Convert generic probe interface to C++ (and perform some cleanups)
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static int follow_fork (void);
78
79 static int follow_fork_inferior (int follow_child, int detach_fork);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 void nullify_last_target_wait_ptid (void);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
95 /* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97 static struct async_event_handler *infrun_async_inferior_event_token;
98
99 /* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101 static int infrun_is_async = -1;
102
103 /* See infrun.h. */
104
105 void
106 infrun_async (int enable)
107 {
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 int step_stop_if_no_debug = 0;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static int detach_fork = 1;
155
156 int debug_displaced = 0;
157 static void
158 show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162 }
163
164 unsigned int debug_infrun = 0;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170 }
171
172
173 /* Support for disabling address space randomization. */
174
175 int disable_randomization = 1;
176
177 static void
178 show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190 }
191
192 static void
193 set_disable_randomization (const char *args, int from_tty,
194 struct cmd_list_element *c)
195 {
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200 }
201
202 /* User interface for non-stop mode. */
203
204 int non_stop = 0;
205 static int non_stop_1 = 0;
206
207 static void
208 set_non_stop (const char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218 }
219
220 static void
221 show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227 }
228
229 /* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
233 int observer_mode = 0;
234 static int observer_mode_1 = 0;
235
236 static void
237 set_observer_mode (const char *args, int from_tty,
238 struct cmd_list_element *c)
239 {
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270 }
271
272 static void
273 show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277 }
278
279 /* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285 void
286 update_observer_mode (void)
287 {
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302 }
303
304 /* Tables of how to react to signals; the user sets them. */
305
306 static unsigned char *signal_stop;
307 static unsigned char *signal_print;
308 static unsigned char *signal_program;
309
310 /* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314 static unsigned char *signal_catch;
315
316 /* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319 static unsigned char *signal_pass;
320
321 #define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329 #define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
337 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340 void
341 update_signals_program_target (void)
342 {
343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
344 }
345
346 /* Value to pass to target_resume() to cause all threads to resume. */
347
348 #define RESUME_ALL minus_one_ptid
349
350 /* Command list pointer for the "stop" placeholder. */
351
352 static struct cmd_list_element *stop_command;
353
354 /* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
356 int stop_on_solib_events;
357
358 /* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361 static void
362 set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
364 {
365 update_solib_breakpoints ();
366 }
367
368 static void
369 show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374 }
375
376 /* Nonzero after stop if current stack frame should be printed. */
377
378 static int stop_print_frame;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 static void context_switch (ptid_t ptid);
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420 int has_vforked;
421 ptid_t parent_ptid, child_ptid;
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
430 && current_ui->prompt_state == PROMPT_BLOCKED
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped. Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (info_verbose || debug_infrun)
465 {
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
469 target_terminal::ours_for_output ();
470 fprintf_filtered (gdb_stdlog,
471 _("Detaching after %s from child %s.\n"),
472 has_vforked ? "vfork" : "fork",
473 target_pid_to_str (process_ptid));
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
479
480 /* Add process to GDB's tables. */
481 child_inf = add_inferior (ptid_get_pid (child_ptid));
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
490
491 inferior_ptid = child_ptid;
492 add_thread (inferior_ptid);
493 set_current_inferior (child_inf);
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = add_program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (info_verbose || debug_infrun)
553 {
554 target_terminal::ours_for_output ();
555 fprintf_filtered (gdb_stdlog,
556 _("Attaching after %s %s to child %s.\n"),
557 target_pid_to_str (parent_ptid),
558 has_vforked ? "vfork" : "fork",
559 target_pid_to_str (child_ptid));
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (ptid_get_pid (child_ptid));
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
596 {
597 if (info_verbose || debug_infrun)
598 {
599 /* Ensure that we have a process ptid. */
600 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
601
602 target_terminal::ours_for_output ();
603 fprintf_filtered (gdb_stdlog,
604 _("Detaching after fork from "
605 "child %s.\n"),
606 target_pid_to_str (process_ptid));
607 }
608
609 target_detach (NULL, 0);
610 }
611
612 /* Note that the detach above makes PARENT_INF dangling. */
613
614 /* Add the child thread to the appropriate lists, and switch to
615 this new thread, before cloning the program space, and
616 informing the solib layer about this new process. */
617
618 inferior_ptid = child_ptid;
619 add_thread (inferior_ptid);
620 set_current_inferior (child_inf);
621
622 /* If this is a vfork child, then the address-space is shared
623 with the parent. If we detached from the parent, then we can
624 reuse the parent's program/address spaces. */
625 if (has_vforked || detach_fork)
626 {
627 child_inf->pspace = parent_pspace;
628 child_inf->aspace = child_inf->pspace->aspace;
629 }
630 else
631 {
632 child_inf->aspace = new_address_space ();
633 child_inf->pspace = add_program_space (child_inf->aspace);
634 child_inf->removable = 1;
635 child_inf->symfile_flags = SYMFILE_NO_READ;
636 set_current_program_space (child_inf->pspace);
637 clone_program_space (child_inf->pspace, parent_pspace);
638
639 /* Let the shared library layer (e.g., solib-svr4) learn
640 about this new process, relocate the cloned exec, pull in
641 shared libraries, and install the solib event breakpoint.
642 If a "cloned-VM" event was propagated better throughout
643 the core, this wouldn't be required. */
644 solib_create_inferior_hook (0);
645 }
646 }
647
648 return target_follow_fork (follow_child, detach_fork);
649 }
650
651 /* Tell the target to follow the fork we're stopped at. Returns true
652 if the inferior should be resumed; false, if the target for some
653 reason decided it's best not to resume. */
654
655 static int
656 follow_fork (void)
657 {
658 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
659 int should_resume = 1;
660 struct thread_info *tp;
661
662 /* Copy user stepping state to the new inferior thread. FIXME: the
663 followed fork child thread should have a copy of most of the
664 parent thread structure's run control related fields, not just these.
665 Initialized to avoid "may be used uninitialized" warnings from gcc. */
666 struct breakpoint *step_resume_breakpoint = NULL;
667 struct breakpoint *exception_resume_breakpoint = NULL;
668 CORE_ADDR step_range_start = 0;
669 CORE_ADDR step_range_end = 0;
670 struct frame_id step_frame_id = { 0 };
671 struct thread_fsm *thread_fsm = NULL;
672
673 if (!non_stop)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* If not stopped at a fork event, then there's nothing else to
682 do. */
683 if (wait_status.kind != TARGET_WAITKIND_FORKED
684 && wait_status.kind != TARGET_WAITKIND_VFORKED)
685 return 1;
686
687 /* Check if we switched over from WAIT_PTID, since the event was
688 reported. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid))
691 {
692 /* We did. Switch back to WAIT_PTID thread, to tell the
693 target to follow it (in either direction). We'll
694 afterwards refuse to resume, and inform the user what
695 happened. */
696 switch_to_thread (wait_ptid);
697 should_resume = 0;
698 }
699 }
700
701 tp = inferior_thread ();
702
703 /* If there were any forks/vforks that were caught and are now to be
704 followed, then do so now. */
705 switch (tp->pending_follow.kind)
706 {
707 case TARGET_WAITKIND_FORKED:
708 case TARGET_WAITKIND_VFORKED:
709 {
710 ptid_t parent, child;
711
712 /* If the user did a next/step, etc, over a fork call,
713 preserve the stepping state in the fork child. */
714 if (follow_child && should_resume)
715 {
716 step_resume_breakpoint = clone_momentary_breakpoint
717 (tp->control.step_resume_breakpoint);
718 step_range_start = tp->control.step_range_start;
719 step_range_end = tp->control.step_range_end;
720 step_frame_id = tp->control.step_frame_id;
721 exception_resume_breakpoint
722 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
723 thread_fsm = tp->thread_fsm;
724
725 /* For now, delete the parent's sr breakpoint, otherwise,
726 parent/child sr breakpoints are considered duplicates,
727 and the child version will not be installed. Remove
728 this when the breakpoints module becomes aware of
729 inferiors and address spaces. */
730 delete_step_resume_breakpoint (tp);
731 tp->control.step_range_start = 0;
732 tp->control.step_range_end = 0;
733 tp->control.step_frame_id = null_frame_id;
734 delete_exception_resume_breakpoint (tp);
735 tp->thread_fsm = NULL;
736 }
737
738 parent = inferior_ptid;
739 child = tp->pending_follow.value.related_pid;
740
741 /* Set up inferior(s) as specified by the caller, and tell the
742 target to do whatever is necessary to follow either parent
743 or child. */
744 if (follow_fork_inferior (follow_child, detach_fork))
745 {
746 /* Target refused to follow, or there's some other reason
747 we shouldn't resume. */
748 should_resume = 0;
749 }
750 else
751 {
752 /* This pending follow fork event is now handled, one way
753 or another. The previous selected thread may be gone
754 from the lists by now, but if it is still around, need
755 to clear the pending follow request. */
756 tp = find_thread_ptid (parent);
757 if (tp)
758 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
759
760 /* This makes sure we don't try to apply the "Switched
761 over from WAIT_PID" logic above. */
762 nullify_last_target_wait_ptid ();
763
764 /* If we followed the child, switch to it... */
765 if (follow_child)
766 {
767 switch_to_thread (child);
768
769 /* ... and preserve the stepping state, in case the
770 user was stepping over the fork call. */
771 if (should_resume)
772 {
773 tp = inferior_thread ();
774 tp->control.step_resume_breakpoint
775 = step_resume_breakpoint;
776 tp->control.step_range_start = step_range_start;
777 tp->control.step_range_end = step_range_end;
778 tp->control.step_frame_id = step_frame_id;
779 tp->control.exception_resume_breakpoint
780 = exception_resume_breakpoint;
781 tp->thread_fsm = thread_fsm;
782 }
783 else
784 {
785 /* If we get here, it was because we're trying to
786 resume from a fork catchpoint, but, the user
787 has switched threads away from the thread that
788 forked. In that case, the resume command
789 issued is most likely not applicable to the
790 child, so just warn, and refuse to resume. */
791 warning (_("Not resuming: switched threads "
792 "before following fork child."));
793 }
794
795 /* Reset breakpoints in the child as appropriate. */
796 follow_inferior_reset_breakpoints ();
797 }
798 else
799 switch_to_thread (parent);
800 }
801 }
802 break;
803 case TARGET_WAITKIND_SPURIOUS:
804 /* Nothing to follow. */
805 break;
806 default:
807 internal_error (__FILE__, __LINE__,
808 "Unexpected pending_follow.kind %d\n",
809 tp->pending_follow.kind);
810 break;
811 }
812
813 return should_resume;
814 }
815
816 static void
817 follow_inferior_reset_breakpoints (void)
818 {
819 struct thread_info *tp = inferior_thread ();
820
821 /* Was there a step_resume breakpoint? (There was if the user
822 did a "next" at the fork() call.) If so, explicitly reset its
823 thread number. Cloned step_resume breakpoints are disabled on
824 creation, so enable it here now that it is associated with the
825 correct thread.
826
827 step_resumes are a form of bp that are made to be per-thread.
828 Since we created the step_resume bp when the parent process
829 was being debugged, and now are switching to the child process,
830 from the breakpoint package's viewpoint, that's a switch of
831 "threads". We must update the bp's notion of which thread
832 it is for, or it'll be ignored when it triggers. */
833
834 if (tp->control.step_resume_breakpoint)
835 {
836 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
837 tp->control.step_resume_breakpoint->loc->enabled = 1;
838 }
839
840 /* Treat exception_resume breakpoints like step_resume breakpoints. */
841 if (tp->control.exception_resume_breakpoint)
842 {
843 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
844 tp->control.exception_resume_breakpoint->loc->enabled = 1;
845 }
846
847 /* Reinsert all breakpoints in the child. The user may have set
848 breakpoints after catching the fork, in which case those
849 were never set in the child, but only in the parent. This makes
850 sure the inserted breakpoints match the breakpoint list. */
851
852 breakpoint_re_set ();
853 insert_breakpoints ();
854 }
855
856 /* The child has exited or execed: resume threads of the parent the
857 user wanted to be executing. */
858
859 static int
860 proceed_after_vfork_done (struct thread_info *thread,
861 void *arg)
862 {
863 int pid = * (int *) arg;
864
865 if (ptid_get_pid (thread->ptid) == pid
866 && is_running (thread->ptid)
867 && !is_executing (thread->ptid)
868 && !thread->stop_requested
869 && thread->suspend.stop_signal == GDB_SIGNAL_0)
870 {
871 if (debug_infrun)
872 fprintf_unfiltered (gdb_stdlog,
873 "infrun: resuming vfork parent thread %s\n",
874 target_pid_to_str (thread->ptid));
875
876 switch_to_thread (thread->ptid);
877 clear_proceed_status (0);
878 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
879 }
880
881 return 0;
882 }
883
884 /* Save/restore inferior_ptid, current program space and current
885 inferior. Only use this if the current context points at an exited
886 inferior (and therefore there's no current thread to save). */
887 class scoped_restore_exited_inferior
888 {
889 public:
890 scoped_restore_exited_inferior ()
891 : m_saved_ptid (&inferior_ptid)
892 {}
893
894 private:
895 scoped_restore_tmpl<ptid_t> m_saved_ptid;
896 scoped_restore_current_program_space m_pspace;
897 scoped_restore_current_inferior m_inferior;
898 };
899
900 /* Called whenever we notice an exec or exit event, to handle
901 detaching or resuming a vfork parent. */
902
903 static void
904 handle_vfork_child_exec_or_exit (int exec)
905 {
906 struct inferior *inf = current_inferior ();
907
908 if (inf->vfork_parent)
909 {
910 int resume_parent = -1;
911
912 /* This exec or exit marks the end of the shared memory region
913 between the parent and the child. If the user wanted to
914 detach from the parent, now is the time. */
915
916 if (inf->vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
919 struct program_space *pspace;
920 struct address_space *aspace;
921
922 /* follow-fork child, detach-on-fork on. */
923
924 inf->vfork_parent->pending_detach = 0;
925
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
933 if (!exec)
934 maybe_restore_inferior.emplace ();
935 else
936 maybe_restore_thread.emplace ();
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_process (inf->vfork_parent->pid);
940 switch_to_thread (tp->ptid);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (debug_infrun || info_verbose)
960 {
961 target_terminal::ours_for_output ();
962
963 if (exec)
964 {
965 fprintf_filtered (gdb_stdlog,
966 _("Detaching vfork parent process "
967 "%d after child exec.\n"),
968 inf->vfork_parent->pid);
969 }
970 else
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exit.\n"),
975 inf->vfork_parent->pid);
976 }
977 }
978
979 target_detach (NULL, 0);
980
981 /* Put it back. */
982 inf->pspace = pspace;
983 inf->aspace = aspace;
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = add_program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid while running clone_program_space, so
1013 that clone_program_space doesn't want to read the
1014 selected frame of a dead process. */
1015 scoped_restore restore_ptid
1016 = make_scoped_restore (&inferior_ptid, null_ptid);
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = add_program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
1031 resume_parent = inf->vfork_parent->pid;
1032 /* Break the bonds. */
1033 inf->vfork_parent->vfork_child = NULL;
1034 }
1035
1036 inf->vfork_parent = NULL;
1037
1038 gdb_assert (current_program_space == inf->pspace);
1039
1040 if (non_stop && resume_parent != -1)
1041 {
1042 /* If the user wanted the parent to be running, let it go
1043 free now. */
1044 scoped_restore_current_thread restore_thread;
1045
1046 if (debug_infrun)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "infrun: resuming vfork parent process %d\n",
1049 resume_parent);
1050
1051 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1052 }
1053 }
1054 }
1055
1056 /* Enum strings for "set|show follow-exec-mode". */
1057
1058 static const char follow_exec_mode_new[] = "new";
1059 static const char follow_exec_mode_same[] = "same";
1060 static const char *const follow_exec_mode_names[] =
1061 {
1062 follow_exec_mode_new,
1063 follow_exec_mode_same,
1064 NULL,
1065 };
1066
1067 static const char *follow_exec_mode_string = follow_exec_mode_same;
1068 static void
1069 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071 {
1072 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1073 }
1074
1075 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1076
1077 static void
1078 follow_exec (ptid_t ptid, char *exec_file_target)
1079 {
1080 struct thread_info *th, *tmp;
1081 struct inferior *inf = current_inferior ();
1082 int pid = ptid_get_pid (ptid);
1083 ptid_t process_ptid;
1084 char *exec_file_host;
1085 struct cleanup *old_chain;
1086
1087 /* This is an exec event that we actually wish to pay attention to.
1088 Refresh our symbol table to the newly exec'd program, remove any
1089 momentary bp's, etc.
1090
1091 If there are breakpoints, they aren't really inserted now,
1092 since the exec() transformed our inferior into a fresh set
1093 of instructions.
1094
1095 We want to preserve symbolic breakpoints on the list, since
1096 we have hopes that they can be reset after the new a.out's
1097 symbol table is read.
1098
1099 However, any "raw" breakpoints must be removed from the list
1100 (e.g., the solib bp's), since their address is probably invalid
1101 now.
1102
1103 And, we DON'T want to call delete_breakpoints() here, since
1104 that may write the bp's "shadow contents" (the instruction
1105 value that was overwritten witha TRAP instruction). Since
1106 we now have a new a.out, those shadow contents aren't valid. */
1107
1108 mark_breakpoints_out ();
1109
1110 /* The target reports the exec event to the main thread, even if
1111 some other thread does the exec, and even if the main thread was
1112 stopped or already gone. We may still have non-leader threads of
1113 the process on our list. E.g., on targets that don't have thread
1114 exit events (like remote); or on native Linux in non-stop mode if
1115 there were only two threads in the inferior and the non-leader
1116 one is the one that execs (and nothing forces an update of the
1117 thread list up to here). When debugging remotely, it's best to
1118 avoid extra traffic, when possible, so avoid syncing the thread
1119 list with the target, and instead go ahead and delete all threads
1120 of the process but one that reported the event. Note this must
1121 be done before calling update_breakpoints_after_exec, as
1122 otherwise clearing the threads' resources would reference stale
1123 thread breakpoints -- it may have been one of these threads that
1124 stepped across the exec. We could just clear their stepping
1125 states, but as long as we're iterating, might as well delete
1126 them. Deleting them now rather than at the next user-visible
1127 stop provides a nicer sequence of events for user and MI
1128 notifications. */
1129 ALL_THREADS_SAFE (th, tmp)
1130 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1131 delete_thread (th->ptid);
1132
1133 /* We also need to clear any left over stale state for the
1134 leader/event thread. E.g., if there was any step-resume
1135 breakpoint or similar, it's gone now. We cannot truly
1136 step-to-next statement through an exec(). */
1137 th = inferior_thread ();
1138 th->control.step_resume_breakpoint = NULL;
1139 th->control.exception_resume_breakpoint = NULL;
1140 th->control.single_step_breakpoints = NULL;
1141 th->control.step_range_start = 0;
1142 th->control.step_range_end = 0;
1143
1144 /* The user may have had the main thread held stopped in the
1145 previous image (e.g., schedlock on, or non-stop). Release
1146 it now. */
1147 th->stop_requested = 0;
1148
1149 update_breakpoints_after_exec ();
1150
1151 /* What is this a.out's name? */
1152 process_ptid = pid_to_ptid (pid);
1153 printf_unfiltered (_("%s is executing new program: %s\n"),
1154 target_pid_to_str (process_ptid),
1155 exec_file_target);
1156
1157 /* We've followed the inferior through an exec. Therefore, the
1158 inferior has essentially been killed & reborn. */
1159
1160 gdb_flush (gdb_stdout);
1161
1162 breakpoint_init_inferior (inf_execd);
1163
1164 exec_file_host = exec_file_find (exec_file_target, NULL);
1165 old_chain = make_cleanup (xfree, exec_file_host);
1166
1167 /* If we were unable to map the executable target pathname onto a host
1168 pathname, tell the user that. Otherwise GDB's subsequent behavior
1169 is confusing. Maybe it would even be better to stop at this point
1170 so that the user can specify a file manually before continuing. */
1171 if (exec_file_host == NULL)
1172 warning (_("Could not load symbols for executable %s.\n"
1173 "Do you need \"set sysroot\"?"),
1174 exec_file_target);
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, exec_file_target);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 }
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
1219 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1220
1221 do_cleanups (old_chain);
1222
1223 /* If the target can specify a description, read it. Must do this
1224 after flipping to the new executable (because the target supplied
1225 description must be compatible with the executable's
1226 architecture, and the old executable may e.g., be 32-bit, while
1227 the new one 64-bit), and before anything involving memory or
1228 registers. */
1229 target_find_description ();
1230
1231 /* The add_thread call ends up reading registers, so do it after updating the
1232 target description. */
1233 if (follow_exec_mode_string == follow_exec_mode_new)
1234 add_thread (ptid);
1235
1236 solib_create_inferior_hook (0);
1237
1238 jit_inferior_created_hook ();
1239
1240 breakpoint_re_set ();
1241
1242 /* Reinsert all breakpoints. (Those which were symbolic have
1243 been reset to the proper address in the new a.out, thanks
1244 to symbol_file_command...). */
1245 insert_breakpoints ();
1246
1247 /* The next resume of this inferior should bring it to the shlib
1248 startup breakpoints. (If the user had also set bp's on
1249 "main" from the old (parent) process, then they'll auto-
1250 matically get reset there in the new process.). */
1251 }
1252
1253 /* The queue of threads that need to do a step-over operation to get
1254 past e.g., a breakpoint. What technique is used to step over the
1255 breakpoint/watchpoint does not matter -- all threads end up in the
1256 same queue, to maintain rough temporal order of execution, in order
1257 to avoid starvation, otherwise, we could e.g., find ourselves
1258 constantly stepping the same couple threads past their breakpoints
1259 over and over, if the single-step finish fast enough. */
1260 struct thread_info *step_over_queue_head;
1261
1262 /* Bit flags indicating what the thread needs to step over. */
1263
1264 enum step_over_what_flag
1265 {
1266 /* Step over a breakpoint. */
1267 STEP_OVER_BREAKPOINT = 1,
1268
1269 /* Step past a non-continuable watchpoint, in order to let the
1270 instruction execute so we can evaluate the watchpoint
1271 expression. */
1272 STEP_OVER_WATCHPOINT = 2
1273 };
1274 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1275
1276 /* Info about an instruction that is being stepped over. */
1277
1278 struct step_over_info
1279 {
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
1284 const address_space *aspace;
1285 CORE_ADDR address;
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
1290
1291 /* The thread's global number. */
1292 int thread;
1293 };
1294
1295 /* The step-over info of the location that is being stepped over.
1296
1297 Note that with async/breakpoint always-inserted mode, a user might
1298 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1299 being stepped over. As setting a new breakpoint inserts all
1300 breakpoints, we need to make sure the breakpoint being stepped over
1301 isn't inserted then. We do that by only clearing the step-over
1302 info when the step-over is actually finished (or aborted).
1303
1304 Presently GDB can only step over one breakpoint at any given time.
1305 Given threads that can't run code in the same address space as the
1306 breakpoint's can't really miss the breakpoint, GDB could be taught
1307 to step-over at most one breakpoint per address space (so this info
1308 could move to the address space object if/when GDB is extended).
1309 The set of breakpoints being stepped over will normally be much
1310 smaller than the set of all breakpoints, so a flag in the
1311 breakpoint location structure would be wasteful. A separate list
1312 also saves complexity and run-time, as otherwise we'd have to go
1313 through all breakpoint locations clearing their flag whenever we
1314 start a new sequence. Similar considerations weigh against storing
1315 this info in the thread object. Plus, not all step overs actually
1316 have breakpoint locations -- e.g., stepping past a single-step
1317 breakpoint, or stepping to complete a non-continuable
1318 watchpoint. */
1319 static struct step_over_info step_over_info;
1320
1321 /* Record the address of the breakpoint/instruction we're currently
1322 stepping over.
1323 N.B. We record the aspace and address now, instead of say just the thread,
1324 because when we need the info later the thread may be running. */
1325
1326 static void
1327 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1328 int nonsteppable_watchpoint_p,
1329 int thread)
1330 {
1331 step_over_info.aspace = aspace;
1332 step_over_info.address = address;
1333 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1334 step_over_info.thread = thread;
1335 }
1336
1337 /* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340 static void
1341 clear_step_over_info (void)
1342 {
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
1348 step_over_info.nonsteppable_watchpoint_p = 0;
1349 step_over_info.thread = -1;
1350 }
1351
1352 /* See infrun.h. */
1353
1354 int
1355 stepping_past_instruction_at (struct address_space *aspace,
1356 CORE_ADDR address)
1357 {
1358 return (step_over_info.aspace != NULL
1359 && breakpoint_address_match (aspace, address,
1360 step_over_info.aspace,
1361 step_over_info.address));
1362 }
1363
1364 /* See infrun.h. */
1365
1366 int
1367 thread_is_stepping_over_breakpoint (int thread)
1368 {
1369 return (step_over_info.thread != -1
1370 && thread == step_over_info.thread);
1371 }
1372
1373 /* See infrun.h. */
1374
1375 int
1376 stepping_past_nonsteppable_watchpoint (void)
1377 {
1378 return step_over_info.nonsteppable_watchpoint_p;
1379 }
1380
1381 /* Returns true if step-over info is valid. */
1382
1383 static int
1384 step_over_info_valid_p (void)
1385 {
1386 return (step_over_info.aspace != NULL
1387 || stepping_past_nonsteppable_watchpoint ());
1388 }
1389
1390 \f
1391 /* Displaced stepping. */
1392
1393 /* In non-stop debugging mode, we must take special care to manage
1394 breakpoints properly; in particular, the traditional strategy for
1395 stepping a thread past a breakpoint it has hit is unsuitable.
1396 'Displaced stepping' is a tactic for stepping one thread past a
1397 breakpoint it has hit while ensuring that other threads running
1398 concurrently will hit the breakpoint as they should.
1399
1400 The traditional way to step a thread T off a breakpoint in a
1401 multi-threaded program in all-stop mode is as follows:
1402
1403 a0) Initially, all threads are stopped, and breakpoints are not
1404 inserted.
1405 a1) We single-step T, leaving breakpoints uninserted.
1406 a2) We insert breakpoints, and resume all threads.
1407
1408 In non-stop debugging, however, this strategy is unsuitable: we
1409 don't want to have to stop all threads in the system in order to
1410 continue or step T past a breakpoint. Instead, we use displaced
1411 stepping:
1412
1413 n0) Initially, T is stopped, other threads are running, and
1414 breakpoints are inserted.
1415 n1) We copy the instruction "under" the breakpoint to a separate
1416 location, outside the main code stream, making any adjustments
1417 to the instruction, register, and memory state as directed by
1418 T's architecture.
1419 n2) We single-step T over the instruction at its new location.
1420 n3) We adjust the resulting register and memory state as directed
1421 by T's architecture. This includes resetting T's PC to point
1422 back into the main instruction stream.
1423 n4) We resume T.
1424
1425 This approach depends on the following gdbarch methods:
1426
1427 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1428 indicate where to copy the instruction, and how much space must
1429 be reserved there. We use these in step n1.
1430
1431 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1432 address, and makes any necessary adjustments to the instruction,
1433 register contents, and memory. We use this in step n1.
1434
1435 - gdbarch_displaced_step_fixup adjusts registers and memory after
1436 we have successfuly single-stepped the instruction, to yield the
1437 same effect the instruction would have had if we had executed it
1438 at its original address. We use this in step n3.
1439
1440 The gdbarch_displaced_step_copy_insn and
1441 gdbarch_displaced_step_fixup functions must be written so that
1442 copying an instruction with gdbarch_displaced_step_copy_insn,
1443 single-stepping across the copied instruction, and then applying
1444 gdbarch_displaced_insn_fixup should have the same effects on the
1445 thread's memory and registers as stepping the instruction in place
1446 would have. Exactly which responsibilities fall to the copy and
1447 which fall to the fixup is up to the author of those functions.
1448
1449 See the comments in gdbarch.sh for details.
1450
1451 Note that displaced stepping and software single-step cannot
1452 currently be used in combination, although with some care I think
1453 they could be made to. Software single-step works by placing
1454 breakpoints on all possible subsequent instructions; if the
1455 displaced instruction is a PC-relative jump, those breakpoints
1456 could fall in very strange places --- on pages that aren't
1457 executable, or at addresses that are not proper instruction
1458 boundaries. (We do generally let other threads run while we wait
1459 to hit the software single-step breakpoint, and they might
1460 encounter such a corrupted instruction.) One way to work around
1461 this would be to have gdbarch_displaced_step_copy_insn fully
1462 simulate the effect of PC-relative instructions (and return NULL)
1463 on architectures that use software single-stepping.
1464
1465 In non-stop mode, we can have independent and simultaneous step
1466 requests, so more than one thread may need to simultaneously step
1467 over a breakpoint. The current implementation assumes there is
1468 only one scratch space per process. In this case, we have to
1469 serialize access to the scratch space. If thread A wants to step
1470 over a breakpoint, but we are currently waiting for some other
1471 thread to complete a displaced step, we leave thread A stopped and
1472 place it in the displaced_step_request_queue. Whenever a displaced
1473 step finishes, we pick the next thread in the queue and start a new
1474 displaced step operation on it. See displaced_step_prepare and
1475 displaced_step_fixup for details. */
1476
1477 /* Default destructor for displaced_step_closure. */
1478
1479 displaced_step_closure::~displaced_step_closure () = default;
1480
1481 /* Per-inferior displaced stepping state. */
1482 struct displaced_step_inferior_state
1483 {
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512 };
1513
1514 /* The list of states of processes involved in displaced stepping
1515 presently. */
1516 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518 /* Get the displaced stepping state of process PID. */
1519
1520 static struct displaced_step_inferior_state *
1521 get_displaced_stepping_state (int pid)
1522 {
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532 }
1533
1534 /* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537 static int
1538 displaced_step_in_progress_any_inferior (void)
1539 {
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 /* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554 static int
1555 displaced_step_in_progress_thread (ptid_t ptid)
1556 {
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564 }
1565
1566 /* Return true if process PID has a thread doing a displaced step. */
1567
1568 static int
1569 displaced_step_in_progress (int pid)
1570 {
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578 }
1579
1580 /* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584 static struct displaced_step_inferior_state *
1585 add_displaced_stepping_state (int pid)
1586 {
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
1594
1595 state = XCNEW (struct displaced_step_inferior_state);
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
1599
1600 return state;
1601 }
1602
1603 /* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607 struct displaced_step_closure*
1608 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609 {
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619 }
1620
1621 /* Remove the displaced stepping state of process PID. */
1622
1623 static void
1624 remove_displaced_stepping_state (int pid)
1625 {
1626 struct displaced_step_inferior_state *it, **prev_next_p;
1627
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644 }
1645
1646 static void
1647 infrun_inferior_exit (struct inferior *inf)
1648 {
1649 remove_displaced_stepping_state (inf->pid);
1650 }
1651
1652 /* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
1660 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1661
1662 static void
1663 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666 {
1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
1671 value, target_is_non_stop_p () ? "on" : "off");
1672 else
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
1676 }
1677
1678 /* Return non-zero if displaced stepping can/should be used to step
1679 over breakpoints of thread TP. */
1680
1681 static int
1682 use_displaced_stepping (struct thread_info *tp)
1683 {
1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
1685 struct gdbarch *gdbarch = regcache->arch ();
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
1697 }
1698
1699 /* Clean out any stray displaced stepping state. */
1700 static void
1701 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1702 {
1703 /* Indicate that there is no cleanup pending. */
1704 displaced->step_ptid = null_ptid;
1705
1706 delete displaced->step_closure;
1707 displaced->step_closure = NULL;
1708 }
1709
1710 static void
1711 displaced_step_clear_cleanup (void *arg)
1712 {
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
1715
1716 displaced_step_clear (state);
1717 }
1718
1719 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720 void
1721 displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724 {
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730 }
1731
1732 /* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
1748 static int
1749 displaced_step_prepare_throw (ptid_t ptid)
1750 {
1751 struct cleanup *ignore_cleanups;
1752 struct thread_info *tp = find_thread_ptid (ptid);
1753 struct regcache *regcache = get_thread_regcache (ptid);
1754 struct gdbarch *gdbarch = regcache->arch ();
1755 const address_space *aspace = regcache->aspace ();
1756 CORE_ADDR original, copy;
1757 ULONGEST len;
1758 struct displaced_step_closure *closure;
1759 struct displaced_step_inferior_state *displaced;
1760 int status;
1761
1762 /* We should never reach this function if the architecture does not
1763 support displaced stepping. */
1764 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1765
1766 /* Nor if the thread isn't meant to step over a breakpoint. */
1767 gdb_assert (tp->control.trap_expected);
1768
1769 /* Disable range stepping while executing in the scratch pad. We
1770 want a single-step even if executing the displaced instruction in
1771 the scratch buffer lands within the stepping range (e.g., a
1772 jump/branch). */
1773 tp->control.may_range_step = 0;
1774
1775 /* We have to displaced step one thread at a time, as we only have
1776 access to a single scratch space per inferior. */
1777
1778 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1779
1780 if (!ptid_equal (displaced->step_ptid, null_ptid))
1781 {
1782 /* Already waiting for a displaced step to finish. Defer this
1783 request and place in queue. */
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "displaced: deferring step of %s\n",
1788 target_pid_to_str (ptid));
1789
1790 thread_step_over_chain_enqueue (tp);
1791 return 0;
1792 }
1793 else
1794 {
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: stepping %s now\n",
1798 target_pid_to_str (ptid));
1799 }
1800
1801 displaced_step_clear (displaced);
1802
1803 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1804 inferior_ptid = ptid;
1805
1806 original = regcache_read_pc (regcache);
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
1829 return -1;
1830 }
1831
1832 /* Save the original contents of the copy area. */
1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1834 ignore_cleanups = make_cleanup (free_current_contents,
1835 &displaced->step_saved_copy);
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
1842 if (debug_displaced)
1843 {
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1852 original, copy, regcache);
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
1858 do_cleanups (ignore_cleanups);
1859 return -1;
1860 }
1861
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
1864 displaced->step_ptid = ptid;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
1869
1870 make_cleanup (displaced_step_clear_cleanup, displaced);
1871
1872 /* Resume execution at the copy. */
1873 regcache_write_pc (regcache, copy);
1874
1875 discard_cleanups (ignore_cleanups);
1876
1877 if (debug_displaced)
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
1880
1881 return 1;
1882 }
1883
1884 /* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887 static int
1888 displaced_step_prepare (ptid_t ptid)
1889 {
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (ptid);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
1915 warning (_("disabling displaced stepping: %s"),
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (ptid_get_pid (ptid));
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927 }
1928
1929 static void
1930 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
1932 {
1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1934
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
1937 }
1938
1939 /* Restore the contents of the copy area for thread PTID. */
1940
1941 static void
1942 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944 {
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954 }
1955
1956 /* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962 static int
1963 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1964 {
1965 struct cleanup *old_cleanups;
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1968 int ret;
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
1972 return 0;
1973
1974 /* Was this event for the pid we displaced? */
1975 if (ptid_equal (displaced->step_ptid, null_ptid)
1976 || ! ptid_equal (displaced->step_ptid, event_ptid))
1977 return 0;
1978
1979 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1980
1981 displaced_step_restore (displaced, displaced->step_ptid);
1982
1983 /* Fixup may need to read memory/registers. Switch to the thread
1984 that we're fixing up. Also, target_stopped_by_watchpoint checks
1985 the current thread. */
1986 switch_to_thread (event_ptid);
1987
1988 /* Did the instruction complete successfully? */
1989 if (signal == GDB_SIGNAL_TRAP
1990 && !(target_stopped_by_watchpoint ()
1991 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1992 || target_have_steppable_watchpoint)))
1993 {
1994 /* Fix up the resulting state. */
1995 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1996 displaced->step_closure,
1997 displaced->step_original,
1998 displaced->step_copy,
1999 get_thread_regcache (displaced->step_ptid));
2000 ret = 1;
2001 }
2002 else
2003 {
2004 /* Since the instruction didn't complete, all we can do is
2005 relocate the PC. */
2006 struct regcache *regcache = get_thread_regcache (event_ptid);
2007 CORE_ADDR pc = regcache_read_pc (regcache);
2008
2009 pc = displaced->step_original + (pc - displaced->step_copy);
2010 regcache_write_pc (regcache, pc);
2011 ret = -1;
2012 }
2013
2014 do_cleanups (old_cleanups);
2015
2016 displaced->step_ptid = null_ptid;
2017
2018 return ret;
2019 }
2020
2021 /* Data to be passed around while handling an event. This data is
2022 discarded between events. */
2023 struct execution_control_state
2024 {
2025 ptid_t ptid;
2026 /* The thread that got the event, if this was a thread event; NULL
2027 otherwise. */
2028 struct thread_info *event_thread;
2029
2030 struct target_waitstatus ws;
2031 int stop_func_filled_in;
2032 CORE_ADDR stop_func_start;
2033 CORE_ADDR stop_func_end;
2034 const char *stop_func_name;
2035 int wait_some_more;
2036
2037 /* True if the event thread hit the single-step breakpoint of
2038 another thread. Thus the event doesn't cause a stop, the thread
2039 needs to be single-stepped past the single-step breakpoint before
2040 we can switch back to the original stepping thread. */
2041 int hit_singlestep_breakpoint;
2042 };
2043
2044 /* Clear ECS and set it to point at TP. */
2045
2046 static void
2047 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2048 {
2049 memset (ecs, 0, sizeof (*ecs));
2050 ecs->event_thread = tp;
2051 ecs->ptid = tp->ptid;
2052 }
2053
2054 static void keep_going_pass_signal (struct execution_control_state *ecs);
2055 static void prepare_to_wait (struct execution_control_state *ecs);
2056 static int keep_going_stepped_thread (struct thread_info *tp);
2057 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2058
2059 /* Are there any pending step-over requests? If so, run all we can
2060 now and return true. Otherwise, return false. */
2061
2062 static int
2063 start_step_over (void)
2064 {
2065 struct thread_info *tp, *next;
2066
2067 /* Don't start a new step-over if we already have an in-line
2068 step-over operation ongoing. */
2069 if (step_over_info_valid_p ())
2070 return 0;
2071
2072 for (tp = step_over_queue_head; tp != NULL; tp = next)
2073 {
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
2076 step_over_what step_what;
2077 int must_be_in_line;
2078
2079 gdb_assert (!tp->stop_requested);
2080
2081 next = thread_step_over_chain_next (tp);
2082
2083 /* If this inferior already has a displaced step in process,
2084 don't start a new one. */
2085 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2086 continue;
2087
2088 step_what = thread_still_needs_step_over (tp);
2089 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2090 || ((step_what & STEP_OVER_BREAKPOINT)
2091 && !use_displaced_stepping (tp)));
2092
2093 /* We currently stop all threads of all processes to step-over
2094 in-line. If we need to start a new in-line step-over, let
2095 any pending displaced steps finish first. */
2096 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2097 return 0;
2098
2099 thread_step_over_chain_remove (tp);
2100
2101 if (step_over_queue_head == NULL)
2102 {
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: step-over queue now empty\n");
2106 }
2107
2108 if (tp->control.trap_expected
2109 || tp->resumed
2110 || tp->executing)
2111 {
2112 internal_error (__FILE__, __LINE__,
2113 "[%s] has inconsistent state: "
2114 "trap_expected=%d, resumed=%d, executing=%d\n",
2115 target_pid_to_str (tp->ptid),
2116 tp->control.trap_expected,
2117 tp->resumed,
2118 tp->executing);
2119 }
2120
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resuming [%s] for step-over\n",
2124 target_pid_to_str (tp->ptid));
2125
2126 /* keep_going_pass_signal skips the step-over if the breakpoint
2127 is no longer inserted. In all-stop, we want to keep looking
2128 for a thread that needs a step-over instead of resuming TP,
2129 because we wouldn't be able to resume anything else until the
2130 target stops again. In non-stop, the resume always resumes
2131 only TP, so it's OK to let the thread resume freely. */
2132 if (!target_is_non_stop_p () && !step_what)
2133 continue;
2134
2135 switch_to_thread (tp->ptid);
2136 reset_ecs (ecs, tp);
2137 keep_going_pass_signal (ecs);
2138
2139 if (!ecs->wait_some_more)
2140 error (_("Command aborted."));
2141
2142 gdb_assert (tp->resumed);
2143
2144 /* If we started a new in-line step-over, we're done. */
2145 if (step_over_info_valid_p ())
2146 {
2147 gdb_assert (tp->control.trap_expected);
2148 return 1;
2149 }
2150
2151 if (!target_is_non_stop_p ())
2152 {
2153 /* On all-stop, shouldn't have resumed unless we needed a
2154 step over. */
2155 gdb_assert (tp->control.trap_expected
2156 || tp->step_after_step_resume_breakpoint);
2157
2158 /* With remote targets (at least), in all-stop, we can't
2159 issue any further remote commands until the program stops
2160 again. */
2161 return 1;
2162 }
2163
2164 /* Either the thread no longer needed a step-over, or a new
2165 displaced stepping sequence started. Even in the latter
2166 case, continue looking. Maybe we can also start another
2167 displaced step on a thread of other process. */
2168 }
2169
2170 return 0;
2171 }
2172
2173 /* Update global variables holding ptids to hold NEW_PTID if they were
2174 holding OLD_PTID. */
2175 static void
2176 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2177 {
2178 struct displaced_step_inferior_state *displaced;
2179
2180 if (ptid_equal (inferior_ptid, old_ptid))
2181 inferior_ptid = new_ptid;
2182
2183 for (displaced = displaced_step_inferior_states;
2184 displaced;
2185 displaced = displaced->next)
2186 {
2187 if (ptid_equal (displaced->step_ptid, old_ptid))
2188 displaced->step_ptid = new_ptid;
2189 }
2190 }
2191
2192 \f
2193
2194 static const char schedlock_off[] = "off";
2195 static const char schedlock_on[] = "on";
2196 static const char schedlock_step[] = "step";
2197 static const char schedlock_replay[] = "replay";
2198 static const char *const scheduler_enums[] = {
2199 schedlock_off,
2200 schedlock_on,
2201 schedlock_step,
2202 schedlock_replay,
2203 NULL
2204 };
2205 static const char *scheduler_mode = schedlock_replay;
2206 static void
2207 show_scheduler_mode (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c, const char *value)
2209 {
2210 fprintf_filtered (file,
2211 _("Mode for locking scheduler "
2212 "during execution is \"%s\".\n"),
2213 value);
2214 }
2215
2216 static void
2217 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2218 {
2219 if (!target_can_lock_scheduler)
2220 {
2221 scheduler_mode = schedlock_off;
2222 error (_("Target '%s' cannot support this command."), target_shortname);
2223 }
2224 }
2225
2226 /* True if execution commands resume all threads of all processes by
2227 default; otherwise, resume only threads of the current inferior
2228 process. */
2229 int sched_multi = 0;
2230
2231 /* Try to setup for software single stepping over the specified location.
2232 Return 1 if target_resume() should use hardware single step.
2233
2234 GDBARCH the current gdbarch.
2235 PC the location to step over. */
2236
2237 static int
2238 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2239 {
2240 int hw_step = 1;
2241
2242 if (execution_direction == EXEC_FORWARD
2243 && gdbarch_software_single_step_p (gdbarch))
2244 hw_step = !insert_single_step_breakpoints (gdbarch);
2245
2246 return hw_step;
2247 }
2248
2249 /* See infrun.h. */
2250
2251 ptid_t
2252 user_visible_resume_ptid (int step)
2253 {
2254 ptid_t resume_ptid;
2255
2256 if (non_stop)
2257 {
2258 /* With non-stop mode on, threads are always handled
2259 individually. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_on)
2263 || (scheduler_mode == schedlock_step && step))
2264 {
2265 /* User-settable 'scheduler' mode requires solo thread
2266 resume. */
2267 resume_ptid = inferior_ptid;
2268 }
2269 else if ((scheduler_mode == schedlock_replay)
2270 && target_record_will_replay (minus_one_ptid, execution_direction))
2271 {
2272 /* User-settable 'scheduler' mode requires solo thread resume in replay
2273 mode. */
2274 resume_ptid = inferior_ptid;
2275 }
2276 else if (!sched_multi && target_supports_multi_process ())
2277 {
2278 /* Resume all threads of the current process (and none of other
2279 processes). */
2280 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2281 }
2282 else
2283 {
2284 /* Resume all threads of all processes. */
2285 resume_ptid = RESUME_ALL;
2286 }
2287
2288 return resume_ptid;
2289 }
2290
2291 /* Return a ptid representing the set of threads that we will resume,
2292 in the perspective of the target, assuming run control handling
2293 does not require leaving some threads stopped (e.g., stepping past
2294 breakpoint). USER_STEP indicates whether we're about to start the
2295 target for a stepping command. */
2296
2297 static ptid_t
2298 internal_resume_ptid (int user_step)
2299 {
2300 /* In non-stop, we always control threads individually. Note that
2301 the target may always work in non-stop mode even with "set
2302 non-stop off", in which case user_visible_resume_ptid could
2303 return a wildcard ptid. */
2304 if (target_is_non_stop_p ())
2305 return inferior_ptid;
2306 else
2307 return user_visible_resume_ptid (user_step);
2308 }
2309
2310 /* Wrapper for target_resume, that handles infrun-specific
2311 bookkeeping. */
2312
2313 static void
2314 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2315 {
2316 struct thread_info *tp = inferior_thread ();
2317
2318 gdb_assert (!tp->stop_requested);
2319
2320 /* Install inferior's terminal modes. */
2321 target_terminal::inferior ();
2322
2323 /* Avoid confusing the next resume, if the next stop/resume
2324 happens to apply to another thread. */
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
2327 /* Advise target which signals may be handled silently.
2328
2329 If we have removed breakpoints because we are stepping over one
2330 in-line (in any thread), we need to receive all signals to avoid
2331 accidentally skipping a breakpoint during execution of a signal
2332 handler.
2333
2334 Likewise if we're displaced stepping, otherwise a trap for a
2335 breakpoint in a signal handler might be confused with the
2336 displaced step finishing. We don't make the displaced_step_fixup
2337 step distinguish the cases instead, because:
2338
2339 - a backtrace while stopped in the signal handler would show the
2340 scratch pad as frame older than the signal handler, instead of
2341 the real mainline code.
2342
2343 - when the thread is later resumed, the signal handler would
2344 return to the scratch pad area, which would no longer be
2345 valid. */
2346 if (step_over_info_valid_p ()
2347 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2348 target_pass_signals (0, NULL);
2349 else
2350 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2351
2352 target_resume (resume_ptid, step, sig);
2353
2354 target_commit_resume ();
2355 }
2356
2357 /* Resume the inferior. SIG is the signal to give the inferior
2358 (GDB_SIGNAL_0 for none). */
2359
2360 void
2361 resume (enum gdb_signal sig)
2362 {
2363 struct regcache *regcache = get_current_regcache ();
2364 struct gdbarch *gdbarch = regcache->arch ();
2365 struct thread_info *tp = inferior_thread ();
2366 CORE_ADDR pc = regcache_read_pc (regcache);
2367 const address_space *aspace = regcache->aspace ();
2368 ptid_t resume_ptid;
2369 /* This represents the user's step vs continue request. When
2370 deciding whether "set scheduler-locking step" applies, it's the
2371 user's intention that counts. */
2372 const int user_step = tp->control.stepping_command;
2373 /* This represents what we'll actually request the target to do.
2374 This can decay from a step to a continue, if e.g., we need to
2375 implement single-stepping with breakpoints (software
2376 single-step). */
2377 int step;
2378
2379 gdb_assert (!tp->stop_requested);
2380 gdb_assert (!thread_is_in_step_over_chain (tp));
2381
2382 if (tp->suspend.waitstatus_pending_p)
2383 {
2384 if (debug_infrun)
2385 {
2386 std::string statstr
2387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2388
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume: thread %s has pending wait "
2391 "status %s (currently_stepping=%d).\n",
2392 target_pid_to_str (tp->ptid), statstr.c_str (),
2393 currently_stepping (tp));
2394 }
2395
2396 tp->resumed = 1;
2397
2398 /* FIXME: What should we do if we are supposed to resume this
2399 thread with a signal? Maybe we should maintain a queue of
2400 pending signals to deliver. */
2401 if (sig != GDB_SIGNAL_0)
2402 {
2403 warning (_("Couldn't deliver signal %s to %s."),
2404 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2405 }
2406
2407 tp->suspend.stop_signal = GDB_SIGNAL_0;
2408
2409 if (target_can_async_p ())
2410 target_async (1);
2411 return;
2412 }
2413
2414 tp->stepped_breakpoint = 0;
2415
2416 /* Depends on stepped_breakpoint. */
2417 step = currently_stepping (tp);
2418
2419 if (current_inferior ()->waiting_for_vfork_done)
2420 {
2421 /* Don't try to single-step a vfork parent that is waiting for
2422 the child to get out of the shared memory region (by exec'ing
2423 or exiting). This is particularly important on software
2424 single-step archs, as the child process would trip on the
2425 software single step breakpoint inserted for the parent
2426 process. Since the parent will not actually execute any
2427 instruction until the child is out of the shared region (such
2428 are vfork's semantics), it is safe to simply continue it.
2429 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2430 the parent, and tell it to `keep_going', which automatically
2431 re-sets it stepping. */
2432 if (debug_infrun)
2433 fprintf_unfiltered (gdb_stdlog,
2434 "infrun: resume : clear step\n");
2435 step = 0;
2436 }
2437
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "infrun: resume (step=%d, signal=%s), "
2441 "trap_expected=%d, current thread [%s] at %s\n",
2442 step, gdb_signal_to_symbol_string (sig),
2443 tp->control.trap_expected,
2444 target_pid_to_str (inferior_ptid),
2445 paddress (gdbarch, pc));
2446
2447 /* Normally, by the time we reach `resume', the breakpoints are either
2448 removed or inserted, as appropriate. The exception is if we're sitting
2449 at a permanent breakpoint; we need to step over it, but permanent
2450 breakpoints can't be removed. So we have to test for it here. */
2451 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2452 {
2453 if (sig != GDB_SIGNAL_0)
2454 {
2455 /* We have a signal to pass to the inferior. The resume
2456 may, or may not take us to the signal handler. If this
2457 is a step, we'll need to stop in the signal handler, if
2458 there's one, (if the target supports stepping into
2459 handlers), or in the next mainline instruction, if
2460 there's no handler. If this is a continue, we need to be
2461 sure to run the handler with all breakpoints inserted.
2462 In all cases, set a breakpoint at the current address
2463 (where the handler returns to), and once that breakpoint
2464 is hit, resume skipping the permanent breakpoint. If
2465 that breakpoint isn't hit, then we've stepped into the
2466 signal handler (or hit some other event). We'll delete
2467 the step-resume breakpoint then. */
2468
2469 if (debug_infrun)
2470 fprintf_unfiltered (gdb_stdlog,
2471 "infrun: resume: skipping permanent breakpoint, "
2472 "deliver signal first\n");
2473
2474 clear_step_over_info ();
2475 tp->control.trap_expected = 0;
2476
2477 if (tp->control.step_resume_breakpoint == NULL)
2478 {
2479 /* Set a "high-priority" step-resume, as we don't want
2480 user breakpoints at PC to trigger (again) when this
2481 hits. */
2482 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2483 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2484
2485 tp->step_after_step_resume_breakpoint = step;
2486 }
2487
2488 insert_breakpoints ();
2489 }
2490 else
2491 {
2492 /* There's no signal to pass, we can go ahead and skip the
2493 permanent breakpoint manually. */
2494 if (debug_infrun)
2495 fprintf_unfiltered (gdb_stdlog,
2496 "infrun: resume: skipping permanent breakpoint\n");
2497 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2498 /* Update pc to reflect the new address from which we will
2499 execute instructions. */
2500 pc = regcache_read_pc (regcache);
2501
2502 if (step)
2503 {
2504 /* We've already advanced the PC, so the stepping part
2505 is done. Now we need to arrange for a trap to be
2506 reported to handle_inferior_event. Set a breakpoint
2507 at the current PC, and run to it. Don't update
2508 prev_pc, because if we end in
2509 switch_back_to_stepped_thread, we want the "expected
2510 thread advanced also" branch to be taken. IOW, we
2511 don't want this thread to step further from PC
2512 (overstep). */
2513 gdb_assert (!step_over_info_valid_p ());
2514 insert_single_step_breakpoint (gdbarch, aspace, pc);
2515 insert_breakpoints ();
2516
2517 resume_ptid = internal_resume_ptid (user_step);
2518 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2519 tp->resumed = 1;
2520 return;
2521 }
2522 }
2523 }
2524
2525 /* If we have a breakpoint to step over, make sure to do a single
2526 step only. Same if we have software watchpoints. */
2527 if (tp->control.trap_expected || bpstat_should_step ())
2528 tp->control.may_range_step = 0;
2529
2530 /* If enabled, step over breakpoints by executing a copy of the
2531 instruction at a different address.
2532
2533 We can't use displaced stepping when we have a signal to deliver;
2534 the comments for displaced_step_prepare explain why. The
2535 comments in the handle_inferior event for dealing with 'random
2536 signals' explain what we do instead.
2537
2538 We can't use displaced stepping when we are waiting for vfork_done
2539 event, displaced stepping breaks the vfork child similarly as single
2540 step software breakpoint. */
2541 if (tp->control.trap_expected
2542 && use_displaced_stepping (tp)
2543 && !step_over_info_valid_p ()
2544 && sig == GDB_SIGNAL_0
2545 && !current_inferior ()->waiting_for_vfork_done)
2546 {
2547 int prepared = displaced_step_prepare (inferior_ptid);
2548
2549 if (prepared == 0)
2550 {
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "Got placed in step-over queue\n");
2554
2555 tp->control.trap_expected = 0;
2556 return;
2557 }
2558 else if (prepared < 0)
2559 {
2560 /* Fallback to stepping over the breakpoint in-line. */
2561
2562 if (target_is_non_stop_p ())
2563 stop_all_threads ();
2564
2565 set_step_over_info (regcache->aspace (),
2566 regcache_read_pc (regcache), 0, tp->global_num);
2567
2568 step = maybe_software_singlestep (gdbarch, pc);
2569
2570 insert_breakpoints ();
2571 }
2572 else if (prepared > 0)
2573 {
2574 struct displaced_step_inferior_state *displaced;
2575
2576 /* Update pc to reflect the new address from which we will
2577 execute instructions due to displaced stepping. */
2578 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2579
2580 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2581 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2582 displaced->step_closure);
2583 }
2584 }
2585
2586 /* Do we need to do it the hard way, w/temp breakpoints? */
2587 else if (step)
2588 step = maybe_software_singlestep (gdbarch, pc);
2589
2590 /* Currently, our software single-step implementation leads to different
2591 results than hardware single-stepping in one situation: when stepping
2592 into delivering a signal which has an associated signal handler,
2593 hardware single-step will stop at the first instruction of the handler,
2594 while software single-step will simply skip execution of the handler.
2595
2596 For now, this difference in behavior is accepted since there is no
2597 easy way to actually implement single-stepping into a signal handler
2598 without kernel support.
2599
2600 However, there is one scenario where this difference leads to follow-on
2601 problems: if we're stepping off a breakpoint by removing all breakpoints
2602 and then single-stepping. In this case, the software single-step
2603 behavior means that even if there is a *breakpoint* in the signal
2604 handler, GDB still would not stop.
2605
2606 Fortunately, we can at least fix this particular issue. We detect
2607 here the case where we are about to deliver a signal while software
2608 single-stepping with breakpoints removed. In this situation, we
2609 revert the decisions to remove all breakpoints and insert single-
2610 step breakpoints, and instead we install a step-resume breakpoint
2611 at the current address, deliver the signal without stepping, and
2612 once we arrive back at the step-resume breakpoint, actually step
2613 over the breakpoint we originally wanted to step over. */
2614 if (thread_has_single_step_breakpoints_set (tp)
2615 && sig != GDB_SIGNAL_0
2616 && step_over_info_valid_p ())
2617 {
2618 /* If we have nested signals or a pending signal is delivered
2619 immediately after a handler returns, might might already have
2620 a step-resume breakpoint set on the earlier handler. We cannot
2621 set another step-resume breakpoint; just continue on until the
2622 original breakpoint is hit. */
2623 if (tp->control.step_resume_breakpoint == NULL)
2624 {
2625 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2626 tp->step_after_step_resume_breakpoint = 1;
2627 }
2628
2629 delete_single_step_breakpoints (tp);
2630
2631 clear_step_over_info ();
2632 tp->control.trap_expected = 0;
2633
2634 insert_breakpoints ();
2635 }
2636
2637 /* If STEP is set, it's a request to use hardware stepping
2638 facilities. But in that case, we should never
2639 use singlestep breakpoint. */
2640 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2641
2642 /* Decide the set of threads to ask the target to resume. */
2643 if (tp->control.trap_expected)
2644 {
2645 /* We're allowing a thread to run past a breakpoint it has
2646 hit, either by single-stepping the thread with the breakpoint
2647 removed, or by displaced stepping, with the breakpoint inserted.
2648 In the former case, we need to single-step only this thread,
2649 and keep others stopped, as they can miss this breakpoint if
2650 allowed to run. That's not really a problem for displaced
2651 stepping, but, we still keep other threads stopped, in case
2652 another thread is also stopped for a breakpoint waiting for
2653 its turn in the displaced stepping queue. */
2654 resume_ptid = inferior_ptid;
2655 }
2656 else
2657 resume_ptid = internal_resume_ptid (user_step);
2658
2659 if (execution_direction != EXEC_REVERSE
2660 && step && breakpoint_inserted_here_p (aspace, pc))
2661 {
2662 /* There are two cases where we currently need to step a
2663 breakpoint instruction when we have a signal to deliver:
2664
2665 - See handle_signal_stop where we handle random signals that
2666 could take out us out of the stepping range. Normally, in
2667 that case we end up continuing (instead of stepping) over the
2668 signal handler with a breakpoint at PC, but there are cases
2669 where we should _always_ single-step, even if we have a
2670 step-resume breakpoint, like when a software watchpoint is
2671 set. Assuming single-stepping and delivering a signal at the
2672 same time would takes us to the signal handler, then we could
2673 have removed the breakpoint at PC to step over it. However,
2674 some hardware step targets (like e.g., Mac OS) can't step
2675 into signal handlers, and for those, we need to leave the
2676 breakpoint at PC inserted, as otherwise if the handler
2677 recurses and executes PC again, it'll miss the breakpoint.
2678 So we leave the breakpoint inserted anyway, but we need to
2679 record that we tried to step a breakpoint instruction, so
2680 that adjust_pc_after_break doesn't end up confused.
2681
2682 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2683 in one thread after another thread that was stepping had been
2684 momentarily paused for a step-over. When we re-resume the
2685 stepping thread, it may be resumed from that address with a
2686 breakpoint that hasn't trapped yet. Seen with
2687 gdb.threads/non-stop-fair-events.exp, on targets that don't
2688 do displaced stepping. */
2689
2690 if (debug_infrun)
2691 fprintf_unfiltered (gdb_stdlog,
2692 "infrun: resume: [%s] stepped breakpoint\n",
2693 target_pid_to_str (tp->ptid));
2694
2695 tp->stepped_breakpoint = 1;
2696
2697 /* Most targets can step a breakpoint instruction, thus
2698 executing it normally. But if this one cannot, just
2699 continue and we will hit it anyway. */
2700 if (gdbarch_cannot_step_breakpoint (gdbarch))
2701 step = 0;
2702 }
2703
2704 if (debug_displaced
2705 && tp->control.trap_expected
2706 && use_displaced_stepping (tp)
2707 && !step_over_info_valid_p ())
2708 {
2709 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2710 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2711 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2712 gdb_byte buf[4];
2713
2714 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2715 paddress (resume_gdbarch, actual_pc));
2716 read_memory (actual_pc, buf, sizeof (buf));
2717 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2718 }
2719
2720 if (tp->control.may_range_step)
2721 {
2722 /* If we're resuming a thread with the PC out of the step
2723 range, then we're doing some nested/finer run control
2724 operation, like stepping the thread out of the dynamic
2725 linker or the displaced stepping scratch pad. We
2726 shouldn't have allowed a range step then. */
2727 gdb_assert (pc_in_thread_step_range (pc, tp));
2728 }
2729
2730 do_target_resume (resume_ptid, step, sig);
2731 tp->resumed = 1;
2732 }
2733 \f
2734 /* Proceeding. */
2735
2736 /* See infrun.h. */
2737
2738 /* Counter that tracks number of user visible stops. This can be used
2739 to tell whether a command has proceeded the inferior past the
2740 current location. This allows e.g., inferior function calls in
2741 breakpoint commands to not interrupt the command list. When the
2742 call finishes successfully, the inferior is standing at the same
2743 breakpoint as if nothing happened (and so we don't call
2744 normal_stop). */
2745 static ULONGEST current_stop_id;
2746
2747 /* See infrun.h. */
2748
2749 ULONGEST
2750 get_stop_id (void)
2751 {
2752 return current_stop_id;
2753 }
2754
2755 /* Called when we report a user visible stop. */
2756
2757 static void
2758 new_stop_id (void)
2759 {
2760 current_stop_id++;
2761 }
2762
2763 /* Clear out all variables saying what to do when inferior is continued.
2764 First do this, then set the ones you want, then call `proceed'. */
2765
2766 static void
2767 clear_proceed_status_thread (struct thread_info *tp)
2768 {
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "infrun: clear_proceed_status_thread (%s)\n",
2772 target_pid_to_str (tp->ptid));
2773
2774 /* If we're starting a new sequence, then the previous finished
2775 single-step is no longer relevant. */
2776 if (tp->suspend.waitstatus_pending_p)
2777 {
2778 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2779 {
2780 if (debug_infrun)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "infrun: clear_proceed_status: pending "
2783 "event of %s was a finished step. "
2784 "Discarding.\n",
2785 target_pid_to_str (tp->ptid));
2786
2787 tp->suspend.waitstatus_pending_p = 0;
2788 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2789 }
2790 else if (debug_infrun)
2791 {
2792 std::string statstr
2793 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2794
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread: thread %s "
2797 "has pending wait status %s "
2798 "(currently_stepping=%d).\n",
2799 target_pid_to_str (tp->ptid), statstr.c_str (),
2800 currently_stepping (tp));
2801 }
2802 }
2803
2804 /* If this signal should not be seen by program, give it zero.
2805 Used for debugging signals. */
2806 if (!signal_pass_state (tp->suspend.stop_signal))
2807 tp->suspend.stop_signal = GDB_SIGNAL_0;
2808
2809 thread_fsm_delete (tp->thread_fsm);
2810 tp->thread_fsm = NULL;
2811
2812 tp->control.trap_expected = 0;
2813 tp->control.step_range_start = 0;
2814 tp->control.step_range_end = 0;
2815 tp->control.may_range_step = 0;
2816 tp->control.step_frame_id = null_frame_id;
2817 tp->control.step_stack_frame_id = null_frame_id;
2818 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2819 tp->control.step_start_function = NULL;
2820 tp->stop_requested = 0;
2821
2822 tp->control.stop_step = 0;
2823
2824 tp->control.proceed_to_finish = 0;
2825
2826 tp->control.stepping_command = 0;
2827
2828 /* Discard any remaining commands or status from previous stop. */
2829 bpstat_clear (&tp->control.stop_bpstat);
2830 }
2831
2832 void
2833 clear_proceed_status (int step)
2834 {
2835 /* With scheduler-locking replay, stop replaying other threads if we're
2836 not replaying the user-visible resume ptid.
2837
2838 This is a convenience feature to not require the user to explicitly
2839 stop replaying the other threads. We're assuming that the user's
2840 intent is to resume tracing the recorded process. */
2841 if (!non_stop && scheduler_mode == schedlock_replay
2842 && target_record_is_replaying (minus_one_ptid)
2843 && !target_record_will_replay (user_visible_resume_ptid (step),
2844 execution_direction))
2845 target_record_stop_replaying ();
2846
2847 if (!non_stop)
2848 {
2849 struct thread_info *tp;
2850 ptid_t resume_ptid;
2851
2852 resume_ptid = user_visible_resume_ptid (step);
2853
2854 /* In all-stop mode, delete the per-thread status of all threads
2855 we're about to resume, implicitly and explicitly. */
2856 ALL_NON_EXITED_THREADS (tp)
2857 {
2858 if (!ptid_match (tp->ptid, resume_ptid))
2859 continue;
2860 clear_proceed_status_thread (tp);
2861 }
2862 }
2863
2864 if (!ptid_equal (inferior_ptid, null_ptid))
2865 {
2866 struct inferior *inferior;
2867
2868 if (non_stop)
2869 {
2870 /* If in non-stop mode, only delete the per-thread status of
2871 the current thread. */
2872 clear_proceed_status_thread (inferior_thread ());
2873 }
2874
2875 inferior = current_inferior ();
2876 inferior->control.stop_soon = NO_STOP_QUIETLY;
2877 }
2878
2879 observer_notify_about_to_proceed ();
2880 }
2881
2882 /* Returns true if TP is still stopped at a breakpoint that needs
2883 stepping-over in order to make progress. If the breakpoint is gone
2884 meanwhile, we can skip the whole step-over dance. */
2885
2886 static int
2887 thread_still_needs_step_over_bp (struct thread_info *tp)
2888 {
2889 if (tp->stepping_over_breakpoint)
2890 {
2891 struct regcache *regcache = get_thread_regcache (tp->ptid);
2892
2893 if (breakpoint_here_p (regcache->aspace (),
2894 regcache_read_pc (regcache))
2895 == ordinary_breakpoint_here)
2896 return 1;
2897
2898 tp->stepping_over_breakpoint = 0;
2899 }
2900
2901 return 0;
2902 }
2903
2904 /* Check whether thread TP still needs to start a step-over in order
2905 to make progress when resumed. Returns an bitwise or of enum
2906 step_over_what bits, indicating what needs to be stepped over. */
2907
2908 static step_over_what
2909 thread_still_needs_step_over (struct thread_info *tp)
2910 {
2911 step_over_what what = 0;
2912
2913 if (thread_still_needs_step_over_bp (tp))
2914 what |= STEP_OVER_BREAKPOINT;
2915
2916 if (tp->stepping_over_watchpoint
2917 && !target_have_steppable_watchpoint)
2918 what |= STEP_OVER_WATCHPOINT;
2919
2920 return what;
2921 }
2922
2923 /* Returns true if scheduler locking applies. STEP indicates whether
2924 we're about to do a step/next-like command to a thread. */
2925
2926 static int
2927 schedlock_applies (struct thread_info *tp)
2928 {
2929 return (scheduler_mode == schedlock_on
2930 || (scheduler_mode == schedlock_step
2931 && tp->control.stepping_command)
2932 || (scheduler_mode == schedlock_replay
2933 && target_record_will_replay (minus_one_ptid,
2934 execution_direction)));
2935 }
2936
2937 /* Basic routine for continuing the program in various fashions.
2938
2939 ADDR is the address to resume at, or -1 for resume where stopped.
2940 SIGGNAL is the signal to give it, or 0 for none,
2941 or -1 for act according to how it stopped.
2942 STEP is nonzero if should trap after one instruction.
2943 -1 means return after that and print nothing.
2944 You should probably set various step_... variables
2945 before calling here, if you are stepping.
2946
2947 You should call clear_proceed_status before calling proceed. */
2948
2949 void
2950 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2951 {
2952 struct regcache *regcache;
2953 struct gdbarch *gdbarch;
2954 struct thread_info *tp;
2955 CORE_ADDR pc;
2956 ptid_t resume_ptid;
2957 struct execution_control_state ecss;
2958 struct execution_control_state *ecs = &ecss;
2959 struct cleanup *old_chain;
2960 int started;
2961
2962 /* If we're stopped at a fork/vfork, follow the branch set by the
2963 "set follow-fork-mode" command; otherwise, we'll just proceed
2964 resuming the current thread. */
2965 if (!follow_fork ())
2966 {
2967 /* The target for some reason decided not to resume. */
2968 normal_stop ();
2969 if (target_can_async_p ())
2970 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2971 return;
2972 }
2973
2974 /* We'll update this if & when we switch to a new thread. */
2975 previous_inferior_ptid = inferior_ptid;
2976
2977 regcache = get_current_regcache ();
2978 gdbarch = regcache->arch ();
2979 const address_space *aspace = regcache->aspace ();
2980
2981 pc = regcache_read_pc (regcache);
2982 tp = inferior_thread ();
2983
2984 /* Fill in with reasonable starting values. */
2985 init_thread_stepping_state (tp);
2986
2987 gdb_assert (!thread_is_in_step_over_chain (tp));
2988
2989 if (addr == (CORE_ADDR) -1)
2990 {
2991 if (pc == stop_pc
2992 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2993 && execution_direction != EXEC_REVERSE)
2994 /* There is a breakpoint at the address we will resume at,
2995 step one instruction before inserting breakpoints so that
2996 we do not stop right away (and report a second hit at this
2997 breakpoint).
2998
2999 Note, we don't do this in reverse, because we won't
3000 actually be executing the breakpoint insn anyway.
3001 We'll be (un-)executing the previous instruction. */
3002 tp->stepping_over_breakpoint = 1;
3003 else if (gdbarch_single_step_through_delay_p (gdbarch)
3004 && gdbarch_single_step_through_delay (gdbarch,
3005 get_current_frame ()))
3006 /* We stepped onto an instruction that needs to be stepped
3007 again before re-inserting the breakpoint, do so. */
3008 tp->stepping_over_breakpoint = 1;
3009 }
3010 else
3011 {
3012 regcache_write_pc (regcache, addr);
3013 }
3014
3015 if (siggnal != GDB_SIGNAL_DEFAULT)
3016 tp->suspend.stop_signal = siggnal;
3017
3018 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3019
3020 /* If an exception is thrown from this point on, make sure to
3021 propagate GDB's knowledge of the executing state to the
3022 frontend/user running state. */
3023 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3024
3025 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3026 threads (e.g., we might need to set threads stepping over
3027 breakpoints first), from the user/frontend's point of view, all
3028 threads in RESUME_PTID are now running. Unless we're calling an
3029 inferior function, as in that case we pretend the inferior
3030 doesn't run at all. */
3031 if (!tp->control.in_infcall)
3032 set_running (resume_ptid, 1);
3033
3034 if (debug_infrun)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "infrun: proceed (addr=%s, signal=%s)\n",
3037 paddress (gdbarch, addr),
3038 gdb_signal_to_symbol_string (siggnal));
3039
3040 annotate_starting ();
3041
3042 /* Make sure that output from GDB appears before output from the
3043 inferior. */
3044 gdb_flush (gdb_stdout);
3045
3046 /* Since we've marked the inferior running, give it the terminal. A
3047 QUIT/Ctrl-C from here on is forwarded to the target (which can
3048 still detect attempts to unblock a stuck connection with repeated
3049 Ctrl-C from within target_pass_ctrlc). */
3050 target_terminal::inferior ();
3051
3052 /* In a multi-threaded task we may select another thread and
3053 then continue or step.
3054
3055 But if a thread that we're resuming had stopped at a breakpoint,
3056 it will immediately cause another breakpoint stop without any
3057 execution (i.e. it will report a breakpoint hit incorrectly). So
3058 we must step over it first.
3059
3060 Look for threads other than the current (TP) that reported a
3061 breakpoint hit and haven't been resumed yet since. */
3062
3063 /* If scheduler locking applies, we can avoid iterating over all
3064 threads. */
3065 if (!non_stop && !schedlock_applies (tp))
3066 {
3067 struct thread_info *current = tp;
3068
3069 ALL_NON_EXITED_THREADS (tp)
3070 {
3071 /* Ignore the current thread here. It's handled
3072 afterwards. */
3073 if (tp == current)
3074 continue;
3075
3076 /* Ignore threads of processes we're not resuming. */
3077 if (!ptid_match (tp->ptid, resume_ptid))
3078 continue;
3079
3080 if (!thread_still_needs_step_over (tp))
3081 continue;
3082
3083 gdb_assert (!thread_is_in_step_over_chain (tp));
3084
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "infrun: need to step-over [%s] first\n",
3088 target_pid_to_str (tp->ptid));
3089
3090 thread_step_over_chain_enqueue (tp);
3091 }
3092
3093 tp = current;
3094 }
3095
3096 /* Enqueue the current thread last, so that we move all other
3097 threads over their breakpoints first. */
3098 if (tp->stepping_over_breakpoint)
3099 thread_step_over_chain_enqueue (tp);
3100
3101 /* If the thread isn't started, we'll still need to set its prev_pc,
3102 so that switch_back_to_stepped_thread knows the thread hasn't
3103 advanced. Must do this before resuming any thread, as in
3104 all-stop/remote, once we resume we can't send any other packet
3105 until the target stops again. */
3106 tp->prev_pc = regcache_read_pc (regcache);
3107
3108 {
3109 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3110
3111 started = start_step_over ();
3112
3113 if (step_over_info_valid_p ())
3114 {
3115 /* Either this thread started a new in-line step over, or some
3116 other thread was already doing one. In either case, don't
3117 resume anything else until the step-over is finished. */
3118 }
3119 else if (started && !target_is_non_stop_p ())
3120 {
3121 /* A new displaced stepping sequence was started. In all-stop,
3122 we can't talk to the target anymore until it next stops. */
3123 }
3124 else if (!non_stop && target_is_non_stop_p ())
3125 {
3126 /* In all-stop, but the target is always in non-stop mode.
3127 Start all other threads that are implicitly resumed too. */
3128 ALL_NON_EXITED_THREADS (tp)
3129 {
3130 /* Ignore threads of processes we're not resuming. */
3131 if (!ptid_match (tp->ptid, resume_ptid))
3132 continue;
3133
3134 if (tp->resumed)
3135 {
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "infrun: proceed: [%s] resumed\n",
3139 target_pid_to_str (tp->ptid));
3140 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3141 continue;
3142 }
3143
3144 if (thread_is_in_step_over_chain (tp))
3145 {
3146 if (debug_infrun)
3147 fprintf_unfiltered (gdb_stdlog,
3148 "infrun: proceed: [%s] needs step-over\n",
3149 target_pid_to_str (tp->ptid));
3150 continue;
3151 }
3152
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: resuming %s\n",
3156 target_pid_to_str (tp->ptid));
3157
3158 reset_ecs (ecs, tp);
3159 switch_to_thread (tp->ptid);
3160 keep_going_pass_signal (ecs);
3161 if (!ecs->wait_some_more)
3162 error (_("Command aborted."));
3163 }
3164 }
3165 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3166 {
3167 /* The thread wasn't started, and isn't queued, run it now. */
3168 reset_ecs (ecs, tp);
3169 switch_to_thread (tp->ptid);
3170 keep_going_pass_signal (ecs);
3171 if (!ecs->wait_some_more)
3172 error (_("Command aborted."));
3173 }
3174 }
3175
3176 target_commit_resume ();
3177
3178 discard_cleanups (old_chain);
3179
3180 /* Tell the event loop to wait for it to stop. If the target
3181 supports asynchronous execution, it'll do this from within
3182 target_resume. */
3183 if (!target_can_async_p ())
3184 mark_async_event_handler (infrun_async_inferior_event_token);
3185 }
3186 \f
3187
3188 /* Start remote-debugging of a machine over a serial link. */
3189
3190 void
3191 start_remote (int from_tty)
3192 {
3193 struct inferior *inferior;
3194
3195 inferior = current_inferior ();
3196 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3197
3198 /* Always go on waiting for the target, regardless of the mode. */
3199 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3200 indicate to wait_for_inferior that a target should timeout if
3201 nothing is returned (instead of just blocking). Because of this,
3202 targets expecting an immediate response need to, internally, set
3203 things up so that the target_wait() is forced to eventually
3204 timeout. */
3205 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3206 differentiate to its caller what the state of the target is after
3207 the initial open has been performed. Here we're assuming that
3208 the target has stopped. It should be possible to eventually have
3209 target_open() return to the caller an indication that the target
3210 is currently running and GDB state should be set to the same as
3211 for an async run. */
3212 wait_for_inferior ();
3213
3214 /* Now that the inferior has stopped, do any bookkeeping like
3215 loading shared libraries. We want to do this before normal_stop,
3216 so that the displayed frame is up to date. */
3217 post_create_inferior (&current_target, from_tty);
3218
3219 normal_stop ();
3220 }
3221
3222 /* Initialize static vars when a new inferior begins. */
3223
3224 void
3225 init_wait_for_inferior (void)
3226 {
3227 /* These are meaningless until the first time through wait_for_inferior. */
3228
3229 breakpoint_init_inferior (inf_starting);
3230
3231 clear_proceed_status (0);
3232
3233 target_last_wait_ptid = minus_one_ptid;
3234
3235 previous_inferior_ptid = inferior_ptid;
3236
3237 /* Discard any skipped inlined frames. */
3238 clear_inline_frame_state (minus_one_ptid);
3239 }
3240
3241 \f
3242
3243 static void handle_inferior_event (struct execution_control_state *ecs);
3244
3245 static void handle_step_into_function (struct gdbarch *gdbarch,
3246 struct execution_control_state *ecs);
3247 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3248 struct execution_control_state *ecs);
3249 static void handle_signal_stop (struct execution_control_state *ecs);
3250 static void check_exception_resume (struct execution_control_state *,
3251 struct frame_info *);
3252
3253 static void end_stepping_range (struct execution_control_state *ecs);
3254 static void stop_waiting (struct execution_control_state *ecs);
3255 static void keep_going (struct execution_control_state *ecs);
3256 static void process_event_stop_test (struct execution_control_state *ecs);
3257 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3258
3259 /* This function is attached as a "thread_stop_requested" observer.
3260 Cleanup local state that assumed the PTID was to be resumed, and
3261 report the stop to the frontend. */
3262
3263 static void
3264 infrun_thread_stop_requested (ptid_t ptid)
3265 {
3266 struct thread_info *tp;
3267
3268 /* PTID was requested to stop. If the thread was already stopped,
3269 but the user/frontend doesn't know about that yet (e.g., the
3270 thread had been temporarily paused for some step-over), set up
3271 for reporting the stop now. */
3272 ALL_NON_EXITED_THREADS (tp)
3273 if (ptid_match (tp->ptid, ptid))
3274 {
3275 if (tp->state != THREAD_RUNNING)
3276 continue;
3277 if (tp->executing)
3278 continue;
3279
3280 /* Remove matching threads from the step-over queue, so
3281 start_step_over doesn't try to resume them
3282 automatically. */
3283 if (thread_is_in_step_over_chain (tp))
3284 thread_step_over_chain_remove (tp);
3285
3286 /* If the thread is stopped, but the user/frontend doesn't
3287 know about that yet, queue a pending event, as if the
3288 thread had just stopped now. Unless the thread already had
3289 a pending event. */
3290 if (!tp->suspend.waitstatus_pending_p)
3291 {
3292 tp->suspend.waitstatus_pending_p = 1;
3293 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3294 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3295 }
3296
3297 /* Clear the inline-frame state, since we're re-processing the
3298 stop. */
3299 clear_inline_frame_state (tp->ptid);
3300
3301 /* If this thread was paused because some other thread was
3302 doing an inline-step over, let that finish first. Once
3303 that happens, we'll restart all threads and consume pending
3304 stop events then. */
3305 if (step_over_info_valid_p ())
3306 continue;
3307
3308 /* Otherwise we can process the (new) pending event now. Set
3309 it so this pending event is considered by
3310 do_target_wait. */
3311 tp->resumed = 1;
3312 }
3313 }
3314
3315 static void
3316 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3317 {
3318 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3319 nullify_last_target_wait_ptid ();
3320 }
3321
3322 /* Delete the step resume, single-step and longjmp/exception resume
3323 breakpoints of TP. */
3324
3325 static void
3326 delete_thread_infrun_breakpoints (struct thread_info *tp)
3327 {
3328 delete_step_resume_breakpoint (tp);
3329 delete_exception_resume_breakpoint (tp);
3330 delete_single_step_breakpoints (tp);
3331 }
3332
3333 /* If the target still has execution, call FUNC for each thread that
3334 just stopped. In all-stop, that's all the non-exited threads; in
3335 non-stop, that's the current thread, only. */
3336
3337 typedef void (*for_each_just_stopped_thread_callback_func)
3338 (struct thread_info *tp);
3339
3340 static void
3341 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3342 {
3343 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3344 return;
3345
3346 if (target_is_non_stop_p ())
3347 {
3348 /* If in non-stop mode, only the current thread stopped. */
3349 func (inferior_thread ());
3350 }
3351 else
3352 {
3353 struct thread_info *tp;
3354
3355 /* In all-stop mode, all threads have stopped. */
3356 ALL_NON_EXITED_THREADS (tp)
3357 {
3358 func (tp);
3359 }
3360 }
3361 }
3362
3363 /* Delete the step resume and longjmp/exception resume breakpoints of
3364 the threads that just stopped. */
3365
3366 static void
3367 delete_just_stopped_threads_infrun_breakpoints (void)
3368 {
3369 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3370 }
3371
3372 /* Delete the single-step breakpoints of the threads that just
3373 stopped. */
3374
3375 static void
3376 delete_just_stopped_threads_single_step_breakpoints (void)
3377 {
3378 for_each_just_stopped_thread (delete_single_step_breakpoints);
3379 }
3380
3381 /* A cleanup wrapper. */
3382
3383 static void
3384 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3385 {
3386 delete_just_stopped_threads_infrun_breakpoints ();
3387 }
3388
3389 /* See infrun.h. */
3390
3391 void
3392 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3393 const struct target_waitstatus *ws)
3394 {
3395 std::string status_string = target_waitstatus_to_string (ws);
3396 string_file stb;
3397
3398 /* The text is split over several lines because it was getting too long.
3399 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3400 output as a unit; we want only one timestamp printed if debug_timestamp
3401 is set. */
3402
3403 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3404 ptid_get_pid (waiton_ptid),
3405 ptid_get_lwp (waiton_ptid),
3406 ptid_get_tid (waiton_ptid));
3407 if (ptid_get_pid (waiton_ptid) != -1)
3408 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3409 stb.printf (", status) =\n");
3410 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3411 ptid_get_pid (result_ptid),
3412 ptid_get_lwp (result_ptid),
3413 ptid_get_tid (result_ptid),
3414 target_pid_to_str (result_ptid));
3415 stb.printf ("infrun: %s\n", status_string.c_str ());
3416
3417 /* This uses %s in part to handle %'s in the text, but also to avoid
3418 a gcc error: the format attribute requires a string literal. */
3419 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3420 }
3421
3422 /* Select a thread at random, out of those which are resumed and have
3423 had events. */
3424
3425 static struct thread_info *
3426 random_pending_event_thread (ptid_t waiton_ptid)
3427 {
3428 struct thread_info *event_tp;
3429 int num_events = 0;
3430 int random_selector;
3431
3432 /* First see how many events we have. Count only resumed threads
3433 that have an event pending. */
3434 ALL_NON_EXITED_THREADS (event_tp)
3435 if (ptid_match (event_tp->ptid, waiton_ptid)
3436 && event_tp->resumed
3437 && event_tp->suspend.waitstatus_pending_p)
3438 num_events++;
3439
3440 if (num_events == 0)
3441 return NULL;
3442
3443 /* Now randomly pick a thread out of those that have had events. */
3444 random_selector = (int)
3445 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3446
3447 if (debug_infrun && num_events > 1)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "infrun: Found %d events, selecting #%d\n",
3450 num_events, random_selector);
3451
3452 /* Select the Nth thread that has had an event. */
3453 ALL_NON_EXITED_THREADS (event_tp)
3454 if (ptid_match (event_tp->ptid, waiton_ptid)
3455 && event_tp->resumed
3456 && event_tp->suspend.waitstatus_pending_p)
3457 if (random_selector-- == 0)
3458 break;
3459
3460 return event_tp;
3461 }
3462
3463 /* Wrapper for target_wait that first checks whether threads have
3464 pending statuses to report before actually asking the target for
3465 more events. */
3466
3467 static ptid_t
3468 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3469 {
3470 ptid_t event_ptid;
3471 struct thread_info *tp;
3472
3473 /* First check if there is a resumed thread with a wait status
3474 pending. */
3475 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3476 {
3477 tp = random_pending_event_thread (ptid);
3478 }
3479 else
3480 {
3481 if (debug_infrun)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "infrun: Waiting for specific thread %s.\n",
3484 target_pid_to_str (ptid));
3485
3486 /* We have a specific thread to check. */
3487 tp = find_thread_ptid (ptid);
3488 gdb_assert (tp != NULL);
3489 if (!tp->suspend.waitstatus_pending_p)
3490 tp = NULL;
3491 }
3492
3493 if (tp != NULL
3494 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3495 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3496 {
3497 struct regcache *regcache = get_thread_regcache (tp->ptid);
3498 struct gdbarch *gdbarch = regcache->arch ();
3499 CORE_ADDR pc;
3500 int discard = 0;
3501
3502 pc = regcache_read_pc (regcache);
3503
3504 if (pc != tp->suspend.stop_pc)
3505 {
3506 if (debug_infrun)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "infrun: PC of %s changed. was=%s, now=%s\n",
3509 target_pid_to_str (tp->ptid),
3510 paddress (gdbarch, tp->prev_pc),
3511 paddress (gdbarch, pc));
3512 discard = 1;
3513 }
3514 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: previous breakpoint of %s, at %s gone\n",
3519 target_pid_to_str (tp->ptid),
3520 paddress (gdbarch, pc));
3521
3522 discard = 1;
3523 }
3524
3525 if (discard)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: pending event of %s cancelled.\n",
3530 target_pid_to_str (tp->ptid));
3531
3532 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3533 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3534 }
3535 }
3536
3537 if (tp != NULL)
3538 {
3539 if (debug_infrun)
3540 {
3541 std::string statstr
3542 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3543
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: Using pending wait status %s for %s.\n",
3546 statstr.c_str (),
3547 target_pid_to_str (tp->ptid));
3548 }
3549
3550 /* Now that we've selected our final event LWP, un-adjust its PC
3551 if it was a software breakpoint (and the target doesn't
3552 always adjust the PC itself). */
3553 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3554 && !target_supports_stopped_by_sw_breakpoint ())
3555 {
3556 struct regcache *regcache;
3557 struct gdbarch *gdbarch;
3558 int decr_pc;
3559
3560 regcache = get_thread_regcache (tp->ptid);
3561 gdbarch = regcache->arch ();
3562
3563 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3564 if (decr_pc != 0)
3565 {
3566 CORE_ADDR pc;
3567
3568 pc = regcache_read_pc (regcache);
3569 regcache_write_pc (regcache, pc + decr_pc);
3570 }
3571 }
3572
3573 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3574 *status = tp->suspend.waitstatus;
3575 tp->suspend.waitstatus_pending_p = 0;
3576
3577 /* Wake up the event loop again, until all pending events are
3578 processed. */
3579 if (target_is_async_p ())
3580 mark_async_event_handler (infrun_async_inferior_event_token);
3581 return tp->ptid;
3582 }
3583
3584 /* But if we don't find one, we'll have to wait. */
3585
3586 if (deprecated_target_wait_hook)
3587 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3588 else
3589 event_ptid = target_wait (ptid, status, options);
3590
3591 return event_ptid;
3592 }
3593
3594 /* Prepare and stabilize the inferior for detaching it. E.g.,
3595 detaching while a thread is displaced stepping is a recipe for
3596 crashing it, as nothing would readjust the PC out of the scratch
3597 pad. */
3598
3599 void
3600 prepare_for_detach (void)
3601 {
3602 struct inferior *inf = current_inferior ();
3603 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3604 struct displaced_step_inferior_state *displaced;
3605
3606 displaced = get_displaced_stepping_state (inf->pid);
3607
3608 /* Is any thread of this process displaced stepping? If not,
3609 there's nothing else to do. */
3610 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3611 return;
3612
3613 if (debug_infrun)
3614 fprintf_unfiltered (gdb_stdlog,
3615 "displaced-stepping in-process while detaching");
3616
3617 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3618
3619 while (!ptid_equal (displaced->step_ptid, null_ptid))
3620 {
3621 struct cleanup *old_chain_2;
3622 struct execution_control_state ecss;
3623 struct execution_control_state *ecs;
3624
3625 ecs = &ecss;
3626 memset (ecs, 0, sizeof (*ecs));
3627
3628 overlay_cache_invalid = 1;
3629 /* Flush target cache before starting to handle each event.
3630 Target was running and cache could be stale. This is just a
3631 heuristic. Running threads may modify target memory, but we
3632 don't get any event. */
3633 target_dcache_invalidate ();
3634
3635 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3636
3637 if (debug_infrun)
3638 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3639
3640 /* If an error happens while handling the event, propagate GDB's
3641 knowledge of the executing state to the frontend/user running
3642 state. */
3643 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3644 &minus_one_ptid);
3645
3646 /* Now figure out what to do with the result of the result. */
3647 handle_inferior_event (ecs);
3648
3649 /* No error, don't finish the state yet. */
3650 discard_cleanups (old_chain_2);
3651
3652 /* Breakpoints and watchpoints are not installed on the target
3653 at this point, and signals are passed directly to the
3654 inferior, so this must mean the process is gone. */
3655 if (!ecs->wait_some_more)
3656 {
3657 restore_detaching.release ();
3658 error (_("Program exited while detaching"));
3659 }
3660 }
3661
3662 restore_detaching.release ();
3663 }
3664
3665 /* Wait for control to return from inferior to debugger.
3666
3667 If inferior gets a signal, we may decide to start it up again
3668 instead of returning. That is why there is a loop in this function.
3669 When this function actually returns it means the inferior
3670 should be left stopped and GDB should read more commands. */
3671
3672 void
3673 wait_for_inferior (void)
3674 {
3675 struct cleanup *old_cleanups;
3676 struct cleanup *thread_state_chain;
3677
3678 if (debug_infrun)
3679 fprintf_unfiltered
3680 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3681
3682 old_cleanups
3683 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3684 NULL);
3685
3686 /* If an error happens while handling the event, propagate GDB's
3687 knowledge of the executing state to the frontend/user running
3688 state. */
3689 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3690
3691 while (1)
3692 {
3693 struct execution_control_state ecss;
3694 struct execution_control_state *ecs = &ecss;
3695 ptid_t waiton_ptid = minus_one_ptid;
3696
3697 memset (ecs, 0, sizeof (*ecs));
3698
3699 overlay_cache_invalid = 1;
3700
3701 /* Flush target cache before starting to handle each event.
3702 Target was running and cache could be stale. This is just a
3703 heuristic. Running threads may modify target memory, but we
3704 don't get any event. */
3705 target_dcache_invalidate ();
3706
3707 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3708
3709 if (debug_infrun)
3710 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3711
3712 /* Now figure out what to do with the result of the result. */
3713 handle_inferior_event (ecs);
3714
3715 if (!ecs->wait_some_more)
3716 break;
3717 }
3718
3719 /* No error, don't finish the state yet. */
3720 discard_cleanups (thread_state_chain);
3721
3722 do_cleanups (old_cleanups);
3723 }
3724
3725 /* Cleanup that reinstalls the readline callback handler, if the
3726 target is running in the background. If while handling the target
3727 event something triggered a secondary prompt, like e.g., a
3728 pagination prompt, we'll have removed the callback handler (see
3729 gdb_readline_wrapper_line). Need to do this as we go back to the
3730 event loop, ready to process further input. Note this has no
3731 effect if the handler hasn't actually been removed, because calling
3732 rl_callback_handler_install resets the line buffer, thus losing
3733 input. */
3734
3735 static void
3736 reinstall_readline_callback_handler_cleanup (void *arg)
3737 {
3738 struct ui *ui = current_ui;
3739
3740 if (!ui->async)
3741 {
3742 /* We're not going back to the top level event loop yet. Don't
3743 install the readline callback, as it'd prep the terminal,
3744 readline-style (raw, noecho) (e.g., --batch). We'll install
3745 it the next time the prompt is displayed, when we're ready
3746 for input. */
3747 return;
3748 }
3749
3750 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3751 gdb_rl_callback_handler_reinstall ();
3752 }
3753
3754 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3755 that's just the event thread. In all-stop, that's all threads. */
3756
3757 static void
3758 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3759 {
3760 struct thread_info *thr = ecs->event_thread;
3761
3762 if (thr != NULL && thr->thread_fsm != NULL)
3763 thread_fsm_clean_up (thr->thread_fsm, thr);
3764
3765 if (!non_stop)
3766 {
3767 ALL_NON_EXITED_THREADS (thr)
3768 {
3769 if (thr->thread_fsm == NULL)
3770 continue;
3771 if (thr == ecs->event_thread)
3772 continue;
3773
3774 switch_to_thread (thr->ptid);
3775 thread_fsm_clean_up (thr->thread_fsm, thr);
3776 }
3777
3778 if (ecs->event_thread != NULL)
3779 switch_to_thread (ecs->event_thread->ptid);
3780 }
3781 }
3782
3783 /* Helper for all_uis_check_sync_execution_done that works on the
3784 current UI. */
3785
3786 static void
3787 check_curr_ui_sync_execution_done (void)
3788 {
3789 struct ui *ui = current_ui;
3790
3791 if (ui->prompt_state == PROMPT_NEEDED
3792 && ui->async
3793 && !gdb_in_secondary_prompt_p (ui))
3794 {
3795 target_terminal::ours ();
3796 observer_notify_sync_execution_done ();
3797 ui_register_input_event_handler (ui);
3798 }
3799 }
3800
3801 /* See infrun.h. */
3802
3803 void
3804 all_uis_check_sync_execution_done (void)
3805 {
3806 SWITCH_THRU_ALL_UIS ()
3807 {
3808 check_curr_ui_sync_execution_done ();
3809 }
3810 }
3811
3812 /* See infrun.h. */
3813
3814 void
3815 all_uis_on_sync_execution_starting (void)
3816 {
3817 SWITCH_THRU_ALL_UIS ()
3818 {
3819 if (current_ui->prompt_state == PROMPT_NEEDED)
3820 async_disable_stdin ();
3821 }
3822 }
3823
3824 /* Asynchronous version of wait_for_inferior. It is called by the
3825 event loop whenever a change of state is detected on the file
3826 descriptor corresponding to the target. It can be called more than
3827 once to complete a single execution command. In such cases we need
3828 to keep the state in a global variable ECSS. If it is the last time
3829 that this function is called for a single execution command, then
3830 report to the user that the inferior has stopped, and do the
3831 necessary cleanups. */
3832
3833 void
3834 fetch_inferior_event (void *client_data)
3835 {
3836 struct execution_control_state ecss;
3837 struct execution_control_state *ecs = &ecss;
3838 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3839 struct cleanup *ts_old_chain;
3840 int cmd_done = 0;
3841 ptid_t waiton_ptid = minus_one_ptid;
3842
3843 memset (ecs, 0, sizeof (*ecs));
3844
3845 /* Events are always processed with the main UI as current UI. This
3846 way, warnings, debug output, etc. are always consistently sent to
3847 the main console. */
3848 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3849
3850 /* End up with readline processing input, if necessary. */
3851 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3852
3853 /* We're handling a live event, so make sure we're doing live
3854 debugging. If we're looking at traceframes while the target is
3855 running, we're going to need to get back to that mode after
3856 handling the event. */
3857 if (non_stop)
3858 {
3859 make_cleanup_restore_current_traceframe ();
3860 set_current_traceframe (-1);
3861 }
3862
3863 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3864
3865 if (non_stop)
3866 /* In non-stop mode, the user/frontend should not notice a thread
3867 switch due to internal events. Make sure we reverse to the
3868 user selected thread and frame after handling the event and
3869 running any breakpoint commands. */
3870 maybe_restore_thread.emplace ();
3871
3872 overlay_cache_invalid = 1;
3873 /* Flush target cache before starting to handle each event. Target
3874 was running and cache could be stale. This is just a heuristic.
3875 Running threads may modify target memory, but we don't get any
3876 event. */
3877 target_dcache_invalidate ();
3878
3879 scoped_restore save_exec_dir
3880 = make_scoped_restore (&execution_direction, target_execution_direction ());
3881
3882 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3883 target_can_async_p () ? TARGET_WNOHANG : 0);
3884
3885 if (debug_infrun)
3886 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3887
3888 /* If an error happens while handling the event, propagate GDB's
3889 knowledge of the executing state to the frontend/user running
3890 state. */
3891 if (!target_is_non_stop_p ())
3892 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3893 else
3894 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3895
3896 /* Get executed before make_cleanup_restore_current_thread above to apply
3897 still for the thread which has thrown the exception. */
3898 make_bpstat_clear_actions_cleanup ();
3899
3900 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3901
3902 /* Now figure out what to do with the result of the result. */
3903 handle_inferior_event (ecs);
3904
3905 if (!ecs->wait_some_more)
3906 {
3907 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3908 int should_stop = 1;
3909 struct thread_info *thr = ecs->event_thread;
3910 int should_notify_stop = 1;
3911
3912 delete_just_stopped_threads_infrun_breakpoints ();
3913
3914 if (thr != NULL)
3915 {
3916 struct thread_fsm *thread_fsm = thr->thread_fsm;
3917
3918 if (thread_fsm != NULL)
3919 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3920 }
3921
3922 if (!should_stop)
3923 {
3924 keep_going (ecs);
3925 }
3926 else
3927 {
3928 clean_up_just_stopped_threads_fsms (ecs);
3929
3930 if (thr != NULL && thr->thread_fsm != NULL)
3931 {
3932 should_notify_stop
3933 = thread_fsm_should_notify_stop (thr->thread_fsm);
3934 }
3935
3936 if (should_notify_stop)
3937 {
3938 int proceeded = 0;
3939
3940 /* We may not find an inferior if this was a process exit. */
3941 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3942 proceeded = normal_stop ();
3943
3944 if (!proceeded)
3945 {
3946 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3947 cmd_done = 1;
3948 }
3949 }
3950 }
3951 }
3952
3953 /* No error, don't finish the thread states yet. */
3954 discard_cleanups (ts_old_chain);
3955
3956 /* Revert thread and frame. */
3957 do_cleanups (old_chain);
3958
3959 /* If a UI was in sync execution mode, and now isn't, restore its
3960 prompt (a synchronous execution command has finished, and we're
3961 ready for input). */
3962 all_uis_check_sync_execution_done ();
3963
3964 if (cmd_done
3965 && exec_done_display_p
3966 && (ptid_equal (inferior_ptid, null_ptid)
3967 || !is_running (inferior_ptid)))
3968 printf_unfiltered (_("completed.\n"));
3969 }
3970
3971 /* Record the frame and location we're currently stepping through. */
3972 void
3973 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3974 {
3975 struct thread_info *tp = inferior_thread ();
3976
3977 tp->control.step_frame_id = get_frame_id (frame);
3978 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3979
3980 tp->current_symtab = sal.symtab;
3981 tp->current_line = sal.line;
3982 }
3983
3984 /* Clear context switchable stepping state. */
3985
3986 void
3987 init_thread_stepping_state (struct thread_info *tss)
3988 {
3989 tss->stepped_breakpoint = 0;
3990 tss->stepping_over_breakpoint = 0;
3991 tss->stepping_over_watchpoint = 0;
3992 tss->step_after_step_resume_breakpoint = 0;
3993 }
3994
3995 /* Set the cached copy of the last ptid/waitstatus. */
3996
3997 void
3998 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3999 {
4000 target_last_wait_ptid = ptid;
4001 target_last_waitstatus = status;
4002 }
4003
4004 /* Return the cached copy of the last pid/waitstatus returned by
4005 target_wait()/deprecated_target_wait_hook(). The data is actually
4006 cached by handle_inferior_event(), which gets called immediately
4007 after target_wait()/deprecated_target_wait_hook(). */
4008
4009 void
4010 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4011 {
4012 *ptidp = target_last_wait_ptid;
4013 *status = target_last_waitstatus;
4014 }
4015
4016 void
4017 nullify_last_target_wait_ptid (void)
4018 {
4019 target_last_wait_ptid = minus_one_ptid;
4020 }
4021
4022 /* Switch thread contexts. */
4023
4024 static void
4025 context_switch (ptid_t ptid)
4026 {
4027 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4028 {
4029 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4030 target_pid_to_str (inferior_ptid));
4031 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4032 target_pid_to_str (ptid));
4033 }
4034
4035 switch_to_thread (ptid);
4036 }
4037
4038 /* If the target can't tell whether we've hit breakpoints
4039 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4040 check whether that could have been caused by a breakpoint. If so,
4041 adjust the PC, per gdbarch_decr_pc_after_break. */
4042
4043 static void
4044 adjust_pc_after_break (struct thread_info *thread,
4045 struct target_waitstatus *ws)
4046 {
4047 struct regcache *regcache;
4048 struct gdbarch *gdbarch;
4049 CORE_ADDR breakpoint_pc, decr_pc;
4050
4051 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4052 we aren't, just return.
4053
4054 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4055 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4056 implemented by software breakpoints should be handled through the normal
4057 breakpoint layer.
4058
4059 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4060 different signals (SIGILL or SIGEMT for instance), but it is less
4061 clear where the PC is pointing afterwards. It may not match
4062 gdbarch_decr_pc_after_break. I don't know any specific target that
4063 generates these signals at breakpoints (the code has been in GDB since at
4064 least 1992) so I can not guess how to handle them here.
4065
4066 In earlier versions of GDB, a target with
4067 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4068 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4069 target with both of these set in GDB history, and it seems unlikely to be
4070 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4071
4072 if (ws->kind != TARGET_WAITKIND_STOPPED)
4073 return;
4074
4075 if (ws->value.sig != GDB_SIGNAL_TRAP)
4076 return;
4077
4078 /* In reverse execution, when a breakpoint is hit, the instruction
4079 under it has already been de-executed. The reported PC always
4080 points at the breakpoint address, so adjusting it further would
4081 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4082 architecture:
4083
4084 B1 0x08000000 : INSN1
4085 B2 0x08000001 : INSN2
4086 0x08000002 : INSN3
4087 PC -> 0x08000003 : INSN4
4088
4089 Say you're stopped at 0x08000003 as above. Reverse continuing
4090 from that point should hit B2 as below. Reading the PC when the
4091 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4092 been de-executed already.
4093
4094 B1 0x08000000 : INSN1
4095 B2 PC -> 0x08000001 : INSN2
4096 0x08000002 : INSN3
4097 0x08000003 : INSN4
4098
4099 We can't apply the same logic as for forward execution, because
4100 we would wrongly adjust the PC to 0x08000000, since there's a
4101 breakpoint at PC - 1. We'd then report a hit on B1, although
4102 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4103 behaviour. */
4104 if (execution_direction == EXEC_REVERSE)
4105 return;
4106
4107 /* If the target can tell whether the thread hit a SW breakpoint,
4108 trust it. Targets that can tell also adjust the PC
4109 themselves. */
4110 if (target_supports_stopped_by_sw_breakpoint ())
4111 return;
4112
4113 /* Note that relying on whether a breakpoint is planted in memory to
4114 determine this can fail. E.g,. the breakpoint could have been
4115 removed since. Or the thread could have been told to step an
4116 instruction the size of a breakpoint instruction, and only
4117 _after_ was a breakpoint inserted at its address. */
4118
4119 /* If this target does not decrement the PC after breakpoints, then
4120 we have nothing to do. */
4121 regcache = get_thread_regcache (thread->ptid);
4122 gdbarch = regcache->arch ();
4123
4124 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4125 if (decr_pc == 0)
4126 return;
4127
4128 const address_space *aspace = regcache->aspace ();
4129
4130 /* Find the location where (if we've hit a breakpoint) the
4131 breakpoint would be. */
4132 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4133
4134 /* If the target can't tell whether a software breakpoint triggered,
4135 fallback to figuring it out based on breakpoints we think were
4136 inserted in the target, and on whether the thread was stepped or
4137 continued. */
4138
4139 /* Check whether there actually is a software breakpoint inserted at
4140 that location.
4141
4142 If in non-stop mode, a race condition is possible where we've
4143 removed a breakpoint, but stop events for that breakpoint were
4144 already queued and arrive later. To suppress those spurious
4145 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4146 and retire them after a number of stop events are reported. Note
4147 this is an heuristic and can thus get confused. The real fix is
4148 to get the "stopped by SW BP and needs adjustment" info out of
4149 the target/kernel (and thus never reach here; see above). */
4150 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4151 || (target_is_non_stop_p ()
4152 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4153 {
4154 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4155
4156 if (record_full_is_used ())
4157 restore_operation_disable.emplace
4158 (record_full_gdb_operation_disable_set ());
4159
4160 /* When using hardware single-step, a SIGTRAP is reported for both
4161 a completed single-step and a software breakpoint. Need to
4162 differentiate between the two, as the latter needs adjusting
4163 but the former does not.
4164
4165 The SIGTRAP can be due to a completed hardware single-step only if
4166 - we didn't insert software single-step breakpoints
4167 - this thread is currently being stepped
4168
4169 If any of these events did not occur, we must have stopped due
4170 to hitting a software breakpoint, and have to back up to the
4171 breakpoint address.
4172
4173 As a special case, we could have hardware single-stepped a
4174 software breakpoint. In this case (prev_pc == breakpoint_pc),
4175 we also need to back up to the breakpoint address. */
4176
4177 if (thread_has_single_step_breakpoints_set (thread)
4178 || !currently_stepping (thread)
4179 || (thread->stepped_breakpoint
4180 && thread->prev_pc == breakpoint_pc))
4181 regcache_write_pc (regcache, breakpoint_pc);
4182 }
4183 }
4184
4185 static int
4186 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4187 {
4188 for (frame = get_prev_frame (frame);
4189 frame != NULL;
4190 frame = get_prev_frame (frame))
4191 {
4192 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4193 return 1;
4194 if (get_frame_type (frame) != INLINE_FRAME)
4195 break;
4196 }
4197
4198 return 0;
4199 }
4200
4201 /* If the event thread has the stop requested flag set, pretend it
4202 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4203 target_stop). */
4204
4205 static bool
4206 handle_stop_requested (struct execution_control_state *ecs)
4207 {
4208 if (ecs->event_thread->stop_requested)
4209 {
4210 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4211 ecs->ws.value.sig = GDB_SIGNAL_0;
4212 handle_signal_stop (ecs);
4213 return true;
4214 }
4215 return false;
4216 }
4217
4218 /* Auxiliary function that handles syscall entry/return events.
4219 It returns 1 if the inferior should keep going (and GDB
4220 should ignore the event), or 0 if the event deserves to be
4221 processed. */
4222
4223 static int
4224 handle_syscall_event (struct execution_control_state *ecs)
4225 {
4226 struct regcache *regcache;
4227 int syscall_number;
4228
4229 if (!ptid_equal (ecs->ptid, inferior_ptid))
4230 context_switch (ecs->ptid);
4231
4232 regcache = get_thread_regcache (ecs->ptid);
4233 syscall_number = ecs->ws.value.syscall_number;
4234 stop_pc = regcache_read_pc (regcache);
4235
4236 if (catch_syscall_enabled () > 0
4237 && catching_syscall_number (syscall_number) > 0)
4238 {
4239 if (debug_infrun)
4240 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4241 syscall_number);
4242
4243 ecs->event_thread->control.stop_bpstat
4244 = bpstat_stop_status (regcache->aspace (),
4245 stop_pc, ecs->ptid, &ecs->ws);
4246
4247 if (handle_stop_requested (ecs))
4248 return 0;
4249
4250 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4251 {
4252 /* Catchpoint hit. */
4253 return 0;
4254 }
4255 }
4256
4257 if (handle_stop_requested (ecs))
4258 return 0;
4259
4260 /* If no catchpoint triggered for this, then keep going. */
4261 keep_going (ecs);
4262 return 1;
4263 }
4264
4265 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4266
4267 static void
4268 fill_in_stop_func (struct gdbarch *gdbarch,
4269 struct execution_control_state *ecs)
4270 {
4271 if (!ecs->stop_func_filled_in)
4272 {
4273 /* Don't care about return value; stop_func_start and stop_func_name
4274 will both be 0 if it doesn't work. */
4275 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4276 &ecs->stop_func_start, &ecs->stop_func_end);
4277 ecs->stop_func_start
4278 += gdbarch_deprecated_function_start_offset (gdbarch);
4279
4280 if (gdbarch_skip_entrypoint_p (gdbarch))
4281 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4282 ecs->stop_func_start);
4283
4284 ecs->stop_func_filled_in = 1;
4285 }
4286 }
4287
4288
4289 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4290
4291 static enum stop_kind
4292 get_inferior_stop_soon (ptid_t ptid)
4293 {
4294 struct inferior *inf = find_inferior_ptid (ptid);
4295
4296 gdb_assert (inf != NULL);
4297 return inf->control.stop_soon;
4298 }
4299
4300 /* Wait for one event. Store the resulting waitstatus in WS, and
4301 return the event ptid. */
4302
4303 static ptid_t
4304 wait_one (struct target_waitstatus *ws)
4305 {
4306 ptid_t event_ptid;
4307 ptid_t wait_ptid = minus_one_ptid;
4308
4309 overlay_cache_invalid = 1;
4310
4311 /* Flush target cache before starting to handle each event.
4312 Target was running and cache could be stale. This is just a
4313 heuristic. Running threads may modify target memory, but we
4314 don't get any event. */
4315 target_dcache_invalidate ();
4316
4317 if (deprecated_target_wait_hook)
4318 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4319 else
4320 event_ptid = target_wait (wait_ptid, ws, 0);
4321
4322 if (debug_infrun)
4323 print_target_wait_results (wait_ptid, event_ptid, ws);
4324
4325 return event_ptid;
4326 }
4327
4328 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4329 instead of the current thread. */
4330 #define THREAD_STOPPED_BY(REASON) \
4331 static int \
4332 thread_stopped_by_ ## REASON (ptid_t ptid) \
4333 { \
4334 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4335 inferior_ptid = ptid; \
4336 \
4337 return target_stopped_by_ ## REASON (); \
4338 }
4339
4340 /* Generate thread_stopped_by_watchpoint. */
4341 THREAD_STOPPED_BY (watchpoint)
4342 /* Generate thread_stopped_by_sw_breakpoint. */
4343 THREAD_STOPPED_BY (sw_breakpoint)
4344 /* Generate thread_stopped_by_hw_breakpoint. */
4345 THREAD_STOPPED_BY (hw_breakpoint)
4346
4347 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4348
4349 static void
4350 switch_to_thread_cleanup (void *ptid_p)
4351 {
4352 ptid_t ptid = *(ptid_t *) ptid_p;
4353
4354 switch_to_thread (ptid);
4355 }
4356
4357 /* Save the thread's event and stop reason to process it later. */
4358
4359 static void
4360 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4361 {
4362 struct regcache *regcache;
4363
4364 if (debug_infrun)
4365 {
4366 std::string statstr = target_waitstatus_to_string (ws);
4367
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: saving status %s for %d.%ld.%ld\n",
4370 statstr.c_str (),
4371 ptid_get_pid (tp->ptid),
4372 ptid_get_lwp (tp->ptid),
4373 ptid_get_tid (tp->ptid));
4374 }
4375
4376 /* Record for later. */
4377 tp->suspend.waitstatus = *ws;
4378 tp->suspend.waitstatus_pending_p = 1;
4379
4380 regcache = get_thread_regcache (tp->ptid);
4381 const address_space *aspace = regcache->aspace ();
4382
4383 if (ws->kind == TARGET_WAITKIND_STOPPED
4384 && ws->value.sig == GDB_SIGNAL_TRAP)
4385 {
4386 CORE_ADDR pc = regcache_read_pc (regcache);
4387
4388 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4389
4390 if (thread_stopped_by_watchpoint (tp->ptid))
4391 {
4392 tp->suspend.stop_reason
4393 = TARGET_STOPPED_BY_WATCHPOINT;
4394 }
4395 else if (target_supports_stopped_by_sw_breakpoint ()
4396 && thread_stopped_by_sw_breakpoint (tp->ptid))
4397 {
4398 tp->suspend.stop_reason
4399 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4400 }
4401 else if (target_supports_stopped_by_hw_breakpoint ()
4402 && thread_stopped_by_hw_breakpoint (tp->ptid))
4403 {
4404 tp->suspend.stop_reason
4405 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4406 }
4407 else if (!target_supports_stopped_by_hw_breakpoint ()
4408 && hardware_breakpoint_inserted_here_p (aspace,
4409 pc))
4410 {
4411 tp->suspend.stop_reason
4412 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4413 }
4414 else if (!target_supports_stopped_by_sw_breakpoint ()
4415 && software_breakpoint_inserted_here_p (aspace,
4416 pc))
4417 {
4418 tp->suspend.stop_reason
4419 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4420 }
4421 else if (!thread_has_single_step_breakpoints_set (tp)
4422 && currently_stepping (tp))
4423 {
4424 tp->suspend.stop_reason
4425 = TARGET_STOPPED_BY_SINGLE_STEP;
4426 }
4427 }
4428 }
4429
4430 /* A cleanup that disables thread create/exit events. */
4431
4432 static void
4433 disable_thread_events (void *arg)
4434 {
4435 target_thread_events (0);
4436 }
4437
4438 /* See infrun.h. */
4439
4440 void
4441 stop_all_threads (void)
4442 {
4443 /* We may need multiple passes to discover all threads. */
4444 int pass;
4445 int iterations = 0;
4446 ptid_t entry_ptid;
4447 struct cleanup *old_chain;
4448
4449 gdb_assert (target_is_non_stop_p ());
4450
4451 if (debug_infrun)
4452 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4453
4454 entry_ptid = inferior_ptid;
4455 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4456
4457 target_thread_events (1);
4458 make_cleanup (disable_thread_events, NULL);
4459
4460 /* Request threads to stop, and then wait for the stops. Because
4461 threads we already know about can spawn more threads while we're
4462 trying to stop them, and we only learn about new threads when we
4463 update the thread list, do this in a loop, and keep iterating
4464 until two passes find no threads that need to be stopped. */
4465 for (pass = 0; pass < 2; pass++, iterations++)
4466 {
4467 if (debug_infrun)
4468 fprintf_unfiltered (gdb_stdlog,
4469 "infrun: stop_all_threads, pass=%d, "
4470 "iterations=%d\n", pass, iterations);
4471 while (1)
4472 {
4473 ptid_t event_ptid;
4474 struct target_waitstatus ws;
4475 int need_wait = 0;
4476 struct thread_info *t;
4477
4478 update_thread_list ();
4479
4480 /* Go through all threads looking for threads that we need
4481 to tell the target to stop. */
4482 ALL_NON_EXITED_THREADS (t)
4483 {
4484 if (t->executing)
4485 {
4486 /* If already stopping, don't request a stop again.
4487 We just haven't seen the notification yet. */
4488 if (!t->stop_requested)
4489 {
4490 if (debug_infrun)
4491 fprintf_unfiltered (gdb_stdlog,
4492 "infrun: %s executing, "
4493 "need stop\n",
4494 target_pid_to_str (t->ptid));
4495 target_stop (t->ptid);
4496 t->stop_requested = 1;
4497 }
4498 else
4499 {
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog,
4502 "infrun: %s executing, "
4503 "already stopping\n",
4504 target_pid_to_str (t->ptid));
4505 }
4506
4507 if (t->stop_requested)
4508 need_wait = 1;
4509 }
4510 else
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: %s not executing\n",
4515 target_pid_to_str (t->ptid));
4516
4517 /* The thread may be not executing, but still be
4518 resumed with a pending status to process. */
4519 t->resumed = 0;
4520 }
4521 }
4522
4523 if (!need_wait)
4524 break;
4525
4526 /* If we find new threads on the second iteration, restart
4527 over. We want to see two iterations in a row with all
4528 threads stopped. */
4529 if (pass > 0)
4530 pass = -1;
4531
4532 event_ptid = wait_one (&ws);
4533 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4534 {
4535 /* All resumed threads exited. */
4536 }
4537 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4538 || ws.kind == TARGET_WAITKIND_EXITED
4539 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4540 {
4541 if (debug_infrun)
4542 {
4543 ptid_t ptid = pid_to_ptid (ws.value.integer);
4544
4545 fprintf_unfiltered (gdb_stdlog,
4546 "infrun: %s exited while "
4547 "stopping threads\n",
4548 target_pid_to_str (ptid));
4549 }
4550 }
4551 else
4552 {
4553 struct inferior *inf;
4554
4555 t = find_thread_ptid (event_ptid);
4556 if (t == NULL)
4557 t = add_thread (event_ptid);
4558
4559 t->stop_requested = 0;
4560 t->executing = 0;
4561 t->resumed = 0;
4562 t->control.may_range_step = 0;
4563
4564 /* This may be the first time we see the inferior report
4565 a stop. */
4566 inf = find_inferior_ptid (event_ptid);
4567 if (inf->needs_setup)
4568 {
4569 switch_to_thread_no_regs (t);
4570 setup_inferior (0);
4571 }
4572
4573 if (ws.kind == TARGET_WAITKIND_STOPPED
4574 && ws.value.sig == GDB_SIGNAL_0)
4575 {
4576 /* We caught the event that we intended to catch, so
4577 there's no event pending. */
4578 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4579 t->suspend.waitstatus_pending_p = 0;
4580
4581 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4582 {
4583 /* Add it back to the step-over queue. */
4584 if (debug_infrun)
4585 {
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: displaced-step of %s "
4588 "canceled: adding back to the "
4589 "step-over queue\n",
4590 target_pid_to_str (t->ptid));
4591 }
4592 t->control.trap_expected = 0;
4593 thread_step_over_chain_enqueue (t);
4594 }
4595 }
4596 else
4597 {
4598 enum gdb_signal sig;
4599 struct regcache *regcache;
4600
4601 if (debug_infrun)
4602 {
4603 std::string statstr = target_waitstatus_to_string (&ws);
4604
4605 fprintf_unfiltered (gdb_stdlog,
4606 "infrun: target_wait %s, saving "
4607 "status for %d.%ld.%ld\n",
4608 statstr.c_str (),
4609 ptid_get_pid (t->ptid),
4610 ptid_get_lwp (t->ptid),
4611 ptid_get_tid (t->ptid));
4612 }
4613
4614 /* Record for later. */
4615 save_waitstatus (t, &ws);
4616
4617 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4618 ? ws.value.sig : GDB_SIGNAL_0);
4619
4620 if (displaced_step_fixup (t->ptid, sig) < 0)
4621 {
4622 /* Add it back to the step-over queue. */
4623 t->control.trap_expected = 0;
4624 thread_step_over_chain_enqueue (t);
4625 }
4626
4627 regcache = get_thread_regcache (t->ptid);
4628 t->suspend.stop_pc = regcache_read_pc (regcache);
4629
4630 if (debug_infrun)
4631 {
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: saved stop_pc=%s for %s "
4634 "(currently_stepping=%d)\n",
4635 paddress (target_gdbarch (),
4636 t->suspend.stop_pc),
4637 target_pid_to_str (t->ptid),
4638 currently_stepping (t));
4639 }
4640 }
4641 }
4642 }
4643 }
4644
4645 do_cleanups (old_chain);
4646
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4649 }
4650
4651 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4652
4653 static int
4654 handle_no_resumed (struct execution_control_state *ecs)
4655 {
4656 struct inferior *inf;
4657 struct thread_info *thread;
4658
4659 if (target_can_async_p ())
4660 {
4661 struct ui *ui;
4662 int any_sync = 0;
4663
4664 ALL_UIS (ui)
4665 {
4666 if (ui->prompt_state == PROMPT_BLOCKED)
4667 {
4668 any_sync = 1;
4669 break;
4670 }
4671 }
4672 if (!any_sync)
4673 {
4674 /* There were no unwaited-for children left in the target, but,
4675 we're not synchronously waiting for events either. Just
4676 ignore. */
4677
4678 if (debug_infrun)
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: TARGET_WAITKIND_NO_RESUMED "
4681 "(ignoring: bg)\n");
4682 prepare_to_wait (ecs);
4683 return 1;
4684 }
4685 }
4686
4687 /* Otherwise, if we were running a synchronous execution command, we
4688 may need to cancel it and give the user back the terminal.
4689
4690 In non-stop mode, the target can't tell whether we've already
4691 consumed previous stop events, so it can end up sending us a
4692 no-resumed event like so:
4693
4694 #0 - thread 1 is left stopped
4695
4696 #1 - thread 2 is resumed and hits breakpoint
4697 -> TARGET_WAITKIND_STOPPED
4698
4699 #2 - thread 3 is resumed and exits
4700 this is the last resumed thread, so
4701 -> TARGET_WAITKIND_NO_RESUMED
4702
4703 #3 - gdb processes stop for thread 2 and decides to re-resume
4704 it.
4705
4706 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4707 thread 2 is now resumed, so the event should be ignored.
4708
4709 IOW, if the stop for thread 2 doesn't end a foreground command,
4710 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4711 event. But it could be that the event meant that thread 2 itself
4712 (or whatever other thread was the last resumed thread) exited.
4713
4714 To address this we refresh the thread list and check whether we
4715 have resumed threads _now_. In the example above, this removes
4716 thread 3 from the thread list. If thread 2 was re-resumed, we
4717 ignore this event. If we find no thread resumed, then we cancel
4718 the synchronous command show "no unwaited-for " to the user. */
4719 update_thread_list ();
4720
4721 ALL_NON_EXITED_THREADS (thread)
4722 {
4723 if (thread->executing
4724 || thread->suspend.waitstatus_pending_p)
4725 {
4726 /* There were no unwaited-for children left in the target at
4727 some point, but there are now. Just ignore. */
4728 if (debug_infrun)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "infrun: TARGET_WAITKIND_NO_RESUMED "
4731 "(ignoring: found resumed)\n");
4732 prepare_to_wait (ecs);
4733 return 1;
4734 }
4735 }
4736
4737 /* Note however that we may find no resumed thread because the whole
4738 process exited meanwhile (thus updating the thread list results
4739 in an empty thread list). In this case we know we'll be getting
4740 a process exit event shortly. */
4741 ALL_INFERIORS (inf)
4742 {
4743 if (inf->pid == 0)
4744 continue;
4745
4746 thread = any_live_thread_of_process (inf->pid);
4747 if (thread == NULL)
4748 {
4749 if (debug_infrun)
4750 fprintf_unfiltered (gdb_stdlog,
4751 "infrun: TARGET_WAITKIND_NO_RESUMED "
4752 "(expect process exit)\n");
4753 prepare_to_wait (ecs);
4754 return 1;
4755 }
4756 }
4757
4758 /* Go ahead and report the event. */
4759 return 0;
4760 }
4761
4762 /* Given an execution control state that has been freshly filled in by
4763 an event from the inferior, figure out what it means and take
4764 appropriate action.
4765
4766 The alternatives are:
4767
4768 1) stop_waiting and return; to really stop and return to the
4769 debugger.
4770
4771 2) keep_going and return; to wait for the next event (set
4772 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4773 once). */
4774
4775 static void
4776 handle_inferior_event_1 (struct execution_control_state *ecs)
4777 {
4778 enum stop_kind stop_soon;
4779
4780 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4781 {
4782 /* We had an event in the inferior, but we are not interested in
4783 handling it at this level. The lower layers have already
4784 done what needs to be done, if anything.
4785
4786 One of the possible circumstances for this is when the
4787 inferior produces output for the console. The inferior has
4788 not stopped, and we are ignoring the event. Another possible
4789 circumstance is any event which the lower level knows will be
4790 reported multiple times without an intervening resume. */
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4793 prepare_to_wait (ecs);
4794 return;
4795 }
4796
4797 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4798 {
4799 if (debug_infrun)
4800 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4801 prepare_to_wait (ecs);
4802 return;
4803 }
4804
4805 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4806 && handle_no_resumed (ecs))
4807 return;
4808
4809 /* Cache the last pid/waitstatus. */
4810 set_last_target_status (ecs->ptid, ecs->ws);
4811
4812 /* Always clear state belonging to the previous time we stopped. */
4813 stop_stack_dummy = STOP_NONE;
4814
4815 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4816 {
4817 /* No unwaited-for children left. IOW, all resumed children
4818 have exited. */
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4821
4822 stop_print_frame = 0;
4823 stop_waiting (ecs);
4824 return;
4825 }
4826
4827 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4828 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4829 {
4830 ecs->event_thread = find_thread_ptid (ecs->ptid);
4831 /* If it's a new thread, add it to the thread database. */
4832 if (ecs->event_thread == NULL)
4833 ecs->event_thread = add_thread (ecs->ptid);
4834
4835 /* Disable range stepping. If the next step request could use a
4836 range, this will be end up re-enabled then. */
4837 ecs->event_thread->control.may_range_step = 0;
4838 }
4839
4840 /* Dependent on valid ECS->EVENT_THREAD. */
4841 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4842
4843 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4844 reinit_frame_cache ();
4845
4846 breakpoint_retire_moribund ();
4847
4848 /* First, distinguish signals caused by the debugger from signals
4849 that have to do with the program's own actions. Note that
4850 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4851 on the operating system version. Here we detect when a SIGILL or
4852 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4853 something similar for SIGSEGV, since a SIGSEGV will be generated
4854 when we're trying to execute a breakpoint instruction on a
4855 non-executable stack. This happens for call dummy breakpoints
4856 for architectures like SPARC that place call dummies on the
4857 stack. */
4858 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4859 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4860 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4861 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4862 {
4863 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4864
4865 if (breakpoint_inserted_here_p (regcache->aspace (),
4866 regcache_read_pc (regcache)))
4867 {
4868 if (debug_infrun)
4869 fprintf_unfiltered (gdb_stdlog,
4870 "infrun: Treating signal as SIGTRAP\n");
4871 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4872 }
4873 }
4874
4875 /* Mark the non-executing threads accordingly. In all-stop, all
4876 threads of all processes are stopped when we get any event
4877 reported. In non-stop mode, only the event thread stops. */
4878 {
4879 ptid_t mark_ptid;
4880
4881 if (!target_is_non_stop_p ())
4882 mark_ptid = minus_one_ptid;
4883 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4884 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4885 {
4886 /* If we're handling a process exit in non-stop mode, even
4887 though threads haven't been deleted yet, one would think
4888 that there is nothing to do, as threads of the dead process
4889 will be soon deleted, and threads of any other process were
4890 left running. However, on some targets, threads survive a
4891 process exit event. E.g., for the "checkpoint" command,
4892 when the current checkpoint/fork exits, linux-fork.c
4893 automatically switches to another fork from within
4894 target_mourn_inferior, by associating the same
4895 inferior/thread to another fork. We haven't mourned yet at
4896 this point, but we must mark any threads left in the
4897 process as not-executing so that finish_thread_state marks
4898 them stopped (in the user's perspective) if/when we present
4899 the stop to the user. */
4900 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4901 }
4902 else
4903 mark_ptid = ecs->ptid;
4904
4905 set_executing (mark_ptid, 0);
4906
4907 /* Likewise the resumed flag. */
4908 set_resumed (mark_ptid, 0);
4909 }
4910
4911 switch (ecs->ws.kind)
4912 {
4913 case TARGET_WAITKIND_LOADED:
4914 if (debug_infrun)
4915 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4916 if (!ptid_equal (ecs->ptid, inferior_ptid))
4917 context_switch (ecs->ptid);
4918 /* Ignore gracefully during startup of the inferior, as it might
4919 be the shell which has just loaded some objects, otherwise
4920 add the symbols for the newly loaded objects. Also ignore at
4921 the beginning of an attach or remote session; we will query
4922 the full list of libraries once the connection is
4923 established. */
4924
4925 stop_soon = get_inferior_stop_soon (ecs->ptid);
4926 if (stop_soon == NO_STOP_QUIETLY)
4927 {
4928 struct regcache *regcache;
4929
4930 regcache = get_thread_regcache (ecs->ptid);
4931
4932 handle_solib_event ();
4933
4934 ecs->event_thread->control.stop_bpstat
4935 = bpstat_stop_status (regcache->aspace (),
4936 stop_pc, ecs->ptid, &ecs->ws);
4937
4938 if (handle_stop_requested (ecs))
4939 return;
4940
4941 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4942 {
4943 /* A catchpoint triggered. */
4944 process_event_stop_test (ecs);
4945 return;
4946 }
4947
4948 /* If requested, stop when the dynamic linker notifies
4949 gdb of events. This allows the user to get control
4950 and place breakpoints in initializer routines for
4951 dynamically loaded objects (among other things). */
4952 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4953 if (stop_on_solib_events)
4954 {
4955 /* Make sure we print "Stopped due to solib-event" in
4956 normal_stop. */
4957 stop_print_frame = 1;
4958
4959 stop_waiting (ecs);
4960 return;
4961 }
4962 }
4963
4964 /* If we are skipping through a shell, or through shared library
4965 loading that we aren't interested in, resume the program. If
4966 we're running the program normally, also resume. */
4967 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4968 {
4969 /* Loading of shared libraries might have changed breakpoint
4970 addresses. Make sure new breakpoints are inserted. */
4971 if (stop_soon == NO_STOP_QUIETLY)
4972 insert_breakpoints ();
4973 resume (GDB_SIGNAL_0);
4974 prepare_to_wait (ecs);
4975 return;
4976 }
4977
4978 /* But stop if we're attaching or setting up a remote
4979 connection. */
4980 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4981 || stop_soon == STOP_QUIETLY_REMOTE)
4982 {
4983 if (debug_infrun)
4984 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4985 stop_waiting (ecs);
4986 return;
4987 }
4988
4989 internal_error (__FILE__, __LINE__,
4990 _("unhandled stop_soon: %d"), (int) stop_soon);
4991
4992 case TARGET_WAITKIND_SPURIOUS:
4993 if (debug_infrun)
4994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4995 if (handle_stop_requested (ecs))
4996 return;
4997 if (!ptid_equal (ecs->ptid, inferior_ptid))
4998 context_switch (ecs->ptid);
4999 resume (GDB_SIGNAL_0);
5000 prepare_to_wait (ecs);
5001 return;
5002
5003 case TARGET_WAITKIND_THREAD_CREATED:
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5006 if (handle_stop_requested (ecs))
5007 return;
5008 if (!ptid_equal (ecs->ptid, inferior_ptid))
5009 context_switch (ecs->ptid);
5010 if (!switch_back_to_stepped_thread (ecs))
5011 keep_going (ecs);
5012 return;
5013
5014 case TARGET_WAITKIND_EXITED:
5015 case TARGET_WAITKIND_SIGNALLED:
5016 if (debug_infrun)
5017 {
5018 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5019 fprintf_unfiltered (gdb_stdlog,
5020 "infrun: TARGET_WAITKIND_EXITED\n");
5021 else
5022 fprintf_unfiltered (gdb_stdlog,
5023 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5024 }
5025
5026 inferior_ptid = ecs->ptid;
5027 set_current_inferior (find_inferior_ptid (ecs->ptid));
5028 set_current_program_space (current_inferior ()->pspace);
5029 handle_vfork_child_exec_or_exit (0);
5030 target_terminal::ours (); /* Must do this before mourn anyway. */
5031
5032 /* Clearing any previous state of convenience variables. */
5033 clear_exit_convenience_vars ();
5034
5035 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5036 {
5037 /* Record the exit code in the convenience variable $_exitcode, so
5038 that the user can inspect this again later. */
5039 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5040 (LONGEST) ecs->ws.value.integer);
5041
5042 /* Also record this in the inferior itself. */
5043 current_inferior ()->has_exit_code = 1;
5044 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5045
5046 /* Support the --return-child-result option. */
5047 return_child_result_value = ecs->ws.value.integer;
5048
5049 observer_notify_exited (ecs->ws.value.integer);
5050 }
5051 else
5052 {
5053 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5054 struct gdbarch *gdbarch = regcache->arch ();
5055
5056 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5057 {
5058 /* Set the value of the internal variable $_exitsignal,
5059 which holds the signal uncaught by the inferior. */
5060 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5061 gdbarch_gdb_signal_to_target (gdbarch,
5062 ecs->ws.value.sig));
5063 }
5064 else
5065 {
5066 /* We don't have access to the target's method used for
5067 converting between signal numbers (GDB's internal
5068 representation <-> target's representation).
5069 Therefore, we cannot do a good job at displaying this
5070 information to the user. It's better to just warn
5071 her about it (if infrun debugging is enabled), and
5072 give up. */
5073 if (debug_infrun)
5074 fprintf_filtered (gdb_stdlog, _("\
5075 Cannot fill $_exitsignal with the correct signal number.\n"));
5076 }
5077
5078 observer_notify_signal_exited (ecs->ws.value.sig);
5079 }
5080
5081 gdb_flush (gdb_stdout);
5082 target_mourn_inferior (inferior_ptid);
5083 stop_print_frame = 0;
5084 stop_waiting (ecs);
5085 return;
5086
5087 /* The following are the only cases in which we keep going;
5088 the above cases end in a continue or goto. */
5089 case TARGET_WAITKIND_FORKED:
5090 case TARGET_WAITKIND_VFORKED:
5091 if (debug_infrun)
5092 {
5093 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5095 else
5096 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5097 }
5098
5099 /* Check whether the inferior is displaced stepping. */
5100 {
5101 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5102 struct gdbarch *gdbarch = regcache->arch ();
5103
5104 /* If checking displaced stepping is supported, and thread
5105 ecs->ptid is displaced stepping. */
5106 if (displaced_step_in_progress_thread (ecs->ptid))
5107 {
5108 struct inferior *parent_inf
5109 = find_inferior_ptid (ecs->ptid);
5110 struct regcache *child_regcache;
5111 CORE_ADDR parent_pc;
5112
5113 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5114 indicating that the displaced stepping of syscall instruction
5115 has been done. Perform cleanup for parent process here. Note
5116 that this operation also cleans up the child process for vfork,
5117 because their pages are shared. */
5118 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5119 /* Start a new step-over in another thread if there's one
5120 that needs it. */
5121 start_step_over ();
5122
5123 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5124 {
5125 struct displaced_step_inferior_state *displaced
5126 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5127
5128 /* Restore scratch pad for child process. */
5129 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5130 }
5131
5132 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5133 the child's PC is also within the scratchpad. Set the child's PC
5134 to the parent's PC value, which has already been fixed up.
5135 FIXME: we use the parent's aspace here, although we're touching
5136 the child, because the child hasn't been added to the inferior
5137 list yet at this point. */
5138
5139 child_regcache
5140 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5141 gdbarch,
5142 parent_inf->aspace);
5143 /* Read PC value of parent process. */
5144 parent_pc = regcache_read_pc (regcache);
5145
5146 if (debug_displaced)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "displaced: write child pc from %s to %s\n",
5149 paddress (gdbarch,
5150 regcache_read_pc (child_regcache)),
5151 paddress (gdbarch, parent_pc));
5152
5153 regcache_write_pc (child_regcache, parent_pc);
5154 }
5155 }
5156
5157 if (!ptid_equal (ecs->ptid, inferior_ptid))
5158 context_switch (ecs->ptid);
5159
5160 /* Immediately detach breakpoints from the child before there's
5161 any chance of letting the user delete breakpoints from the
5162 breakpoint lists. If we don't do this early, it's easy to
5163 leave left over traps in the child, vis: "break foo; catch
5164 fork; c; <fork>; del; c; <child calls foo>". We only follow
5165 the fork on the last `continue', and by that time the
5166 breakpoint at "foo" is long gone from the breakpoint table.
5167 If we vforked, then we don't need to unpatch here, since both
5168 parent and child are sharing the same memory pages; we'll
5169 need to unpatch at follow/detach time instead to be certain
5170 that new breakpoints added between catchpoint hit time and
5171 vfork follow are detached. */
5172 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5173 {
5174 /* This won't actually modify the breakpoint list, but will
5175 physically remove the breakpoints from the child. */
5176 detach_breakpoints (ecs->ws.value.related_pid);
5177 }
5178
5179 delete_just_stopped_threads_single_step_breakpoints ();
5180
5181 /* In case the event is caught by a catchpoint, remember that
5182 the event is to be followed at the next resume of the thread,
5183 and not immediately. */
5184 ecs->event_thread->pending_follow = ecs->ws;
5185
5186 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5187
5188 ecs->event_thread->control.stop_bpstat
5189 = bpstat_stop_status (get_current_regcache ()->aspace (),
5190 stop_pc, ecs->ptid, &ecs->ws);
5191
5192 if (handle_stop_requested (ecs))
5193 return;
5194
5195 /* If no catchpoint triggered for this, then keep going. Note
5196 that we're interested in knowing the bpstat actually causes a
5197 stop, not just if it may explain the signal. Software
5198 watchpoints, for example, always appear in the bpstat. */
5199 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5200 {
5201 ptid_t parent;
5202 ptid_t child;
5203 int should_resume;
5204 int follow_child
5205 = (follow_fork_mode_string == follow_fork_mode_child);
5206
5207 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5208
5209 should_resume = follow_fork ();
5210
5211 parent = ecs->ptid;
5212 child = ecs->ws.value.related_pid;
5213
5214 /* At this point, the parent is marked running, and the
5215 child is marked stopped. */
5216
5217 /* If not resuming the parent, mark it stopped. */
5218 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5219 set_running (parent, 0);
5220
5221 /* If resuming the child, mark it running. */
5222 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5223 set_running (child, 1);
5224
5225 /* In non-stop mode, also resume the other branch. */
5226 if (!detach_fork && (non_stop
5227 || (sched_multi && target_is_non_stop_p ())))
5228 {
5229 if (follow_child)
5230 switch_to_thread (parent);
5231 else
5232 switch_to_thread (child);
5233
5234 ecs->event_thread = inferior_thread ();
5235 ecs->ptid = inferior_ptid;
5236 keep_going (ecs);
5237 }
5238
5239 if (follow_child)
5240 switch_to_thread (child);
5241 else
5242 switch_to_thread (parent);
5243
5244 ecs->event_thread = inferior_thread ();
5245 ecs->ptid = inferior_ptid;
5246
5247 if (should_resume)
5248 keep_going (ecs);
5249 else
5250 stop_waiting (ecs);
5251 return;
5252 }
5253 process_event_stop_test (ecs);
5254 return;
5255
5256 case TARGET_WAITKIND_VFORK_DONE:
5257 /* Done with the shared memory region. Re-insert breakpoints in
5258 the parent, and keep going. */
5259
5260 if (debug_infrun)
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5263
5264 if (!ptid_equal (ecs->ptid, inferior_ptid))
5265 context_switch (ecs->ptid);
5266
5267 current_inferior ()->waiting_for_vfork_done = 0;
5268 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5269
5270 if (handle_stop_requested (ecs))
5271 return;
5272
5273 /* This also takes care of reinserting breakpoints in the
5274 previously locked inferior. */
5275 keep_going (ecs);
5276 return;
5277
5278 case TARGET_WAITKIND_EXECD:
5279 if (debug_infrun)
5280 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5281
5282 /* Note we can't read registers yet (the stop_pc), because we
5283 don't yet know the inferior's post-exec architecture.
5284 'stop_pc' is explicitly read below instead. */
5285 if (!ptid_equal (ecs->ptid, inferior_ptid))
5286 switch_to_thread_no_regs (ecs->event_thread);
5287
5288 /* Do whatever is necessary to the parent branch of the vfork. */
5289 handle_vfork_child_exec_or_exit (1);
5290
5291 /* This causes the eventpoints and symbol table to be reset.
5292 Must do this now, before trying to determine whether to
5293 stop. */
5294 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5295
5296 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5297
5298 /* In follow_exec we may have deleted the original thread and
5299 created a new one. Make sure that the event thread is the
5300 execd thread for that case (this is a nop otherwise). */
5301 ecs->event_thread = inferior_thread ();
5302
5303 ecs->event_thread->control.stop_bpstat
5304 = bpstat_stop_status (get_current_regcache ()->aspace (),
5305 stop_pc, ecs->ptid, &ecs->ws);
5306
5307 /* Note that this may be referenced from inside
5308 bpstat_stop_status above, through inferior_has_execd. */
5309 xfree (ecs->ws.value.execd_pathname);
5310 ecs->ws.value.execd_pathname = NULL;
5311
5312 if (handle_stop_requested (ecs))
5313 return;
5314
5315 /* If no catchpoint triggered for this, then keep going. */
5316 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5317 {
5318 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5319 keep_going (ecs);
5320 return;
5321 }
5322 process_event_stop_test (ecs);
5323 return;
5324
5325 /* Be careful not to try to gather much state about a thread
5326 that's in a syscall. It's frequently a losing proposition. */
5327 case TARGET_WAITKIND_SYSCALL_ENTRY:
5328 if (debug_infrun)
5329 fprintf_unfiltered (gdb_stdlog,
5330 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5331 /* Getting the current syscall number. */
5332 if (handle_syscall_event (ecs) == 0)
5333 process_event_stop_test (ecs);
5334 return;
5335
5336 /* Before examining the threads further, step this thread to
5337 get it entirely out of the syscall. (We get notice of the
5338 event when the thread is just on the verge of exiting a
5339 syscall. Stepping one instruction seems to get it back
5340 into user code.) */
5341 case TARGET_WAITKIND_SYSCALL_RETURN:
5342 if (debug_infrun)
5343 fprintf_unfiltered (gdb_stdlog,
5344 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5345 if (handle_syscall_event (ecs) == 0)
5346 process_event_stop_test (ecs);
5347 return;
5348
5349 case TARGET_WAITKIND_STOPPED:
5350 if (debug_infrun)
5351 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5352 handle_signal_stop (ecs);
5353 return;
5354
5355 case TARGET_WAITKIND_NO_HISTORY:
5356 if (debug_infrun)
5357 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5358 /* Reverse execution: target ran out of history info. */
5359
5360 /* Switch to the stopped thread. */
5361 if (!ptid_equal (ecs->ptid, inferior_ptid))
5362 context_switch (ecs->ptid);
5363 if (debug_infrun)
5364 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5365
5366 delete_just_stopped_threads_single_step_breakpoints ();
5367 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5368
5369 if (handle_stop_requested (ecs))
5370 return;
5371
5372 observer_notify_no_history ();
5373 stop_waiting (ecs);
5374 return;
5375 }
5376 }
5377
5378 /* A wrapper around handle_inferior_event_1, which also makes sure
5379 that all temporary struct value objects that were created during
5380 the handling of the event get deleted at the end. */
5381
5382 static void
5383 handle_inferior_event (struct execution_control_state *ecs)
5384 {
5385 struct value *mark = value_mark ();
5386
5387 handle_inferior_event_1 (ecs);
5388 /* Purge all temporary values created during the event handling,
5389 as it could be a long time before we return to the command level
5390 where such values would otherwise be purged. */
5391 value_free_to_mark (mark);
5392 }
5393
5394 /* Restart threads back to what they were trying to do back when we
5395 paused them for an in-line step-over. The EVENT_THREAD thread is
5396 ignored. */
5397
5398 static void
5399 restart_threads (struct thread_info *event_thread)
5400 {
5401 struct thread_info *tp;
5402
5403 /* In case the instruction just stepped spawned a new thread. */
5404 update_thread_list ();
5405
5406 ALL_NON_EXITED_THREADS (tp)
5407 {
5408 if (tp == event_thread)
5409 {
5410 if (debug_infrun)
5411 fprintf_unfiltered (gdb_stdlog,
5412 "infrun: restart threads: "
5413 "[%s] is event thread\n",
5414 target_pid_to_str (tp->ptid));
5415 continue;
5416 }
5417
5418 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5419 {
5420 if (debug_infrun)
5421 fprintf_unfiltered (gdb_stdlog,
5422 "infrun: restart threads: "
5423 "[%s] not meant to be running\n",
5424 target_pid_to_str (tp->ptid));
5425 continue;
5426 }
5427
5428 if (tp->resumed)
5429 {
5430 if (debug_infrun)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: restart threads: [%s] resumed\n",
5433 target_pid_to_str (tp->ptid));
5434 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5435 continue;
5436 }
5437
5438 if (thread_is_in_step_over_chain (tp))
5439 {
5440 if (debug_infrun)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: restart threads: "
5443 "[%s] needs step-over\n",
5444 target_pid_to_str (tp->ptid));
5445 gdb_assert (!tp->resumed);
5446 continue;
5447 }
5448
5449
5450 if (tp->suspend.waitstatus_pending_p)
5451 {
5452 if (debug_infrun)
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: restart threads: "
5455 "[%s] has pending status\n",
5456 target_pid_to_str (tp->ptid));
5457 tp->resumed = 1;
5458 continue;
5459 }
5460
5461 gdb_assert (!tp->stop_requested);
5462
5463 /* If some thread needs to start a step-over at this point, it
5464 should still be in the step-over queue, and thus skipped
5465 above. */
5466 if (thread_still_needs_step_over (tp))
5467 {
5468 internal_error (__FILE__, __LINE__,
5469 "thread [%s] needs a step-over, but not in "
5470 "step-over queue\n",
5471 target_pid_to_str (tp->ptid));
5472 }
5473
5474 if (currently_stepping (tp))
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: [%s] was stepping\n",
5479 target_pid_to_str (tp->ptid));
5480 keep_going_stepped_thread (tp);
5481 }
5482 else
5483 {
5484 struct execution_control_state ecss;
5485 struct execution_control_state *ecs = &ecss;
5486
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5489 "infrun: restart threads: [%s] continuing\n",
5490 target_pid_to_str (tp->ptid));
5491 reset_ecs (ecs, tp);
5492 switch_to_thread (tp->ptid);
5493 keep_going_pass_signal (ecs);
5494 }
5495 }
5496 }
5497
5498 /* Callback for iterate_over_threads. Find a resumed thread that has
5499 a pending waitstatus. */
5500
5501 static int
5502 resumed_thread_with_pending_status (struct thread_info *tp,
5503 void *arg)
5504 {
5505 return (tp->resumed
5506 && tp->suspend.waitstatus_pending_p);
5507 }
5508
5509 /* Called when we get an event that may finish an in-line or
5510 out-of-line (displaced stepping) step-over started previously.
5511 Return true if the event is processed and we should go back to the
5512 event loop; false if the caller should continue processing the
5513 event. */
5514
5515 static int
5516 finish_step_over (struct execution_control_state *ecs)
5517 {
5518 int had_step_over_info;
5519
5520 displaced_step_fixup (ecs->ptid,
5521 ecs->event_thread->suspend.stop_signal);
5522
5523 had_step_over_info = step_over_info_valid_p ();
5524
5525 if (had_step_over_info)
5526 {
5527 /* If we're stepping over a breakpoint with all threads locked,
5528 then only the thread that was stepped should be reporting
5529 back an event. */
5530 gdb_assert (ecs->event_thread->control.trap_expected);
5531
5532 clear_step_over_info ();
5533 }
5534
5535 if (!target_is_non_stop_p ())
5536 return 0;
5537
5538 /* Start a new step-over in another thread if there's one that
5539 needs it. */
5540 start_step_over ();
5541
5542 /* If we were stepping over a breakpoint before, and haven't started
5543 a new in-line step-over sequence, then restart all other threads
5544 (except the event thread). We can't do this in all-stop, as then
5545 e.g., we wouldn't be able to issue any other remote packet until
5546 these other threads stop. */
5547 if (had_step_over_info && !step_over_info_valid_p ())
5548 {
5549 struct thread_info *pending;
5550
5551 /* If we only have threads with pending statuses, the restart
5552 below won't restart any thread and so nothing re-inserts the
5553 breakpoint we just stepped over. But we need it inserted
5554 when we later process the pending events, otherwise if
5555 another thread has a pending event for this breakpoint too,
5556 we'd discard its event (because the breakpoint that
5557 originally caused the event was no longer inserted). */
5558 context_switch (ecs->ptid);
5559 insert_breakpoints ();
5560
5561 restart_threads (ecs->event_thread);
5562
5563 /* If we have events pending, go through handle_inferior_event
5564 again, picking up a pending event at random. This avoids
5565 thread starvation. */
5566
5567 /* But not if we just stepped over a watchpoint in order to let
5568 the instruction execute so we can evaluate its expression.
5569 The set of watchpoints that triggered is recorded in the
5570 breakpoint objects themselves (see bp->watchpoint_triggered).
5571 If we processed another event first, that other event could
5572 clobber this info. */
5573 if (ecs->event_thread->stepping_over_watchpoint)
5574 return 0;
5575
5576 pending = iterate_over_threads (resumed_thread_with_pending_status,
5577 NULL);
5578 if (pending != NULL)
5579 {
5580 struct thread_info *tp = ecs->event_thread;
5581 struct regcache *regcache;
5582
5583 if (debug_infrun)
5584 {
5585 fprintf_unfiltered (gdb_stdlog,
5586 "infrun: found resumed threads with "
5587 "pending events, saving status\n");
5588 }
5589
5590 gdb_assert (pending != tp);
5591
5592 /* Record the event thread's event for later. */
5593 save_waitstatus (tp, &ecs->ws);
5594 /* This was cleared early, by handle_inferior_event. Set it
5595 so this pending event is considered by
5596 do_target_wait. */
5597 tp->resumed = 1;
5598
5599 gdb_assert (!tp->executing);
5600
5601 regcache = get_thread_regcache (tp->ptid);
5602 tp->suspend.stop_pc = regcache_read_pc (regcache);
5603
5604 if (debug_infrun)
5605 {
5606 fprintf_unfiltered (gdb_stdlog,
5607 "infrun: saved stop_pc=%s for %s "
5608 "(currently_stepping=%d)\n",
5609 paddress (target_gdbarch (),
5610 tp->suspend.stop_pc),
5611 target_pid_to_str (tp->ptid),
5612 currently_stepping (tp));
5613 }
5614
5615 /* This in-line step-over finished; clear this so we won't
5616 start a new one. This is what handle_signal_stop would
5617 do, if we returned false. */
5618 tp->stepping_over_breakpoint = 0;
5619
5620 /* Wake up the event loop again. */
5621 mark_async_event_handler (infrun_async_inferior_event_token);
5622
5623 prepare_to_wait (ecs);
5624 return 1;
5625 }
5626 }
5627
5628 return 0;
5629 }
5630
5631 /* Come here when the program has stopped with a signal. */
5632
5633 static void
5634 handle_signal_stop (struct execution_control_state *ecs)
5635 {
5636 struct frame_info *frame;
5637 struct gdbarch *gdbarch;
5638 int stopped_by_watchpoint;
5639 enum stop_kind stop_soon;
5640 int random_signal;
5641
5642 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5643
5644 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5645
5646 /* Do we need to clean up the state of a thread that has
5647 completed a displaced single-step? (Doing so usually affects
5648 the PC, so do it here, before we set stop_pc.) */
5649 if (finish_step_over (ecs))
5650 return;
5651
5652 /* If we either finished a single-step or hit a breakpoint, but
5653 the user wanted this thread to be stopped, pretend we got a
5654 SIG0 (generic unsignaled stop). */
5655 if (ecs->event_thread->stop_requested
5656 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5657 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5658
5659 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5660
5661 if (debug_infrun)
5662 {
5663 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5664 struct gdbarch *gdbarch = regcache->arch ();
5665 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5666
5667 inferior_ptid = ecs->ptid;
5668
5669 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5670 paddress (gdbarch, stop_pc));
5671 if (target_stopped_by_watchpoint ())
5672 {
5673 CORE_ADDR addr;
5674
5675 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5676
5677 if (target_stopped_data_address (&current_target, &addr))
5678 fprintf_unfiltered (gdb_stdlog,
5679 "infrun: stopped data address = %s\n",
5680 paddress (gdbarch, addr));
5681 else
5682 fprintf_unfiltered (gdb_stdlog,
5683 "infrun: (no data address available)\n");
5684 }
5685 }
5686
5687 /* This is originated from start_remote(), start_inferior() and
5688 shared libraries hook functions. */
5689 stop_soon = get_inferior_stop_soon (ecs->ptid);
5690 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5691 {
5692 if (!ptid_equal (ecs->ptid, inferior_ptid))
5693 context_switch (ecs->ptid);
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5696 stop_print_frame = 1;
5697 stop_waiting (ecs);
5698 return;
5699 }
5700
5701 /* This originates from attach_command(). We need to overwrite
5702 the stop_signal here, because some kernels don't ignore a
5703 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5704 See more comments in inferior.h. On the other hand, if we
5705 get a non-SIGSTOP, report it to the user - assume the backend
5706 will handle the SIGSTOP if it should show up later.
5707
5708 Also consider that the attach is complete when we see a
5709 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5710 target extended-remote report it instead of a SIGSTOP
5711 (e.g. gdbserver). We already rely on SIGTRAP being our
5712 signal, so this is no exception.
5713
5714 Also consider that the attach is complete when we see a
5715 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5716 the target to stop all threads of the inferior, in case the
5717 low level attach operation doesn't stop them implicitly. If
5718 they weren't stopped implicitly, then the stub will report a
5719 GDB_SIGNAL_0, meaning: stopped for no particular reason
5720 other than GDB's request. */
5721 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5722 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5723 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5724 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5725 {
5726 stop_print_frame = 1;
5727 stop_waiting (ecs);
5728 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5729 return;
5730 }
5731
5732 /* See if something interesting happened to the non-current thread. If
5733 so, then switch to that thread. */
5734 if (!ptid_equal (ecs->ptid, inferior_ptid))
5735 {
5736 if (debug_infrun)
5737 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5738
5739 context_switch (ecs->ptid);
5740
5741 if (deprecated_context_hook)
5742 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5743 }
5744
5745 /* At this point, get hold of the now-current thread's frame. */
5746 frame = get_current_frame ();
5747 gdbarch = get_frame_arch (frame);
5748
5749 /* Pull the single step breakpoints out of the target. */
5750 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5751 {
5752 struct regcache *regcache;
5753 CORE_ADDR pc;
5754
5755 regcache = get_thread_regcache (ecs->ptid);
5756 const address_space *aspace = regcache->aspace ();
5757
5758 pc = regcache_read_pc (regcache);
5759
5760 /* However, before doing so, if this single-step breakpoint was
5761 actually for another thread, set this thread up for moving
5762 past it. */
5763 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5764 aspace, pc))
5765 {
5766 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5767 {
5768 if (debug_infrun)
5769 {
5770 fprintf_unfiltered (gdb_stdlog,
5771 "infrun: [%s] hit another thread's "
5772 "single-step breakpoint\n",
5773 target_pid_to_str (ecs->ptid));
5774 }
5775 ecs->hit_singlestep_breakpoint = 1;
5776 }
5777 }
5778 else
5779 {
5780 if (debug_infrun)
5781 {
5782 fprintf_unfiltered (gdb_stdlog,
5783 "infrun: [%s] hit its "
5784 "single-step breakpoint\n",
5785 target_pid_to_str (ecs->ptid));
5786 }
5787 }
5788 }
5789 delete_just_stopped_threads_single_step_breakpoints ();
5790
5791 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5792 && ecs->event_thread->control.trap_expected
5793 && ecs->event_thread->stepping_over_watchpoint)
5794 stopped_by_watchpoint = 0;
5795 else
5796 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5797
5798 /* If necessary, step over this watchpoint. We'll be back to display
5799 it in a moment. */
5800 if (stopped_by_watchpoint
5801 && (target_have_steppable_watchpoint
5802 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5803 {
5804 /* At this point, we are stopped at an instruction which has
5805 attempted to write to a piece of memory under control of
5806 a watchpoint. The instruction hasn't actually executed
5807 yet. If we were to evaluate the watchpoint expression
5808 now, we would get the old value, and therefore no change
5809 would seem to have occurred.
5810
5811 In order to make watchpoints work `right', we really need
5812 to complete the memory write, and then evaluate the
5813 watchpoint expression. We do this by single-stepping the
5814 target.
5815
5816 It may not be necessary to disable the watchpoint to step over
5817 it. For example, the PA can (with some kernel cooperation)
5818 single step over a watchpoint without disabling the watchpoint.
5819
5820 It is far more common to need to disable a watchpoint to step
5821 the inferior over it. If we have non-steppable watchpoints,
5822 we must disable the current watchpoint; it's simplest to
5823 disable all watchpoints.
5824
5825 Any breakpoint at PC must also be stepped over -- if there's
5826 one, it will have already triggered before the watchpoint
5827 triggered, and we either already reported it to the user, or
5828 it didn't cause a stop and we called keep_going. In either
5829 case, if there was a breakpoint at PC, we must be trying to
5830 step past it. */
5831 ecs->event_thread->stepping_over_watchpoint = 1;
5832 keep_going (ecs);
5833 return;
5834 }
5835
5836 ecs->event_thread->stepping_over_breakpoint = 0;
5837 ecs->event_thread->stepping_over_watchpoint = 0;
5838 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5839 ecs->event_thread->control.stop_step = 0;
5840 stop_print_frame = 1;
5841 stopped_by_random_signal = 0;
5842
5843 /* Hide inlined functions starting here, unless we just performed stepi or
5844 nexti. After stepi and nexti, always show the innermost frame (not any
5845 inline function call sites). */
5846 if (ecs->event_thread->control.step_range_end != 1)
5847 {
5848 const address_space *aspace =
5849 get_thread_regcache (ecs->ptid)->aspace ();
5850
5851 /* skip_inline_frames is expensive, so we avoid it if we can
5852 determine that the address is one where functions cannot have
5853 been inlined. This improves performance with inferiors that
5854 load a lot of shared libraries, because the solib event
5855 breakpoint is defined as the address of a function (i.e. not
5856 inline). Note that we have to check the previous PC as well
5857 as the current one to catch cases when we have just
5858 single-stepped off a breakpoint prior to reinstating it.
5859 Note that we're assuming that the code we single-step to is
5860 not inline, but that's not definitive: there's nothing
5861 preventing the event breakpoint function from containing
5862 inlined code, and the single-step ending up there. If the
5863 user had set a breakpoint on that inlined code, the missing
5864 skip_inline_frames call would break things. Fortunately
5865 that's an extremely unlikely scenario. */
5866 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5867 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5868 && ecs->event_thread->control.trap_expected
5869 && pc_at_non_inline_function (aspace,
5870 ecs->event_thread->prev_pc,
5871 &ecs->ws)))
5872 {
5873 skip_inline_frames (ecs->ptid);
5874
5875 /* Re-fetch current thread's frame in case that invalidated
5876 the frame cache. */
5877 frame = get_current_frame ();
5878 gdbarch = get_frame_arch (frame);
5879 }
5880 }
5881
5882 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5883 && ecs->event_thread->control.trap_expected
5884 && gdbarch_single_step_through_delay_p (gdbarch)
5885 && currently_stepping (ecs->event_thread))
5886 {
5887 /* We're trying to step off a breakpoint. Turns out that we're
5888 also on an instruction that needs to be stepped multiple
5889 times before it's been fully executing. E.g., architectures
5890 with a delay slot. It needs to be stepped twice, once for
5891 the instruction and once for the delay slot. */
5892 int step_through_delay
5893 = gdbarch_single_step_through_delay (gdbarch, frame);
5894
5895 if (debug_infrun && step_through_delay)
5896 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5897 if (ecs->event_thread->control.step_range_end == 0
5898 && step_through_delay)
5899 {
5900 /* The user issued a continue when stopped at a breakpoint.
5901 Set up for another trap and get out of here. */
5902 ecs->event_thread->stepping_over_breakpoint = 1;
5903 keep_going (ecs);
5904 return;
5905 }
5906 else if (step_through_delay)
5907 {
5908 /* The user issued a step when stopped at a breakpoint.
5909 Maybe we should stop, maybe we should not - the delay
5910 slot *might* correspond to a line of source. In any
5911 case, don't decide that here, just set
5912 ecs->stepping_over_breakpoint, making sure we
5913 single-step again before breakpoints are re-inserted. */
5914 ecs->event_thread->stepping_over_breakpoint = 1;
5915 }
5916 }
5917
5918 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5919 handles this event. */
5920 ecs->event_thread->control.stop_bpstat
5921 = bpstat_stop_status (get_current_regcache ()->aspace (),
5922 stop_pc, ecs->ptid, &ecs->ws);
5923
5924 /* Following in case break condition called a
5925 function. */
5926 stop_print_frame = 1;
5927
5928 /* This is where we handle "moribund" watchpoints. Unlike
5929 software breakpoints traps, hardware watchpoint traps are
5930 always distinguishable from random traps. If no high-level
5931 watchpoint is associated with the reported stop data address
5932 anymore, then the bpstat does not explain the signal ---
5933 simply make sure to ignore it if `stopped_by_watchpoint' is
5934 set. */
5935
5936 if (debug_infrun
5937 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5938 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5939 GDB_SIGNAL_TRAP)
5940 && stopped_by_watchpoint)
5941 fprintf_unfiltered (gdb_stdlog,
5942 "infrun: no user watchpoint explains "
5943 "watchpoint SIGTRAP, ignoring\n");
5944
5945 /* NOTE: cagney/2003-03-29: These checks for a random signal
5946 at one stage in the past included checks for an inferior
5947 function call's call dummy's return breakpoint. The original
5948 comment, that went with the test, read:
5949
5950 ``End of a stack dummy. Some systems (e.g. Sony news) give
5951 another signal besides SIGTRAP, so check here as well as
5952 above.''
5953
5954 If someone ever tries to get call dummys on a
5955 non-executable stack to work (where the target would stop
5956 with something like a SIGSEGV), then those tests might need
5957 to be re-instated. Given, however, that the tests were only
5958 enabled when momentary breakpoints were not being used, I
5959 suspect that it won't be the case.
5960
5961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5962 be necessary for call dummies on a non-executable stack on
5963 SPARC. */
5964
5965 /* See if the breakpoints module can explain the signal. */
5966 random_signal
5967 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5968 ecs->event_thread->suspend.stop_signal);
5969
5970 /* Maybe this was a trap for a software breakpoint that has since
5971 been removed. */
5972 if (random_signal && target_stopped_by_sw_breakpoint ())
5973 {
5974 if (program_breakpoint_here_p (gdbarch, stop_pc))
5975 {
5976 struct regcache *regcache;
5977 int decr_pc;
5978
5979 /* Re-adjust PC to what the program would see if GDB was not
5980 debugging it. */
5981 regcache = get_thread_regcache (ecs->event_thread->ptid);
5982 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5983 if (decr_pc != 0)
5984 {
5985 gdb::optional<scoped_restore_tmpl<int>>
5986 restore_operation_disable;
5987
5988 if (record_full_is_used ())
5989 restore_operation_disable.emplace
5990 (record_full_gdb_operation_disable_set ());
5991
5992 regcache_write_pc (regcache, stop_pc + decr_pc);
5993 }
5994 }
5995 else
5996 {
5997 /* A delayed software breakpoint event. Ignore the trap. */
5998 if (debug_infrun)
5999 fprintf_unfiltered (gdb_stdlog,
6000 "infrun: delayed software breakpoint "
6001 "trap, ignoring\n");
6002 random_signal = 0;
6003 }
6004 }
6005
6006 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6007 has since been removed. */
6008 if (random_signal && target_stopped_by_hw_breakpoint ())
6009 {
6010 /* A delayed hardware breakpoint event. Ignore the trap. */
6011 if (debug_infrun)
6012 fprintf_unfiltered (gdb_stdlog,
6013 "infrun: delayed hardware breakpoint/watchpoint "
6014 "trap, ignoring\n");
6015 random_signal = 0;
6016 }
6017
6018 /* If not, perhaps stepping/nexting can. */
6019 if (random_signal)
6020 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6021 && currently_stepping (ecs->event_thread));
6022
6023 /* Perhaps the thread hit a single-step breakpoint of _another_
6024 thread. Single-step breakpoints are transparent to the
6025 breakpoints module. */
6026 if (random_signal)
6027 random_signal = !ecs->hit_singlestep_breakpoint;
6028
6029 /* No? Perhaps we got a moribund watchpoint. */
6030 if (random_signal)
6031 random_signal = !stopped_by_watchpoint;
6032
6033 /* Always stop if the user explicitly requested this thread to
6034 remain stopped. */
6035 if (ecs->event_thread->stop_requested)
6036 {
6037 random_signal = 1;
6038 if (debug_infrun)
6039 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6040 }
6041
6042 /* For the program's own signals, act according to
6043 the signal handling tables. */
6044
6045 if (random_signal)
6046 {
6047 /* Signal not for debugging purposes. */
6048 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6049 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6050
6051 if (debug_infrun)
6052 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6053 gdb_signal_to_symbol_string (stop_signal));
6054
6055 stopped_by_random_signal = 1;
6056
6057 /* Always stop on signals if we're either just gaining control
6058 of the program, or the user explicitly requested this thread
6059 to remain stopped. */
6060 if (stop_soon != NO_STOP_QUIETLY
6061 || ecs->event_thread->stop_requested
6062 || (!inf->detaching
6063 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6064 {
6065 stop_waiting (ecs);
6066 return;
6067 }
6068
6069 /* Notify observers the signal has "handle print" set. Note we
6070 returned early above if stopping; normal_stop handles the
6071 printing in that case. */
6072 if (signal_print[ecs->event_thread->suspend.stop_signal])
6073 {
6074 /* The signal table tells us to print about this signal. */
6075 target_terminal::ours_for_output ();
6076 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6077 target_terminal::inferior ();
6078 }
6079
6080 /* Clear the signal if it should not be passed. */
6081 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6083
6084 if (ecs->event_thread->prev_pc == stop_pc
6085 && ecs->event_thread->control.trap_expected
6086 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6087 {
6088 /* We were just starting a new sequence, attempting to
6089 single-step off of a breakpoint and expecting a SIGTRAP.
6090 Instead this signal arrives. This signal will take us out
6091 of the stepping range so GDB needs to remember to, when
6092 the signal handler returns, resume stepping off that
6093 breakpoint. */
6094 /* To simplify things, "continue" is forced to use the same
6095 code paths as single-step - set a breakpoint at the
6096 signal return address and then, once hit, step off that
6097 breakpoint. */
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog,
6100 "infrun: signal arrived while stepping over "
6101 "breakpoint\n");
6102
6103 insert_hp_step_resume_breakpoint_at_frame (frame);
6104 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6105 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6106 ecs->event_thread->control.trap_expected = 0;
6107
6108 /* If we were nexting/stepping some other thread, switch to
6109 it, so that we don't continue it, losing control. */
6110 if (!switch_back_to_stepped_thread (ecs))
6111 keep_going (ecs);
6112 return;
6113 }
6114
6115 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6116 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6117 || ecs->event_thread->control.step_range_end == 1)
6118 && frame_id_eq (get_stack_frame_id (frame),
6119 ecs->event_thread->control.step_stack_frame_id)
6120 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6121 {
6122 /* The inferior is about to take a signal that will take it
6123 out of the single step range. Set a breakpoint at the
6124 current PC (which is presumably where the signal handler
6125 will eventually return) and then allow the inferior to
6126 run free.
6127
6128 Note that this is only needed for a signal delivered
6129 while in the single-step range. Nested signals aren't a
6130 problem as they eventually all return. */
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog,
6133 "infrun: signal may take us out of "
6134 "single-step range\n");
6135
6136 clear_step_over_info ();
6137 insert_hp_step_resume_breakpoint_at_frame (frame);
6138 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6139 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6140 ecs->event_thread->control.trap_expected = 0;
6141 keep_going (ecs);
6142 return;
6143 }
6144
6145 /* Note: step_resume_breakpoint may be non-NULL. This occures
6146 when either there's a nested signal, or when there's a
6147 pending signal enabled just as the signal handler returns
6148 (leaving the inferior at the step-resume-breakpoint without
6149 actually executing it). Either way continue until the
6150 breakpoint is really hit. */
6151
6152 if (!switch_back_to_stepped_thread (ecs))
6153 {
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog,
6156 "infrun: random signal, keep going\n");
6157
6158 keep_going (ecs);
6159 }
6160 return;
6161 }
6162
6163 process_event_stop_test (ecs);
6164 }
6165
6166 /* Come here when we've got some debug event / signal we can explain
6167 (IOW, not a random signal), and test whether it should cause a
6168 stop, or whether we should resume the inferior (transparently).
6169 E.g., could be a breakpoint whose condition evaluates false; we
6170 could be still stepping within the line; etc. */
6171
6172 static void
6173 process_event_stop_test (struct execution_control_state *ecs)
6174 {
6175 struct symtab_and_line stop_pc_sal;
6176 struct frame_info *frame;
6177 struct gdbarch *gdbarch;
6178 CORE_ADDR jmp_buf_pc;
6179 struct bpstat_what what;
6180
6181 /* Handle cases caused by hitting a breakpoint. */
6182
6183 frame = get_current_frame ();
6184 gdbarch = get_frame_arch (frame);
6185
6186 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6187
6188 if (what.call_dummy)
6189 {
6190 stop_stack_dummy = what.call_dummy;
6191 }
6192
6193 /* A few breakpoint types have callbacks associated (e.g.,
6194 bp_jit_event). Run them now. */
6195 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6196
6197 /* If we hit an internal event that triggers symbol changes, the
6198 current frame will be invalidated within bpstat_what (e.g., if we
6199 hit an internal solib event). Re-fetch it. */
6200 frame = get_current_frame ();
6201 gdbarch = get_frame_arch (frame);
6202
6203 switch (what.main_action)
6204 {
6205 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6206 /* If we hit the breakpoint at longjmp while stepping, we
6207 install a momentary breakpoint at the target of the
6208 jmp_buf. */
6209
6210 if (debug_infrun)
6211 fprintf_unfiltered (gdb_stdlog,
6212 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6213
6214 ecs->event_thread->stepping_over_breakpoint = 1;
6215
6216 if (what.is_longjmp)
6217 {
6218 struct value *arg_value;
6219
6220 /* If we set the longjmp breakpoint via a SystemTap probe,
6221 then use it to extract the arguments. The destination PC
6222 is the third argument to the probe. */
6223 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6224 if (arg_value)
6225 {
6226 jmp_buf_pc = value_as_address (arg_value);
6227 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6228 }
6229 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6230 || !gdbarch_get_longjmp_target (gdbarch,
6231 frame, &jmp_buf_pc))
6232 {
6233 if (debug_infrun)
6234 fprintf_unfiltered (gdb_stdlog,
6235 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6236 "(!gdbarch_get_longjmp_target)\n");
6237 keep_going (ecs);
6238 return;
6239 }
6240
6241 /* Insert a breakpoint at resume address. */
6242 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6243 }
6244 else
6245 check_exception_resume (ecs, frame);
6246 keep_going (ecs);
6247 return;
6248
6249 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6250 {
6251 struct frame_info *init_frame;
6252
6253 /* There are several cases to consider.
6254
6255 1. The initiating frame no longer exists. In this case we
6256 must stop, because the exception or longjmp has gone too
6257 far.
6258
6259 2. The initiating frame exists, and is the same as the
6260 current frame. We stop, because the exception or longjmp
6261 has been caught.
6262
6263 3. The initiating frame exists and is different from the
6264 current frame. This means the exception or longjmp has
6265 been caught beneath the initiating frame, so keep going.
6266
6267 4. longjmp breakpoint has been placed just to protect
6268 against stale dummy frames and user is not interested in
6269 stopping around longjmps. */
6270
6271 if (debug_infrun)
6272 fprintf_unfiltered (gdb_stdlog,
6273 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6274
6275 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6276 != NULL);
6277 delete_exception_resume_breakpoint (ecs->event_thread);
6278
6279 if (what.is_longjmp)
6280 {
6281 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6282
6283 if (!frame_id_p (ecs->event_thread->initiating_frame))
6284 {
6285 /* Case 4. */
6286 keep_going (ecs);
6287 return;
6288 }
6289 }
6290
6291 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6292
6293 if (init_frame)
6294 {
6295 struct frame_id current_id
6296 = get_frame_id (get_current_frame ());
6297 if (frame_id_eq (current_id,
6298 ecs->event_thread->initiating_frame))
6299 {
6300 /* Case 2. Fall through. */
6301 }
6302 else
6303 {
6304 /* Case 3. */
6305 keep_going (ecs);
6306 return;
6307 }
6308 }
6309
6310 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6311 exists. */
6312 delete_step_resume_breakpoint (ecs->event_thread);
6313
6314 end_stepping_range (ecs);
6315 }
6316 return;
6317
6318 case BPSTAT_WHAT_SINGLE:
6319 if (debug_infrun)
6320 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6321 ecs->event_thread->stepping_over_breakpoint = 1;
6322 /* Still need to check other stuff, at least the case where we
6323 are stepping and step out of the right range. */
6324 break;
6325
6326 case BPSTAT_WHAT_STEP_RESUME:
6327 if (debug_infrun)
6328 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6329
6330 delete_step_resume_breakpoint (ecs->event_thread);
6331 if (ecs->event_thread->control.proceed_to_finish
6332 && execution_direction == EXEC_REVERSE)
6333 {
6334 struct thread_info *tp = ecs->event_thread;
6335
6336 /* We are finishing a function in reverse, and just hit the
6337 step-resume breakpoint at the start address of the
6338 function, and we're almost there -- just need to back up
6339 by one more single-step, which should take us back to the
6340 function call. */
6341 tp->control.step_range_start = tp->control.step_range_end = 1;
6342 keep_going (ecs);
6343 return;
6344 }
6345 fill_in_stop_func (gdbarch, ecs);
6346 if (stop_pc == ecs->stop_func_start
6347 && execution_direction == EXEC_REVERSE)
6348 {
6349 /* We are stepping over a function call in reverse, and just
6350 hit the step-resume breakpoint at the start address of
6351 the function. Go back to single-stepping, which should
6352 take us back to the function call. */
6353 ecs->event_thread->stepping_over_breakpoint = 1;
6354 keep_going (ecs);
6355 return;
6356 }
6357 break;
6358
6359 case BPSTAT_WHAT_STOP_NOISY:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6362 stop_print_frame = 1;
6363
6364 /* Assume the thread stopped for a breapoint. We'll still check
6365 whether a/the breakpoint is there when the thread is next
6366 resumed. */
6367 ecs->event_thread->stepping_over_breakpoint = 1;
6368
6369 stop_waiting (ecs);
6370 return;
6371
6372 case BPSTAT_WHAT_STOP_SILENT:
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6375 stop_print_frame = 0;
6376
6377 /* Assume the thread stopped for a breapoint. We'll still check
6378 whether a/the breakpoint is there when the thread is next
6379 resumed. */
6380 ecs->event_thread->stepping_over_breakpoint = 1;
6381 stop_waiting (ecs);
6382 return;
6383
6384 case BPSTAT_WHAT_HP_STEP_RESUME:
6385 if (debug_infrun)
6386 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6387
6388 delete_step_resume_breakpoint (ecs->event_thread);
6389 if (ecs->event_thread->step_after_step_resume_breakpoint)
6390 {
6391 /* Back when the step-resume breakpoint was inserted, we
6392 were trying to single-step off a breakpoint. Go back to
6393 doing that. */
6394 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6395 ecs->event_thread->stepping_over_breakpoint = 1;
6396 keep_going (ecs);
6397 return;
6398 }
6399 break;
6400
6401 case BPSTAT_WHAT_KEEP_CHECKING:
6402 break;
6403 }
6404
6405 /* If we stepped a permanent breakpoint and we had a high priority
6406 step-resume breakpoint for the address we stepped, but we didn't
6407 hit it, then we must have stepped into the signal handler. The
6408 step-resume was only necessary to catch the case of _not_
6409 stepping into the handler, so delete it, and fall through to
6410 checking whether the step finished. */
6411 if (ecs->event_thread->stepped_breakpoint)
6412 {
6413 struct breakpoint *sr_bp
6414 = ecs->event_thread->control.step_resume_breakpoint;
6415
6416 if (sr_bp != NULL
6417 && sr_bp->loc->permanent
6418 && sr_bp->type == bp_hp_step_resume
6419 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6420 {
6421 if (debug_infrun)
6422 fprintf_unfiltered (gdb_stdlog,
6423 "infrun: stepped permanent breakpoint, stopped in "
6424 "handler\n");
6425 delete_step_resume_breakpoint (ecs->event_thread);
6426 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6427 }
6428 }
6429
6430 /* We come here if we hit a breakpoint but should not stop for it.
6431 Possibly we also were stepping and should stop for that. So fall
6432 through and test for stepping. But, if not stepping, do not
6433 stop. */
6434
6435 /* In all-stop mode, if we're currently stepping but have stopped in
6436 some other thread, we need to switch back to the stepped thread. */
6437 if (switch_back_to_stepped_thread (ecs))
6438 return;
6439
6440 if (ecs->event_thread->control.step_resume_breakpoint)
6441 {
6442 if (debug_infrun)
6443 fprintf_unfiltered (gdb_stdlog,
6444 "infrun: step-resume breakpoint is inserted\n");
6445
6446 /* Having a step-resume breakpoint overrides anything
6447 else having to do with stepping commands until
6448 that breakpoint is reached. */
6449 keep_going (ecs);
6450 return;
6451 }
6452
6453 if (ecs->event_thread->control.step_range_end == 0)
6454 {
6455 if (debug_infrun)
6456 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6457 /* Likewise if we aren't even stepping. */
6458 keep_going (ecs);
6459 return;
6460 }
6461
6462 /* Re-fetch current thread's frame in case the code above caused
6463 the frame cache to be re-initialized, making our FRAME variable
6464 a dangling pointer. */
6465 frame = get_current_frame ();
6466 gdbarch = get_frame_arch (frame);
6467 fill_in_stop_func (gdbarch, ecs);
6468
6469 /* If stepping through a line, keep going if still within it.
6470
6471 Note that step_range_end is the address of the first instruction
6472 beyond the step range, and NOT the address of the last instruction
6473 within it!
6474
6475 Note also that during reverse execution, we may be stepping
6476 through a function epilogue and therefore must detect when
6477 the current-frame changes in the middle of a line. */
6478
6479 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6480 && (execution_direction != EXEC_REVERSE
6481 || frame_id_eq (get_frame_id (frame),
6482 ecs->event_thread->control.step_frame_id)))
6483 {
6484 if (debug_infrun)
6485 fprintf_unfiltered
6486 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6487 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6488 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6489
6490 /* Tentatively re-enable range stepping; `resume' disables it if
6491 necessary (e.g., if we're stepping over a breakpoint or we
6492 have software watchpoints). */
6493 ecs->event_thread->control.may_range_step = 1;
6494
6495 /* When stepping backward, stop at beginning of line range
6496 (unless it's the function entry point, in which case
6497 keep going back to the call point). */
6498 if (stop_pc == ecs->event_thread->control.step_range_start
6499 && stop_pc != ecs->stop_func_start
6500 && execution_direction == EXEC_REVERSE)
6501 end_stepping_range (ecs);
6502 else
6503 keep_going (ecs);
6504
6505 return;
6506 }
6507
6508 /* We stepped out of the stepping range. */
6509
6510 /* If we are stepping at the source level and entered the runtime
6511 loader dynamic symbol resolution code...
6512
6513 EXEC_FORWARD: we keep on single stepping until we exit the run
6514 time loader code and reach the callee's address.
6515
6516 EXEC_REVERSE: we've already executed the callee (backward), and
6517 the runtime loader code is handled just like any other
6518 undebuggable function call. Now we need only keep stepping
6519 backward through the trampoline code, and that's handled further
6520 down, so there is nothing for us to do here. */
6521
6522 if (execution_direction != EXEC_REVERSE
6523 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6524 && in_solib_dynsym_resolve_code (stop_pc))
6525 {
6526 CORE_ADDR pc_after_resolver =
6527 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6528
6529 if (debug_infrun)
6530 fprintf_unfiltered (gdb_stdlog,
6531 "infrun: stepped into dynsym resolve code\n");
6532
6533 if (pc_after_resolver)
6534 {
6535 /* Set up a step-resume breakpoint at the address
6536 indicated by SKIP_SOLIB_RESOLVER. */
6537 symtab_and_line sr_sal;
6538 sr_sal.pc = pc_after_resolver;
6539 sr_sal.pspace = get_frame_program_space (frame);
6540
6541 insert_step_resume_breakpoint_at_sal (gdbarch,
6542 sr_sal, null_frame_id);
6543 }
6544
6545 keep_going (ecs);
6546 return;
6547 }
6548
6549 if (ecs->event_thread->control.step_range_end != 1
6550 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6551 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6552 && get_frame_type (frame) == SIGTRAMP_FRAME)
6553 {
6554 if (debug_infrun)
6555 fprintf_unfiltered (gdb_stdlog,
6556 "infrun: stepped into signal trampoline\n");
6557 /* The inferior, while doing a "step" or "next", has ended up in
6558 a signal trampoline (either by a signal being delivered or by
6559 the signal handler returning). Just single-step until the
6560 inferior leaves the trampoline (either by calling the handler
6561 or returning). */
6562 keep_going (ecs);
6563 return;
6564 }
6565
6566 /* If we're in the return path from a shared library trampoline,
6567 we want to proceed through the trampoline when stepping. */
6568 /* macro/2012-04-25: This needs to come before the subroutine
6569 call check below as on some targets return trampolines look
6570 like subroutine calls (MIPS16 return thunks). */
6571 if (gdbarch_in_solib_return_trampoline (gdbarch,
6572 stop_pc, ecs->stop_func_name)
6573 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6574 {
6575 /* Determine where this trampoline returns. */
6576 CORE_ADDR real_stop_pc;
6577
6578 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6579
6580 if (debug_infrun)
6581 fprintf_unfiltered (gdb_stdlog,
6582 "infrun: stepped into solib return tramp\n");
6583
6584 /* Only proceed through if we know where it's going. */
6585 if (real_stop_pc)
6586 {
6587 /* And put the step-breakpoint there and go until there. */
6588 symtab_and_line sr_sal;
6589 sr_sal.pc = real_stop_pc;
6590 sr_sal.section = find_pc_overlay (sr_sal.pc);
6591 sr_sal.pspace = get_frame_program_space (frame);
6592
6593 /* Do not specify what the fp should be when we stop since
6594 on some machines the prologue is where the new fp value
6595 is established. */
6596 insert_step_resume_breakpoint_at_sal (gdbarch,
6597 sr_sal, null_frame_id);
6598
6599 /* Restart without fiddling with the step ranges or
6600 other state. */
6601 keep_going (ecs);
6602 return;
6603 }
6604 }
6605
6606 /* Check for subroutine calls. The check for the current frame
6607 equalling the step ID is not necessary - the check of the
6608 previous frame's ID is sufficient - but it is a common case and
6609 cheaper than checking the previous frame's ID.
6610
6611 NOTE: frame_id_eq will never report two invalid frame IDs as
6612 being equal, so to get into this block, both the current and
6613 previous frame must have valid frame IDs. */
6614 /* The outer_frame_id check is a heuristic to detect stepping
6615 through startup code. If we step over an instruction which
6616 sets the stack pointer from an invalid value to a valid value,
6617 we may detect that as a subroutine call from the mythical
6618 "outermost" function. This could be fixed by marking
6619 outermost frames as !stack_p,code_p,special_p. Then the
6620 initial outermost frame, before sp was valid, would
6621 have code_addr == &_start. See the comment in frame_id_eq
6622 for more. */
6623 if (!frame_id_eq (get_stack_frame_id (frame),
6624 ecs->event_thread->control.step_stack_frame_id)
6625 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6626 ecs->event_thread->control.step_stack_frame_id)
6627 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6628 outer_frame_id)
6629 || (ecs->event_thread->control.step_start_function
6630 != find_pc_function (stop_pc)))))
6631 {
6632 CORE_ADDR real_stop_pc;
6633
6634 if (debug_infrun)
6635 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6636
6637 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6638 {
6639 /* I presume that step_over_calls is only 0 when we're
6640 supposed to be stepping at the assembly language level
6641 ("stepi"). Just stop. */
6642 /* And this works the same backward as frontward. MVS */
6643 end_stepping_range (ecs);
6644 return;
6645 }
6646
6647 /* Reverse stepping through solib trampolines. */
6648
6649 if (execution_direction == EXEC_REVERSE
6650 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6651 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6652 || (ecs->stop_func_start == 0
6653 && in_solib_dynsym_resolve_code (stop_pc))))
6654 {
6655 /* Any solib trampoline code can be handled in reverse
6656 by simply continuing to single-step. We have already
6657 executed the solib function (backwards), and a few
6658 steps will take us back through the trampoline to the
6659 caller. */
6660 keep_going (ecs);
6661 return;
6662 }
6663
6664 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6665 {
6666 /* We're doing a "next".
6667
6668 Normal (forward) execution: set a breakpoint at the
6669 callee's return address (the address at which the caller
6670 will resume).
6671
6672 Reverse (backward) execution. set the step-resume
6673 breakpoint at the start of the function that we just
6674 stepped into (backwards), and continue to there. When we
6675 get there, we'll need to single-step back to the caller. */
6676
6677 if (execution_direction == EXEC_REVERSE)
6678 {
6679 /* If we're already at the start of the function, we've either
6680 just stepped backward into a single instruction function,
6681 or stepped back out of a signal handler to the first instruction
6682 of the function. Just keep going, which will single-step back
6683 to the caller. */
6684 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6685 {
6686 /* Normal function call return (static or dynamic). */
6687 symtab_and_line sr_sal;
6688 sr_sal.pc = ecs->stop_func_start;
6689 sr_sal.pspace = get_frame_program_space (frame);
6690 insert_step_resume_breakpoint_at_sal (gdbarch,
6691 sr_sal, null_frame_id);
6692 }
6693 }
6694 else
6695 insert_step_resume_breakpoint_at_caller (frame);
6696
6697 keep_going (ecs);
6698 return;
6699 }
6700
6701 /* If we are in a function call trampoline (a stub between the
6702 calling routine and the real function), locate the real
6703 function. That's what tells us (a) whether we want to step
6704 into it at all, and (b) what prologue we want to run to the
6705 end of, if we do step into it. */
6706 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6707 if (real_stop_pc == 0)
6708 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6709 if (real_stop_pc != 0)
6710 ecs->stop_func_start = real_stop_pc;
6711
6712 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6713 {
6714 symtab_and_line sr_sal;
6715 sr_sal.pc = ecs->stop_func_start;
6716 sr_sal.pspace = get_frame_program_space (frame);
6717
6718 insert_step_resume_breakpoint_at_sal (gdbarch,
6719 sr_sal, null_frame_id);
6720 keep_going (ecs);
6721 return;
6722 }
6723
6724 /* If we have line number information for the function we are
6725 thinking of stepping into and the function isn't on the skip
6726 list, step into it.
6727
6728 If there are several symtabs at that PC (e.g. with include
6729 files), just want to know whether *any* of them have line
6730 numbers. find_pc_line handles this. */
6731 {
6732 struct symtab_and_line tmp_sal;
6733
6734 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6735 if (tmp_sal.line != 0
6736 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6737 tmp_sal))
6738 {
6739 if (execution_direction == EXEC_REVERSE)
6740 handle_step_into_function_backward (gdbarch, ecs);
6741 else
6742 handle_step_into_function (gdbarch, ecs);
6743 return;
6744 }
6745 }
6746
6747 /* If we have no line number and the step-stop-if-no-debug is
6748 set, we stop the step so that the user has a chance to switch
6749 in assembly mode. */
6750 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6751 && step_stop_if_no_debug)
6752 {
6753 end_stepping_range (ecs);
6754 return;
6755 }
6756
6757 if (execution_direction == EXEC_REVERSE)
6758 {
6759 /* If we're already at the start of the function, we've either just
6760 stepped backward into a single instruction function without line
6761 number info, or stepped back out of a signal handler to the first
6762 instruction of the function without line number info. Just keep
6763 going, which will single-step back to the caller. */
6764 if (ecs->stop_func_start != stop_pc)
6765 {
6766 /* Set a breakpoint at callee's start address.
6767 From there we can step once and be back in the caller. */
6768 symtab_and_line sr_sal;
6769 sr_sal.pc = ecs->stop_func_start;
6770 sr_sal.pspace = get_frame_program_space (frame);
6771 insert_step_resume_breakpoint_at_sal (gdbarch,
6772 sr_sal, null_frame_id);
6773 }
6774 }
6775 else
6776 /* Set a breakpoint at callee's return address (the address
6777 at which the caller will resume). */
6778 insert_step_resume_breakpoint_at_caller (frame);
6779
6780 keep_going (ecs);
6781 return;
6782 }
6783
6784 /* Reverse stepping through solib trampolines. */
6785
6786 if (execution_direction == EXEC_REVERSE
6787 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6788 {
6789 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6790 || (ecs->stop_func_start == 0
6791 && in_solib_dynsym_resolve_code (stop_pc)))
6792 {
6793 /* Any solib trampoline code can be handled in reverse
6794 by simply continuing to single-step. We have already
6795 executed the solib function (backwards), and a few
6796 steps will take us back through the trampoline to the
6797 caller. */
6798 keep_going (ecs);
6799 return;
6800 }
6801 else if (in_solib_dynsym_resolve_code (stop_pc))
6802 {
6803 /* Stepped backward into the solib dynsym resolver.
6804 Set a breakpoint at its start and continue, then
6805 one more step will take us out. */
6806 symtab_and_line sr_sal;
6807 sr_sal.pc = ecs->stop_func_start;
6808 sr_sal.pspace = get_frame_program_space (frame);
6809 insert_step_resume_breakpoint_at_sal (gdbarch,
6810 sr_sal, null_frame_id);
6811 keep_going (ecs);
6812 return;
6813 }
6814 }
6815
6816 stop_pc_sal = find_pc_line (stop_pc, 0);
6817
6818 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6819 the trampoline processing logic, however, there are some trampolines
6820 that have no names, so we should do trampoline handling first. */
6821 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6822 && ecs->stop_func_name == NULL
6823 && stop_pc_sal.line == 0)
6824 {
6825 if (debug_infrun)
6826 fprintf_unfiltered (gdb_stdlog,
6827 "infrun: stepped into undebuggable function\n");
6828
6829 /* The inferior just stepped into, or returned to, an
6830 undebuggable function (where there is no debugging information
6831 and no line number corresponding to the address where the
6832 inferior stopped). Since we want to skip this kind of code,
6833 we keep going until the inferior returns from this
6834 function - unless the user has asked us not to (via
6835 set step-mode) or we no longer know how to get back
6836 to the call site. */
6837 if (step_stop_if_no_debug
6838 || !frame_id_p (frame_unwind_caller_id (frame)))
6839 {
6840 /* If we have no line number and the step-stop-if-no-debug
6841 is set, we stop the step so that the user has a chance to
6842 switch in assembly mode. */
6843 end_stepping_range (ecs);
6844 return;
6845 }
6846 else
6847 {
6848 /* Set a breakpoint at callee's return address (the address
6849 at which the caller will resume). */
6850 insert_step_resume_breakpoint_at_caller (frame);
6851 keep_going (ecs);
6852 return;
6853 }
6854 }
6855
6856 if (ecs->event_thread->control.step_range_end == 1)
6857 {
6858 /* It is stepi or nexti. We always want to stop stepping after
6859 one instruction. */
6860 if (debug_infrun)
6861 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6862 end_stepping_range (ecs);
6863 return;
6864 }
6865
6866 if (stop_pc_sal.line == 0)
6867 {
6868 /* We have no line number information. That means to stop
6869 stepping (does this always happen right after one instruction,
6870 when we do "s" in a function with no line numbers,
6871 or can this happen as a result of a return or longjmp?). */
6872 if (debug_infrun)
6873 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6874 end_stepping_range (ecs);
6875 return;
6876 }
6877
6878 /* Look for "calls" to inlined functions, part one. If the inline
6879 frame machinery detected some skipped call sites, we have entered
6880 a new inline function. */
6881
6882 if (frame_id_eq (get_frame_id (get_current_frame ()),
6883 ecs->event_thread->control.step_frame_id)
6884 && inline_skipped_frames (ecs->ptid))
6885 {
6886 if (debug_infrun)
6887 fprintf_unfiltered (gdb_stdlog,
6888 "infrun: stepped into inlined function\n");
6889
6890 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6891
6892 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6893 {
6894 /* For "step", we're going to stop. But if the call site
6895 for this inlined function is on the same source line as
6896 we were previously stepping, go down into the function
6897 first. Otherwise stop at the call site. */
6898
6899 if (call_sal.line == ecs->event_thread->current_line
6900 && call_sal.symtab == ecs->event_thread->current_symtab)
6901 step_into_inline_frame (ecs->ptid);
6902
6903 end_stepping_range (ecs);
6904 return;
6905 }
6906 else
6907 {
6908 /* For "next", we should stop at the call site if it is on a
6909 different source line. Otherwise continue through the
6910 inlined function. */
6911 if (call_sal.line == ecs->event_thread->current_line
6912 && call_sal.symtab == ecs->event_thread->current_symtab)
6913 keep_going (ecs);
6914 else
6915 end_stepping_range (ecs);
6916 return;
6917 }
6918 }
6919
6920 /* Look for "calls" to inlined functions, part two. If we are still
6921 in the same real function we were stepping through, but we have
6922 to go further up to find the exact frame ID, we are stepping
6923 through a more inlined call beyond its call site. */
6924
6925 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6926 && !frame_id_eq (get_frame_id (get_current_frame ()),
6927 ecs->event_thread->control.step_frame_id)
6928 && stepped_in_from (get_current_frame (),
6929 ecs->event_thread->control.step_frame_id))
6930 {
6931 if (debug_infrun)
6932 fprintf_unfiltered (gdb_stdlog,
6933 "infrun: stepping through inlined function\n");
6934
6935 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6936 keep_going (ecs);
6937 else
6938 end_stepping_range (ecs);
6939 return;
6940 }
6941
6942 if ((stop_pc == stop_pc_sal.pc)
6943 && (ecs->event_thread->current_line != stop_pc_sal.line
6944 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6945 {
6946 /* We are at the start of a different line. So stop. Note that
6947 we don't stop if we step into the middle of a different line.
6948 That is said to make things like for (;;) statements work
6949 better. */
6950 if (debug_infrun)
6951 fprintf_unfiltered (gdb_stdlog,
6952 "infrun: stepped to a different line\n");
6953 end_stepping_range (ecs);
6954 return;
6955 }
6956
6957 /* We aren't done stepping.
6958
6959 Optimize by setting the stepping range to the line.
6960 (We might not be in the original line, but if we entered a
6961 new line in mid-statement, we continue stepping. This makes
6962 things like for(;;) statements work better.) */
6963
6964 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6965 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6966 ecs->event_thread->control.may_range_step = 1;
6967 set_step_info (frame, stop_pc_sal);
6968
6969 if (debug_infrun)
6970 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6971 keep_going (ecs);
6972 }
6973
6974 /* In all-stop mode, if we're currently stepping but have stopped in
6975 some other thread, we may need to switch back to the stepped
6976 thread. Returns true we set the inferior running, false if we left
6977 it stopped (and the event needs further processing). */
6978
6979 static int
6980 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6981 {
6982 if (!target_is_non_stop_p ())
6983 {
6984 struct thread_info *tp;
6985 struct thread_info *stepping_thread;
6986
6987 /* If any thread is blocked on some internal breakpoint, and we
6988 simply need to step over that breakpoint to get it going
6989 again, do that first. */
6990
6991 /* However, if we see an event for the stepping thread, then we
6992 know all other threads have been moved past their breakpoints
6993 already. Let the caller check whether the step is finished,
6994 etc., before deciding to move it past a breakpoint. */
6995 if (ecs->event_thread->control.step_range_end != 0)
6996 return 0;
6997
6998 /* Check if the current thread is blocked on an incomplete
6999 step-over, interrupted by a random signal. */
7000 if (ecs->event_thread->control.trap_expected
7001 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7002 {
7003 if (debug_infrun)
7004 {
7005 fprintf_unfiltered (gdb_stdlog,
7006 "infrun: need to finish step-over of [%s]\n",
7007 target_pid_to_str (ecs->event_thread->ptid));
7008 }
7009 keep_going (ecs);
7010 return 1;
7011 }
7012
7013 /* Check if the current thread is blocked by a single-step
7014 breakpoint of another thread. */
7015 if (ecs->hit_singlestep_breakpoint)
7016 {
7017 if (debug_infrun)
7018 {
7019 fprintf_unfiltered (gdb_stdlog,
7020 "infrun: need to step [%s] over single-step "
7021 "breakpoint\n",
7022 target_pid_to_str (ecs->ptid));
7023 }
7024 keep_going (ecs);
7025 return 1;
7026 }
7027
7028 /* If this thread needs yet another step-over (e.g., stepping
7029 through a delay slot), do it first before moving on to
7030 another thread. */
7031 if (thread_still_needs_step_over (ecs->event_thread))
7032 {
7033 if (debug_infrun)
7034 {
7035 fprintf_unfiltered (gdb_stdlog,
7036 "infrun: thread [%s] still needs step-over\n",
7037 target_pid_to_str (ecs->event_thread->ptid));
7038 }
7039 keep_going (ecs);
7040 return 1;
7041 }
7042
7043 /* If scheduler locking applies even if not stepping, there's no
7044 need to walk over threads. Above we've checked whether the
7045 current thread is stepping. If some other thread not the
7046 event thread is stepping, then it must be that scheduler
7047 locking is not in effect. */
7048 if (schedlock_applies (ecs->event_thread))
7049 return 0;
7050
7051 /* Otherwise, we no longer expect a trap in the current thread.
7052 Clear the trap_expected flag before switching back -- this is
7053 what keep_going does as well, if we call it. */
7054 ecs->event_thread->control.trap_expected = 0;
7055
7056 /* Likewise, clear the signal if it should not be passed. */
7057 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7058 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7059
7060 /* Do all pending step-overs before actually proceeding with
7061 step/next/etc. */
7062 if (start_step_over ())
7063 {
7064 prepare_to_wait (ecs);
7065 return 1;
7066 }
7067
7068 /* Look for the stepping/nexting thread. */
7069 stepping_thread = NULL;
7070
7071 ALL_NON_EXITED_THREADS (tp)
7072 {
7073 /* Ignore threads of processes the caller is not
7074 resuming. */
7075 if (!sched_multi
7076 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7077 continue;
7078
7079 /* When stepping over a breakpoint, we lock all threads
7080 except the one that needs to move past the breakpoint.
7081 If a non-event thread has this set, the "incomplete
7082 step-over" check above should have caught it earlier. */
7083 if (tp->control.trap_expected)
7084 {
7085 internal_error (__FILE__, __LINE__,
7086 "[%s] has inconsistent state: "
7087 "trap_expected=%d\n",
7088 target_pid_to_str (tp->ptid),
7089 tp->control.trap_expected);
7090 }
7091
7092 /* Did we find the stepping thread? */
7093 if (tp->control.step_range_end)
7094 {
7095 /* Yep. There should only one though. */
7096 gdb_assert (stepping_thread == NULL);
7097
7098 /* The event thread is handled at the top, before we
7099 enter this loop. */
7100 gdb_assert (tp != ecs->event_thread);
7101
7102 /* If some thread other than the event thread is
7103 stepping, then scheduler locking can't be in effect,
7104 otherwise we wouldn't have resumed the current event
7105 thread in the first place. */
7106 gdb_assert (!schedlock_applies (tp));
7107
7108 stepping_thread = tp;
7109 }
7110 }
7111
7112 if (stepping_thread != NULL)
7113 {
7114 if (debug_infrun)
7115 fprintf_unfiltered (gdb_stdlog,
7116 "infrun: switching back to stepped thread\n");
7117
7118 if (keep_going_stepped_thread (stepping_thread))
7119 {
7120 prepare_to_wait (ecs);
7121 return 1;
7122 }
7123 }
7124 }
7125
7126 return 0;
7127 }
7128
7129 /* Set a previously stepped thread back to stepping. Returns true on
7130 success, false if the resume is not possible (e.g., the thread
7131 vanished). */
7132
7133 static int
7134 keep_going_stepped_thread (struct thread_info *tp)
7135 {
7136 struct frame_info *frame;
7137 struct execution_control_state ecss;
7138 struct execution_control_state *ecs = &ecss;
7139
7140 /* If the stepping thread exited, then don't try to switch back and
7141 resume it, which could fail in several different ways depending
7142 on the target. Instead, just keep going.
7143
7144 We can find a stepping dead thread in the thread list in two
7145 cases:
7146
7147 - The target supports thread exit events, and when the target
7148 tries to delete the thread from the thread list, inferior_ptid
7149 pointed at the exiting thread. In such case, calling
7150 delete_thread does not really remove the thread from the list;
7151 instead, the thread is left listed, with 'exited' state.
7152
7153 - The target's debug interface does not support thread exit
7154 events, and so we have no idea whatsoever if the previously
7155 stepping thread is still alive. For that reason, we need to
7156 synchronously query the target now. */
7157
7158 if (is_exited (tp->ptid)
7159 || !target_thread_alive (tp->ptid))
7160 {
7161 if (debug_infrun)
7162 fprintf_unfiltered (gdb_stdlog,
7163 "infrun: not resuming previously "
7164 "stepped thread, it has vanished\n");
7165
7166 delete_thread (tp->ptid);
7167 return 0;
7168 }
7169
7170 if (debug_infrun)
7171 fprintf_unfiltered (gdb_stdlog,
7172 "infrun: resuming previously stepped thread\n");
7173
7174 reset_ecs (ecs, tp);
7175 switch_to_thread (tp->ptid);
7176
7177 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7178 frame = get_current_frame ();
7179
7180 /* If the PC of the thread we were trying to single-step has
7181 changed, then that thread has trapped or been signaled, but the
7182 event has not been reported to GDB yet. Re-poll the target
7183 looking for this particular thread's event (i.e. temporarily
7184 enable schedlock) by:
7185
7186 - setting a break at the current PC
7187 - resuming that particular thread, only (by setting trap
7188 expected)
7189
7190 This prevents us continuously moving the single-step breakpoint
7191 forward, one instruction at a time, overstepping. */
7192
7193 if (stop_pc != tp->prev_pc)
7194 {
7195 ptid_t resume_ptid;
7196
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: expected thread advanced also (%s -> %s)\n",
7200 paddress (target_gdbarch (), tp->prev_pc),
7201 paddress (target_gdbarch (), stop_pc));
7202
7203 /* Clear the info of the previous step-over, as it's no longer
7204 valid (if the thread was trying to step over a breakpoint, it
7205 has already succeeded). It's what keep_going would do too,
7206 if we called it. Do this before trying to insert the sss
7207 breakpoint, otherwise if we were previously trying to step
7208 over this exact address in another thread, the breakpoint is
7209 skipped. */
7210 clear_step_over_info ();
7211 tp->control.trap_expected = 0;
7212
7213 insert_single_step_breakpoint (get_frame_arch (frame),
7214 get_frame_address_space (frame),
7215 stop_pc);
7216
7217 tp->resumed = 1;
7218 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7219 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7220 }
7221 else
7222 {
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: expected thread still hasn't advanced\n");
7226
7227 keep_going_pass_signal (ecs);
7228 }
7229 return 1;
7230 }
7231
7232 /* Is thread TP in the middle of (software or hardware)
7233 single-stepping? (Note the result of this function must never be
7234 passed directly as target_resume's STEP parameter.) */
7235
7236 static int
7237 currently_stepping (struct thread_info *tp)
7238 {
7239 return ((tp->control.step_range_end
7240 && tp->control.step_resume_breakpoint == NULL)
7241 || tp->control.trap_expected
7242 || tp->stepped_breakpoint
7243 || bpstat_should_step ());
7244 }
7245
7246 /* Inferior has stepped into a subroutine call with source code that
7247 we should not step over. Do step to the first line of code in
7248 it. */
7249
7250 static void
7251 handle_step_into_function (struct gdbarch *gdbarch,
7252 struct execution_control_state *ecs)
7253 {
7254 fill_in_stop_func (gdbarch, ecs);
7255
7256 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7257 if (cust != NULL && compunit_language (cust) != language_asm)
7258 ecs->stop_func_start
7259 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7260
7261 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7262 /* Use the step_resume_break to step until the end of the prologue,
7263 even if that involves jumps (as it seems to on the vax under
7264 4.2). */
7265 /* If the prologue ends in the middle of a source line, continue to
7266 the end of that source line (if it is still within the function).
7267 Otherwise, just go to end of prologue. */
7268 if (stop_func_sal.end
7269 && stop_func_sal.pc != ecs->stop_func_start
7270 && stop_func_sal.end < ecs->stop_func_end)
7271 ecs->stop_func_start = stop_func_sal.end;
7272
7273 /* Architectures which require breakpoint adjustment might not be able
7274 to place a breakpoint at the computed address. If so, the test
7275 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7276 ecs->stop_func_start to an address at which a breakpoint may be
7277 legitimately placed.
7278
7279 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7280 made, GDB will enter an infinite loop when stepping through
7281 optimized code consisting of VLIW instructions which contain
7282 subinstructions corresponding to different source lines. On
7283 FR-V, it's not permitted to place a breakpoint on any but the
7284 first subinstruction of a VLIW instruction. When a breakpoint is
7285 set, GDB will adjust the breakpoint address to the beginning of
7286 the VLIW instruction. Thus, we need to make the corresponding
7287 adjustment here when computing the stop address. */
7288
7289 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7290 {
7291 ecs->stop_func_start
7292 = gdbarch_adjust_breakpoint_address (gdbarch,
7293 ecs->stop_func_start);
7294 }
7295
7296 if (ecs->stop_func_start == stop_pc)
7297 {
7298 /* We are already there: stop now. */
7299 end_stepping_range (ecs);
7300 return;
7301 }
7302 else
7303 {
7304 /* Put the step-breakpoint there and go until there. */
7305 symtab_and_line sr_sal;
7306 sr_sal.pc = ecs->stop_func_start;
7307 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7308 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7309
7310 /* Do not specify what the fp should be when we stop since on
7311 some machines the prologue is where the new fp value is
7312 established. */
7313 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7314
7315 /* And make sure stepping stops right away then. */
7316 ecs->event_thread->control.step_range_end
7317 = ecs->event_thread->control.step_range_start;
7318 }
7319 keep_going (ecs);
7320 }
7321
7322 /* Inferior has stepped backward into a subroutine call with source
7323 code that we should not step over. Do step to the beginning of the
7324 last line of code in it. */
7325
7326 static void
7327 handle_step_into_function_backward (struct gdbarch *gdbarch,
7328 struct execution_control_state *ecs)
7329 {
7330 struct compunit_symtab *cust;
7331 struct symtab_and_line stop_func_sal;
7332
7333 fill_in_stop_func (gdbarch, ecs);
7334
7335 cust = find_pc_compunit_symtab (stop_pc);
7336 if (cust != NULL && compunit_language (cust) != language_asm)
7337 ecs->stop_func_start
7338 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7339
7340 stop_func_sal = find_pc_line (stop_pc, 0);
7341
7342 /* OK, we're just going to keep stepping here. */
7343 if (stop_func_sal.pc == stop_pc)
7344 {
7345 /* We're there already. Just stop stepping now. */
7346 end_stepping_range (ecs);
7347 }
7348 else
7349 {
7350 /* Else just reset the step range and keep going.
7351 No step-resume breakpoint, they don't work for
7352 epilogues, which can have multiple entry paths. */
7353 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7354 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7355 keep_going (ecs);
7356 }
7357 return;
7358 }
7359
7360 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7361 This is used to both functions and to skip over code. */
7362
7363 static void
7364 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7365 struct symtab_and_line sr_sal,
7366 struct frame_id sr_id,
7367 enum bptype sr_type)
7368 {
7369 /* There should never be more than one step-resume or longjmp-resume
7370 breakpoint per thread, so we should never be setting a new
7371 step_resume_breakpoint when one is already active. */
7372 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7373 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7374
7375 if (debug_infrun)
7376 fprintf_unfiltered (gdb_stdlog,
7377 "infrun: inserting step-resume breakpoint at %s\n",
7378 paddress (gdbarch, sr_sal.pc));
7379
7380 inferior_thread ()->control.step_resume_breakpoint
7381 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7382 }
7383
7384 void
7385 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7386 struct symtab_and_line sr_sal,
7387 struct frame_id sr_id)
7388 {
7389 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7390 sr_sal, sr_id,
7391 bp_step_resume);
7392 }
7393
7394 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7395 This is used to skip a potential signal handler.
7396
7397 This is called with the interrupted function's frame. The signal
7398 handler, when it returns, will resume the interrupted function at
7399 RETURN_FRAME.pc. */
7400
7401 static void
7402 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7403 {
7404 gdb_assert (return_frame != NULL);
7405
7406 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7407
7408 symtab_and_line sr_sal;
7409 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7410 sr_sal.section = find_pc_overlay (sr_sal.pc);
7411 sr_sal.pspace = get_frame_program_space (return_frame);
7412
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7414 get_stack_frame_id (return_frame),
7415 bp_hp_step_resume);
7416 }
7417
7418 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7419 is used to skip a function after stepping into it (for "next" or if
7420 the called function has no debugging information).
7421
7422 The current function has almost always been reached by single
7423 stepping a call or return instruction. NEXT_FRAME belongs to the
7424 current function, and the breakpoint will be set at the caller's
7425 resume address.
7426
7427 This is a separate function rather than reusing
7428 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7429 get_prev_frame, which may stop prematurely (see the implementation
7430 of frame_unwind_caller_id for an example). */
7431
7432 static void
7433 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7434 {
7435 /* We shouldn't have gotten here if we don't know where the call site
7436 is. */
7437 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7438
7439 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7440
7441 symtab_and_line sr_sal;
7442 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7443 frame_unwind_caller_pc (next_frame));
7444 sr_sal.section = find_pc_overlay (sr_sal.pc);
7445 sr_sal.pspace = frame_unwind_program_space (next_frame);
7446
7447 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7448 frame_unwind_caller_id (next_frame));
7449 }
7450
7451 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7452 new breakpoint at the target of a jmp_buf. The handling of
7453 longjmp-resume uses the same mechanisms used for handling
7454 "step-resume" breakpoints. */
7455
7456 static void
7457 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7458 {
7459 /* There should never be more than one longjmp-resume breakpoint per
7460 thread, so we should never be setting a new
7461 longjmp_resume_breakpoint when one is already active. */
7462 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7463
7464 if (debug_infrun)
7465 fprintf_unfiltered (gdb_stdlog,
7466 "infrun: inserting longjmp-resume breakpoint at %s\n",
7467 paddress (gdbarch, pc));
7468
7469 inferior_thread ()->control.exception_resume_breakpoint =
7470 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7471 }
7472
7473 /* Insert an exception resume breakpoint. TP is the thread throwing
7474 the exception. The block B is the block of the unwinder debug hook
7475 function. FRAME is the frame corresponding to the call to this
7476 function. SYM is the symbol of the function argument holding the
7477 target PC of the exception. */
7478
7479 static void
7480 insert_exception_resume_breakpoint (struct thread_info *tp,
7481 const struct block *b,
7482 struct frame_info *frame,
7483 struct symbol *sym)
7484 {
7485 TRY
7486 {
7487 struct block_symbol vsym;
7488 struct value *value;
7489 CORE_ADDR handler;
7490 struct breakpoint *bp;
7491
7492 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7493 value = read_var_value (vsym.symbol, vsym.block, frame);
7494 /* If the value was optimized out, revert to the old behavior. */
7495 if (! value_optimized_out (value))
7496 {
7497 handler = value_as_address (value);
7498
7499 if (debug_infrun)
7500 fprintf_unfiltered (gdb_stdlog,
7501 "infrun: exception resume at %lx\n",
7502 (unsigned long) handler);
7503
7504 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7505 handler,
7506 bp_exception_resume).release ();
7507
7508 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7509 frame = NULL;
7510
7511 bp->thread = tp->global_num;
7512 inferior_thread ()->control.exception_resume_breakpoint = bp;
7513 }
7514 }
7515 CATCH (e, RETURN_MASK_ERROR)
7516 {
7517 /* We want to ignore errors here. */
7518 }
7519 END_CATCH
7520 }
7521
7522 /* A helper for check_exception_resume that sets an
7523 exception-breakpoint based on a SystemTap probe. */
7524
7525 static void
7526 insert_exception_resume_from_probe (struct thread_info *tp,
7527 const struct bound_probe *probe,
7528 struct frame_info *frame)
7529 {
7530 struct value *arg_value;
7531 CORE_ADDR handler;
7532 struct breakpoint *bp;
7533
7534 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7535 if (!arg_value)
7536 return;
7537
7538 handler = value_as_address (arg_value);
7539
7540 if (debug_infrun)
7541 fprintf_unfiltered (gdb_stdlog,
7542 "infrun: exception resume at %s\n",
7543 paddress (get_objfile_arch (probe->objfile),
7544 handler));
7545
7546 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7547 handler, bp_exception_resume).release ();
7548 bp->thread = tp->global_num;
7549 inferior_thread ()->control.exception_resume_breakpoint = bp;
7550 }
7551
7552 /* This is called when an exception has been intercepted. Check to
7553 see whether the exception's destination is of interest, and if so,
7554 set an exception resume breakpoint there. */
7555
7556 static void
7557 check_exception_resume (struct execution_control_state *ecs,
7558 struct frame_info *frame)
7559 {
7560 struct bound_probe probe;
7561 struct symbol *func;
7562
7563 /* First see if this exception unwinding breakpoint was set via a
7564 SystemTap probe point. If so, the probe has two arguments: the
7565 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7566 set a breakpoint there. */
7567 probe = find_probe_by_pc (get_frame_pc (frame));
7568 if (probe.prob)
7569 {
7570 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7571 return;
7572 }
7573
7574 func = get_frame_function (frame);
7575 if (!func)
7576 return;
7577
7578 TRY
7579 {
7580 const struct block *b;
7581 struct block_iterator iter;
7582 struct symbol *sym;
7583 int argno = 0;
7584
7585 /* The exception breakpoint is a thread-specific breakpoint on
7586 the unwinder's debug hook, declared as:
7587
7588 void _Unwind_DebugHook (void *cfa, void *handler);
7589
7590 The CFA argument indicates the frame to which control is
7591 about to be transferred. HANDLER is the destination PC.
7592
7593 We ignore the CFA and set a temporary breakpoint at HANDLER.
7594 This is not extremely efficient but it avoids issues in gdb
7595 with computing the DWARF CFA, and it also works even in weird
7596 cases such as throwing an exception from inside a signal
7597 handler. */
7598
7599 b = SYMBOL_BLOCK_VALUE (func);
7600 ALL_BLOCK_SYMBOLS (b, iter, sym)
7601 {
7602 if (!SYMBOL_IS_ARGUMENT (sym))
7603 continue;
7604
7605 if (argno == 0)
7606 ++argno;
7607 else
7608 {
7609 insert_exception_resume_breakpoint (ecs->event_thread,
7610 b, frame, sym);
7611 break;
7612 }
7613 }
7614 }
7615 CATCH (e, RETURN_MASK_ERROR)
7616 {
7617 }
7618 END_CATCH
7619 }
7620
7621 static void
7622 stop_waiting (struct execution_control_state *ecs)
7623 {
7624 if (debug_infrun)
7625 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7626
7627 /* Let callers know we don't want to wait for the inferior anymore. */
7628 ecs->wait_some_more = 0;
7629
7630 /* If all-stop, but the target is always in non-stop mode, stop all
7631 threads now that we're presenting the stop to the user. */
7632 if (!non_stop && target_is_non_stop_p ())
7633 stop_all_threads ();
7634 }
7635
7636 /* Like keep_going, but passes the signal to the inferior, even if the
7637 signal is set to nopass. */
7638
7639 static void
7640 keep_going_pass_signal (struct execution_control_state *ecs)
7641 {
7642 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7643 gdb_assert (!ecs->event_thread->resumed);
7644
7645 /* Save the pc before execution, to compare with pc after stop. */
7646 ecs->event_thread->prev_pc
7647 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7648
7649 if (ecs->event_thread->control.trap_expected)
7650 {
7651 struct thread_info *tp = ecs->event_thread;
7652
7653 if (debug_infrun)
7654 fprintf_unfiltered (gdb_stdlog,
7655 "infrun: %s has trap_expected set, "
7656 "resuming to collect trap\n",
7657 target_pid_to_str (tp->ptid));
7658
7659 /* We haven't yet gotten our trap, and either: intercepted a
7660 non-signal event (e.g., a fork); or took a signal which we
7661 are supposed to pass through to the inferior. Simply
7662 continue. */
7663 resume (ecs->event_thread->suspend.stop_signal);
7664 }
7665 else if (step_over_info_valid_p ())
7666 {
7667 /* Another thread is stepping over a breakpoint in-line. If
7668 this thread needs a step-over too, queue the request. In
7669 either case, this resume must be deferred for later. */
7670 struct thread_info *tp = ecs->event_thread;
7671
7672 if (ecs->hit_singlestep_breakpoint
7673 || thread_still_needs_step_over (tp))
7674 {
7675 if (debug_infrun)
7676 fprintf_unfiltered (gdb_stdlog,
7677 "infrun: step-over already in progress: "
7678 "step-over for %s deferred\n",
7679 target_pid_to_str (tp->ptid));
7680 thread_step_over_chain_enqueue (tp);
7681 }
7682 else
7683 {
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog,
7686 "infrun: step-over in progress: "
7687 "resume of %s deferred\n",
7688 target_pid_to_str (tp->ptid));
7689 }
7690 }
7691 else
7692 {
7693 struct regcache *regcache = get_current_regcache ();
7694 int remove_bp;
7695 int remove_wps;
7696 step_over_what step_what;
7697
7698 /* Either the trap was not expected, but we are continuing
7699 anyway (if we got a signal, the user asked it be passed to
7700 the child)
7701 -- or --
7702 We got our expected trap, but decided we should resume from
7703 it.
7704
7705 We're going to run this baby now!
7706
7707 Note that insert_breakpoints won't try to re-insert
7708 already inserted breakpoints. Therefore, we don't
7709 care if breakpoints were already inserted, or not. */
7710
7711 /* If we need to step over a breakpoint, and we're not using
7712 displaced stepping to do so, insert all breakpoints
7713 (watchpoints, etc.) but the one we're stepping over, step one
7714 instruction, and then re-insert the breakpoint when that step
7715 is finished. */
7716
7717 step_what = thread_still_needs_step_over (ecs->event_thread);
7718
7719 remove_bp = (ecs->hit_singlestep_breakpoint
7720 || (step_what & STEP_OVER_BREAKPOINT));
7721 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7722
7723 /* We can't use displaced stepping if we need to step past a
7724 watchpoint. The instruction copied to the scratch pad would
7725 still trigger the watchpoint. */
7726 if (remove_bp
7727 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7728 {
7729 set_step_over_info (regcache->aspace (),
7730 regcache_read_pc (regcache), remove_wps,
7731 ecs->event_thread->global_num);
7732 }
7733 else if (remove_wps)
7734 set_step_over_info (NULL, 0, remove_wps, -1);
7735
7736 /* If we now need to do an in-line step-over, we need to stop
7737 all other threads. Note this must be done before
7738 insert_breakpoints below, because that removes the breakpoint
7739 we're about to step over, otherwise other threads could miss
7740 it. */
7741 if (step_over_info_valid_p () && target_is_non_stop_p ())
7742 stop_all_threads ();
7743
7744 /* Stop stepping if inserting breakpoints fails. */
7745 TRY
7746 {
7747 insert_breakpoints ();
7748 }
7749 CATCH (e, RETURN_MASK_ERROR)
7750 {
7751 exception_print (gdb_stderr, e);
7752 stop_waiting (ecs);
7753 return;
7754 }
7755 END_CATCH
7756
7757 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7758
7759 resume (ecs->event_thread->suspend.stop_signal);
7760 }
7761
7762 prepare_to_wait (ecs);
7763 }
7764
7765 /* Called when we should continue running the inferior, because the
7766 current event doesn't cause a user visible stop. This does the
7767 resuming part; waiting for the next event is done elsewhere. */
7768
7769 static void
7770 keep_going (struct execution_control_state *ecs)
7771 {
7772 if (ecs->event_thread->control.trap_expected
7773 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7774 ecs->event_thread->control.trap_expected = 0;
7775
7776 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7777 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7778 keep_going_pass_signal (ecs);
7779 }
7780
7781 /* This function normally comes after a resume, before
7782 handle_inferior_event exits. It takes care of any last bits of
7783 housekeeping, and sets the all-important wait_some_more flag. */
7784
7785 static void
7786 prepare_to_wait (struct execution_control_state *ecs)
7787 {
7788 if (debug_infrun)
7789 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7790
7791 ecs->wait_some_more = 1;
7792
7793 if (!target_is_async_p ())
7794 mark_infrun_async_event_handler ();
7795 }
7796
7797 /* We are done with the step range of a step/next/si/ni command.
7798 Called once for each n of a "step n" operation. */
7799
7800 static void
7801 end_stepping_range (struct execution_control_state *ecs)
7802 {
7803 ecs->event_thread->control.stop_step = 1;
7804 stop_waiting (ecs);
7805 }
7806
7807 /* Several print_*_reason functions to print why the inferior has stopped.
7808 We always print something when the inferior exits, or receives a signal.
7809 The rest of the cases are dealt with later on in normal_stop and
7810 print_it_typical. Ideally there should be a call to one of these
7811 print_*_reason functions functions from handle_inferior_event each time
7812 stop_waiting is called.
7813
7814 Note that we don't call these directly, instead we delegate that to
7815 the interpreters, through observers. Interpreters then call these
7816 with whatever uiout is right. */
7817
7818 void
7819 print_end_stepping_range_reason (struct ui_out *uiout)
7820 {
7821 /* For CLI-like interpreters, print nothing. */
7822
7823 if (uiout->is_mi_like_p ())
7824 {
7825 uiout->field_string ("reason",
7826 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7827 }
7828 }
7829
7830 void
7831 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7832 {
7833 annotate_signalled ();
7834 if (uiout->is_mi_like_p ())
7835 uiout->field_string
7836 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7837 uiout->text ("\nProgram terminated with signal ");
7838 annotate_signal_name ();
7839 uiout->field_string ("signal-name",
7840 gdb_signal_to_name (siggnal));
7841 annotate_signal_name_end ();
7842 uiout->text (", ");
7843 annotate_signal_string ();
7844 uiout->field_string ("signal-meaning",
7845 gdb_signal_to_string (siggnal));
7846 annotate_signal_string_end ();
7847 uiout->text (".\n");
7848 uiout->text ("The program no longer exists.\n");
7849 }
7850
7851 void
7852 print_exited_reason (struct ui_out *uiout, int exitstatus)
7853 {
7854 struct inferior *inf = current_inferior ();
7855 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7856
7857 annotate_exited (exitstatus);
7858 if (exitstatus)
7859 {
7860 if (uiout->is_mi_like_p ())
7861 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7862 uiout->text ("[Inferior ");
7863 uiout->text (plongest (inf->num));
7864 uiout->text (" (");
7865 uiout->text (pidstr);
7866 uiout->text (") exited with code ");
7867 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7868 uiout->text ("]\n");
7869 }
7870 else
7871 {
7872 if (uiout->is_mi_like_p ())
7873 uiout->field_string
7874 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7875 uiout->text ("[Inferior ");
7876 uiout->text (plongest (inf->num));
7877 uiout->text (" (");
7878 uiout->text (pidstr);
7879 uiout->text (") exited normally]\n");
7880 }
7881 }
7882
7883 /* Some targets/architectures can do extra processing/display of
7884 segmentation faults. E.g., Intel MPX boundary faults.
7885 Call the architecture dependent function to handle the fault. */
7886
7887 static void
7888 handle_segmentation_fault (struct ui_out *uiout)
7889 {
7890 struct regcache *regcache = get_current_regcache ();
7891 struct gdbarch *gdbarch = regcache->arch ();
7892
7893 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7894 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7895 }
7896
7897 void
7898 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7899 {
7900 struct thread_info *thr = inferior_thread ();
7901
7902 annotate_signal ();
7903
7904 if (uiout->is_mi_like_p ())
7905 ;
7906 else if (show_thread_that_caused_stop ())
7907 {
7908 const char *name;
7909
7910 uiout->text ("\nThread ");
7911 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7912
7913 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7914 if (name != NULL)
7915 {
7916 uiout->text (" \"");
7917 uiout->field_fmt ("name", "%s", name);
7918 uiout->text ("\"");
7919 }
7920 }
7921 else
7922 uiout->text ("\nProgram");
7923
7924 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7925 uiout->text (" stopped");
7926 else
7927 {
7928 uiout->text (" received signal ");
7929 annotate_signal_name ();
7930 if (uiout->is_mi_like_p ())
7931 uiout->field_string
7932 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7933 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7934 annotate_signal_name_end ();
7935 uiout->text (", ");
7936 annotate_signal_string ();
7937 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7938
7939 if (siggnal == GDB_SIGNAL_SEGV)
7940 handle_segmentation_fault (uiout);
7941
7942 annotate_signal_string_end ();
7943 }
7944 uiout->text (".\n");
7945 }
7946
7947 void
7948 print_no_history_reason (struct ui_out *uiout)
7949 {
7950 uiout->text ("\nNo more reverse-execution history.\n");
7951 }
7952
7953 /* Print current location without a level number, if we have changed
7954 functions or hit a breakpoint. Print source line if we have one.
7955 bpstat_print contains the logic deciding in detail what to print,
7956 based on the event(s) that just occurred. */
7957
7958 static void
7959 print_stop_location (struct target_waitstatus *ws)
7960 {
7961 int bpstat_ret;
7962 enum print_what source_flag;
7963 int do_frame_printing = 1;
7964 struct thread_info *tp = inferior_thread ();
7965
7966 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7967 switch (bpstat_ret)
7968 {
7969 case PRINT_UNKNOWN:
7970 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7971 should) carry around the function and does (or should) use
7972 that when doing a frame comparison. */
7973 if (tp->control.stop_step
7974 && frame_id_eq (tp->control.step_frame_id,
7975 get_frame_id (get_current_frame ()))
7976 && tp->control.step_start_function == find_pc_function (stop_pc))
7977 {
7978 /* Finished step, just print source line. */
7979 source_flag = SRC_LINE;
7980 }
7981 else
7982 {
7983 /* Print location and source line. */
7984 source_flag = SRC_AND_LOC;
7985 }
7986 break;
7987 case PRINT_SRC_AND_LOC:
7988 /* Print location and source line. */
7989 source_flag = SRC_AND_LOC;
7990 break;
7991 case PRINT_SRC_ONLY:
7992 source_flag = SRC_LINE;
7993 break;
7994 case PRINT_NOTHING:
7995 /* Something bogus. */
7996 source_flag = SRC_LINE;
7997 do_frame_printing = 0;
7998 break;
7999 default:
8000 internal_error (__FILE__, __LINE__, _("Unknown value."));
8001 }
8002
8003 /* The behavior of this routine with respect to the source
8004 flag is:
8005 SRC_LINE: Print only source line
8006 LOCATION: Print only location
8007 SRC_AND_LOC: Print location and source line. */
8008 if (do_frame_printing)
8009 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8010 }
8011
8012 /* See infrun.h. */
8013
8014 void
8015 print_stop_event (struct ui_out *uiout)
8016 {
8017 struct target_waitstatus last;
8018 ptid_t last_ptid;
8019 struct thread_info *tp;
8020
8021 get_last_target_status (&last_ptid, &last);
8022
8023 {
8024 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8025
8026 print_stop_location (&last);
8027
8028 /* Display the auto-display expressions. */
8029 do_displays ();
8030 }
8031
8032 tp = inferior_thread ();
8033 if (tp->thread_fsm != NULL
8034 && thread_fsm_finished_p (tp->thread_fsm))
8035 {
8036 struct return_value_info *rv;
8037
8038 rv = thread_fsm_return_value (tp->thread_fsm);
8039 if (rv != NULL)
8040 print_return_value (uiout, rv);
8041 }
8042 }
8043
8044 /* See infrun.h. */
8045
8046 void
8047 maybe_remove_breakpoints (void)
8048 {
8049 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8050 {
8051 if (remove_breakpoints ())
8052 {
8053 target_terminal::ours_for_output ();
8054 printf_filtered (_("Cannot remove breakpoints because "
8055 "program is no longer writable.\nFurther "
8056 "execution is probably impossible.\n"));
8057 }
8058 }
8059 }
8060
8061 /* The execution context that just caused a normal stop. */
8062
8063 struct stop_context
8064 {
8065 /* The stop ID. */
8066 ULONGEST stop_id;
8067
8068 /* The event PTID. */
8069
8070 ptid_t ptid;
8071
8072 /* If stopp for a thread event, this is the thread that caused the
8073 stop. */
8074 struct thread_info *thread;
8075
8076 /* The inferior that caused the stop. */
8077 int inf_num;
8078 };
8079
8080 /* Returns a new stop context. If stopped for a thread event, this
8081 takes a strong reference to the thread. */
8082
8083 static struct stop_context *
8084 save_stop_context (void)
8085 {
8086 struct stop_context *sc = XNEW (struct stop_context);
8087
8088 sc->stop_id = get_stop_id ();
8089 sc->ptid = inferior_ptid;
8090 sc->inf_num = current_inferior ()->num;
8091
8092 if (!ptid_equal (inferior_ptid, null_ptid))
8093 {
8094 /* Take a strong reference so that the thread can't be deleted
8095 yet. */
8096 sc->thread = inferior_thread ();
8097 sc->thread->incref ();
8098 }
8099 else
8100 sc->thread = NULL;
8101
8102 return sc;
8103 }
8104
8105 /* Release a stop context previously created with save_stop_context.
8106 Releases the strong reference to the thread as well. */
8107
8108 static void
8109 release_stop_context_cleanup (void *arg)
8110 {
8111 struct stop_context *sc = (struct stop_context *) arg;
8112
8113 if (sc->thread != NULL)
8114 sc->thread->decref ();
8115 xfree (sc);
8116 }
8117
8118 /* Return true if the current context no longer matches the saved stop
8119 context. */
8120
8121 static int
8122 stop_context_changed (struct stop_context *prev)
8123 {
8124 if (!ptid_equal (prev->ptid, inferior_ptid))
8125 return 1;
8126 if (prev->inf_num != current_inferior ()->num)
8127 return 1;
8128 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8129 return 1;
8130 if (get_stop_id () != prev->stop_id)
8131 return 1;
8132 return 0;
8133 }
8134
8135 /* See infrun.h. */
8136
8137 int
8138 normal_stop (void)
8139 {
8140 struct target_waitstatus last;
8141 ptid_t last_ptid;
8142 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8143 ptid_t pid_ptid;
8144
8145 get_last_target_status (&last_ptid, &last);
8146
8147 new_stop_id ();
8148
8149 /* If an exception is thrown from this point on, make sure to
8150 propagate GDB's knowledge of the executing state to the
8151 frontend/user running state. A QUIT is an easy exception to see
8152 here, so do this before any filtered output. */
8153 if (!non_stop)
8154 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8155 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8156 || last.kind == TARGET_WAITKIND_EXITED)
8157 {
8158 /* On some targets, we may still have live threads in the
8159 inferior when we get a process exit event. E.g., for
8160 "checkpoint", when the current checkpoint/fork exits,
8161 linux-fork.c automatically switches to another fork from
8162 within target_mourn_inferior. */
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 {
8165 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8166 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8167 }
8168 }
8169 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8170 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8171
8172 /* As we're presenting a stop, and potentially removing breakpoints,
8173 update the thread list so we can tell whether there are threads
8174 running on the target. With target remote, for example, we can
8175 only learn about new threads when we explicitly update the thread
8176 list. Do this before notifying the interpreters about signal
8177 stops, end of stepping ranges, etc., so that the "new thread"
8178 output is emitted before e.g., "Program received signal FOO",
8179 instead of after. */
8180 update_thread_list ();
8181
8182 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8183 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8184
8185 /* As with the notification of thread events, we want to delay
8186 notifying the user that we've switched thread context until
8187 the inferior actually stops.
8188
8189 There's no point in saying anything if the inferior has exited.
8190 Note that SIGNALLED here means "exited with a signal", not
8191 "received a signal".
8192
8193 Also skip saying anything in non-stop mode. In that mode, as we
8194 don't want GDB to switch threads behind the user's back, to avoid
8195 races where the user is typing a command to apply to thread x,
8196 but GDB switches to thread y before the user finishes entering
8197 the command, fetch_inferior_event installs a cleanup to restore
8198 the current thread back to the thread the user had selected right
8199 after this event is handled, so we're not really switching, only
8200 informing of a stop. */
8201 if (!non_stop
8202 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8203 && target_has_execution
8204 && last.kind != TARGET_WAITKIND_SIGNALLED
8205 && last.kind != TARGET_WAITKIND_EXITED
8206 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8207 {
8208 SWITCH_THRU_ALL_UIS ()
8209 {
8210 target_terminal::ours_for_output ();
8211 printf_filtered (_("[Switching to %s]\n"),
8212 target_pid_to_str (inferior_ptid));
8213 annotate_thread_changed ();
8214 }
8215 previous_inferior_ptid = inferior_ptid;
8216 }
8217
8218 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8219 {
8220 SWITCH_THRU_ALL_UIS ()
8221 if (current_ui->prompt_state == PROMPT_BLOCKED)
8222 {
8223 target_terminal::ours_for_output ();
8224 printf_filtered (_("No unwaited-for children left.\n"));
8225 }
8226 }
8227
8228 /* Note: this depends on the update_thread_list call above. */
8229 maybe_remove_breakpoints ();
8230
8231 /* If an auto-display called a function and that got a signal,
8232 delete that auto-display to avoid an infinite recursion. */
8233
8234 if (stopped_by_random_signal)
8235 disable_current_display ();
8236
8237 SWITCH_THRU_ALL_UIS ()
8238 {
8239 async_enable_stdin ();
8240 }
8241
8242 /* Let the user/frontend see the threads as stopped. */
8243 do_cleanups (old_chain);
8244
8245 /* Select innermost stack frame - i.e., current frame is frame 0,
8246 and current location is based on that. Handle the case where the
8247 dummy call is returning after being stopped. E.g. the dummy call
8248 previously hit a breakpoint. (If the dummy call returns
8249 normally, we won't reach here.) Do this before the stop hook is
8250 run, so that it doesn't get to see the temporary dummy frame,
8251 which is not where we'll present the stop. */
8252 if (has_stack_frames ())
8253 {
8254 if (stop_stack_dummy == STOP_STACK_DUMMY)
8255 {
8256 /* Pop the empty frame that contains the stack dummy. This
8257 also restores inferior state prior to the call (struct
8258 infcall_suspend_state). */
8259 struct frame_info *frame = get_current_frame ();
8260
8261 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8262 frame_pop (frame);
8263 /* frame_pop calls reinit_frame_cache as the last thing it
8264 does which means there's now no selected frame. */
8265 }
8266
8267 select_frame (get_current_frame ());
8268
8269 /* Set the current source location. */
8270 set_current_sal_from_frame (get_current_frame ());
8271 }
8272
8273 /* Look up the hook_stop and run it (CLI internally handles problem
8274 of stop_command's pre-hook not existing). */
8275 if (stop_command != NULL)
8276 {
8277 struct stop_context *saved_context = save_stop_context ();
8278 struct cleanup *old_chain
8279 = make_cleanup (release_stop_context_cleanup, saved_context);
8280
8281 TRY
8282 {
8283 execute_cmd_pre_hook (stop_command);
8284 }
8285 CATCH (ex, RETURN_MASK_ALL)
8286 {
8287 exception_fprintf (gdb_stderr, ex,
8288 "Error while running hook_stop:\n");
8289 }
8290 END_CATCH
8291
8292 /* If the stop hook resumes the target, then there's no point in
8293 trying to notify about the previous stop; its context is
8294 gone. Likewise if the command switches thread or inferior --
8295 the observers would print a stop for the wrong
8296 thread/inferior. */
8297 if (stop_context_changed (saved_context))
8298 {
8299 do_cleanups (old_chain);
8300 return 1;
8301 }
8302 do_cleanups (old_chain);
8303 }
8304
8305 /* Notify observers about the stop. This is where the interpreters
8306 print the stop event. */
8307 if (!ptid_equal (inferior_ptid, null_ptid))
8308 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8309 stop_print_frame);
8310 else
8311 observer_notify_normal_stop (NULL, stop_print_frame);
8312
8313 annotate_stopped ();
8314
8315 if (target_has_execution)
8316 {
8317 if (last.kind != TARGET_WAITKIND_SIGNALLED
8318 && last.kind != TARGET_WAITKIND_EXITED)
8319 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8320 Delete any breakpoint that is to be deleted at the next stop. */
8321 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8322 }
8323
8324 /* Try to get rid of automatically added inferiors that are no
8325 longer needed. Keeping those around slows down things linearly.
8326 Note that this never removes the current inferior. */
8327 prune_inferiors ();
8328
8329 return 0;
8330 }
8331 \f
8332 int
8333 signal_stop_state (int signo)
8334 {
8335 return signal_stop[signo];
8336 }
8337
8338 int
8339 signal_print_state (int signo)
8340 {
8341 return signal_print[signo];
8342 }
8343
8344 int
8345 signal_pass_state (int signo)
8346 {
8347 return signal_program[signo];
8348 }
8349
8350 static void
8351 signal_cache_update (int signo)
8352 {
8353 if (signo == -1)
8354 {
8355 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8356 signal_cache_update (signo);
8357
8358 return;
8359 }
8360
8361 signal_pass[signo] = (signal_stop[signo] == 0
8362 && signal_print[signo] == 0
8363 && signal_program[signo] == 1
8364 && signal_catch[signo] == 0);
8365 }
8366
8367 int
8368 signal_stop_update (int signo, int state)
8369 {
8370 int ret = signal_stop[signo];
8371
8372 signal_stop[signo] = state;
8373 signal_cache_update (signo);
8374 return ret;
8375 }
8376
8377 int
8378 signal_print_update (int signo, int state)
8379 {
8380 int ret = signal_print[signo];
8381
8382 signal_print[signo] = state;
8383 signal_cache_update (signo);
8384 return ret;
8385 }
8386
8387 int
8388 signal_pass_update (int signo, int state)
8389 {
8390 int ret = signal_program[signo];
8391
8392 signal_program[signo] = state;
8393 signal_cache_update (signo);
8394 return ret;
8395 }
8396
8397 /* Update the global 'signal_catch' from INFO and notify the
8398 target. */
8399
8400 void
8401 signal_catch_update (const unsigned int *info)
8402 {
8403 int i;
8404
8405 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8406 signal_catch[i] = info[i] > 0;
8407 signal_cache_update (-1);
8408 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8409 }
8410
8411 static void
8412 sig_print_header (void)
8413 {
8414 printf_filtered (_("Signal Stop\tPrint\tPass "
8415 "to program\tDescription\n"));
8416 }
8417
8418 static void
8419 sig_print_info (enum gdb_signal oursig)
8420 {
8421 const char *name = gdb_signal_to_name (oursig);
8422 int name_padding = 13 - strlen (name);
8423
8424 if (name_padding <= 0)
8425 name_padding = 0;
8426
8427 printf_filtered ("%s", name);
8428 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8429 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8430 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8431 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8432 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8433 }
8434
8435 /* Specify how various signals in the inferior should be handled. */
8436
8437 static void
8438 handle_command (const char *args, int from_tty)
8439 {
8440 int digits, wordlen;
8441 int sigfirst, signum, siglast;
8442 enum gdb_signal oursig;
8443 int allsigs;
8444 int nsigs;
8445 unsigned char *sigs;
8446
8447 if (args == NULL)
8448 {
8449 error_no_arg (_("signal to handle"));
8450 }
8451
8452 /* Allocate and zero an array of flags for which signals to handle. */
8453
8454 nsigs = (int) GDB_SIGNAL_LAST;
8455 sigs = (unsigned char *) alloca (nsigs);
8456 memset (sigs, 0, nsigs);
8457
8458 /* Break the command line up into args. */
8459
8460 gdb_argv built_argv (args);
8461
8462 /* Walk through the args, looking for signal oursigs, signal names, and
8463 actions. Signal numbers and signal names may be interspersed with
8464 actions, with the actions being performed for all signals cumulatively
8465 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8466
8467 for (char *arg : built_argv)
8468 {
8469 wordlen = strlen (arg);
8470 for (digits = 0; isdigit (arg[digits]); digits++)
8471 {;
8472 }
8473 allsigs = 0;
8474 sigfirst = siglast = -1;
8475
8476 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8477 {
8478 /* Apply action to all signals except those used by the
8479 debugger. Silently skip those. */
8480 allsigs = 1;
8481 sigfirst = 0;
8482 siglast = nsigs - 1;
8483 }
8484 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8485 {
8486 SET_SIGS (nsigs, sigs, signal_stop);
8487 SET_SIGS (nsigs, sigs, signal_print);
8488 }
8489 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8490 {
8491 UNSET_SIGS (nsigs, sigs, signal_program);
8492 }
8493 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8494 {
8495 SET_SIGS (nsigs, sigs, signal_print);
8496 }
8497 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8498 {
8499 SET_SIGS (nsigs, sigs, signal_program);
8500 }
8501 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8502 {
8503 UNSET_SIGS (nsigs, sigs, signal_stop);
8504 }
8505 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8506 {
8507 SET_SIGS (nsigs, sigs, signal_program);
8508 }
8509 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8510 {
8511 UNSET_SIGS (nsigs, sigs, signal_print);
8512 UNSET_SIGS (nsigs, sigs, signal_stop);
8513 }
8514 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8515 {
8516 UNSET_SIGS (nsigs, sigs, signal_program);
8517 }
8518 else if (digits > 0)
8519 {
8520 /* It is numeric. The numeric signal refers to our own
8521 internal signal numbering from target.h, not to host/target
8522 signal number. This is a feature; users really should be
8523 using symbolic names anyway, and the common ones like
8524 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8525
8526 sigfirst = siglast = (int)
8527 gdb_signal_from_command (atoi (arg));
8528 if (arg[digits] == '-')
8529 {
8530 siglast = (int)
8531 gdb_signal_from_command (atoi (arg + digits + 1));
8532 }
8533 if (sigfirst > siglast)
8534 {
8535 /* Bet he didn't figure we'd think of this case... */
8536 signum = sigfirst;
8537 sigfirst = siglast;
8538 siglast = signum;
8539 }
8540 }
8541 else
8542 {
8543 oursig = gdb_signal_from_name (arg);
8544 if (oursig != GDB_SIGNAL_UNKNOWN)
8545 {
8546 sigfirst = siglast = (int) oursig;
8547 }
8548 else
8549 {
8550 /* Not a number and not a recognized flag word => complain. */
8551 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8552 }
8553 }
8554
8555 /* If any signal numbers or symbol names were found, set flags for
8556 which signals to apply actions to. */
8557
8558 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8559 {
8560 switch ((enum gdb_signal) signum)
8561 {
8562 case GDB_SIGNAL_TRAP:
8563 case GDB_SIGNAL_INT:
8564 if (!allsigs && !sigs[signum])
8565 {
8566 if (query (_("%s is used by the debugger.\n\
8567 Are you sure you want to change it? "),
8568 gdb_signal_to_name ((enum gdb_signal) signum)))
8569 {
8570 sigs[signum] = 1;
8571 }
8572 else
8573 {
8574 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8575 gdb_flush (gdb_stdout);
8576 }
8577 }
8578 break;
8579 case GDB_SIGNAL_0:
8580 case GDB_SIGNAL_DEFAULT:
8581 case GDB_SIGNAL_UNKNOWN:
8582 /* Make sure that "all" doesn't print these. */
8583 break;
8584 default:
8585 sigs[signum] = 1;
8586 break;
8587 }
8588 }
8589 }
8590
8591 for (signum = 0; signum < nsigs; signum++)
8592 if (sigs[signum])
8593 {
8594 signal_cache_update (-1);
8595 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8596 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8597
8598 if (from_tty)
8599 {
8600 /* Show the results. */
8601 sig_print_header ();
8602 for (; signum < nsigs; signum++)
8603 if (sigs[signum])
8604 sig_print_info ((enum gdb_signal) signum);
8605 }
8606
8607 break;
8608 }
8609 }
8610
8611 /* Complete the "handle" command. */
8612
8613 static void
8614 handle_completer (struct cmd_list_element *ignore,
8615 completion_tracker &tracker,
8616 const char *text, const char *word)
8617 {
8618 static const char * const keywords[] =
8619 {
8620 "all",
8621 "stop",
8622 "ignore",
8623 "print",
8624 "pass",
8625 "nostop",
8626 "noignore",
8627 "noprint",
8628 "nopass",
8629 NULL,
8630 };
8631
8632 signal_completer (ignore, tracker, text, word);
8633 complete_on_enum (tracker, keywords, word, word);
8634 }
8635
8636 enum gdb_signal
8637 gdb_signal_from_command (int num)
8638 {
8639 if (num >= 1 && num <= 15)
8640 return (enum gdb_signal) num;
8641 error (_("Only signals 1-15 are valid as numeric signals.\n\
8642 Use \"info signals\" for a list of symbolic signals."));
8643 }
8644
8645 /* Print current contents of the tables set by the handle command.
8646 It is possible we should just be printing signals actually used
8647 by the current target (but for things to work right when switching
8648 targets, all signals should be in the signal tables). */
8649
8650 static void
8651 info_signals_command (const char *signum_exp, int from_tty)
8652 {
8653 enum gdb_signal oursig;
8654
8655 sig_print_header ();
8656
8657 if (signum_exp)
8658 {
8659 /* First see if this is a symbol name. */
8660 oursig = gdb_signal_from_name (signum_exp);
8661 if (oursig == GDB_SIGNAL_UNKNOWN)
8662 {
8663 /* No, try numeric. */
8664 oursig =
8665 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8666 }
8667 sig_print_info (oursig);
8668 return;
8669 }
8670
8671 printf_filtered ("\n");
8672 /* These ugly casts brought to you by the native VAX compiler. */
8673 for (oursig = GDB_SIGNAL_FIRST;
8674 (int) oursig < (int) GDB_SIGNAL_LAST;
8675 oursig = (enum gdb_signal) ((int) oursig + 1))
8676 {
8677 QUIT;
8678
8679 if (oursig != GDB_SIGNAL_UNKNOWN
8680 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8681 sig_print_info (oursig);
8682 }
8683
8684 printf_filtered (_("\nUse the \"handle\" command "
8685 "to change these tables.\n"));
8686 }
8687
8688 /* The $_siginfo convenience variable is a bit special. We don't know
8689 for sure the type of the value until we actually have a chance to
8690 fetch the data. The type can change depending on gdbarch, so it is
8691 also dependent on which thread you have selected.
8692
8693 1. making $_siginfo be an internalvar that creates a new value on
8694 access.
8695
8696 2. making the value of $_siginfo be an lval_computed value. */
8697
8698 /* This function implements the lval_computed support for reading a
8699 $_siginfo value. */
8700
8701 static void
8702 siginfo_value_read (struct value *v)
8703 {
8704 LONGEST transferred;
8705
8706 /* If we can access registers, so can we access $_siginfo. Likewise
8707 vice versa. */
8708 validate_registers_access ();
8709
8710 transferred =
8711 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8712 NULL,
8713 value_contents_all_raw (v),
8714 value_offset (v),
8715 TYPE_LENGTH (value_type (v)));
8716
8717 if (transferred != TYPE_LENGTH (value_type (v)))
8718 error (_("Unable to read siginfo"));
8719 }
8720
8721 /* This function implements the lval_computed support for writing a
8722 $_siginfo value. */
8723
8724 static void
8725 siginfo_value_write (struct value *v, struct value *fromval)
8726 {
8727 LONGEST transferred;
8728
8729 /* If we can access registers, so can we access $_siginfo. Likewise
8730 vice versa. */
8731 validate_registers_access ();
8732
8733 transferred = target_write (&current_target,
8734 TARGET_OBJECT_SIGNAL_INFO,
8735 NULL,
8736 value_contents_all_raw (fromval),
8737 value_offset (v),
8738 TYPE_LENGTH (value_type (fromval)));
8739
8740 if (transferred != TYPE_LENGTH (value_type (fromval)))
8741 error (_("Unable to write siginfo"));
8742 }
8743
8744 static const struct lval_funcs siginfo_value_funcs =
8745 {
8746 siginfo_value_read,
8747 siginfo_value_write
8748 };
8749
8750 /* Return a new value with the correct type for the siginfo object of
8751 the current thread using architecture GDBARCH. Return a void value
8752 if there's no object available. */
8753
8754 static struct value *
8755 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8756 void *ignore)
8757 {
8758 if (target_has_stack
8759 && !ptid_equal (inferior_ptid, null_ptid)
8760 && gdbarch_get_siginfo_type_p (gdbarch))
8761 {
8762 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8763
8764 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8765 }
8766
8767 return allocate_value (builtin_type (gdbarch)->builtin_void);
8768 }
8769
8770 \f
8771 /* infcall_suspend_state contains state about the program itself like its
8772 registers and any signal it received when it last stopped.
8773 This state must be restored regardless of how the inferior function call
8774 ends (either successfully, or after it hits a breakpoint or signal)
8775 if the program is to properly continue where it left off. */
8776
8777 struct infcall_suspend_state
8778 {
8779 struct thread_suspend_state thread_suspend;
8780
8781 /* Other fields: */
8782 CORE_ADDR stop_pc;
8783 struct regcache *registers;
8784
8785 /* Format of SIGINFO_DATA or NULL if it is not present. */
8786 struct gdbarch *siginfo_gdbarch;
8787
8788 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8789 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8790 content would be invalid. */
8791 gdb_byte *siginfo_data;
8792 };
8793
8794 struct infcall_suspend_state *
8795 save_infcall_suspend_state (void)
8796 {
8797 struct infcall_suspend_state *inf_state;
8798 struct thread_info *tp = inferior_thread ();
8799 struct regcache *regcache = get_current_regcache ();
8800 struct gdbarch *gdbarch = regcache->arch ();
8801 gdb_byte *siginfo_data = NULL;
8802
8803 if (gdbarch_get_siginfo_type_p (gdbarch))
8804 {
8805 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8806 size_t len = TYPE_LENGTH (type);
8807 struct cleanup *back_to;
8808
8809 siginfo_data = (gdb_byte *) xmalloc (len);
8810 back_to = make_cleanup (xfree, siginfo_data);
8811
8812 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8813 siginfo_data, 0, len) == len)
8814 discard_cleanups (back_to);
8815 else
8816 {
8817 /* Errors ignored. */
8818 do_cleanups (back_to);
8819 siginfo_data = NULL;
8820 }
8821 }
8822
8823 inf_state = XCNEW (struct infcall_suspend_state);
8824
8825 if (siginfo_data)
8826 {
8827 inf_state->siginfo_gdbarch = gdbarch;
8828 inf_state->siginfo_data = siginfo_data;
8829 }
8830
8831 inf_state->thread_suspend = tp->suspend;
8832
8833 /* run_inferior_call will not use the signal due to its `proceed' call with
8834 GDB_SIGNAL_0 anyway. */
8835 tp->suspend.stop_signal = GDB_SIGNAL_0;
8836
8837 inf_state->stop_pc = stop_pc;
8838
8839 inf_state->registers = regcache_dup (regcache);
8840
8841 return inf_state;
8842 }
8843
8844 /* Restore inferior session state to INF_STATE. */
8845
8846 void
8847 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8848 {
8849 struct thread_info *tp = inferior_thread ();
8850 struct regcache *regcache = get_current_regcache ();
8851 struct gdbarch *gdbarch = regcache->arch ();
8852
8853 tp->suspend = inf_state->thread_suspend;
8854
8855 stop_pc = inf_state->stop_pc;
8856
8857 if (inf_state->siginfo_gdbarch == gdbarch)
8858 {
8859 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8860
8861 /* Errors ignored. */
8862 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8863 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8864 }
8865
8866 /* The inferior can be gone if the user types "print exit(0)"
8867 (and perhaps other times). */
8868 if (target_has_execution)
8869 /* NB: The register write goes through to the target. */
8870 regcache_cpy (regcache, inf_state->registers);
8871
8872 discard_infcall_suspend_state (inf_state);
8873 }
8874
8875 static void
8876 do_restore_infcall_suspend_state_cleanup (void *state)
8877 {
8878 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8879 }
8880
8881 struct cleanup *
8882 make_cleanup_restore_infcall_suspend_state
8883 (struct infcall_suspend_state *inf_state)
8884 {
8885 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8886 }
8887
8888 void
8889 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8890 {
8891 delete inf_state->registers;
8892 xfree (inf_state->siginfo_data);
8893 xfree (inf_state);
8894 }
8895
8896 struct regcache *
8897 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8898 {
8899 return inf_state->registers;
8900 }
8901
8902 /* infcall_control_state contains state regarding gdb's control of the
8903 inferior itself like stepping control. It also contains session state like
8904 the user's currently selected frame. */
8905
8906 struct infcall_control_state
8907 {
8908 struct thread_control_state thread_control;
8909 struct inferior_control_state inferior_control;
8910
8911 /* Other fields: */
8912 enum stop_stack_kind stop_stack_dummy;
8913 int stopped_by_random_signal;
8914
8915 /* ID if the selected frame when the inferior function call was made. */
8916 struct frame_id selected_frame_id;
8917 };
8918
8919 /* Save all of the information associated with the inferior<==>gdb
8920 connection. */
8921
8922 struct infcall_control_state *
8923 save_infcall_control_state (void)
8924 {
8925 struct infcall_control_state *inf_status =
8926 XNEW (struct infcall_control_state);
8927 struct thread_info *tp = inferior_thread ();
8928 struct inferior *inf = current_inferior ();
8929
8930 inf_status->thread_control = tp->control;
8931 inf_status->inferior_control = inf->control;
8932
8933 tp->control.step_resume_breakpoint = NULL;
8934 tp->control.exception_resume_breakpoint = NULL;
8935
8936 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8937 chain. If caller's caller is walking the chain, they'll be happier if we
8938 hand them back the original chain when restore_infcall_control_state is
8939 called. */
8940 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8941
8942 /* Other fields: */
8943 inf_status->stop_stack_dummy = stop_stack_dummy;
8944 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8945
8946 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8947
8948 return inf_status;
8949 }
8950
8951 static void
8952 restore_selected_frame (const frame_id &fid)
8953 {
8954 frame_info *frame = frame_find_by_id (fid);
8955
8956 /* If inf_status->selected_frame_id is NULL, there was no previously
8957 selected frame. */
8958 if (frame == NULL)
8959 {
8960 warning (_("Unable to restore previously selected frame."));
8961 return;
8962 }
8963
8964 select_frame (frame);
8965 }
8966
8967 /* Restore inferior session state to INF_STATUS. */
8968
8969 void
8970 restore_infcall_control_state (struct infcall_control_state *inf_status)
8971 {
8972 struct thread_info *tp = inferior_thread ();
8973 struct inferior *inf = current_inferior ();
8974
8975 if (tp->control.step_resume_breakpoint)
8976 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8977
8978 if (tp->control.exception_resume_breakpoint)
8979 tp->control.exception_resume_breakpoint->disposition
8980 = disp_del_at_next_stop;
8981
8982 /* Handle the bpstat_copy of the chain. */
8983 bpstat_clear (&tp->control.stop_bpstat);
8984
8985 tp->control = inf_status->thread_control;
8986 inf->control = inf_status->inferior_control;
8987
8988 /* Other fields: */
8989 stop_stack_dummy = inf_status->stop_stack_dummy;
8990 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8991
8992 if (target_has_stack)
8993 {
8994 /* The point of the try/catch is that if the stack is clobbered,
8995 walking the stack might encounter a garbage pointer and
8996 error() trying to dereference it. */
8997 TRY
8998 {
8999 restore_selected_frame (inf_status->selected_frame_id);
9000 }
9001 CATCH (ex, RETURN_MASK_ERROR)
9002 {
9003 exception_fprintf (gdb_stderr, ex,
9004 "Unable to restore previously selected frame:\n");
9005 /* Error in restoring the selected frame. Select the
9006 innermost frame. */
9007 select_frame (get_current_frame ());
9008 }
9009 END_CATCH
9010 }
9011
9012 xfree (inf_status);
9013 }
9014
9015 static void
9016 do_restore_infcall_control_state_cleanup (void *sts)
9017 {
9018 restore_infcall_control_state ((struct infcall_control_state *) sts);
9019 }
9020
9021 struct cleanup *
9022 make_cleanup_restore_infcall_control_state
9023 (struct infcall_control_state *inf_status)
9024 {
9025 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9026 }
9027
9028 void
9029 discard_infcall_control_state (struct infcall_control_state *inf_status)
9030 {
9031 if (inf_status->thread_control.step_resume_breakpoint)
9032 inf_status->thread_control.step_resume_breakpoint->disposition
9033 = disp_del_at_next_stop;
9034
9035 if (inf_status->thread_control.exception_resume_breakpoint)
9036 inf_status->thread_control.exception_resume_breakpoint->disposition
9037 = disp_del_at_next_stop;
9038
9039 /* See save_infcall_control_state for info on stop_bpstat. */
9040 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9041
9042 xfree (inf_status);
9043 }
9044 \f
9045 /* See infrun.h. */
9046
9047 void
9048 clear_exit_convenience_vars (void)
9049 {
9050 clear_internalvar (lookup_internalvar ("_exitsignal"));
9051 clear_internalvar (lookup_internalvar ("_exitcode"));
9052 }
9053 \f
9054
9055 /* User interface for reverse debugging:
9056 Set exec-direction / show exec-direction commands
9057 (returns error unless target implements to_set_exec_direction method). */
9058
9059 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9060 static const char exec_forward[] = "forward";
9061 static const char exec_reverse[] = "reverse";
9062 static const char *exec_direction = exec_forward;
9063 static const char *const exec_direction_names[] = {
9064 exec_forward,
9065 exec_reverse,
9066 NULL
9067 };
9068
9069 static void
9070 set_exec_direction_func (const char *args, int from_tty,
9071 struct cmd_list_element *cmd)
9072 {
9073 if (target_can_execute_reverse)
9074 {
9075 if (!strcmp (exec_direction, exec_forward))
9076 execution_direction = EXEC_FORWARD;
9077 else if (!strcmp (exec_direction, exec_reverse))
9078 execution_direction = EXEC_REVERSE;
9079 }
9080 else
9081 {
9082 exec_direction = exec_forward;
9083 error (_("Target does not support this operation."));
9084 }
9085 }
9086
9087 static void
9088 show_exec_direction_func (struct ui_file *out, int from_tty,
9089 struct cmd_list_element *cmd, const char *value)
9090 {
9091 switch (execution_direction) {
9092 case EXEC_FORWARD:
9093 fprintf_filtered (out, _("Forward.\n"));
9094 break;
9095 case EXEC_REVERSE:
9096 fprintf_filtered (out, _("Reverse.\n"));
9097 break;
9098 default:
9099 internal_error (__FILE__, __LINE__,
9100 _("bogus execution_direction value: %d"),
9101 (int) execution_direction);
9102 }
9103 }
9104
9105 static void
9106 show_schedule_multiple (struct ui_file *file, int from_tty,
9107 struct cmd_list_element *c, const char *value)
9108 {
9109 fprintf_filtered (file, _("Resuming the execution of threads "
9110 "of all processes is %s.\n"), value);
9111 }
9112
9113 /* Implementation of `siginfo' variable. */
9114
9115 static const struct internalvar_funcs siginfo_funcs =
9116 {
9117 siginfo_make_value,
9118 NULL,
9119 NULL
9120 };
9121
9122 /* Callback for infrun's target events source. This is marked when a
9123 thread has a pending status to process. */
9124
9125 static void
9126 infrun_async_inferior_event_handler (gdb_client_data data)
9127 {
9128 inferior_event_handler (INF_REG_EVENT, NULL);
9129 }
9130
9131 void
9132 _initialize_infrun (void)
9133 {
9134 int i;
9135 int numsigs;
9136 struct cmd_list_element *c;
9137
9138 /* Register extra event sources in the event loop. */
9139 infrun_async_inferior_event_token
9140 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9141
9142 add_info ("signals", info_signals_command, _("\
9143 What debugger does when program gets various signals.\n\
9144 Specify a signal as argument to print info on that signal only."));
9145 add_info_alias ("handle", "signals", 0);
9146
9147 c = add_com ("handle", class_run, handle_command, _("\
9148 Specify how to handle signals.\n\
9149 Usage: handle SIGNAL [ACTIONS]\n\
9150 Args are signals and actions to apply to those signals.\n\
9151 If no actions are specified, the current settings for the specified signals\n\
9152 will be displayed instead.\n\
9153 \n\
9154 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9155 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9156 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9157 The special arg \"all\" is recognized to mean all signals except those\n\
9158 used by the debugger, typically SIGTRAP and SIGINT.\n\
9159 \n\
9160 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9161 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9162 Stop means reenter debugger if this signal happens (implies print).\n\
9163 Print means print a message if this signal happens.\n\
9164 Pass means let program see this signal; otherwise program doesn't know.\n\
9165 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9166 Pass and Stop may be combined.\n\
9167 \n\
9168 Multiple signals may be specified. Signal numbers and signal names\n\
9169 may be interspersed with actions, with the actions being performed for\n\
9170 all signals cumulatively specified."));
9171 set_cmd_completer (c, handle_completer);
9172
9173 if (!dbx_commands)
9174 stop_command = add_cmd ("stop", class_obscure,
9175 not_just_help_class_command, _("\
9176 There is no `stop' command, but you can set a hook on `stop'.\n\
9177 This allows you to set a list of commands to be run each time execution\n\
9178 of the program stops."), &cmdlist);
9179
9180 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9181 Set inferior debugging."), _("\
9182 Show inferior debugging."), _("\
9183 When non-zero, inferior specific debugging is enabled."),
9184 NULL,
9185 show_debug_infrun,
9186 &setdebuglist, &showdebuglist);
9187
9188 add_setshow_boolean_cmd ("displaced", class_maintenance,
9189 &debug_displaced, _("\
9190 Set displaced stepping debugging."), _("\
9191 Show displaced stepping debugging."), _("\
9192 When non-zero, displaced stepping specific debugging is enabled."),
9193 NULL,
9194 show_debug_displaced,
9195 &setdebuglist, &showdebuglist);
9196
9197 add_setshow_boolean_cmd ("non-stop", no_class,
9198 &non_stop_1, _("\
9199 Set whether gdb controls the inferior in non-stop mode."), _("\
9200 Show whether gdb controls the inferior in non-stop mode."), _("\
9201 When debugging a multi-threaded program and this setting is\n\
9202 off (the default, also called all-stop mode), when one thread stops\n\
9203 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9204 all other threads in the program while you interact with the thread of\n\
9205 interest. When you continue or step a thread, you can allow the other\n\
9206 threads to run, or have them remain stopped, but while you inspect any\n\
9207 thread's state, all threads stop.\n\
9208 \n\
9209 In non-stop mode, when one thread stops, other threads can continue\n\
9210 to run freely. You'll be able to step each thread independently,\n\
9211 leave it stopped or free to run as needed."),
9212 set_non_stop,
9213 show_non_stop,
9214 &setlist,
9215 &showlist);
9216
9217 numsigs = (int) GDB_SIGNAL_LAST;
9218 signal_stop = XNEWVEC (unsigned char, numsigs);
9219 signal_print = XNEWVEC (unsigned char, numsigs);
9220 signal_program = XNEWVEC (unsigned char, numsigs);
9221 signal_catch = XNEWVEC (unsigned char, numsigs);
9222 signal_pass = XNEWVEC (unsigned char, numsigs);
9223 for (i = 0; i < numsigs; i++)
9224 {
9225 signal_stop[i] = 1;
9226 signal_print[i] = 1;
9227 signal_program[i] = 1;
9228 signal_catch[i] = 0;
9229 }
9230
9231 /* Signals caused by debugger's own actions should not be given to
9232 the program afterwards.
9233
9234 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9235 explicitly specifies that it should be delivered to the target
9236 program. Typically, that would occur when a user is debugging a
9237 target monitor on a simulator: the target monitor sets a
9238 breakpoint; the simulator encounters this breakpoint and halts
9239 the simulation handing control to GDB; GDB, noting that the stop
9240 address doesn't map to any known breakpoint, returns control back
9241 to the simulator; the simulator then delivers the hardware
9242 equivalent of a GDB_SIGNAL_TRAP to the program being
9243 debugged. */
9244 signal_program[GDB_SIGNAL_TRAP] = 0;
9245 signal_program[GDB_SIGNAL_INT] = 0;
9246
9247 /* Signals that are not errors should not normally enter the debugger. */
9248 signal_stop[GDB_SIGNAL_ALRM] = 0;
9249 signal_print[GDB_SIGNAL_ALRM] = 0;
9250 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9251 signal_print[GDB_SIGNAL_VTALRM] = 0;
9252 signal_stop[GDB_SIGNAL_PROF] = 0;
9253 signal_print[GDB_SIGNAL_PROF] = 0;
9254 signal_stop[GDB_SIGNAL_CHLD] = 0;
9255 signal_print[GDB_SIGNAL_CHLD] = 0;
9256 signal_stop[GDB_SIGNAL_IO] = 0;
9257 signal_print[GDB_SIGNAL_IO] = 0;
9258 signal_stop[GDB_SIGNAL_POLL] = 0;
9259 signal_print[GDB_SIGNAL_POLL] = 0;
9260 signal_stop[GDB_SIGNAL_URG] = 0;
9261 signal_print[GDB_SIGNAL_URG] = 0;
9262 signal_stop[GDB_SIGNAL_WINCH] = 0;
9263 signal_print[GDB_SIGNAL_WINCH] = 0;
9264 signal_stop[GDB_SIGNAL_PRIO] = 0;
9265 signal_print[GDB_SIGNAL_PRIO] = 0;
9266
9267 /* These signals are used internally by user-level thread
9268 implementations. (See signal(5) on Solaris.) Like the above
9269 signals, a healthy program receives and handles them as part of
9270 its normal operation. */
9271 signal_stop[GDB_SIGNAL_LWP] = 0;
9272 signal_print[GDB_SIGNAL_LWP] = 0;
9273 signal_stop[GDB_SIGNAL_WAITING] = 0;
9274 signal_print[GDB_SIGNAL_WAITING] = 0;
9275 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9276 signal_print[GDB_SIGNAL_CANCEL] = 0;
9277 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9278 signal_print[GDB_SIGNAL_LIBRT] = 0;
9279
9280 /* Update cached state. */
9281 signal_cache_update (-1);
9282
9283 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9284 &stop_on_solib_events, _("\
9285 Set stopping for shared library events."), _("\
9286 Show stopping for shared library events."), _("\
9287 If nonzero, gdb will give control to the user when the dynamic linker\n\
9288 notifies gdb of shared library events. The most common event of interest\n\
9289 to the user would be loading/unloading of a new library."),
9290 set_stop_on_solib_events,
9291 show_stop_on_solib_events,
9292 &setlist, &showlist);
9293
9294 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9295 follow_fork_mode_kind_names,
9296 &follow_fork_mode_string, _("\
9297 Set debugger response to a program call of fork or vfork."), _("\
9298 Show debugger response to a program call of fork or vfork."), _("\
9299 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9300 parent - the original process is debugged after a fork\n\
9301 child - the new process is debugged after a fork\n\
9302 The unfollowed process will continue to run.\n\
9303 By default, the debugger will follow the parent process."),
9304 NULL,
9305 show_follow_fork_mode_string,
9306 &setlist, &showlist);
9307
9308 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9309 follow_exec_mode_names,
9310 &follow_exec_mode_string, _("\
9311 Set debugger response to a program call of exec."), _("\
9312 Show debugger response to a program call of exec."), _("\
9313 An exec call replaces the program image of a process.\n\
9314 \n\
9315 follow-exec-mode can be:\n\
9316 \n\
9317 new - the debugger creates a new inferior and rebinds the process\n\
9318 to this new inferior. The program the process was running before\n\
9319 the exec call can be restarted afterwards by restarting the original\n\
9320 inferior.\n\
9321 \n\
9322 same - the debugger keeps the process bound to the same inferior.\n\
9323 The new executable image replaces the previous executable loaded in\n\
9324 the inferior. Restarting the inferior after the exec call restarts\n\
9325 the executable the process was running after the exec call.\n\
9326 \n\
9327 By default, the debugger will use the same inferior."),
9328 NULL,
9329 show_follow_exec_mode_string,
9330 &setlist, &showlist);
9331
9332 add_setshow_enum_cmd ("scheduler-locking", class_run,
9333 scheduler_enums, &scheduler_mode, _("\
9334 Set mode for locking scheduler during execution."), _("\
9335 Show mode for locking scheduler during execution."), _("\
9336 off == no locking (threads may preempt at any time)\n\
9337 on == full locking (no thread except the current thread may run)\n\
9338 This applies to both normal execution and replay mode.\n\
9339 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9340 In this mode, other threads may run during other commands.\n\
9341 This applies to both normal execution and replay mode.\n\
9342 replay == scheduler locked in replay mode and unlocked during normal execution."),
9343 set_schedlock_func, /* traps on target vector */
9344 show_scheduler_mode,
9345 &setlist, &showlist);
9346
9347 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9348 Set mode for resuming threads of all processes."), _("\
9349 Show mode for resuming threads of all processes."), _("\
9350 When on, execution commands (such as 'continue' or 'next') resume all\n\
9351 threads of all processes. When off (which is the default), execution\n\
9352 commands only resume the threads of the current process. The set of\n\
9353 threads that are resumed is further refined by the scheduler-locking\n\
9354 mode (see help set scheduler-locking)."),
9355 NULL,
9356 show_schedule_multiple,
9357 &setlist, &showlist);
9358
9359 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9360 Set mode of the step operation."), _("\
9361 Show mode of the step operation."), _("\
9362 When set, doing a step over a function without debug line information\n\
9363 will stop at the first instruction of that function. Otherwise, the\n\
9364 function is skipped and the step command stops at a different source line."),
9365 NULL,
9366 show_step_stop_if_no_debug,
9367 &setlist, &showlist);
9368
9369 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9370 &can_use_displaced_stepping, _("\
9371 Set debugger's willingness to use displaced stepping."), _("\
9372 Show debugger's willingness to use displaced stepping."), _("\
9373 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9374 supported by the target architecture. If off, gdb will not use displaced\n\
9375 stepping to step over breakpoints, even if such is supported by the target\n\
9376 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9377 if the target architecture supports it and non-stop mode is active, but will not\n\
9378 use it in all-stop mode (see help set non-stop)."),
9379 NULL,
9380 show_can_use_displaced_stepping,
9381 &setlist, &showlist);
9382
9383 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9384 &exec_direction, _("Set direction of execution.\n\
9385 Options are 'forward' or 'reverse'."),
9386 _("Show direction of execution (forward/reverse)."),
9387 _("Tells gdb whether to execute forward or backward."),
9388 set_exec_direction_func, show_exec_direction_func,
9389 &setlist, &showlist);
9390
9391 /* Set/show detach-on-fork: user-settable mode. */
9392
9393 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9394 Set whether gdb will detach the child of a fork."), _("\
9395 Show whether gdb will detach the child of a fork."), _("\
9396 Tells gdb whether to detach the child of a fork."),
9397 NULL, NULL, &setlist, &showlist);
9398
9399 /* Set/show disable address space randomization mode. */
9400
9401 add_setshow_boolean_cmd ("disable-randomization", class_support,
9402 &disable_randomization, _("\
9403 Set disabling of debuggee's virtual address space randomization."), _("\
9404 Show disabling of debuggee's virtual address space randomization."), _("\
9405 When this mode is on (which is the default), randomization of the virtual\n\
9406 address space is disabled. Standalone programs run with the randomization\n\
9407 enabled by default on some platforms."),
9408 &set_disable_randomization,
9409 &show_disable_randomization,
9410 &setlist, &showlist);
9411
9412 /* ptid initializations */
9413 inferior_ptid = null_ptid;
9414 target_last_wait_ptid = minus_one_ptid;
9415
9416 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9417 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9418 observer_attach_thread_exit (infrun_thread_thread_exit);
9419 observer_attach_inferior_exit (infrun_inferior_exit);
9420
9421 /* Explicitly create without lookup, since that tries to create a
9422 value with a void typed value, and when we get here, gdbarch
9423 isn't initialized yet. At this point, we're quite sure there
9424 isn't another convenience variable of the same name. */
9425 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9426
9427 add_setshow_boolean_cmd ("observer", no_class,
9428 &observer_mode_1, _("\
9429 Set whether gdb controls the inferior in observer mode."), _("\
9430 Show whether gdb controls the inferior in observer mode."), _("\
9431 In observer mode, GDB can get data from the inferior, but not\n\
9432 affect its execution. Registers and memory may not be changed,\n\
9433 breakpoints may not be set, and the program cannot be interrupted\n\
9434 or signalled."),
9435 set_observer_mode,
9436 show_observer_mode,
9437 &setlist,
9438 &showlist);
9439 }
This page took 0.354482 seconds and 4 git commands to generate.