target_can_async_p ())
2724 {
2725 wait_for_inferior ();
2726 normal_stop ();
2727 }
2728 }
2729 \f
2730
2731 /* Start remote-debugging of a machine over a serial link. */
2732
2733 void
2734 start_remote (int from_tty)
2735 {
2736 struct inferior *inferior;
2737
2738 inferior = current_inferior ();
2739 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2740
2741 /* Always go on waiting for the target, regardless of the mode. */
2742 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2743 indicate to wait_for_inferior that a target should timeout if
2744 nothing is returned (instead of just blocking). Because of this,
2745 targets expecting an immediate response need to, internally, set
2746 things up so that the target_wait() is forced to eventually
2747 timeout. */
2748 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2749 differentiate to its caller what the state of the target is after
2750 the initial open has been performed. Here we're assuming that
2751 the target has stopped. It should be possible to eventually have
2752 target_open() return to the caller an indication that the target
2753 is currently running and GDB state should be set to the same as
2754 for an async run. */
2755 wait_for_inferior ();
2756
2757 /* Now that the inferior has stopped, do any bookkeeping like
2758 loading shared libraries. We want to do this before normal_stop,
2759 so that the displayed frame is up to date. */
2760 post_create_inferior (&current_target, from_tty);
2761
2762 normal_stop ();
2763 }
2764
2765 /* Initialize static vars when a new inferior begins. */
2766
2767 void
2768 init_wait_for_inferior (void)
2769 {
2770 /* These are meaningless until the first time through wait_for_inferior. */
2771
2772 breakpoint_init_inferior (inf_starting);
2773
2774 clear_proceed_status (0);
2775
2776 target_last_wait_ptid = minus_one_ptid;
2777
2778 previous_inferior_ptid = inferior_ptid;
2779
2780 /* Discard any skipped inlined frames. */
2781 clear_inline_frame_state (minus_one_ptid);
2782 }
2783
2784 \f
2785 /* Data to be passed around while handling an event. This data is
2786 discarded between events. */
2787 struct execution_control_state
2788 {
2789 ptid_t ptid;
2790 /* The thread that got the event, if this was a thread event; NULL
2791 otherwise. */
2792 struct thread_info *event_thread;
2793
2794 struct target_waitstatus ws;
2795 int stop_func_filled_in;
2796 CORE_ADDR stop_func_start;
2797 CORE_ADDR stop_func_end;
2798 const char *stop_func_name;
2799 int wait_some_more;
2800
2801 /* True if the event thread hit the single-step breakpoint of
2802 another thread. Thus the event doesn't cause a stop, the thread
2803 needs to be single-stepped past the single-step breakpoint before
2804 we can switch back to the original stepping thread. */
2805 int hit_singlestep_breakpoint;
2806 };
2807
2808 static void handle_inferior_event (struct execution_control_state *ecs);
2809
2810 static void handle_step_into_function (struct gdbarch *gdbarch,
2811 struct execution_control_state *ecs);
2812 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2813 struct execution_control_state *ecs);
2814 static void handle_signal_stop (struct execution_control_state *ecs);
2815 static void check_exception_resume (struct execution_control_state *,
2816 struct frame_info *);
2817
2818 static void end_stepping_range (struct execution_control_state *ecs);
2819 static void stop_waiting (struct execution_control_state *ecs);
2820 static void prepare_to_wait (struct execution_control_state *ecs);
2821 static void keep_going (struct execution_control_state *ecs);
2822 static void process_event_stop_test (struct execution_control_state *ecs);
2823 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2824
2825 /* Callback for iterate over threads. If the thread is stopped, but
2826 the user/frontend doesn't know about that yet, go through
2827 normal_stop, as if the thread had just stopped now. ARG points at
2828 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2829 ptid_is_pid(PTID) is true, applies to all threads of the process
2830 pointed at by PTID. Otherwise, apply only to the thread pointed by
2831 PTID. */
2832
2833 static int
2834 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2835 {
2836 ptid_t ptid = * (ptid_t *) arg;
2837
2838 if ((ptid_equal (info->ptid, ptid)
2839 || ptid_equal (minus_one_ptid, ptid)
2840 || (ptid_is_pid (ptid)
2841 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2842 && is_running (info->ptid)
2843 && !is_executing (info->ptid))
2844 {
2845 struct cleanup *old_chain;
2846 struct execution_control_state ecss;
2847 struct execution_control_state *ecs = &ecss;
2848
2849 memset (ecs, 0, sizeof (*ecs));
2850
2851 old_chain = make_cleanup_restore_current_thread ();
2852
2853 overlay_cache_invalid = 1;
2854 /* Flush target cache before starting to handle each event.
2855 Target was running and cache could be stale. This is just a
2856 heuristic. Running threads may modify target memory, but we
2857 don't get any event. */
2858 target_dcache_invalidate ();
2859
2860 /* Go through handle_inferior_event/normal_stop, so we always
2861 have consistent output as if the stop event had been
2862 reported. */
2863 ecs->ptid = info->ptid;
2864 ecs->event_thread = find_thread_ptid (info->ptid);
2865 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2866 ecs->ws.value.sig = GDB_SIGNAL_0;
2867
2868 handle_inferior_event (ecs);
2869
2870 if (!ecs->wait_some_more)
2871 {
2872 struct thread_info *tp;
2873
2874 normal_stop ();
2875
2876 /* Finish off the continuations. */
2877 tp = inferior_thread ();
2878 do_all_intermediate_continuations_thread (tp, 1);
2879 do_all_continuations_thread (tp, 1);
2880 }
2881
2882 do_cleanups (old_chain);
2883 }
2884
2885 return 0;
2886 }
2887
2888 /* This function is attached as a "thread_stop_requested" observer.
2889 Cleanup local state that assumed the PTID was to be resumed, and
2890 report the stop to the frontend. */
2891
2892 static void
2893 infrun_thread_stop_requested (ptid_t ptid)
2894 {
2895 struct displaced_step_inferior_state *displaced;
2896
2897 /* PTID was requested to stop. Remove it from the displaced
2898 stepping queue, so we don't try to resume it automatically. */
2899
2900 for (displaced = displaced_step_inferior_states;
2901 displaced;
2902 displaced = displaced->next)
2903 {
2904 struct displaced_step_request *it, **prev_next_p;
2905
2906 it = displaced->step_request_queue;
2907 prev_next_p = &displaced->step_request_queue;
2908 while (it)
2909 {
2910 if (ptid_match (it->ptid, ptid))
2911 {
2912 *prev_next_p = it->next;
2913 it->next = NULL;
2914 xfree (it);
2915 }
2916 else
2917 {
2918 prev_next_p = &it->next;
2919 }
2920
2921 it = *prev_next_p;
2922 }
2923 }
2924
2925 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2926 }
2927
2928 static void
2929 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2930 {
2931 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2932 nullify_last_target_wait_ptid ();
2933 }
2934
2935 /* Delete the step resume, single-step and longjmp/exception resume
2936 breakpoints of TP. */
2937
2938 static void
2939 delete_thread_infrun_breakpoints (struct thread_info *tp)
2940 {
2941 delete_step_resume_breakpoint (tp);
2942 delete_exception_resume_breakpoint (tp);
2943 delete_single_step_breakpoints (tp);
2944 }
2945
2946 /* If the target still has execution, call FUNC for each thread that
2947 just stopped. In all-stop, that's all the non-exited threads; in
2948 non-stop, that's the current thread, only. */
2949
2950 typedef void (*for_each_just_stopped_thread_callback_func)
2951 (struct thread_info *tp);
2952
2953 static void
2954 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2955 {
2956 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2957 return;
2958
2959 if (non_stop)
2960 {
2961 /* If in non-stop mode, only the current thread stopped. */
2962 func (inferior_thread ());
2963 }
2964 else
2965 {
2966 struct thread_info *tp;
2967
2968 /* In all-stop mode, all threads have stopped. */
2969 ALL_NON_EXITED_THREADS (tp)
2970 {
2971 func (tp);
2972 }
2973 }
2974 }
2975
2976 /* Delete the step resume and longjmp/exception resume breakpoints of
2977 the threads that just stopped. */
2978
2979 static void
2980 delete_just_stopped_threads_infrun_breakpoints (void)
2981 {
2982 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
2983 }
2984
2985 /* Delete the single-step breakpoints of the threads that just
2986 stopped. */
2987
2988 static void
2989 delete_just_stopped_threads_single_step_breakpoints (void)
2990 {
2991 for_each_just_stopped_thread (delete_single_step_breakpoints);
2992 }
2993
2994 /* A cleanup wrapper. */
2995
2996 static void
2997 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
2998 {
2999 delete_just_stopped_threads_infrun_breakpoints ();
3000 }
3001
3002 /* Pretty print the results of target_wait, for debugging purposes. */
3003
3004 static void
3005 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3006 const struct target_waitstatus *ws)
3007 {
3008 char *status_string = target_waitstatus_to_string (ws);
3009 struct ui_file *tmp_stream = mem_fileopen ();
3010 char *text;
3011
3012 /* The text is split over several lines because it was getting too long.
3013 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3014 output as a unit; we want only one timestamp printed if debug_timestamp
3015 is set. */
3016
3017 fprintf_unfiltered (tmp_stream,
3018 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3019 if (ptid_get_pid (waiton_ptid) != -1)
3020 fprintf_unfiltered (tmp_stream,
3021 " [%s]", target_pid_to_str (waiton_ptid));
3022 fprintf_unfiltered (tmp_stream, ", status) =\n");
3023 fprintf_unfiltered (tmp_stream,
3024 "infrun: %d [%s],\n",
3025 ptid_get_pid (result_ptid),
3026 target_pid_to_str (result_ptid));
3027 fprintf_unfiltered (tmp_stream,
3028 "infrun: %s\n",
3029 status_string);
3030
3031 text = ui_file_xstrdup (tmp_stream, NULL);
3032
3033 /* This uses %s in part to handle %'s in the text, but also to avoid
3034 a gcc error: the format attribute requires a string literal. */
3035 fprintf_unfiltered (gdb_stdlog, "%s", text);
3036
3037 xfree (status_string);
3038 xfree (text);
3039 ui_file_delete (tmp_stream);
3040 }
3041
3042 /* Prepare and stabilize the inferior for detaching it. E.g.,
3043 detaching while a thread is displaced stepping is a recipe for
3044 crashing it, as nothing would readjust the PC out of the scratch
3045 pad. */
3046
3047 void
3048 prepare_for_detach (void)
3049 {
3050 struct inferior *inf = current_inferior ();
3051 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3052 struct cleanup *old_chain_1;
3053 struct displaced_step_inferior_state *displaced;
3054
3055 displaced = get_displaced_stepping_state (inf->pid);
3056
3057 /* Is any thread of this process displaced stepping? If not,
3058 there's nothing else to do. */
3059 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3060 return;
3061
3062 if (debug_infrun)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "displaced-stepping in-process while detaching");
3065
3066 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3067 inf->detaching = 1;
3068
3069 while (!ptid_equal (displaced->step_ptid, null_ptid))
3070 {
3071 struct cleanup *old_chain_2;
3072 struct execution_control_state ecss;
3073 struct execution_control_state *ecs;
3074
3075 ecs = &ecss;
3076 memset (ecs, 0, sizeof (*ecs));
3077
3078 overlay_cache_invalid = 1;
3079 /* Flush target cache before starting to handle each event.
3080 Target was running and cache could be stale. This is just a
3081 heuristic. Running threads may modify target memory, but we
3082 don't get any event. */
3083 target_dcache_invalidate ();
3084
3085 if (deprecated_target_wait_hook)
3086 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3087 else
3088 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3089
3090 if (debug_infrun)
3091 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3092
3093 /* If an error happens while handling the event, propagate GDB's
3094 knowledge of the executing state to the frontend/user running
3095 state. */
3096 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3097 &minus_one_ptid);
3098
3099 /* Now figure out what to do with the result of the result. */
3100 handle_inferior_event (ecs);
3101
3102 /* No error, don't finish the state yet. */
3103 discard_cleanups (old_chain_2);
3104
3105 /* Breakpoints and watchpoints are not installed on the target
3106 at this point, and signals are passed directly to the
3107 inferior, so this must mean the process is gone. */
3108 if (!ecs->wait_some_more)
3109 {
3110 discard_cleanups (old_chain_1);
3111 error (_("Program exited while detaching"));
3112 }
3113 }
3114
3115 discard_cleanups (old_chain_1);
3116 }
3117
3118 /* Wait for control to return from inferior to debugger.
3119
3120 If inferior gets a signal, we may decide to start it up again
3121 instead of returning. That is why there is a loop in this function.
3122 When this function actually returns it means the inferior
3123 should be left stopped and GDB should read more commands. */
3124
3125 void
3126 wait_for_inferior (void)
3127 {
3128 struct cleanup *old_cleanups;
3129
3130 if (debug_infrun)
3131 fprintf_unfiltered
3132 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3133
3134 old_cleanups
3135 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3136 NULL);
3137
3138 while (1)
3139 {
3140 struct execution_control_state ecss;
3141 struct execution_control_state *ecs = &ecss;
3142 struct cleanup *old_chain;
3143 ptid_t waiton_ptid = minus_one_ptid;
3144
3145 memset (ecs, 0, sizeof (*ecs));
3146
3147 overlay_cache_invalid = 1;
3148
3149 /* Flush target cache before starting to handle each event.
3150 Target was running and cache could be stale. This is just a
3151 heuristic. Running threads may modify target memory, but we
3152 don't get any event. */
3153 target_dcache_invalidate ();
3154
3155 if (deprecated_target_wait_hook)
3156 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3157 else
3158 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3159
3160 if (debug_infrun)
3161 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3162
3163 /* If an error happens while handling the event, propagate GDB's
3164 knowledge of the executing state to the frontend/user running
3165 state. */
3166 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3167
3168 /* Now figure out what to do with the result of the result. */
3169 handle_inferior_event (ecs);
3170
3171 /* No error, don't finish the state yet. */
3172 discard_cleanups (old_chain);
3173
3174 if (!ecs->wait_some_more)
3175 break;
3176 }
3177
3178 do_cleanups (old_cleanups);
3179 }
3180
3181 /* Cleanup that reinstalls the readline callback handler, if the
3182 target is running in the background. If while handling the target
3183 event something triggered a secondary prompt, like e.g., a
3184 pagination prompt, we'll have removed the callback handler (see
3185 gdb_readline_wrapper_line). Need to do this as we go back to the
3186 event loop, ready to process further input. Note this has no
3187 effect if the handler hasn't actually been removed, because calling
3188 rl_callback_handler_install resets the line buffer, thus losing
3189 input. */
3190
3191 static void
3192 reinstall_readline_callback_handler_cleanup (void *arg)
3193 {
3194 if (!interpreter_async)
3195 {
3196 /* We're not going back to the top level event loop yet. Don't
3197 install the readline callback, as it'd prep the terminal,
3198 readline-style (raw, noecho) (e.g., --batch). We'll install
3199 it the next time the prompt is displayed, when we're ready
3200 for input. */
3201 return;
3202 }
3203
3204 if (async_command_editing_p && !sync_execution)
3205 gdb_rl_callback_handler_reinstall ();
3206 }
3207
3208 /* Asynchronous version of wait_for_inferior. It is called by the
3209 event loop whenever a change of state is detected on the file
3210 descriptor corresponding to the target. It can be called more than
3211 once to complete a single execution command. In such cases we need
3212 to keep the state in a global variable ECSS. If it is the last time
3213 that this function is called for a single execution command, then
3214 report to the user that the inferior has stopped, and do the
3215 necessary cleanups. */
3216
3217 void
3218 fetch_inferior_event (void *client_data)
3219 {
3220 struct execution_control_state ecss;
3221 struct execution_control_state *ecs = &ecss;
3222 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3223 struct cleanup *ts_old_chain;
3224 int was_sync = sync_execution;
3225 int cmd_done = 0;
3226 ptid_t waiton_ptid = minus_one_ptid;
3227
3228 memset (ecs, 0, sizeof (*ecs));
3229
3230 /* End up with readline processing input, if necessary. */
3231 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3232
3233 /* We're handling a live event, so make sure we're doing live
3234 debugging. If we're looking at traceframes while the target is
3235 running, we're going to need to get back to that mode after
3236 handling the event. */
3237 if (non_stop)
3238 {
3239 make_cleanup_restore_current_traceframe ();
3240 set_current_traceframe (-1);
3241 }
3242
3243 if (non_stop)
3244 /* In non-stop mode, the user/frontend should not notice a thread
3245 switch due to internal events. Make sure we reverse to the
3246 user selected thread and frame after handling the event and
3247 running any breakpoint commands. */
3248 make_cleanup_restore_current_thread ();
3249
3250 overlay_cache_invalid = 1;
3251 /* Flush target cache before starting to handle each event. Target
3252 was running and cache could be stale. This is just a heuristic.
3253 Running threads may modify target memory, but we don't get any
3254 event. */
3255 target_dcache_invalidate ();
3256
3257 make_cleanup_restore_integer (&execution_direction);
3258 execution_direction = target_execution_direction ();
3259
3260 if (deprecated_target_wait_hook)
3261 ecs->ptid =
3262 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3263 else
3264 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3265
3266 if (debug_infrun)
3267 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3268
3269 /* If an error happens while handling the event, propagate GDB's
3270 knowledge of the executing state to the frontend/user running
3271 state. */
3272 if (!non_stop)
3273 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3274 else
3275 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3276
3277 /* Get executed before make_cleanup_restore_current_thread above to apply
3278 still for the thread which has thrown the exception. */
3279 make_bpstat_clear_actions_cleanup ();
3280
3281 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3282
3283 /* Now figure out what to do with the result of the result. */
3284 handle_inferior_event (ecs);
3285
3286 if (!ecs->wait_some_more)
3287 {
3288 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3289
3290 delete_just_stopped_threads_infrun_breakpoints ();
3291
3292 /* We may not find an inferior if this was a process exit. */
3293 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3294 normal_stop ();
3295
3296 if (target_has_execution
3297 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3298 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3299 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3300 && ecs->event_thread->step_multi
3301 && ecs->event_thread->control.stop_step)
3302 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3303 else
3304 {
3305 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3306 cmd_done = 1;
3307 }
3308 }
3309
3310 /* No error, don't finish the thread states yet. */
3311 discard_cleanups (ts_old_chain);
3312
3313 /* Revert thread and frame. */
3314 do_cleanups (old_chain);
3315
3316 /* If the inferior was in sync execution mode, and now isn't,
3317 restore the prompt (a synchronous execution command has finished,
3318 and we're ready for input). */
3319 if (interpreter_async && was_sync && !sync_execution)
3320 observer_notify_sync_execution_done ();
3321
3322 if (cmd_done
3323 && !was_sync
3324 && exec_done_display_p
3325 && (ptid_equal (inferior_ptid, null_ptid)
3326 || !is_running (inferior_ptid)))
3327 printf_unfiltered (_("completed.\n"));
3328 }
3329
3330 /* Record the frame and location we're currently stepping through. */
3331 void
3332 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3333 {
3334 struct thread_info *tp = inferior_thread ();
3335
3336 tp->control.step_frame_id = get_frame_id (frame);
3337 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3338
3339 tp->current_symtab = sal.symtab;
3340 tp->current_line = sal.line;
3341 }
3342
3343 /* Clear context switchable stepping state. */
3344
3345 void
3346 init_thread_stepping_state (struct thread_info *tss)
3347 {
3348 tss->stepped_breakpoint = 0;
3349 tss->stepping_over_breakpoint = 0;
3350 tss->stepping_over_watchpoint = 0;
3351 tss->step_after_step_resume_breakpoint = 0;
3352 }
3353
3354 /* Set the cached copy of the last ptid/waitstatus. */
3355
3356 static void
3357 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3358 {
3359 target_last_wait_ptid = ptid;
3360 target_last_waitstatus = status;
3361 }
3362
3363 /* Return the cached copy of the last pid/waitstatus returned by
3364 target_wait()/deprecated_target_wait_hook(). The data is actually
3365 cached by handle_inferior_event(), which gets called immediately
3366 after target_wait()/deprecated_target_wait_hook(). */
3367
3368 void
3369 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3370 {
3371 *ptidp = target_last_wait_ptid;
3372 *status = target_last_waitstatus;
3373 }
3374
3375 void
3376 nullify_last_target_wait_ptid (void)
3377 {
3378 target_last_wait_ptid = minus_one_ptid;
3379 }
3380
3381 /* Switch thread contexts. */
3382
3383 static void
3384 context_switch (ptid_t ptid)
3385 {
3386 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3387 {
3388 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3389 target_pid_to_str (inferior_ptid));
3390 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3391 target_pid_to_str (ptid));
3392 }
3393
3394 switch_to_thread (ptid);
3395 }
3396
3397 static void
3398 adjust_pc_after_break (struct execution_control_state *ecs)
3399 {
3400 struct regcache *regcache;
3401 struct gdbarch *gdbarch;
3402 struct address_space *aspace;
3403 CORE_ADDR breakpoint_pc, decr_pc;
3404
3405 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3406 we aren't, just return.
3407
3408 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3409 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3410 implemented by software breakpoints should be handled through the normal
3411 breakpoint layer.
3412
3413 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3414 different signals (SIGILL or SIGEMT for instance), but it is less
3415 clear where the PC is pointing afterwards. It may not match
3416 gdbarch_decr_pc_after_break. I don't know any specific target that
3417 generates these signals at breakpoints (the code has been in GDB since at
3418 least 1992) so I can not guess how to handle them here.
3419
3420 In earlier versions of GDB, a target with
3421 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3422 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3423 target with both of these set in GDB history, and it seems unlikely to be
3424 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3425
3426 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3427 return;
3428
3429 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3430 return;
3431
3432 /* In reverse execution, when a breakpoint is hit, the instruction
3433 under it has already been de-executed. The reported PC always
3434 points at the breakpoint address, so adjusting it further would
3435 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3436 architecture:
3437
3438 B1 0x08000000 : INSN1
3439 B2 0x08000001 : INSN2
3440 0x08000002 : INSN3
3441 PC -> 0x08000003 : INSN4
3442
3443 Say you're stopped at 0x08000003 as above. Reverse continuing
3444 from that point should hit B2 as below. Reading the PC when the
3445 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3446 been de-executed already.
3447
3448 B1 0x08000000 : INSN1
3449 B2 PC -> 0x08000001 : INSN2
3450 0x08000002 : INSN3
3451 0x08000003 : INSN4
3452
3453 We can't apply the same logic as for forward execution, because
3454 we would wrongly adjust the PC to 0x08000000, since there's a
3455 breakpoint at PC - 1. We'd then report a hit on B1, although
3456 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3457 behaviour. */
3458 if (execution_direction == EXEC_REVERSE)
3459 return;
3460
3461 /* If the target can tell whether the thread hit a SW breakpoint,
3462 trust it. Targets that can tell also adjust the PC
3463 themselves. */
3464 if (target_supports_stopped_by_sw_breakpoint ())
3465 return;
3466
3467 /* Note that relying on whether a breakpoint is planted in memory to
3468 determine this can fail. E.g,. the breakpoint could have been
3469 removed since. Or the thread could have been told to step an
3470 instruction the size of a breakpoint instruction, and only
3471 _after_ was a breakpoint inserted at its address. */
3472
3473 /* If this target does not decrement the PC after breakpoints, then
3474 we have nothing to do. */
3475 regcache = get_thread_regcache (ecs->ptid);
3476 gdbarch = get_regcache_arch (regcache);
3477
3478 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3479 if (decr_pc == 0)
3480 return;
3481
3482 aspace = get_regcache_aspace (regcache);
3483
3484 /* Find the location where (if we've hit a breakpoint) the
3485 breakpoint would be. */
3486 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3487
3488 /* If the target can't tell whether a software breakpoint triggered,
3489 fallback to figuring it out based on breakpoints we think were
3490 inserted in the target, and on whether the thread was stepped or
3491 continued. */
3492
3493 /* Check whether there actually is a software breakpoint inserted at
3494 that location.
3495
3496 If in non-stop mode, a race condition is possible where we've
3497 removed a breakpoint, but stop events for that breakpoint were
3498 already queued and arrive later. To suppress those spurious
3499 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3500 and retire them after a number of stop events are reported. Note
3501 this is an heuristic and can thus get confused. The real fix is
3502 to get the "stopped by SW BP and needs adjustment" info out of
3503 the target/kernel (and thus never reach here; see above). */
3504 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3505 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3506 {
3507 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3508
3509 if (record_full_is_used ())
3510 record_full_gdb_operation_disable_set ();
3511
3512 /* When using hardware single-step, a SIGTRAP is reported for both
3513 a completed single-step and a software breakpoint. Need to
3514 differentiate between the two, as the latter needs adjusting
3515 but the former does not.
3516
3517 The SIGTRAP can be due to a completed hardware single-step only if
3518 - we didn't insert software single-step breakpoints
3519 - this thread is currently being stepped
3520
3521 If any of these events did not occur, we must have stopped due
3522 to hitting a software breakpoint, and have to back up to the
3523 breakpoint address.
3524
3525 As a special case, we could have hardware single-stepped a
3526 software breakpoint. In this case (prev_pc == breakpoint_pc),
3527 we also need to back up to the breakpoint address. */
3528
3529 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3530 || !currently_stepping (ecs->event_thread)
3531 || (ecs->event_thread->stepped_breakpoint
3532 && ecs->event_thread->prev_pc == breakpoint_pc))
3533 regcache_write_pc (regcache, breakpoint_pc);
3534
3535 do_cleanups (old_cleanups);
3536 }
3537 }
3538
3539 static int
3540 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3541 {
3542 for (frame = get_prev_frame (frame);
3543 frame != NULL;
3544 frame = get_prev_frame (frame))
3545 {
3546 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3547 return 1;
3548 if (get_frame_type (frame) != INLINE_FRAME)
3549 break;
3550 }
3551
3552 return 0;
3553 }
3554
3555 /* Auxiliary function that handles syscall entry/return events.
3556 It returns 1 if the inferior should keep going (and GDB
3557 should ignore the event), or 0 if the event deserves to be
3558 processed. */
3559
3560 static int
3561 handle_syscall_event (struct execution_control_state *ecs)
3562 {
3563 struct regcache *regcache;
3564 int syscall_number;
3565
3566 if (!ptid_equal (ecs->ptid, inferior_ptid))
3567 context_switch (ecs->ptid);
3568
3569 regcache = get_thread_regcache (ecs->ptid);
3570 syscall_number = ecs->ws.value.syscall_number;
3571 stop_pc = regcache_read_pc (regcache);
3572
3573 if (catch_syscall_enabled () > 0
3574 && catching_syscall_number (syscall_number) > 0)
3575 {
3576 if (debug_infrun)
3577 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3578 syscall_number);
3579
3580 ecs->event_thread->control.stop_bpstat
3581 = bpstat_stop_status (get_regcache_aspace (regcache),
3582 stop_pc, ecs->ptid, &ecs->ws);
3583
3584 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3585 {
3586 /* Catchpoint hit. */
3587 return 0;
3588 }
3589 }
3590
3591 /* If no catchpoint triggered for this, then keep going. */
3592 keep_going (ecs);
3593 return 1;
3594 }
3595
3596 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3597
3598 static void
3599 fill_in_stop_func (struct gdbarch *gdbarch,
3600 struct execution_control_state *ecs)
3601 {
3602 if (!ecs->stop_func_filled_in)
3603 {
3604 /* Don't care about return value; stop_func_start and stop_func_name
3605 will both be 0 if it doesn't work. */
3606 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3607 &ecs->stop_func_start, &ecs->stop_func_end);
3608 ecs->stop_func_start
3609 += gdbarch_deprecated_function_start_offset (gdbarch);
3610
3611 if (gdbarch_skip_entrypoint_p (gdbarch))
3612 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3613 ecs->stop_func_start);
3614
3615 ecs->stop_func_filled_in = 1;
3616 }
3617 }
3618
3619
3620 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3621
3622 static enum stop_kind
3623 get_inferior_stop_soon (ptid_t ptid)
3624 {
3625 struct inferior *inf = find_inferior_ptid (ptid);
3626
3627 gdb_assert (inf != NULL);
3628 return inf->control.stop_soon;
3629 }
3630
3631 /* Given an execution control state that has been freshly filled in by
3632 an event from the inferior, figure out what it means and take
3633 appropriate action.
3634
3635 The alternatives are:
3636
3637 1) stop_waiting and return; to really stop and return to the
3638 debugger.
3639
3640 2) keep_going and return; to wait for the next event (set
3641 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3642 once). */
3643
3644 static void
3645 handle_inferior_event (struct execution_control_state *ecs)
3646 {
3647 enum stop_kind stop_soon;
3648
3649 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3650 {
3651 /* We had an event in the inferior, but we are not interested in
3652 handling it at this level. The lower layers have already
3653 done what needs to be done, if anything.
3654
3655 One of the possible circumstances for this is when the
3656 inferior produces output for the console. The inferior has
3657 not stopped, and we are ignoring the event. Another possible
3658 circumstance is any event which the lower level knows will be
3659 reported multiple times without an intervening resume. */
3660 if (debug_infrun)
3661 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3662 prepare_to_wait (ecs);
3663 return;
3664 }
3665
3666 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3667 && target_can_async_p () && !sync_execution)
3668 {
3669 /* There were no unwaited-for children left in the target, but,
3670 we're not synchronously waiting for events either. Just
3671 ignore. Otherwise, if we were running a synchronous
3672 execution command, we need to cancel it and give the user
3673 back the terminal. */
3674 if (debug_infrun)
3675 fprintf_unfiltered (gdb_stdlog,
3676 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3677 prepare_to_wait (ecs);
3678 return;
3679 }
3680
3681 /* Cache the last pid/waitstatus. */
3682 set_last_target_status (ecs->ptid, ecs->ws);
3683
3684 /* Always clear state belonging to the previous time we stopped. */
3685 stop_stack_dummy = STOP_NONE;
3686
3687 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3688 {
3689 /* No unwaited-for children left. IOW, all resumed children
3690 have exited. */
3691 if (debug_infrun)
3692 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3693
3694 stop_print_frame = 0;
3695 stop_waiting (ecs);
3696 return;
3697 }
3698
3699 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3700 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3701 {
3702 ecs->event_thread = find_thread_ptid (ecs->ptid);
3703 /* If it's a new thread, add it to the thread database. */
3704 if (ecs->event_thread == NULL)
3705 ecs->event_thread = add_thread (ecs->ptid);
3706
3707 /* Disable range stepping. If the next step request could use a
3708 range, this will be end up re-enabled then. */
3709 ecs->event_thread->control.may_range_step = 0;
3710 }
3711
3712 /* Dependent on valid ECS->EVENT_THREAD. */
3713 adjust_pc_after_break (ecs);
3714
3715 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3716 reinit_frame_cache ();
3717
3718 breakpoint_retire_moribund ();
3719
3720 /* First, distinguish signals caused by the debugger from signals
3721 that have to do with the program's own actions. Note that
3722 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3723 on the operating system version. Here we detect when a SIGILL or
3724 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3725 something similar for SIGSEGV, since a SIGSEGV will be generated
3726 when we're trying to execute a breakpoint instruction on a
3727 non-executable stack. This happens for call dummy breakpoints
3728 for architectures like SPARC that place call dummies on the
3729 stack. */
3730 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3731 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3732 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3733 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3734 {
3735 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3736
3737 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3738 regcache_read_pc (regcache)))
3739 {
3740 if (debug_infrun)
3741 fprintf_unfiltered (gdb_stdlog,
3742 "infrun: Treating signal as SIGTRAP\n");
3743 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3744 }
3745 }
3746
3747 /* Mark the non-executing threads accordingly. In all-stop, all
3748 threads of all processes are stopped when we get any event
3749 reported. In non-stop mode, only the event thread stops. If
3750 we're handling a process exit in non-stop mode, there's nothing
3751 to do, as threads of the dead process are gone, and threads of
3752 any other process were left running. */
3753 if (!non_stop)
3754 set_executing (minus_one_ptid, 0);
3755 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3756 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3757 set_executing (ecs->ptid, 0);
3758
3759 switch (ecs->ws.kind)
3760 {
3761 case TARGET_WAITKIND_LOADED:
3762 if (debug_infrun)
3763 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3764 if (!ptid_equal (ecs->ptid, inferior_ptid))
3765 context_switch (ecs->ptid);
3766 /* Ignore gracefully during startup of the inferior, as it might
3767 be the shell which has just loaded some objects, otherwise
3768 add the symbols for the newly loaded objects. Also ignore at
3769 the beginning of an attach or remote session; we will query
3770 the full list of libraries once the connection is
3771 established. */
3772
3773 stop_soon = get_inferior_stop_soon (ecs->ptid);
3774 if (stop_soon == NO_STOP_QUIETLY)
3775 {
3776 struct regcache *regcache;
3777
3778 regcache = get_thread_regcache (ecs->ptid);
3779
3780 handle_solib_event ();
3781
3782 ecs->event_thread->control.stop_bpstat
3783 = bpstat_stop_status (get_regcache_aspace (regcache),
3784 stop_pc, ecs->ptid, &ecs->ws);
3785
3786 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3787 {
3788 /* A catchpoint triggered. */
3789 process_event_stop_test (ecs);
3790 return;
3791 }
3792
3793 /* If requested, stop when the dynamic linker notifies
3794 gdb of events. This allows the user to get control
3795 and place breakpoints in initializer routines for
3796 dynamically loaded objects (among other things). */
3797 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3798 if (stop_on_solib_events)
3799 {
3800 /* Make sure we print "Stopped due to solib-event" in
3801 normal_stop. */
3802 stop_print_frame = 1;
3803
3804 stop_waiting (ecs);
3805 return;
3806 }
3807 }
3808
3809 /* If we are skipping through a shell, or through shared library
3810 loading that we aren't interested in, resume the program. If
3811 we're running the program normally, also resume. */
3812 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3813 {
3814 /* Loading of shared libraries might have changed breakpoint
3815 addresses. Make sure new breakpoints are inserted. */
3816 if (stop_soon == NO_STOP_QUIETLY)
3817 insert_breakpoints ();
3818 resume (0, GDB_SIGNAL_0);
3819 prepare_to_wait (ecs);
3820 return;
3821 }
3822
3823 /* But stop if we're attaching or setting up a remote
3824 connection. */
3825 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3826 || stop_soon == STOP_QUIETLY_REMOTE)
3827 {
3828 if (debug_infrun)
3829 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3830 stop_waiting (ecs);
3831 return;
3832 }
3833
3834 internal_error (__FILE__, __LINE__,
3835 _("unhandled stop_soon: %d"), (int) stop_soon);
3836
3837 case TARGET_WAITKIND_SPURIOUS:
3838 if (debug_infrun)
3839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3840 if (!ptid_equal (ecs->ptid, inferior_ptid))
3841 context_switch (ecs->ptid);
3842 resume (0, GDB_SIGNAL_0);
3843 prepare_to_wait (ecs);
3844 return;
3845
3846 case TARGET_WAITKIND_EXITED:
3847 case TARGET_WAITKIND_SIGNALLED:
3848 if (debug_infrun)
3849 {
3850 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3851 fprintf_unfiltered (gdb_stdlog,
3852 "infrun: TARGET_WAITKIND_EXITED\n");
3853 else
3854 fprintf_unfiltered (gdb_stdlog,
3855 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3856 }
3857
3858 inferior_ptid = ecs->ptid;
3859 set_current_inferior (find_inferior_ptid (ecs->ptid));
3860 set_current_program_space (current_inferior ()->pspace);
3861 handle_vfork_child_exec_or_exit (0);
3862 target_terminal_ours (); /* Must do this before mourn anyway. */
3863
3864 /* Clearing any previous state of convenience variables. */
3865 clear_exit_convenience_vars ();
3866
3867 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3868 {
3869 /* Record the exit code in the convenience variable $_exitcode, so
3870 that the user can inspect this again later. */
3871 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3872 (LONGEST) ecs->ws.value.integer);
3873
3874 /* Also record this in the inferior itself. */
3875 current_inferior ()->has_exit_code = 1;
3876 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3877
3878 /* Support the --return-child-result option. */
3879 return_child_result_value = ecs->ws.value.integer;
3880
3881 observer_notify_exited (ecs->ws.value.integer);
3882 }
3883 else
3884 {
3885 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3886 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3887
3888 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3889 {
3890 /* Set the value of the internal variable $_exitsignal,
3891 which holds the signal uncaught by the inferior. */
3892 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3893 gdbarch_gdb_signal_to_target (gdbarch,
3894 ecs->ws.value.sig));
3895 }
3896 else
3897 {
3898 /* We don't have access to the target's method used for
3899 converting between signal numbers (GDB's internal
3900 representation <-> target's representation).
3901 Therefore, we cannot do a good job at displaying this
3902 information to the user. It's better to just warn
3903 her about it (if infrun debugging is enabled), and
3904 give up. */
3905 if (debug_infrun)
3906 fprintf_filtered (gdb_stdlog, _("\
3907 Cannot fill $_exitsignal with the correct signal number.\n"));
3908 }
3909
3910 observer_notify_signal_exited (ecs->ws.value.sig);
3911 }
3912
3913 gdb_flush (gdb_stdout);
3914 target_mourn_inferior ();
3915 stop_print_frame = 0;
3916 stop_waiting (ecs);
3917 return;
3918
3919 /* The following are the only cases in which we keep going;
3920 the above cases end in a continue or goto. */
3921 case TARGET_WAITKIND_FORKED:
3922 case TARGET_WAITKIND_VFORKED:
3923 if (debug_infrun)
3924 {
3925 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3926 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3927 else
3928 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3929 }
3930
3931 /* Check whether the inferior is displaced stepping. */
3932 {
3933 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3934 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3935 struct displaced_step_inferior_state *displaced
3936 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3937
3938 /* If checking displaced stepping is supported, and thread
3939 ecs->ptid is displaced stepping. */
3940 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3941 {
3942 struct inferior *parent_inf
3943 = find_inferior_ptid (ecs->ptid);
3944 struct regcache *child_regcache;
3945 CORE_ADDR parent_pc;
3946
3947 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3948 indicating that the displaced stepping of syscall instruction
3949 has been done. Perform cleanup for parent process here. Note
3950 that this operation also cleans up the child process for vfork,
3951 because their pages are shared. */
3952 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3953
3954 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3955 {
3956 /* Restore scratch pad for child process. */
3957 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3958 }
3959
3960 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3961 the child's PC is also within the scratchpad. Set the child's PC
3962 to the parent's PC value, which has already been fixed up.
3963 FIXME: we use the parent's aspace here, although we're touching
3964 the child, because the child hasn't been added to the inferior
3965 list yet at this point. */
3966
3967 child_regcache
3968 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3969 gdbarch,
3970 parent_inf->aspace);
3971 /* Read PC value of parent process. */
3972 parent_pc = regcache_read_pc (regcache);
3973
3974 if (debug_displaced)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "displaced: write child pc from %s to %s\n",
3977 paddress (gdbarch,
3978 regcache_read_pc (child_regcache)),
3979 paddress (gdbarch, parent_pc));
3980
3981 regcache_write_pc (child_regcache, parent_pc);
3982 }
3983 }
3984
3985 if (!ptid_equal (ecs->ptid, inferior_ptid))
3986 context_switch (ecs->ptid);
3987
3988 /* Immediately detach breakpoints from the child before there's
3989 any chance of letting the user delete breakpoints from the
3990 breakpoint lists. If we don't do this early, it's easy to
3991 leave left over traps in the child, vis: "break foo; catch
3992 fork; c; <fork>; del; c; <child calls foo>". We only follow
3993 the fork on the last `continue', and by that time the
3994 breakpoint at "foo" is long gone from the breakpoint table.
3995 If we vforked, then we don't need to unpatch here, since both
3996 parent and child are sharing the same memory pages; we'll
3997 need to unpatch at follow/detach time instead to be certain
3998 that new breakpoints added between catchpoint hit time and
3999 vfork follow are detached. */
4000 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4001 {
4002 /* This won't actually modify the breakpoint list, but will
4003 physically remove the breakpoints from the child. */
4004 detach_breakpoints (ecs->ws.value.related_pid);
4005 }
4006
4007 delete_just_stopped_threads_single_step_breakpoints ();
4008
4009 /* In case the event is caught by a catchpoint, remember that
4010 the event is to be followed at the next resume of the thread,
4011 and not immediately. */
4012 ecs->event_thread->pending_follow = ecs->ws;
4013
4014 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4015
4016 ecs->event_thread->control.stop_bpstat
4017 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4018 stop_pc, ecs->ptid, &ecs->ws);
4019
4020 /* If no catchpoint triggered for this, then keep going. Note
4021 that we're interested in knowing the bpstat actually causes a
4022 stop, not just if it may explain the signal. Software
4023 watchpoints, for example, always appear in the bpstat. */
4024 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4025 {
4026 ptid_t parent;
4027 ptid_t child;
4028 int should_resume;
4029 int follow_child
4030 = (follow_fork_mode_string == follow_fork_mode_child);
4031
4032 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4033
4034 should_resume = follow_fork ();
4035
4036 parent = ecs->ptid;
4037 child = ecs->ws.value.related_pid;
4038
4039 /* In non-stop mode, also resume the other branch. */
4040 if (non_stop && !detach_fork)
4041 {
4042 if (follow_child)
4043 switch_to_thread (parent);
4044 else
4045 switch_to_thread (child);
4046
4047 ecs->event_thread = inferior_thread ();
4048 ecs->ptid = inferior_ptid;
4049 keep_going (ecs);
4050 }
4051
4052 if (follow_child)
4053 switch_to_thread (child);
4054 else
4055 switch_to_thread (parent);
4056
4057 ecs->event_thread = inferior_thread ();
4058 ecs->ptid = inferior_ptid;
4059
4060 if (should_resume)
4061 keep_going (ecs);
4062 else
4063 stop_waiting (ecs);
4064 return;
4065 }
4066 process_event_stop_test (ecs);
4067 return;
4068
4069 case TARGET_WAITKIND_VFORK_DONE:
4070 /* Done with the shared memory region. Re-insert breakpoints in
4071 the parent, and keep going. */
4072
4073 if (debug_infrun)
4074 fprintf_unfiltered (gdb_stdlog,
4075 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4076
4077 if (!ptid_equal (ecs->ptid, inferior_ptid))
4078 context_switch (ecs->ptid);
4079
4080 current_inferior ()->waiting_for_vfork_done = 0;
4081 current_inferior ()->pspace->breakpoints_not_allowed = 0;
4082 /* This also takes care of reinserting breakpoints in the
4083 previously locked inferior. */
4084 keep_going (ecs);
4085 return;
4086
4087 case TARGET_WAITKIND_EXECD:
4088 if (debug_infrun)
4089 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4090
4091 if (!ptid_equal (ecs->ptid, inferior_ptid))
4092 context_switch (ecs->ptid);
4093
4094 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4095
4096 /* Do whatever is necessary to the parent branch of the vfork. */
4097 handle_vfork_child_exec_or_exit (1);
4098
4099 /* This causes the eventpoints and symbol table to be reset.
4100 Must do this now, before trying to determine whether to
4101 stop. */
4102 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4103
4104 ecs->event_thread->control.stop_bpstat
4105 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4106 stop_pc, ecs->ptid, &ecs->ws);
4107
4108 /* Note that this may be referenced from inside
4109 bpstat_stop_status above, through inferior_has_execd. */
4110 xfree (ecs->ws.value.execd_pathname);
4111 ecs->ws.value.execd_pathname = NULL;
4112
4113 /* If no catchpoint triggered for this, then keep going. */
4114 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4115 {
4116 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4117 keep_going (ecs);
4118 return;
4119 }
4120 process_event_stop_test (ecs);
4121 return;
4122
4123 /* Be careful not to try to gather much state about a thread
4124 that's in a syscall. It's frequently a losing proposition. */
4125 case TARGET_WAITKIND_SYSCALL_ENTRY:
4126 if (debug_infrun)
4127 fprintf_unfiltered (gdb_stdlog,
4128 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4129 /* Getting the current syscall number. */
4130 if (handle_syscall_event (ecs) == 0)
4131 process_event_stop_test (ecs);
4132 return;
4133
4134 /* Before examining the threads further, step this thread to
4135 get it entirely out of the syscall. (We get notice of the
4136 event when the thread is just on the verge of exiting a
4137 syscall. Stepping one instruction seems to get it back
4138 into user code.) */
4139 case TARGET_WAITKIND_SYSCALL_RETURN:
4140 if (debug_infrun)
4141 fprintf_unfiltered (gdb_stdlog,
4142 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4143 if (handle_syscall_event (ecs) == 0)
4144 process_event_stop_test (ecs);
4145 return;
4146
4147 case TARGET_WAITKIND_STOPPED:
4148 if (debug_infrun)
4149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4150 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4151 handle_signal_stop (ecs);
4152 return;
4153
4154 case TARGET_WAITKIND_NO_HISTORY:
4155 if (debug_infrun)
4156 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4157 /* Reverse execution: target ran out of history info. */
4158
4159 delete_just_stopped_threads_single_step_breakpoints ();
4160 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4161 observer_notify_no_history ();
4162 stop_waiting (ecs);
4163 return;
4164 }
4165 }
4166
4167 /* Come here when the program has stopped with a signal. */
4168
4169 static void
4170 handle_signal_stop (struct execution_control_state *ecs)
4171 {
4172 struct frame_info *frame;
4173 struct gdbarch *gdbarch;
4174 int stopped_by_watchpoint;
4175 enum stop_kind stop_soon;
4176 int random_signal;
4177
4178 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4179
4180 /* Do we need to clean up the state of a thread that has
4181 completed a displaced single-step? (Doing so usually affects
4182 the PC, so do it here, before we set stop_pc.) */
4183 displaced_step_fixup (ecs->ptid,
4184 ecs->event_thread->suspend.stop_signal);
4185
4186 /* If we either finished a single-step or hit a breakpoint, but
4187 the user wanted this thread to be stopped, pretend we got a
4188 SIG0 (generic unsignaled stop). */
4189 if (ecs->event_thread->stop_requested
4190 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4191 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4192
4193 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4194
4195 if (debug_infrun)
4196 {
4197 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4199 struct cleanup *old_chain = save_inferior_ptid ();
4200
4201 inferior_ptid = ecs->ptid;
4202
4203 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4204 paddress (gdbarch, stop_pc));
4205 if (target_stopped_by_watchpoint ())
4206 {
4207 CORE_ADDR addr;
4208
4209 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4210
4211 if (target_stopped_data_address (&current_target, &addr))
4212 fprintf_unfiltered (gdb_stdlog,
4213 "infrun: stopped data address = %s\n",
4214 paddress (gdbarch, addr));
4215 else
4216 fprintf_unfiltered (gdb_stdlog,
4217 "infrun: (no data address available)\n");
4218 }
4219
4220 do_cleanups (old_chain);
4221 }
4222
4223 /* This is originated from start_remote(), start_inferior() and
4224 shared libraries hook functions. */
4225 stop_soon = get_inferior_stop_soon (ecs->ptid);
4226 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4227 {
4228 if (!ptid_equal (ecs->ptid, inferior_ptid))
4229 context_switch (ecs->ptid);
4230 if (debug_infrun)
4231 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4232 stop_print_frame = 1;
4233 stop_waiting (ecs);
4234 return;
4235 }
4236
4237 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4238 && stop_after_trap)
4239 {
4240 if (!ptid_equal (ecs->ptid, inferior_ptid))
4241 context_switch (ecs->ptid);
4242 if (debug_infrun)
4243 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4244 stop_print_frame = 0;
4245 stop_waiting (ecs);
4246 return;
4247 }
4248
4249 /* This originates from attach_command(). We need to overwrite
4250 the stop_signal here, because some kernels don't ignore a
4251 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4252 See more comments in inferior.h. On the other hand, if we
4253 get a non-SIGSTOP, report it to the user - assume the backend
4254 will handle the SIGSTOP if it should show up later.
4255
4256 Also consider that the attach is complete when we see a
4257 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4258 target extended-remote report it instead of a SIGSTOP
4259 (e.g. gdbserver). We already rely on SIGTRAP being our
4260 signal, so this is no exception.
4261
4262 Also consider that the attach is complete when we see a
4263 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4264 the target to stop all threads of the inferior, in case the
4265 low level attach operation doesn't stop them implicitly. If
4266 they weren't stopped implicitly, then the stub will report a
4267 GDB_SIGNAL_0, meaning: stopped for no particular reason
4268 other than GDB's request. */
4269 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4270 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4271 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4272 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4273 {
4274 stop_print_frame = 1;
4275 stop_waiting (ecs);
4276 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4277 return;
4278 }
4279
4280 /* See if something interesting happened to the non-current thread. If
4281 so, then switch to that thread. */
4282 if (!ptid_equal (ecs->ptid, inferior_ptid))
4283 {
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4286
4287 context_switch (ecs->ptid);
4288
4289 if (deprecated_context_hook)
4290 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4291 }
4292
4293 /* At this point, get hold of the now-current thread's frame. */
4294 frame = get_current_frame ();
4295 gdbarch = get_frame_arch (frame);
4296
4297 /* Pull the single step breakpoints out of the target. */
4298 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4299 {
4300 struct regcache *regcache;
4301 struct address_space *aspace;
4302 CORE_ADDR pc;
4303
4304 regcache = get_thread_regcache (ecs->ptid);
4305 aspace = get_regcache_aspace (regcache);
4306 pc = regcache_read_pc (regcache);
4307
4308 /* However, before doing so, if this single-step breakpoint was
4309 actually for another thread, set this thread up for moving
4310 past it. */
4311 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4312 aspace, pc))
4313 {
4314 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4315 {
4316 if (debug_infrun)
4317 {
4318 fprintf_unfiltered (gdb_stdlog,
4319 "infrun: [%s] hit another thread's "
4320 "single-step breakpoint\n",
4321 target_pid_to_str (ecs->ptid));
4322 }
4323 ecs->hit_singlestep_breakpoint = 1;
4324 }
4325 }
4326 else
4327 {
4328 if (debug_infrun)
4329 {
4330 fprintf_unfiltered (gdb_stdlog,
4331 "infrun: [%s] hit its "
4332 "single-step breakpoint\n",
4333 target_pid_to_str (ecs->ptid));
4334 }
4335 }
4336 }
4337 delete_just_stopped_threads_single_step_breakpoints ();
4338
4339 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4340 && ecs->event_thread->control.trap_expected
4341 && ecs->event_thread->stepping_over_watchpoint)
4342 stopped_by_watchpoint = 0;
4343 else
4344 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4345
4346 /* If necessary, step over this watchpoint. We'll be back to display
4347 it in a moment. */
4348 if (stopped_by_watchpoint
4349 && (target_have_steppable_watchpoint
4350 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4351 {
4352 /* At this point, we are stopped at an instruction which has
4353 attempted to write to a piece of memory under control of
4354 a watchpoint. The instruction hasn't actually executed
4355 yet. If we were to evaluate the watchpoint expression
4356 now, we would get the old value, and therefore no change
4357 would seem to have occurred.
4358
4359 In order to make watchpoints work `right', we really need
4360 to complete the memory write, and then evaluate the
4361 watchpoint expression. We do this by single-stepping the
4362 target.
4363
4364 It may not be necessary to disable the watchpoint to step over
4365 it. For example, the PA can (with some kernel cooperation)
4366 single step over a watchpoint without disabling the watchpoint.
4367
4368 It is far more common to need to disable a watchpoint to step
4369 the inferior over it. If we have non-steppable watchpoints,
4370 we must disable the current watchpoint; it's simplest to
4371 disable all watchpoints.
4372
4373 Any breakpoint at PC must also be stepped over -- if there's
4374 one, it will have already triggered before the watchpoint
4375 triggered, and we either already reported it to the user, or
4376 it didn't cause a stop and we called keep_going. In either
4377 case, if there was a breakpoint at PC, we must be trying to
4378 step past it. */
4379 ecs->event_thread->stepping_over_watchpoint = 1;
4380 keep_going (ecs);
4381 return;
4382 }
4383
4384 ecs->event_thread->stepping_over_breakpoint = 0;
4385 ecs->event_thread->stepping_over_watchpoint = 0;
4386 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4387 ecs->event_thread->control.stop_step = 0;
4388 stop_print_frame = 1;
4389 stopped_by_random_signal = 0;
4390
4391 /* Hide inlined functions starting here, unless we just performed stepi or
4392 nexti. After stepi and nexti, always show the innermost frame (not any
4393 inline function call sites). */
4394 if (ecs->event_thread->control.step_range_end != 1)
4395 {
4396 struct address_space *aspace =
4397 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4398
4399 /* skip_inline_frames is expensive, so we avoid it if we can
4400 determine that the address is one where functions cannot have
4401 been inlined. This improves performance with inferiors that
4402 load a lot of shared libraries, because the solib event
4403 breakpoint is defined as the address of a function (i.e. not
4404 inline). Note that we have to check the previous PC as well
4405 as the current one to catch cases when we have just
4406 single-stepped off a breakpoint prior to reinstating it.
4407 Note that we're assuming that the code we single-step to is
4408 not inline, but that's not definitive: there's nothing
4409 preventing the event breakpoint function from containing
4410 inlined code, and the single-step ending up there. If the
4411 user had set a breakpoint on that inlined code, the missing
4412 skip_inline_frames call would break things. Fortunately
4413 that's an extremely unlikely scenario. */
4414 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4415 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4416 && ecs->event_thread->control.trap_expected
4417 && pc_at_non_inline_function (aspace,
4418 ecs->event_thread->prev_pc,
4419 &ecs->ws)))
4420 {
4421 skip_inline_frames (ecs->ptid);
4422
4423 /* Re-fetch current thread's frame in case that invalidated
4424 the frame cache. */
4425 frame = get_current_frame ();
4426 gdbarch = get_frame_arch (frame);
4427 }
4428 }
4429
4430 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4431 && ecs->event_thread->control.trap_expected
4432 && gdbarch_single_step_through_delay_p (gdbarch)
4433 && currently_stepping (ecs->event_thread))
4434 {
4435 /* We're trying to step off a breakpoint. Turns out that we're
4436 also on an instruction that needs to be stepped multiple
4437 times before it's been fully executing. E.g., architectures
4438 with a delay slot. It needs to be stepped twice, once for
4439 the instruction and once for the delay slot. */
4440 int step_through_delay
4441 = gdbarch_single_step_through_delay (gdbarch, frame);
4442
4443 if (debug_infrun && step_through_delay)
4444 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4445 if (ecs->event_thread->control.step_range_end == 0
4446 && step_through_delay)
4447 {
4448 /* The user issued a continue when stopped at a breakpoint.
4449 Set up for another trap and get out of here. */
4450 ecs->event_thread->stepping_over_breakpoint = 1;
4451 keep_going (ecs);
4452 return;
4453 }
4454 else if (step_through_delay)
4455 {
4456 /* The user issued a step when stopped at a breakpoint.
4457 Maybe we should stop, maybe we should not - the delay
4458 slot *might* correspond to a line of source. In any
4459 case, don't decide that here, just set
4460 ecs->stepping_over_breakpoint, making sure we
4461 single-step again before breakpoints are re-inserted. */
4462 ecs->event_thread->stepping_over_breakpoint = 1;
4463 }
4464 }
4465
4466 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4467 handles this event. */
4468 ecs->event_thread->control.stop_bpstat
4469 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4470 stop_pc, ecs->ptid, &ecs->ws);
4471
4472 /* Following in case break condition called a
4473 function. */
4474 stop_print_frame = 1;
4475
4476 /* This is where we handle "moribund" watchpoints. Unlike
4477 software breakpoints traps, hardware watchpoint traps are
4478 always distinguishable from random traps. If no high-level
4479 watchpoint is associated with the reported stop data address
4480 anymore, then the bpstat does not explain the signal ---
4481 simply make sure to ignore it if `stopped_by_watchpoint' is
4482 set. */
4483
4484 if (debug_infrun
4485 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4486 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4487 GDB_SIGNAL_TRAP)
4488 && stopped_by_watchpoint)
4489 fprintf_unfiltered (gdb_stdlog,
4490 "infrun: no user watchpoint explains "
4491 "watchpoint SIGTRAP, ignoring\n");
4492
4493 /* NOTE: cagney/2003-03-29: These checks for a random signal
4494 at one stage in the past included checks for an inferior
4495 function call's call dummy's return breakpoint. The original
4496 comment, that went with the test, read:
4497
4498 ``End of a stack dummy. Some systems (e.g. Sony news) give
4499 another signal besides SIGTRAP, so check here as well as
4500 above.''
4501
4502 If someone ever tries to get call dummys on a
4503 non-executable stack to work (where the target would stop
4504 with something like a SIGSEGV), then those tests might need
4505 to be re-instated. Given, however, that the tests were only
4506 enabled when momentary breakpoints were not being used, I
4507 suspect that it won't be the case.
4508
4509 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4510 be necessary for call dummies on a non-executable stack on
4511 SPARC. */
4512
4513 /* See if the breakpoints module can explain the signal. */
4514 random_signal
4515 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4516 ecs->event_thread->suspend.stop_signal);
4517
4518 /* Maybe this was a trap for a software breakpoint that has since
4519 been removed. */
4520 if (random_signal && target_stopped_by_sw_breakpoint ())
4521 {
4522 if (program_breakpoint_here_p (gdbarch, stop_pc))
4523 {
4524 struct regcache *regcache;
4525 int decr_pc;
4526
4527 /* Re-adjust PC to what the program would see if GDB was not
4528 debugging it. */
4529 regcache = get_thread_regcache (ecs->event_thread->ptid);
4530 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4531 if (decr_pc != 0)
4532 {
4533 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4534
4535 if (record_full_is_used ())
4536 record_full_gdb_operation_disable_set ();
4537
4538 regcache_write_pc (regcache, stop_pc + decr_pc);
4539
4540 do_cleanups (old_cleanups);
4541 }
4542 }
4543 else
4544 {
4545 /* A delayed software breakpoint event. Ignore the trap. */
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: delayed software breakpoint "
4549 "trap, ignoring\n");
4550 random_signal = 0;
4551 }
4552 }
4553
4554 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4555 has since been removed. */
4556 if (random_signal && target_stopped_by_hw_breakpoint ())
4557 {
4558 /* A delayed hardware breakpoint event. Ignore the trap. */
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog,
4561 "infrun: delayed hardware breakpoint/watchpoint "
4562 "trap, ignoring\n");
4563 random_signal = 0;
4564 }
4565
4566 /* If not, perhaps stepping/nexting can. */
4567 if (random_signal)
4568 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4569 && currently_stepping (ecs->event_thread));
4570
4571 /* Perhaps the thread hit a single-step breakpoint of _another_
4572 thread. Single-step breakpoints are transparent to the
4573 breakpoints module. */
4574 if (random_signal)
4575 random_signal = !ecs->hit_singlestep_breakpoint;
4576
4577 /* No? Perhaps we got a moribund watchpoint. */
4578 if (random_signal)
4579 random_signal = !stopped_by_watchpoint;
4580
4581 /* For the program's own signals, act according to
4582 the signal handling tables. */
4583
4584 if (random_signal)
4585 {
4586 /* Signal not for debugging purposes. */
4587 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4588 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4589
4590 if (debug_infrun)
4591 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4592 gdb_signal_to_symbol_string (stop_signal));
4593
4594 stopped_by_random_signal = 1;
4595
4596 /* Always stop on signals if we're either just gaining control
4597 of the program, or the user explicitly requested this thread
4598 to remain stopped. */
4599 if (stop_soon != NO_STOP_QUIETLY
4600 || ecs->event_thread->stop_requested
4601 || (!inf->detaching
4602 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4603 {
4604 stop_waiting (ecs);
4605 return;
4606 }
4607
4608 /* Notify observers the signal has "handle print" set. Note we
4609 returned early above if stopping; normal_stop handles the
4610 printing in that case. */
4611 if (signal_print[ecs->event_thread->suspend.stop_signal])
4612 {
4613 /* The signal table tells us to print about this signal. */
4614 target_terminal_ours_for_output ();
4615 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4616 target_terminal_inferior ();
4617 }
4618
4619 /* Clear the signal if it should not be passed. */
4620 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4621 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4622
4623 if (ecs->event_thread->prev_pc == stop_pc
4624 && ecs->event_thread->control.trap_expected
4625 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4626 {
4627 /* We were just starting a new sequence, attempting to
4628 single-step off of a breakpoint and expecting a SIGTRAP.
4629 Instead this signal arrives. This signal will take us out
4630 of the stepping range so GDB needs to remember to, when
4631 the signal handler returns, resume stepping off that
4632 breakpoint. */
4633 /* To simplify things, "continue" is forced to use the same
4634 code paths as single-step - set a breakpoint at the
4635 signal return address and then, once hit, step off that
4636 breakpoint. */
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog,
4639 "infrun: signal arrived while stepping over "
4640 "breakpoint\n");
4641
4642 insert_hp_step_resume_breakpoint_at_frame (frame);
4643 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4644 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4645 ecs->event_thread->control.trap_expected = 0;
4646
4647 /* If we were nexting/stepping some other thread, switch to
4648 it, so that we don't continue it, losing control. */
4649 if (!switch_back_to_stepped_thread (ecs))
4650 keep_going (ecs);
4651 return;
4652 }
4653
4654 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4655 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4656 || ecs->event_thread->control.step_range_end == 1)
4657 && frame_id_eq (get_stack_frame_id (frame),
4658 ecs->event_thread->control.step_stack_frame_id)
4659 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4660 {
4661 /* The inferior is about to take a signal that will take it
4662 out of the single step range. Set a breakpoint at the
4663 current PC (which is presumably where the signal handler
4664 will eventually return) and then allow the inferior to
4665 run free.
4666
4667 Note that this is only needed for a signal delivered
4668 while in the single-step range. Nested signals aren't a
4669 problem as they eventually all return. */
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog,
4672 "infrun: signal may take us out of "
4673 "single-step range\n");
4674
4675 insert_hp_step_resume_breakpoint_at_frame (frame);
4676 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4677 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4678 ecs->event_thread->control.trap_expected = 0;
4679 keep_going (ecs);
4680 return;
4681 }
4682
4683 /* Note: step_resume_breakpoint may be non-NULL. This occures
4684 when either there's a nested signal, or when there's a
4685 pending signal enabled just as the signal handler returns
4686 (leaving the inferior at the step-resume-breakpoint without
4687 actually executing it). Either way continue until the
4688 breakpoint is really hit. */
4689
4690 if (!switch_back_to_stepped_thread (ecs))
4691 {
4692 if (debug_infrun)
4693 fprintf_unfiltered (gdb_stdlog,
4694 "infrun: random signal, keep going\n");
4695
4696 keep_going (ecs);
4697 }
4698 return;
4699 }
4700
4701 process_event_stop_test (ecs);
4702 }
4703
4704 /* Come here when we've got some debug event / signal we can explain
4705 (IOW, not a random signal), and test whether it should cause a
4706 stop, or whether we should resume the inferior (transparently).
4707 E.g., could be a breakpoint whose condition evaluates false; we
4708 could be still stepping within the line; etc. */
4709
4710 static void
4711 process_event_stop_test (struct execution_control_state *ecs)
4712 {
4713 struct symtab_and_line stop_pc_sal;
4714 struct frame_info *frame;
4715 struct gdbarch *gdbarch;
4716 CORE_ADDR jmp_buf_pc;
4717 struct bpstat_what what;
4718
4719 /* Handle cases caused by hitting a breakpoint. */
4720
4721 frame = get_current_frame ();
4722 gdbarch = get_frame_arch (frame);
4723
4724 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4725
4726 if (what.call_dummy)
4727 {
4728 stop_stack_dummy = what.call_dummy;
4729 }
4730
4731 /* If we hit an internal event that triggers symbol changes, the
4732 current frame will be invalidated within bpstat_what (e.g., if we
4733 hit an internal solib event). Re-fetch it. */
4734 frame = get_current_frame ();
4735 gdbarch = get_frame_arch (frame);
4736
4737 switch (what.main_action)
4738 {
4739 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4740 /* If we hit the breakpoint at longjmp while stepping, we
4741 install a momentary breakpoint at the target of the
4742 jmp_buf. */
4743
4744 if (debug_infrun)
4745 fprintf_unfiltered (gdb_stdlog,
4746 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4747
4748 ecs->event_thread->stepping_over_breakpoint = 1;
4749
4750 if (what.is_longjmp)
4751 {
4752 struct value *arg_value;
4753
4754 /* If we set the longjmp breakpoint via a SystemTap probe,
4755 then use it to extract the arguments. The destination PC
4756 is the third argument to the probe. */
4757 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4758 if (arg_value)
4759 {
4760 jmp_buf_pc = value_as_address (arg_value);
4761 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4762 }
4763 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4764 || !gdbarch_get_longjmp_target (gdbarch,
4765 frame, &jmp_buf_pc))
4766 {
4767 if (debug_infrun)
4768 fprintf_unfiltered (gdb_stdlog,
4769 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4770 "(!gdbarch_get_longjmp_target)\n");
4771 keep_going (ecs);
4772 return;
4773 }
4774
4775 /* Insert a breakpoint at resume address. */
4776 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4777 }
4778 else
4779 check_exception_resume (ecs, frame);
4780 keep_going (ecs);
4781 return;
4782
4783 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4784 {
4785 struct frame_info *init_frame;
4786
4787 /* There are several cases to consider.
4788
4789 1. The initiating frame no longer exists. In this case we
4790 must stop, because the exception or longjmp has gone too
4791 far.
4792
4793 2. The initiating frame exists, and is the same as the
4794 current frame. We stop, because the exception or longjmp
4795 has been caught.
4796
4797 3. The initiating frame exists and is different from the
4798 current frame. This means the exception or longjmp has
4799 been caught beneath the initiating frame, so keep going.
4800
4801 4. longjmp breakpoint has been placed just to protect
4802 against stale dummy frames and user is not interested in
4803 stopping around longjmps. */
4804
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog,
4807 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4808
4809 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4810 != NULL);
4811 delete_exception_resume_breakpoint (ecs->event_thread);
4812
4813 if (what.is_longjmp)
4814 {
4815 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4816
4817 if (!frame_id_p (ecs->event_thread->initiating_frame))
4818 {
4819 /* Case 4. */
4820 keep_going (ecs);
4821 return;
4822 }
4823 }
4824
4825 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4826
4827 if (init_frame)
4828 {
4829 struct frame_id current_id
4830 = get_frame_id (get_current_frame ());
4831 if (frame_id_eq (current_id,
4832 ecs->event_thread->initiating_frame))
4833 {
4834 /* Case 2. Fall through. */
4835 }
4836 else
4837 {
4838 /* Case 3. */
4839 keep_going (ecs);
4840 return;
4841 }
4842 }
4843
4844 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4845 exists. */
4846 delete_step_resume_breakpoint (ecs->event_thread);
4847
4848 end_stepping_range (ecs);
4849 }
4850 return;
4851
4852 case BPSTAT_WHAT_SINGLE:
4853 if (debug_infrun)
4854 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4855 ecs->event_thread->stepping_over_breakpoint = 1;
4856 /* Still need to check other stuff, at least the case where we
4857 are stepping and step out of the right range. */
4858 break;
4859
4860 case BPSTAT_WHAT_STEP_RESUME:
4861 if (debug_infrun)
4862 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4863
4864 delete_step_resume_breakpoint (ecs->event_thread);
4865 if (ecs->event_thread->control.proceed_to_finish
4866 && execution_direction == EXEC_REVERSE)
4867 {
4868 struct thread_info *tp = ecs->event_thread;
4869
4870 /* We are finishing a function in reverse, and just hit the
4871 step-resume breakpoint at the start address of the
4872 function, and we're almost there -- just need to back up
4873 by one more single-step, which should take us back to the
4874 function call. */
4875 tp->control.step_range_start = tp->control.step_range_end = 1;
4876 keep_going (ecs);
4877 return;
4878 }
4879 fill_in_stop_func (gdbarch, ecs);
4880 if (stop_pc == ecs->stop_func_start
4881 && execution_direction == EXEC_REVERSE)
4882 {
4883 /* We are stepping over a function call in reverse, and just
4884 hit the step-resume breakpoint at the start address of
4885 the function. Go back to single-stepping, which should
4886 take us back to the function call. */
4887 ecs->event_thread->stepping_over_breakpoint = 1;
4888 keep_going (ecs);
4889 return;
4890 }
4891 break;
4892
4893 case BPSTAT_WHAT_STOP_NOISY:
4894 if (debug_infrun)
4895 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4896 stop_print_frame = 1;
4897
4898 /* Assume the thread stopped for a breapoint. We'll still check
4899 whether a/the breakpoint is there when the thread is next
4900 resumed. */
4901 ecs->event_thread->stepping_over_breakpoint = 1;
4902
4903 stop_waiting (ecs);
4904 return;
4905
4906 case BPSTAT_WHAT_STOP_SILENT:
4907 if (debug_infrun)
4908 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4909 stop_print_frame = 0;
4910
4911 /* Assume the thread stopped for a breapoint. We'll still check
4912 whether a/the breakpoint is there when the thread is next
4913 resumed. */
4914 ecs->event_thread->stepping_over_breakpoint = 1;
4915 stop_waiting (ecs);
4916 return;
4917
4918 case BPSTAT_WHAT_HP_STEP_RESUME:
4919 if (debug_infrun)
4920 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4921
4922 delete_step_resume_breakpoint (ecs->event_thread);
4923 if (ecs->event_thread->step_after_step_resume_breakpoint)
4924 {
4925 /* Back when the step-resume breakpoint was inserted, we
4926 were trying to single-step off a breakpoint. Go back to
4927 doing that. */
4928 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4929 ecs->event_thread->stepping_over_breakpoint = 1;
4930 keep_going (ecs);
4931 return;
4932 }
4933 break;
4934
4935 case BPSTAT_WHAT_KEEP_CHECKING:
4936 break;
4937 }
4938
4939 /* If we stepped a permanent breakpoint and we had a high priority
4940 step-resume breakpoint for the address we stepped, but we didn't
4941 hit it, then we must have stepped into the signal handler. The
4942 step-resume was only necessary to catch the case of _not_
4943 stepping into the handler, so delete it, and fall through to
4944 checking whether the step finished. */
4945 if (ecs->event_thread->stepped_breakpoint)
4946 {
4947 struct breakpoint *sr_bp
4948 = ecs->event_thread->control.step_resume_breakpoint;
4949
4950 if (sr_bp->loc->permanent
4951 && sr_bp->type == bp_hp_step_resume
4952 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4953 {
4954 if (debug_infrun)
4955 fprintf_unfiltered (gdb_stdlog,
4956 "infrun: stepped permanent breakpoint, stopped in "
4957 "handler\n");
4958 delete_step_resume_breakpoint (ecs->event_thread);
4959 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4960 }
4961 }
4962
4963 /* We come here if we hit a breakpoint but should not stop for it.
4964 Possibly we also were stepping and should stop for that. So fall
4965 through and test for stepping. But, if not stepping, do not
4966 stop. */
4967
4968 /* In all-stop mode, if we're currently stepping but have stopped in
4969 some other thread, we need to switch back to the stepped thread. */
4970 if (switch_back_to_stepped_thread (ecs))
4971 return;
4972
4973 if (ecs->event_thread->control.step_resume_breakpoint)
4974 {
4975 if (debug_infrun)
4976 fprintf_unfiltered (gdb_stdlog,
4977 "infrun: step-resume breakpoint is inserted\n");
4978
4979 /* Having a step-resume breakpoint overrides anything
4980 else having to do with stepping commands until
4981 that breakpoint is reached. */
4982 keep_going (ecs);
4983 return;
4984 }
4985
4986 if (ecs->event_thread->control.step_range_end == 0)
4987 {
4988 if (debug_infrun)
4989 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4990 /* Likewise if we aren't even stepping. */
4991 keep_going (ecs);
4992 return;
4993 }
4994
4995 /* Re-fetch current thread's frame in case the code above caused
4996 the frame cache to be re-initialized, making our FRAME variable
4997 a dangling pointer. */
4998 frame = get_current_frame ();
4999 gdbarch = get_frame_arch (frame);
5000 fill_in_stop_func (gdbarch, ecs);
5001
5002 /* If stepping through a line, keep going if still within it.
5003
5004 Note that step_range_end is the address of the first instruction
5005 beyond the step range, and NOT the address of the last instruction
5006 within it!
5007
5008 Note also that during reverse execution, we may be stepping
5009 through a function epilogue and therefore must detect when
5010 the current-frame changes in the middle of a line. */
5011
5012 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5013 && (execution_direction != EXEC_REVERSE
5014 || frame_id_eq (get_frame_id (frame),
5015 ecs->event_thread->control.step_frame_id)))
5016 {
5017 if (debug_infrun)
5018 fprintf_unfiltered
5019 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
5020 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5021 paddress (gdbarch, ecs->event_thread->control.step_range_end));
5022
5023 /* Tentatively re-enable range stepping; `resume' disables it if
5024 necessary (e.g., if we're stepping over a breakpoint or we
5025 have software watchpoints). */
5026 ecs->event_thread->control.may_range_step = 1;
5027
5028 /* When stepping backward, stop at beginning of line range
5029 (unless it's the function entry point, in which case
5030 keep going back to the call point). */
5031 if (stop_pc == ecs->event_thread->control.step_range_start
5032 && stop_pc != ecs->stop_func_start
5033 && execution_direction == EXEC_REVERSE)
5034 end_stepping_range (ecs);
5035 else
5036 keep_going (ecs);
5037
5038 return;
5039 }
5040
5041 /* We stepped out of the stepping range. */
5042
5043 /* If we are stepping at the source level and entered the runtime
5044 loader dynamic symbol resolution code...
5045
5046 EXEC_FORWARD: we keep on single stepping until we exit the run
5047 time loader code and reach the callee's address.
5048
5049 EXEC_REVERSE: we've already executed the callee (backward), and
5050 the runtime loader code is handled just like any other
5051 undebuggable function call. Now we need only keep stepping
5052 backward through the trampoline code, and that's handled further
5053 down, so there is nothing for us to do here. */
5054
5055 if (execution_direction != EXEC_REVERSE
5056 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5057 && in_solib_dynsym_resolve_code (stop_pc))
5058 {
5059 CORE_ADDR pc_after_resolver =
5060 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
5061
5062 if (debug_infrun)
5063 fprintf_unfiltered (gdb_stdlog,
5064 "infrun: stepped into dynsym resolve code\n");
5065
5066 if (pc_after_resolver)
5067 {
5068 /* Set up a step-resume breakpoint at the address
5069 indicated by SKIP_SOLIB_RESOLVER. */
5070 struct symtab_and_line sr_sal;
5071
5072 init_sal (&sr_sal);
5073 sr_sal.pc = pc_after_resolver;
5074 sr_sal.pspace = get_frame_program_space (frame);
5075
5076 insert_step_resume_breakpoint_at_sal (gdbarch,
5077 sr_sal, null_frame_id);
5078 }
5079
5080 keep_going (ecs);
5081 return;
5082 }
5083
5084 if (ecs->event_thread->control.step_range_end != 1
5085 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5086 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5087 && get_frame_type (frame) == SIGTRAMP_FRAME)
5088 {
5089 if (debug_infrun)
5090 fprintf_unfiltered (gdb_stdlog,
5091 "infrun: stepped into signal trampoline\n");
5092 /* The inferior, while doing a "step" or "next", has ended up in
5093 a signal trampoline (either by a signal being delivered or by
5094 the signal handler returning). Just single-step until the
5095 inferior leaves the trampoline (either by calling the handler
5096 or returning). */
5097 keep_going (ecs);
5098 return;
5099 }
5100
5101 /* If we're in the return path from a shared library trampoline,
5102 we want to proceed through the trampoline when stepping. */
5103 /* macro/2012-04-25: This needs to come before the subroutine
5104 call check below as on some targets return trampolines look
5105 like subroutine calls (MIPS16 return thunks). */
5106 if (gdbarch_in_solib_return_trampoline (gdbarch,
5107 stop_pc, ecs->stop_func_name)
5108 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5109 {
5110 /* Determine where this trampoline returns. */
5111 CORE_ADDR real_stop_pc;
5112
5113 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5114
5115 if (debug_infrun)
5116 fprintf_unfiltered (gdb_stdlog,
5117 "infrun: stepped into solib return tramp\n");
5118
5119 /* Only proceed through if we know where it's going. */
5120 if (real_stop_pc)
5121 {
5122 /* And put the step-breakpoint there and go until there. */
5123 struct symtab_and_line sr_sal;
5124
5125 init_sal (&sr_sal); /* initialize to zeroes */
5126 sr_sal.pc = real_stop_pc;
5127 sr_sal.section = find_pc_overlay (sr_sal.pc);
5128 sr_sal.pspace = get_frame_program_space (frame);
5129
5130 /* Do not specify what the fp should be when we stop since
5131 on some machines the prologue is where the new fp value
5132 is established. */
5133 insert_step_resume_breakpoint_at_sal (gdbarch,
5134 sr_sal, null_frame_id);
5135
5136 /* Restart without fiddling with the step ranges or
5137 other state. */
5138 keep_going (ecs);
5139 return;
5140 }
5141 }
5142
5143 /* Check for subroutine calls. The check for the current frame
5144 equalling the step ID is not necessary - the check of the
5145 previous frame's ID is sufficient - but it is a common case and
5146 cheaper than checking the previous frame's ID.
5147
5148 NOTE: frame_id_eq will never report two invalid frame IDs as
5149 being equal, so to get into this block, both the current and
5150 previous frame must have valid frame IDs. */
5151 /* The outer_frame_id check is a heuristic to detect stepping
5152 through startup code. If we step over an instruction which
5153 sets the stack pointer from an invalid value to a valid value,
5154 we may detect that as a subroutine call from the mythical
5155 "outermost" function. This could be fixed by marking
5156 outermost frames as !stack_p,code_p,special_p. Then the
5157 initial outermost frame, before sp was valid, would
5158 have code_addr == &_start. See the comment in frame_id_eq
5159 for more. */
5160 if (!frame_id_eq (get_stack_frame_id (frame),
5161 ecs->event_thread->control.step_stack_frame_id)
5162 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
5163 ecs->event_thread->control.step_stack_frame_id)
5164 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
5165 outer_frame_id)
5166 || (ecs->event_thread->control.step_start_function
5167 != find_pc_function (stop_pc)))))
5168 {
5169 CORE_ADDR real_stop_pc;
5170
5171 if (debug_infrun)
5172 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5173
5174 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5175 {
5176 /* I presume that step_over_calls is only 0 when we're
5177 supposed to be stepping at the assembly language level
5178 ("stepi"). Just stop. */
5179 /* And this works the same backward as frontward. MVS */
5180 end_stepping_range (ecs);
5181 return;
5182 }
5183
5184 /* Reverse stepping through solib trampolines. */
5185
5186 if (execution_direction == EXEC_REVERSE
5187 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5188 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5189 || (ecs->stop_func_start == 0
5190 && in_solib_dynsym_resolve_code (stop_pc))))
5191 {
5192 /* Any solib trampoline code can be handled in reverse
5193 by simply continuing to single-step. We have already
5194 executed the solib function (backwards), and a few
5195 steps will take us back through the trampoline to the
5196 caller. */
5197 keep_going (ecs);
5198 return;
5199 }
5200
5201 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5202 {
5203 /* We're doing a "next".
5204
5205 Normal (forward) execution: set a breakpoint at the
5206 callee's return address (the address at which the caller
5207 will resume).
5208
5209 Reverse (backward) execution. set the step-resume
5210 breakpoint at the start of the function that we just
5211 stepped into (backwards), and continue to there. When we
5212 get there, we'll need to single-step back to the caller. */
5213
5214 if (execution_direction == EXEC_REVERSE)
5215 {
5216 /* If we're already at the start of the function, we've either
5217 just stepped backward into a single instruction function,
5218 or stepped back out of a signal handler to the first instruction
5219 of the function. Just keep going, which will single-step back
5220 to the caller. */
5221 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5222 {
5223 struct symtab_and_line sr_sal;
5224
5225 /* Normal function call return (static or dynamic). */
5226 init_sal (&sr_sal);
5227 sr_sal.pc = ecs->stop_func_start;
5228 sr_sal.pspace = get_frame_program_space (frame);
5229 insert_step_resume_breakpoint_at_sal (gdbarch,
5230 sr_sal, null_frame_id);
5231 }
5232 }
5233 else
5234 insert_step_resume_breakpoint_at_caller (frame);
5235
5236 keep_going (ecs);
5237 return;
5238 }
5239
5240 /* If we are in a function call trampoline (a stub between the
5241 calling routine and the real function), locate the real
5242 function. That's what tells us (a) whether we want to step
5243 into it at all, and (b) what prologue we want to run to the
5244 end of, if we do step into it. */
5245 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5246 if (real_stop_pc == 0)
5247 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5248 if (real_stop_pc != 0)
5249 ecs->stop_func_start = real_stop_pc;
5250
5251 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5252 {
5253 struct symtab_and_line sr_sal;
5254
5255 init_sal (&sr_sal);
5256 sr_sal.pc = ecs->stop_func_start;
5257 sr_sal.pspace = get_frame_program_space (frame);
5258
5259 insert_step_resume_breakpoint_at_sal (gdbarch,
5260 sr_sal, null_frame_id);
5261 keep_going (ecs);
5262 return;
5263 }
5264
5265 /* If we have line number information for the function we are
5266 thinking of stepping into and the function isn't on the skip
5267 list, step into it.
5268
5269 If there are several symtabs at that PC (e.g. with include
5270 files), just want to know whether *any* of them have line
5271 numbers. find_pc_line handles this. */
5272 {
5273 struct symtab_and_line tmp_sal;
5274
5275 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5276 if (tmp_sal.line != 0
5277 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5278 &tmp_sal))
5279 {
5280 if (execution_direction == EXEC_REVERSE)
5281 handle_step_into_function_backward (gdbarch, ecs);
5282 else
5283 handle_step_into_function (gdbarch, ecs);
5284 return;
5285 }
5286 }
5287
5288 /* If we have no line number and the step-stop-if-no-debug is
5289 set, we stop the step so that the user has a chance to switch
5290 in assembly mode. */
5291 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5292 && step_stop_if_no_debug)
5293 {
5294 end_stepping_range (ecs);
5295 return;
5296 }
5297
5298 if (execution_direction == EXEC_REVERSE)
5299 {
5300 /* If we're already at the start of the function, we've either just
5301 stepped backward into a single instruction function without line
5302 number info, or stepped back out of a signal handler to the first
5303 instruction of the function without line number info. Just keep
5304 going, which will single-step back to the caller. */
5305 if (ecs->stop_func_start != stop_pc)
5306 {
5307 /* Set a breakpoint at callee's start address.
5308 From there we can step once and be back in the caller. */
5309 struct symtab_and_line sr_sal;
5310
5311 init_sal (&sr_sal);
5312 sr_sal.pc = ecs->stop_func_start;
5313 sr_sal.pspace = get_frame_program_space (frame);
5314 insert_step_resume_breakpoint_at_sal (gdbarch,
5315 sr_sal, null_frame_id);
5316 }
5317 }
5318 else
5319 /* Set a breakpoint at callee's return address (the address
5320 at which the caller will resume). */
5321 insert_step_resume_breakpoint_at_caller (frame);
5322
5323 keep_going (ecs);
5324 return;
5325 }
5326
5327 /* Reverse stepping through solib trampolines. */
5328
5329 if (execution_direction == EXEC_REVERSE
5330 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5331 {
5332 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5333 || (ecs->stop_func_start == 0
5334 && in_solib_dynsym_resolve_code (stop_pc)))
5335 {
5336 /* Any solib trampoline code can be handled in reverse
5337 by simply continuing to single-step. We have already
5338 executed the solib function (backwards), and a few
5339 steps will take us back through the trampoline to the
5340 caller. */
5341 keep_going (ecs);
5342 return;
5343 }
5344 else if (in_solib_dynsym_resolve_code (stop_pc))
5345 {
5346 /* Stepped backward into the solib dynsym resolver.
5347 Set a breakpoint at its start and continue, then
5348 one more step will take us out. */
5349 struct symtab_and_line sr_sal;
5350
5351 init_sal (&sr_sal);
5352 sr_sal.pc = ecs->stop_func_start;
5353 sr_sal.pspace = get_frame_program_space (frame);
5354 insert_step_resume_breakpoint_at_sal (gdbarch,
5355 sr_sal, null_frame_id);
5356 keep_going (ecs);
5357 return;
5358 }
5359 }
5360
5361 stop_pc_sal = find_pc_line (stop_pc, 0);
5362
5363 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5364 the trampoline processing logic, however, there are some trampolines
5365 that have no names, so we should do trampoline handling first. */
5366 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5367 && ecs->stop_func_name == NULL
5368 && stop_pc_sal.line == 0)
5369 {
5370 if (debug_infrun)
5371 fprintf_unfiltered (gdb_stdlog,
5372 "infrun: stepped into undebuggable function\n");
5373
5374 /* The inferior just stepped into, or returned to, an
5375 undebuggable function (where there is no debugging information
5376 and no line number corresponding to the address where the
5377 inferior stopped). Since we want to skip this kind of code,
5378 we keep going until the inferior returns from this
5379 function - unless the user has asked us not to (via
5380 set step-mode) or we no longer know how to get back
5381 to the call site. */
5382 if (step_stop_if_no_debug
5383 || !frame_id_p (frame_unwind_caller_id (frame)))
5384 {
5385 /* If we have no line number and the step-stop-if-no-debug
5386 is set, we stop the step so that the user has a chance to
5387 switch in assembly mode. */
5388 end_stepping_range (ecs);
5389 return;
5390 }
5391 else
5392 {
5393 /* Set a breakpoint at callee's return address (the address
5394 at which the caller will resume). */
5395 insert_step_resume_breakpoint_at_caller (frame);
5396 keep_going (ecs);
5397 return;
5398 }
5399 }
5400
5401 if (ecs->event_thread->control.step_range_end == 1)
5402 {
5403 /* It is stepi or nexti. We always want to stop stepping after
5404 one instruction. */
5405 if (debug_infrun)
5406 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5407 end_stepping_range (ecs);
5408 return;
5409 }
5410
5411 if (stop_pc_sal.line == 0)
5412 {
5413 /* We have no line number information. That means to stop
5414 stepping (does this always happen right after one instruction,
5415 when we do "s" in a function with no line numbers,
5416 or can this happen as a result of a return or longjmp?). */
5417 if (debug_infrun)
5418 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5419 end_stepping_range (ecs);
5420 return;
5421 }
5422
5423 /* Look for "calls" to inlined functions, part one. If the inline
5424 frame machinery detected some skipped call sites, we have entered
5425 a new inline function. */
5426
5427 if (frame_id_eq (get_frame_id (get_current_frame ()),
5428 ecs->event_thread->control.step_frame_id)
5429 && inline_skipped_frames (ecs->ptid))
5430 {
5431 struct symtab_and_line call_sal;
5432
5433 if (debug_infrun)
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: stepped into inlined function\n");
5436
5437 find_frame_sal (get_current_frame (), &call_sal);
5438
5439 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5440 {
5441 /* For "step", we're going to stop. But if the call site
5442 for this inlined function is on the same source line as
5443 we were previously stepping, go down into the function
5444 first. Otherwise stop at the call site. */
5445
5446 if (call_sal.line == ecs->event_thread->current_line
5447 && call_sal.symtab == ecs->event_thread->current_symtab)
5448 step_into_inline_frame (ecs->ptid);
5449
5450 end_stepping_range (ecs);
5451 return;
5452 }
5453 else
5454 {
5455 /* For "next", we should stop at the call site if it is on a
5456 different source line. Otherwise continue through the
5457 inlined function. */
5458 if (call_sal.line == ecs->event_thread->current_line
5459 && call_sal.symtab == ecs->event_thread->current_symtab)
5460 keep_going (ecs);
5461 else
5462 end_stepping_range (ecs);
5463 return;
5464 }
5465 }
5466
5467 /* Look for "calls" to inlined functions, part two. If we are still
5468 in the same real function we were stepping through, but we have
5469 to go further up to find the exact frame ID, we are stepping
5470 through a more inlined call beyond its call site. */
5471
5472 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5473 && !frame_id_eq (get_frame_id (get_current_frame ()),
5474 ecs->event_thread->control.step_frame_id)
5475 && stepped_in_from (get_current_frame (),
5476 ecs->event_thread->control.step_frame_id))
5477 {
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "infrun: stepping through inlined function\n");
5481
5482 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5483 keep_going (ecs);
5484 else
5485 end_stepping_range (ecs);
5486 return;
5487 }
5488
5489 if ((stop_pc == stop_pc_sal.pc)
5490 && (ecs->event_thread->current_line != stop_pc_sal.line
5491 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5492 {
5493 /* We are at the start of a different line. So stop. Note that
5494 we don't stop if we step into the middle of a different line.
5495 That is said to make things like for (;;) statements work
5496 better. */
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog,
5499 "infrun: stepped to a different line\n");
5500 end_stepping_range (ecs);
5501 return;
5502 }
5503
5504 /* We aren't done stepping.
5505
5506 Optimize by setting the stepping range to the line.
5507 (We might not be in the original line, but if we entered a
5508 new line in mid-statement, we continue stepping. This makes
5509 things like for(;;) statements work better.) */
5510
5511 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5512 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5513 ecs->event_thread->control.may_range_step = 1;
5514 set_step_info (frame, stop_pc_sal);
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5518 keep_going (ecs);
5519 }
5520
5521 /* In all-stop mode, if we're currently stepping but have stopped in
5522 some other thread, we may need to switch back to the stepped
5523 thread. Returns true we set the inferior running, false if we left
5524 it stopped (and the event needs further processing). */
5525
5526 static int
5527 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5528 {
5529 if (!non_stop)
5530 {
5531 struct thread_info *tp;
5532 struct thread_info *stepping_thread;
5533 struct thread_info *step_over;
5534
5535 /* If any thread is blocked on some internal breakpoint, and we
5536 simply need to step over that breakpoint to get it going
5537 again, do that first. */
5538
5539 /* However, if we see an event for the stepping thread, then we
5540 know all other threads have been moved past their breakpoints
5541 already. Let the caller check whether the step is finished,
5542 etc., before deciding to move it past a breakpoint. */
5543 if (ecs->event_thread->control.step_range_end != 0)
5544 return 0;
5545
5546 /* Check if the current thread is blocked on an incomplete
5547 step-over, interrupted by a random signal. */
5548 if (ecs->event_thread->control.trap_expected
5549 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5550 {
5551 if (debug_infrun)
5552 {
5553 fprintf_unfiltered (gdb_stdlog,
5554 "infrun: need to finish step-over of [%s]\n",
5555 target_pid_to_str (ecs->event_thread->ptid));
5556 }
5557 keep_going (ecs);
5558 return 1;
5559 }
5560
5561 /* Check if the current thread is blocked by a single-step
5562 breakpoint of another thread. */
5563 if (ecs->hit_singlestep_breakpoint)
5564 {
5565 if (debug_infrun)
5566 {
5567 fprintf_unfiltered (gdb_stdlog,
5568 "infrun: need to step [%s] over single-step "
5569 "breakpoint\n",
5570 target_pid_to_str (ecs->ptid));
5571 }
5572 keep_going (ecs);
5573 return 1;
5574 }
5575
5576 /* Otherwise, we no longer expect a trap in the current thread.
5577 Clear the trap_expected flag before switching back -- this is
5578 what keep_going does as well, if we call it. */
5579 ecs->event_thread->control.trap_expected = 0;
5580
5581 /* Likewise, clear the signal if it should not be passed. */
5582 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5583 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5584
5585 /* If scheduler locking applies even if not stepping, there's no
5586 need to walk over threads. Above we've checked whether the
5587 current thread is stepping. If some other thread not the
5588 event thread is stepping, then it must be that scheduler
5589 locking is not in effect. */
5590 if (schedlock_applies (ecs->event_thread))
5591 return 0;
5592
5593 /* Look for the stepping/nexting thread, and check if any other
5594 thread other than the stepping thread needs to start a
5595 step-over. Do all step-overs before actually proceeding with
5596 step/next/etc. */
5597 stepping_thread = NULL;
5598 step_over = NULL;
5599 ALL_NON_EXITED_THREADS (tp)
5600 {
5601 /* Ignore threads of processes we're not resuming. */
5602 if (!sched_multi
5603 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5604 continue;
5605
5606 /* When stepping over a breakpoint, we lock all threads
5607 except the one that needs to move past the breakpoint.
5608 If a non-event thread has this set, the "incomplete
5609 step-over" check above should have caught it earlier. */
5610 gdb_assert (!tp->control.trap_expected);
5611
5612 /* Did we find the stepping thread? */
5613 if (tp->control.step_range_end)
5614 {
5615 /* Yep. There should only one though. */
5616 gdb_assert (stepping_thread == NULL);
5617
5618 /* The event thread is handled at the top, before we
5619 enter this loop. */
5620 gdb_assert (tp != ecs->event_thread);
5621
5622 /* If some thread other than the event thread is
5623 stepping, then scheduler locking can't be in effect,
5624 otherwise we wouldn't have resumed the current event
5625 thread in the first place. */
5626 gdb_assert (!schedlock_applies (tp));
5627
5628 stepping_thread = tp;
5629 }
5630 else if (thread_still_needs_step_over (tp))
5631 {
5632 step_over = tp;
5633
5634 /* At the top we've returned early if the event thread
5635 is stepping. If some other thread not the event
5636 thread is stepping, then scheduler locking can't be
5637 in effect, and we can resume this thread. No need to
5638 keep looking for the stepping thread then. */
5639 break;
5640 }
5641 }
5642
5643 if (step_over != NULL)
5644 {
5645 tp = step_over;
5646 if (debug_infrun)
5647 {
5648 fprintf_unfiltered (gdb_stdlog,
5649 "infrun: need to step-over [%s]\n",
5650 target_pid_to_str (tp->ptid));
5651 }
5652
5653 /* Only the stepping thread should have this set. */
5654 gdb_assert (tp->control.step_range_end == 0);
5655
5656 ecs->ptid = tp->ptid;
5657 ecs->event_thread = tp;
5658 switch_to_thread (ecs->ptid);
5659 keep_going (ecs);
5660 return 1;
5661 }
5662
5663 if (stepping_thread != NULL)
5664 {
5665 struct frame_info *frame;
5666 struct gdbarch *gdbarch;
5667
5668 tp = stepping_thread;
5669
5670 /* If the stepping thread exited, then don't try to switch
5671 back and resume it, which could fail in several different
5672 ways depending on the target. Instead, just keep going.
5673
5674 We can find a stepping dead thread in the thread list in
5675 two cases:
5676
5677 - The target supports thread exit events, and when the
5678 target tries to delete the thread from the thread list,
5679 inferior_ptid pointed at the exiting thread. In such
5680 case, calling delete_thread does not really remove the
5681 thread from the list; instead, the thread is left listed,
5682 with 'exited' state.
5683
5684 - The target's debug interface does not support thread
5685 exit events, and so we have no idea whatsoever if the
5686 previously stepping thread is still alive. For that
5687 reason, we need to synchronously query the target
5688 now. */
5689 if (is_exited (tp->ptid)
5690 || !target_thread_alive (tp->ptid))
5691 {
5692 if (debug_infrun)
5693 fprintf_unfiltered (gdb_stdlog,
5694 "infrun: not switching back to "
5695 "stepped thread, it has vanished\n");
5696
5697 delete_thread (tp->ptid);
5698 keep_going (ecs);
5699 return 1;
5700 }
5701
5702 if (debug_infrun)
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: switching back to stepped thread\n");
5705
5706 ecs->event_thread = tp;
5707 ecs->ptid = tp->ptid;
5708 context_switch (ecs->ptid);
5709
5710 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5711 frame = get_current_frame ();
5712 gdbarch = get_frame_arch (frame);
5713
5714 /* If the PC of the thread we were trying to single-step has
5715 changed, then that thread has trapped or been signaled,
5716 but the event has not been reported to GDB yet. Re-poll
5717 the target looking for this particular thread's event
5718 (i.e. temporarily enable schedlock) by:
5719
5720 - setting a break at the current PC
5721 - resuming that particular thread, only (by setting
5722 trap expected)
5723
5724 This prevents us continuously moving the single-step
5725 breakpoint forward, one instruction at a time,
5726 overstepping. */
5727
5728 if (stop_pc != tp->prev_pc)
5729 {
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog,
5732 "infrun: expected thread advanced also\n");
5733
5734 /* Clear the info of the previous step-over, as it's no
5735 longer valid. It's what keep_going would do too, if
5736 we called it. Must do this before trying to insert
5737 the sss breakpoint, otherwise if we were previously
5738 trying to step over this exact address in another
5739 thread, the breakpoint ends up not installed. */
5740 clear_step_over_info ();
5741
5742 insert_single_step_breakpoint (get_frame_arch (frame),
5743 get_frame_address_space (frame),
5744 stop_pc);
5745 ecs->event_thread->control.trap_expected = 1;
5746
5747 resume (0, GDB_SIGNAL_0);
5748 prepare_to_wait (ecs);
5749 }
5750 else
5751 {
5752 if (debug_infrun)
5753 fprintf_unfiltered (gdb_stdlog,
5754 "infrun: expected thread still "
5755 "hasn't advanced\n");
5756 keep_going (ecs);
5757 }
5758
5759 return 1;
5760 }
5761 }
5762 return 0;
5763 }
5764
5765 /* Is thread TP in the middle of single-stepping? */
5766
5767 static int
5768 currently_stepping (struct thread_info *tp)
5769 {
5770 return ((tp->control.step_range_end
5771 && tp->control.step_resume_breakpoint == NULL)
5772 || tp->control.trap_expected
5773 || tp->stepped_breakpoint
5774 || bpstat_should_step ());
5775 }
5776
5777 /* Inferior has stepped into a subroutine call with source code that
5778 we should not step over. Do step to the first line of code in
5779 it. */
5780
5781 static void
5782 handle_step_into_function (struct gdbarch *gdbarch,
5783 struct execution_control_state *ecs)
5784 {
5785 struct compunit_symtab *cust;
5786 struct symtab_and_line stop_func_sal, sr_sal;
5787
5788 fill_in_stop_func (gdbarch, ecs);
5789
5790 cust = find_pc_compunit_symtab (stop_pc);
5791 if (cust != NULL && compunit_language (cust) != language_asm)
5792 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5793 ecs->stop_func_start);
5794
5795 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5796 /* Use the step_resume_break to step until the end of the prologue,
5797 even if that involves jumps (as it seems to on the vax under
5798 4.2). */
5799 /* If the prologue ends in the middle of a source line, continue to
5800 the end of that source line (if it is still within the function).
5801 Otherwise, just go to end of prologue. */
5802 if (stop_func_sal.end
5803 && stop_func_sal.pc != ecs->stop_func_start
5804 && stop_func_sal.end < ecs->stop_func_end)
5805 ecs->stop_func_start = stop_func_sal.end;
5806
5807 /* Architectures which require breakpoint adjustment might not be able
5808 to place a breakpoint at the computed address. If so, the test
5809 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5810 ecs->stop_func_start to an address at which a breakpoint may be
5811 legitimately placed.
5812
5813 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5814 made, GDB will enter an infinite loop when stepping through
5815 optimized code consisting of VLIW instructions which contain
5816 subinstructions corresponding to different source lines. On
5817 FR-V, it's not permitted to place a breakpoint on any but the
5818 first subinstruction of a VLIW instruction. When a breakpoint is
5819 set, GDB will adjust the breakpoint address to the beginning of
5820 the VLIW instruction. Thus, we need to make the corresponding
5821 adjustment here when computing the stop address. */
5822
5823 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5824 {
5825 ecs->stop_func_start
5826 = gdbarch_adjust_breakpoint_address (gdbarch,
5827 ecs->stop_func_start);
5828 }
5829
5830 if (ecs->stop_func_start == stop_pc)
5831 {
5832 /* We are already there: stop now. */
5833 end_stepping_range (ecs);
5834 return;
5835 }
5836 else
5837 {
5838 /* Put the step-breakpoint there and go until there. */
5839 init_sal (&sr_sal); /* initialize to zeroes */
5840 sr_sal.pc = ecs->stop_func_start;
5841 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5842 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5843
5844 /* Do not specify what the fp should be when we stop since on
5845 some machines the prologue is where the new fp value is
5846 established. */
5847 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5848
5849 /* And make sure stepping stops right away then. */
5850 ecs->event_thread->control.step_range_end
5851 = ecs->event_thread->control.step_range_start;
5852 }
5853 keep_going (ecs);
5854 }
5855
5856 /* Inferior has stepped backward into a subroutine call with source
5857 code that we should not step over. Do step to the beginning of the
5858 last line of code in it. */
5859
5860 static void
5861 handle_step_into_function_backward (struct gdbarch *gdbarch,
5862 struct execution_control_state *ecs)
5863 {
5864 struct compunit_symtab *cust;
5865 struct symtab_and_line stop_func_sal;
5866
5867 fill_in_stop_func (gdbarch, ecs);
5868
5869 cust = find_pc_compunit_symtab (stop_pc);
5870 if (cust != NULL && compunit_language (cust) != language_asm)
5871 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5872 ecs->stop_func_start);
5873
5874 stop_func_sal = find_pc_line (stop_pc, 0);
5875
5876 /* OK, we're just going to keep stepping here. */
5877 if (stop_func_sal.pc == stop_pc)
5878 {
5879 /* We're there already. Just stop stepping now. */
5880 end_stepping_range (ecs);
5881 }
5882 else
5883 {
5884 /* Else just reset the step range and keep going.
5885 No step-resume breakpoint, they don't work for
5886 epilogues, which can have multiple entry paths. */
5887 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5888 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5889 keep_going (ecs);
5890 }
5891 return;
5892 }
5893
5894 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5895 This is used to both functions and to skip over code. */
5896
5897 static void
5898 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5899 struct symtab_and_line sr_sal,
5900 struct frame_id sr_id,
5901 enum bptype sr_type)
5902 {
5903 /* There should never be more than one step-resume or longjmp-resume
5904 breakpoint per thread, so we should never be setting a new
5905 step_resume_breakpoint when one is already active. */
5906 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5907 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5908
5909 if (debug_infrun)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "infrun: inserting step-resume breakpoint at %s\n",
5912 paddress (gdbarch, sr_sal.pc));
5913
5914 inferior_thread ()->control.step_resume_breakpoint
5915 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5916 }
5917
5918 void
5919 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5920 struct symtab_and_line sr_sal,
5921 struct frame_id sr_id)
5922 {
5923 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5924 sr_sal, sr_id,
5925 bp_step_resume);
5926 }
5927
5928 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5929 This is used to skip a potential signal handler.
5930
5931 This is called with the interrupted function's frame. The signal
5932 handler, when it returns, will resume the interrupted function at
5933 RETURN_FRAME.pc. */
5934
5935 static void
5936 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5937 {
5938 struct symtab_and_line sr_sal;
5939 struct gdbarch *gdbarch;
5940
5941 gdb_assert (return_frame != NULL);
5942 init_sal (&sr_sal); /* initialize to zeros */
5943
5944 gdbarch = get_frame_arch (return_frame);
5945 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5946 sr_sal.section = find_pc_overlay (sr_sal.pc);
5947 sr_sal.pspace = get_frame_program_space (return_frame);
5948
5949 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5950 get_stack_frame_id (return_frame),
5951 bp_hp_step_resume);
5952 }
5953
5954 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5955 is used to skip a function after stepping into it (for "next" or if
5956 the called function has no debugging information).
5957
5958 The current function has almost always been reached by single
5959 stepping a call or return instruction. NEXT_FRAME belongs to the
5960 current function, and the breakpoint will be set at the caller's
5961 resume address.
5962
5963 This is a separate function rather than reusing
5964 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5965 get_prev_frame, which may stop prematurely (see the implementation
5966 of frame_unwind_caller_id for an example). */
5967
5968 static void
5969 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5970 {
5971 struct symtab_and_line sr_sal;
5972 struct gdbarch *gdbarch;
5973
5974 /* We shouldn't have gotten here if we don't know where the call site
5975 is. */
5976 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5977
5978 init_sal (&sr_sal); /* initialize to zeros */
5979
5980 gdbarch = frame_unwind_caller_arch (next_frame);
5981 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5982 frame_unwind_caller_pc (next_frame));
5983 sr_sal.section = find_pc_overlay (sr_sal.pc);
5984 sr_sal.pspace = frame_unwind_program_space (next_frame);
5985
5986 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5987 frame_unwind_caller_id (next_frame));
5988 }
5989
5990 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5991 new breakpoint at the target of a jmp_buf. The handling of
5992 longjmp-resume uses the same mechanisms used for handling
5993 "step-resume" breakpoints. */
5994
5995 static void
5996 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5997 {
5998 /* There should never be more than one longjmp-resume breakpoint per
5999 thread, so we should never be setting a new
6000 longjmp_resume_breakpoint when one is already active. */
6001 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
6002
6003 if (debug_infrun)
6004 fprintf_unfiltered (gdb_stdlog,
6005 "infrun: inserting longjmp-resume breakpoint at %s\n",
6006 paddress (gdbarch, pc));
6007
6008 inferior_thread ()->control.exception_resume_breakpoint =
6009 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
6010 }
6011
6012 /* Insert an exception resume breakpoint. TP is the thread throwing
6013 the exception. The block B is the block of the unwinder debug hook
6014 function. FRAME is the frame corresponding to the call to this
6015 function. SYM is the symbol of the function argument holding the
6016 target PC of the exception. */
6017
6018 static void
6019 insert_exception_resume_breakpoint (struct thread_info *tp,
6020 const struct block *b,
6021 struct frame_info *frame,
6022 struct symbol *sym)
6023 {
6024 TRY
6025 {
6026 struct symbol *vsym;
6027 struct value *value;
6028 CORE_ADDR handler;
6029 struct breakpoint *bp;
6030
6031 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6032 value = read_var_value (vsym, frame);
6033 /* If the value was optimized out, revert to the old behavior. */
6034 if (! value_optimized_out (value))
6035 {
6036 handler = value_as_address (value);
6037
6038 if (debug_infrun)
6039 fprintf_unfiltered (gdb_stdlog,
6040 "infrun: exception resume at %lx\n",
6041 (unsigned long) handler);
6042
6043 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6044 handler, bp_exception_resume);
6045
6046 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6047 frame = NULL;
6048
6049 bp->thread = tp->num;
6050 inferior_thread ()->control.exception_resume_breakpoint = bp;
6051 }
6052 }
6053 CATCH (e, RETURN_MASK_ERROR)
6054 {
6055 /* We want to ignore errors here. */
6056 }
6057 END_CATCH
6058 }
6059
6060 /* A helper for check_exception_resume that sets an
6061 exception-breakpoint based on a SystemTap probe. */
6062
6063 static void
6064 insert_exception_resume_from_probe (struct thread_info *tp,
6065 const struct bound_probe *probe,
6066 struct frame_info *frame)
6067 {
6068 struct value *arg_value;
6069 CORE_ADDR handler;
6070 struct breakpoint *bp;
6071
6072 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6073 if (!arg_value)
6074 return;
6075
6076 handler = value_as_address (arg_value);
6077
6078 if (debug_infrun)
6079 fprintf_unfiltered (gdb_stdlog,
6080 "infrun: exception resume at %s\n",
6081 paddress (get_objfile_arch (probe->objfile),
6082 handler));
6083
6084 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6085 handler, bp_exception_resume);
6086 bp->thread = tp->num;
6087 inferior_thread ()->control.exception_resume_breakpoint = bp;
6088 }
6089
6090 /* This is called when an exception has been intercepted. Check to
6091 see whether the exception's destination is of interest, and if so,
6092 set an exception resume breakpoint there. */
6093
6094 static void
6095 check_exception_resume (struct execution_control_state *ecs,
6096 struct frame_info *frame)
6097 {
6098 struct bound_probe probe;
6099 struct symbol *func;
6100
6101 /* First see if this exception unwinding breakpoint was set via a
6102 SystemTap probe point. If so, the probe has two arguments: the
6103 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6104 set a breakpoint there. */
6105 probe = find_probe_by_pc (get_frame_pc (frame));
6106 if (probe.probe)
6107 {
6108 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
6109 return;
6110 }
6111
6112 func = get_frame_function (frame);
6113 if (!func)
6114 return;
6115
6116 TRY
6117 {
6118 const struct block *b;
6119 struct block_iterator iter;
6120 struct symbol *sym;
6121 int argno = 0;
6122
6123 /* The exception breakpoint is a thread-specific breakpoint on
6124 the unwinder's debug hook, declared as:
6125
6126 void _Unwind_DebugHook (void *cfa, void *handler);
6127
6128 The CFA argument indicates the frame to which control is
6129 about to be transferred. HANDLER is the destination PC.
6130
6131 We ignore the CFA and set a temporary breakpoint at HANDLER.
6132 This is not extremely efficient but it avoids issues in gdb
6133 with computing the DWARF CFA, and it also works even in weird
6134 cases such as throwing an exception from inside a signal
6135 handler. */
6136
6137 b = SYMBOL_BLOCK_VALUE (func);
6138 ALL_BLOCK_SYMBOLS (b, iter, sym)
6139 {
6140 if (!SYMBOL_IS_ARGUMENT (sym))
6141 continue;
6142
6143 if (argno == 0)
6144 ++argno;
6145 else
6146 {
6147 insert_exception_resume_breakpoint (ecs->event_thread,
6148 b, frame, sym);
6149 break;
6150 }
6151 }
6152 }
6153 CATCH (e, RETURN_MASK_ERROR)
6154 {
6155 }
6156 END_CATCH
6157 }
6158
6159 static void
6160 stop_waiting (struct execution_control_state *ecs)
6161 {
6162 if (debug_infrun)
6163 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
6164
6165 clear_step_over_info ();
6166
6167 /* Let callers know we don't want to wait for the inferior anymore. */
6168 ecs->wait_some_more = 0;
6169 }
6170
6171 /* Called when we should continue running the inferior, because the
6172 current event doesn't cause a user visible stop. This does the
6173 resuming part; waiting for the next event is done elsewhere. */
6174
6175 static void
6176 keep_going (struct execution_control_state *ecs)
6177 {
6178 /* Make sure normal_stop is called if we get a QUIT handled before
6179 reaching resume. */
6180 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6181
6182 /* Save the pc before execution, to compare with pc after stop. */
6183 ecs->event_thread->prev_pc
6184 = regcache_read_pc (get_thread_regcache (ecs->ptid));
6185
6186 if (ecs->event_thread->control.trap_expected
6187 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6188 {
6189 /* We haven't yet gotten our trap, and either: intercepted a
6190 non-signal event (e.g., a fork); or took a signal which we
6191 are supposed to pass through to the inferior. Simply
6192 continue. */
6193 discard_cleanups (old_cleanups);
6194 resume (currently_stepping (ecs->event_thread),
6195 ecs->event_thread->suspend.stop_signal);
6196 }
6197 else
6198 {
6199 struct regcache *regcache = get_current_regcache ();
6200 int remove_bp;
6201 int remove_wps;
6202
6203 /* Either the trap was not expected, but we are continuing
6204 anyway (if we got a signal, the user asked it be passed to
6205 the child)
6206 -- or --
6207 We got our expected trap, but decided we should resume from
6208 it.
6209
6210 We're going to run this baby now!
6211
6212 Note that insert_breakpoints won't try to re-insert
6213 already inserted breakpoints. Therefore, we don't
6214 care if breakpoints were already inserted, or not. */
6215
6216 /* If we need to step over a breakpoint, and we're not using
6217 displaced stepping to do so, insert all breakpoints
6218 (watchpoints, etc.) but the one we're stepping over, step one
6219 instruction, and then re-insert the breakpoint when that step
6220 is finished. */
6221
6222 remove_bp = (ecs->hit_singlestep_breakpoint
6223 || thread_still_needs_step_over (ecs->event_thread));
6224 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6225 && !target_have_steppable_watchpoint);
6226
6227 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6228 {
6229 set_step_over_info (get_regcache_aspace (regcache),
6230 regcache_read_pc (regcache), remove_wps);
6231 }
6232 else if (remove_wps)
6233 set_step_over_info (NULL, 0, remove_wps);
6234 else
6235 clear_step_over_info ();
6236
6237 /* Stop stepping if inserting breakpoints fails. */
6238 TRY
6239 {
6240 insert_breakpoints ();
6241 }
6242 CATCH (e, RETURN_MASK_ERROR)
6243 {
6244 exception_print (gdb_stderr, e);
6245 stop_waiting (ecs);
6246 return;
6247 }
6248 END_CATCH
6249
6250 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6251
6252 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6253 explicitly specifies that such a signal should be delivered
6254 to the target program). Typically, that would occur when a
6255 user is debugging a target monitor on a simulator: the target
6256 monitor sets a breakpoint; the simulator encounters this
6257 breakpoint and halts the simulation handing control to GDB;
6258 GDB, noting that the stop address doesn't map to any known
6259 breakpoint, returns control back to the simulator; the
6260 simulator then delivers the hardware equivalent of a
6261 GDB_SIGNAL_TRAP to the program being debugged. */
6262 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6263 && !signal_program[ecs->event_thread->suspend.stop_signal])
6264 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6265
6266 discard_cleanups (old_cleanups);
6267 resume (currently_stepping (ecs->event_thread),
6268 ecs->event_thread->suspend.stop_signal);
6269 }
6270
6271 prepare_to_wait (ecs);
6272 }
6273
6274 /* This function normally comes after a resume, before
6275 handle_inferior_event exits. It takes care of any last bits of
6276 housekeeping, and sets the all-important wait_some_more flag. */
6277
6278 static void
6279 prepare_to_wait (struct execution_control_state *ecs)
6280 {
6281 if (debug_infrun)
6282 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6283
6284 /* This is the old end of the while loop. Let everybody know we
6285 want to wait for the inferior some more and get called again
6286 soon. */
6287 ecs->wait_some_more = 1;
6288 }
6289
6290 /* We are done with the step range of a step/next/si/ni command.
6291 Called once for each n of a "step n" operation. */
6292
6293 static void
6294 end_stepping_range (struct execution_control_state *ecs)
6295 {
6296 ecs->event_thread->control.stop_step = 1;
6297 stop_waiting (ecs);
6298 }
6299
6300 /* Several print_*_reason functions to print why the inferior has stopped.
6301 We always print something when the inferior exits, or receives a signal.
6302 The rest of the cases are dealt with later on in normal_stop and
6303 print_it_typical. Ideally there should be a call to one of these
6304 print_*_reason functions functions from handle_inferior_event each time
6305 stop_waiting is called.
6306
6307 Note that we don't call these directly, instead we delegate that to
6308 the interpreters, through observers. Interpreters then call these
6309 with whatever uiout is right. */
6310
6311 void
6312 print_end_stepping_range_reason (struct ui_out *uiout)
6313 {
6314 /* For CLI-like interpreters, print nothing. */
6315
6316 if (ui_out_is_mi_like_p (uiout))
6317 {
6318 ui_out_field_string (uiout, "reason",
6319 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6320 }
6321 }
6322
6323 void
6324 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6325 {
6326 annotate_signalled ();
6327 if (ui_out_is_mi_like_p (uiout))
6328 ui_out_field_string
6329 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6330 ui_out_text (uiout, "\nProgram terminated with signal ");
6331 annotate_signal_name ();
6332 ui_out_field_string (uiout, "signal-name",
6333 gdb_signal_to_name (siggnal));
6334 annotate_signal_name_end ();
6335 ui_out_text (uiout, ", ");
6336 annotate_signal_string ();
6337 ui_out_field_string (uiout, "signal-meaning",
6338 gdb_signal_to_string (siggnal));
6339 annotate_signal_string_end ();
6340 ui_out_text (uiout, ".\n");
6341 ui_out_text (uiout, "The program no longer exists.\n");
6342 }
6343
6344 void
6345 print_exited_reason (struct ui_out *uiout, int exitstatus)
6346 {
6347 struct inferior *inf = current_inferior ();
6348 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6349
6350 annotate_exited (exitstatus);
6351 if (exitstatus)
6352 {
6353 if (ui_out_is_mi_like_p (uiout))
6354 ui_out_field_string (uiout, "reason",
6355 async_reason_lookup (EXEC_ASYNC_EXITED));
6356 ui_out_text (uiout, "[Inferior ");
6357 ui_out_text (uiout, plongest (inf->num));
6358 ui_out_text (uiout, " (");
6359 ui_out_text (uiout, pidstr);
6360 ui_out_text (uiout, ") exited with code ");
6361 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6362 ui_out_text (uiout, "]\n");
6363 }
6364 else
6365 {
6366 if (ui_out_is_mi_like_p (uiout))
6367 ui_out_field_string
6368 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6369 ui_out_text (uiout, "[Inferior ");
6370 ui_out_text (uiout, plongest (inf->num));
6371 ui_out_text (uiout, " (");
6372 ui_out_text (uiout, pidstr);
6373 ui_out_text (uiout, ") exited normally]\n");
6374 }
6375 }
6376
6377 void
6378 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6379 {
6380 annotate_signal ();
6381
6382 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6383 {
6384 struct thread_info *t = inferior_thread ();
6385
6386 ui_out_text (uiout, "\n[");
6387 ui_out_field_string (uiout, "thread-name",
6388 target_pid_to_str (t->ptid));
6389 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6390 ui_out_text (uiout, " stopped");
6391 }
6392 else
6393 {
6394 ui_out_text (uiout, "\nProgram received signal ");
6395 annotate_signal_name ();
6396 if (ui_out_is_mi_like_p (uiout))
6397 ui_out_field_string
6398 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6399 ui_out_field_string (uiout, "signal-name",
6400 gdb_signal_to_name (siggnal));
6401 annotate_signal_name_end ();
6402 ui_out_text (uiout, ", ");
6403 annotate_signal_string ();
6404 ui_out_field_string (uiout, "signal-meaning",
6405 gdb_signal_to_string (siggnal));
6406 annotate_signal_string_end ();
6407 }
6408 ui_out_text (uiout, ".\n");
6409 }
6410
6411 void
6412 print_no_history_reason (struct ui_out *uiout)
6413 {
6414 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6415 }
6416
6417 /* Print current location without a level number, if we have changed
6418 functions or hit a breakpoint. Print source line if we have one.
6419 bpstat_print contains the logic deciding in detail what to print,
6420 based on the event(s) that just occurred. */
6421
6422 void
6423 print_stop_event (struct target_waitstatus *ws)
6424 {
6425 int bpstat_ret;
6426 int source_flag;
6427 int do_frame_printing = 1;
6428 struct thread_info *tp = inferior_thread ();
6429
6430 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6431 switch (bpstat_ret)
6432 {
6433 case PRINT_UNKNOWN:
6434 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6435 should) carry around the function and does (or should) use
6436 that when doing a frame comparison. */
6437 if (tp->control.stop_step
6438 && frame_id_eq (tp->control.step_frame_id,
6439 get_frame_id (get_current_frame ()))
6440 && tp->control.step_start_function == find_pc_function (stop_pc))
6441 {
6442 /* Finished step, just print source line. */
6443 source_flag = SRC_LINE;
6444 }
6445 else
6446 {
6447 /* Print location and source line. */
6448 source_flag = SRC_AND_LOC;
6449 }
6450 break;
6451 case PRINT_SRC_AND_LOC:
6452 /* Print location and source line. */
6453 source_flag = SRC_AND_LOC;
6454 break;
6455 case PRINT_SRC_ONLY:
6456 source_flag = SRC_LINE;
6457 break;
6458 case PRINT_NOTHING:
6459 /* Something bogus. */
6460 source_flag = SRC_LINE;
6461 do_frame_printing = 0;
6462 break;
6463 default:
6464 internal_error (__FILE__, __LINE__, _("Unknown value."));
6465 }
6466
6467 /* The behavior of this routine with respect to the source
6468 flag is:
6469 SRC_LINE: Print only source line
6470 LOCATION: Print only location
6471 SRC_AND_LOC: Print location and source line. */
6472 if (do_frame_printing)
6473 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6474
6475 /* Display the auto-display expressions. */
6476 do_displays ();
6477 }
6478
6479 /* Here to return control to GDB when the inferior stops for real.
6480 Print appropriate messages, remove breakpoints, give terminal our modes.
6481
6482 STOP_PRINT_FRAME nonzero means print the executing frame
6483 (pc, function, args, file, line number and line text).
6484 BREAKPOINTS_FAILED nonzero means stop was due to error
6485 attempting to insert breakpoints. */
6486
6487 void
6488 normal_stop (void)
6489 {
6490 struct target_waitstatus last;
6491 ptid_t last_ptid;
6492 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6493
6494 get_last_target_status (&last_ptid, &last);
6495
6496 /* If an exception is thrown from this point on, make sure to
6497 propagate GDB's knowledge of the executing state to the
6498 frontend/user running state. A QUIT is an easy exception to see
6499 here, so do this before any filtered output. */
6500 if (!non_stop)
6501 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6502 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6503 && last.kind != TARGET_WAITKIND_EXITED
6504 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6505 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6506
6507 /* As we're presenting a stop, and potentially removing breakpoints,
6508 update the thread list so we can tell whether there are threads
6509 running on the target. With target remote, for example, we can
6510 only learn about new threads when we explicitly update the thread
6511 list. Do this before notifying the interpreters about signal
6512 stops, end of stepping ranges, etc., so that the "new thread"
6513 output is emitted before e.g., "Program received signal FOO",
6514 instead of after. */
6515 update_thread_list ();
6516
6517 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6518 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6519
6520 /* As with the notification of thread events, we want to delay
6521 notifying the user that we've switched thread context until
6522 the inferior actually stops.
6523
6524 There's no point in saying anything if the inferior has exited.
6525 Note that SIGNALLED here means "exited with a signal", not
6526 "received a signal".
6527
6528 Also skip saying anything in non-stop mode. In that mode, as we
6529 don't want GDB to switch threads behind the user's back, to avoid
6530 races where the user is typing a command to apply to thread x,
6531 but GDB switches to thread y before the user finishes entering
6532 the command, fetch_inferior_event installs a cleanup to restore
6533 the current thread back to the thread the user had selected right
6534 after this event is handled, so we're not really switching, only
6535 informing of a stop. */
6536 if (!non_stop
6537 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6538 && target_has_execution
6539 && last.kind != TARGET_WAITKIND_SIGNALLED
6540 && last.kind != TARGET_WAITKIND_EXITED
6541 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6542 {
6543 target_terminal_ours_for_output ();
6544 printf_filtered (_("[Switching to %s]\n"),
6545 target_pid_to_str (inferior_ptid));
6546 annotate_thread_changed ();
6547 previous_inferior_ptid = inferior_ptid;
6548 }
6549
6550 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6551 {
6552 gdb_assert (sync_execution || !target_can_async_p ());
6553
6554 target_terminal_ours_for_output ();
6555 printf_filtered (_("No unwaited-for children left.\n"));
6556 }
6557
6558 /* Note: this depends on the update_thread_list call above. */
6559 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6560 {
6561 if (remove_breakpoints ())
6562 {
6563 target_terminal_ours_for_output ();
6564 printf_filtered (_("Cannot remove breakpoints because "
6565 "program is no longer writable.\nFurther "
6566 "execution is probably impossible.\n"));
6567 }
6568 }
6569
6570 /* If an auto-display called a function and that got a signal,
6571 delete that auto-display to avoid an infinite recursion. */
6572
6573 if (stopped_by_random_signal)
6574 disable_current_display ();
6575
6576 /* Notify observers if we finished a "step"-like command, etc. */
6577 if (target_has_execution
6578 && last.kind != TARGET_WAITKIND_SIGNALLED
6579 && last.kind != TARGET_WAITKIND_EXITED
6580 && inferior_thread ()->control.stop_step)
6581 {
6582 /* But not if in the middle of doing a "step n" operation for
6583 n > 1 */
6584 if (inferior_thread ()->step_multi)
6585 goto done;
6586
6587 observer_notify_end_stepping_range ();
6588 }
6589
6590 target_terminal_ours ();
6591 async_enable_stdin ();
6592
6593 /* Set the current source location. This will also happen if we
6594 display the frame below, but the current SAL will be incorrect
6595 during a user hook-stop function. */
6596 if (has_stack_frames () && !stop_stack_dummy)
6597 set_current_sal_from_frame (get_current_frame ());
6598
6599 /* Let the user/frontend see the threads as stopped, but do nothing
6600 if the thread was running an infcall. We may be e.g., evaluating
6601 a breakpoint condition. In that case, the thread had state
6602 THREAD_RUNNING before the infcall, and shall remain set to
6603 running, all without informing the user/frontend about state
6604 transition changes. If this is actually a call command, then the
6605 thread was originally already stopped, so there's no state to
6606 finish either. */
6607 if (target_has_execution && inferior_thread ()->control.in_infcall)
6608 discard_cleanups (old_chain);
6609 else
6610 do_cleanups (old_chain);
6611
6612 /* Look up the hook_stop and run it (CLI internally handles problem
6613 of stop_command's pre-hook not existing). */
6614 if (stop_command)
6615 catch_errors (hook_stop_stub, stop_command,
6616 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6617
6618 if (!has_stack_frames ())
6619 goto done;
6620
6621 if (last.kind == TARGET_WAITKIND_SIGNALLED
6622 || last.kind == TARGET_WAITKIND_EXITED)
6623 goto done;
6624
6625 /* Select innermost stack frame - i.e., current frame is frame 0,
6626 and current location is based on that.
6627 Don't do this on return from a stack dummy routine,
6628 or if the program has exited. */
6629
6630 if (!stop_stack_dummy)
6631 {
6632 select_frame (get_current_frame ());
6633
6634 /* If --batch-silent is enabled then there's no need to print the current
6635 source location, and to try risks causing an error message about
6636 missing source files. */
6637 if (stop_print_frame && !batch_silent)
6638 print_stop_event (&last);
6639 }
6640
6641 /* Save the function value return registers, if we care.
6642 We might be about to restore their previous contents. */
6643 if (inferior_thread ()->control.proceed_to_finish
6644 && execution_direction != EXEC_REVERSE)
6645 {
6646 /* This should not be necessary. */
6647 if (stop_registers)
6648 regcache_xfree (stop_registers);
6649
6650 /* NB: The copy goes through to the target picking up the value of
6651 all the registers. */
6652 stop_registers = regcache_dup (get_current_regcache ());
6653 }
6654
6655 if (stop_stack_dummy == STOP_STACK_DUMMY)
6656 {
6657 /* Pop the empty frame that contains the stack dummy.
6658 This also restores inferior state prior to the call
6659 (struct infcall_suspend_state). */
6660 struct frame_info *frame = get_current_frame ();
6661
6662 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6663 frame_pop (frame);
6664 /* frame_pop() calls reinit_frame_cache as the last thing it
6665 does which means there's currently no selected frame. We
6666 don't need to re-establish a selected frame if the dummy call
6667 returns normally, that will be done by
6668 restore_infcall_control_state. However, we do have to handle
6669 the case where the dummy call is returning after being
6670 stopped (e.g. the dummy call previously hit a breakpoint).
6671 We can't know which case we have so just always re-establish
6672 a selected frame here. */
6673 select_frame (get_current_frame ());
6674 }
6675
6676 done:
6677 annotate_stopped ();
6678
6679 /* Suppress the stop observer if we're in the middle of:
6680
6681 - a step n (n > 1), as there still more steps to be done.
6682
6683 - a "finish" command, as the observer will be called in
6684 finish_command_continuation, so it can include the inferior
6685 function's return value.
6686
6687 - calling an inferior function, as we pretend we inferior didn't
6688 run at all. The return value of the call is handled by the
6689 expression evaluator, through call_function_by_hand. */
6690
6691 if (!target_has_execution
6692 || last.kind == TARGET_WAITKIND_SIGNALLED
6693 || last.kind == TARGET_WAITKIND_EXITED
6694 || last.kind == TARGET_WAITKIND_NO_RESUMED
6695 || (!(inferior_thread ()->step_multi
6696 && inferior_thread ()->control.stop_step)
6697 && !(inferior_thread ()->control.stop_bpstat
6698 && inferior_thread ()->control.proceed_to_finish)
6699 && !inferior_thread ()->control.in_infcall))
6700 {
6701 if (!ptid_equal (inferior_ptid, null_ptid))
6702 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6703 stop_print_frame);
6704 else
6705 observer_notify_normal_stop (NULL, stop_print_frame);
6706 }
6707
6708 if (target_has_execution)
6709 {
6710 if (last.kind != TARGET_WAITKIND_SIGNALLED
6711 && last.kind != TARGET_WAITKIND_EXITED)
6712 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6713 Delete any breakpoint that is to be deleted at the next stop. */
6714 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6715 }
6716
6717 /* Try to get rid of automatically added inferiors that are no
6718 longer needed. Keeping those around slows down things linearly.
6719 Note that this never removes the current inferior. */
6720 prune_inferiors ();
6721 }
6722
6723 static int
6724 hook_stop_stub (void *cmd)
6725 {
6726 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6727 return (0);
6728 }
6729 \f
6730 int
6731 signal_stop_state (int signo)
6732 {
6733 return signal_stop[signo];
6734 }
6735
6736 int
6737 signal_print_state (int signo)
6738 {
6739 return signal_print[signo];
6740 }
6741
6742 int
6743 signal_pass_state (int signo)
6744 {
6745 return signal_program[signo];
6746 }
6747
6748 static void
6749 signal_cache_update (int signo)
6750 {
6751 if (signo == -1)
6752 {
6753 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6754 signal_cache_update (signo);
6755
6756 return;
6757 }
6758
6759 signal_pass[signo] = (signal_stop[signo] == 0
6760 && signal_print[signo] == 0
6761 && signal_program[signo] == 1
6762 && signal_catch[signo] == 0);
6763 }
6764
6765 int
6766 signal_stop_update (int signo, int state)
6767 {
6768 int ret = signal_stop[signo];
6769
6770 signal_stop[signo] = state;
6771 signal_cache_update (signo);
6772 return ret;
6773 }
6774
6775 int
6776 signal_print_update (int signo, int state)
6777 {
6778 int ret = signal_print[signo];
6779
6780 signal_print[signo] = state;
6781 signal_cache_update (signo);
6782 return ret;
6783 }
6784
6785 int
6786 signal_pass_update (int signo, int state)
6787 {
6788 int ret = signal_program[signo];
6789
6790 signal_program[signo] = state;
6791 signal_cache_update (signo);
6792 return ret;
6793 }
6794
6795 /* Update the global 'signal_catch' from INFO and notify the
6796 target. */
6797
6798 void
6799 signal_catch_update (const unsigned int *info)
6800 {
6801 int i;
6802
6803 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6804 signal_catch[i] = info[i] > 0;
6805 signal_cache_update (-1);
6806 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6807 }
6808
6809 static void
6810 sig_print_header (void)
6811 {
6812 printf_filtered (_("Signal Stop\tPrint\tPass "
6813 "to program\tDescription\n"));
6814 }
6815
6816 static void
6817 sig_print_info (enum gdb_signal oursig)
6818 {
6819 const char *name = gdb_signal_to_name (oursig);
6820 int name_padding = 13 - strlen (name);
6821
6822 if (name_padding <= 0)
6823 name_padding = 0;
6824
6825 printf_filtered ("%s", name);
6826 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6827 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6828 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6829 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6830 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6831 }
6832
6833 /* Specify how various signals in the inferior should be handled. */
6834
6835 static void
6836 handle_command (char *args, int from_tty)
6837 {
6838 char **argv;
6839 int digits, wordlen;
6840 int sigfirst, signum, siglast;
6841 enum gdb_signal oursig;
6842 int allsigs;
6843 int nsigs;
6844 unsigned char *sigs;
6845 struct cleanup *old_chain;
6846
6847 if (args == NULL)
6848 {
6849 error_no_arg (_("signal to handle"));
6850 }
6851
6852 /* Allocate and zero an array of flags for which signals to handle. */
6853
6854 nsigs = (int) GDB_SIGNAL_LAST;
6855 sigs = (unsigned char *) alloca (nsigs);
6856 memset (sigs, 0, nsigs);
6857
6858 /* Break the command line up into args. */
6859
6860 argv = gdb_buildargv (args);
6861 old_chain = make_cleanup_freeargv (argv);
6862
6863 /* Walk through the args, looking for signal oursigs, signal names, and
6864 actions. Signal numbers and signal names may be interspersed with
6865 actions, with the actions being performed for all signals cumulatively
6866 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6867
6868 while (*argv != NULL)
6869 {
6870 wordlen = strlen (*argv);
6871 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6872 {;
6873 }
6874 allsigs = 0;
6875 sigfirst = siglast = -1;
6876
6877 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6878 {
6879 /* Apply action to all signals except those used by the
6880 debugger. Silently skip those. */
6881 allsigs = 1;
6882 sigfirst = 0;
6883 siglast = nsigs - 1;
6884 }
6885 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6886 {
6887 SET_SIGS (nsigs, sigs, signal_stop);
6888 SET_SIGS (nsigs, sigs, signal_print);
6889 }
6890 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6891 {
6892 UNSET_SIGS (nsigs, sigs, signal_program);
6893 }
6894 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6895 {
6896 SET_SIGS (nsigs, sigs, signal_print);
6897 }
6898 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6899 {
6900 SET_SIGS (nsigs, sigs, signal_program);
6901 }
6902 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6903 {
6904 UNSET_SIGS (nsigs, sigs, signal_stop);
6905 }
6906 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6907 {
6908 SET_SIGS (nsigs, sigs, signal_program);
6909 }
6910 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6911 {
6912 UNSET_SIGS (nsigs, sigs, signal_print);
6913 UNSET_SIGS (nsigs, sigs, signal_stop);
6914 }
6915 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6916 {
6917 UNSET_SIGS (nsigs, sigs, signal_program);
6918 }
6919 else if (digits > 0)
6920 {
6921 /* It is numeric. The numeric signal refers to our own
6922 internal signal numbering from target.h, not to host/target
6923 signal number. This is a feature; users really should be
6924 using symbolic names anyway, and the common ones like
6925 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6926
6927 sigfirst = siglast = (int)
6928 gdb_signal_from_command (atoi (*argv));
6929 if ((*argv)[digits] == '-')
6930 {
6931 siglast = (int)
6932 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6933 }
6934 if (sigfirst > siglast)
6935 {
6936 /* Bet he didn't figure we'd think of this case... */
6937 signum = sigfirst;
6938 sigfirst = siglast;
6939 siglast = signum;
6940 }
6941 }
6942 else
6943 {
6944 oursig = gdb_signal_from_name (*argv);
6945 if (oursig != GDB_SIGNAL_UNKNOWN)
6946 {
6947 sigfirst = siglast = (int) oursig;
6948 }
6949 else
6950 {
6951 /* Not a number and not a recognized flag word => complain. */
6952 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6953 }
6954 }
6955
6956 /* If any signal numbers or symbol names were found, set flags for
6957 which signals to apply actions to. */
6958
6959 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6960 {
6961 switch ((enum gdb_signal) signum)
6962 {
6963 case GDB_SIGNAL_TRAP:
6964 case GDB_SIGNAL_INT:
6965 if (!allsigs && !sigs[signum])
6966 {
6967 if (query (_("%s is used by the debugger.\n\
6968 Are you sure you want to change it? "),
6969 gdb_signal_to_name ((enum gdb_signal) signum)))
6970 {
6971 sigs[signum] = 1;
6972 }
6973 else
6974 {
6975 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6976 gdb_flush (gdb_stdout);
6977 }
6978 }
6979 break;
6980 case GDB_SIGNAL_0:
6981 case GDB_SIGNAL_DEFAULT:
6982 case GDB_SIGNAL_UNKNOWN:
6983 /* Make sure that "all" doesn't print these. */
6984 break;
6985 default:
6986 sigs[signum] = 1;
6987 break;
6988 }
6989 }
6990
6991 argv++;
6992 }
6993
6994 for (signum = 0; signum < nsigs; signum++)
6995 if (sigs[signum])
6996 {
6997 signal_cache_update (-1);
6998 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6999 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
7000
7001 if (from_tty)
7002 {
7003 /* Show the results. */
7004 sig_print_header ();
7005 for (; signum < nsigs; signum++)
7006 if (sigs[signum])
7007 sig_print_info (signum);
7008 }
7009
7010 break;
7011 }
7012
7013 do_cleanups (old_chain);
7014 }
7015
7016 /* Complete the "handle" command. */
7017
7018 static VEC (char_ptr) *
7019 handle_completer (struct cmd_list_element *ignore,
7020 const char *text, const char *word)
7021 {
7022 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7023 static const char * const keywords[] =
7024 {
7025 "all",
7026 "stop",
7027 "ignore",
7028 "print",
7029 "pass",
7030 "nostop",
7031 "noignore",
7032 "noprint",
7033 "nopass",
7034 NULL,
7035 };
7036
7037 vec_signals = signal_completer (ignore, text, word);
7038 vec_keywords = complete_on_enum (keywords, word, word);
7039
7040 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7041 VEC_free (char_ptr, vec_signals);
7042 VEC_free (char_ptr, vec_keywords);
7043 return return_val;
7044 }
7045
7046 static void
7047 xdb_handle_command (char *args, int from_tty)
7048 {
7049 char **argv;
7050 struct cleanup *old_chain;
7051
7052 if (args == NULL)
7053 error_no_arg (_("xdb command"));
7054
7055 /* Break the command line up into args. */
7056
7057 argv = gdb_buildargv (args);
7058 old_chain = make_cleanup_freeargv (argv);
7059 if (argv[1] != (char *) NULL)
7060 {
7061 char *argBuf;
7062 int bufLen;
7063
7064 bufLen = strlen (argv[0]) + 20;
7065 argBuf = (char *) xmalloc (bufLen);
7066 if (argBuf)
7067 {
7068 int validFlag = 1;
7069 enum gdb_signal oursig;
7070
7071 oursig = gdb_signal_from_name (argv[0]);
7072 memset (argBuf, 0, bufLen);
7073 if (strcmp (argv[1], "Q") == 0)
7074 sprintf (argBuf, "%s %s", argv[0], "noprint");
7075 else
7076 {
7077 if (strcmp (argv[1], "s") == 0)
7078 {
7079 if (!signal_stop[oursig])
7080 sprintf (argBuf, "%s %s", argv[0], "stop");
7081 else
7082 sprintf (argBuf, "%s %s", argv[0], "nostop");
7083 }
7084 else if (strcmp (argv[1], "i") == 0)
7085 {
7086 if (!signal_program[oursig])
7087 sprintf (argBuf, "%s %s", argv[0], "pass");
7088 else
7089 sprintf (argBuf, "%s %s", argv[0], "nopass");
7090 }
7091 else if (strcmp (argv[1], "r") == 0)
7092 {
7093 if (!signal_print[oursig])
7094 sprintf (argBuf, "%s %s", argv[0], "print");
7095 else
7096 sprintf (argBuf, "%s %s", argv[0], "noprint");
7097 }
7098 else
7099 validFlag = 0;
7100 }
7101 if (validFlag)
7102 handle_command (argBuf, from_tty);
7103 else
7104 printf_filtered (_("Invalid signal handling flag.\n"));
7105 if (argBuf)
7106 xfree (argBuf);
7107 }
7108 }
7109 do_cleanups (old_chain);
7110 }
7111
7112 enum gdb_signal
7113 gdb_signal_from_command (int num)
7114 {
7115 if (num >= 1 && num <= 15)
7116 return (enum gdb_signal) num;
7117 error (_("Only signals 1-15 are valid as numeric signals.\n\
7118 Use \"info signals\" for a list of symbolic signals."));
7119 }
7120
7121 /* Print current contents of the tables set by the handle command.
7122 It is possible we should just be printing signals actually used
7123 by the current target (but for things to work right when switching
7124 targets, all signals should be in the signal tables). */
7125
7126 static void
7127 signals_info (char *signum_exp, int from_tty)
7128 {
7129 enum gdb_signal oursig;
7130
7131 sig_print_header ();
7132
7133 if (signum_exp)
7134 {
7135 /* First see if this is a symbol name. */
7136 oursig = gdb_signal_from_name (signum_exp);
7137 if (oursig == GDB_SIGNAL_UNKNOWN)
7138 {
7139 /* No, try numeric. */
7140 oursig =
7141 gdb_signal_from_command (parse_and_eval_long (signum_exp));
7142 }
7143 sig_print_info (oursig);
7144 return;
7145 }
7146
7147 printf_filtered ("\n");
7148 /* These ugly casts brought to you by the native VAX compiler. */
7149 for (oursig = GDB_SIGNAL_FIRST;
7150 (int) oursig < (int) GDB_SIGNAL_LAST;
7151 oursig = (enum gdb_signal) ((int) oursig + 1))
7152 {
7153 QUIT;
7154
7155 if (oursig != GDB_SIGNAL_UNKNOWN
7156 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
7157 sig_print_info (oursig);
7158 }
7159
7160 printf_filtered (_("\nUse the \"handle\" command "
7161 "to change these tables.\n"));
7162 }
7163
7164 /* Check if it makes sense to read $_siginfo from the current thread
7165 at this point. If not, throw an error. */
7166
7167 static void
7168 validate_siginfo_access (void)
7169 {
7170 /* No current inferior, no siginfo. */
7171 if (ptid_equal (inferior_ptid, null_ptid))
7172 error (_("No thread selected."));
7173
7174 /* Don't try to read from a dead thread. */
7175 if (is_exited (inferior_ptid))
7176 error (_("The current thread has terminated"));
7177
7178 /* ... or from a spinning thread. */
7179 if (is_running (inferior_ptid))
7180 error (_("Selected thread is running."));
7181 }
7182
7183 /* The $_siginfo convenience variable is a bit special. We don't know
7184 for sure the type of the value until we actually have a chance to
7185 fetch the data. The type can change depending on gdbarch, so it is
7186 also dependent on which thread you have selected.
7187
7188 1. making $_siginfo be an internalvar that creates a new value on
7189 access.
7190
7191 2. making the value of $_siginfo be an lval_computed value. */
7192
7193 /* This function implements the lval_computed support for reading a
7194 $_siginfo value. */
7195
7196 static void
7197 siginfo_value_read (struct value *v)
7198 {
7199 LONGEST transferred;
7200
7201 validate_siginfo_access ();
7202
7203 transferred =
7204 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7205 NULL,
7206 value_contents_all_raw (v),
7207 value_offset (v),
7208 TYPE_LENGTH (value_type (v)));
7209
7210 if (transferred != TYPE_LENGTH (value_type (v)))
7211 error (_("Unable to read siginfo"));
7212 }
7213
7214 /* This function implements the lval_computed support for writing a
7215 $_siginfo value. */
7216
7217 static void
7218 siginfo_value_write (struct value *v, struct value *fromval)
7219 {
7220 LONGEST transferred;
7221
7222 validate_siginfo_access ();
7223
7224 transferred = target_write (&current_target,
7225 TARGET_OBJECT_SIGNAL_INFO,
7226 NULL,
7227 value_contents_all_raw (fromval),
7228 value_offset (v),
7229 TYPE_LENGTH (value_type (fromval)));
7230
7231 if (transferred != TYPE_LENGTH (value_type (fromval)))
7232 error (_("Unable to write siginfo"));
7233 }
7234
7235 static const struct lval_funcs siginfo_value_funcs =
7236 {
7237 siginfo_value_read,
7238 siginfo_value_write
7239 };
7240
7241 /* Return a new value with the correct type for the siginfo object of
7242 the current thread using architecture GDBARCH. Return a void value
7243 if there's no object available. */
7244
7245 static struct value *
7246 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7247 void *ignore)
7248 {
7249 if (target_has_stack
7250 && !ptid_equal (inferior_ptid, null_ptid)
7251 && gdbarch_get_siginfo_type_p (gdbarch))
7252 {
7253 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7254
7255 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7256 }
7257
7258 return allocate_value (builtin_type (gdbarch)->builtin_void);
7259 }
7260
7261 \f
7262 /* infcall_suspend_state contains state about the program itself like its
7263 registers and any signal it received when it last stopped.
7264 This state must be restored regardless of how the inferior function call
7265 ends (either successfully, or after it hits a breakpoint or signal)
7266 if the program is to properly continue where it left off. */
7267
7268 struct infcall_suspend_state
7269 {
7270 struct thread_suspend_state thread_suspend;
7271 #if 0 /* Currently unused and empty structures are not valid C. */
7272 struct inferior_suspend_state inferior_suspend;
7273 #endif
7274
7275 /* Other fields: */
7276 CORE_ADDR stop_pc;
7277 struct regcache *registers;
7278
7279 /* Format of SIGINFO_DATA or NULL if it is not present. */
7280 struct gdbarch *siginfo_gdbarch;
7281
7282 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7283 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7284 content would be invalid. */
7285 gdb_byte *siginfo_data;
7286 };
7287
7288 struct infcall_suspend_state *
7289 save_infcall_suspend_state (void)
7290 {
7291 struct infcall_suspend_state *inf_state;
7292 struct thread_info *tp = inferior_thread ();
7293 #if 0
7294 struct inferior *inf = current_inferior ();
7295 #endif
7296 struct regcache *regcache = get_current_regcache ();
7297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7298 gdb_byte *siginfo_data = NULL;
7299
7300 if (gdbarch_get_siginfo_type_p (gdbarch))
7301 {
7302 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7303 size_t len = TYPE_LENGTH (type);
7304 struct cleanup *back_to;
7305
7306 siginfo_data = xmalloc (len);
7307 back_to = make_cleanup (xfree, siginfo_data);
7308
7309 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7310 siginfo_data, 0, len) == len)
7311 discard_cleanups (back_to);
7312 else
7313 {
7314 /* Errors ignored. */
7315 do_cleanups (back_to);
7316 siginfo_data = NULL;
7317 }
7318 }
7319
7320 inf_state = XCNEW (struct infcall_suspend_state);
7321
7322 if (siginfo_data)
7323 {
7324 inf_state->siginfo_gdbarch = gdbarch;
7325 inf_state->siginfo_data = siginfo_data;
7326 }
7327
7328 inf_state->thread_suspend = tp->suspend;
7329 #if 0 /* Currently unused and empty structures are not valid C. */
7330 inf_state->inferior_suspend = inf->suspend;
7331 #endif
7332
7333 /* run_inferior_call will not use the signal due to its `proceed' call with
7334 GDB_SIGNAL_0 anyway. */
7335 tp->suspend.stop_signal = GDB_SIGNAL_0;
7336
7337 inf_state->stop_pc = stop_pc;
7338
7339 inf_state->registers = regcache_dup (regcache);
7340
7341 return inf_state;
7342 }
7343
7344 /* Restore inferior session state to INF_STATE. */
7345
7346 void
7347 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7348 {
7349 struct thread_info *tp = inferior_thread ();
7350 #if 0
7351 struct inferior *inf = current_inferior ();
7352 #endif
7353 struct regcache *regcache = get_current_regcache ();
7354 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7355
7356 tp->suspend = inf_state->thread_suspend;
7357 #if 0 /* Currently unused and empty structures are not valid C. */
7358 inf->suspend = inf_state->inferior_suspend;
7359 #endif
7360
7361 stop_pc = inf_state->stop_pc;
7362
7363 if (inf_state->siginfo_gdbarch == gdbarch)
7364 {
7365 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7366
7367 /* Errors ignored. */
7368 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7369 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7370 }
7371
7372 /* The inferior can be gone if the user types "print exit(0)"
7373 (and perhaps other times). */
7374 if (target_has_execution)
7375 /* NB: The register write goes through to the target. */
7376 regcache_cpy (regcache, inf_state->registers);
7377
7378 discard_infcall_suspend_state (inf_state);
7379 }
7380
7381 static void
7382 do_restore_infcall_suspend_state_cleanup (void *state)
7383 {
7384 restore_infcall_suspend_state (state);
7385 }
7386
7387 struct cleanup *
7388 make_cleanup_restore_infcall_suspend_state
7389 (struct infcall_suspend_state *inf_state)
7390 {
7391 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7392 }
7393
7394 void
7395 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7396 {
7397 regcache_xfree (inf_state->registers);
7398 xfree (inf_state->siginfo_data);
7399 xfree (inf_state);
7400 }
7401
7402 struct regcache *
7403 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7404 {
7405 return inf_state->registers;
7406 }
7407
7408 /* infcall_control_state contains state regarding gdb's control of the
7409 inferior itself like stepping control. It also contains session state like
7410 the user's currently selected frame. */
7411
7412 struct infcall_control_state
7413 {
7414 struct thread_control_state thread_control;
7415 struct inferior_control_state inferior_control;
7416
7417 /* Other fields: */
7418 enum stop_stack_kind stop_stack_dummy;
7419 int stopped_by_random_signal;
7420 int stop_after_trap;
7421
7422 /* ID if the selected frame when the inferior function call was made. */
7423 struct frame_id selected_frame_id;
7424 };
7425
7426 /* Save all of the information associated with the inferior<==>gdb
7427 connection. */
7428
7429 struct infcall_control_state *
7430 save_infcall_control_state (void)
7431 {
7432 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7433 struct thread_info *tp = inferior_thread ();
7434 struct inferior *inf = current_inferior ();
7435
7436 inf_status->thread_control = tp->control;
7437 inf_status->inferior_control = inf->control;
7438
7439 tp->control.step_resume_breakpoint = NULL;
7440 tp->control.exception_resume_breakpoint = NULL;
7441
7442 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7443 chain. If caller's caller is walking the chain, they'll be happier if we
7444 hand them back the original chain when restore_infcall_control_state is
7445 called. */
7446 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7447
7448 /* Other fields: */
7449 inf_status->stop_stack_dummy = stop_stack_dummy;
7450 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7451 inf_status->stop_after_trap = stop_after_trap;
7452
7453 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7454
7455 return inf_status;
7456 }
7457
7458 static int
7459 restore_selected_frame (void *args)
7460 {
7461 struct frame_id *fid = (struct frame_id *) args;
7462 struct frame_info *frame;
7463
7464 frame = frame_find_by_id (*fid);
7465
7466 /* If inf_status->selected_frame_id is NULL, there was no previously
7467 selected frame. */
7468 if (frame == NULL)
7469 {
7470 warning (_("Unable to restore previously selected frame."));
7471 return 0;
7472 }
7473
7474 select_frame (frame);
7475
7476 return (1);
7477 }
7478
7479 /* Restore inferior session state to INF_STATUS. */
7480
7481 void
7482 restore_infcall_control_state (struct infcall_control_state *inf_status)
7483 {
7484 struct thread_info *tp = inferior_thread ();
7485 struct inferior *inf = current_inferior ();
7486
7487 if (tp->control.step_resume_breakpoint)
7488 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7489
7490 if (tp->control.exception_resume_breakpoint)
7491 tp->control.exception_resume_breakpoint->disposition
7492 = disp_del_at_next_stop;
7493
7494 /* Handle the bpstat_copy of the chain. */
7495 bpstat_clear (&tp->control.stop_bpstat);
7496
7497 tp->control = inf_status->thread_control;
7498 inf->control = inf_status->inferior_control;
7499
7500 /* Other fields: */
7501 stop_stack_dummy = inf_status->stop_stack_dummy;
7502 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7503 stop_after_trap = inf_status->stop_after_trap;
7504
7505 if (target_has_stack)
7506 {
7507 /* The point of catch_errors is that if the stack is clobbered,
7508 walking the stack might encounter a garbage pointer and
7509 error() trying to dereference it. */
7510 if (catch_errors
7511 (restore_selected_frame, &inf_status->selected_frame_id,
7512 "Unable to restore previously selected frame:\n",
7513 RETURN_MASK_ERROR) == 0)
7514 /* Error in restoring the selected frame. Select the innermost
7515 frame. */
7516 select_frame (get_current_frame ());
7517 }
7518
7519 xfree (inf_status);
7520 }
7521
7522 static void
7523 do_restore_infcall_control_state_cleanup (void *sts)
7524 {
7525 restore_infcall_control_state (sts);
7526 }
7527
7528 struct cleanup *
7529 make_cleanup_restore_infcall_control_state
7530 (struct infcall_control_state *inf_status)
7531 {
7532 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7533 }
7534
7535 void
7536 discard_infcall_control_state (struct infcall_control_state *inf_status)
7537 {
7538 if (inf_status->thread_control.step_resume_breakpoint)
7539 inf_status->thread_control.step_resume_breakpoint->disposition
7540 = disp_del_at_next_stop;
7541
7542 if (inf_status->thread_control.exception_resume_breakpoint)
7543 inf_status->thread_control.exception_resume_breakpoint->disposition
7544 = disp_del_at_next_stop;
7545
7546 /* See save_infcall_control_state for info on stop_bpstat. */
7547 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7548
7549 xfree (inf_status);
7550 }
7551 \f
7552 /* restore_inferior_ptid() will be used by the cleanup machinery
7553 to restore the inferior_ptid value saved in a call to
7554 save_inferior_ptid(). */
7555
7556 static void
7557 restore_inferior_ptid (void *arg)
7558 {
7559 ptid_t *saved_ptid_ptr = arg;
7560
7561 inferior_ptid = *saved_ptid_ptr;
7562 xfree (arg);
7563 }
7564
7565 /* Save the value of inferior_ptid so that it may be restored by a
7566 later call to do_cleanups(). Returns the struct cleanup pointer
7567 needed for later doing the cleanup. */
7568
7569 struct cleanup *
7570 save_inferior_ptid (void)
7571 {
7572 ptid_t *saved_ptid_ptr;
7573
7574 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7575 *saved_ptid_ptr = inferior_ptid;
7576 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7577 }
7578
7579 /* See infrun.h. */
7580
7581 void
7582 clear_exit_convenience_vars (void)
7583 {
7584 clear_internalvar (lookup_internalvar ("_exitsignal"));
7585 clear_internalvar (lookup_internalvar ("_exitcode"));
7586 }
7587 \f
7588
7589 /* User interface for reverse debugging:
7590 Set exec-direction / show exec-direction commands
7591 (returns error unless target implements to_set_exec_direction method). */
7592
7593 int execution_direction = EXEC_FORWARD;
7594 static const char exec_forward[] = "forward";
7595 static const char exec_reverse[] = "reverse";
7596 static const char *exec_direction = exec_forward;
7597 static const char *const exec_direction_names[] = {
7598 exec_forward,
7599 exec_reverse,
7600 NULL
7601 };
7602
7603 static void
7604 set_exec_direction_func (char *args, int from_tty,
7605 struct cmd_list_element *cmd)
7606 {
7607 if (target_can_execute_reverse)
7608 {
7609 if (!strcmp (exec_direction, exec_forward))
7610 execution_direction = EXEC_FORWARD;
7611 else if (!strcmp (exec_direction, exec_reverse))
7612 execution_direction = EXEC_REVERSE;
7613 }
7614 else
7615 {
7616 exec_direction = exec_forward;
7617 error (_("Target does not support this operation."));
7618 }
7619 }
7620
7621 static void
7622 show_exec_direction_func (struct ui_file *out, int from_tty,
7623 struct cmd_list_element *cmd, const char *value)
7624 {
7625 switch (execution_direction) {
7626 case EXEC_FORWARD:
7627 fprintf_filtered (out, _("Forward.\n"));
7628 break;
7629 case EXEC_REVERSE:
7630 fprintf_filtered (out, _("Reverse.\n"));
7631 break;
7632 default:
7633 internal_error (__FILE__, __LINE__,
7634 _("bogus execution_direction value: %d"),
7635 (int) execution_direction);
7636 }
7637 }
7638
7639 static void
7640 show_schedule_multiple (struct ui_file *file, int from_tty,
7641 struct cmd_list_element *c, const char *value)
7642 {
7643 fprintf_filtered (file, _("Resuming the execution of threads "
7644 "of all processes is %s.\n"), value);
7645 }
7646
7647 /* Implementation of `siginfo' variable. */
7648
7649 static const struct internalvar_funcs siginfo_funcs =
7650 {
7651 siginfo_make_value,
7652 NULL,
7653 NULL
7654 };
7655
7656 void
7657 _initialize_infrun (void)
7658 {
7659 int i;
7660 int numsigs;
7661 struct cmd_list_element *c;
7662
7663 add_info ("signals", signals_info, _("\
7664 What debugger does when program gets various signals.\n\
7665 Specify a signal as argument to print info on that signal only."));
7666 add_info_alias ("handle", "signals", 0);
7667
7668 c = add_com ("handle", class_run, handle_command, _("\
7669 Specify how to handle signals.\n\
7670 Usage: handle SIGNAL [ACTIONS]\n\
7671 Args are signals and actions to apply to those signals.\n\
7672 If no actions are specified, the current settings for the specified signals\n\
7673 will be displayed instead.\n\
7674 \n\
7675 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7676 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7677 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7678 The special arg \"all\" is recognized to mean all signals except those\n\
7679 used by the debugger, typically SIGTRAP and SIGINT.\n\
7680 \n\
7681 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7682 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7683 Stop means reenter debugger if this signal happens (implies print).\n\
7684 Print means print a message if this signal happens.\n\
7685 Pass means let program see this signal; otherwise program doesn't know.\n\
7686 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7687 Pass and Stop may be combined.\n\
7688 \n\
7689 Multiple signals may be specified. Signal numbers and signal names\n\
7690 may be interspersed with actions, with the actions being performed for\n\
7691 all signals cumulatively specified."));
7692 set_cmd_completer (c, handle_completer);
7693
7694 if (xdb_commands)
7695 {
7696 add_com ("lz", class_info, signals_info, _("\
7697 What debugger does when program gets various signals.\n\
7698 Specify a signal as argument to print info on that signal only."));
7699 add_com ("z", class_run, xdb_handle_command, _("\
7700 Specify how to handle a signal.\n\
7701 Args are signals and actions to apply to those signals.\n\
7702 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7703 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7704 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7705 The special arg \"all\" is recognized to mean all signals except those\n\
7706 used by the debugger, typically SIGTRAP and SIGINT.\n\
7707 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7708 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7709 nopass), \"Q\" (noprint)\n\
7710 Stop means reenter debugger if this signal happens (implies print).\n\
7711 Print means print a message if this signal happens.\n\
7712 Pass means let program see this signal; otherwise program doesn't know.\n\
7713 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7714 Pass and Stop may be combined."));
7715 }
7716
7717 if (!dbx_commands)
7718 stop_command = add_cmd ("stop", class_obscure,
7719 not_just_help_class_command, _("\
7720 There is no `stop' command, but you can set a hook on `stop'.\n\
7721 This allows you to set a list of commands to be run each time execution\n\
7722 of the program stops."), &cmdlist);
7723
7724 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7725 Set inferior debugging."), _("\
7726 Show inferior debugging."), _("\
7727 When non-zero, inferior specific debugging is enabled."),
7728 NULL,
7729 show_debug_infrun,
7730 &setdebuglist, &showdebuglist);
7731
7732 add_setshow_boolean_cmd ("displaced", class_maintenance,
7733 &debug_displaced, _("\
7734 Set displaced stepping debugging."), _("\
7735 Show displaced stepping debugging."), _("\
7736 When non-zero, displaced stepping specific debugging is enabled."),
7737 NULL,
7738 show_debug_displaced,
7739 &setdebuglist, &showdebuglist);
7740
7741 add_setshow_boolean_cmd ("non-stop", no_class,
7742 &non_stop_1, _("\
7743 Set whether gdb controls the inferior in non-stop mode."), _("\
7744 Show whether gdb controls the inferior in non-stop mode."), _("\
7745 When debugging a multi-threaded program and this setting is\n\
7746 off (the default, also called all-stop mode), when one thread stops\n\
7747 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7748 all other threads in the program while you interact with the thread of\n\
7749 interest. When you continue or step a thread, you can allow the other\n\
7750 threads to run, or have them remain stopped, but while you inspect any\n\
7751 thread's state, all threads stop.\n\
7752 \n\
7753 In non-stop mode, when one thread stops, other threads can continue\n\
7754 to run freely. You'll be able to step each thread independently,\n\
7755 leave it stopped or free to run as needed."),
7756 set_non_stop,
7757 show_non_stop,
7758 &setlist,
7759 &showlist);
7760
7761 numsigs = (int) GDB_SIGNAL_LAST;
7762 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7763 signal_print = (unsigned char *)
7764 xmalloc (sizeof (signal_print[0]) * numsigs);
7765 signal_program = (unsigned char *)
7766 xmalloc (sizeof (signal_program[0]) * numsigs);
7767 signal_catch = (unsigned char *)
7768 xmalloc (sizeof (signal_catch[0]) * numsigs);
7769 signal_pass = (unsigned char *)
7770 xmalloc (sizeof (signal_pass[0]) * numsigs);
7771 for (i = 0; i < numsigs; i++)
7772 {
7773 signal_stop[i] = 1;
7774 signal_print[i] = 1;
7775 signal_program[i] = 1;
7776 signal_catch[i] = 0;
7777 }
7778
7779 /* Signals caused by debugger's own actions
7780 should not be given to the program afterwards. */
7781 signal_program[GDB_SIGNAL_TRAP] = 0;
7782 signal_program[GDB_SIGNAL_INT] = 0;
7783
7784 /* Signals that are not errors should not normally enter the debugger. */
7785 signal_stop[GDB_SIGNAL_ALRM] = 0;
7786 signal_print[GDB_SIGNAL_ALRM] = 0;
7787 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7788 signal_print[GDB_SIGNAL_VTALRM] = 0;
7789 signal_stop[GDB_SIGNAL_PROF] = 0;
7790 signal_print[GDB_SIGNAL_PROF] = 0;
7791 signal_stop[GDB_SIGNAL_CHLD] = 0;
7792 signal_print[GDB_SIGNAL_CHLD] = 0;
7793 signal_stop[GDB_SIGNAL_IO] = 0;
7794 signal_print[GDB_SIGNAL_IO] = 0;
7795 signal_stop[GDB_SIGNAL_POLL] = 0;
7796 signal_print[GDB_SIGNAL_POLL] = 0;
7797 signal_stop[GDB_SIGNAL_URG] = 0;
7798 signal_print[GDB_SIGNAL_URG] = 0;
7799 signal_stop[GDB_SIGNAL_WINCH] = 0;
7800 signal_print[GDB_SIGNAL_WINCH] = 0;
7801 signal_stop[GDB_SIGNAL_PRIO] = 0;
7802 signal_print[GDB_SIGNAL_PRIO] = 0;
7803
7804 /* These signals are used internally by user-level thread
7805 implementations. (See signal(5) on Solaris.) Like the above
7806 signals, a healthy program receives and handles them as part of
7807 its normal operation. */
7808 signal_stop[GDB_SIGNAL_LWP] = 0;
7809 signal_print[GDB_SIGNAL_LWP] = 0;
7810 signal_stop[GDB_SIGNAL_WAITING] = 0;
7811 signal_print[GDB_SIGNAL_WAITING] = 0;
7812 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7813 signal_print[GDB_SIGNAL_CANCEL] = 0;
7814
7815 /* Update cached state. */
7816 signal_cache_update (-1);
7817
7818 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7819 &stop_on_solib_events, _("\
7820 Set stopping for shared library events."), _("\
7821 Show stopping for shared library events."), _("\
7822 If nonzero, gdb will give control to the user when the dynamic linker\n\
7823 notifies gdb of shared library events. The most common event of interest\n\
7824 to the user would be loading/unloading of a new library."),
7825 set_stop_on_solib_events,
7826 show_stop_on_solib_events,
7827 &setlist, &showlist);
7828
7829 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7830 follow_fork_mode_kind_names,
7831 &follow_fork_mode_string, _("\
7832 Set debugger response to a program call of fork or vfork."), _("\
7833 Show debugger response to a program call of fork or vfork."), _("\
7834 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7835 parent - the original process is debugged after a fork\n\
7836 child - the new process is debugged after a fork\n\
7837 The unfollowed process will continue to run.\n\
7838 By default, the debugger will follow the parent process."),
7839 NULL,
7840 show_follow_fork_mode_string,
7841 &setlist, &showlist);
7842
7843 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7844 follow_exec_mode_names,
7845 &follow_exec_mode_string, _("\
7846 Set debugger response to a program call of exec."), _("\
7847 Show debugger response to a program call of exec."), _("\
7848 An exec call replaces the program image of a process.\n\
7849 \n\
7850 follow-exec-mode can be:\n\
7851 \n\
7852 new - the debugger creates a new inferior and rebinds the process\n\
7853 to this new inferior. The program the process was running before\n\
7854 the exec call can be restarted afterwards by restarting the original\n\
7855 inferior.\n\
7856 \n\
7857 same - the debugger keeps the process bound to the same inferior.\n\
7858 The new executable image replaces the previous executable loaded in\n\
7859 the inferior. Restarting the inferior after the exec call restarts\n\
7860 the executable the process was running after the exec call.\n\
7861 \n\
7862 By default, the debugger will use the same inferior."),
7863 NULL,
7864 show_follow_exec_mode_string,
7865 &setlist, &showlist);
7866
7867 add_setshow_enum_cmd ("scheduler-locking", class_run,
7868 scheduler_enums, &scheduler_mode, _("\
7869 Set mode for locking scheduler during execution."), _("\
7870 Show mode for locking scheduler during execution."), _("\
7871 off == no locking (threads may preempt at any time)\n\
7872 on == full locking (no thread except the current thread may run)\n\
7873 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7874 In this mode, other threads may run during other commands."),
7875 set_schedlock_func, /* traps on target vector */
7876 show_scheduler_mode,
7877 &setlist, &showlist);
7878
7879 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7880 Set mode for resuming threads of all processes."), _("\
7881 Show mode for resuming threads of all processes."), _("\
7882 When on, execution commands (such as 'continue' or 'next') resume all\n\
7883 threads of all processes. When off (which is the default), execution\n\
7884 commands only resume the threads of the current process. The set of\n\
7885 threads that are resumed is further refined by the scheduler-locking\n\
7886 mode (see help set scheduler-locking)."),
7887 NULL,
7888 show_schedule_multiple,
7889 &setlist, &showlist);
7890
7891 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7892 Set mode of the step operation."), _("\
7893 Show mode of the step operation."), _("\
7894 When set, doing a step over a function without debug line information\n\
7895 will stop at the first instruction of that function. Otherwise, the\n\
7896 function is skipped and the step command stops at a different source line."),
7897 NULL,
7898 show_step_stop_if_no_debug,
7899 &setlist, &showlist);
7900
7901 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7902 &can_use_displaced_stepping, _("\
7903 Set debugger's willingness to use displaced stepping."), _("\
7904 Show debugger's willingness to use displaced stepping."), _("\
7905 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7906 supported by the target architecture. If off, gdb will not use displaced\n\
7907 stepping to step over breakpoints, even if such is supported by the target\n\
7908 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7909 if the target architecture supports it and non-stop mode is active, but will not\n\
7910 use it in all-stop mode (see help set non-stop)."),
7911 NULL,
7912 show_can_use_displaced_stepping,
7913 &setlist, &showlist);
7914
7915 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7916 &exec_direction, _("Set direction of execution.\n\
7917 Options are 'forward' or 'reverse'."),
7918 _("Show direction of execution (forward/reverse)."),
7919 _("Tells gdb whether to execute forward or backward."),
7920 set_exec_direction_func, show_exec_direction_func,
7921 &setlist, &showlist);
7922
7923 /* Set/show detach-on-fork: user-settable mode. */
7924
7925 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7926 Set whether gdb will detach the child of a fork."), _("\
7927 Show whether gdb will detach the child of a fork."), _("\
7928 Tells gdb whether to detach the child of a fork."),
7929 NULL, NULL, &setlist, &showlist);
7930
7931 /* Set/show disable address space randomization mode. */
7932
7933 add_setshow_boolean_cmd ("disable-randomization", class_support,
7934 &disable_randomization, _("\
7935 Set disabling of debuggee's virtual address space randomization."), _("\
7936 Show disabling of debuggee's virtual address space randomization."), _("\
7937 When this mode is on (which is the default), randomization of the virtual\n\
7938 address space is disabled. Standalone programs run with the randomization\n\
7939 enabled by default on some platforms."),
7940 &set_disable_randomization,
7941 &show_disable_randomization,
7942 &setlist, &showlist);
7943
7944 /* ptid initializations */
7945 inferior_ptid = null_ptid;
7946 target_last_wait_ptid = minus_one_ptid;
7947
7948 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7949 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7950 observer_attach_thread_exit (infrun_thread_thread_exit);
7951 observer_attach_inferior_exit (infrun_inferior_exit);
7952
7953 /* Explicitly create without lookup, since that tries to create a
7954 value with a void typed value, and when we get here, gdbarch
7955 isn't initialized yet. At this point, we're quite sure there
7956 isn't another convenience variable of the same name. */
7957 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7958
7959 add_setshow_boolean_cmd ("observer", no_class,
7960 &observer_mode_1, _("\
7961 Set whether gdb controls the inferior in observer mode."), _("\
7962 Show whether gdb controls the inferior in observer mode."), _("\
7963 In observer mode, GDB can get data from the inferior, but not\n\
7964 affect its execution. Registers and memory may not be changed,\n\
7965 breakpoints may not be set, and the program cannot be interrupted\n\
7966 or signalled."),
7967 set_observer_mode,
7968 show_observer_mode,
7969 &setlist,
7970 &showlist);
7971 }
This page took 0.281025 seconds and 3 git commands to generate.