Remove unused includes in infcmd.c and infrun.c
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "gdbthread.h"
32 #include "annotate.h"
33 #include "symfile.h"
34 #include "top.h"
35 #include "inf-loop.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "observable.h"
39 #include "language.h"
40 #include "solib.h"
41 #include "main.h"
42 #include "block.h"
43 #include "mi/mi-common.h"
44 #include "event-top.h"
45 #include "record.h"
46 #include "record-full.h"
47 #include "inline-frame.h"
48 #include "jit.h"
49 #include "tracepoint.h"
50 #include "skip.h"
51 #include "probe.h"
52 #include "objfiles.h"
53 #include "completer.h"
54 #include "target-descriptions.h"
55 #include "target-dcache.h"
56 #include "terminal.h"
57 #include "solist.h"
58 #include "event-loop.h"
59 #include "thread-fsm.h"
60 #include "gdbsupport/enum-flags.h"
61 #include "progspace-and-thread.h"
62 #include "gdbsupport/gdb_optional.h"
63 #include "arch-utils.h"
64 #include "gdbsupport/scope-exit.h"
65 #include "gdbsupport/forward-scope-exit.h"
66
67 /* Prototypes for local functions */
68
69 static void sig_print_info (enum gdb_signal);
70
71 static void sig_print_header (void);
72
73 static int follow_fork (void);
74
75 static int follow_fork_inferior (int follow_child, int detach_fork);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 void nullify_last_target_wait_ptid (void);
82
83 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
84
85 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
87 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
89 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
91 static void resume (gdb_signal sig);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the pid/waitstatus of the last event
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
378 static ptid_t target_last_wait_ptid;
379 static struct target_waitstatus target_last_waitstatus;
380
381 void init_thread_stepping_state (struct thread_info *tss);
382
383 static const char follow_fork_mode_child[] = "child";
384 static const char follow_fork_mode_parent[] = "parent";
385
386 static const char *const follow_fork_mode_kind_names[] = {
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
390 };
391
392 static const char *follow_fork_mode_string = follow_fork_mode_parent;
393 static void
394 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396 {
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
400 value);
401 }
402 \f
403
404 /* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410 static int
411 follow_fork_inferior (int follow_child, int detach_fork)
412 {
413 int has_vforked;
414 ptid_t parent_ptid, child_ptid;
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && current_ui->prompt_state == PROMPT_BLOCKED
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 inferior_ptid = child_ptid;
485 add_thread_silent (inferior_ptid);
486 set_current_inferior (child_inf);
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
507 child_inf->pspace = new program_space (child_inf->aspace);
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
545 if (print_inferior_events)
546 {
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
550 target_terminal::ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
554 has_vforked ? "vfork" : "fork",
555 child_pid.c_str ());
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
561 child_inf = add_inferior (child_ptid.pid ());
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
592 {
593 if (print_inferior_events)
594 {
595 /* Ensure that we have a process ptid. */
596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
597
598 target_terminal::ours_for_output ();
599 fprintf_filtered (gdb_stdlog,
600 _("[Detaching after fork from "
601 "parent %s]\n"),
602 target_pid_to_str (process_ptid).c_str ());
603 }
604
605 target_detach (parent_inf, 0);
606 }
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
614 inferior_ptid = child_ptid;
615 add_thread_silent (inferior_ptid);
616 set_current_inferior (child_inf);
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
629 child_inf->pspace = new program_space (child_inf->aspace);
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645 }
646
647 /* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
651 static int
652 follow_fork (void)
653 {
654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
663 struct breakpoint *exception_resume_breakpoint = NULL;
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
667 struct thread_fsm *thread_fsm = NULL;
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
721 thread_fsm = tp->thread_fsm;
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
732 delete_exception_resume_breakpoint (tp);
733 tp->thread_fsm = NULL;
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
754 tp = find_thread_ptid (parent);
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
762 /* If we followed the child, switch to it... */
763 if (follow_child)
764 {
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
780 tp->thread_fsm = thread_fsm;
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
790 warning (_("Not resuming: switched threads "
791 "before following fork child."));
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
809
810 return should_resume;
811 }
812
813 static void
814 follow_inferior_reset_breakpoints (void)
815 {
816 struct thread_info *tp = inferior_thread ();
817
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
831 if (tp->control.step_resume_breakpoint)
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
836
837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
838 if (tp->control.exception_resume_breakpoint)
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
843
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
851 }
852
853 /* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856 static int
857 proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859 {
860 int pid = * (int *) arg;
861
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
865 && !thread->stop_requested
866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
871 target_pid_to_str (thread->ptid).c_str ());
872
873 switch_to_thread (thread);
874 clear_proceed_status (0);
875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
876 }
877
878 return 0;
879 }
880
881 /* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884 class scoped_restore_exited_inferior
885 {
886 public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891 private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895 };
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
914
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
918 {
919 struct thread_info *tp;
920 struct program_space *pspace;
921 struct address_space *aspace;
922
923 /* follow-fork child, detach-on-fork on. */
924
925 vfork_parent->pending_detach = 0;
926
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
934 if (!exec)
935 maybe_restore_inferior.emplace ();
936 else
937 maybe_restore_thread.emplace ();
938
939 /* We're letting loose of the parent. */
940 tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = new program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 resume_parent = vfork_parent->pid;
1031 }
1032
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
1039 scoped_restore_current_thread restore_thread;
1040
1041 if (debug_infrun)
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1047 }
1048 }
1049 }
1050
1051 /* Enum strings for "set|show follow-exec-mode". */
1052
1053 static const char follow_exec_mode_new[] = "new";
1054 static const char follow_exec_mode_same[] = "same";
1055 static const char *const follow_exec_mode_names[] =
1056 {
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060 };
1061
1062 static const char *follow_exec_mode_string = follow_exec_mode_same;
1063 static void
1064 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066 {
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068 }
1069
1070 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1071
1072 static void
1073 follow_exec (ptid_t ptid, const char *exec_file_target)
1074 {
1075 struct inferior *inf = current_inferior ();
1076 int pid = ptid.pid ();
1077 ptid_t process_ptid;
1078
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
1101 value that was overwritten with a TRAP instruction). Since
1102 we now have a new a.out, those shadow contents aren't valid. */
1103
1104 mark_breakpoints_out ();
1105
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
1125 for (thread_info *th : all_threads_safe ())
1126 if (th->ptid.pid () == pid && th->ptid != ptid)
1127 delete_thread (th);
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
1133 thread_info *th = inferior_thread ();
1134 th->control.step_resume_breakpoint = NULL;
1135 th->control.exception_resume_breakpoint = NULL;
1136 th->control.single_step_breakpoints = NULL;
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
1139
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
1143 th->stop_requested = 0;
1144
1145 update_breakpoints_after_exec ();
1146
1147 /* What is this a.out's name? */
1148 process_ptid = ptid_t (pid);
1149 printf_unfiltered (_("%s is executing new program: %s\n"),
1150 target_pid_to_str (process_ptid).c_str (),
1151 exec_file_target);
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1154 inferior has essentially been killed & reborn. */
1155
1156 breakpoint_init_inferior (inf_execd);
1157
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
1160
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
1169
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
1189 exit_inferior_silent (current_inferior ());
1190
1191 inf->pid = pid;
1192 target_follow_exec (inf, exec_file_target);
1193
1194 set_current_inferior (inf);
1195 set_current_program_space (inf->pspace);
1196 add_thread (ptid);
1197 }
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1217
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
1226 solib_create_inferior_hook (0);
1227
1228 jit_inferior_created_hook ();
1229
1230 breakpoint_re_set ();
1231
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1234 to symbol_file_command...). */
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1240 matically get reset there in the new process.). */
1241 }
1242
1243 /* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250 struct thread_info *step_over_queue_head;
1251
1252 /* Bit flags indicating what the thread needs to step over. */
1253
1254 enum step_over_what_flag
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
1264 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1265
1266 /* Info about an instruction that is being stepped over. */
1267
1268 struct step_over_info
1269 {
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
1274 const address_space *aspace;
1275 CORE_ADDR address;
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
1280
1281 /* The thread's global number. */
1282 int thread;
1283 };
1284
1285 /* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309 static struct step_over_info step_over_info;
1310
1311 /* Record the address of the breakpoint/instruction we're currently
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
1315
1316 static void
1317 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1318 int nonsteppable_watchpoint_p,
1319 int thread)
1320 {
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1324 step_over_info.thread = thread;
1325 }
1326
1327 /* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330 static void
1331 clear_step_over_info (void)
1332 {
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
1338 step_over_info.nonsteppable_watchpoint_p = 0;
1339 step_over_info.thread = -1;
1340 }
1341
1342 /* See infrun.h. */
1343
1344 int
1345 stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347 {
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352 }
1353
1354 /* See infrun.h. */
1355
1356 int
1357 thread_is_stepping_over_breakpoint (int thread)
1358 {
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 stepping_past_nonsteppable_watchpoint (void)
1367 {
1368 return step_over_info.nonsteppable_watchpoint_p;
1369 }
1370
1371 /* Returns true if step-over info is valid. */
1372
1373 static int
1374 step_over_info_valid_p (void)
1375 {
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378 }
1379
1380 \f
1381 /* Displaced stepping. */
1382
1383 /* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfully single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
1467 /* Default destructor for displaced_step_closure. */
1468
1469 displaced_step_closure::~displaced_step_closure () = default;
1470
1471 /* Get the displaced stepping state of process PID. */
1472
1473 static displaced_step_inferior_state *
1474 get_displaced_stepping_state (inferior *inf)
1475 {
1476 return &inf->displaced_step_state;
1477 }
1478
1479 /* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
1482 static bool
1483 displaced_step_in_progress_any_inferior ()
1484 {
1485 for (inferior *i : all_inferiors ())
1486 {
1487 if (i->displaced_step_state.step_thread != nullptr)
1488 return true;
1489 }
1490
1491 return false;
1492 }
1493
1494 /* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497 static int
1498 displaced_step_in_progress_thread (thread_info *thread)
1499 {
1500 gdb_assert (thread != NULL);
1501
1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1503 }
1504
1505 /* Return true if process PID has a thread doing a displaced step. */
1506
1507 static int
1508 displaced_step_in_progress (inferior *inf)
1509 {
1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1511 }
1512
1513 /* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_closure. Otherwise,
1515 return NULL. */
1516
1517 struct displaced_step_closure*
1518 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1519 {
1520 displaced_step_inferior_state *displaced
1521 = get_displaced_stepping_state (current_inferior ());
1522
1523 /* If checking the mode of displaced instruction in copy area. */
1524 if (displaced->step_thread != nullptr
1525 && displaced->step_copy == addr)
1526 return displaced->step_closure;
1527
1528 return NULL;
1529 }
1530
1531 static void
1532 infrun_inferior_exit (struct inferior *inf)
1533 {
1534 inf->displaced_step_state.reset ();
1535 }
1536
1537 /* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 which of all-stop or non-stop mode is active --- displaced stepping
1543 in non-stop mode; hold-and-step in all-stop mode. */
1544
1545 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1546
1547 static void
1548 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551 {
1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
1556 value, target_is_non_stop_p () ? "on" : "off");
1557 else
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
1561 }
1562
1563 /* Return non-zero if displaced stepping can/should be used to step
1564 over breakpoints of thread TP. */
1565
1566 static int
1567 use_displaced_stepping (struct thread_info *tp)
1568 {
1569 struct regcache *regcache = get_thread_regcache (tp);
1570 struct gdbarch *gdbarch = regcache->arch ();
1571 displaced_step_inferior_state *displaced_state
1572 = get_displaced_stepping_state (tp->inf);
1573
1574 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1575 && target_is_non_stop_p ())
1576 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1577 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1578 && find_record_target () == NULL
1579 && !displaced_state->failed_before);
1580 }
1581
1582 /* Clean out any stray displaced stepping state. */
1583 static void
1584 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1585 {
1586 /* Indicate that there is no cleanup pending. */
1587 displaced->step_thread = nullptr;
1588
1589 delete displaced->step_closure;
1590 displaced->step_closure = NULL;
1591 }
1592
1593 /* A cleanup that wraps displaced_step_clear. */
1594 using displaced_step_clear_cleanup
1595 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1596
1597 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1598 void
1599 displaced_step_dump_bytes (struct ui_file *file,
1600 const gdb_byte *buf,
1601 size_t len)
1602 {
1603 int i;
1604
1605 for (i = 0; i < len; i++)
1606 fprintf_unfiltered (file, "%02x ", buf[i]);
1607 fputs_unfiltered ("\n", file);
1608 }
1609
1610 /* Prepare to single-step, using displaced stepping.
1611
1612 Note that we cannot use displaced stepping when we have a signal to
1613 deliver. If we have a signal to deliver and an instruction to step
1614 over, then after the step, there will be no indication from the
1615 target whether the thread entered a signal handler or ignored the
1616 signal and stepped over the instruction successfully --- both cases
1617 result in a simple SIGTRAP. In the first case we mustn't do a
1618 fixup, and in the second case we must --- but we can't tell which.
1619 Comments in the code for 'random signals' in handle_inferior_event
1620 explain how we handle this case instead.
1621
1622 Returns 1 if preparing was successful -- this thread is going to be
1623 stepped now; 0 if displaced stepping this thread got queued; or -1
1624 if this instruction can't be displaced stepped. */
1625
1626 static int
1627 displaced_step_prepare_throw (thread_info *tp)
1628 {
1629 regcache *regcache = get_thread_regcache (tp);
1630 struct gdbarch *gdbarch = regcache->arch ();
1631 const address_space *aspace = regcache->aspace ();
1632 CORE_ADDR original, copy;
1633 ULONGEST len;
1634 struct displaced_step_closure *closure;
1635 int status;
1636
1637 /* We should never reach this function if the architecture does not
1638 support displaced stepping. */
1639 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1640
1641 /* Nor if the thread isn't meant to step over a breakpoint. */
1642 gdb_assert (tp->control.trap_expected);
1643
1644 /* Disable range stepping while executing in the scratch pad. We
1645 want a single-step even if executing the displaced instruction in
1646 the scratch buffer lands within the stepping range (e.g., a
1647 jump/branch). */
1648 tp->control.may_range_step = 0;
1649
1650 /* We have to displaced step one thread at a time, as we only have
1651 access to a single scratch space per inferior. */
1652
1653 displaced_step_inferior_state *displaced
1654 = get_displaced_stepping_state (tp->inf);
1655
1656 if (displaced->step_thread != nullptr)
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "displaced: deferring step of %s\n",
1664 target_pid_to_str (tp->ptid).c_str ());
1665
1666 thread_step_over_chain_enqueue (tp);
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (tp->ptid).c_str ());
1675 }
1676
1677 displaced_step_clear (displaced);
1678
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
1682
1683 original = regcache_read_pc (regcache);
1684
1685 copy = gdbarch_displaced_step_location (gdbarch);
1686 len = gdbarch_max_insn_length (gdbarch);
1687
1688 if (breakpoint_in_range_p (aspace, copy, len))
1689 {
1690 /* There's a breakpoint set in the scratch pad location range
1691 (which is usually around the entry point). We'd either
1692 install it before resuming, which would overwrite/corrupt the
1693 scratch pad, or if it was already inserted, this displaced
1694 step would overwrite it. The latter is OK in the sense that
1695 we already assume that no thread is going to execute the code
1696 in the scratch pad range (after initial startup) anyway, but
1697 the former is unacceptable. Simply punt and fallback to
1698 stepping over this breakpoint in-line. */
1699 if (debug_displaced)
1700 {
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: breakpoint set in scratch pad. "
1703 "Stepping over breakpoint in-line instead.\n");
1704 }
1705
1706 return -1;
1707 }
1708
1709 /* Save the original contents of the copy area. */
1710 displaced->step_saved_copy.resize (len);
1711 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1712 if (status != 0)
1713 throw_error (MEMORY_ERROR,
1714 _("Error accessing memory address %s (%s) for "
1715 "displaced-stepping scratch space."),
1716 paddress (gdbarch, copy), safe_strerror (status));
1717 if (debug_displaced)
1718 {
1719 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1720 paddress (gdbarch, copy));
1721 displaced_step_dump_bytes (gdb_stdlog,
1722 displaced->step_saved_copy.data (),
1723 len);
1724 };
1725
1726 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1727 original, copy, regcache);
1728 if (closure == NULL)
1729 {
1730 /* The architecture doesn't know how or want to displaced step
1731 this instruction or instruction sequence. Fallback to
1732 stepping over the breakpoint in-line. */
1733 return -1;
1734 }
1735
1736 /* Save the information we need to fix things up if the step
1737 succeeds. */
1738 displaced->step_thread = tp;
1739 displaced->step_gdbarch = gdbarch;
1740 displaced->step_closure = closure;
1741 displaced->step_original = original;
1742 displaced->step_copy = copy;
1743
1744 {
1745 displaced_step_clear_cleanup cleanup (displaced);
1746
1747 /* Resume execution at the copy. */
1748 regcache_write_pc (regcache, copy);
1749
1750 cleanup.release ();
1751 }
1752
1753 if (debug_displaced)
1754 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1755 paddress (gdbarch, copy));
1756
1757 return 1;
1758 }
1759
1760 /* Wrapper for displaced_step_prepare_throw that disabled further
1761 attempts at displaced stepping if we get a memory error. */
1762
1763 static int
1764 displaced_step_prepare (thread_info *thread)
1765 {
1766 int prepared = -1;
1767
1768 try
1769 {
1770 prepared = displaced_step_prepare_throw (thread);
1771 }
1772 catch (const gdb_exception_error &ex)
1773 {
1774 struct displaced_step_inferior_state *displaced_state;
1775
1776 if (ex.error != MEMORY_ERROR
1777 && ex.error != NOT_SUPPORTED_ERROR)
1778 throw;
1779
1780 if (debug_infrun)
1781 {
1782 fprintf_unfiltered (gdb_stdlog,
1783 "infrun: disabling displaced stepping: %s\n",
1784 ex.what ());
1785 }
1786
1787 /* Be verbose if "set displaced-stepping" is "on", silent if
1788 "auto". */
1789 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1790 {
1791 warning (_("disabling displaced stepping: %s"),
1792 ex.what ());
1793 }
1794
1795 /* Disable further displaced stepping attempts. */
1796 displaced_state
1797 = get_displaced_stepping_state (thread->inf);
1798 displaced_state->failed_before = 1;
1799 }
1800
1801 return prepared;
1802 }
1803
1804 static void
1805 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1806 const gdb_byte *myaddr, int len)
1807 {
1808 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1809
1810 inferior_ptid = ptid;
1811 write_memory (memaddr, myaddr, len);
1812 }
1813
1814 /* Restore the contents of the copy area for thread PTID. */
1815
1816 static void
1817 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1818 ptid_t ptid)
1819 {
1820 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1821
1822 write_memory_ptid (ptid, displaced->step_copy,
1823 displaced->step_saved_copy.data (), len);
1824 if (debug_displaced)
1825 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1826 target_pid_to_str (ptid).c_str (),
1827 paddress (displaced->step_gdbarch,
1828 displaced->step_copy));
1829 }
1830
1831 /* If we displaced stepped an instruction successfully, adjust
1832 registers and memory to yield the same effect the instruction would
1833 have had if we had executed it at its original address, and return
1834 1. If the instruction didn't complete, relocate the PC and return
1835 -1. If the thread wasn't displaced stepping, return 0. */
1836
1837 static int
1838 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1839 {
1840 struct displaced_step_inferior_state *displaced
1841 = get_displaced_stepping_state (event_thread->inf);
1842 int ret;
1843
1844 /* Was this event for the thread we displaced? */
1845 if (displaced->step_thread != event_thread)
1846 return 0;
1847
1848 displaced_step_clear_cleanup cleanup (displaced);
1849
1850 displaced_step_restore (displaced, displaced->step_thread->ptid);
1851
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread. */
1855 switch_to_thread (event_thread);
1856
1857 /* Did the instruction complete successfully? */
1858 if (signal == GDB_SIGNAL_TRAP
1859 && !(target_stopped_by_watchpoint ()
1860 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1861 || target_have_steppable_watchpoint)))
1862 {
1863 /* Fix up the resulting state. */
1864 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1865 displaced->step_closure,
1866 displaced->step_original,
1867 displaced->step_copy,
1868 get_thread_regcache (displaced->step_thread));
1869 ret = 1;
1870 }
1871 else
1872 {
1873 /* Since the instruction didn't complete, all we can do is
1874 relocate the PC. */
1875 struct regcache *regcache = get_thread_regcache (event_thread);
1876 CORE_ADDR pc = regcache_read_pc (regcache);
1877
1878 pc = displaced->step_original + (pc - displaced->step_copy);
1879 regcache_write_pc (regcache, pc);
1880 ret = -1;
1881 }
1882
1883 return ret;
1884 }
1885
1886 /* Data to be passed around while handling an event. This data is
1887 discarded between events. */
1888 struct execution_control_state
1889 {
1890 ptid_t ptid;
1891 /* The thread that got the event, if this was a thread event; NULL
1892 otherwise. */
1893 struct thread_info *event_thread;
1894
1895 struct target_waitstatus ws;
1896 int stop_func_filled_in;
1897 CORE_ADDR stop_func_start;
1898 CORE_ADDR stop_func_end;
1899 const char *stop_func_name;
1900 int wait_some_more;
1901
1902 /* True if the event thread hit the single-step breakpoint of
1903 another thread. Thus the event doesn't cause a stop, the thread
1904 needs to be single-stepped past the single-step breakpoint before
1905 we can switch back to the original stepping thread. */
1906 int hit_singlestep_breakpoint;
1907 };
1908
1909 /* Clear ECS and set it to point at TP. */
1910
1911 static void
1912 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1913 {
1914 memset (ecs, 0, sizeof (*ecs));
1915 ecs->event_thread = tp;
1916 ecs->ptid = tp->ptid;
1917 }
1918
1919 static void keep_going_pass_signal (struct execution_control_state *ecs);
1920 static void prepare_to_wait (struct execution_control_state *ecs);
1921 static int keep_going_stepped_thread (struct thread_info *tp);
1922 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1923
1924 /* Are there any pending step-over requests? If so, run all we can
1925 now and return true. Otherwise, return false. */
1926
1927 static int
1928 start_step_over (void)
1929 {
1930 struct thread_info *tp, *next;
1931
1932 /* Don't start a new step-over if we already have an in-line
1933 step-over operation ongoing. */
1934 if (step_over_info_valid_p ())
1935 return 0;
1936
1937 for (tp = step_over_queue_head; tp != NULL; tp = next)
1938 {
1939 struct execution_control_state ecss;
1940 struct execution_control_state *ecs = &ecss;
1941 step_over_what step_what;
1942 int must_be_in_line;
1943
1944 gdb_assert (!tp->stop_requested);
1945
1946 next = thread_step_over_chain_next (tp);
1947
1948 /* If this inferior already has a displaced step in process,
1949 don't start a new one. */
1950 if (displaced_step_in_progress (tp->inf))
1951 continue;
1952
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
1956 && !use_displaced_stepping (tp)));
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
1961 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1962 return 0;
1963
1964 thread_step_over_chain_remove (tp);
1965
1966 if (step_over_queue_head == NULL)
1967 {
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog,
1970 "infrun: step-over queue now empty\n");
1971 }
1972
1973 if (tp->control.trap_expected
1974 || tp->resumed
1975 || tp->executing)
1976 {
1977 internal_error (__FILE__, __LINE__,
1978 "[%s] has inconsistent state: "
1979 "trap_expected=%d, resumed=%d, executing=%d\n",
1980 target_pid_to_str (tp->ptid).c_str (),
1981 tp->control.trap_expected,
1982 tp->resumed,
1983 tp->executing);
1984 }
1985
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: resuming [%s] for step-over\n",
1989 target_pid_to_str (tp->ptid).c_str ());
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
1997 if (!target_is_non_stop_p () && !step_what)
1998 continue;
1999
2000 switch_to_thread (tp);
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
2003
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
2006
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return 1;
2014 }
2015
2016 if (!target_is_non_stop_p ())
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return 1;
2027 }
2028
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040 static void
2041 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2042 {
2043 if (inferior_ptid == old_ptid)
2044 inferior_ptid = new_ptid;
2045 }
2046
2047 \f
2048
2049 static const char schedlock_off[] = "off";
2050 static const char schedlock_on[] = "on";
2051 static const char schedlock_step[] = "step";
2052 static const char schedlock_replay[] = "replay";
2053 static const char *const scheduler_enums[] = {
2054 schedlock_off,
2055 schedlock_on,
2056 schedlock_step,
2057 schedlock_replay,
2058 NULL
2059 };
2060 static const char *scheduler_mode = schedlock_replay;
2061 static void
2062 show_scheduler_mode (struct ui_file *file, int from_tty,
2063 struct cmd_list_element *c, const char *value)
2064 {
2065 fprintf_filtered (file,
2066 _("Mode for locking scheduler "
2067 "during execution is \"%s\".\n"),
2068 value);
2069 }
2070
2071 static void
2072 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2073 {
2074 if (!target_can_lock_scheduler)
2075 {
2076 scheduler_mode = schedlock_off;
2077 error (_("Target '%s' cannot support this command."), target_shortname);
2078 }
2079 }
2080
2081 /* True if execution commands resume all threads of all processes by
2082 default; otherwise, resume only threads of the current inferior
2083 process. */
2084 bool sched_multi = false;
2085
2086 /* Try to setup for software single stepping over the specified location.
2087 Return 1 if target_resume() should use hardware single step.
2088
2089 GDBARCH the current gdbarch.
2090 PC the location to step over. */
2091
2092 static int
2093 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2094 {
2095 int hw_step = 1;
2096
2097 if (execution_direction == EXEC_FORWARD
2098 && gdbarch_software_single_step_p (gdbarch))
2099 hw_step = !insert_single_step_breakpoints (gdbarch);
2100
2101 return hw_step;
2102 }
2103
2104 /* See infrun.h. */
2105
2106 ptid_t
2107 user_visible_resume_ptid (int step)
2108 {
2109 ptid_t resume_ptid;
2110
2111 if (non_stop)
2112 {
2113 /* With non-stop mode on, threads are always handled
2114 individually. */
2115 resume_ptid = inferior_ptid;
2116 }
2117 else if ((scheduler_mode == schedlock_on)
2118 || (scheduler_mode == schedlock_step && step))
2119 {
2120 /* User-settable 'scheduler' mode requires solo thread
2121 resume. */
2122 resume_ptid = inferior_ptid;
2123 }
2124 else if ((scheduler_mode == schedlock_replay)
2125 && target_record_will_replay (minus_one_ptid, execution_direction))
2126 {
2127 /* User-settable 'scheduler' mode requires solo thread resume in replay
2128 mode. */
2129 resume_ptid = inferior_ptid;
2130 }
2131 else if (!sched_multi && target_supports_multi_process ())
2132 {
2133 /* Resume all threads of the current process (and none of other
2134 processes). */
2135 resume_ptid = ptid_t (inferior_ptid.pid ());
2136 }
2137 else
2138 {
2139 /* Resume all threads of all processes. */
2140 resume_ptid = RESUME_ALL;
2141 }
2142
2143 return resume_ptid;
2144 }
2145
2146 /* Return a ptid representing the set of threads that we will resume,
2147 in the perspective of the target, assuming run control handling
2148 does not require leaving some threads stopped (e.g., stepping past
2149 breakpoint). USER_STEP indicates whether we're about to start the
2150 target for a stepping command. */
2151
2152 static ptid_t
2153 internal_resume_ptid (int user_step)
2154 {
2155 /* In non-stop, we always control threads individually. Note that
2156 the target may always work in non-stop mode even with "set
2157 non-stop off", in which case user_visible_resume_ptid could
2158 return a wildcard ptid. */
2159 if (target_is_non_stop_p ())
2160 return inferior_ptid;
2161 else
2162 return user_visible_resume_ptid (user_step);
2163 }
2164
2165 /* Wrapper for target_resume, that handles infrun-specific
2166 bookkeeping. */
2167
2168 static void
2169 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2170 {
2171 struct thread_info *tp = inferior_thread ();
2172
2173 gdb_assert (!tp->stop_requested);
2174
2175 /* Install inferior's terminal modes. */
2176 target_terminal::inferior ();
2177
2178 /* Avoid confusing the next resume, if the next stop/resume
2179 happens to apply to another thread. */
2180 tp->suspend.stop_signal = GDB_SIGNAL_0;
2181
2182 /* Advise target which signals may be handled silently.
2183
2184 If we have removed breakpoints because we are stepping over one
2185 in-line (in any thread), we need to receive all signals to avoid
2186 accidentally skipping a breakpoint during execution of a signal
2187 handler.
2188
2189 Likewise if we're displaced stepping, otherwise a trap for a
2190 breakpoint in a signal handler might be confused with the
2191 displaced step finishing. We don't make the displaced_step_fixup
2192 step distinguish the cases instead, because:
2193
2194 - a backtrace while stopped in the signal handler would show the
2195 scratch pad as frame older than the signal handler, instead of
2196 the real mainline code.
2197
2198 - when the thread is later resumed, the signal handler would
2199 return to the scratch pad area, which would no longer be
2200 valid. */
2201 if (step_over_info_valid_p ()
2202 || displaced_step_in_progress (tp->inf))
2203 target_pass_signals ({});
2204 else
2205 target_pass_signals (signal_pass);
2206
2207 target_resume (resume_ptid, step, sig);
2208
2209 target_commit_resume ();
2210 }
2211
2212 /* Resume the inferior. SIG is the signal to give the inferior
2213 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2214 call 'resume', which handles exceptions. */
2215
2216 static void
2217 resume_1 (enum gdb_signal sig)
2218 {
2219 struct regcache *regcache = get_current_regcache ();
2220 struct gdbarch *gdbarch = regcache->arch ();
2221 struct thread_info *tp = inferior_thread ();
2222 CORE_ADDR pc = regcache_read_pc (regcache);
2223 const address_space *aspace = regcache->aspace ();
2224 ptid_t resume_ptid;
2225 /* This represents the user's step vs continue request. When
2226 deciding whether "set scheduler-locking step" applies, it's the
2227 user's intention that counts. */
2228 const int user_step = tp->control.stepping_command;
2229 /* This represents what we'll actually request the target to do.
2230 This can decay from a step to a continue, if e.g., we need to
2231 implement single-stepping with breakpoints (software
2232 single-step). */
2233 int step;
2234
2235 gdb_assert (!tp->stop_requested);
2236 gdb_assert (!thread_is_in_step_over_chain (tp));
2237
2238 if (tp->suspend.waitstatus_pending_p)
2239 {
2240 if (debug_infrun)
2241 {
2242 std::string statstr
2243 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2244
2245 fprintf_unfiltered (gdb_stdlog,
2246 "infrun: resume: thread %s has pending wait "
2247 "status %s (currently_stepping=%d).\n",
2248 target_pid_to_str (tp->ptid).c_str (),
2249 statstr.c_str (),
2250 currently_stepping (tp));
2251 }
2252
2253 tp->resumed = 1;
2254
2255 /* FIXME: What should we do if we are supposed to resume this
2256 thread with a signal? Maybe we should maintain a queue of
2257 pending signals to deliver. */
2258 if (sig != GDB_SIGNAL_0)
2259 {
2260 warning (_("Couldn't deliver signal %s to %s."),
2261 gdb_signal_to_name (sig),
2262 target_pid_to_str (tp->ptid).c_str ());
2263 }
2264
2265 tp->suspend.stop_signal = GDB_SIGNAL_0;
2266
2267 if (target_can_async_p ())
2268 {
2269 target_async (1);
2270 /* Tell the event loop we have an event to process. */
2271 mark_async_event_handler (infrun_async_inferior_event_token);
2272 }
2273 return;
2274 }
2275
2276 tp->stepped_breakpoint = 0;
2277
2278 /* Depends on stepped_breakpoint. */
2279 step = currently_stepping (tp);
2280
2281 if (current_inferior ()->waiting_for_vfork_done)
2282 {
2283 /* Don't try to single-step a vfork parent that is waiting for
2284 the child to get out of the shared memory region (by exec'ing
2285 or exiting). This is particularly important on software
2286 single-step archs, as the child process would trip on the
2287 software single step breakpoint inserted for the parent
2288 process. Since the parent will not actually execute any
2289 instruction until the child is out of the shared region (such
2290 are vfork's semantics), it is safe to simply continue it.
2291 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2292 the parent, and tell it to `keep_going', which automatically
2293 re-sets it stepping. */
2294 if (debug_infrun)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "infrun: resume : clear step\n");
2297 step = 0;
2298 }
2299
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume (step=%d, signal=%s), "
2303 "trap_expected=%d, current thread [%s] at %s\n",
2304 step, gdb_signal_to_symbol_string (sig),
2305 tp->control.trap_expected,
2306 target_pid_to_str (inferior_ptid).c_str (),
2307 paddress (gdbarch, pc));
2308
2309 /* Normally, by the time we reach `resume', the breakpoints are either
2310 removed or inserted, as appropriate. The exception is if we're sitting
2311 at a permanent breakpoint; we need to step over it, but permanent
2312 breakpoints can't be removed. So we have to test for it here. */
2313 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2314 {
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 /* We have a signal to pass to the inferior. The resume
2318 may, or may not take us to the signal handler. If this
2319 is a step, we'll need to stop in the signal handler, if
2320 there's one, (if the target supports stepping into
2321 handlers), or in the next mainline instruction, if
2322 there's no handler. If this is a continue, we need to be
2323 sure to run the handler with all breakpoints inserted.
2324 In all cases, set a breakpoint at the current address
2325 (where the handler returns to), and once that breakpoint
2326 is hit, resume skipping the permanent breakpoint. If
2327 that breakpoint isn't hit, then we've stepped into the
2328 signal handler (or hit some other event). We'll delete
2329 the step-resume breakpoint then. */
2330
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "infrun: resume: skipping permanent breakpoint, "
2334 "deliver signal first\n");
2335
2336 clear_step_over_info ();
2337 tp->control.trap_expected = 0;
2338
2339 if (tp->control.step_resume_breakpoint == NULL)
2340 {
2341 /* Set a "high-priority" step-resume, as we don't want
2342 user breakpoints at PC to trigger (again) when this
2343 hits. */
2344 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2345 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2346
2347 tp->step_after_step_resume_breakpoint = step;
2348 }
2349
2350 insert_breakpoints ();
2351 }
2352 else
2353 {
2354 /* There's no signal to pass, we can go ahead and skip the
2355 permanent breakpoint manually. */
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint\n");
2359 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2360 /* Update pc to reflect the new address from which we will
2361 execute instructions. */
2362 pc = regcache_read_pc (regcache);
2363
2364 if (step)
2365 {
2366 /* We've already advanced the PC, so the stepping part
2367 is done. Now we need to arrange for a trap to be
2368 reported to handle_inferior_event. Set a breakpoint
2369 at the current PC, and run to it. Don't update
2370 prev_pc, because if we end in
2371 switch_back_to_stepped_thread, we want the "expected
2372 thread advanced also" branch to be taken. IOW, we
2373 don't want this thread to step further from PC
2374 (overstep). */
2375 gdb_assert (!step_over_info_valid_p ());
2376 insert_single_step_breakpoint (gdbarch, aspace, pc);
2377 insert_breakpoints ();
2378
2379 resume_ptid = internal_resume_ptid (user_step);
2380 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2381 tp->resumed = 1;
2382 return;
2383 }
2384 }
2385 }
2386
2387 /* If we have a breakpoint to step over, make sure to do a single
2388 step only. Same if we have software watchpoints. */
2389 if (tp->control.trap_expected || bpstat_should_step ())
2390 tp->control.may_range_step = 0;
2391
2392 /* If enabled, step over breakpoints by executing a copy of the
2393 instruction at a different address.
2394
2395 We can't use displaced stepping when we have a signal to deliver;
2396 the comments for displaced_step_prepare explain why. The
2397 comments in the handle_inferior event for dealing with 'random
2398 signals' explain what we do instead.
2399
2400 We can't use displaced stepping when we are waiting for vfork_done
2401 event, displaced stepping breaks the vfork child similarly as single
2402 step software breakpoint. */
2403 if (tp->control.trap_expected
2404 && use_displaced_stepping (tp)
2405 && !step_over_info_valid_p ()
2406 && sig == GDB_SIGNAL_0
2407 && !current_inferior ()->waiting_for_vfork_done)
2408 {
2409 int prepared = displaced_step_prepare (tp);
2410
2411 if (prepared == 0)
2412 {
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "Got placed in step-over queue\n");
2416
2417 tp->control.trap_expected = 0;
2418 return;
2419 }
2420 else if (prepared < 0)
2421 {
2422 /* Fallback to stepping over the breakpoint in-line. */
2423
2424 if (target_is_non_stop_p ())
2425 stop_all_threads ();
2426
2427 set_step_over_info (regcache->aspace (),
2428 regcache_read_pc (regcache), 0, tp->global_num);
2429
2430 step = maybe_software_singlestep (gdbarch, pc);
2431
2432 insert_breakpoints ();
2433 }
2434 else if (prepared > 0)
2435 {
2436 struct displaced_step_inferior_state *displaced;
2437
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
2440 pc = regcache_read_pc (get_thread_regcache (tp));
2441
2442 displaced = get_displaced_stepping_state (tp->inf);
2443 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2444 displaced->step_closure);
2445 }
2446 }
2447
2448 /* Do we need to do it the hard way, w/temp breakpoints? */
2449 else if (step)
2450 step = maybe_software_singlestep (gdbarch, pc);
2451
2452 /* Currently, our software single-step implementation leads to different
2453 results than hardware single-stepping in one situation: when stepping
2454 into delivering a signal which has an associated signal handler,
2455 hardware single-step will stop at the first instruction of the handler,
2456 while software single-step will simply skip execution of the handler.
2457
2458 For now, this difference in behavior is accepted since there is no
2459 easy way to actually implement single-stepping into a signal handler
2460 without kernel support.
2461
2462 However, there is one scenario where this difference leads to follow-on
2463 problems: if we're stepping off a breakpoint by removing all breakpoints
2464 and then single-stepping. In this case, the software single-step
2465 behavior means that even if there is a *breakpoint* in the signal
2466 handler, GDB still would not stop.
2467
2468 Fortunately, we can at least fix this particular issue. We detect
2469 here the case where we are about to deliver a signal while software
2470 single-stepping with breakpoints removed. In this situation, we
2471 revert the decisions to remove all breakpoints and insert single-
2472 step breakpoints, and instead we install a step-resume breakpoint
2473 at the current address, deliver the signal without stepping, and
2474 once we arrive back at the step-resume breakpoint, actually step
2475 over the breakpoint we originally wanted to step over. */
2476 if (thread_has_single_step_breakpoints_set (tp)
2477 && sig != GDB_SIGNAL_0
2478 && step_over_info_valid_p ())
2479 {
2480 /* If we have nested signals or a pending signal is delivered
2481 immediately after a handler returns, might might already have
2482 a step-resume breakpoint set on the earlier handler. We cannot
2483 set another step-resume breakpoint; just continue on until the
2484 original breakpoint is hit. */
2485 if (tp->control.step_resume_breakpoint == NULL)
2486 {
2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2488 tp->step_after_step_resume_breakpoint = 1;
2489 }
2490
2491 delete_single_step_breakpoints (tp);
2492
2493 clear_step_over_info ();
2494 tp->control.trap_expected = 0;
2495
2496 insert_breakpoints ();
2497 }
2498
2499 /* If STEP is set, it's a request to use hardware stepping
2500 facilities. But in that case, we should never
2501 use singlestep breakpoint. */
2502 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2503
2504 /* Decide the set of threads to ask the target to resume. */
2505 if (tp->control.trap_expected)
2506 {
2507 /* We're allowing a thread to run past a breakpoint it has
2508 hit, either by single-stepping the thread with the breakpoint
2509 removed, or by displaced stepping, with the breakpoint inserted.
2510 In the former case, we need to single-step only this thread,
2511 and keep others stopped, as they can miss this breakpoint if
2512 allowed to run. That's not really a problem for displaced
2513 stepping, but, we still keep other threads stopped, in case
2514 another thread is also stopped for a breakpoint waiting for
2515 its turn in the displaced stepping queue. */
2516 resume_ptid = inferior_ptid;
2517 }
2518 else
2519 resume_ptid = internal_resume_ptid (user_step);
2520
2521 if (execution_direction != EXEC_REVERSE
2522 && step && breakpoint_inserted_here_p (aspace, pc))
2523 {
2524 /* There are two cases where we currently need to step a
2525 breakpoint instruction when we have a signal to deliver:
2526
2527 - See handle_signal_stop where we handle random signals that
2528 could take out us out of the stepping range. Normally, in
2529 that case we end up continuing (instead of stepping) over the
2530 signal handler with a breakpoint at PC, but there are cases
2531 where we should _always_ single-step, even if we have a
2532 step-resume breakpoint, like when a software watchpoint is
2533 set. Assuming single-stepping and delivering a signal at the
2534 same time would takes us to the signal handler, then we could
2535 have removed the breakpoint at PC to step over it. However,
2536 some hardware step targets (like e.g., Mac OS) can't step
2537 into signal handlers, and for those, we need to leave the
2538 breakpoint at PC inserted, as otherwise if the handler
2539 recurses and executes PC again, it'll miss the breakpoint.
2540 So we leave the breakpoint inserted anyway, but we need to
2541 record that we tried to step a breakpoint instruction, so
2542 that adjust_pc_after_break doesn't end up confused.
2543
2544 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2545 in one thread after another thread that was stepping had been
2546 momentarily paused for a step-over. When we re-resume the
2547 stepping thread, it may be resumed from that address with a
2548 breakpoint that hasn't trapped yet. Seen with
2549 gdb.threads/non-stop-fair-events.exp, on targets that don't
2550 do displaced stepping. */
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "infrun: resume: [%s] stepped breakpoint\n",
2555 target_pid_to_str (tp->ptid).c_str ());
2556
2557 tp->stepped_breakpoint = 1;
2558
2559 /* Most targets can step a breakpoint instruction, thus
2560 executing it normally. But if this one cannot, just
2561 continue and we will hit it anyway. */
2562 if (gdbarch_cannot_step_breakpoint (gdbarch))
2563 step = 0;
2564 }
2565
2566 if (debug_displaced
2567 && tp->control.trap_expected
2568 && use_displaced_stepping (tp)
2569 && !step_over_info_valid_p ())
2570 {
2571 struct regcache *resume_regcache = get_thread_regcache (tp);
2572 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2573 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2574 gdb_byte buf[4];
2575
2576 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2577 paddress (resume_gdbarch, actual_pc));
2578 read_memory (actual_pc, buf, sizeof (buf));
2579 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2580 }
2581
2582 if (tp->control.may_range_step)
2583 {
2584 /* If we're resuming a thread with the PC out of the step
2585 range, then we're doing some nested/finer run control
2586 operation, like stepping the thread out of the dynamic
2587 linker or the displaced stepping scratch pad. We
2588 shouldn't have allowed a range step then. */
2589 gdb_assert (pc_in_thread_step_range (pc, tp));
2590 }
2591
2592 do_target_resume (resume_ptid, step, sig);
2593 tp->resumed = 1;
2594 }
2595
2596 /* Resume the inferior. SIG is the signal to give the inferior
2597 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2598 rolls back state on error. */
2599
2600 static void
2601 resume (gdb_signal sig)
2602 {
2603 try
2604 {
2605 resume_1 (sig);
2606 }
2607 catch (const gdb_exception &ex)
2608 {
2609 /* If resuming is being aborted for any reason, delete any
2610 single-step breakpoint resume_1 may have created, to avoid
2611 confusing the following resumption, and to avoid leaving
2612 single-step breakpoints perturbing other threads, in case
2613 we're running in non-stop mode. */
2614 if (inferior_ptid != null_ptid)
2615 delete_single_step_breakpoints (inferior_thread ());
2616 throw;
2617 }
2618 }
2619
2620 \f
2621 /* Proceeding. */
2622
2623 /* See infrun.h. */
2624
2625 /* Counter that tracks number of user visible stops. This can be used
2626 to tell whether a command has proceeded the inferior past the
2627 current location. This allows e.g., inferior function calls in
2628 breakpoint commands to not interrupt the command list. When the
2629 call finishes successfully, the inferior is standing at the same
2630 breakpoint as if nothing happened (and so we don't call
2631 normal_stop). */
2632 static ULONGEST current_stop_id;
2633
2634 /* See infrun.h. */
2635
2636 ULONGEST
2637 get_stop_id (void)
2638 {
2639 return current_stop_id;
2640 }
2641
2642 /* Called when we report a user visible stop. */
2643
2644 static void
2645 new_stop_id (void)
2646 {
2647 current_stop_id++;
2648 }
2649
2650 /* Clear out all variables saying what to do when inferior is continued.
2651 First do this, then set the ones you want, then call `proceed'. */
2652
2653 static void
2654 clear_proceed_status_thread (struct thread_info *tp)
2655 {
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "infrun: clear_proceed_status_thread (%s)\n",
2659 target_pid_to_str (tp->ptid).c_str ());
2660
2661 /* If we're starting a new sequence, then the previous finished
2662 single-step is no longer relevant. */
2663 if (tp->suspend.waitstatus_pending_p)
2664 {
2665 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2666 {
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: clear_proceed_status: pending "
2670 "event of %s was a finished step. "
2671 "Discarding.\n",
2672 target_pid_to_str (tp->ptid).c_str ());
2673
2674 tp->suspend.waitstatus_pending_p = 0;
2675 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2676 }
2677 else if (debug_infrun)
2678 {
2679 std::string statstr
2680 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2681
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread: thread %s "
2684 "has pending wait status %s "
2685 "(currently_stepping=%d).\n",
2686 target_pid_to_str (tp->ptid).c_str (),
2687 statstr.c_str (),
2688 currently_stepping (tp));
2689 }
2690 }
2691
2692 /* If this signal should not be seen by program, give it zero.
2693 Used for debugging signals. */
2694 if (!signal_pass_state (tp->suspend.stop_signal))
2695 tp->suspend.stop_signal = GDB_SIGNAL_0;
2696
2697 delete tp->thread_fsm;
2698 tp->thread_fsm = NULL;
2699
2700 tp->control.trap_expected = 0;
2701 tp->control.step_range_start = 0;
2702 tp->control.step_range_end = 0;
2703 tp->control.may_range_step = 0;
2704 tp->control.step_frame_id = null_frame_id;
2705 tp->control.step_stack_frame_id = null_frame_id;
2706 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2707 tp->control.step_start_function = NULL;
2708 tp->stop_requested = 0;
2709
2710 tp->control.stop_step = 0;
2711
2712 tp->control.proceed_to_finish = 0;
2713
2714 tp->control.stepping_command = 0;
2715
2716 /* Discard any remaining commands or status from previous stop. */
2717 bpstat_clear (&tp->control.stop_bpstat);
2718 }
2719
2720 void
2721 clear_proceed_status (int step)
2722 {
2723 /* With scheduler-locking replay, stop replaying other threads if we're
2724 not replaying the user-visible resume ptid.
2725
2726 This is a convenience feature to not require the user to explicitly
2727 stop replaying the other threads. We're assuming that the user's
2728 intent is to resume tracing the recorded process. */
2729 if (!non_stop && scheduler_mode == schedlock_replay
2730 && target_record_is_replaying (minus_one_ptid)
2731 && !target_record_will_replay (user_visible_resume_ptid (step),
2732 execution_direction))
2733 target_record_stop_replaying ();
2734
2735 if (!non_stop && inferior_ptid != null_ptid)
2736 {
2737 ptid_t resume_ptid = user_visible_resume_ptid (step);
2738
2739 /* In all-stop mode, delete the per-thread status of all threads
2740 we're about to resume, implicitly and explicitly. */
2741 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2742 clear_proceed_status_thread (tp);
2743 }
2744
2745 if (inferior_ptid != null_ptid)
2746 {
2747 struct inferior *inferior;
2748
2749 if (non_stop)
2750 {
2751 /* If in non-stop mode, only delete the per-thread status of
2752 the current thread. */
2753 clear_proceed_status_thread (inferior_thread ());
2754 }
2755
2756 inferior = current_inferior ();
2757 inferior->control.stop_soon = NO_STOP_QUIETLY;
2758 }
2759
2760 gdb::observers::about_to_proceed.notify ();
2761 }
2762
2763 /* Returns true if TP is still stopped at a breakpoint that needs
2764 stepping-over in order to make progress. If the breakpoint is gone
2765 meanwhile, we can skip the whole step-over dance. */
2766
2767 static int
2768 thread_still_needs_step_over_bp (struct thread_info *tp)
2769 {
2770 if (tp->stepping_over_breakpoint)
2771 {
2772 struct regcache *regcache = get_thread_regcache (tp);
2773
2774 if (breakpoint_here_p (regcache->aspace (),
2775 regcache_read_pc (regcache))
2776 == ordinary_breakpoint_here)
2777 return 1;
2778
2779 tp->stepping_over_breakpoint = 0;
2780 }
2781
2782 return 0;
2783 }
2784
2785 /* Check whether thread TP still needs to start a step-over in order
2786 to make progress when resumed. Returns an bitwise or of enum
2787 step_over_what bits, indicating what needs to be stepped over. */
2788
2789 static step_over_what
2790 thread_still_needs_step_over (struct thread_info *tp)
2791 {
2792 step_over_what what = 0;
2793
2794 if (thread_still_needs_step_over_bp (tp))
2795 what |= STEP_OVER_BREAKPOINT;
2796
2797 if (tp->stepping_over_watchpoint
2798 && !target_have_steppable_watchpoint)
2799 what |= STEP_OVER_WATCHPOINT;
2800
2801 return what;
2802 }
2803
2804 /* Returns true if scheduler locking applies. STEP indicates whether
2805 we're about to do a step/next-like command to a thread. */
2806
2807 static int
2808 schedlock_applies (struct thread_info *tp)
2809 {
2810 return (scheduler_mode == schedlock_on
2811 || (scheduler_mode == schedlock_step
2812 && tp->control.stepping_command)
2813 || (scheduler_mode == schedlock_replay
2814 && target_record_will_replay (minus_one_ptid,
2815 execution_direction)));
2816 }
2817
2818 /* Basic routine for continuing the program in various fashions.
2819
2820 ADDR is the address to resume at, or -1 for resume where stopped.
2821 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2822 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2823
2824 You should call clear_proceed_status before calling proceed. */
2825
2826 void
2827 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2828 {
2829 struct regcache *regcache;
2830 struct gdbarch *gdbarch;
2831 CORE_ADDR pc;
2832 ptid_t resume_ptid;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
2835 int started;
2836
2837 /* If we're stopped at a fork/vfork, follow the branch set by the
2838 "set follow-fork-mode" command; otherwise, we'll just proceed
2839 resuming the current thread. */
2840 if (!follow_fork ())
2841 {
2842 /* The target for some reason decided not to resume. */
2843 normal_stop ();
2844 if (target_can_async_p ())
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2846 return;
2847 }
2848
2849 /* We'll update this if & when we switch to a new thread. */
2850 previous_inferior_ptid = inferior_ptid;
2851
2852 regcache = get_current_regcache ();
2853 gdbarch = regcache->arch ();
2854 const address_space *aspace = regcache->aspace ();
2855
2856 pc = regcache_read_pc (regcache);
2857 thread_info *cur_thr = inferior_thread ();
2858
2859 /* Fill in with reasonable starting values. */
2860 init_thread_stepping_state (cur_thr);
2861
2862 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2863
2864 if (addr == (CORE_ADDR) -1)
2865 {
2866 if (pc == cur_thr->suspend.stop_pc
2867 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2868 && execution_direction != EXEC_REVERSE)
2869 /* There is a breakpoint at the address we will resume at,
2870 step one instruction before inserting breakpoints so that
2871 we do not stop right away (and report a second hit at this
2872 breakpoint).
2873
2874 Note, we don't do this in reverse, because we won't
2875 actually be executing the breakpoint insn anyway.
2876 We'll be (un-)executing the previous instruction. */
2877 cur_thr->stepping_over_breakpoint = 1;
2878 else if (gdbarch_single_step_through_delay_p (gdbarch)
2879 && gdbarch_single_step_through_delay (gdbarch,
2880 get_current_frame ()))
2881 /* We stepped onto an instruction that needs to be stepped
2882 again before re-inserting the breakpoint, do so. */
2883 cur_thr->stepping_over_breakpoint = 1;
2884 }
2885 else
2886 {
2887 regcache_write_pc (regcache, addr);
2888 }
2889
2890 if (siggnal != GDB_SIGNAL_DEFAULT)
2891 cur_thr->suspend.stop_signal = siggnal;
2892
2893 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2894
2895 /* If an exception is thrown from this point on, make sure to
2896 propagate GDB's knowledge of the executing state to the
2897 frontend/user running state. */
2898 scoped_finish_thread_state finish_state (resume_ptid);
2899
2900 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2901 threads (e.g., we might need to set threads stepping over
2902 breakpoints first), from the user/frontend's point of view, all
2903 threads in RESUME_PTID are now running. Unless we're calling an
2904 inferior function, as in that case we pretend the inferior
2905 doesn't run at all. */
2906 if (!cur_thr->control.in_infcall)
2907 set_running (resume_ptid, 1);
2908
2909 if (debug_infrun)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "infrun: proceed (addr=%s, signal=%s)\n",
2912 paddress (gdbarch, addr),
2913 gdb_signal_to_symbol_string (siggnal));
2914
2915 annotate_starting ();
2916
2917 /* Make sure that output from GDB appears before output from the
2918 inferior. */
2919 gdb_flush (gdb_stdout);
2920
2921 /* Since we've marked the inferior running, give it the terminal. A
2922 QUIT/Ctrl-C from here on is forwarded to the target (which can
2923 still detect attempts to unblock a stuck connection with repeated
2924 Ctrl-C from within target_pass_ctrlc). */
2925 target_terminal::inferior ();
2926
2927 /* In a multi-threaded task we may select another thread and
2928 then continue or step.
2929
2930 But if a thread that we're resuming had stopped at a breakpoint,
2931 it will immediately cause another breakpoint stop without any
2932 execution (i.e. it will report a breakpoint hit incorrectly). So
2933 we must step over it first.
2934
2935 Look for threads other than the current (TP) that reported a
2936 breakpoint hit and haven't been resumed yet since. */
2937
2938 /* If scheduler locking applies, we can avoid iterating over all
2939 threads. */
2940 if (!non_stop && !schedlock_applies (cur_thr))
2941 {
2942 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2943 {
2944 /* Ignore the current thread here. It's handled
2945 afterwards. */
2946 if (tp == cur_thr)
2947 continue;
2948
2949 if (!thread_still_needs_step_over (tp))
2950 continue;
2951
2952 gdb_assert (!thread_is_in_step_over_chain (tp));
2953
2954 if (debug_infrun)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "infrun: need to step-over [%s] first\n",
2957 target_pid_to_str (tp->ptid).c_str ());
2958
2959 thread_step_over_chain_enqueue (tp);
2960 }
2961 }
2962
2963 /* Enqueue the current thread last, so that we move all other
2964 threads over their breakpoints first. */
2965 if (cur_thr->stepping_over_breakpoint)
2966 thread_step_over_chain_enqueue (cur_thr);
2967
2968 /* If the thread isn't started, we'll still need to set its prev_pc,
2969 so that switch_back_to_stepped_thread knows the thread hasn't
2970 advanced. Must do this before resuming any thread, as in
2971 all-stop/remote, once we resume we can't send any other packet
2972 until the target stops again. */
2973 cur_thr->prev_pc = regcache_read_pc (regcache);
2974
2975 {
2976 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2977
2978 started = start_step_over ();
2979
2980 if (step_over_info_valid_p ())
2981 {
2982 /* Either this thread started a new in-line step over, or some
2983 other thread was already doing one. In either case, don't
2984 resume anything else until the step-over is finished. */
2985 }
2986 else if (started && !target_is_non_stop_p ())
2987 {
2988 /* A new displaced stepping sequence was started. In all-stop,
2989 we can't talk to the target anymore until it next stops. */
2990 }
2991 else if (!non_stop && target_is_non_stop_p ())
2992 {
2993 /* In all-stop, but the target is always in non-stop mode.
2994 Start all other threads that are implicitly resumed too. */
2995 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2996 {
2997 if (tp->resumed)
2998 {
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: proceed: [%s] resumed\n",
3002 target_pid_to_str (tp->ptid).c_str ());
3003 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3004 continue;
3005 }
3006
3007 if (thread_is_in_step_over_chain (tp))
3008 {
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "infrun: proceed: [%s] needs step-over\n",
3012 target_pid_to_str (tp->ptid).c_str ());
3013 continue;
3014 }
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: resuming %s\n",
3019 target_pid_to_str (tp->ptid).c_str ());
3020
3021 reset_ecs (ecs, tp);
3022 switch_to_thread (tp);
3023 keep_going_pass_signal (ecs);
3024 if (!ecs->wait_some_more)
3025 error (_("Command aborted."));
3026 }
3027 }
3028 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3029 {
3030 /* The thread wasn't started, and isn't queued, run it now. */
3031 reset_ecs (ecs, cur_thr);
3032 switch_to_thread (cur_thr);
3033 keep_going_pass_signal (ecs);
3034 if (!ecs->wait_some_more)
3035 error (_("Command aborted."));
3036 }
3037 }
3038
3039 target_commit_resume ();
3040
3041 finish_state.release ();
3042
3043 /* Tell the event loop to wait for it to stop. If the target
3044 supports asynchronous execution, it'll do this from within
3045 target_resume. */
3046 if (!target_can_async_p ())
3047 mark_async_event_handler (infrun_async_inferior_event_token);
3048 }
3049 \f
3050
3051 /* Start remote-debugging of a machine over a serial link. */
3052
3053 void
3054 start_remote (int from_tty)
3055 {
3056 struct inferior *inferior;
3057
3058 inferior = current_inferior ();
3059 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3060
3061 /* Always go on waiting for the target, regardless of the mode. */
3062 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3063 indicate to wait_for_inferior that a target should timeout if
3064 nothing is returned (instead of just blocking). Because of this,
3065 targets expecting an immediate response need to, internally, set
3066 things up so that the target_wait() is forced to eventually
3067 timeout. */
3068 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3069 differentiate to its caller what the state of the target is after
3070 the initial open has been performed. Here we're assuming that
3071 the target has stopped. It should be possible to eventually have
3072 target_open() return to the caller an indication that the target
3073 is currently running and GDB state should be set to the same as
3074 for an async run. */
3075 wait_for_inferior ();
3076
3077 /* Now that the inferior has stopped, do any bookkeeping like
3078 loading shared libraries. We want to do this before normal_stop,
3079 so that the displayed frame is up to date. */
3080 post_create_inferior (current_top_target (), from_tty);
3081
3082 normal_stop ();
3083 }
3084
3085 /* Initialize static vars when a new inferior begins. */
3086
3087 void
3088 init_wait_for_inferior (void)
3089 {
3090 /* These are meaningless until the first time through wait_for_inferior. */
3091
3092 breakpoint_init_inferior (inf_starting);
3093
3094 clear_proceed_status (0);
3095
3096 target_last_wait_ptid = minus_one_ptid;
3097
3098 previous_inferior_ptid = inferior_ptid;
3099 }
3100
3101 \f
3102
3103 static void handle_inferior_event (struct execution_control_state *ecs);
3104
3105 static void handle_step_into_function (struct gdbarch *gdbarch,
3106 struct execution_control_state *ecs);
3107 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3108 struct execution_control_state *ecs);
3109 static void handle_signal_stop (struct execution_control_state *ecs);
3110 static void check_exception_resume (struct execution_control_state *,
3111 struct frame_info *);
3112
3113 static void end_stepping_range (struct execution_control_state *ecs);
3114 static void stop_waiting (struct execution_control_state *ecs);
3115 static void keep_going (struct execution_control_state *ecs);
3116 static void process_event_stop_test (struct execution_control_state *ecs);
3117 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3118
3119 /* This function is attached as a "thread_stop_requested" observer.
3120 Cleanup local state that assumed the PTID was to be resumed, and
3121 report the stop to the frontend. */
3122
3123 static void
3124 infrun_thread_stop_requested (ptid_t ptid)
3125 {
3126 /* PTID was requested to stop. If the thread was already stopped,
3127 but the user/frontend doesn't know about that yet (e.g., the
3128 thread had been temporarily paused for some step-over), set up
3129 for reporting the stop now. */
3130 for (thread_info *tp : all_threads (ptid))
3131 {
3132 if (tp->state != THREAD_RUNNING)
3133 continue;
3134 if (tp->executing)
3135 continue;
3136
3137 /* Remove matching threads from the step-over queue, so
3138 start_step_over doesn't try to resume them
3139 automatically. */
3140 if (thread_is_in_step_over_chain (tp))
3141 thread_step_over_chain_remove (tp);
3142
3143 /* If the thread is stopped, but the user/frontend doesn't
3144 know about that yet, queue a pending event, as if the
3145 thread had just stopped now. Unless the thread already had
3146 a pending event. */
3147 if (!tp->suspend.waitstatus_pending_p)
3148 {
3149 tp->suspend.waitstatus_pending_p = 1;
3150 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3151 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3152 }
3153
3154 /* Clear the inline-frame state, since we're re-processing the
3155 stop. */
3156 clear_inline_frame_state (tp->ptid);
3157
3158 /* If this thread was paused because some other thread was
3159 doing an inline-step over, let that finish first. Once
3160 that happens, we'll restart all threads and consume pending
3161 stop events then. */
3162 if (step_over_info_valid_p ())
3163 continue;
3164
3165 /* Otherwise we can process the (new) pending event now. Set
3166 it so this pending event is considered by
3167 do_target_wait. */
3168 tp->resumed = 1;
3169 }
3170 }
3171
3172 static void
3173 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3174 {
3175 if (target_last_wait_ptid == tp->ptid)
3176 nullify_last_target_wait_ptid ();
3177 }
3178
3179 /* Delete the step resume, single-step and longjmp/exception resume
3180 breakpoints of TP. */
3181
3182 static void
3183 delete_thread_infrun_breakpoints (struct thread_info *tp)
3184 {
3185 delete_step_resume_breakpoint (tp);
3186 delete_exception_resume_breakpoint (tp);
3187 delete_single_step_breakpoints (tp);
3188 }
3189
3190 /* If the target still has execution, call FUNC for each thread that
3191 just stopped. In all-stop, that's all the non-exited threads; in
3192 non-stop, that's the current thread, only. */
3193
3194 typedef void (*for_each_just_stopped_thread_callback_func)
3195 (struct thread_info *tp);
3196
3197 static void
3198 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3199 {
3200 if (!target_has_execution || inferior_ptid == null_ptid)
3201 return;
3202
3203 if (target_is_non_stop_p ())
3204 {
3205 /* If in non-stop mode, only the current thread stopped. */
3206 func (inferior_thread ());
3207 }
3208 else
3209 {
3210 /* In all-stop mode, all threads have stopped. */
3211 for (thread_info *tp : all_non_exited_threads ())
3212 func (tp);
3213 }
3214 }
3215
3216 /* Delete the step resume and longjmp/exception resume breakpoints of
3217 the threads that just stopped. */
3218
3219 static void
3220 delete_just_stopped_threads_infrun_breakpoints (void)
3221 {
3222 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3223 }
3224
3225 /* Delete the single-step breakpoints of the threads that just
3226 stopped. */
3227
3228 static void
3229 delete_just_stopped_threads_single_step_breakpoints (void)
3230 {
3231 for_each_just_stopped_thread (delete_single_step_breakpoints);
3232 }
3233
3234 /* See infrun.h. */
3235
3236 void
3237 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3238 const struct target_waitstatus *ws)
3239 {
3240 std::string status_string = target_waitstatus_to_string (ws);
3241 string_file stb;
3242
3243 /* The text is split over several lines because it was getting too long.
3244 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3245 output as a unit; we want only one timestamp printed if debug_timestamp
3246 is set. */
3247
3248 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3249 waiton_ptid.pid (),
3250 waiton_ptid.lwp (),
3251 waiton_ptid.tid ());
3252 if (waiton_ptid.pid () != -1)
3253 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3254 stb.printf (", status) =\n");
3255 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3256 result_ptid.pid (),
3257 result_ptid.lwp (),
3258 result_ptid.tid (),
3259 target_pid_to_str (result_ptid).c_str ());
3260 stb.printf ("infrun: %s\n", status_string.c_str ());
3261
3262 /* This uses %s in part to handle %'s in the text, but also to avoid
3263 a gcc error: the format attribute requires a string literal. */
3264 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3265 }
3266
3267 /* Select a thread at random, out of those which are resumed and have
3268 had events. */
3269
3270 static struct thread_info *
3271 random_pending_event_thread (ptid_t waiton_ptid)
3272 {
3273 int num_events = 0;
3274
3275 auto has_event = [] (thread_info *tp)
3276 {
3277 return (tp->resumed
3278 && tp->suspend.waitstatus_pending_p);
3279 };
3280
3281 /* First see how many events we have. Count only resumed threads
3282 that have an event pending. */
3283 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3284 if (has_event (tp))
3285 num_events++;
3286
3287 if (num_events == 0)
3288 return NULL;
3289
3290 /* Now randomly pick a thread out of those that have had events. */
3291 int random_selector = (int) ((num_events * (double) rand ())
3292 / (RAND_MAX + 1.0));
3293
3294 if (debug_infrun && num_events > 1)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: Found %d events, selecting #%d\n",
3297 num_events, random_selector);
3298
3299 /* Select the Nth thread that has had an event. */
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
3302 if (random_selector-- == 0)
3303 return tp;
3304
3305 gdb_assert_not_reached ("event thread not found");
3306 }
3307
3308 /* Wrapper for target_wait that first checks whether threads have
3309 pending statuses to report before actually asking the target for
3310 more events. */
3311
3312 static ptid_t
3313 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3314 {
3315 ptid_t event_ptid;
3316 struct thread_info *tp;
3317
3318 /* First check if there is a resumed thread with a wait status
3319 pending. */
3320 if (ptid == minus_one_ptid || ptid.is_pid ())
3321 {
3322 tp = random_pending_event_thread (ptid);
3323 }
3324 else
3325 {
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: Waiting for specific thread %s.\n",
3329 target_pid_to_str (ptid).c_str ());
3330
3331 /* We have a specific thread to check. */
3332 tp = find_thread_ptid (ptid);
3333 gdb_assert (tp != NULL);
3334 if (!tp->suspend.waitstatus_pending_p)
3335 tp = NULL;
3336 }
3337
3338 if (tp != NULL
3339 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3340 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3341 {
3342 struct regcache *regcache = get_thread_regcache (tp);
3343 struct gdbarch *gdbarch = regcache->arch ();
3344 CORE_ADDR pc;
3345 int discard = 0;
3346
3347 pc = regcache_read_pc (regcache);
3348
3349 if (pc != tp->suspend.stop_pc)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: PC of %s changed. was=%s, now=%s\n",
3354 target_pid_to_str (tp->ptid).c_str (),
3355 paddress (gdbarch, tp->suspend.stop_pc),
3356 paddress (gdbarch, pc));
3357 discard = 1;
3358 }
3359 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: previous breakpoint of %s, at %s gone\n",
3364 target_pid_to_str (tp->ptid).c_str (),
3365 paddress (gdbarch, pc));
3366
3367 discard = 1;
3368 }
3369
3370 if (discard)
3371 {
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog,
3374 "infrun: pending event of %s cancelled.\n",
3375 target_pid_to_str (tp->ptid).c_str ());
3376
3377 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3378 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3379 }
3380 }
3381
3382 if (tp != NULL)
3383 {
3384 if (debug_infrun)
3385 {
3386 std::string statstr
3387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3388
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: Using pending wait status %s for %s.\n",
3391 statstr.c_str (),
3392 target_pid_to_str (tp->ptid).c_str ());
3393 }
3394
3395 /* Now that we've selected our final event LWP, un-adjust its PC
3396 if it was a software breakpoint (and the target doesn't
3397 always adjust the PC itself). */
3398 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3399 && !target_supports_stopped_by_sw_breakpoint ())
3400 {
3401 struct regcache *regcache;
3402 struct gdbarch *gdbarch;
3403 int decr_pc;
3404
3405 regcache = get_thread_regcache (tp);
3406 gdbarch = regcache->arch ();
3407
3408 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3409 if (decr_pc != 0)
3410 {
3411 CORE_ADDR pc;
3412
3413 pc = regcache_read_pc (regcache);
3414 regcache_write_pc (regcache, pc + decr_pc);
3415 }
3416 }
3417
3418 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3419 *status = tp->suspend.waitstatus;
3420 tp->suspend.waitstatus_pending_p = 0;
3421
3422 /* Wake up the event loop again, until all pending events are
3423 processed. */
3424 if (target_is_async_p ())
3425 mark_async_event_handler (infrun_async_inferior_event_token);
3426 return tp->ptid;
3427 }
3428
3429 /* But if we don't find one, we'll have to wait. */
3430
3431 if (deprecated_target_wait_hook)
3432 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3433 else
3434 event_ptid = target_wait (ptid, status, options);
3435
3436 return event_ptid;
3437 }
3438
3439 /* Prepare and stabilize the inferior for detaching it. E.g.,
3440 detaching while a thread is displaced stepping is a recipe for
3441 crashing it, as nothing would readjust the PC out of the scratch
3442 pad. */
3443
3444 void
3445 prepare_for_detach (void)
3446 {
3447 struct inferior *inf = current_inferior ();
3448 ptid_t pid_ptid = ptid_t (inf->pid);
3449
3450 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3451
3452 /* Is any thread of this process displaced stepping? If not,
3453 there's nothing else to do. */
3454 if (displaced->step_thread == nullptr)
3455 return;
3456
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced-stepping in-process while detaching");
3460
3461 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3462
3463 while (displaced->step_thread != nullptr)
3464 {
3465 struct execution_control_state ecss;
3466 struct execution_control_state *ecs;
3467
3468 ecs = &ecss;
3469 memset (ecs, 0, sizeof (*ecs));
3470
3471 overlay_cache_invalid = 1;
3472 /* Flush target cache before starting to handle each event.
3473 Target was running and cache could be stale. This is just a
3474 heuristic. Running threads may modify target memory, but we
3475 don't get any event. */
3476 target_dcache_invalidate ();
3477
3478 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3479
3480 if (debug_infrun)
3481 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3482
3483 /* If an error happens while handling the event, propagate GDB's
3484 knowledge of the executing state to the frontend/user running
3485 state. */
3486 scoped_finish_thread_state finish_state (minus_one_ptid);
3487
3488 /* Now figure out what to do with the result of the result. */
3489 handle_inferior_event (ecs);
3490
3491 /* No error, don't finish the state yet. */
3492 finish_state.release ();
3493
3494 /* Breakpoints and watchpoints are not installed on the target
3495 at this point, and signals are passed directly to the
3496 inferior, so this must mean the process is gone. */
3497 if (!ecs->wait_some_more)
3498 {
3499 restore_detaching.release ();
3500 error (_("Program exited while detaching"));
3501 }
3502 }
3503
3504 restore_detaching.release ();
3505 }
3506
3507 /* Wait for control to return from inferior to debugger.
3508
3509 If inferior gets a signal, we may decide to start it up again
3510 instead of returning. That is why there is a loop in this function.
3511 When this function actually returns it means the inferior
3512 should be left stopped and GDB should read more commands. */
3513
3514 void
3515 wait_for_inferior (void)
3516 {
3517 if (debug_infrun)
3518 fprintf_unfiltered
3519 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3520
3521 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3522
3523 /* If an error happens while handling the event, propagate GDB's
3524 knowledge of the executing state to the frontend/user running
3525 state. */
3526 scoped_finish_thread_state finish_state (minus_one_ptid);
3527
3528 while (1)
3529 {
3530 struct execution_control_state ecss;
3531 struct execution_control_state *ecs = &ecss;
3532 ptid_t waiton_ptid = minus_one_ptid;
3533
3534 memset (ecs, 0, sizeof (*ecs));
3535
3536 overlay_cache_invalid = 1;
3537
3538 /* Flush target cache before starting to handle each event.
3539 Target was running and cache could be stale. This is just a
3540 heuristic. Running threads may modify target memory, but we
3541 don't get any event. */
3542 target_dcache_invalidate ();
3543
3544 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3545
3546 if (debug_infrun)
3547 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3548
3549 /* Now figure out what to do with the result of the result. */
3550 handle_inferior_event (ecs);
3551
3552 if (!ecs->wait_some_more)
3553 break;
3554 }
3555
3556 /* No error, don't finish the state yet. */
3557 finish_state.release ();
3558 }
3559
3560 /* Cleanup that reinstalls the readline callback handler, if the
3561 target is running in the background. If while handling the target
3562 event something triggered a secondary prompt, like e.g., a
3563 pagination prompt, we'll have removed the callback handler (see
3564 gdb_readline_wrapper_line). Need to do this as we go back to the
3565 event loop, ready to process further input. Note this has no
3566 effect if the handler hasn't actually been removed, because calling
3567 rl_callback_handler_install resets the line buffer, thus losing
3568 input. */
3569
3570 static void
3571 reinstall_readline_callback_handler_cleanup ()
3572 {
3573 struct ui *ui = current_ui;
3574
3575 if (!ui->async)
3576 {
3577 /* We're not going back to the top level event loop yet. Don't
3578 install the readline callback, as it'd prep the terminal,
3579 readline-style (raw, noecho) (e.g., --batch). We'll install
3580 it the next time the prompt is displayed, when we're ready
3581 for input. */
3582 return;
3583 }
3584
3585 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3586 gdb_rl_callback_handler_reinstall ();
3587 }
3588
3589 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3590 that's just the event thread. In all-stop, that's all threads. */
3591
3592 static void
3593 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3594 {
3595 if (ecs->event_thread != NULL
3596 && ecs->event_thread->thread_fsm != NULL)
3597 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3598
3599 if (!non_stop)
3600 {
3601 for (thread_info *thr : all_non_exited_threads ())
3602 {
3603 if (thr->thread_fsm == NULL)
3604 continue;
3605 if (thr == ecs->event_thread)
3606 continue;
3607
3608 switch_to_thread (thr);
3609 thr->thread_fsm->clean_up (thr);
3610 }
3611
3612 if (ecs->event_thread != NULL)
3613 switch_to_thread (ecs->event_thread);
3614 }
3615 }
3616
3617 /* Helper for all_uis_check_sync_execution_done that works on the
3618 current UI. */
3619
3620 static void
3621 check_curr_ui_sync_execution_done (void)
3622 {
3623 struct ui *ui = current_ui;
3624
3625 if (ui->prompt_state == PROMPT_NEEDED
3626 && ui->async
3627 && !gdb_in_secondary_prompt_p (ui))
3628 {
3629 target_terminal::ours ();
3630 gdb::observers::sync_execution_done.notify ();
3631 ui_register_input_event_handler (ui);
3632 }
3633 }
3634
3635 /* See infrun.h. */
3636
3637 void
3638 all_uis_check_sync_execution_done (void)
3639 {
3640 SWITCH_THRU_ALL_UIS ()
3641 {
3642 check_curr_ui_sync_execution_done ();
3643 }
3644 }
3645
3646 /* See infrun.h. */
3647
3648 void
3649 all_uis_on_sync_execution_starting (void)
3650 {
3651 SWITCH_THRU_ALL_UIS ()
3652 {
3653 if (current_ui->prompt_state == PROMPT_NEEDED)
3654 async_disable_stdin ();
3655 }
3656 }
3657
3658 /* Asynchronous version of wait_for_inferior. It is called by the
3659 event loop whenever a change of state is detected on the file
3660 descriptor corresponding to the target. It can be called more than
3661 once to complete a single execution command. In such cases we need
3662 to keep the state in a global variable ECSS. If it is the last time
3663 that this function is called for a single execution command, then
3664 report to the user that the inferior has stopped, and do the
3665 necessary cleanups. */
3666
3667 void
3668 fetch_inferior_event (void *client_data)
3669 {
3670 struct execution_control_state ecss;
3671 struct execution_control_state *ecs = &ecss;
3672 int cmd_done = 0;
3673 ptid_t waiton_ptid = minus_one_ptid;
3674
3675 memset (ecs, 0, sizeof (*ecs));
3676
3677 /* Events are always processed with the main UI as current UI. This
3678 way, warnings, debug output, etc. are always consistently sent to
3679 the main console. */
3680 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3681
3682 /* End up with readline processing input, if necessary. */
3683 {
3684 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3685
3686 /* We're handling a live event, so make sure we're doing live
3687 debugging. If we're looking at traceframes while the target is
3688 running, we're going to need to get back to that mode after
3689 handling the event. */
3690 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3691 if (non_stop)
3692 {
3693 maybe_restore_traceframe.emplace ();
3694 set_current_traceframe (-1);
3695 }
3696
3697 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3698
3699 if (non_stop)
3700 /* In non-stop mode, the user/frontend should not notice a thread
3701 switch due to internal events. Make sure we reverse to the
3702 user selected thread and frame after handling the event and
3703 running any breakpoint commands. */
3704 maybe_restore_thread.emplace ();
3705
3706 overlay_cache_invalid = 1;
3707 /* Flush target cache before starting to handle each event. Target
3708 was running and cache could be stale. This is just a heuristic.
3709 Running threads may modify target memory, but we don't get any
3710 event. */
3711 target_dcache_invalidate ();
3712
3713 scoped_restore save_exec_dir
3714 = make_scoped_restore (&execution_direction,
3715 target_execution_direction ());
3716
3717 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3718 target_can_async_p () ? TARGET_WNOHANG : 0);
3719
3720 if (debug_infrun)
3721 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3722
3723 /* If an error happens while handling the event, propagate GDB's
3724 knowledge of the executing state to the frontend/user running
3725 state. */
3726 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3727 scoped_finish_thread_state finish_state (finish_ptid);
3728
3729 /* Get executed before scoped_restore_current_thread above to apply
3730 still for the thread which has thrown the exception. */
3731 auto defer_bpstat_clear
3732 = make_scope_exit (bpstat_clear_actions);
3733 auto defer_delete_threads
3734 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3735
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
3738
3739 if (!ecs->wait_some_more)
3740 {
3741 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3742 int should_stop = 1;
3743 struct thread_info *thr = ecs->event_thread;
3744
3745 delete_just_stopped_threads_infrun_breakpoints ();
3746
3747 if (thr != NULL)
3748 {
3749 struct thread_fsm *thread_fsm = thr->thread_fsm;
3750
3751 if (thread_fsm != NULL)
3752 should_stop = thread_fsm->should_stop (thr);
3753 }
3754
3755 if (!should_stop)
3756 {
3757 keep_going (ecs);
3758 }
3759 else
3760 {
3761 bool should_notify_stop = true;
3762 int proceeded = 0;
3763
3764 clean_up_just_stopped_threads_fsms (ecs);
3765
3766 if (thr != NULL && thr->thread_fsm != NULL)
3767 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3768
3769 if (should_notify_stop)
3770 {
3771 /* We may not find an inferior if this was a process exit. */
3772 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3773 proceeded = normal_stop ();
3774 }
3775
3776 if (!proceeded)
3777 {
3778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3779 cmd_done = 1;
3780 }
3781 }
3782 }
3783
3784 defer_delete_threads.release ();
3785 defer_bpstat_clear.release ();
3786
3787 /* No error, don't finish the thread states yet. */
3788 finish_state.release ();
3789
3790 /* This scope is used to ensure that readline callbacks are
3791 reinstalled here. */
3792 }
3793
3794 /* If a UI was in sync execution mode, and now isn't, restore its
3795 prompt (a synchronous execution command has finished, and we're
3796 ready for input). */
3797 all_uis_check_sync_execution_done ();
3798
3799 if (cmd_done
3800 && exec_done_display_p
3801 && (inferior_ptid == null_ptid
3802 || inferior_thread ()->state != THREAD_RUNNING))
3803 printf_unfiltered (_("completed.\n"));
3804 }
3805
3806 /* Record the frame and location we're currently stepping through. */
3807 void
3808 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3809 {
3810 struct thread_info *tp = inferior_thread ();
3811
3812 tp->control.step_frame_id = get_frame_id (frame);
3813 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3814
3815 tp->current_symtab = sal.symtab;
3816 tp->current_line = sal.line;
3817 }
3818
3819 /* Clear context switchable stepping state. */
3820
3821 void
3822 init_thread_stepping_state (struct thread_info *tss)
3823 {
3824 tss->stepped_breakpoint = 0;
3825 tss->stepping_over_breakpoint = 0;
3826 tss->stepping_over_watchpoint = 0;
3827 tss->step_after_step_resume_breakpoint = 0;
3828 }
3829
3830 /* Set the cached copy of the last ptid/waitstatus. */
3831
3832 void
3833 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3834 {
3835 target_last_wait_ptid = ptid;
3836 target_last_waitstatus = status;
3837 }
3838
3839 /* Return the cached copy of the last pid/waitstatus returned by
3840 target_wait()/deprecated_target_wait_hook(). The data is actually
3841 cached by handle_inferior_event(), which gets called immediately
3842 after target_wait()/deprecated_target_wait_hook(). */
3843
3844 void
3845 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3846 {
3847 *ptidp = target_last_wait_ptid;
3848 *status = target_last_waitstatus;
3849 }
3850
3851 void
3852 nullify_last_target_wait_ptid (void)
3853 {
3854 target_last_wait_ptid = minus_one_ptid;
3855 }
3856
3857 /* Switch thread contexts. */
3858
3859 static void
3860 context_switch (execution_control_state *ecs)
3861 {
3862 if (debug_infrun
3863 && ecs->ptid != inferior_ptid
3864 && ecs->event_thread != inferior_thread ())
3865 {
3866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3867 target_pid_to_str (inferior_ptid).c_str ());
3868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3869 target_pid_to_str (ecs->ptid).c_str ());
3870 }
3871
3872 switch_to_thread (ecs->event_thread);
3873 }
3874
3875 /* If the target can't tell whether we've hit breakpoints
3876 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3877 check whether that could have been caused by a breakpoint. If so,
3878 adjust the PC, per gdbarch_decr_pc_after_break. */
3879
3880 static void
3881 adjust_pc_after_break (struct thread_info *thread,
3882 struct target_waitstatus *ws)
3883 {
3884 struct regcache *regcache;
3885 struct gdbarch *gdbarch;
3886 CORE_ADDR breakpoint_pc, decr_pc;
3887
3888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3889 we aren't, just return.
3890
3891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3893 implemented by software breakpoints should be handled through the normal
3894 breakpoint layer.
3895
3896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3897 different signals (SIGILL or SIGEMT for instance), but it is less
3898 clear where the PC is pointing afterwards. It may not match
3899 gdbarch_decr_pc_after_break. I don't know any specific target that
3900 generates these signals at breakpoints (the code has been in GDB since at
3901 least 1992) so I can not guess how to handle them here.
3902
3903 In earlier versions of GDB, a target with
3904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3906 target with both of these set in GDB history, and it seems unlikely to be
3907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3908
3909 if (ws->kind != TARGET_WAITKIND_STOPPED)
3910 return;
3911
3912 if (ws->value.sig != GDB_SIGNAL_TRAP)
3913 return;
3914
3915 /* In reverse execution, when a breakpoint is hit, the instruction
3916 under it has already been de-executed. The reported PC always
3917 points at the breakpoint address, so adjusting it further would
3918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3919 architecture:
3920
3921 B1 0x08000000 : INSN1
3922 B2 0x08000001 : INSN2
3923 0x08000002 : INSN3
3924 PC -> 0x08000003 : INSN4
3925
3926 Say you're stopped at 0x08000003 as above. Reverse continuing
3927 from that point should hit B2 as below. Reading the PC when the
3928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3929 been de-executed already.
3930
3931 B1 0x08000000 : INSN1
3932 B2 PC -> 0x08000001 : INSN2
3933 0x08000002 : INSN3
3934 0x08000003 : INSN4
3935
3936 We can't apply the same logic as for forward execution, because
3937 we would wrongly adjust the PC to 0x08000000, since there's a
3938 breakpoint at PC - 1. We'd then report a hit on B1, although
3939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3940 behaviour. */
3941 if (execution_direction == EXEC_REVERSE)
3942 return;
3943
3944 /* If the target can tell whether the thread hit a SW breakpoint,
3945 trust it. Targets that can tell also adjust the PC
3946 themselves. */
3947 if (target_supports_stopped_by_sw_breakpoint ())
3948 return;
3949
3950 /* Note that relying on whether a breakpoint is planted in memory to
3951 determine this can fail. E.g,. the breakpoint could have been
3952 removed since. Or the thread could have been told to step an
3953 instruction the size of a breakpoint instruction, and only
3954 _after_ was a breakpoint inserted at its address. */
3955
3956 /* If this target does not decrement the PC after breakpoints, then
3957 we have nothing to do. */
3958 regcache = get_thread_regcache (thread);
3959 gdbarch = regcache->arch ();
3960
3961 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3962 if (decr_pc == 0)
3963 return;
3964
3965 const address_space *aspace = regcache->aspace ();
3966
3967 /* Find the location where (if we've hit a breakpoint) the
3968 breakpoint would be. */
3969 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3970
3971 /* If the target can't tell whether a software breakpoint triggered,
3972 fallback to figuring it out based on breakpoints we think were
3973 inserted in the target, and on whether the thread was stepped or
3974 continued. */
3975
3976 /* Check whether there actually is a software breakpoint inserted at
3977 that location.
3978
3979 If in non-stop mode, a race condition is possible where we've
3980 removed a breakpoint, but stop events for that breakpoint were
3981 already queued and arrive later. To suppress those spurious
3982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3983 and retire them after a number of stop events are reported. Note
3984 this is an heuristic and can thus get confused. The real fix is
3985 to get the "stopped by SW BP and needs adjustment" info out of
3986 the target/kernel (and thus never reach here; see above). */
3987 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3988 || (target_is_non_stop_p ()
3989 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3990 {
3991 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
3992
3993 if (record_full_is_used ())
3994 restore_operation_disable.emplace
3995 (record_full_gdb_operation_disable_set ());
3996
3997 /* When using hardware single-step, a SIGTRAP is reported for both
3998 a completed single-step and a software breakpoint. Need to
3999 differentiate between the two, as the latter needs adjusting
4000 but the former does not.
4001
4002 The SIGTRAP can be due to a completed hardware single-step only if
4003 - we didn't insert software single-step breakpoints
4004 - this thread is currently being stepped
4005
4006 If any of these events did not occur, we must have stopped due
4007 to hitting a software breakpoint, and have to back up to the
4008 breakpoint address.
4009
4010 As a special case, we could have hardware single-stepped a
4011 software breakpoint. In this case (prev_pc == breakpoint_pc),
4012 we also need to back up to the breakpoint address. */
4013
4014 if (thread_has_single_step_breakpoints_set (thread)
4015 || !currently_stepping (thread)
4016 || (thread->stepped_breakpoint
4017 && thread->prev_pc == breakpoint_pc))
4018 regcache_write_pc (regcache, breakpoint_pc);
4019 }
4020 }
4021
4022 static int
4023 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4024 {
4025 for (frame = get_prev_frame (frame);
4026 frame != NULL;
4027 frame = get_prev_frame (frame))
4028 {
4029 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4030 return 1;
4031 if (get_frame_type (frame) != INLINE_FRAME)
4032 break;
4033 }
4034
4035 return 0;
4036 }
4037
4038 /* If the event thread has the stop requested flag set, pretend it
4039 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4040 target_stop). */
4041
4042 static bool
4043 handle_stop_requested (struct execution_control_state *ecs)
4044 {
4045 if (ecs->event_thread->stop_requested)
4046 {
4047 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4048 ecs->ws.value.sig = GDB_SIGNAL_0;
4049 handle_signal_stop (ecs);
4050 return true;
4051 }
4052 return false;
4053 }
4054
4055 /* Auxiliary function that handles syscall entry/return events.
4056 It returns 1 if the inferior should keep going (and GDB
4057 should ignore the event), or 0 if the event deserves to be
4058 processed. */
4059
4060 static int
4061 handle_syscall_event (struct execution_control_state *ecs)
4062 {
4063 struct regcache *regcache;
4064 int syscall_number;
4065
4066 context_switch (ecs);
4067
4068 regcache = get_thread_regcache (ecs->event_thread);
4069 syscall_number = ecs->ws.value.syscall_number;
4070 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4071
4072 if (catch_syscall_enabled () > 0
4073 && catching_syscall_number (syscall_number) > 0)
4074 {
4075 if (debug_infrun)
4076 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4077 syscall_number);
4078
4079 ecs->event_thread->control.stop_bpstat
4080 = bpstat_stop_status (regcache->aspace (),
4081 ecs->event_thread->suspend.stop_pc,
4082 ecs->event_thread, &ecs->ws);
4083
4084 if (handle_stop_requested (ecs))
4085 return 0;
4086
4087 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4088 {
4089 /* Catchpoint hit. */
4090 return 0;
4091 }
4092 }
4093
4094 if (handle_stop_requested (ecs))
4095 return 0;
4096
4097 /* If no catchpoint triggered for this, then keep going. */
4098 keep_going (ecs);
4099 return 1;
4100 }
4101
4102 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4103
4104 static void
4105 fill_in_stop_func (struct gdbarch *gdbarch,
4106 struct execution_control_state *ecs)
4107 {
4108 if (!ecs->stop_func_filled_in)
4109 {
4110 const block *block;
4111
4112 /* Don't care about return value; stop_func_start and stop_func_name
4113 will both be 0 if it doesn't work. */
4114 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4115 &ecs->stop_func_name,
4116 &ecs->stop_func_start,
4117 &ecs->stop_func_end,
4118 &block);
4119
4120 /* The call to find_pc_partial_function, above, will set
4121 stop_func_start and stop_func_end to the start and end
4122 of the range containing the stop pc. If this range
4123 contains the entry pc for the block (which is always the
4124 case for contiguous blocks), advance stop_func_start past
4125 the function's start offset and entrypoint. Note that
4126 stop_func_start is NOT advanced when in a range of a
4127 non-contiguous block that does not contain the entry pc. */
4128 if (block != nullptr
4129 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4130 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4131 {
4132 ecs->stop_func_start
4133 += gdbarch_deprecated_function_start_offset (gdbarch);
4134
4135 if (gdbarch_skip_entrypoint_p (gdbarch))
4136 ecs->stop_func_start
4137 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4138 }
4139
4140 ecs->stop_func_filled_in = 1;
4141 }
4142 }
4143
4144
4145 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4146
4147 static enum stop_kind
4148 get_inferior_stop_soon (execution_control_state *ecs)
4149 {
4150 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4151
4152 gdb_assert (inf != NULL);
4153 return inf->control.stop_soon;
4154 }
4155
4156 /* Wait for one event. Store the resulting waitstatus in WS, and
4157 return the event ptid. */
4158
4159 static ptid_t
4160 wait_one (struct target_waitstatus *ws)
4161 {
4162 ptid_t event_ptid;
4163 ptid_t wait_ptid = minus_one_ptid;
4164
4165 overlay_cache_invalid = 1;
4166
4167 /* Flush target cache before starting to handle each event.
4168 Target was running and cache could be stale. This is just a
4169 heuristic. Running threads may modify target memory, but we
4170 don't get any event. */
4171 target_dcache_invalidate ();
4172
4173 if (deprecated_target_wait_hook)
4174 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4175 else
4176 event_ptid = target_wait (wait_ptid, ws, 0);
4177
4178 if (debug_infrun)
4179 print_target_wait_results (wait_ptid, event_ptid, ws);
4180
4181 return event_ptid;
4182 }
4183
4184 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4185 instead of the current thread. */
4186 #define THREAD_STOPPED_BY(REASON) \
4187 static int \
4188 thread_stopped_by_ ## REASON (ptid_t ptid) \
4189 { \
4190 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4191 inferior_ptid = ptid; \
4192 \
4193 return target_stopped_by_ ## REASON (); \
4194 }
4195
4196 /* Generate thread_stopped_by_watchpoint. */
4197 THREAD_STOPPED_BY (watchpoint)
4198 /* Generate thread_stopped_by_sw_breakpoint. */
4199 THREAD_STOPPED_BY (sw_breakpoint)
4200 /* Generate thread_stopped_by_hw_breakpoint. */
4201 THREAD_STOPPED_BY (hw_breakpoint)
4202
4203 /* Save the thread's event and stop reason to process it later. */
4204
4205 static void
4206 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4207 {
4208 if (debug_infrun)
4209 {
4210 std::string statstr = target_waitstatus_to_string (ws);
4211
4212 fprintf_unfiltered (gdb_stdlog,
4213 "infrun: saving status %s for %d.%ld.%ld\n",
4214 statstr.c_str (),
4215 tp->ptid.pid (),
4216 tp->ptid.lwp (),
4217 tp->ptid.tid ());
4218 }
4219
4220 /* Record for later. */
4221 tp->suspend.waitstatus = *ws;
4222 tp->suspend.waitstatus_pending_p = 1;
4223
4224 struct regcache *regcache = get_thread_regcache (tp);
4225 const address_space *aspace = regcache->aspace ();
4226
4227 if (ws->kind == TARGET_WAITKIND_STOPPED
4228 && ws->value.sig == GDB_SIGNAL_TRAP)
4229 {
4230 CORE_ADDR pc = regcache_read_pc (regcache);
4231
4232 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4233
4234 if (thread_stopped_by_watchpoint (tp->ptid))
4235 {
4236 tp->suspend.stop_reason
4237 = TARGET_STOPPED_BY_WATCHPOINT;
4238 }
4239 else if (target_supports_stopped_by_sw_breakpoint ()
4240 && thread_stopped_by_sw_breakpoint (tp->ptid))
4241 {
4242 tp->suspend.stop_reason
4243 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4244 }
4245 else if (target_supports_stopped_by_hw_breakpoint ()
4246 && thread_stopped_by_hw_breakpoint (tp->ptid))
4247 {
4248 tp->suspend.stop_reason
4249 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4250 }
4251 else if (!target_supports_stopped_by_hw_breakpoint ()
4252 && hardware_breakpoint_inserted_here_p (aspace,
4253 pc))
4254 {
4255 tp->suspend.stop_reason
4256 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4257 }
4258 else if (!target_supports_stopped_by_sw_breakpoint ()
4259 && software_breakpoint_inserted_here_p (aspace,
4260 pc))
4261 {
4262 tp->suspend.stop_reason
4263 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4264 }
4265 else if (!thread_has_single_step_breakpoints_set (tp)
4266 && currently_stepping (tp))
4267 {
4268 tp->suspend.stop_reason
4269 = TARGET_STOPPED_BY_SINGLE_STEP;
4270 }
4271 }
4272 }
4273
4274 /* See infrun.h. */
4275
4276 void
4277 stop_all_threads (void)
4278 {
4279 /* We may need multiple passes to discover all threads. */
4280 int pass;
4281 int iterations = 0;
4282
4283 gdb_assert (target_is_non_stop_p ());
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4287
4288 scoped_restore_current_thread restore_thread;
4289
4290 target_thread_events (1);
4291 SCOPE_EXIT { target_thread_events (0); };
4292
4293 /* Request threads to stop, and then wait for the stops. Because
4294 threads we already know about can spawn more threads while we're
4295 trying to stop them, and we only learn about new threads when we
4296 update the thread list, do this in a loop, and keep iterating
4297 until two passes find no threads that need to be stopped. */
4298 for (pass = 0; pass < 2; pass++, iterations++)
4299 {
4300 if (debug_infrun)
4301 fprintf_unfiltered (gdb_stdlog,
4302 "infrun: stop_all_threads, pass=%d, "
4303 "iterations=%d\n", pass, iterations);
4304 while (1)
4305 {
4306 ptid_t event_ptid;
4307 struct target_waitstatus ws;
4308 int need_wait = 0;
4309
4310 update_thread_list ();
4311
4312 /* Go through all threads looking for threads that we need
4313 to tell the target to stop. */
4314 for (thread_info *t : all_non_exited_threads ())
4315 {
4316 if (t->executing)
4317 {
4318 /* If already stopping, don't request a stop again.
4319 We just haven't seen the notification yet. */
4320 if (!t->stop_requested)
4321 {
4322 if (debug_infrun)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: %s executing, "
4325 "need stop\n",
4326 target_pid_to_str (t->ptid).c_str ());
4327 target_stop (t->ptid);
4328 t->stop_requested = 1;
4329 }
4330 else
4331 {
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog,
4334 "infrun: %s executing, "
4335 "already stopping\n",
4336 target_pid_to_str (t->ptid).c_str ());
4337 }
4338
4339 if (t->stop_requested)
4340 need_wait = 1;
4341 }
4342 else
4343 {
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog,
4346 "infrun: %s not executing\n",
4347 target_pid_to_str (t->ptid).c_str ());
4348
4349 /* The thread may be not executing, but still be
4350 resumed with a pending status to process. */
4351 t->resumed = 0;
4352 }
4353 }
4354
4355 if (!need_wait)
4356 break;
4357
4358 /* If we find new threads on the second iteration, restart
4359 over. We want to see two iterations in a row with all
4360 threads stopped. */
4361 if (pass > 0)
4362 pass = -1;
4363
4364 event_ptid = wait_one (&ws);
4365 if (debug_infrun)
4366 {
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: stop_all_threads %s %s\n",
4369 target_waitstatus_to_string (&ws).c_str (),
4370 target_pid_to_str (event_ptid).c_str ());
4371 }
4372
4373 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4374 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4375 || ws.kind == TARGET_WAITKIND_EXITED
4376 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4377 {
4378 /* All resumed threads exited
4379 or one thread/process exited/signalled. */
4380 }
4381 else
4382 {
4383 thread_info *t = find_thread_ptid (event_ptid);
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
4392 /* This may be the first time we see the inferior report
4393 a stop. */
4394 inferior *inf = find_inferior_ptid (event_ptid);
4395 if (inf->needs_setup)
4396 {
4397 switch_to_thread_no_regs (t);
4398 setup_inferior (0);
4399 }
4400
4401 if (ws.kind == TARGET_WAITKIND_STOPPED
4402 && ws.value.sig == GDB_SIGNAL_0)
4403 {
4404 /* We caught the event that we intended to catch, so
4405 there's no event pending. */
4406 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4407 t->suspend.waitstatus_pending_p = 0;
4408
4409 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4410 {
4411 /* Add it back to the step-over queue. */
4412 if (debug_infrun)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: displaced-step of %s "
4416 "canceled: adding back to the "
4417 "step-over queue\n",
4418 target_pid_to_str (t->ptid).c_str ());
4419 }
4420 t->control.trap_expected = 0;
4421 thread_step_over_chain_enqueue (t);
4422 }
4423 }
4424 else
4425 {
4426 enum gdb_signal sig;
4427 struct regcache *regcache;
4428
4429 if (debug_infrun)
4430 {
4431 std::string statstr = target_waitstatus_to_string (&ws);
4432
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: target_wait %s, saving "
4435 "status for %d.%ld.%ld\n",
4436 statstr.c_str (),
4437 t->ptid.pid (),
4438 t->ptid.lwp (),
4439 t->ptid.tid ());
4440 }
4441
4442 /* Record for later. */
4443 save_waitstatus (t, &ws);
4444
4445 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4446 ? ws.value.sig : GDB_SIGNAL_0);
4447
4448 if (displaced_step_fixup (t, sig) < 0)
4449 {
4450 /* Add it back to the step-over queue. */
4451 t->control.trap_expected = 0;
4452 thread_step_over_chain_enqueue (t);
4453 }
4454
4455 regcache = get_thread_regcache (t);
4456 t->suspend.stop_pc = regcache_read_pc (regcache);
4457
4458 if (debug_infrun)
4459 {
4460 fprintf_unfiltered (gdb_stdlog,
4461 "infrun: saved stop_pc=%s for %s "
4462 "(currently_stepping=%d)\n",
4463 paddress (target_gdbarch (),
4464 t->suspend.stop_pc),
4465 target_pid_to_str (t->ptid).c_str (),
4466 currently_stepping (t));
4467 }
4468 }
4469 }
4470 }
4471 }
4472
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4475 }
4476
4477 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4478
4479 static int
4480 handle_no_resumed (struct execution_control_state *ecs)
4481 {
4482 if (target_can_async_p ())
4483 {
4484 struct ui *ui;
4485 int any_sync = 0;
4486
4487 ALL_UIS (ui)
4488 {
4489 if (ui->prompt_state == PROMPT_BLOCKED)
4490 {
4491 any_sync = 1;
4492 break;
4493 }
4494 }
4495 if (!any_sync)
4496 {
4497 /* There were no unwaited-for children left in the target, but,
4498 we're not synchronously waiting for events either. Just
4499 ignore. */
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: TARGET_WAITKIND_NO_RESUMED "
4504 "(ignoring: bg)\n");
4505 prepare_to_wait (ecs);
4506 return 1;
4507 }
4508 }
4509
4510 /* Otherwise, if we were running a synchronous execution command, we
4511 may need to cancel it and give the user back the terminal.
4512
4513 In non-stop mode, the target can't tell whether we've already
4514 consumed previous stop events, so it can end up sending us a
4515 no-resumed event like so:
4516
4517 #0 - thread 1 is left stopped
4518
4519 #1 - thread 2 is resumed and hits breakpoint
4520 -> TARGET_WAITKIND_STOPPED
4521
4522 #2 - thread 3 is resumed and exits
4523 this is the last resumed thread, so
4524 -> TARGET_WAITKIND_NO_RESUMED
4525
4526 #3 - gdb processes stop for thread 2 and decides to re-resume
4527 it.
4528
4529 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4530 thread 2 is now resumed, so the event should be ignored.
4531
4532 IOW, if the stop for thread 2 doesn't end a foreground command,
4533 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4534 event. But it could be that the event meant that thread 2 itself
4535 (or whatever other thread was the last resumed thread) exited.
4536
4537 To address this we refresh the thread list and check whether we
4538 have resumed threads _now_. In the example above, this removes
4539 thread 3 from the thread list. If thread 2 was re-resumed, we
4540 ignore this event. If we find no thread resumed, then we cancel
4541 the synchronous command show "no unwaited-for " to the user. */
4542 update_thread_list ();
4543
4544 for (thread_info *thread : all_non_exited_threads ())
4545 {
4546 if (thread->executing
4547 || thread->suspend.waitstatus_pending_p)
4548 {
4549 /* There were no unwaited-for children left in the target at
4550 some point, but there are now. Just ignore. */
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: TARGET_WAITKIND_NO_RESUMED "
4554 "(ignoring: found resumed)\n");
4555 prepare_to_wait (ecs);
4556 return 1;
4557 }
4558 }
4559
4560 /* Note however that we may find no resumed thread because the whole
4561 process exited meanwhile (thus updating the thread list results
4562 in an empty thread list). In this case we know we'll be getting
4563 a process exit event shortly. */
4564 for (inferior *inf : all_inferiors ())
4565 {
4566 if (inf->pid == 0)
4567 continue;
4568
4569 thread_info *thread = any_live_thread_of_inferior (inf);
4570 if (thread == NULL)
4571 {
4572 if (debug_infrun)
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: TARGET_WAITKIND_NO_RESUMED "
4575 "(expect process exit)\n");
4576 prepare_to_wait (ecs);
4577 return 1;
4578 }
4579 }
4580
4581 /* Go ahead and report the event. */
4582 return 0;
4583 }
4584
4585 /* Given an execution control state that has been freshly filled in by
4586 an event from the inferior, figure out what it means and take
4587 appropriate action.
4588
4589 The alternatives are:
4590
4591 1) stop_waiting and return; to really stop and return to the
4592 debugger.
4593
4594 2) keep_going and return; to wait for the next event (set
4595 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4596 once). */
4597
4598 static void
4599 handle_inferior_event (struct execution_control_state *ecs)
4600 {
4601 /* Make sure that all temporary struct value objects that were
4602 created during the handling of the event get deleted at the
4603 end. */
4604 scoped_value_mark free_values;
4605
4606 enum stop_kind stop_soon;
4607
4608 if (debug_infrun)
4609 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4610 target_waitstatus_to_string (&ecs->ws).c_str ());
4611
4612 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4613 {
4614 /* We had an event in the inferior, but we are not interested in
4615 handling it at this level. The lower layers have already
4616 done what needs to be done, if anything.
4617
4618 One of the possible circumstances for this is when the
4619 inferior produces output for the console. The inferior has
4620 not stopped, and we are ignoring the event. Another possible
4621 circumstance is any event which the lower level knows will be
4622 reported multiple times without an intervening resume. */
4623 prepare_to_wait (ecs);
4624 return;
4625 }
4626
4627 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4628 {
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4634 && handle_no_resumed (ecs))
4635 return;
4636
4637 /* Cache the last pid/waitstatus. */
4638 set_last_target_status (ecs->ptid, ecs->ws);
4639
4640 /* Always clear state belonging to the previous time we stopped. */
4641 stop_stack_dummy = STOP_NONE;
4642
4643 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4644 {
4645 /* No unwaited-for children left. IOW, all resumed children
4646 have exited. */
4647 stop_print_frame = 0;
4648 stop_waiting (ecs);
4649 return;
4650 }
4651
4652 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4653 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4654 {
4655 ecs->event_thread = find_thread_ptid (ecs->ptid);
4656 /* If it's a new thread, add it to the thread database. */
4657 if (ecs->event_thread == NULL)
4658 ecs->event_thread = add_thread (ecs->ptid);
4659
4660 /* Disable range stepping. If the next step request could use a
4661 range, this will be end up re-enabled then. */
4662 ecs->event_thread->control.may_range_step = 0;
4663 }
4664
4665 /* Dependent on valid ECS->EVENT_THREAD. */
4666 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4667
4668 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4669 reinit_frame_cache ();
4670
4671 breakpoint_retire_moribund ();
4672
4673 /* First, distinguish signals caused by the debugger from signals
4674 that have to do with the program's own actions. Note that
4675 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4676 on the operating system version. Here we detect when a SIGILL or
4677 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4678 something similar for SIGSEGV, since a SIGSEGV will be generated
4679 when we're trying to execute a breakpoint instruction on a
4680 non-executable stack. This happens for call dummy breakpoints
4681 for architectures like SPARC that place call dummies on the
4682 stack. */
4683 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4684 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4685 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4686 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4687 {
4688 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4689
4690 if (breakpoint_inserted_here_p (regcache->aspace (),
4691 regcache_read_pc (regcache)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: Treating signal as SIGTRAP\n");
4696 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4697 }
4698 }
4699
4700 /* Mark the non-executing threads accordingly. In all-stop, all
4701 threads of all processes are stopped when we get any event
4702 reported. In non-stop mode, only the event thread stops. */
4703 {
4704 ptid_t mark_ptid;
4705
4706 if (!target_is_non_stop_p ())
4707 mark_ptid = minus_one_ptid;
4708 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4709 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4710 {
4711 /* If we're handling a process exit in non-stop mode, even
4712 though threads haven't been deleted yet, one would think
4713 that there is nothing to do, as threads of the dead process
4714 will be soon deleted, and threads of any other process were
4715 left running. However, on some targets, threads survive a
4716 process exit event. E.g., for the "checkpoint" command,
4717 when the current checkpoint/fork exits, linux-fork.c
4718 automatically switches to another fork from within
4719 target_mourn_inferior, by associating the same
4720 inferior/thread to another fork. We haven't mourned yet at
4721 this point, but we must mark any threads left in the
4722 process as not-executing so that finish_thread_state marks
4723 them stopped (in the user's perspective) if/when we present
4724 the stop to the user. */
4725 mark_ptid = ptid_t (ecs->ptid.pid ());
4726 }
4727 else
4728 mark_ptid = ecs->ptid;
4729
4730 set_executing (mark_ptid, 0);
4731
4732 /* Likewise the resumed flag. */
4733 set_resumed (mark_ptid, 0);
4734 }
4735
4736 switch (ecs->ws.kind)
4737 {
4738 case TARGET_WAITKIND_LOADED:
4739 context_switch (ecs);
4740 /* Ignore gracefully during startup of the inferior, as it might
4741 be the shell which has just loaded some objects, otherwise
4742 add the symbols for the newly loaded objects. Also ignore at
4743 the beginning of an attach or remote session; we will query
4744 the full list of libraries once the connection is
4745 established. */
4746
4747 stop_soon = get_inferior_stop_soon (ecs);
4748 if (stop_soon == NO_STOP_QUIETLY)
4749 {
4750 struct regcache *regcache;
4751
4752 regcache = get_thread_regcache (ecs->event_thread);
4753
4754 handle_solib_event ();
4755
4756 ecs->event_thread->control.stop_bpstat
4757 = bpstat_stop_status (regcache->aspace (),
4758 ecs->event_thread->suspend.stop_pc,
4759 ecs->event_thread, &ecs->ws);
4760
4761 if (handle_stop_requested (ecs))
4762 return;
4763
4764 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4765 {
4766 /* A catchpoint triggered. */
4767 process_event_stop_test (ecs);
4768 return;
4769 }
4770
4771 /* If requested, stop when the dynamic linker notifies
4772 gdb of events. This allows the user to get control
4773 and place breakpoints in initializer routines for
4774 dynamically loaded objects (among other things). */
4775 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4776 if (stop_on_solib_events)
4777 {
4778 /* Make sure we print "Stopped due to solib-event" in
4779 normal_stop. */
4780 stop_print_frame = 1;
4781
4782 stop_waiting (ecs);
4783 return;
4784 }
4785 }
4786
4787 /* If we are skipping through a shell, or through shared library
4788 loading that we aren't interested in, resume the program. If
4789 we're running the program normally, also resume. */
4790 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4791 {
4792 /* Loading of shared libraries might have changed breakpoint
4793 addresses. Make sure new breakpoints are inserted. */
4794 if (stop_soon == NO_STOP_QUIETLY)
4795 insert_breakpoints ();
4796 resume (GDB_SIGNAL_0);
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
4801 /* But stop if we're attaching or setting up a remote
4802 connection. */
4803 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4804 || stop_soon == STOP_QUIETLY_REMOTE)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4808 stop_waiting (ecs);
4809 return;
4810 }
4811
4812 internal_error (__FILE__, __LINE__,
4813 _("unhandled stop_soon: %d"), (int) stop_soon);
4814
4815 case TARGET_WAITKIND_SPURIOUS:
4816 if (handle_stop_requested (ecs))
4817 return;
4818 context_switch (ecs);
4819 resume (GDB_SIGNAL_0);
4820 prepare_to_wait (ecs);
4821 return;
4822
4823 case TARGET_WAITKIND_THREAD_CREATED:
4824 if (handle_stop_requested (ecs))
4825 return;
4826 context_switch (ecs);
4827 if (!switch_back_to_stepped_thread (ecs))
4828 keep_going (ecs);
4829 return;
4830
4831 case TARGET_WAITKIND_EXITED:
4832 case TARGET_WAITKIND_SIGNALLED:
4833 inferior_ptid = ecs->ptid;
4834 set_current_inferior (find_inferior_ptid (ecs->ptid));
4835 set_current_program_space (current_inferior ()->pspace);
4836 handle_vfork_child_exec_or_exit (0);
4837 target_terminal::ours (); /* Must do this before mourn anyway. */
4838
4839 /* Clearing any previous state of convenience variables. */
4840 clear_exit_convenience_vars ();
4841
4842 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4843 {
4844 /* Record the exit code in the convenience variable $_exitcode, so
4845 that the user can inspect this again later. */
4846 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4847 (LONGEST) ecs->ws.value.integer);
4848
4849 /* Also record this in the inferior itself. */
4850 current_inferior ()->has_exit_code = 1;
4851 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4852
4853 /* Support the --return-child-result option. */
4854 return_child_result_value = ecs->ws.value.integer;
4855
4856 gdb::observers::exited.notify (ecs->ws.value.integer);
4857 }
4858 else
4859 {
4860 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4861
4862 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4863 {
4864 /* Set the value of the internal variable $_exitsignal,
4865 which holds the signal uncaught by the inferior. */
4866 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4867 gdbarch_gdb_signal_to_target (gdbarch,
4868 ecs->ws.value.sig));
4869 }
4870 else
4871 {
4872 /* We don't have access to the target's method used for
4873 converting between signal numbers (GDB's internal
4874 representation <-> target's representation).
4875 Therefore, we cannot do a good job at displaying this
4876 information to the user. It's better to just warn
4877 her about it (if infrun debugging is enabled), and
4878 give up. */
4879 if (debug_infrun)
4880 fprintf_filtered (gdb_stdlog, _("\
4881 Cannot fill $_exitsignal with the correct signal number.\n"));
4882 }
4883
4884 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4885 }
4886
4887 gdb_flush (gdb_stdout);
4888 target_mourn_inferior (inferior_ptid);
4889 stop_print_frame = 0;
4890 stop_waiting (ecs);
4891 return;
4892
4893 /* The following are the only cases in which we keep going;
4894 the above cases end in a continue or goto. */
4895 case TARGET_WAITKIND_FORKED:
4896 case TARGET_WAITKIND_VFORKED:
4897 /* Check whether the inferior is displaced stepping. */
4898 {
4899 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4900 struct gdbarch *gdbarch = regcache->arch ();
4901
4902 /* If checking displaced stepping is supported, and thread
4903 ecs->ptid is displaced stepping. */
4904 if (displaced_step_in_progress_thread (ecs->event_thread))
4905 {
4906 struct inferior *parent_inf
4907 = find_inferior_ptid (ecs->ptid);
4908 struct regcache *child_regcache;
4909 CORE_ADDR parent_pc;
4910
4911 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4912 indicating that the displaced stepping of syscall instruction
4913 has been done. Perform cleanup for parent process here. Note
4914 that this operation also cleans up the child process for vfork,
4915 because their pages are shared. */
4916 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4917 /* Start a new step-over in another thread if there's one
4918 that needs it. */
4919 start_step_over ();
4920
4921 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4922 {
4923 struct displaced_step_inferior_state *displaced
4924 = get_displaced_stepping_state (parent_inf);
4925
4926 /* Restore scratch pad for child process. */
4927 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4928 }
4929
4930 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4931 the child's PC is also within the scratchpad. Set the child's PC
4932 to the parent's PC value, which has already been fixed up.
4933 FIXME: we use the parent's aspace here, although we're touching
4934 the child, because the child hasn't been added to the inferior
4935 list yet at this point. */
4936
4937 child_regcache
4938 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4939 gdbarch,
4940 parent_inf->aspace);
4941 /* Read PC value of parent process. */
4942 parent_pc = regcache_read_pc (regcache);
4943
4944 if (debug_displaced)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "displaced: write child pc from %s to %s\n",
4947 paddress (gdbarch,
4948 regcache_read_pc (child_regcache)),
4949 paddress (gdbarch, parent_pc));
4950
4951 regcache_write_pc (child_regcache, parent_pc);
4952 }
4953 }
4954
4955 context_switch (ecs);
4956
4957 /* Immediately detach breakpoints from the child before there's
4958 any chance of letting the user delete breakpoints from the
4959 breakpoint lists. If we don't do this early, it's easy to
4960 leave left over traps in the child, vis: "break foo; catch
4961 fork; c; <fork>; del; c; <child calls foo>". We only follow
4962 the fork on the last `continue', and by that time the
4963 breakpoint at "foo" is long gone from the breakpoint table.
4964 If we vforked, then we don't need to unpatch here, since both
4965 parent and child are sharing the same memory pages; we'll
4966 need to unpatch at follow/detach time instead to be certain
4967 that new breakpoints added between catchpoint hit time and
4968 vfork follow are detached. */
4969 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4970 {
4971 /* This won't actually modify the breakpoint list, but will
4972 physically remove the breakpoints from the child. */
4973 detach_breakpoints (ecs->ws.value.related_pid);
4974 }
4975
4976 delete_just_stopped_threads_single_step_breakpoints ();
4977
4978 /* In case the event is caught by a catchpoint, remember that
4979 the event is to be followed at the next resume of the thread,
4980 and not immediately. */
4981 ecs->event_thread->pending_follow = ecs->ws;
4982
4983 ecs->event_thread->suspend.stop_pc
4984 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
4985
4986 ecs->event_thread->control.stop_bpstat
4987 = bpstat_stop_status (get_current_regcache ()->aspace (),
4988 ecs->event_thread->suspend.stop_pc,
4989 ecs->event_thread, &ecs->ws);
4990
4991 if (handle_stop_requested (ecs))
4992 return;
4993
4994 /* If no catchpoint triggered for this, then keep going. Note
4995 that we're interested in knowing the bpstat actually causes a
4996 stop, not just if it may explain the signal. Software
4997 watchpoints, for example, always appear in the bpstat. */
4998 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4999 {
5000 int should_resume;
5001 int follow_child
5002 = (follow_fork_mode_string == follow_fork_mode_child);
5003
5004 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5005
5006 should_resume = follow_fork ();
5007
5008 thread_info *parent = ecs->event_thread;
5009 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5010
5011 /* At this point, the parent is marked running, and the
5012 child is marked stopped. */
5013
5014 /* If not resuming the parent, mark it stopped. */
5015 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5016 parent->set_running (false);
5017
5018 /* If resuming the child, mark it running. */
5019 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5020 child->set_running (true);
5021
5022 /* In non-stop mode, also resume the other branch. */
5023 if (!detach_fork && (non_stop
5024 || (sched_multi && target_is_non_stop_p ())))
5025 {
5026 if (follow_child)
5027 switch_to_thread (parent);
5028 else
5029 switch_to_thread (child);
5030
5031 ecs->event_thread = inferior_thread ();
5032 ecs->ptid = inferior_ptid;
5033 keep_going (ecs);
5034 }
5035
5036 if (follow_child)
5037 switch_to_thread (child);
5038 else
5039 switch_to_thread (parent);
5040
5041 ecs->event_thread = inferior_thread ();
5042 ecs->ptid = inferior_ptid;
5043
5044 if (should_resume)
5045 keep_going (ecs);
5046 else
5047 stop_waiting (ecs);
5048 return;
5049 }
5050 process_event_stop_test (ecs);
5051 return;
5052
5053 case TARGET_WAITKIND_VFORK_DONE:
5054 /* Done with the shared memory region. Re-insert breakpoints in
5055 the parent, and keep going. */
5056
5057 context_switch (ecs);
5058
5059 current_inferior ()->waiting_for_vfork_done = 0;
5060 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5061
5062 if (handle_stop_requested (ecs))
5063 return;
5064
5065 /* This also takes care of reinserting breakpoints in the
5066 previously locked inferior. */
5067 keep_going (ecs);
5068 return;
5069
5070 case TARGET_WAITKIND_EXECD:
5071
5072 /* Note we can't read registers yet (the stop_pc), because we
5073 don't yet know the inferior's post-exec architecture.
5074 'stop_pc' is explicitly read below instead. */
5075 switch_to_thread_no_regs (ecs->event_thread);
5076
5077 /* Do whatever is necessary to the parent branch of the vfork. */
5078 handle_vfork_child_exec_or_exit (1);
5079
5080 /* This causes the eventpoints and symbol table to be reset.
5081 Must do this now, before trying to determine whether to
5082 stop. */
5083 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5084
5085 /* In follow_exec we may have deleted the original thread and
5086 created a new one. Make sure that the event thread is the
5087 execd thread for that case (this is a nop otherwise). */
5088 ecs->event_thread = inferior_thread ();
5089
5090 ecs->event_thread->suspend.stop_pc
5091 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5092
5093 ecs->event_thread->control.stop_bpstat
5094 = bpstat_stop_status (get_current_regcache ()->aspace (),
5095 ecs->event_thread->suspend.stop_pc,
5096 ecs->event_thread, &ecs->ws);
5097
5098 /* Note that this may be referenced from inside
5099 bpstat_stop_status above, through inferior_has_execd. */
5100 xfree (ecs->ws.value.execd_pathname);
5101 ecs->ws.value.execd_pathname = NULL;
5102
5103 if (handle_stop_requested (ecs))
5104 return;
5105
5106 /* If no catchpoint triggered for this, then keep going. */
5107 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5108 {
5109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5110 keep_going (ecs);
5111 return;
5112 }
5113 process_event_stop_test (ecs);
5114 return;
5115
5116 /* Be careful not to try to gather much state about a thread
5117 that's in a syscall. It's frequently a losing proposition. */
5118 case TARGET_WAITKIND_SYSCALL_ENTRY:
5119 /* Getting the current syscall number. */
5120 if (handle_syscall_event (ecs) == 0)
5121 process_event_stop_test (ecs);
5122 return;
5123
5124 /* Before examining the threads further, step this thread to
5125 get it entirely out of the syscall. (We get notice of the
5126 event when the thread is just on the verge of exiting a
5127 syscall. Stepping one instruction seems to get it back
5128 into user code.) */
5129 case TARGET_WAITKIND_SYSCALL_RETURN:
5130 if (handle_syscall_event (ecs) == 0)
5131 process_event_stop_test (ecs);
5132 return;
5133
5134 case TARGET_WAITKIND_STOPPED:
5135 handle_signal_stop (ecs);
5136 return;
5137
5138 case TARGET_WAITKIND_NO_HISTORY:
5139 /* Reverse execution: target ran out of history info. */
5140
5141 /* Switch to the stopped thread. */
5142 context_switch (ecs);
5143 if (debug_infrun)
5144 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5145
5146 delete_just_stopped_threads_single_step_breakpoints ();
5147 ecs->event_thread->suspend.stop_pc
5148 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5149
5150 if (handle_stop_requested (ecs))
5151 return;
5152
5153 gdb::observers::no_history.notify ();
5154 stop_waiting (ecs);
5155 return;
5156 }
5157 }
5158
5159 /* Restart threads back to what they were trying to do back when we
5160 paused them for an in-line step-over. The EVENT_THREAD thread is
5161 ignored. */
5162
5163 static void
5164 restart_threads (struct thread_info *event_thread)
5165 {
5166 /* In case the instruction just stepped spawned a new thread. */
5167 update_thread_list ();
5168
5169 for (thread_info *tp : all_non_exited_threads ())
5170 {
5171 if (tp == event_thread)
5172 {
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: restart threads: "
5176 "[%s] is event thread\n",
5177 target_pid_to_str (tp->ptid).c_str ());
5178 continue;
5179 }
5180
5181 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5182 {
5183 if (debug_infrun)
5184 fprintf_unfiltered (gdb_stdlog,
5185 "infrun: restart threads: "
5186 "[%s] not meant to be running\n",
5187 target_pid_to_str (tp->ptid).c_str ());
5188 continue;
5189 }
5190
5191 if (tp->resumed)
5192 {
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "infrun: restart threads: [%s] resumed\n",
5196 target_pid_to_str (tp->ptid).c_str ());
5197 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5198 continue;
5199 }
5200
5201 if (thread_is_in_step_over_chain (tp))
5202 {
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: restart threads: "
5206 "[%s] needs step-over\n",
5207 target_pid_to_str (tp->ptid).c_str ());
5208 gdb_assert (!tp->resumed);
5209 continue;
5210 }
5211
5212
5213 if (tp->suspend.waitstatus_pending_p)
5214 {
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: restart threads: "
5218 "[%s] has pending status\n",
5219 target_pid_to_str (tp->ptid).c_str ());
5220 tp->resumed = 1;
5221 continue;
5222 }
5223
5224 gdb_assert (!tp->stop_requested);
5225
5226 /* If some thread needs to start a step-over at this point, it
5227 should still be in the step-over queue, and thus skipped
5228 above. */
5229 if (thread_still_needs_step_over (tp))
5230 {
5231 internal_error (__FILE__, __LINE__,
5232 "thread [%s] needs a step-over, but not in "
5233 "step-over queue\n",
5234 target_pid_to_str (tp->ptid).c_str ());
5235 }
5236
5237 if (currently_stepping (tp))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: [%s] was stepping\n",
5242 target_pid_to_str (tp->ptid).c_str ());
5243 keep_going_stepped_thread (tp);
5244 }
5245 else
5246 {
5247 struct execution_control_state ecss;
5248 struct execution_control_state *ecs = &ecss;
5249
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "infrun: restart threads: [%s] continuing\n",
5253 target_pid_to_str (tp->ptid).c_str ());
5254 reset_ecs (ecs, tp);
5255 switch_to_thread (tp);
5256 keep_going_pass_signal (ecs);
5257 }
5258 }
5259 }
5260
5261 /* Callback for iterate_over_threads. Find a resumed thread that has
5262 a pending waitstatus. */
5263
5264 static int
5265 resumed_thread_with_pending_status (struct thread_info *tp,
5266 void *arg)
5267 {
5268 return (tp->resumed
5269 && tp->suspend.waitstatus_pending_p);
5270 }
5271
5272 /* Called when we get an event that may finish an in-line or
5273 out-of-line (displaced stepping) step-over started previously.
5274 Return true if the event is processed and we should go back to the
5275 event loop; false if the caller should continue processing the
5276 event. */
5277
5278 static int
5279 finish_step_over (struct execution_control_state *ecs)
5280 {
5281 int had_step_over_info;
5282
5283 displaced_step_fixup (ecs->event_thread,
5284 ecs->event_thread->suspend.stop_signal);
5285
5286 had_step_over_info = step_over_info_valid_p ();
5287
5288 if (had_step_over_info)
5289 {
5290 /* If we're stepping over a breakpoint with all threads locked,
5291 then only the thread that was stepped should be reporting
5292 back an event. */
5293 gdb_assert (ecs->event_thread->control.trap_expected);
5294
5295 clear_step_over_info ();
5296 }
5297
5298 if (!target_is_non_stop_p ())
5299 return 0;
5300
5301 /* Start a new step-over in another thread if there's one that
5302 needs it. */
5303 start_step_over ();
5304
5305 /* If we were stepping over a breakpoint before, and haven't started
5306 a new in-line step-over sequence, then restart all other threads
5307 (except the event thread). We can't do this in all-stop, as then
5308 e.g., we wouldn't be able to issue any other remote packet until
5309 these other threads stop. */
5310 if (had_step_over_info && !step_over_info_valid_p ())
5311 {
5312 struct thread_info *pending;
5313
5314 /* If we only have threads with pending statuses, the restart
5315 below won't restart any thread and so nothing re-inserts the
5316 breakpoint we just stepped over. But we need it inserted
5317 when we later process the pending events, otherwise if
5318 another thread has a pending event for this breakpoint too,
5319 we'd discard its event (because the breakpoint that
5320 originally caused the event was no longer inserted). */
5321 context_switch (ecs);
5322 insert_breakpoints ();
5323
5324 restart_threads (ecs->event_thread);
5325
5326 /* If we have events pending, go through handle_inferior_event
5327 again, picking up a pending event at random. This avoids
5328 thread starvation. */
5329
5330 /* But not if we just stepped over a watchpoint in order to let
5331 the instruction execute so we can evaluate its expression.
5332 The set of watchpoints that triggered is recorded in the
5333 breakpoint objects themselves (see bp->watchpoint_triggered).
5334 If we processed another event first, that other event could
5335 clobber this info. */
5336 if (ecs->event_thread->stepping_over_watchpoint)
5337 return 0;
5338
5339 pending = iterate_over_threads (resumed_thread_with_pending_status,
5340 NULL);
5341 if (pending != NULL)
5342 {
5343 struct thread_info *tp = ecs->event_thread;
5344 struct regcache *regcache;
5345
5346 if (debug_infrun)
5347 {
5348 fprintf_unfiltered (gdb_stdlog,
5349 "infrun: found resumed threads with "
5350 "pending events, saving status\n");
5351 }
5352
5353 gdb_assert (pending != tp);
5354
5355 /* Record the event thread's event for later. */
5356 save_waitstatus (tp, &ecs->ws);
5357 /* This was cleared early, by handle_inferior_event. Set it
5358 so this pending event is considered by
5359 do_target_wait. */
5360 tp->resumed = 1;
5361
5362 gdb_assert (!tp->executing);
5363
5364 regcache = get_thread_regcache (tp);
5365 tp->suspend.stop_pc = regcache_read_pc (regcache);
5366
5367 if (debug_infrun)
5368 {
5369 fprintf_unfiltered (gdb_stdlog,
5370 "infrun: saved stop_pc=%s for %s "
5371 "(currently_stepping=%d)\n",
5372 paddress (target_gdbarch (),
5373 tp->suspend.stop_pc),
5374 target_pid_to_str (tp->ptid).c_str (),
5375 currently_stepping (tp));
5376 }
5377
5378 /* This in-line step-over finished; clear this so we won't
5379 start a new one. This is what handle_signal_stop would
5380 do, if we returned false. */
5381 tp->stepping_over_breakpoint = 0;
5382
5383 /* Wake up the event loop again. */
5384 mark_async_event_handler (infrun_async_inferior_event_token);
5385
5386 prepare_to_wait (ecs);
5387 return 1;
5388 }
5389 }
5390
5391 return 0;
5392 }
5393
5394 /* Come here when the program has stopped with a signal. */
5395
5396 static void
5397 handle_signal_stop (struct execution_control_state *ecs)
5398 {
5399 struct frame_info *frame;
5400 struct gdbarch *gdbarch;
5401 int stopped_by_watchpoint;
5402 enum stop_kind stop_soon;
5403 int random_signal;
5404
5405 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5406
5407 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5408
5409 /* Do we need to clean up the state of a thread that has
5410 completed a displaced single-step? (Doing so usually affects
5411 the PC, so do it here, before we set stop_pc.) */
5412 if (finish_step_over (ecs))
5413 return;
5414
5415 /* If we either finished a single-step or hit a breakpoint, but
5416 the user wanted this thread to be stopped, pretend we got a
5417 SIG0 (generic unsignaled stop). */
5418 if (ecs->event_thread->stop_requested
5419 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5420 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5421
5422 ecs->event_thread->suspend.stop_pc
5423 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5424
5425 if (debug_infrun)
5426 {
5427 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5428 struct gdbarch *reg_gdbarch = regcache->arch ();
5429 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5430
5431 inferior_ptid = ecs->ptid;
5432
5433 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5434 paddress (reg_gdbarch,
5435 ecs->event_thread->suspend.stop_pc));
5436 if (target_stopped_by_watchpoint ())
5437 {
5438 CORE_ADDR addr;
5439
5440 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5441
5442 if (target_stopped_data_address (current_top_target (), &addr))
5443 fprintf_unfiltered (gdb_stdlog,
5444 "infrun: stopped data address = %s\n",
5445 paddress (reg_gdbarch, addr));
5446 else
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: (no data address available)\n");
5449 }
5450 }
5451
5452 /* This is originated from start_remote(), start_inferior() and
5453 shared libraries hook functions. */
5454 stop_soon = get_inferior_stop_soon (ecs);
5455 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5456 {
5457 context_switch (ecs);
5458 if (debug_infrun)
5459 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5460 stop_print_frame = 1;
5461 stop_waiting (ecs);
5462 return;
5463 }
5464
5465 /* This originates from attach_command(). We need to overwrite
5466 the stop_signal here, because some kernels don't ignore a
5467 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5468 See more comments in inferior.h. On the other hand, if we
5469 get a non-SIGSTOP, report it to the user - assume the backend
5470 will handle the SIGSTOP if it should show up later.
5471
5472 Also consider that the attach is complete when we see a
5473 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5474 target extended-remote report it instead of a SIGSTOP
5475 (e.g. gdbserver). We already rely on SIGTRAP being our
5476 signal, so this is no exception.
5477
5478 Also consider that the attach is complete when we see a
5479 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5480 the target to stop all threads of the inferior, in case the
5481 low level attach operation doesn't stop them implicitly. If
5482 they weren't stopped implicitly, then the stub will report a
5483 GDB_SIGNAL_0, meaning: stopped for no particular reason
5484 other than GDB's request. */
5485 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5486 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5487 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5488 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5489 {
5490 stop_print_frame = 1;
5491 stop_waiting (ecs);
5492 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5493 return;
5494 }
5495
5496 /* See if something interesting happened to the non-current thread. If
5497 so, then switch to that thread. */
5498 if (ecs->ptid != inferior_ptid)
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5502
5503 context_switch (ecs);
5504
5505 if (deprecated_context_hook)
5506 deprecated_context_hook (ecs->event_thread->global_num);
5507 }
5508
5509 /* At this point, get hold of the now-current thread's frame. */
5510 frame = get_current_frame ();
5511 gdbarch = get_frame_arch (frame);
5512
5513 /* Pull the single step breakpoints out of the target. */
5514 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5515 {
5516 struct regcache *regcache;
5517 CORE_ADDR pc;
5518
5519 regcache = get_thread_regcache (ecs->event_thread);
5520 const address_space *aspace = regcache->aspace ();
5521
5522 pc = regcache_read_pc (regcache);
5523
5524 /* However, before doing so, if this single-step breakpoint was
5525 actually for another thread, set this thread up for moving
5526 past it. */
5527 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5528 aspace, pc))
5529 {
5530 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5531 {
5532 if (debug_infrun)
5533 {
5534 fprintf_unfiltered (gdb_stdlog,
5535 "infrun: [%s] hit another thread's "
5536 "single-step breakpoint\n",
5537 target_pid_to_str (ecs->ptid).c_str ());
5538 }
5539 ecs->hit_singlestep_breakpoint = 1;
5540 }
5541 }
5542 else
5543 {
5544 if (debug_infrun)
5545 {
5546 fprintf_unfiltered (gdb_stdlog,
5547 "infrun: [%s] hit its "
5548 "single-step breakpoint\n",
5549 target_pid_to_str (ecs->ptid).c_str ());
5550 }
5551 }
5552 }
5553 delete_just_stopped_threads_single_step_breakpoints ();
5554
5555 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5556 && ecs->event_thread->control.trap_expected
5557 && ecs->event_thread->stepping_over_watchpoint)
5558 stopped_by_watchpoint = 0;
5559 else
5560 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5561
5562 /* If necessary, step over this watchpoint. We'll be back to display
5563 it in a moment. */
5564 if (stopped_by_watchpoint
5565 && (target_have_steppable_watchpoint
5566 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5567 {
5568 /* At this point, we are stopped at an instruction which has
5569 attempted to write to a piece of memory under control of
5570 a watchpoint. The instruction hasn't actually executed
5571 yet. If we were to evaluate the watchpoint expression
5572 now, we would get the old value, and therefore no change
5573 would seem to have occurred.
5574
5575 In order to make watchpoints work `right', we really need
5576 to complete the memory write, and then evaluate the
5577 watchpoint expression. We do this by single-stepping the
5578 target.
5579
5580 It may not be necessary to disable the watchpoint to step over
5581 it. For example, the PA can (with some kernel cooperation)
5582 single step over a watchpoint without disabling the watchpoint.
5583
5584 It is far more common to need to disable a watchpoint to step
5585 the inferior over it. If we have non-steppable watchpoints,
5586 we must disable the current watchpoint; it's simplest to
5587 disable all watchpoints.
5588
5589 Any breakpoint at PC must also be stepped over -- if there's
5590 one, it will have already triggered before the watchpoint
5591 triggered, and we either already reported it to the user, or
5592 it didn't cause a stop and we called keep_going. In either
5593 case, if there was a breakpoint at PC, we must be trying to
5594 step past it. */
5595 ecs->event_thread->stepping_over_watchpoint = 1;
5596 keep_going (ecs);
5597 return;
5598 }
5599
5600 ecs->event_thread->stepping_over_breakpoint = 0;
5601 ecs->event_thread->stepping_over_watchpoint = 0;
5602 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5603 ecs->event_thread->control.stop_step = 0;
5604 stop_print_frame = 1;
5605 stopped_by_random_signal = 0;
5606 bpstat stop_chain = NULL;
5607
5608 /* Hide inlined functions starting here, unless we just performed stepi or
5609 nexti. After stepi and nexti, always show the innermost frame (not any
5610 inline function call sites). */
5611 if (ecs->event_thread->control.step_range_end != 1)
5612 {
5613 const address_space *aspace
5614 = get_thread_regcache (ecs->event_thread)->aspace ();
5615
5616 /* skip_inline_frames is expensive, so we avoid it if we can
5617 determine that the address is one where functions cannot have
5618 been inlined. This improves performance with inferiors that
5619 load a lot of shared libraries, because the solib event
5620 breakpoint is defined as the address of a function (i.e. not
5621 inline). Note that we have to check the previous PC as well
5622 as the current one to catch cases when we have just
5623 single-stepped off a breakpoint prior to reinstating it.
5624 Note that we're assuming that the code we single-step to is
5625 not inline, but that's not definitive: there's nothing
5626 preventing the event breakpoint function from containing
5627 inlined code, and the single-step ending up there. If the
5628 user had set a breakpoint on that inlined code, the missing
5629 skip_inline_frames call would break things. Fortunately
5630 that's an extremely unlikely scenario. */
5631 if (!pc_at_non_inline_function (aspace,
5632 ecs->event_thread->suspend.stop_pc,
5633 &ecs->ws)
5634 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5635 && ecs->event_thread->control.trap_expected
5636 && pc_at_non_inline_function (aspace,
5637 ecs->event_thread->prev_pc,
5638 &ecs->ws)))
5639 {
5640 stop_chain = build_bpstat_chain (aspace,
5641 ecs->event_thread->suspend.stop_pc,
5642 &ecs->ws);
5643 skip_inline_frames (ecs->event_thread, stop_chain);
5644
5645 /* Re-fetch current thread's frame in case that invalidated
5646 the frame cache. */
5647 frame = get_current_frame ();
5648 gdbarch = get_frame_arch (frame);
5649 }
5650 }
5651
5652 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5653 && ecs->event_thread->control.trap_expected
5654 && gdbarch_single_step_through_delay_p (gdbarch)
5655 && currently_stepping (ecs->event_thread))
5656 {
5657 /* We're trying to step off a breakpoint. Turns out that we're
5658 also on an instruction that needs to be stepped multiple
5659 times before it's been fully executing. E.g., architectures
5660 with a delay slot. It needs to be stepped twice, once for
5661 the instruction and once for the delay slot. */
5662 int step_through_delay
5663 = gdbarch_single_step_through_delay (gdbarch, frame);
5664
5665 if (debug_infrun && step_through_delay)
5666 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5667 if (ecs->event_thread->control.step_range_end == 0
5668 && step_through_delay)
5669 {
5670 /* The user issued a continue when stopped at a breakpoint.
5671 Set up for another trap and get out of here. */
5672 ecs->event_thread->stepping_over_breakpoint = 1;
5673 keep_going (ecs);
5674 return;
5675 }
5676 else if (step_through_delay)
5677 {
5678 /* The user issued a step when stopped at a breakpoint.
5679 Maybe we should stop, maybe we should not - the delay
5680 slot *might* correspond to a line of source. In any
5681 case, don't decide that here, just set
5682 ecs->stepping_over_breakpoint, making sure we
5683 single-step again before breakpoints are re-inserted. */
5684 ecs->event_thread->stepping_over_breakpoint = 1;
5685 }
5686 }
5687
5688 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5689 handles this event. */
5690 ecs->event_thread->control.stop_bpstat
5691 = bpstat_stop_status (get_current_regcache ()->aspace (),
5692 ecs->event_thread->suspend.stop_pc,
5693 ecs->event_thread, &ecs->ws, stop_chain);
5694
5695 /* Following in case break condition called a
5696 function. */
5697 stop_print_frame = 1;
5698
5699 /* This is where we handle "moribund" watchpoints. Unlike
5700 software breakpoints traps, hardware watchpoint traps are
5701 always distinguishable from random traps. If no high-level
5702 watchpoint is associated with the reported stop data address
5703 anymore, then the bpstat does not explain the signal ---
5704 simply make sure to ignore it if `stopped_by_watchpoint' is
5705 set. */
5706
5707 if (debug_infrun
5708 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5709 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5710 GDB_SIGNAL_TRAP)
5711 && stopped_by_watchpoint)
5712 fprintf_unfiltered (gdb_stdlog,
5713 "infrun: no user watchpoint explains "
5714 "watchpoint SIGTRAP, ignoring\n");
5715
5716 /* NOTE: cagney/2003-03-29: These checks for a random signal
5717 at one stage in the past included checks for an inferior
5718 function call's call dummy's return breakpoint. The original
5719 comment, that went with the test, read:
5720
5721 ``End of a stack dummy. Some systems (e.g. Sony news) give
5722 another signal besides SIGTRAP, so check here as well as
5723 above.''
5724
5725 If someone ever tries to get call dummys on a
5726 non-executable stack to work (where the target would stop
5727 with something like a SIGSEGV), then those tests might need
5728 to be re-instated. Given, however, that the tests were only
5729 enabled when momentary breakpoints were not being used, I
5730 suspect that it won't be the case.
5731
5732 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5733 be necessary for call dummies on a non-executable stack on
5734 SPARC. */
5735
5736 /* See if the breakpoints module can explain the signal. */
5737 random_signal
5738 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5739 ecs->event_thread->suspend.stop_signal);
5740
5741 /* Maybe this was a trap for a software breakpoint that has since
5742 been removed. */
5743 if (random_signal && target_stopped_by_sw_breakpoint ())
5744 {
5745 if (program_breakpoint_here_p (gdbarch,
5746 ecs->event_thread->suspend.stop_pc))
5747 {
5748 struct regcache *regcache;
5749 int decr_pc;
5750
5751 /* Re-adjust PC to what the program would see if GDB was not
5752 debugging it. */
5753 regcache = get_thread_regcache (ecs->event_thread);
5754 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5755 if (decr_pc != 0)
5756 {
5757 gdb::optional<scoped_restore_tmpl<int>>
5758 restore_operation_disable;
5759
5760 if (record_full_is_used ())
5761 restore_operation_disable.emplace
5762 (record_full_gdb_operation_disable_set ());
5763
5764 regcache_write_pc (regcache,
5765 ecs->event_thread->suspend.stop_pc + decr_pc);
5766 }
5767 }
5768 else
5769 {
5770 /* A delayed software breakpoint event. Ignore the trap. */
5771 if (debug_infrun)
5772 fprintf_unfiltered (gdb_stdlog,
5773 "infrun: delayed software breakpoint "
5774 "trap, ignoring\n");
5775 random_signal = 0;
5776 }
5777 }
5778
5779 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5780 has since been removed. */
5781 if (random_signal && target_stopped_by_hw_breakpoint ())
5782 {
5783 /* A delayed hardware breakpoint event. Ignore the trap. */
5784 if (debug_infrun)
5785 fprintf_unfiltered (gdb_stdlog,
5786 "infrun: delayed hardware breakpoint/watchpoint "
5787 "trap, ignoring\n");
5788 random_signal = 0;
5789 }
5790
5791 /* If not, perhaps stepping/nexting can. */
5792 if (random_signal)
5793 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5794 && currently_stepping (ecs->event_thread));
5795
5796 /* Perhaps the thread hit a single-step breakpoint of _another_
5797 thread. Single-step breakpoints are transparent to the
5798 breakpoints module. */
5799 if (random_signal)
5800 random_signal = !ecs->hit_singlestep_breakpoint;
5801
5802 /* No? Perhaps we got a moribund watchpoint. */
5803 if (random_signal)
5804 random_signal = !stopped_by_watchpoint;
5805
5806 /* Always stop if the user explicitly requested this thread to
5807 remain stopped. */
5808 if (ecs->event_thread->stop_requested)
5809 {
5810 random_signal = 1;
5811 if (debug_infrun)
5812 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5813 }
5814
5815 /* For the program's own signals, act according to
5816 the signal handling tables. */
5817
5818 if (random_signal)
5819 {
5820 /* Signal not for debugging purposes. */
5821 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5822 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5823
5824 if (debug_infrun)
5825 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5826 gdb_signal_to_symbol_string (stop_signal));
5827
5828 stopped_by_random_signal = 1;
5829
5830 /* Always stop on signals if we're either just gaining control
5831 of the program, or the user explicitly requested this thread
5832 to remain stopped. */
5833 if (stop_soon != NO_STOP_QUIETLY
5834 || ecs->event_thread->stop_requested
5835 || (!inf->detaching
5836 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5837 {
5838 stop_waiting (ecs);
5839 return;
5840 }
5841
5842 /* Notify observers the signal has "handle print" set. Note we
5843 returned early above if stopping; normal_stop handles the
5844 printing in that case. */
5845 if (signal_print[ecs->event_thread->suspend.stop_signal])
5846 {
5847 /* The signal table tells us to print about this signal. */
5848 target_terminal::ours_for_output ();
5849 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5850 target_terminal::inferior ();
5851 }
5852
5853 /* Clear the signal if it should not be passed. */
5854 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5856
5857 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5858 && ecs->event_thread->control.trap_expected
5859 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5860 {
5861 /* We were just starting a new sequence, attempting to
5862 single-step off of a breakpoint and expecting a SIGTRAP.
5863 Instead this signal arrives. This signal will take us out
5864 of the stepping range so GDB needs to remember to, when
5865 the signal handler returns, resume stepping off that
5866 breakpoint. */
5867 /* To simplify things, "continue" is forced to use the same
5868 code paths as single-step - set a breakpoint at the
5869 signal return address and then, once hit, step off that
5870 breakpoint. */
5871 if (debug_infrun)
5872 fprintf_unfiltered (gdb_stdlog,
5873 "infrun: signal arrived while stepping over "
5874 "breakpoint\n");
5875
5876 insert_hp_step_resume_breakpoint_at_frame (frame);
5877 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5878 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5879 ecs->event_thread->control.trap_expected = 0;
5880
5881 /* If we were nexting/stepping some other thread, switch to
5882 it, so that we don't continue it, losing control. */
5883 if (!switch_back_to_stepped_thread (ecs))
5884 keep_going (ecs);
5885 return;
5886 }
5887
5888 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5889 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5890 ecs->event_thread)
5891 || ecs->event_thread->control.step_range_end == 1)
5892 && frame_id_eq (get_stack_frame_id (frame),
5893 ecs->event_thread->control.step_stack_frame_id)
5894 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5895 {
5896 /* The inferior is about to take a signal that will take it
5897 out of the single step range. Set a breakpoint at the
5898 current PC (which is presumably where the signal handler
5899 will eventually return) and then allow the inferior to
5900 run free.
5901
5902 Note that this is only needed for a signal delivered
5903 while in the single-step range. Nested signals aren't a
5904 problem as they eventually all return. */
5905 if (debug_infrun)
5906 fprintf_unfiltered (gdb_stdlog,
5907 "infrun: signal may take us out of "
5908 "single-step range\n");
5909
5910 clear_step_over_info ();
5911 insert_hp_step_resume_breakpoint_at_frame (frame);
5912 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5913 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5914 ecs->event_thread->control.trap_expected = 0;
5915 keep_going (ecs);
5916 return;
5917 }
5918
5919 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5920 when either there's a nested signal, or when there's a
5921 pending signal enabled just as the signal handler returns
5922 (leaving the inferior at the step-resume-breakpoint without
5923 actually executing it). Either way continue until the
5924 breakpoint is really hit. */
5925
5926 if (!switch_back_to_stepped_thread (ecs))
5927 {
5928 if (debug_infrun)
5929 fprintf_unfiltered (gdb_stdlog,
5930 "infrun: random signal, keep going\n");
5931
5932 keep_going (ecs);
5933 }
5934 return;
5935 }
5936
5937 process_event_stop_test (ecs);
5938 }
5939
5940 /* Come here when we've got some debug event / signal we can explain
5941 (IOW, not a random signal), and test whether it should cause a
5942 stop, or whether we should resume the inferior (transparently).
5943 E.g., could be a breakpoint whose condition evaluates false; we
5944 could be still stepping within the line; etc. */
5945
5946 static void
5947 process_event_stop_test (struct execution_control_state *ecs)
5948 {
5949 struct symtab_and_line stop_pc_sal;
5950 struct frame_info *frame;
5951 struct gdbarch *gdbarch;
5952 CORE_ADDR jmp_buf_pc;
5953 struct bpstat_what what;
5954
5955 /* Handle cases caused by hitting a breakpoint. */
5956
5957 frame = get_current_frame ();
5958 gdbarch = get_frame_arch (frame);
5959
5960 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5961
5962 if (what.call_dummy)
5963 {
5964 stop_stack_dummy = what.call_dummy;
5965 }
5966
5967 /* A few breakpoint types have callbacks associated (e.g.,
5968 bp_jit_event). Run them now. */
5969 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5970
5971 /* If we hit an internal event that triggers symbol changes, the
5972 current frame will be invalidated within bpstat_what (e.g., if we
5973 hit an internal solib event). Re-fetch it. */
5974 frame = get_current_frame ();
5975 gdbarch = get_frame_arch (frame);
5976
5977 switch (what.main_action)
5978 {
5979 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5980 /* If we hit the breakpoint at longjmp while stepping, we
5981 install a momentary breakpoint at the target of the
5982 jmp_buf. */
5983
5984 if (debug_infrun)
5985 fprintf_unfiltered (gdb_stdlog,
5986 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5987
5988 ecs->event_thread->stepping_over_breakpoint = 1;
5989
5990 if (what.is_longjmp)
5991 {
5992 struct value *arg_value;
5993
5994 /* If we set the longjmp breakpoint via a SystemTap probe,
5995 then use it to extract the arguments. The destination PC
5996 is the third argument to the probe. */
5997 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5998 if (arg_value)
5999 {
6000 jmp_buf_pc = value_as_address (arg_value);
6001 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6002 }
6003 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6004 || !gdbarch_get_longjmp_target (gdbarch,
6005 frame, &jmp_buf_pc))
6006 {
6007 if (debug_infrun)
6008 fprintf_unfiltered (gdb_stdlog,
6009 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6010 "(!gdbarch_get_longjmp_target)\n");
6011 keep_going (ecs);
6012 return;
6013 }
6014
6015 /* Insert a breakpoint at resume address. */
6016 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6017 }
6018 else
6019 check_exception_resume (ecs, frame);
6020 keep_going (ecs);
6021 return;
6022
6023 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6024 {
6025 struct frame_info *init_frame;
6026
6027 /* There are several cases to consider.
6028
6029 1. The initiating frame no longer exists. In this case we
6030 must stop, because the exception or longjmp has gone too
6031 far.
6032
6033 2. The initiating frame exists, and is the same as the
6034 current frame. We stop, because the exception or longjmp
6035 has been caught.
6036
6037 3. The initiating frame exists and is different from the
6038 current frame. This means the exception or longjmp has
6039 been caught beneath the initiating frame, so keep going.
6040
6041 4. longjmp breakpoint has been placed just to protect
6042 against stale dummy frames and user is not interested in
6043 stopping around longjmps. */
6044
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6048
6049 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6050 != NULL);
6051 delete_exception_resume_breakpoint (ecs->event_thread);
6052
6053 if (what.is_longjmp)
6054 {
6055 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6056
6057 if (!frame_id_p (ecs->event_thread->initiating_frame))
6058 {
6059 /* Case 4. */
6060 keep_going (ecs);
6061 return;
6062 }
6063 }
6064
6065 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6066
6067 if (init_frame)
6068 {
6069 struct frame_id current_id
6070 = get_frame_id (get_current_frame ());
6071 if (frame_id_eq (current_id,
6072 ecs->event_thread->initiating_frame))
6073 {
6074 /* Case 2. Fall through. */
6075 }
6076 else
6077 {
6078 /* Case 3. */
6079 keep_going (ecs);
6080 return;
6081 }
6082 }
6083
6084 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6085 exists. */
6086 delete_step_resume_breakpoint (ecs->event_thread);
6087
6088 end_stepping_range (ecs);
6089 }
6090 return;
6091
6092 case BPSTAT_WHAT_SINGLE:
6093 if (debug_infrun)
6094 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6095 ecs->event_thread->stepping_over_breakpoint = 1;
6096 /* Still need to check other stuff, at least the case where we
6097 are stepping and step out of the right range. */
6098 break;
6099
6100 case BPSTAT_WHAT_STEP_RESUME:
6101 if (debug_infrun)
6102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6103
6104 delete_step_resume_breakpoint (ecs->event_thread);
6105 if (ecs->event_thread->control.proceed_to_finish
6106 && execution_direction == EXEC_REVERSE)
6107 {
6108 struct thread_info *tp = ecs->event_thread;
6109
6110 /* We are finishing a function in reverse, and just hit the
6111 step-resume breakpoint at the start address of the
6112 function, and we're almost there -- just need to back up
6113 by one more single-step, which should take us back to the
6114 function call. */
6115 tp->control.step_range_start = tp->control.step_range_end = 1;
6116 keep_going (ecs);
6117 return;
6118 }
6119 fill_in_stop_func (gdbarch, ecs);
6120 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6121 && execution_direction == EXEC_REVERSE)
6122 {
6123 /* We are stepping over a function call in reverse, and just
6124 hit the step-resume breakpoint at the start address of
6125 the function. Go back to single-stepping, which should
6126 take us back to the function call. */
6127 ecs->event_thread->stepping_over_breakpoint = 1;
6128 keep_going (ecs);
6129 return;
6130 }
6131 break;
6132
6133 case BPSTAT_WHAT_STOP_NOISY:
6134 if (debug_infrun)
6135 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6136 stop_print_frame = 1;
6137
6138 /* Assume the thread stopped for a breapoint. We'll still check
6139 whether a/the breakpoint is there when the thread is next
6140 resumed. */
6141 ecs->event_thread->stepping_over_breakpoint = 1;
6142
6143 stop_waiting (ecs);
6144 return;
6145
6146 case BPSTAT_WHAT_STOP_SILENT:
6147 if (debug_infrun)
6148 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6149 stop_print_frame = 0;
6150
6151 /* Assume the thread stopped for a breapoint. We'll still check
6152 whether a/the breakpoint is there when the thread is next
6153 resumed. */
6154 ecs->event_thread->stepping_over_breakpoint = 1;
6155 stop_waiting (ecs);
6156 return;
6157
6158 case BPSTAT_WHAT_HP_STEP_RESUME:
6159 if (debug_infrun)
6160 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6161
6162 delete_step_resume_breakpoint (ecs->event_thread);
6163 if (ecs->event_thread->step_after_step_resume_breakpoint)
6164 {
6165 /* Back when the step-resume breakpoint was inserted, we
6166 were trying to single-step off a breakpoint. Go back to
6167 doing that. */
6168 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6169 ecs->event_thread->stepping_over_breakpoint = 1;
6170 keep_going (ecs);
6171 return;
6172 }
6173 break;
6174
6175 case BPSTAT_WHAT_KEEP_CHECKING:
6176 break;
6177 }
6178
6179 /* If we stepped a permanent breakpoint and we had a high priority
6180 step-resume breakpoint for the address we stepped, but we didn't
6181 hit it, then we must have stepped into the signal handler. The
6182 step-resume was only necessary to catch the case of _not_
6183 stepping into the handler, so delete it, and fall through to
6184 checking whether the step finished. */
6185 if (ecs->event_thread->stepped_breakpoint)
6186 {
6187 struct breakpoint *sr_bp
6188 = ecs->event_thread->control.step_resume_breakpoint;
6189
6190 if (sr_bp != NULL
6191 && sr_bp->loc->permanent
6192 && sr_bp->type == bp_hp_step_resume
6193 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6194 {
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "infrun: stepped permanent breakpoint, stopped in "
6198 "handler\n");
6199 delete_step_resume_breakpoint (ecs->event_thread);
6200 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6201 }
6202 }
6203
6204 /* We come here if we hit a breakpoint but should not stop for it.
6205 Possibly we also were stepping and should stop for that. So fall
6206 through and test for stepping. But, if not stepping, do not
6207 stop. */
6208
6209 /* In all-stop mode, if we're currently stepping but have stopped in
6210 some other thread, we need to switch back to the stepped thread. */
6211 if (switch_back_to_stepped_thread (ecs))
6212 return;
6213
6214 if (ecs->event_thread->control.step_resume_breakpoint)
6215 {
6216 if (debug_infrun)
6217 fprintf_unfiltered (gdb_stdlog,
6218 "infrun: step-resume breakpoint is inserted\n");
6219
6220 /* Having a step-resume breakpoint overrides anything
6221 else having to do with stepping commands until
6222 that breakpoint is reached. */
6223 keep_going (ecs);
6224 return;
6225 }
6226
6227 if (ecs->event_thread->control.step_range_end == 0)
6228 {
6229 if (debug_infrun)
6230 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6231 /* Likewise if we aren't even stepping. */
6232 keep_going (ecs);
6233 return;
6234 }
6235
6236 /* Re-fetch current thread's frame in case the code above caused
6237 the frame cache to be re-initialized, making our FRAME variable
6238 a dangling pointer. */
6239 frame = get_current_frame ();
6240 gdbarch = get_frame_arch (frame);
6241 fill_in_stop_func (gdbarch, ecs);
6242
6243 /* If stepping through a line, keep going if still within it.
6244
6245 Note that step_range_end is the address of the first instruction
6246 beyond the step range, and NOT the address of the last instruction
6247 within it!
6248
6249 Note also that during reverse execution, we may be stepping
6250 through a function epilogue and therefore must detect when
6251 the current-frame changes in the middle of a line. */
6252
6253 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6254 ecs->event_thread)
6255 && (execution_direction != EXEC_REVERSE
6256 || frame_id_eq (get_frame_id (frame),
6257 ecs->event_thread->control.step_frame_id)))
6258 {
6259 if (debug_infrun)
6260 fprintf_unfiltered
6261 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6262 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6263 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6264
6265 /* Tentatively re-enable range stepping; `resume' disables it if
6266 necessary (e.g., if we're stepping over a breakpoint or we
6267 have software watchpoints). */
6268 ecs->event_thread->control.may_range_step = 1;
6269
6270 /* When stepping backward, stop at beginning of line range
6271 (unless it's the function entry point, in which case
6272 keep going back to the call point). */
6273 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6274 if (stop_pc == ecs->event_thread->control.step_range_start
6275 && stop_pc != ecs->stop_func_start
6276 && execution_direction == EXEC_REVERSE)
6277 end_stepping_range (ecs);
6278 else
6279 keep_going (ecs);
6280
6281 return;
6282 }
6283
6284 /* We stepped out of the stepping range. */
6285
6286 /* If we are stepping at the source level and entered the runtime
6287 loader dynamic symbol resolution code...
6288
6289 EXEC_FORWARD: we keep on single stepping until we exit the run
6290 time loader code and reach the callee's address.
6291
6292 EXEC_REVERSE: we've already executed the callee (backward), and
6293 the runtime loader code is handled just like any other
6294 undebuggable function call. Now we need only keep stepping
6295 backward through the trampoline code, and that's handled further
6296 down, so there is nothing for us to do here. */
6297
6298 if (execution_direction != EXEC_REVERSE
6299 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6300 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6301 {
6302 CORE_ADDR pc_after_resolver =
6303 gdbarch_skip_solib_resolver (gdbarch,
6304 ecs->event_thread->suspend.stop_pc);
6305
6306 if (debug_infrun)
6307 fprintf_unfiltered (gdb_stdlog,
6308 "infrun: stepped into dynsym resolve code\n");
6309
6310 if (pc_after_resolver)
6311 {
6312 /* Set up a step-resume breakpoint at the address
6313 indicated by SKIP_SOLIB_RESOLVER. */
6314 symtab_and_line sr_sal;
6315 sr_sal.pc = pc_after_resolver;
6316 sr_sal.pspace = get_frame_program_space (frame);
6317
6318 insert_step_resume_breakpoint_at_sal (gdbarch,
6319 sr_sal, null_frame_id);
6320 }
6321
6322 keep_going (ecs);
6323 return;
6324 }
6325
6326 /* Step through an indirect branch thunk. */
6327 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6328 && gdbarch_in_indirect_branch_thunk (gdbarch,
6329 ecs->event_thread->suspend.stop_pc))
6330 {
6331 if (debug_infrun)
6332 fprintf_unfiltered (gdb_stdlog,
6333 "infrun: stepped into indirect branch thunk\n");
6334 keep_going (ecs);
6335 return;
6336 }
6337
6338 if (ecs->event_thread->control.step_range_end != 1
6339 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6340 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6341 && get_frame_type (frame) == SIGTRAMP_FRAME)
6342 {
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog,
6345 "infrun: stepped into signal trampoline\n");
6346 /* The inferior, while doing a "step" or "next", has ended up in
6347 a signal trampoline (either by a signal being delivered or by
6348 the signal handler returning). Just single-step until the
6349 inferior leaves the trampoline (either by calling the handler
6350 or returning). */
6351 keep_going (ecs);
6352 return;
6353 }
6354
6355 /* If we're in the return path from a shared library trampoline,
6356 we want to proceed through the trampoline when stepping. */
6357 /* macro/2012-04-25: This needs to come before the subroutine
6358 call check below as on some targets return trampolines look
6359 like subroutine calls (MIPS16 return thunks). */
6360 if (gdbarch_in_solib_return_trampoline (gdbarch,
6361 ecs->event_thread->suspend.stop_pc,
6362 ecs->stop_func_name)
6363 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6364 {
6365 /* Determine where this trampoline returns. */
6366 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6367 CORE_ADDR real_stop_pc
6368 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6369
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog,
6372 "infrun: stepped into solib return tramp\n");
6373
6374 /* Only proceed through if we know where it's going. */
6375 if (real_stop_pc)
6376 {
6377 /* And put the step-breakpoint there and go until there. */
6378 symtab_and_line sr_sal;
6379 sr_sal.pc = real_stop_pc;
6380 sr_sal.section = find_pc_overlay (sr_sal.pc);
6381 sr_sal.pspace = get_frame_program_space (frame);
6382
6383 /* Do not specify what the fp should be when we stop since
6384 on some machines the prologue is where the new fp value
6385 is established. */
6386 insert_step_resume_breakpoint_at_sal (gdbarch,
6387 sr_sal, null_frame_id);
6388
6389 /* Restart without fiddling with the step ranges or
6390 other state. */
6391 keep_going (ecs);
6392 return;
6393 }
6394 }
6395
6396 /* Check for subroutine calls. The check for the current frame
6397 equalling the step ID is not necessary - the check of the
6398 previous frame's ID is sufficient - but it is a common case and
6399 cheaper than checking the previous frame's ID.
6400
6401 NOTE: frame_id_eq will never report two invalid frame IDs as
6402 being equal, so to get into this block, both the current and
6403 previous frame must have valid frame IDs. */
6404 /* The outer_frame_id check is a heuristic to detect stepping
6405 through startup code. If we step over an instruction which
6406 sets the stack pointer from an invalid value to a valid value,
6407 we may detect that as a subroutine call from the mythical
6408 "outermost" function. This could be fixed by marking
6409 outermost frames as !stack_p,code_p,special_p. Then the
6410 initial outermost frame, before sp was valid, would
6411 have code_addr == &_start. See the comment in frame_id_eq
6412 for more. */
6413 if (!frame_id_eq (get_stack_frame_id (frame),
6414 ecs->event_thread->control.step_stack_frame_id)
6415 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6416 ecs->event_thread->control.step_stack_frame_id)
6417 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6418 outer_frame_id)
6419 || (ecs->event_thread->control.step_start_function
6420 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6421 {
6422 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6423 CORE_ADDR real_stop_pc;
6424
6425 if (debug_infrun)
6426 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6427
6428 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6429 {
6430 /* I presume that step_over_calls is only 0 when we're
6431 supposed to be stepping at the assembly language level
6432 ("stepi"). Just stop. */
6433 /* And this works the same backward as frontward. MVS */
6434 end_stepping_range (ecs);
6435 return;
6436 }
6437
6438 /* Reverse stepping through solib trampolines. */
6439
6440 if (execution_direction == EXEC_REVERSE
6441 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6442 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6443 || (ecs->stop_func_start == 0
6444 && in_solib_dynsym_resolve_code (stop_pc))))
6445 {
6446 /* Any solib trampoline code can be handled in reverse
6447 by simply continuing to single-step. We have already
6448 executed the solib function (backwards), and a few
6449 steps will take us back through the trampoline to the
6450 caller. */
6451 keep_going (ecs);
6452 return;
6453 }
6454
6455 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6456 {
6457 /* We're doing a "next".
6458
6459 Normal (forward) execution: set a breakpoint at the
6460 callee's return address (the address at which the caller
6461 will resume).
6462
6463 Reverse (backward) execution. set the step-resume
6464 breakpoint at the start of the function that we just
6465 stepped into (backwards), and continue to there. When we
6466 get there, we'll need to single-step back to the caller. */
6467
6468 if (execution_direction == EXEC_REVERSE)
6469 {
6470 /* If we're already at the start of the function, we've either
6471 just stepped backward into a single instruction function,
6472 or stepped back out of a signal handler to the first instruction
6473 of the function. Just keep going, which will single-step back
6474 to the caller. */
6475 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6476 {
6477 /* Normal function call return (static or dynamic). */
6478 symtab_and_line sr_sal;
6479 sr_sal.pc = ecs->stop_func_start;
6480 sr_sal.pspace = get_frame_program_space (frame);
6481 insert_step_resume_breakpoint_at_sal (gdbarch,
6482 sr_sal, null_frame_id);
6483 }
6484 }
6485 else
6486 insert_step_resume_breakpoint_at_caller (frame);
6487
6488 keep_going (ecs);
6489 return;
6490 }
6491
6492 /* If we are in a function call trampoline (a stub between the
6493 calling routine and the real function), locate the real
6494 function. That's what tells us (a) whether we want to step
6495 into it at all, and (b) what prologue we want to run to the
6496 end of, if we do step into it. */
6497 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6498 if (real_stop_pc == 0)
6499 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6500 if (real_stop_pc != 0)
6501 ecs->stop_func_start = real_stop_pc;
6502
6503 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6504 {
6505 symtab_and_line sr_sal;
6506 sr_sal.pc = ecs->stop_func_start;
6507 sr_sal.pspace = get_frame_program_space (frame);
6508
6509 insert_step_resume_breakpoint_at_sal (gdbarch,
6510 sr_sal, null_frame_id);
6511 keep_going (ecs);
6512 return;
6513 }
6514
6515 /* If we have line number information for the function we are
6516 thinking of stepping into and the function isn't on the skip
6517 list, step into it.
6518
6519 If there are several symtabs at that PC (e.g. with include
6520 files), just want to know whether *any* of them have line
6521 numbers. find_pc_line handles this. */
6522 {
6523 struct symtab_and_line tmp_sal;
6524
6525 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6526 if (tmp_sal.line != 0
6527 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6528 tmp_sal))
6529 {
6530 if (execution_direction == EXEC_REVERSE)
6531 handle_step_into_function_backward (gdbarch, ecs);
6532 else
6533 handle_step_into_function (gdbarch, ecs);
6534 return;
6535 }
6536 }
6537
6538 /* If we have no line number and the step-stop-if-no-debug is
6539 set, we stop the step so that the user has a chance to switch
6540 in assembly mode. */
6541 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6542 && step_stop_if_no_debug)
6543 {
6544 end_stepping_range (ecs);
6545 return;
6546 }
6547
6548 if (execution_direction == EXEC_REVERSE)
6549 {
6550 /* If we're already at the start of the function, we've either just
6551 stepped backward into a single instruction function without line
6552 number info, or stepped back out of a signal handler to the first
6553 instruction of the function without line number info. Just keep
6554 going, which will single-step back to the caller. */
6555 if (ecs->stop_func_start != stop_pc)
6556 {
6557 /* Set a breakpoint at callee's start address.
6558 From there we can step once and be back in the caller. */
6559 symtab_and_line sr_sal;
6560 sr_sal.pc = ecs->stop_func_start;
6561 sr_sal.pspace = get_frame_program_space (frame);
6562 insert_step_resume_breakpoint_at_sal (gdbarch,
6563 sr_sal, null_frame_id);
6564 }
6565 }
6566 else
6567 /* Set a breakpoint at callee's return address (the address
6568 at which the caller will resume). */
6569 insert_step_resume_breakpoint_at_caller (frame);
6570
6571 keep_going (ecs);
6572 return;
6573 }
6574
6575 /* Reverse stepping through solib trampolines. */
6576
6577 if (execution_direction == EXEC_REVERSE
6578 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6579 {
6580 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6581
6582 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6583 || (ecs->stop_func_start == 0
6584 && in_solib_dynsym_resolve_code (stop_pc)))
6585 {
6586 /* Any solib trampoline code can be handled in reverse
6587 by simply continuing to single-step. We have already
6588 executed the solib function (backwards), and a few
6589 steps will take us back through the trampoline to the
6590 caller. */
6591 keep_going (ecs);
6592 return;
6593 }
6594 else if (in_solib_dynsym_resolve_code (stop_pc))
6595 {
6596 /* Stepped backward into the solib dynsym resolver.
6597 Set a breakpoint at its start and continue, then
6598 one more step will take us out. */
6599 symtab_and_line sr_sal;
6600 sr_sal.pc = ecs->stop_func_start;
6601 sr_sal.pspace = get_frame_program_space (frame);
6602 insert_step_resume_breakpoint_at_sal (gdbarch,
6603 sr_sal, null_frame_id);
6604 keep_going (ecs);
6605 return;
6606 }
6607 }
6608
6609 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6610
6611 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6612 the trampoline processing logic, however, there are some trampolines
6613 that have no names, so we should do trampoline handling first. */
6614 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6615 && ecs->stop_func_name == NULL
6616 && stop_pc_sal.line == 0)
6617 {
6618 if (debug_infrun)
6619 fprintf_unfiltered (gdb_stdlog,
6620 "infrun: stepped into undebuggable function\n");
6621
6622 /* The inferior just stepped into, or returned to, an
6623 undebuggable function (where there is no debugging information
6624 and no line number corresponding to the address where the
6625 inferior stopped). Since we want to skip this kind of code,
6626 we keep going until the inferior returns from this
6627 function - unless the user has asked us not to (via
6628 set step-mode) or we no longer know how to get back
6629 to the call site. */
6630 if (step_stop_if_no_debug
6631 || !frame_id_p (frame_unwind_caller_id (frame)))
6632 {
6633 /* If we have no line number and the step-stop-if-no-debug
6634 is set, we stop the step so that the user has a chance to
6635 switch in assembly mode. */
6636 end_stepping_range (ecs);
6637 return;
6638 }
6639 else
6640 {
6641 /* Set a breakpoint at callee's return address (the address
6642 at which the caller will resume). */
6643 insert_step_resume_breakpoint_at_caller (frame);
6644 keep_going (ecs);
6645 return;
6646 }
6647 }
6648
6649 if (ecs->event_thread->control.step_range_end == 1)
6650 {
6651 /* It is stepi or nexti. We always want to stop stepping after
6652 one instruction. */
6653 if (debug_infrun)
6654 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6655 end_stepping_range (ecs);
6656 return;
6657 }
6658
6659 if (stop_pc_sal.line == 0)
6660 {
6661 /* We have no line number information. That means to stop
6662 stepping (does this always happen right after one instruction,
6663 when we do "s" in a function with no line numbers,
6664 or can this happen as a result of a return or longjmp?). */
6665 if (debug_infrun)
6666 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6667 end_stepping_range (ecs);
6668 return;
6669 }
6670
6671 /* Look for "calls" to inlined functions, part one. If the inline
6672 frame machinery detected some skipped call sites, we have entered
6673 a new inline function. */
6674
6675 if (frame_id_eq (get_frame_id (get_current_frame ()),
6676 ecs->event_thread->control.step_frame_id)
6677 && inline_skipped_frames (ecs->event_thread))
6678 {
6679 if (debug_infrun)
6680 fprintf_unfiltered (gdb_stdlog,
6681 "infrun: stepped into inlined function\n");
6682
6683 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6684
6685 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6686 {
6687 /* For "step", we're going to stop. But if the call site
6688 for this inlined function is on the same source line as
6689 we were previously stepping, go down into the function
6690 first. Otherwise stop at the call site. */
6691
6692 if (call_sal.line == ecs->event_thread->current_line
6693 && call_sal.symtab == ecs->event_thread->current_symtab)
6694 step_into_inline_frame (ecs->event_thread);
6695
6696 end_stepping_range (ecs);
6697 return;
6698 }
6699 else
6700 {
6701 /* For "next", we should stop at the call site if it is on a
6702 different source line. Otherwise continue through the
6703 inlined function. */
6704 if (call_sal.line == ecs->event_thread->current_line
6705 && call_sal.symtab == ecs->event_thread->current_symtab)
6706 keep_going (ecs);
6707 else
6708 end_stepping_range (ecs);
6709 return;
6710 }
6711 }
6712
6713 /* Look for "calls" to inlined functions, part two. If we are still
6714 in the same real function we were stepping through, but we have
6715 to go further up to find the exact frame ID, we are stepping
6716 through a more inlined call beyond its call site. */
6717
6718 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6719 && !frame_id_eq (get_frame_id (get_current_frame ()),
6720 ecs->event_thread->control.step_frame_id)
6721 && stepped_in_from (get_current_frame (),
6722 ecs->event_thread->control.step_frame_id))
6723 {
6724 if (debug_infrun)
6725 fprintf_unfiltered (gdb_stdlog,
6726 "infrun: stepping through inlined function\n");
6727
6728 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6729 keep_going (ecs);
6730 else
6731 end_stepping_range (ecs);
6732 return;
6733 }
6734
6735 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6736 && (ecs->event_thread->current_line != stop_pc_sal.line
6737 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6738 {
6739 /* We are at the start of a different line. So stop. Note that
6740 we don't stop if we step into the middle of a different line.
6741 That is said to make things like for (;;) statements work
6742 better. */
6743 if (debug_infrun)
6744 fprintf_unfiltered (gdb_stdlog,
6745 "infrun: stepped to a different line\n");
6746 end_stepping_range (ecs);
6747 return;
6748 }
6749
6750 /* We aren't done stepping.
6751
6752 Optimize by setting the stepping range to the line.
6753 (We might not be in the original line, but if we entered a
6754 new line in mid-statement, we continue stepping. This makes
6755 things like for(;;) statements work better.) */
6756
6757 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6758 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6759 ecs->event_thread->control.may_range_step = 1;
6760 set_step_info (frame, stop_pc_sal);
6761
6762 if (debug_infrun)
6763 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6764 keep_going (ecs);
6765 }
6766
6767 /* In all-stop mode, if we're currently stepping but have stopped in
6768 some other thread, we may need to switch back to the stepped
6769 thread. Returns true we set the inferior running, false if we left
6770 it stopped (and the event needs further processing). */
6771
6772 static int
6773 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6774 {
6775 if (!target_is_non_stop_p ())
6776 {
6777 struct thread_info *stepping_thread;
6778
6779 /* If any thread is blocked on some internal breakpoint, and we
6780 simply need to step over that breakpoint to get it going
6781 again, do that first. */
6782
6783 /* However, if we see an event for the stepping thread, then we
6784 know all other threads have been moved past their breakpoints
6785 already. Let the caller check whether the step is finished,
6786 etc., before deciding to move it past a breakpoint. */
6787 if (ecs->event_thread->control.step_range_end != 0)
6788 return 0;
6789
6790 /* Check if the current thread is blocked on an incomplete
6791 step-over, interrupted by a random signal. */
6792 if (ecs->event_thread->control.trap_expected
6793 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6794 {
6795 if (debug_infrun)
6796 {
6797 fprintf_unfiltered (gdb_stdlog,
6798 "infrun: need to finish step-over of [%s]\n",
6799 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6800 }
6801 keep_going (ecs);
6802 return 1;
6803 }
6804
6805 /* Check if the current thread is blocked by a single-step
6806 breakpoint of another thread. */
6807 if (ecs->hit_singlestep_breakpoint)
6808 {
6809 if (debug_infrun)
6810 {
6811 fprintf_unfiltered (gdb_stdlog,
6812 "infrun: need to step [%s] over single-step "
6813 "breakpoint\n",
6814 target_pid_to_str (ecs->ptid).c_str ());
6815 }
6816 keep_going (ecs);
6817 return 1;
6818 }
6819
6820 /* If this thread needs yet another step-over (e.g., stepping
6821 through a delay slot), do it first before moving on to
6822 another thread. */
6823 if (thread_still_needs_step_over (ecs->event_thread))
6824 {
6825 if (debug_infrun)
6826 {
6827 fprintf_unfiltered (gdb_stdlog,
6828 "infrun: thread [%s] still needs step-over\n",
6829 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6830 }
6831 keep_going (ecs);
6832 return 1;
6833 }
6834
6835 /* If scheduler locking applies even if not stepping, there's no
6836 need to walk over threads. Above we've checked whether the
6837 current thread is stepping. If some other thread not the
6838 event thread is stepping, then it must be that scheduler
6839 locking is not in effect. */
6840 if (schedlock_applies (ecs->event_thread))
6841 return 0;
6842
6843 /* Otherwise, we no longer expect a trap in the current thread.
6844 Clear the trap_expected flag before switching back -- this is
6845 what keep_going does as well, if we call it. */
6846 ecs->event_thread->control.trap_expected = 0;
6847
6848 /* Likewise, clear the signal if it should not be passed. */
6849 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6850 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6851
6852 /* Do all pending step-overs before actually proceeding with
6853 step/next/etc. */
6854 if (start_step_over ())
6855 {
6856 prepare_to_wait (ecs);
6857 return 1;
6858 }
6859
6860 /* Look for the stepping/nexting thread. */
6861 stepping_thread = NULL;
6862
6863 for (thread_info *tp : all_non_exited_threads ())
6864 {
6865 /* Ignore threads of processes the caller is not
6866 resuming. */
6867 if (!sched_multi
6868 && tp->ptid.pid () != ecs->ptid.pid ())
6869 continue;
6870
6871 /* When stepping over a breakpoint, we lock all threads
6872 except the one that needs to move past the breakpoint.
6873 If a non-event thread has this set, the "incomplete
6874 step-over" check above should have caught it earlier. */
6875 if (tp->control.trap_expected)
6876 {
6877 internal_error (__FILE__, __LINE__,
6878 "[%s] has inconsistent state: "
6879 "trap_expected=%d\n",
6880 target_pid_to_str (tp->ptid).c_str (),
6881 tp->control.trap_expected);
6882 }
6883
6884 /* Did we find the stepping thread? */
6885 if (tp->control.step_range_end)
6886 {
6887 /* Yep. There should only one though. */
6888 gdb_assert (stepping_thread == NULL);
6889
6890 /* The event thread is handled at the top, before we
6891 enter this loop. */
6892 gdb_assert (tp != ecs->event_thread);
6893
6894 /* If some thread other than the event thread is
6895 stepping, then scheduler locking can't be in effect,
6896 otherwise we wouldn't have resumed the current event
6897 thread in the first place. */
6898 gdb_assert (!schedlock_applies (tp));
6899
6900 stepping_thread = tp;
6901 }
6902 }
6903
6904 if (stepping_thread != NULL)
6905 {
6906 if (debug_infrun)
6907 fprintf_unfiltered (gdb_stdlog,
6908 "infrun: switching back to stepped thread\n");
6909
6910 if (keep_going_stepped_thread (stepping_thread))
6911 {
6912 prepare_to_wait (ecs);
6913 return 1;
6914 }
6915 }
6916 }
6917
6918 return 0;
6919 }
6920
6921 /* Set a previously stepped thread back to stepping. Returns true on
6922 success, false if the resume is not possible (e.g., the thread
6923 vanished). */
6924
6925 static int
6926 keep_going_stepped_thread (struct thread_info *tp)
6927 {
6928 struct frame_info *frame;
6929 struct execution_control_state ecss;
6930 struct execution_control_state *ecs = &ecss;
6931
6932 /* If the stepping thread exited, then don't try to switch back and
6933 resume it, which could fail in several different ways depending
6934 on the target. Instead, just keep going.
6935
6936 We can find a stepping dead thread in the thread list in two
6937 cases:
6938
6939 - The target supports thread exit events, and when the target
6940 tries to delete the thread from the thread list, inferior_ptid
6941 pointed at the exiting thread. In such case, calling
6942 delete_thread does not really remove the thread from the list;
6943 instead, the thread is left listed, with 'exited' state.
6944
6945 - The target's debug interface does not support thread exit
6946 events, and so we have no idea whatsoever if the previously
6947 stepping thread is still alive. For that reason, we need to
6948 synchronously query the target now. */
6949
6950 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
6951 {
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: not resuming previously "
6955 "stepped thread, it has vanished\n");
6956
6957 delete_thread (tp);
6958 return 0;
6959 }
6960
6961 if (debug_infrun)
6962 fprintf_unfiltered (gdb_stdlog,
6963 "infrun: resuming previously stepped thread\n");
6964
6965 reset_ecs (ecs, tp);
6966 switch_to_thread (tp);
6967
6968 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
6969 frame = get_current_frame ();
6970
6971 /* If the PC of the thread we were trying to single-step has
6972 changed, then that thread has trapped or been signaled, but the
6973 event has not been reported to GDB yet. Re-poll the target
6974 looking for this particular thread's event (i.e. temporarily
6975 enable schedlock) by:
6976
6977 - setting a break at the current PC
6978 - resuming that particular thread, only (by setting trap
6979 expected)
6980
6981 This prevents us continuously moving the single-step breakpoint
6982 forward, one instruction at a time, overstepping. */
6983
6984 if (tp->suspend.stop_pc != tp->prev_pc)
6985 {
6986 ptid_t resume_ptid;
6987
6988 if (debug_infrun)
6989 fprintf_unfiltered (gdb_stdlog,
6990 "infrun: expected thread advanced also (%s -> %s)\n",
6991 paddress (target_gdbarch (), tp->prev_pc),
6992 paddress (target_gdbarch (), tp->suspend.stop_pc));
6993
6994 /* Clear the info of the previous step-over, as it's no longer
6995 valid (if the thread was trying to step over a breakpoint, it
6996 has already succeeded). It's what keep_going would do too,
6997 if we called it. Do this before trying to insert the sss
6998 breakpoint, otherwise if we were previously trying to step
6999 over this exact address in another thread, the breakpoint is
7000 skipped. */
7001 clear_step_over_info ();
7002 tp->control.trap_expected = 0;
7003
7004 insert_single_step_breakpoint (get_frame_arch (frame),
7005 get_frame_address_space (frame),
7006 tp->suspend.stop_pc);
7007
7008 tp->resumed = 1;
7009 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7010 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7011 }
7012 else
7013 {
7014 if (debug_infrun)
7015 fprintf_unfiltered (gdb_stdlog,
7016 "infrun: expected thread still hasn't advanced\n");
7017
7018 keep_going_pass_signal (ecs);
7019 }
7020 return 1;
7021 }
7022
7023 /* Is thread TP in the middle of (software or hardware)
7024 single-stepping? (Note the result of this function must never be
7025 passed directly as target_resume's STEP parameter.) */
7026
7027 static int
7028 currently_stepping (struct thread_info *tp)
7029 {
7030 return ((tp->control.step_range_end
7031 && tp->control.step_resume_breakpoint == NULL)
7032 || tp->control.trap_expected
7033 || tp->stepped_breakpoint
7034 || bpstat_should_step ());
7035 }
7036
7037 /* Inferior has stepped into a subroutine call with source code that
7038 we should not step over. Do step to the first line of code in
7039 it. */
7040
7041 static void
7042 handle_step_into_function (struct gdbarch *gdbarch,
7043 struct execution_control_state *ecs)
7044 {
7045 fill_in_stop_func (gdbarch, ecs);
7046
7047 compunit_symtab *cust
7048 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7049 if (cust != NULL && compunit_language (cust) != language_asm)
7050 ecs->stop_func_start
7051 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7052
7053 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7054 /* Use the step_resume_break to step until the end of the prologue,
7055 even if that involves jumps (as it seems to on the vax under
7056 4.2). */
7057 /* If the prologue ends in the middle of a source line, continue to
7058 the end of that source line (if it is still within the function).
7059 Otherwise, just go to end of prologue. */
7060 if (stop_func_sal.end
7061 && stop_func_sal.pc != ecs->stop_func_start
7062 && stop_func_sal.end < ecs->stop_func_end)
7063 ecs->stop_func_start = stop_func_sal.end;
7064
7065 /* Architectures which require breakpoint adjustment might not be able
7066 to place a breakpoint at the computed address. If so, the test
7067 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7068 ecs->stop_func_start to an address at which a breakpoint may be
7069 legitimately placed.
7070
7071 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7072 made, GDB will enter an infinite loop when stepping through
7073 optimized code consisting of VLIW instructions which contain
7074 subinstructions corresponding to different source lines. On
7075 FR-V, it's not permitted to place a breakpoint on any but the
7076 first subinstruction of a VLIW instruction. When a breakpoint is
7077 set, GDB will adjust the breakpoint address to the beginning of
7078 the VLIW instruction. Thus, we need to make the corresponding
7079 adjustment here when computing the stop address. */
7080
7081 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7082 {
7083 ecs->stop_func_start
7084 = gdbarch_adjust_breakpoint_address (gdbarch,
7085 ecs->stop_func_start);
7086 }
7087
7088 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7089 {
7090 /* We are already there: stop now. */
7091 end_stepping_range (ecs);
7092 return;
7093 }
7094 else
7095 {
7096 /* Put the step-breakpoint there and go until there. */
7097 symtab_and_line sr_sal;
7098 sr_sal.pc = ecs->stop_func_start;
7099 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7100 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7101
7102 /* Do not specify what the fp should be when we stop since on
7103 some machines the prologue is where the new fp value is
7104 established. */
7105 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7106
7107 /* And make sure stepping stops right away then. */
7108 ecs->event_thread->control.step_range_end
7109 = ecs->event_thread->control.step_range_start;
7110 }
7111 keep_going (ecs);
7112 }
7113
7114 /* Inferior has stepped backward into a subroutine call with source
7115 code that we should not step over. Do step to the beginning of the
7116 last line of code in it. */
7117
7118 static void
7119 handle_step_into_function_backward (struct gdbarch *gdbarch,
7120 struct execution_control_state *ecs)
7121 {
7122 struct compunit_symtab *cust;
7123 struct symtab_and_line stop_func_sal;
7124
7125 fill_in_stop_func (gdbarch, ecs);
7126
7127 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7128 if (cust != NULL && compunit_language (cust) != language_asm)
7129 ecs->stop_func_start
7130 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7131
7132 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7133
7134 /* OK, we're just going to keep stepping here. */
7135 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7136 {
7137 /* We're there already. Just stop stepping now. */
7138 end_stepping_range (ecs);
7139 }
7140 else
7141 {
7142 /* Else just reset the step range and keep going.
7143 No step-resume breakpoint, they don't work for
7144 epilogues, which can have multiple entry paths. */
7145 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7146 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7147 keep_going (ecs);
7148 }
7149 return;
7150 }
7151
7152 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7153 This is used to both functions and to skip over code. */
7154
7155 static void
7156 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7157 struct symtab_and_line sr_sal,
7158 struct frame_id sr_id,
7159 enum bptype sr_type)
7160 {
7161 /* There should never be more than one step-resume or longjmp-resume
7162 breakpoint per thread, so we should never be setting a new
7163 step_resume_breakpoint when one is already active. */
7164 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7165 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7166
7167 if (debug_infrun)
7168 fprintf_unfiltered (gdb_stdlog,
7169 "infrun: inserting step-resume breakpoint at %s\n",
7170 paddress (gdbarch, sr_sal.pc));
7171
7172 inferior_thread ()->control.step_resume_breakpoint
7173 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7174 }
7175
7176 void
7177 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7178 struct symtab_and_line sr_sal,
7179 struct frame_id sr_id)
7180 {
7181 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7182 sr_sal, sr_id,
7183 bp_step_resume);
7184 }
7185
7186 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7187 This is used to skip a potential signal handler.
7188
7189 This is called with the interrupted function's frame. The signal
7190 handler, when it returns, will resume the interrupted function at
7191 RETURN_FRAME.pc. */
7192
7193 static void
7194 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7195 {
7196 gdb_assert (return_frame != NULL);
7197
7198 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7199
7200 symtab_and_line sr_sal;
7201 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7202 sr_sal.section = find_pc_overlay (sr_sal.pc);
7203 sr_sal.pspace = get_frame_program_space (return_frame);
7204
7205 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7206 get_stack_frame_id (return_frame),
7207 bp_hp_step_resume);
7208 }
7209
7210 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7211 is used to skip a function after stepping into it (for "next" or if
7212 the called function has no debugging information).
7213
7214 The current function has almost always been reached by single
7215 stepping a call or return instruction. NEXT_FRAME belongs to the
7216 current function, and the breakpoint will be set at the caller's
7217 resume address.
7218
7219 This is a separate function rather than reusing
7220 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7221 get_prev_frame, which may stop prematurely (see the implementation
7222 of frame_unwind_caller_id for an example). */
7223
7224 static void
7225 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7226 {
7227 /* We shouldn't have gotten here if we don't know where the call site
7228 is. */
7229 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7230
7231 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7232
7233 symtab_and_line sr_sal;
7234 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7235 frame_unwind_caller_pc (next_frame));
7236 sr_sal.section = find_pc_overlay (sr_sal.pc);
7237 sr_sal.pspace = frame_unwind_program_space (next_frame);
7238
7239 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7240 frame_unwind_caller_id (next_frame));
7241 }
7242
7243 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7244 new breakpoint at the target of a jmp_buf. The handling of
7245 longjmp-resume uses the same mechanisms used for handling
7246 "step-resume" breakpoints. */
7247
7248 static void
7249 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7250 {
7251 /* There should never be more than one longjmp-resume breakpoint per
7252 thread, so we should never be setting a new
7253 longjmp_resume_breakpoint when one is already active. */
7254 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7255
7256 if (debug_infrun)
7257 fprintf_unfiltered (gdb_stdlog,
7258 "infrun: inserting longjmp-resume breakpoint at %s\n",
7259 paddress (gdbarch, pc));
7260
7261 inferior_thread ()->control.exception_resume_breakpoint =
7262 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7263 }
7264
7265 /* Insert an exception resume breakpoint. TP is the thread throwing
7266 the exception. The block B is the block of the unwinder debug hook
7267 function. FRAME is the frame corresponding to the call to this
7268 function. SYM is the symbol of the function argument holding the
7269 target PC of the exception. */
7270
7271 static void
7272 insert_exception_resume_breakpoint (struct thread_info *tp,
7273 const struct block *b,
7274 struct frame_info *frame,
7275 struct symbol *sym)
7276 {
7277 try
7278 {
7279 struct block_symbol vsym;
7280 struct value *value;
7281 CORE_ADDR handler;
7282 struct breakpoint *bp;
7283
7284 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7285 b, VAR_DOMAIN);
7286 value = read_var_value (vsym.symbol, vsym.block, frame);
7287 /* If the value was optimized out, revert to the old behavior. */
7288 if (! value_optimized_out (value))
7289 {
7290 handler = value_as_address (value);
7291
7292 if (debug_infrun)
7293 fprintf_unfiltered (gdb_stdlog,
7294 "infrun: exception resume at %lx\n",
7295 (unsigned long) handler);
7296
7297 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7298 handler,
7299 bp_exception_resume).release ();
7300
7301 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7302 frame = NULL;
7303
7304 bp->thread = tp->global_num;
7305 inferior_thread ()->control.exception_resume_breakpoint = bp;
7306 }
7307 }
7308 catch (const gdb_exception_error &e)
7309 {
7310 /* We want to ignore errors here. */
7311 }
7312 }
7313
7314 /* A helper for check_exception_resume that sets an
7315 exception-breakpoint based on a SystemTap probe. */
7316
7317 static void
7318 insert_exception_resume_from_probe (struct thread_info *tp,
7319 const struct bound_probe *probe,
7320 struct frame_info *frame)
7321 {
7322 struct value *arg_value;
7323 CORE_ADDR handler;
7324 struct breakpoint *bp;
7325
7326 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7327 if (!arg_value)
7328 return;
7329
7330 handler = value_as_address (arg_value);
7331
7332 if (debug_infrun)
7333 fprintf_unfiltered (gdb_stdlog,
7334 "infrun: exception resume at %s\n",
7335 paddress (get_objfile_arch (probe->objfile),
7336 handler));
7337
7338 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7339 handler, bp_exception_resume).release ();
7340 bp->thread = tp->global_num;
7341 inferior_thread ()->control.exception_resume_breakpoint = bp;
7342 }
7343
7344 /* This is called when an exception has been intercepted. Check to
7345 see whether the exception's destination is of interest, and if so,
7346 set an exception resume breakpoint there. */
7347
7348 static void
7349 check_exception_resume (struct execution_control_state *ecs,
7350 struct frame_info *frame)
7351 {
7352 struct bound_probe probe;
7353 struct symbol *func;
7354
7355 /* First see if this exception unwinding breakpoint was set via a
7356 SystemTap probe point. If so, the probe has two arguments: the
7357 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7358 set a breakpoint there. */
7359 probe = find_probe_by_pc (get_frame_pc (frame));
7360 if (probe.prob)
7361 {
7362 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7363 return;
7364 }
7365
7366 func = get_frame_function (frame);
7367 if (!func)
7368 return;
7369
7370 try
7371 {
7372 const struct block *b;
7373 struct block_iterator iter;
7374 struct symbol *sym;
7375 int argno = 0;
7376
7377 /* The exception breakpoint is a thread-specific breakpoint on
7378 the unwinder's debug hook, declared as:
7379
7380 void _Unwind_DebugHook (void *cfa, void *handler);
7381
7382 The CFA argument indicates the frame to which control is
7383 about to be transferred. HANDLER is the destination PC.
7384
7385 We ignore the CFA and set a temporary breakpoint at HANDLER.
7386 This is not extremely efficient but it avoids issues in gdb
7387 with computing the DWARF CFA, and it also works even in weird
7388 cases such as throwing an exception from inside a signal
7389 handler. */
7390
7391 b = SYMBOL_BLOCK_VALUE (func);
7392 ALL_BLOCK_SYMBOLS (b, iter, sym)
7393 {
7394 if (!SYMBOL_IS_ARGUMENT (sym))
7395 continue;
7396
7397 if (argno == 0)
7398 ++argno;
7399 else
7400 {
7401 insert_exception_resume_breakpoint (ecs->event_thread,
7402 b, frame, sym);
7403 break;
7404 }
7405 }
7406 }
7407 catch (const gdb_exception_error &e)
7408 {
7409 }
7410 }
7411
7412 static void
7413 stop_waiting (struct execution_control_state *ecs)
7414 {
7415 if (debug_infrun)
7416 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7417
7418 /* Let callers know we don't want to wait for the inferior anymore. */
7419 ecs->wait_some_more = 0;
7420
7421 /* If all-stop, but the target is always in non-stop mode, stop all
7422 threads now that we're presenting the stop to the user. */
7423 if (!non_stop && target_is_non_stop_p ())
7424 stop_all_threads ();
7425 }
7426
7427 /* Like keep_going, but passes the signal to the inferior, even if the
7428 signal is set to nopass. */
7429
7430 static void
7431 keep_going_pass_signal (struct execution_control_state *ecs)
7432 {
7433 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7434 gdb_assert (!ecs->event_thread->resumed);
7435
7436 /* Save the pc before execution, to compare with pc after stop. */
7437 ecs->event_thread->prev_pc
7438 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7439
7440 if (ecs->event_thread->control.trap_expected)
7441 {
7442 struct thread_info *tp = ecs->event_thread;
7443
7444 if (debug_infrun)
7445 fprintf_unfiltered (gdb_stdlog,
7446 "infrun: %s has trap_expected set, "
7447 "resuming to collect trap\n",
7448 target_pid_to_str (tp->ptid).c_str ());
7449
7450 /* We haven't yet gotten our trap, and either: intercepted a
7451 non-signal event (e.g., a fork); or took a signal which we
7452 are supposed to pass through to the inferior. Simply
7453 continue. */
7454 resume (ecs->event_thread->suspend.stop_signal);
7455 }
7456 else if (step_over_info_valid_p ())
7457 {
7458 /* Another thread is stepping over a breakpoint in-line. If
7459 this thread needs a step-over too, queue the request. In
7460 either case, this resume must be deferred for later. */
7461 struct thread_info *tp = ecs->event_thread;
7462
7463 if (ecs->hit_singlestep_breakpoint
7464 || thread_still_needs_step_over (tp))
7465 {
7466 if (debug_infrun)
7467 fprintf_unfiltered (gdb_stdlog,
7468 "infrun: step-over already in progress: "
7469 "step-over for %s deferred\n",
7470 target_pid_to_str (tp->ptid).c_str ());
7471 thread_step_over_chain_enqueue (tp);
7472 }
7473 else
7474 {
7475 if (debug_infrun)
7476 fprintf_unfiltered (gdb_stdlog,
7477 "infrun: step-over in progress: "
7478 "resume of %s deferred\n",
7479 target_pid_to_str (tp->ptid).c_str ());
7480 }
7481 }
7482 else
7483 {
7484 struct regcache *regcache = get_current_regcache ();
7485 int remove_bp;
7486 int remove_wps;
7487 step_over_what step_what;
7488
7489 /* Either the trap was not expected, but we are continuing
7490 anyway (if we got a signal, the user asked it be passed to
7491 the child)
7492 -- or --
7493 We got our expected trap, but decided we should resume from
7494 it.
7495
7496 We're going to run this baby now!
7497
7498 Note that insert_breakpoints won't try to re-insert
7499 already inserted breakpoints. Therefore, we don't
7500 care if breakpoints were already inserted, or not. */
7501
7502 /* If we need to step over a breakpoint, and we're not using
7503 displaced stepping to do so, insert all breakpoints
7504 (watchpoints, etc.) but the one we're stepping over, step one
7505 instruction, and then re-insert the breakpoint when that step
7506 is finished. */
7507
7508 step_what = thread_still_needs_step_over (ecs->event_thread);
7509
7510 remove_bp = (ecs->hit_singlestep_breakpoint
7511 || (step_what & STEP_OVER_BREAKPOINT));
7512 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7513
7514 /* We can't use displaced stepping if we need to step past a
7515 watchpoint. The instruction copied to the scratch pad would
7516 still trigger the watchpoint. */
7517 if (remove_bp
7518 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7519 {
7520 set_step_over_info (regcache->aspace (),
7521 regcache_read_pc (regcache), remove_wps,
7522 ecs->event_thread->global_num);
7523 }
7524 else if (remove_wps)
7525 set_step_over_info (NULL, 0, remove_wps, -1);
7526
7527 /* If we now need to do an in-line step-over, we need to stop
7528 all other threads. Note this must be done before
7529 insert_breakpoints below, because that removes the breakpoint
7530 we're about to step over, otherwise other threads could miss
7531 it. */
7532 if (step_over_info_valid_p () && target_is_non_stop_p ())
7533 stop_all_threads ();
7534
7535 /* Stop stepping if inserting breakpoints fails. */
7536 try
7537 {
7538 insert_breakpoints ();
7539 }
7540 catch (const gdb_exception_error &e)
7541 {
7542 exception_print (gdb_stderr, e);
7543 stop_waiting (ecs);
7544 clear_step_over_info ();
7545 return;
7546 }
7547
7548 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7549
7550 resume (ecs->event_thread->suspend.stop_signal);
7551 }
7552
7553 prepare_to_wait (ecs);
7554 }
7555
7556 /* Called when we should continue running the inferior, because the
7557 current event doesn't cause a user visible stop. This does the
7558 resuming part; waiting for the next event is done elsewhere. */
7559
7560 static void
7561 keep_going (struct execution_control_state *ecs)
7562 {
7563 if (ecs->event_thread->control.trap_expected
7564 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7565 ecs->event_thread->control.trap_expected = 0;
7566
7567 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7568 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7569 keep_going_pass_signal (ecs);
7570 }
7571
7572 /* This function normally comes after a resume, before
7573 handle_inferior_event exits. It takes care of any last bits of
7574 housekeeping, and sets the all-important wait_some_more flag. */
7575
7576 static void
7577 prepare_to_wait (struct execution_control_state *ecs)
7578 {
7579 if (debug_infrun)
7580 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7581
7582 ecs->wait_some_more = 1;
7583
7584 if (!target_is_async_p ())
7585 mark_infrun_async_event_handler ();
7586 }
7587
7588 /* We are done with the step range of a step/next/si/ni command.
7589 Called once for each n of a "step n" operation. */
7590
7591 static void
7592 end_stepping_range (struct execution_control_state *ecs)
7593 {
7594 ecs->event_thread->control.stop_step = 1;
7595 stop_waiting (ecs);
7596 }
7597
7598 /* Several print_*_reason functions to print why the inferior has stopped.
7599 We always print something when the inferior exits, or receives a signal.
7600 The rest of the cases are dealt with later on in normal_stop and
7601 print_it_typical. Ideally there should be a call to one of these
7602 print_*_reason functions functions from handle_inferior_event each time
7603 stop_waiting is called.
7604
7605 Note that we don't call these directly, instead we delegate that to
7606 the interpreters, through observers. Interpreters then call these
7607 with whatever uiout is right. */
7608
7609 void
7610 print_end_stepping_range_reason (struct ui_out *uiout)
7611 {
7612 /* For CLI-like interpreters, print nothing. */
7613
7614 if (uiout->is_mi_like_p ())
7615 {
7616 uiout->field_string ("reason",
7617 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7618 }
7619 }
7620
7621 void
7622 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7623 {
7624 annotate_signalled ();
7625 if (uiout->is_mi_like_p ())
7626 uiout->field_string
7627 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7628 uiout->text ("\nProgram terminated with signal ");
7629 annotate_signal_name ();
7630 uiout->field_string ("signal-name",
7631 gdb_signal_to_name (siggnal));
7632 annotate_signal_name_end ();
7633 uiout->text (", ");
7634 annotate_signal_string ();
7635 uiout->field_string ("signal-meaning",
7636 gdb_signal_to_string (siggnal));
7637 annotate_signal_string_end ();
7638 uiout->text (".\n");
7639 uiout->text ("The program no longer exists.\n");
7640 }
7641
7642 void
7643 print_exited_reason (struct ui_out *uiout, int exitstatus)
7644 {
7645 struct inferior *inf = current_inferior ();
7646 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7647
7648 annotate_exited (exitstatus);
7649 if (exitstatus)
7650 {
7651 if (uiout->is_mi_like_p ())
7652 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7653 std::string exit_code_str
7654 = string_printf ("0%o", (unsigned int) exitstatus);
7655 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7656 plongest (inf->num), pidstr.c_str (),
7657 string_field ("exit-code", exit_code_str.c_str ()));
7658 }
7659 else
7660 {
7661 if (uiout->is_mi_like_p ())
7662 uiout->field_string
7663 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7664 uiout->message ("[Inferior %s (%s) exited normally]\n",
7665 plongest (inf->num), pidstr.c_str ());
7666 }
7667 }
7668
7669 /* Some targets/architectures can do extra processing/display of
7670 segmentation faults. E.g., Intel MPX boundary faults.
7671 Call the architecture dependent function to handle the fault. */
7672
7673 static void
7674 handle_segmentation_fault (struct ui_out *uiout)
7675 {
7676 struct regcache *regcache = get_current_regcache ();
7677 struct gdbarch *gdbarch = regcache->arch ();
7678
7679 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7680 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7681 }
7682
7683 void
7684 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7685 {
7686 struct thread_info *thr = inferior_thread ();
7687
7688 annotate_signal ();
7689
7690 if (uiout->is_mi_like_p ())
7691 ;
7692 else if (show_thread_that_caused_stop ())
7693 {
7694 const char *name;
7695
7696 uiout->text ("\nThread ");
7697 uiout->field_string ("thread-id", print_thread_id (thr));
7698
7699 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7700 if (name != NULL)
7701 {
7702 uiout->text (" \"");
7703 uiout->field_string ("name", name);
7704 uiout->text ("\"");
7705 }
7706 }
7707 else
7708 uiout->text ("\nProgram");
7709
7710 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7711 uiout->text (" stopped");
7712 else
7713 {
7714 uiout->text (" received signal ");
7715 annotate_signal_name ();
7716 if (uiout->is_mi_like_p ())
7717 uiout->field_string
7718 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7719 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7720 annotate_signal_name_end ();
7721 uiout->text (", ");
7722 annotate_signal_string ();
7723 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7724
7725 if (siggnal == GDB_SIGNAL_SEGV)
7726 handle_segmentation_fault (uiout);
7727
7728 annotate_signal_string_end ();
7729 }
7730 uiout->text (".\n");
7731 }
7732
7733 void
7734 print_no_history_reason (struct ui_out *uiout)
7735 {
7736 uiout->text ("\nNo more reverse-execution history.\n");
7737 }
7738
7739 /* Print current location without a level number, if we have changed
7740 functions or hit a breakpoint. Print source line if we have one.
7741 bpstat_print contains the logic deciding in detail what to print,
7742 based on the event(s) that just occurred. */
7743
7744 static void
7745 print_stop_location (struct target_waitstatus *ws)
7746 {
7747 int bpstat_ret;
7748 enum print_what source_flag;
7749 int do_frame_printing = 1;
7750 struct thread_info *tp = inferior_thread ();
7751
7752 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7753 switch (bpstat_ret)
7754 {
7755 case PRINT_UNKNOWN:
7756 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7757 should) carry around the function and does (or should) use
7758 that when doing a frame comparison. */
7759 if (tp->control.stop_step
7760 && frame_id_eq (tp->control.step_frame_id,
7761 get_frame_id (get_current_frame ()))
7762 && (tp->control.step_start_function
7763 == find_pc_function (tp->suspend.stop_pc)))
7764 {
7765 /* Finished step, just print source line. */
7766 source_flag = SRC_LINE;
7767 }
7768 else
7769 {
7770 /* Print location and source line. */
7771 source_flag = SRC_AND_LOC;
7772 }
7773 break;
7774 case PRINT_SRC_AND_LOC:
7775 /* Print location and source line. */
7776 source_flag = SRC_AND_LOC;
7777 break;
7778 case PRINT_SRC_ONLY:
7779 source_flag = SRC_LINE;
7780 break;
7781 case PRINT_NOTHING:
7782 /* Something bogus. */
7783 source_flag = SRC_LINE;
7784 do_frame_printing = 0;
7785 break;
7786 default:
7787 internal_error (__FILE__, __LINE__, _("Unknown value."));
7788 }
7789
7790 /* The behavior of this routine with respect to the source
7791 flag is:
7792 SRC_LINE: Print only source line
7793 LOCATION: Print only location
7794 SRC_AND_LOC: Print location and source line. */
7795 if (do_frame_printing)
7796 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7797 }
7798
7799 /* See infrun.h. */
7800
7801 void
7802 print_stop_event (struct ui_out *uiout, bool displays)
7803 {
7804 struct target_waitstatus last;
7805 ptid_t last_ptid;
7806 struct thread_info *tp;
7807
7808 get_last_target_status (&last_ptid, &last);
7809
7810 {
7811 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7812
7813 print_stop_location (&last);
7814
7815 /* Display the auto-display expressions. */
7816 if (displays)
7817 do_displays ();
7818 }
7819
7820 tp = inferior_thread ();
7821 if (tp->thread_fsm != NULL
7822 && tp->thread_fsm->finished_p ())
7823 {
7824 struct return_value_info *rv;
7825
7826 rv = tp->thread_fsm->return_value ();
7827 if (rv != NULL)
7828 print_return_value (uiout, rv);
7829 }
7830 }
7831
7832 /* See infrun.h. */
7833
7834 void
7835 maybe_remove_breakpoints (void)
7836 {
7837 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7838 {
7839 if (remove_breakpoints ())
7840 {
7841 target_terminal::ours_for_output ();
7842 printf_filtered (_("Cannot remove breakpoints because "
7843 "program is no longer writable.\nFurther "
7844 "execution is probably impossible.\n"));
7845 }
7846 }
7847 }
7848
7849 /* The execution context that just caused a normal stop. */
7850
7851 struct stop_context
7852 {
7853 stop_context ();
7854 ~stop_context ();
7855
7856 DISABLE_COPY_AND_ASSIGN (stop_context);
7857
7858 bool changed () const;
7859
7860 /* The stop ID. */
7861 ULONGEST stop_id;
7862
7863 /* The event PTID. */
7864
7865 ptid_t ptid;
7866
7867 /* If stopp for a thread event, this is the thread that caused the
7868 stop. */
7869 struct thread_info *thread;
7870
7871 /* The inferior that caused the stop. */
7872 int inf_num;
7873 };
7874
7875 /* Initializes a new stop context. If stopped for a thread event, this
7876 takes a strong reference to the thread. */
7877
7878 stop_context::stop_context ()
7879 {
7880 stop_id = get_stop_id ();
7881 ptid = inferior_ptid;
7882 inf_num = current_inferior ()->num;
7883
7884 if (inferior_ptid != null_ptid)
7885 {
7886 /* Take a strong reference so that the thread can't be deleted
7887 yet. */
7888 thread = inferior_thread ();
7889 thread->incref ();
7890 }
7891 else
7892 thread = NULL;
7893 }
7894
7895 /* Release a stop context previously created with save_stop_context.
7896 Releases the strong reference to the thread as well. */
7897
7898 stop_context::~stop_context ()
7899 {
7900 if (thread != NULL)
7901 thread->decref ();
7902 }
7903
7904 /* Return true if the current context no longer matches the saved stop
7905 context. */
7906
7907 bool
7908 stop_context::changed () const
7909 {
7910 if (ptid != inferior_ptid)
7911 return true;
7912 if (inf_num != current_inferior ()->num)
7913 return true;
7914 if (thread != NULL && thread->state != THREAD_STOPPED)
7915 return true;
7916 if (get_stop_id () != stop_id)
7917 return true;
7918 return false;
7919 }
7920
7921 /* See infrun.h. */
7922
7923 int
7924 normal_stop (void)
7925 {
7926 struct target_waitstatus last;
7927 ptid_t last_ptid;
7928
7929 get_last_target_status (&last_ptid, &last);
7930
7931 new_stop_id ();
7932
7933 /* If an exception is thrown from this point on, make sure to
7934 propagate GDB's knowledge of the executing state to the
7935 frontend/user running state. A QUIT is an easy exception to see
7936 here, so do this before any filtered output. */
7937
7938 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7939
7940 if (!non_stop)
7941 maybe_finish_thread_state.emplace (minus_one_ptid);
7942 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7943 || last.kind == TARGET_WAITKIND_EXITED)
7944 {
7945 /* On some targets, we may still have live threads in the
7946 inferior when we get a process exit event. E.g., for
7947 "checkpoint", when the current checkpoint/fork exits,
7948 linux-fork.c automatically switches to another fork from
7949 within target_mourn_inferior. */
7950 if (inferior_ptid != null_ptid)
7951 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
7952 }
7953 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7954 maybe_finish_thread_state.emplace (inferior_ptid);
7955
7956 /* As we're presenting a stop, and potentially removing breakpoints,
7957 update the thread list so we can tell whether there are threads
7958 running on the target. With target remote, for example, we can
7959 only learn about new threads when we explicitly update the thread
7960 list. Do this before notifying the interpreters about signal
7961 stops, end of stepping ranges, etc., so that the "new thread"
7962 output is emitted before e.g., "Program received signal FOO",
7963 instead of after. */
7964 update_thread_list ();
7965
7966 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7967 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
7968
7969 /* As with the notification of thread events, we want to delay
7970 notifying the user that we've switched thread context until
7971 the inferior actually stops.
7972
7973 There's no point in saying anything if the inferior has exited.
7974 Note that SIGNALLED here means "exited with a signal", not
7975 "received a signal".
7976
7977 Also skip saying anything in non-stop mode. In that mode, as we
7978 don't want GDB to switch threads behind the user's back, to avoid
7979 races where the user is typing a command to apply to thread x,
7980 but GDB switches to thread y before the user finishes entering
7981 the command, fetch_inferior_event installs a cleanup to restore
7982 the current thread back to the thread the user had selected right
7983 after this event is handled, so we're not really switching, only
7984 informing of a stop. */
7985 if (!non_stop
7986 && previous_inferior_ptid != inferior_ptid
7987 && target_has_execution
7988 && last.kind != TARGET_WAITKIND_SIGNALLED
7989 && last.kind != TARGET_WAITKIND_EXITED
7990 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7991 {
7992 SWITCH_THRU_ALL_UIS ()
7993 {
7994 target_terminal::ours_for_output ();
7995 printf_filtered (_("[Switching to %s]\n"),
7996 target_pid_to_str (inferior_ptid).c_str ());
7997 annotate_thread_changed ();
7998 }
7999 previous_inferior_ptid = inferior_ptid;
8000 }
8001
8002 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8003 {
8004 SWITCH_THRU_ALL_UIS ()
8005 if (current_ui->prompt_state == PROMPT_BLOCKED)
8006 {
8007 target_terminal::ours_for_output ();
8008 printf_filtered (_("No unwaited-for children left.\n"));
8009 }
8010 }
8011
8012 /* Note: this depends on the update_thread_list call above. */
8013 maybe_remove_breakpoints ();
8014
8015 /* If an auto-display called a function and that got a signal,
8016 delete that auto-display to avoid an infinite recursion. */
8017
8018 if (stopped_by_random_signal)
8019 disable_current_display ();
8020
8021 SWITCH_THRU_ALL_UIS ()
8022 {
8023 async_enable_stdin ();
8024 }
8025
8026 /* Let the user/frontend see the threads as stopped. */
8027 maybe_finish_thread_state.reset ();
8028
8029 /* Select innermost stack frame - i.e., current frame is frame 0,
8030 and current location is based on that. Handle the case where the
8031 dummy call is returning after being stopped. E.g. the dummy call
8032 previously hit a breakpoint. (If the dummy call returns
8033 normally, we won't reach here.) Do this before the stop hook is
8034 run, so that it doesn't get to see the temporary dummy frame,
8035 which is not where we'll present the stop. */
8036 if (has_stack_frames ())
8037 {
8038 if (stop_stack_dummy == STOP_STACK_DUMMY)
8039 {
8040 /* Pop the empty frame that contains the stack dummy. This
8041 also restores inferior state prior to the call (struct
8042 infcall_suspend_state). */
8043 struct frame_info *frame = get_current_frame ();
8044
8045 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8046 frame_pop (frame);
8047 /* frame_pop calls reinit_frame_cache as the last thing it
8048 does which means there's now no selected frame. */
8049 }
8050
8051 select_frame (get_current_frame ());
8052
8053 /* Set the current source location. */
8054 set_current_sal_from_frame (get_current_frame ());
8055 }
8056
8057 /* Look up the hook_stop and run it (CLI internally handles problem
8058 of stop_command's pre-hook not existing). */
8059 if (stop_command != NULL)
8060 {
8061 stop_context saved_context;
8062
8063 try
8064 {
8065 execute_cmd_pre_hook (stop_command);
8066 }
8067 catch (const gdb_exception &ex)
8068 {
8069 exception_fprintf (gdb_stderr, ex,
8070 "Error while running hook_stop:\n");
8071 }
8072
8073 /* If the stop hook resumes the target, then there's no point in
8074 trying to notify about the previous stop; its context is
8075 gone. Likewise if the command switches thread or inferior --
8076 the observers would print a stop for the wrong
8077 thread/inferior. */
8078 if (saved_context.changed ())
8079 return 1;
8080 }
8081
8082 /* Notify observers about the stop. This is where the interpreters
8083 print the stop event. */
8084 if (inferior_ptid != null_ptid)
8085 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8086 stop_print_frame);
8087 else
8088 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8089
8090 annotate_stopped ();
8091
8092 if (target_has_execution)
8093 {
8094 if (last.kind != TARGET_WAITKIND_SIGNALLED
8095 && last.kind != TARGET_WAITKIND_EXITED
8096 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8097 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8098 Delete any breakpoint that is to be deleted at the next stop. */
8099 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8100 }
8101
8102 /* Try to get rid of automatically added inferiors that are no
8103 longer needed. Keeping those around slows down things linearly.
8104 Note that this never removes the current inferior. */
8105 prune_inferiors ();
8106
8107 return 0;
8108 }
8109 \f
8110 int
8111 signal_stop_state (int signo)
8112 {
8113 return signal_stop[signo];
8114 }
8115
8116 int
8117 signal_print_state (int signo)
8118 {
8119 return signal_print[signo];
8120 }
8121
8122 int
8123 signal_pass_state (int signo)
8124 {
8125 return signal_program[signo];
8126 }
8127
8128 static void
8129 signal_cache_update (int signo)
8130 {
8131 if (signo == -1)
8132 {
8133 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8134 signal_cache_update (signo);
8135
8136 return;
8137 }
8138
8139 signal_pass[signo] = (signal_stop[signo] == 0
8140 && signal_print[signo] == 0
8141 && signal_program[signo] == 1
8142 && signal_catch[signo] == 0);
8143 }
8144
8145 int
8146 signal_stop_update (int signo, int state)
8147 {
8148 int ret = signal_stop[signo];
8149
8150 signal_stop[signo] = state;
8151 signal_cache_update (signo);
8152 return ret;
8153 }
8154
8155 int
8156 signal_print_update (int signo, int state)
8157 {
8158 int ret = signal_print[signo];
8159
8160 signal_print[signo] = state;
8161 signal_cache_update (signo);
8162 return ret;
8163 }
8164
8165 int
8166 signal_pass_update (int signo, int state)
8167 {
8168 int ret = signal_program[signo];
8169
8170 signal_program[signo] = state;
8171 signal_cache_update (signo);
8172 return ret;
8173 }
8174
8175 /* Update the global 'signal_catch' from INFO and notify the
8176 target. */
8177
8178 void
8179 signal_catch_update (const unsigned int *info)
8180 {
8181 int i;
8182
8183 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8184 signal_catch[i] = info[i] > 0;
8185 signal_cache_update (-1);
8186 target_pass_signals (signal_pass);
8187 }
8188
8189 static void
8190 sig_print_header (void)
8191 {
8192 printf_filtered (_("Signal Stop\tPrint\tPass "
8193 "to program\tDescription\n"));
8194 }
8195
8196 static void
8197 sig_print_info (enum gdb_signal oursig)
8198 {
8199 const char *name = gdb_signal_to_name (oursig);
8200 int name_padding = 13 - strlen (name);
8201
8202 if (name_padding <= 0)
8203 name_padding = 0;
8204
8205 printf_filtered ("%s", name);
8206 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8207 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8208 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8209 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8210 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8211 }
8212
8213 /* Specify how various signals in the inferior should be handled. */
8214
8215 static void
8216 handle_command (const char *args, int from_tty)
8217 {
8218 int digits, wordlen;
8219 int sigfirst, siglast;
8220 enum gdb_signal oursig;
8221 int allsigs;
8222
8223 if (args == NULL)
8224 {
8225 error_no_arg (_("signal to handle"));
8226 }
8227
8228 /* Allocate and zero an array of flags for which signals to handle. */
8229
8230 const size_t nsigs = GDB_SIGNAL_LAST;
8231 unsigned char sigs[nsigs] {};
8232
8233 /* Break the command line up into args. */
8234
8235 gdb_argv built_argv (args);
8236
8237 /* Walk through the args, looking for signal oursigs, signal names, and
8238 actions. Signal numbers and signal names may be interspersed with
8239 actions, with the actions being performed for all signals cumulatively
8240 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8241
8242 for (char *arg : built_argv)
8243 {
8244 wordlen = strlen (arg);
8245 for (digits = 0; isdigit (arg[digits]); digits++)
8246 {;
8247 }
8248 allsigs = 0;
8249 sigfirst = siglast = -1;
8250
8251 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8252 {
8253 /* Apply action to all signals except those used by the
8254 debugger. Silently skip those. */
8255 allsigs = 1;
8256 sigfirst = 0;
8257 siglast = nsigs - 1;
8258 }
8259 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8260 {
8261 SET_SIGS (nsigs, sigs, signal_stop);
8262 SET_SIGS (nsigs, sigs, signal_print);
8263 }
8264 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8265 {
8266 UNSET_SIGS (nsigs, sigs, signal_program);
8267 }
8268 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8269 {
8270 SET_SIGS (nsigs, sigs, signal_print);
8271 }
8272 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8273 {
8274 SET_SIGS (nsigs, sigs, signal_program);
8275 }
8276 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8277 {
8278 UNSET_SIGS (nsigs, sigs, signal_stop);
8279 }
8280 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8281 {
8282 SET_SIGS (nsigs, sigs, signal_program);
8283 }
8284 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8285 {
8286 UNSET_SIGS (nsigs, sigs, signal_print);
8287 UNSET_SIGS (nsigs, sigs, signal_stop);
8288 }
8289 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8290 {
8291 UNSET_SIGS (nsigs, sigs, signal_program);
8292 }
8293 else if (digits > 0)
8294 {
8295 /* It is numeric. The numeric signal refers to our own
8296 internal signal numbering from target.h, not to host/target
8297 signal number. This is a feature; users really should be
8298 using symbolic names anyway, and the common ones like
8299 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8300
8301 sigfirst = siglast = (int)
8302 gdb_signal_from_command (atoi (arg));
8303 if (arg[digits] == '-')
8304 {
8305 siglast = (int)
8306 gdb_signal_from_command (atoi (arg + digits + 1));
8307 }
8308 if (sigfirst > siglast)
8309 {
8310 /* Bet he didn't figure we'd think of this case... */
8311 std::swap (sigfirst, siglast);
8312 }
8313 }
8314 else
8315 {
8316 oursig = gdb_signal_from_name (arg);
8317 if (oursig != GDB_SIGNAL_UNKNOWN)
8318 {
8319 sigfirst = siglast = (int) oursig;
8320 }
8321 else
8322 {
8323 /* Not a number and not a recognized flag word => complain. */
8324 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8325 }
8326 }
8327
8328 /* If any signal numbers or symbol names were found, set flags for
8329 which signals to apply actions to. */
8330
8331 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8332 {
8333 switch ((enum gdb_signal) signum)
8334 {
8335 case GDB_SIGNAL_TRAP:
8336 case GDB_SIGNAL_INT:
8337 if (!allsigs && !sigs[signum])
8338 {
8339 if (query (_("%s is used by the debugger.\n\
8340 Are you sure you want to change it? "),
8341 gdb_signal_to_name ((enum gdb_signal) signum)))
8342 {
8343 sigs[signum] = 1;
8344 }
8345 else
8346 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8347 }
8348 break;
8349 case GDB_SIGNAL_0:
8350 case GDB_SIGNAL_DEFAULT:
8351 case GDB_SIGNAL_UNKNOWN:
8352 /* Make sure that "all" doesn't print these. */
8353 break;
8354 default:
8355 sigs[signum] = 1;
8356 break;
8357 }
8358 }
8359 }
8360
8361 for (int signum = 0; signum < nsigs; signum++)
8362 if (sigs[signum])
8363 {
8364 signal_cache_update (-1);
8365 target_pass_signals (signal_pass);
8366 target_program_signals (signal_program);
8367
8368 if (from_tty)
8369 {
8370 /* Show the results. */
8371 sig_print_header ();
8372 for (; signum < nsigs; signum++)
8373 if (sigs[signum])
8374 sig_print_info ((enum gdb_signal) signum);
8375 }
8376
8377 break;
8378 }
8379 }
8380
8381 /* Complete the "handle" command. */
8382
8383 static void
8384 handle_completer (struct cmd_list_element *ignore,
8385 completion_tracker &tracker,
8386 const char *text, const char *word)
8387 {
8388 static const char * const keywords[] =
8389 {
8390 "all",
8391 "stop",
8392 "ignore",
8393 "print",
8394 "pass",
8395 "nostop",
8396 "noignore",
8397 "noprint",
8398 "nopass",
8399 NULL,
8400 };
8401
8402 signal_completer (ignore, tracker, text, word);
8403 complete_on_enum (tracker, keywords, word, word);
8404 }
8405
8406 enum gdb_signal
8407 gdb_signal_from_command (int num)
8408 {
8409 if (num >= 1 && num <= 15)
8410 return (enum gdb_signal) num;
8411 error (_("Only signals 1-15 are valid as numeric signals.\n\
8412 Use \"info signals\" for a list of symbolic signals."));
8413 }
8414
8415 /* Print current contents of the tables set by the handle command.
8416 It is possible we should just be printing signals actually used
8417 by the current target (but for things to work right when switching
8418 targets, all signals should be in the signal tables). */
8419
8420 static void
8421 info_signals_command (const char *signum_exp, int from_tty)
8422 {
8423 enum gdb_signal oursig;
8424
8425 sig_print_header ();
8426
8427 if (signum_exp)
8428 {
8429 /* First see if this is a symbol name. */
8430 oursig = gdb_signal_from_name (signum_exp);
8431 if (oursig == GDB_SIGNAL_UNKNOWN)
8432 {
8433 /* No, try numeric. */
8434 oursig =
8435 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8436 }
8437 sig_print_info (oursig);
8438 return;
8439 }
8440
8441 printf_filtered ("\n");
8442 /* These ugly casts brought to you by the native VAX compiler. */
8443 for (oursig = GDB_SIGNAL_FIRST;
8444 (int) oursig < (int) GDB_SIGNAL_LAST;
8445 oursig = (enum gdb_signal) ((int) oursig + 1))
8446 {
8447 QUIT;
8448
8449 if (oursig != GDB_SIGNAL_UNKNOWN
8450 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8451 sig_print_info (oursig);
8452 }
8453
8454 printf_filtered (_("\nUse the \"handle\" command "
8455 "to change these tables.\n"));
8456 }
8457
8458 /* The $_siginfo convenience variable is a bit special. We don't know
8459 for sure the type of the value until we actually have a chance to
8460 fetch the data. The type can change depending on gdbarch, so it is
8461 also dependent on which thread you have selected.
8462
8463 1. making $_siginfo be an internalvar that creates a new value on
8464 access.
8465
8466 2. making the value of $_siginfo be an lval_computed value. */
8467
8468 /* This function implements the lval_computed support for reading a
8469 $_siginfo value. */
8470
8471 static void
8472 siginfo_value_read (struct value *v)
8473 {
8474 LONGEST transferred;
8475
8476 /* If we can access registers, so can we access $_siginfo. Likewise
8477 vice versa. */
8478 validate_registers_access ();
8479
8480 transferred =
8481 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8482 NULL,
8483 value_contents_all_raw (v),
8484 value_offset (v),
8485 TYPE_LENGTH (value_type (v)));
8486
8487 if (transferred != TYPE_LENGTH (value_type (v)))
8488 error (_("Unable to read siginfo"));
8489 }
8490
8491 /* This function implements the lval_computed support for writing a
8492 $_siginfo value. */
8493
8494 static void
8495 siginfo_value_write (struct value *v, struct value *fromval)
8496 {
8497 LONGEST transferred;
8498
8499 /* If we can access registers, so can we access $_siginfo. Likewise
8500 vice versa. */
8501 validate_registers_access ();
8502
8503 transferred = target_write (current_top_target (),
8504 TARGET_OBJECT_SIGNAL_INFO,
8505 NULL,
8506 value_contents_all_raw (fromval),
8507 value_offset (v),
8508 TYPE_LENGTH (value_type (fromval)));
8509
8510 if (transferred != TYPE_LENGTH (value_type (fromval)))
8511 error (_("Unable to write siginfo"));
8512 }
8513
8514 static const struct lval_funcs siginfo_value_funcs =
8515 {
8516 siginfo_value_read,
8517 siginfo_value_write
8518 };
8519
8520 /* Return a new value with the correct type for the siginfo object of
8521 the current thread using architecture GDBARCH. Return a void value
8522 if there's no object available. */
8523
8524 static struct value *
8525 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8526 void *ignore)
8527 {
8528 if (target_has_stack
8529 && inferior_ptid != null_ptid
8530 && gdbarch_get_siginfo_type_p (gdbarch))
8531 {
8532 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8533
8534 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8535 }
8536
8537 return allocate_value (builtin_type (gdbarch)->builtin_void);
8538 }
8539
8540 \f
8541 /* infcall_suspend_state contains state about the program itself like its
8542 registers and any signal it received when it last stopped.
8543 This state must be restored regardless of how the inferior function call
8544 ends (either successfully, or after it hits a breakpoint or signal)
8545 if the program is to properly continue where it left off. */
8546
8547 class infcall_suspend_state
8548 {
8549 public:
8550 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8551 once the inferior function call has finished. */
8552 infcall_suspend_state (struct gdbarch *gdbarch,
8553 const struct thread_info *tp,
8554 struct regcache *regcache)
8555 : m_thread_suspend (tp->suspend),
8556 m_registers (new readonly_detached_regcache (*regcache))
8557 {
8558 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8559
8560 if (gdbarch_get_siginfo_type_p (gdbarch))
8561 {
8562 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8563 size_t len = TYPE_LENGTH (type);
8564
8565 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8566
8567 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8568 siginfo_data.get (), 0, len) != len)
8569 {
8570 /* Errors ignored. */
8571 siginfo_data.reset (nullptr);
8572 }
8573 }
8574
8575 if (siginfo_data)
8576 {
8577 m_siginfo_gdbarch = gdbarch;
8578 m_siginfo_data = std::move (siginfo_data);
8579 }
8580 }
8581
8582 /* Return a pointer to the stored register state. */
8583
8584 readonly_detached_regcache *registers () const
8585 {
8586 return m_registers.get ();
8587 }
8588
8589 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8590
8591 void restore (struct gdbarch *gdbarch,
8592 struct thread_info *tp,
8593 struct regcache *regcache) const
8594 {
8595 tp->suspend = m_thread_suspend;
8596
8597 if (m_siginfo_gdbarch == gdbarch)
8598 {
8599 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8600
8601 /* Errors ignored. */
8602 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8603 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8604 }
8605
8606 /* The inferior can be gone if the user types "print exit(0)"
8607 (and perhaps other times). */
8608 if (target_has_execution)
8609 /* NB: The register write goes through to the target. */
8610 regcache->restore (registers ());
8611 }
8612
8613 private:
8614 /* How the current thread stopped before the inferior function call was
8615 executed. */
8616 struct thread_suspend_state m_thread_suspend;
8617
8618 /* The registers before the inferior function call was executed. */
8619 std::unique_ptr<readonly_detached_regcache> m_registers;
8620
8621 /* Format of SIGINFO_DATA or NULL if it is not present. */
8622 struct gdbarch *m_siginfo_gdbarch = nullptr;
8623
8624 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8625 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8626 content would be invalid. */
8627 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8628 };
8629
8630 infcall_suspend_state_up
8631 save_infcall_suspend_state ()
8632 {
8633 struct thread_info *tp = inferior_thread ();
8634 struct regcache *regcache = get_current_regcache ();
8635 struct gdbarch *gdbarch = regcache->arch ();
8636
8637 infcall_suspend_state_up inf_state
8638 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8639
8640 /* Having saved the current state, adjust the thread state, discarding
8641 any stop signal information. The stop signal is not useful when
8642 starting an inferior function call, and run_inferior_call will not use
8643 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8644 tp->suspend.stop_signal = GDB_SIGNAL_0;
8645
8646 return inf_state;
8647 }
8648
8649 /* Restore inferior session state to INF_STATE. */
8650
8651 void
8652 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8653 {
8654 struct thread_info *tp = inferior_thread ();
8655 struct regcache *regcache = get_current_regcache ();
8656 struct gdbarch *gdbarch = regcache->arch ();
8657
8658 inf_state->restore (gdbarch, tp, regcache);
8659 discard_infcall_suspend_state (inf_state);
8660 }
8661
8662 void
8663 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8664 {
8665 delete inf_state;
8666 }
8667
8668 readonly_detached_regcache *
8669 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8670 {
8671 return inf_state->registers ();
8672 }
8673
8674 /* infcall_control_state contains state regarding gdb's control of the
8675 inferior itself like stepping control. It also contains session state like
8676 the user's currently selected frame. */
8677
8678 struct infcall_control_state
8679 {
8680 struct thread_control_state thread_control;
8681 struct inferior_control_state inferior_control;
8682
8683 /* Other fields: */
8684 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8685 int stopped_by_random_signal = 0;
8686
8687 /* ID if the selected frame when the inferior function call was made. */
8688 struct frame_id selected_frame_id {};
8689 };
8690
8691 /* Save all of the information associated with the inferior<==>gdb
8692 connection. */
8693
8694 infcall_control_state_up
8695 save_infcall_control_state ()
8696 {
8697 infcall_control_state_up inf_status (new struct infcall_control_state);
8698 struct thread_info *tp = inferior_thread ();
8699 struct inferior *inf = current_inferior ();
8700
8701 inf_status->thread_control = tp->control;
8702 inf_status->inferior_control = inf->control;
8703
8704 tp->control.step_resume_breakpoint = NULL;
8705 tp->control.exception_resume_breakpoint = NULL;
8706
8707 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8708 chain. If caller's caller is walking the chain, they'll be happier if we
8709 hand them back the original chain when restore_infcall_control_state is
8710 called. */
8711 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8712
8713 /* Other fields: */
8714 inf_status->stop_stack_dummy = stop_stack_dummy;
8715 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8716
8717 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8718
8719 return inf_status;
8720 }
8721
8722 static void
8723 restore_selected_frame (const frame_id &fid)
8724 {
8725 frame_info *frame = frame_find_by_id (fid);
8726
8727 /* If inf_status->selected_frame_id is NULL, there was no previously
8728 selected frame. */
8729 if (frame == NULL)
8730 {
8731 warning (_("Unable to restore previously selected frame."));
8732 return;
8733 }
8734
8735 select_frame (frame);
8736 }
8737
8738 /* Restore inferior session state to INF_STATUS. */
8739
8740 void
8741 restore_infcall_control_state (struct infcall_control_state *inf_status)
8742 {
8743 struct thread_info *tp = inferior_thread ();
8744 struct inferior *inf = current_inferior ();
8745
8746 if (tp->control.step_resume_breakpoint)
8747 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8748
8749 if (tp->control.exception_resume_breakpoint)
8750 tp->control.exception_resume_breakpoint->disposition
8751 = disp_del_at_next_stop;
8752
8753 /* Handle the bpstat_copy of the chain. */
8754 bpstat_clear (&tp->control.stop_bpstat);
8755
8756 tp->control = inf_status->thread_control;
8757 inf->control = inf_status->inferior_control;
8758
8759 /* Other fields: */
8760 stop_stack_dummy = inf_status->stop_stack_dummy;
8761 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8762
8763 if (target_has_stack)
8764 {
8765 /* The point of the try/catch is that if the stack is clobbered,
8766 walking the stack might encounter a garbage pointer and
8767 error() trying to dereference it. */
8768 try
8769 {
8770 restore_selected_frame (inf_status->selected_frame_id);
8771 }
8772 catch (const gdb_exception_error &ex)
8773 {
8774 exception_fprintf (gdb_stderr, ex,
8775 "Unable to restore previously selected frame:\n");
8776 /* Error in restoring the selected frame. Select the
8777 innermost frame. */
8778 select_frame (get_current_frame ());
8779 }
8780 }
8781
8782 delete inf_status;
8783 }
8784
8785 void
8786 discard_infcall_control_state (struct infcall_control_state *inf_status)
8787 {
8788 if (inf_status->thread_control.step_resume_breakpoint)
8789 inf_status->thread_control.step_resume_breakpoint->disposition
8790 = disp_del_at_next_stop;
8791
8792 if (inf_status->thread_control.exception_resume_breakpoint)
8793 inf_status->thread_control.exception_resume_breakpoint->disposition
8794 = disp_del_at_next_stop;
8795
8796 /* See save_infcall_control_state for info on stop_bpstat. */
8797 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8798
8799 delete inf_status;
8800 }
8801 \f
8802 /* See infrun.h. */
8803
8804 void
8805 clear_exit_convenience_vars (void)
8806 {
8807 clear_internalvar (lookup_internalvar ("_exitsignal"));
8808 clear_internalvar (lookup_internalvar ("_exitcode"));
8809 }
8810 \f
8811
8812 /* User interface for reverse debugging:
8813 Set exec-direction / show exec-direction commands
8814 (returns error unless target implements to_set_exec_direction method). */
8815
8816 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8817 static const char exec_forward[] = "forward";
8818 static const char exec_reverse[] = "reverse";
8819 static const char *exec_direction = exec_forward;
8820 static const char *const exec_direction_names[] = {
8821 exec_forward,
8822 exec_reverse,
8823 NULL
8824 };
8825
8826 static void
8827 set_exec_direction_func (const char *args, int from_tty,
8828 struct cmd_list_element *cmd)
8829 {
8830 if (target_can_execute_reverse)
8831 {
8832 if (!strcmp (exec_direction, exec_forward))
8833 execution_direction = EXEC_FORWARD;
8834 else if (!strcmp (exec_direction, exec_reverse))
8835 execution_direction = EXEC_REVERSE;
8836 }
8837 else
8838 {
8839 exec_direction = exec_forward;
8840 error (_("Target does not support this operation."));
8841 }
8842 }
8843
8844 static void
8845 show_exec_direction_func (struct ui_file *out, int from_tty,
8846 struct cmd_list_element *cmd, const char *value)
8847 {
8848 switch (execution_direction) {
8849 case EXEC_FORWARD:
8850 fprintf_filtered (out, _("Forward.\n"));
8851 break;
8852 case EXEC_REVERSE:
8853 fprintf_filtered (out, _("Reverse.\n"));
8854 break;
8855 default:
8856 internal_error (__FILE__, __LINE__,
8857 _("bogus execution_direction value: %d"),
8858 (int) execution_direction);
8859 }
8860 }
8861
8862 static void
8863 show_schedule_multiple (struct ui_file *file, int from_tty,
8864 struct cmd_list_element *c, const char *value)
8865 {
8866 fprintf_filtered (file, _("Resuming the execution of threads "
8867 "of all processes is %s.\n"), value);
8868 }
8869
8870 /* Implementation of `siginfo' variable. */
8871
8872 static const struct internalvar_funcs siginfo_funcs =
8873 {
8874 siginfo_make_value,
8875 NULL,
8876 NULL
8877 };
8878
8879 /* Callback for infrun's target events source. This is marked when a
8880 thread has a pending status to process. */
8881
8882 static void
8883 infrun_async_inferior_event_handler (gdb_client_data data)
8884 {
8885 inferior_event_handler (INF_REG_EVENT, NULL);
8886 }
8887
8888 void
8889 _initialize_infrun (void)
8890 {
8891 struct cmd_list_element *c;
8892
8893 /* Register extra event sources in the event loop. */
8894 infrun_async_inferior_event_token
8895 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8896
8897 add_info ("signals", info_signals_command, _("\
8898 What debugger does when program gets various signals.\n\
8899 Specify a signal as argument to print info on that signal only."));
8900 add_info_alias ("handle", "signals", 0);
8901
8902 c = add_com ("handle", class_run, handle_command, _("\
8903 Specify how to handle signals.\n\
8904 Usage: handle SIGNAL [ACTIONS]\n\
8905 Args are signals and actions to apply to those signals.\n\
8906 If no actions are specified, the current settings for the specified signals\n\
8907 will be displayed instead.\n\
8908 \n\
8909 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8910 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8911 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8912 The special arg \"all\" is recognized to mean all signals except those\n\
8913 used by the debugger, typically SIGTRAP and SIGINT.\n\
8914 \n\
8915 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8916 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8917 Stop means reenter debugger if this signal happens (implies print).\n\
8918 Print means print a message if this signal happens.\n\
8919 Pass means let program see this signal; otherwise program doesn't know.\n\
8920 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8921 Pass and Stop may be combined.\n\
8922 \n\
8923 Multiple signals may be specified. Signal numbers and signal names\n\
8924 may be interspersed with actions, with the actions being performed for\n\
8925 all signals cumulatively specified."));
8926 set_cmd_completer (c, handle_completer);
8927
8928 if (!dbx_commands)
8929 stop_command = add_cmd ("stop", class_obscure,
8930 not_just_help_class_command, _("\
8931 There is no `stop' command, but you can set a hook on `stop'.\n\
8932 This allows you to set a list of commands to be run each time execution\n\
8933 of the program stops."), &cmdlist);
8934
8935 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8936 Set inferior debugging."), _("\
8937 Show inferior debugging."), _("\
8938 When non-zero, inferior specific debugging is enabled."),
8939 NULL,
8940 show_debug_infrun,
8941 &setdebuglist, &showdebuglist);
8942
8943 add_setshow_boolean_cmd ("displaced", class_maintenance,
8944 &debug_displaced, _("\
8945 Set displaced stepping debugging."), _("\
8946 Show displaced stepping debugging."), _("\
8947 When non-zero, displaced stepping specific debugging is enabled."),
8948 NULL,
8949 show_debug_displaced,
8950 &setdebuglist, &showdebuglist);
8951
8952 add_setshow_boolean_cmd ("non-stop", no_class,
8953 &non_stop_1, _("\
8954 Set whether gdb controls the inferior in non-stop mode."), _("\
8955 Show whether gdb controls the inferior in non-stop mode."), _("\
8956 When debugging a multi-threaded program and this setting is\n\
8957 off (the default, also called all-stop mode), when one thread stops\n\
8958 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8959 all other threads in the program while you interact with the thread of\n\
8960 interest. When you continue or step a thread, you can allow the other\n\
8961 threads to run, or have them remain stopped, but while you inspect any\n\
8962 thread's state, all threads stop.\n\
8963 \n\
8964 In non-stop mode, when one thread stops, other threads can continue\n\
8965 to run freely. You'll be able to step each thread independently,\n\
8966 leave it stopped or free to run as needed."),
8967 set_non_stop,
8968 show_non_stop,
8969 &setlist,
8970 &showlist);
8971
8972 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
8973 {
8974 signal_stop[i] = 1;
8975 signal_print[i] = 1;
8976 signal_program[i] = 1;
8977 signal_catch[i] = 0;
8978 }
8979
8980 /* Signals caused by debugger's own actions should not be given to
8981 the program afterwards.
8982
8983 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8984 explicitly specifies that it should be delivered to the target
8985 program. Typically, that would occur when a user is debugging a
8986 target monitor on a simulator: the target monitor sets a
8987 breakpoint; the simulator encounters this breakpoint and halts
8988 the simulation handing control to GDB; GDB, noting that the stop
8989 address doesn't map to any known breakpoint, returns control back
8990 to the simulator; the simulator then delivers the hardware
8991 equivalent of a GDB_SIGNAL_TRAP to the program being
8992 debugged. */
8993 signal_program[GDB_SIGNAL_TRAP] = 0;
8994 signal_program[GDB_SIGNAL_INT] = 0;
8995
8996 /* Signals that are not errors should not normally enter the debugger. */
8997 signal_stop[GDB_SIGNAL_ALRM] = 0;
8998 signal_print[GDB_SIGNAL_ALRM] = 0;
8999 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9000 signal_print[GDB_SIGNAL_VTALRM] = 0;
9001 signal_stop[GDB_SIGNAL_PROF] = 0;
9002 signal_print[GDB_SIGNAL_PROF] = 0;
9003 signal_stop[GDB_SIGNAL_CHLD] = 0;
9004 signal_print[GDB_SIGNAL_CHLD] = 0;
9005 signal_stop[GDB_SIGNAL_IO] = 0;
9006 signal_print[GDB_SIGNAL_IO] = 0;
9007 signal_stop[GDB_SIGNAL_POLL] = 0;
9008 signal_print[GDB_SIGNAL_POLL] = 0;
9009 signal_stop[GDB_SIGNAL_URG] = 0;
9010 signal_print[GDB_SIGNAL_URG] = 0;
9011 signal_stop[GDB_SIGNAL_WINCH] = 0;
9012 signal_print[GDB_SIGNAL_WINCH] = 0;
9013 signal_stop[GDB_SIGNAL_PRIO] = 0;
9014 signal_print[GDB_SIGNAL_PRIO] = 0;
9015
9016 /* These signals are used internally by user-level thread
9017 implementations. (See signal(5) on Solaris.) Like the above
9018 signals, a healthy program receives and handles them as part of
9019 its normal operation. */
9020 signal_stop[GDB_SIGNAL_LWP] = 0;
9021 signal_print[GDB_SIGNAL_LWP] = 0;
9022 signal_stop[GDB_SIGNAL_WAITING] = 0;
9023 signal_print[GDB_SIGNAL_WAITING] = 0;
9024 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9025 signal_print[GDB_SIGNAL_CANCEL] = 0;
9026 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9027 signal_print[GDB_SIGNAL_LIBRT] = 0;
9028
9029 /* Update cached state. */
9030 signal_cache_update (-1);
9031
9032 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9033 &stop_on_solib_events, _("\
9034 Set stopping for shared library events."), _("\
9035 Show stopping for shared library events."), _("\
9036 If nonzero, gdb will give control to the user when the dynamic linker\n\
9037 notifies gdb of shared library events. The most common event of interest\n\
9038 to the user would be loading/unloading of a new library."),
9039 set_stop_on_solib_events,
9040 show_stop_on_solib_events,
9041 &setlist, &showlist);
9042
9043 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9044 follow_fork_mode_kind_names,
9045 &follow_fork_mode_string, _("\
9046 Set debugger response to a program call of fork or vfork."), _("\
9047 Show debugger response to a program call of fork or vfork."), _("\
9048 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9049 parent - the original process is debugged after a fork\n\
9050 child - the new process is debugged after a fork\n\
9051 The unfollowed process will continue to run.\n\
9052 By default, the debugger will follow the parent process."),
9053 NULL,
9054 show_follow_fork_mode_string,
9055 &setlist, &showlist);
9056
9057 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9058 follow_exec_mode_names,
9059 &follow_exec_mode_string, _("\
9060 Set debugger response to a program call of exec."), _("\
9061 Show debugger response to a program call of exec."), _("\
9062 An exec call replaces the program image of a process.\n\
9063 \n\
9064 follow-exec-mode can be:\n\
9065 \n\
9066 new - the debugger creates a new inferior and rebinds the process\n\
9067 to this new inferior. The program the process was running before\n\
9068 the exec call can be restarted afterwards by restarting the original\n\
9069 inferior.\n\
9070 \n\
9071 same - the debugger keeps the process bound to the same inferior.\n\
9072 The new executable image replaces the previous executable loaded in\n\
9073 the inferior. Restarting the inferior after the exec call restarts\n\
9074 the executable the process was running after the exec call.\n\
9075 \n\
9076 By default, the debugger will use the same inferior."),
9077 NULL,
9078 show_follow_exec_mode_string,
9079 &setlist, &showlist);
9080
9081 add_setshow_enum_cmd ("scheduler-locking", class_run,
9082 scheduler_enums, &scheduler_mode, _("\
9083 Set mode for locking scheduler during execution."), _("\
9084 Show mode for locking scheduler during execution."), _("\
9085 off == no locking (threads may preempt at any time)\n\
9086 on == full locking (no thread except the current thread may run)\n\
9087 This applies to both normal execution and replay mode.\n\
9088 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9089 In this mode, other threads may run during other commands.\n\
9090 This applies to both normal execution and replay mode.\n\
9091 replay == scheduler locked in replay mode and unlocked during normal execution."),
9092 set_schedlock_func, /* traps on target vector */
9093 show_scheduler_mode,
9094 &setlist, &showlist);
9095
9096 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9097 Set mode for resuming threads of all processes."), _("\
9098 Show mode for resuming threads of all processes."), _("\
9099 When on, execution commands (such as 'continue' or 'next') resume all\n\
9100 threads of all processes. When off (which is the default), execution\n\
9101 commands only resume the threads of the current process. The set of\n\
9102 threads that are resumed is further refined by the scheduler-locking\n\
9103 mode (see help set scheduler-locking)."),
9104 NULL,
9105 show_schedule_multiple,
9106 &setlist, &showlist);
9107
9108 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9109 Set mode of the step operation."), _("\
9110 Show mode of the step operation."), _("\
9111 When set, doing a step over a function without debug line information\n\
9112 will stop at the first instruction of that function. Otherwise, the\n\
9113 function is skipped and the step command stops at a different source line."),
9114 NULL,
9115 show_step_stop_if_no_debug,
9116 &setlist, &showlist);
9117
9118 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9119 &can_use_displaced_stepping, _("\
9120 Set debugger's willingness to use displaced stepping."), _("\
9121 Show debugger's willingness to use displaced stepping."), _("\
9122 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9123 supported by the target architecture. If off, gdb will not use displaced\n\
9124 stepping to step over breakpoints, even if such is supported by the target\n\
9125 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9126 if the target architecture supports it and non-stop mode is active, but will not\n\
9127 use it in all-stop mode (see help set non-stop)."),
9128 NULL,
9129 show_can_use_displaced_stepping,
9130 &setlist, &showlist);
9131
9132 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9133 &exec_direction, _("Set direction of execution.\n\
9134 Options are 'forward' or 'reverse'."),
9135 _("Show direction of execution (forward/reverse)."),
9136 _("Tells gdb whether to execute forward or backward."),
9137 set_exec_direction_func, show_exec_direction_func,
9138 &setlist, &showlist);
9139
9140 /* Set/show detach-on-fork: user-settable mode. */
9141
9142 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9143 Set whether gdb will detach the child of a fork."), _("\
9144 Show whether gdb will detach the child of a fork."), _("\
9145 Tells gdb whether to detach the child of a fork."),
9146 NULL, NULL, &setlist, &showlist);
9147
9148 /* Set/show disable address space randomization mode. */
9149
9150 add_setshow_boolean_cmd ("disable-randomization", class_support,
9151 &disable_randomization, _("\
9152 Set disabling of debuggee's virtual address space randomization."), _("\
9153 Show disabling of debuggee's virtual address space randomization."), _("\
9154 When this mode is on (which is the default), randomization of the virtual\n\
9155 address space is disabled. Standalone programs run with the randomization\n\
9156 enabled by default on some platforms."),
9157 &set_disable_randomization,
9158 &show_disable_randomization,
9159 &setlist, &showlist);
9160
9161 /* ptid initializations */
9162 inferior_ptid = null_ptid;
9163 target_last_wait_ptid = minus_one_ptid;
9164
9165 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9166 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9167 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9168 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9169
9170 /* Explicitly create without lookup, since that tries to create a
9171 value with a void typed value, and when we get here, gdbarch
9172 isn't initialized yet. At this point, we're quite sure there
9173 isn't another convenience variable of the same name. */
9174 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9175
9176 add_setshow_boolean_cmd ("observer", no_class,
9177 &observer_mode_1, _("\
9178 Set whether gdb controls the inferior in observer mode."), _("\
9179 Show whether gdb controls the inferior in observer mode."), _("\
9180 In observer mode, GDB can get data from the inferior, but not\n\
9181 affect its execution. Registers and memory may not be changed,\n\
9182 breakpoints may not be set, and the program cannot be interrupted\n\
9183 or signalled."),
9184 set_observer_mode,
9185 show_observer_mode,
9186 &setlist,
9187 &showlist);
9188 }
This page took 0.24496 seconds and 4 git commands to generate.