Use thread_info and inferior pointers more throughout
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static int follow_fork (void);
78
79 static int follow_fork_inferior (int follow_child, int detach_fork);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 void nullify_last_target_wait_ptid (void);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
95 /* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97 static struct async_event_handler *infrun_async_inferior_event_token;
98
99 /* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101 static int infrun_is_async = -1;
102
103 /* See infrun.h. */
104
105 void
106 infrun_async (int enable)
107 {
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 int step_stop_if_no_debug = 0;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static int detach_fork = 1;
155
156 int debug_displaced = 0;
157 static void
158 show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162 }
163
164 unsigned int debug_infrun = 0;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170 }
171
172
173 /* Support for disabling address space randomization. */
174
175 int disable_randomization = 1;
176
177 static void
178 show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190 }
191
192 static void
193 set_disable_randomization (const char *args, int from_tty,
194 struct cmd_list_element *c)
195 {
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200 }
201
202 /* User interface for non-stop mode. */
203
204 int non_stop = 0;
205 static int non_stop_1 = 0;
206
207 static void
208 set_non_stop (const char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218 }
219
220 static void
221 show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227 }
228
229 /* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
233 int observer_mode = 0;
234 static int observer_mode_1 = 0;
235
236 static void
237 set_observer_mode (const char *args, int from_tty,
238 struct cmd_list_element *c)
239 {
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270 }
271
272 static void
273 show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277 }
278
279 /* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285 void
286 update_observer_mode (void)
287 {
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302 }
303
304 /* Tables of how to react to signals; the user sets them. */
305
306 static unsigned char *signal_stop;
307 static unsigned char *signal_print;
308 static unsigned char *signal_program;
309
310 /* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314 static unsigned char *signal_catch;
315
316 /* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319 static unsigned char *signal_pass;
320
321 #define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329 #define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
337 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340 void
341 update_signals_program_target (void)
342 {
343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
344 }
345
346 /* Value to pass to target_resume() to cause all threads to resume. */
347
348 #define RESUME_ALL minus_one_ptid
349
350 /* Command list pointer for the "stop" placeholder. */
351
352 static struct cmd_list_element *stop_command;
353
354 /* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
356 int stop_on_solib_events;
357
358 /* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361 static void
362 set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
364 {
365 update_solib_breakpoints ();
366 }
367
368 static void
369 show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374 }
375
376 /* Nonzero after stop if current stack frame should be printed. */
377
378 static int stop_print_frame;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 void init_thread_stepping_state (struct thread_info *tss);
387
388 static const char follow_fork_mode_child[] = "child";
389 static const char follow_fork_mode_parent[] = "parent";
390
391 static const char *const follow_fork_mode_kind_names[] = {
392 follow_fork_mode_child,
393 follow_fork_mode_parent,
394 NULL
395 };
396
397 static const char *follow_fork_mode_string = follow_fork_mode_parent;
398 static void
399 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c, const char *value)
401 {
402 fprintf_filtered (file,
403 _("Debugger response to a program "
404 "call of fork or vfork is \"%s\".\n"),
405 value);
406 }
407 \f
408
409 /* Handle changes to the inferior list based on the type of fork,
410 which process is being followed, and whether the other process
411 should be detached. On entry inferior_ptid must be the ptid of
412 the fork parent. At return inferior_ptid is the ptid of the
413 followed inferior. */
414
415 static int
416 follow_fork_inferior (int follow_child, int detach_fork)
417 {
418 int has_vforked;
419 ptid_t parent_ptid, child_ptid;
420
421 has_vforked = (inferior_thread ()->pending_follow.kind
422 == TARGET_WAITKIND_VFORKED);
423 parent_ptid = inferior_ptid;
424 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
425
426 if (has_vforked
427 && !non_stop /* Non-stop always resumes both branches. */
428 && current_ui->prompt_state == PROMPT_BLOCKED
429 && !(follow_child || detach_fork || sched_multi))
430 {
431 /* The parent stays blocked inside the vfork syscall until the
432 child execs or exits. If we don't let the child run, then
433 the parent stays blocked. If we're telling the parent to run
434 in the foreground, the user will not be able to ctrl-c to get
435 back the terminal, effectively hanging the debug session. */
436 fprintf_filtered (gdb_stderr, _("\
437 Can not resume the parent process over vfork in the foreground while\n\
438 holding the child stopped. Try \"set detach-on-fork\" or \
439 \"set schedule-multiple\".\n"));
440 /* FIXME output string > 80 columns. */
441 return 1;
442 }
443
444 if (!follow_child)
445 {
446 /* Detach new forked process? */
447 if (detach_fork)
448 {
449 /* Before detaching from the child, remove all breakpoints
450 from it. If we forked, then this has already been taken
451 care of by infrun.c. If we vforked however, any
452 breakpoint inserted in the parent is visible in the
453 child, even those added while stopped in a vfork
454 catchpoint. This will remove the breakpoints from the
455 parent also, but they'll be reinserted below. */
456 if (has_vforked)
457 {
458 /* Keep breakpoints list in sync. */
459 remove_breakpoints_inf (current_inferior ());
460 }
461
462 if (print_inferior_events)
463 {
464 /* Ensure that we have a process ptid. */
465 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
466
467 target_terminal::ours_for_output ();
468 fprintf_filtered (gdb_stdlog,
469 _("[Detaching after %s from child %s]\n"),
470 has_vforked ? "vfork" : "fork",
471 target_pid_to_str (process_ptid));
472 }
473 }
474 else
475 {
476 struct inferior *parent_inf, *child_inf;
477
478 /* Add process to GDB's tables. */
479 child_inf = add_inferior (ptid_get_pid (child_ptid));
480
481 parent_inf = current_inferior ();
482 child_inf->attach_flag = parent_inf->attach_flag;
483 copy_terminal_info (child_inf, parent_inf);
484 child_inf->gdbarch = parent_inf->gdbarch;
485 copy_inferior_target_desc_info (child_inf, parent_inf);
486
487 scoped_restore_current_pspace_and_thread restore_pspace_thread;
488
489 inferior_ptid = child_ptid;
490 add_thread_silent (inferior_ptid);
491 set_current_inferior (child_inf);
492 child_inf->symfile_flags = SYMFILE_NO_READ;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 /* The parent will be frozen until the child is done
502 with the shared region. Keep track of the
503 parent. */
504 child_inf->vfork_parent = parent_inf;
505 child_inf->pending_detach = 0;
506 parent_inf->vfork_child = child_inf;
507 parent_inf->pending_detach = 0;
508 }
509 else
510 {
511 child_inf->aspace = new_address_space ();
512 child_inf->pspace = new program_space (child_inf->aspace);
513 child_inf->removable = 1;
514 set_current_program_space (child_inf->pspace);
515 clone_program_space (child_inf->pspace, parent_inf->pspace);
516
517 /* Let the shared library layer (e.g., solib-svr4) learn
518 about this new process, relocate the cloned exec, pull
519 in shared libraries, and install the solib event
520 breakpoint. If a "cloned-VM" event was propagated
521 better throughout the core, this wouldn't be
522 required. */
523 solib_create_inferior_hook (0);
524 }
525 }
526
527 if (has_vforked)
528 {
529 struct inferior *parent_inf;
530
531 parent_inf = current_inferior ();
532
533 /* If we detached from the child, then we have to be careful
534 to not insert breakpoints in the parent until the child
535 is done with the shared memory region. However, if we're
536 staying attached to the child, then we can and should
537 insert breakpoints, so that we can debug it. A
538 subsequent child exec or exit is enough to know when does
539 the child stops using the parent's address space. */
540 parent_inf->waiting_for_vfork_done = detach_fork;
541 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
542 }
543 }
544 else
545 {
546 /* Follow the child. */
547 struct inferior *parent_inf, *child_inf;
548 struct program_space *parent_pspace;
549
550 if (print_inferior_events)
551 {
552 std::string parent_pid = target_pid_to_str (parent_ptid);
553 std::string child_pid = target_pid_to_str (child_ptid);
554
555 target_terminal::ours_for_output ();
556 fprintf_filtered (gdb_stdlog,
557 _("[Attaching after %s %s to child %s]\n"),
558 parent_pid.c_str (),
559 has_vforked ? "vfork" : "fork",
560 child_pid.c_str ());
561 }
562
563 /* Add the new inferior first, so that the target_detach below
564 doesn't unpush the target. */
565
566 child_inf = add_inferior (ptid_get_pid (child_ptid));
567
568 parent_inf = current_inferior ();
569 child_inf->attach_flag = parent_inf->attach_flag;
570 copy_terminal_info (child_inf, parent_inf);
571 child_inf->gdbarch = parent_inf->gdbarch;
572 copy_inferior_target_desc_info (child_inf, parent_inf);
573
574 parent_pspace = parent_inf->pspace;
575
576 /* If we're vforking, we want to hold on to the parent until the
577 child exits or execs. At child exec or exit time we can
578 remove the old breakpoints from the parent and detach or
579 resume debugging it. Otherwise, detach the parent now; we'll
580 want to reuse it's program/address spaces, but we can't set
581 them to the child before removing breakpoints from the
582 parent, otherwise, the breakpoints module could decide to
583 remove breakpoints from the wrong process (since they'd be
584 assigned to the same address space). */
585
586 if (has_vforked)
587 {
588 gdb_assert (child_inf->vfork_parent == NULL);
589 gdb_assert (parent_inf->vfork_child == NULL);
590 child_inf->vfork_parent = parent_inf;
591 child_inf->pending_detach = 0;
592 parent_inf->vfork_child = child_inf;
593 parent_inf->pending_detach = detach_fork;
594 parent_inf->waiting_for_vfork_done = 0;
595 }
596 else if (detach_fork)
597 {
598 if (print_inferior_events)
599 {
600 /* Ensure that we have a process ptid. */
601 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (parent_ptid));
602
603 target_terminal::ours_for_output ();
604 fprintf_filtered (gdb_stdlog,
605 _("[Detaching after fork from "
606 "parent %s]\n"),
607 target_pid_to_str (process_ptid));
608 }
609
610 target_detach (parent_inf, 0);
611 }
612
613 /* Note that the detach above makes PARENT_INF dangling. */
614
615 /* Add the child thread to the appropriate lists, and switch to
616 this new thread, before cloning the program space, and
617 informing the solib layer about this new process. */
618
619 inferior_ptid = child_ptid;
620 add_thread_silent (inferior_ptid);
621 set_current_inferior (child_inf);
622
623 /* If this is a vfork child, then the address-space is shared
624 with the parent. If we detached from the parent, then we can
625 reuse the parent's program/address spaces. */
626 if (has_vforked || detach_fork)
627 {
628 child_inf->pspace = parent_pspace;
629 child_inf->aspace = child_inf->pspace->aspace;
630 }
631 else
632 {
633 child_inf->aspace = new_address_space ();
634 child_inf->pspace = new program_space (child_inf->aspace);
635 child_inf->removable = 1;
636 child_inf->symfile_flags = SYMFILE_NO_READ;
637 set_current_program_space (child_inf->pspace);
638 clone_program_space (child_inf->pspace, parent_pspace);
639
640 /* Let the shared library layer (e.g., solib-svr4) learn
641 about this new process, relocate the cloned exec, pull in
642 shared libraries, and install the solib event breakpoint.
643 If a "cloned-VM" event was propagated better throughout
644 the core, this wouldn't be required. */
645 solib_create_inferior_hook (0);
646 }
647 }
648
649 return target_follow_fork (follow_child, detach_fork);
650 }
651
652 /* Tell the target to follow the fork we're stopped at. Returns true
653 if the inferior should be resumed; false, if the target for some
654 reason decided it's best not to resume. */
655
656 static int
657 follow_fork (void)
658 {
659 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
660 int should_resume = 1;
661 struct thread_info *tp;
662
663 /* Copy user stepping state to the new inferior thread. FIXME: the
664 followed fork child thread should have a copy of most of the
665 parent thread structure's run control related fields, not just these.
666 Initialized to avoid "may be used uninitialized" warnings from gcc. */
667 struct breakpoint *step_resume_breakpoint = NULL;
668 struct breakpoint *exception_resume_breakpoint = NULL;
669 CORE_ADDR step_range_start = 0;
670 CORE_ADDR step_range_end = 0;
671 struct frame_id step_frame_id = { 0 };
672 struct thread_fsm *thread_fsm = NULL;
673
674 if (!non_stop)
675 {
676 ptid_t wait_ptid;
677 struct target_waitstatus wait_status;
678
679 /* Get the last target status returned by target_wait(). */
680 get_last_target_status (&wait_ptid, &wait_status);
681
682 /* If not stopped at a fork event, then there's nothing else to
683 do. */
684 if (wait_status.kind != TARGET_WAITKIND_FORKED
685 && wait_status.kind != TARGET_WAITKIND_VFORKED)
686 return 1;
687
688 /* Check if we switched over from WAIT_PTID, since the event was
689 reported. */
690 if (wait_ptid != minus_one_ptid
691 && inferior_ptid != wait_ptid)
692 {
693 /* We did. Switch back to WAIT_PTID thread, to tell the
694 target to follow it (in either direction). We'll
695 afterwards refuse to resume, and inform the user what
696 happened. */
697 thread_info *wait_thread
698 = find_thread_ptid (wait_ptid);
699 switch_to_thread (wait_thread);
700 should_resume = 0;
701 }
702 }
703
704 tp = inferior_thread ();
705
706 /* If there were any forks/vforks that were caught and are now to be
707 followed, then do so now. */
708 switch (tp->pending_follow.kind)
709 {
710 case TARGET_WAITKIND_FORKED:
711 case TARGET_WAITKIND_VFORKED:
712 {
713 ptid_t parent, child;
714
715 /* If the user did a next/step, etc, over a fork call,
716 preserve the stepping state in the fork child. */
717 if (follow_child && should_resume)
718 {
719 step_resume_breakpoint = clone_momentary_breakpoint
720 (tp->control.step_resume_breakpoint);
721 step_range_start = tp->control.step_range_start;
722 step_range_end = tp->control.step_range_end;
723 step_frame_id = tp->control.step_frame_id;
724 exception_resume_breakpoint
725 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
726 thread_fsm = tp->thread_fsm;
727
728 /* For now, delete the parent's sr breakpoint, otherwise,
729 parent/child sr breakpoints are considered duplicates,
730 and the child version will not be installed. Remove
731 this when the breakpoints module becomes aware of
732 inferiors and address spaces. */
733 delete_step_resume_breakpoint (tp);
734 tp->control.step_range_start = 0;
735 tp->control.step_range_end = 0;
736 tp->control.step_frame_id = null_frame_id;
737 delete_exception_resume_breakpoint (tp);
738 tp->thread_fsm = NULL;
739 }
740
741 parent = inferior_ptid;
742 child = tp->pending_follow.value.related_pid;
743
744 /* Set up inferior(s) as specified by the caller, and tell the
745 target to do whatever is necessary to follow either parent
746 or child. */
747 if (follow_fork_inferior (follow_child, detach_fork))
748 {
749 /* Target refused to follow, or there's some other reason
750 we shouldn't resume. */
751 should_resume = 0;
752 }
753 else
754 {
755 /* This pending follow fork event is now handled, one way
756 or another. The previous selected thread may be gone
757 from the lists by now, but if it is still around, need
758 to clear the pending follow request. */
759 tp = find_thread_ptid (parent);
760 if (tp)
761 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
762
763 /* This makes sure we don't try to apply the "Switched
764 over from WAIT_PID" logic above. */
765 nullify_last_target_wait_ptid ();
766
767 /* If we followed the child, switch to it... */
768 if (follow_child)
769 {
770 thread_info *child_thr = find_thread_ptid (child);
771 switch_to_thread (child_thr);
772
773 /* ... and preserve the stepping state, in case the
774 user was stepping over the fork call. */
775 if (should_resume)
776 {
777 tp = inferior_thread ();
778 tp->control.step_resume_breakpoint
779 = step_resume_breakpoint;
780 tp->control.step_range_start = step_range_start;
781 tp->control.step_range_end = step_range_end;
782 tp->control.step_frame_id = step_frame_id;
783 tp->control.exception_resume_breakpoint
784 = exception_resume_breakpoint;
785 tp->thread_fsm = thread_fsm;
786 }
787 else
788 {
789 /* If we get here, it was because we're trying to
790 resume from a fork catchpoint, but, the user
791 has switched threads away from the thread that
792 forked. In that case, the resume command
793 issued is most likely not applicable to the
794 child, so just warn, and refuse to resume. */
795 warning (_("Not resuming: switched threads "
796 "before following fork child."));
797 }
798
799 /* Reset breakpoints in the child as appropriate. */
800 follow_inferior_reset_breakpoints ();
801 }
802 }
803 }
804 break;
805 case TARGET_WAITKIND_SPURIOUS:
806 /* Nothing to follow. */
807 break;
808 default:
809 internal_error (__FILE__, __LINE__,
810 "Unexpected pending_follow.kind %d\n",
811 tp->pending_follow.kind);
812 break;
813 }
814
815 return should_resume;
816 }
817
818 static void
819 follow_inferior_reset_breakpoints (void)
820 {
821 struct thread_info *tp = inferior_thread ();
822
823 /* Was there a step_resume breakpoint? (There was if the user
824 did a "next" at the fork() call.) If so, explicitly reset its
825 thread number. Cloned step_resume breakpoints are disabled on
826 creation, so enable it here now that it is associated with the
827 correct thread.
828
829 step_resumes are a form of bp that are made to be per-thread.
830 Since we created the step_resume bp when the parent process
831 was being debugged, and now are switching to the child process,
832 from the breakpoint package's viewpoint, that's a switch of
833 "threads". We must update the bp's notion of which thread
834 it is for, or it'll be ignored when it triggers. */
835
836 if (tp->control.step_resume_breakpoint)
837 {
838 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
839 tp->control.step_resume_breakpoint->loc->enabled = 1;
840 }
841
842 /* Treat exception_resume breakpoints like step_resume breakpoints. */
843 if (tp->control.exception_resume_breakpoint)
844 {
845 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
846 tp->control.exception_resume_breakpoint->loc->enabled = 1;
847 }
848
849 /* Reinsert all breakpoints in the child. The user may have set
850 breakpoints after catching the fork, in which case those
851 were never set in the child, but only in the parent. This makes
852 sure the inserted breakpoints match the breakpoint list. */
853
854 breakpoint_re_set ();
855 insert_breakpoints ();
856 }
857
858 /* The child has exited or execed: resume threads of the parent the
859 user wanted to be executing. */
860
861 static int
862 proceed_after_vfork_done (struct thread_info *thread,
863 void *arg)
864 {
865 int pid = * (int *) arg;
866
867 if (thread->ptid.pid () == pid
868 && thread->state == THREAD_RUNNING
869 && !thread->executing
870 && !thread->stop_requested
871 && thread->suspend.stop_signal == GDB_SIGNAL_0)
872 {
873 if (debug_infrun)
874 fprintf_unfiltered (gdb_stdlog,
875 "infrun: resuming vfork parent thread %s\n",
876 target_pid_to_str (thread->ptid));
877
878 switch_to_thread (thread);
879 clear_proceed_status (0);
880 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
881 }
882
883 return 0;
884 }
885
886 /* Save/restore inferior_ptid, current program space and current
887 inferior. Only use this if the current context points at an exited
888 inferior (and therefore there's no current thread to save). */
889 class scoped_restore_exited_inferior
890 {
891 public:
892 scoped_restore_exited_inferior ()
893 : m_saved_ptid (&inferior_ptid)
894 {}
895
896 private:
897 scoped_restore_tmpl<ptid_t> m_saved_ptid;
898 scoped_restore_current_program_space m_pspace;
899 scoped_restore_current_inferior m_inferior;
900 };
901
902 /* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905 static void
906 handle_vfork_child_exec_or_exit (int exec)
907 {
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
921 struct program_space *pspace;
922 struct address_space *aspace;
923
924 /* follow-fork child, detach-on-fork on. */
925
926 inf->vfork_parent->pending_detach = 0;
927
928 gdb::optional<scoped_restore_exited_inferior>
929 maybe_restore_inferior;
930 gdb::optional<scoped_restore_current_pspace_and_thread>
931 maybe_restore_thread;
932
933 /* If we're handling a child exit, then inferior_ptid points
934 at the inferior's pid, not to a thread. */
935 if (!exec)
936 maybe_restore_inferior.emplace ();
937 else
938 maybe_restore_thread.emplace ();
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_inferior (inf->vfork_parent);
942 switch_to_thread (tp);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (print_inferior_events)
962 {
963 const char *pidstr
964 = target_pid_to_str (pid_to_ptid (inf->vfork_parent->pid));
965
966 target_terminal::ours_for_output ();
967
968 if (exec)
969 {
970 fprintf_filtered (gdb_stdlog,
971 _("[Detaching vfork parent %s "
972 "after child exec]\n"), pidstr);
973 }
974 else
975 {
976 fprintf_filtered (gdb_stdlog,
977 _("[Detaching vfork parent %s "
978 "after child exit]\n"), pidstr);
979 }
980 }
981
982 target_detach (inf->vfork_parent, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987 }
988 else if (exec)
989 {
990 /* We're staying attached to the parent, so, really give the
991 child a new address space. */
992 inf->pspace = new program_space (maybe_new_address_space ());
993 inf->aspace = inf->pspace->aspace;
994 inf->removable = 1;
995 set_current_program_space (inf->pspace);
996
997 resume_parent = inf->vfork_parent->pid;
998
999 /* Break the bonds. */
1000 inf->vfork_parent->vfork_child = NULL;
1001 }
1002 else
1003 {
1004 struct program_space *pspace;
1005
1006 /* If this is a vfork child exiting, then the pspace and
1007 aspaces were shared with the parent. Since we're
1008 reporting the process exit, we'll be mourning all that is
1009 found in the address space, and switching to null_ptid,
1010 preparing to start a new inferior. But, since we don't
1011 want to clobber the parent's address/program spaces, we
1012 go ahead and create a new one for this exiting
1013 inferior. */
1014
1015 /* Switch to null_ptid while running clone_program_space, so
1016 that clone_program_space doesn't want to read the
1017 selected frame of a dead process. */
1018 scoped_restore restore_ptid
1019 = make_scoped_restore (&inferior_ptid, null_ptid);
1020
1021 /* This inferior is dead, so avoid giving the breakpoints
1022 module the option to write through to it (cloning a
1023 program space resets breakpoints). */
1024 inf->aspace = NULL;
1025 inf->pspace = NULL;
1026 pspace = new program_space (maybe_new_address_space ());
1027 set_current_program_space (pspace);
1028 inf->removable = 1;
1029 inf->symfile_flags = SYMFILE_NO_READ;
1030 clone_program_space (pspace, inf->vfork_parent->pspace);
1031 inf->pspace = pspace;
1032 inf->aspace = pspace->aspace;
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 scoped_restore_current_thread restore_thread;
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055 }
1056 }
1057 }
1058
1059 /* Enum strings for "set|show follow-exec-mode". */
1060
1061 static const char follow_exec_mode_new[] = "new";
1062 static const char follow_exec_mode_same[] = "same";
1063 static const char *const follow_exec_mode_names[] =
1064 {
1065 follow_exec_mode_new,
1066 follow_exec_mode_same,
1067 NULL,
1068 };
1069
1070 static const char *follow_exec_mode_string = follow_exec_mode_same;
1071 static void
1072 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c, const char *value)
1074 {
1075 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1076 }
1077
1078 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1079
1080 static void
1081 follow_exec (ptid_t ptid, char *exec_file_target)
1082 {
1083 struct thread_info *th, *tmp;
1084 struct inferior *inf = current_inferior ();
1085 int pid = ptid_get_pid (ptid);
1086 ptid_t process_ptid;
1087
1088 /* This is an exec event that we actually wish to pay attention to.
1089 Refresh our symbol table to the newly exec'd program, remove any
1090 momentary bp's, etc.
1091
1092 If there are breakpoints, they aren't really inserted now,
1093 since the exec() transformed our inferior into a fresh set
1094 of instructions.
1095
1096 We want to preserve symbolic breakpoints on the list, since
1097 we have hopes that they can be reset after the new a.out's
1098 symbol table is read.
1099
1100 However, any "raw" breakpoints must be removed from the list
1101 (e.g., the solib bp's), since their address is probably invalid
1102 now.
1103
1104 And, we DON'T want to call delete_breakpoints() here, since
1105 that may write the bp's "shadow contents" (the instruction
1106 value that was overwritten witha TRAP instruction). Since
1107 we now have a new a.out, those shadow contents aren't valid. */
1108
1109 mark_breakpoints_out ();
1110
1111 /* The target reports the exec event to the main thread, even if
1112 some other thread does the exec, and even if the main thread was
1113 stopped or already gone. We may still have non-leader threads of
1114 the process on our list. E.g., on targets that don't have thread
1115 exit events (like remote); or on native Linux in non-stop mode if
1116 there were only two threads in the inferior and the non-leader
1117 one is the one that execs (and nothing forces an update of the
1118 thread list up to here). When debugging remotely, it's best to
1119 avoid extra traffic, when possible, so avoid syncing the thread
1120 list with the target, and instead go ahead and delete all threads
1121 of the process but one that reported the event. Note this must
1122 be done before calling update_breakpoints_after_exec, as
1123 otherwise clearing the threads' resources would reference stale
1124 thread breakpoints -- it may have been one of these threads that
1125 stepped across the exec. We could just clear their stepping
1126 states, but as long as we're iterating, might as well delete
1127 them. Deleting them now rather than at the next user-visible
1128 stop provides a nicer sequence of events for user and MI
1129 notifications. */
1130 ALL_THREADS_SAFE (th, tmp)
1131 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1132 delete_thread (th);
1133
1134 /* We also need to clear any left over stale state for the
1135 leader/event thread. E.g., if there was any step-resume
1136 breakpoint or similar, it's gone now. We cannot truly
1137 step-to-next statement through an exec(). */
1138 th = inferior_thread ();
1139 th->control.step_resume_breakpoint = NULL;
1140 th->control.exception_resume_breakpoint = NULL;
1141 th->control.single_step_breakpoints = NULL;
1142 th->control.step_range_start = 0;
1143 th->control.step_range_end = 0;
1144
1145 /* The user may have had the main thread held stopped in the
1146 previous image (e.g., schedlock on, or non-stop). Release
1147 it now. */
1148 th->stop_requested = 0;
1149
1150 update_breakpoints_after_exec ();
1151
1152 /* What is this a.out's name? */
1153 process_ptid = pid_to_ptid (pid);
1154 printf_unfiltered (_("%s is executing new program: %s\n"),
1155 target_pid_to_str (process_ptid),
1156 exec_file_target);
1157
1158 /* We've followed the inferior through an exec. Therefore, the
1159 inferior has essentially been killed & reborn. */
1160
1161 gdb_flush (gdb_stdout);
1162
1163 breakpoint_init_inferior (inf_execd);
1164
1165 gdb::unique_xmalloc_ptr<char> exec_file_host
1166 = exec_file_find (exec_file_target, NULL);
1167
1168 /* If we were unable to map the executable target pathname onto a host
1169 pathname, tell the user that. Otherwise GDB's subsequent behavior
1170 is confusing. Maybe it would even be better to stop at this point
1171 so that the user can specify a file manually before continuing. */
1172 if (exec_file_host == NULL)
1173 warning (_("Could not load symbols for executable %s.\n"
1174 "Do you need \"set sysroot\"?"),
1175 exec_file_target);
1176
1177 /* Reset the shared library package. This ensures that we get a
1178 shlib event when the child reaches "_start", at which point the
1179 dld will have had a chance to initialize the child. */
1180 /* Also, loading a symbol file below may trigger symbol lookups, and
1181 we don't want those to be satisfied by the libraries of the
1182 previous incarnation of this process. */
1183 no_shared_libraries (NULL, 0);
1184
1185 if (follow_exec_mode_string == follow_exec_mode_new)
1186 {
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
1190 /* Do exit processing for the original inferior before adding
1191 the new inferior so we don't have two active inferiors with
1192 the same ptid, which can confuse find_inferior_ptid. */
1193 exit_inferior_num_silent (current_inferior ()->num);
1194
1195 inf = add_inferior_with_spaces ();
1196 inf->pid = pid;
1197 target_follow_exec (inf, exec_file_target);
1198
1199 set_current_inferior (inf);
1200 set_current_program_space (inf->pspace);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1216 because the proper displacement for a PIE (Position Independent
1217 Executable) main symbol file will only be computed by
1218 solib_create_inferior_hook below. breakpoint_re_set would fail
1219 to insert the breakpoints with the zero displacement. */
1220 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1221
1222 /* If the target can specify a description, read it. Must do this
1223 after flipping to the new executable (because the target supplied
1224 description must be compatible with the executable's
1225 architecture, and the old executable may e.g., be 32-bit, while
1226 the new one 64-bit), and before anything involving memory or
1227 registers. */
1228 target_find_description ();
1229
1230 /* The add_thread call ends up reading registers, so do it after updating the
1231 target description. */
1232 if (follow_exec_mode_string == follow_exec_mode_new)
1233 add_thread (ptid);
1234
1235 solib_create_inferior_hook (0);
1236
1237 jit_inferior_created_hook ();
1238
1239 breakpoint_re_set ();
1240
1241 /* Reinsert all breakpoints. (Those which were symbolic have
1242 been reset to the proper address in the new a.out, thanks
1243 to symbol_file_command...). */
1244 insert_breakpoints ();
1245
1246 /* The next resume of this inferior should bring it to the shlib
1247 startup breakpoints. (If the user had also set bp's on
1248 "main" from the old (parent) process, then they'll auto-
1249 matically get reset there in the new process.). */
1250 }
1251
1252 /* The queue of threads that need to do a step-over operation to get
1253 past e.g., a breakpoint. What technique is used to step over the
1254 breakpoint/watchpoint does not matter -- all threads end up in the
1255 same queue, to maintain rough temporal order of execution, in order
1256 to avoid starvation, otherwise, we could e.g., find ourselves
1257 constantly stepping the same couple threads past their breakpoints
1258 over and over, if the single-step finish fast enough. */
1259 struct thread_info *step_over_queue_head;
1260
1261 /* Bit flags indicating what the thread needs to step over. */
1262
1263 enum step_over_what_flag
1264 {
1265 /* Step over a breakpoint. */
1266 STEP_OVER_BREAKPOINT = 1,
1267
1268 /* Step past a non-continuable watchpoint, in order to let the
1269 instruction execute so we can evaluate the watchpoint
1270 expression. */
1271 STEP_OVER_WATCHPOINT = 2
1272 };
1273 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1274
1275 /* Info about an instruction that is being stepped over. */
1276
1277 struct step_over_info
1278 {
1279 /* If we're stepping past a breakpoint, this is the address space
1280 and address of the instruction the breakpoint is set at. We'll
1281 skip inserting all breakpoints here. Valid iff ASPACE is
1282 non-NULL. */
1283 const address_space *aspace;
1284 CORE_ADDR address;
1285
1286 /* The instruction being stepped over triggers a nonsteppable
1287 watchpoint. If true, we'll skip inserting watchpoints. */
1288 int nonsteppable_watchpoint_p;
1289
1290 /* The thread's global number. */
1291 int thread;
1292 };
1293
1294 /* The step-over info of the location that is being stepped over.
1295
1296 Note that with async/breakpoint always-inserted mode, a user might
1297 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1298 being stepped over. As setting a new breakpoint inserts all
1299 breakpoints, we need to make sure the breakpoint being stepped over
1300 isn't inserted then. We do that by only clearing the step-over
1301 info when the step-over is actually finished (or aborted).
1302
1303 Presently GDB can only step over one breakpoint at any given time.
1304 Given threads that can't run code in the same address space as the
1305 breakpoint's can't really miss the breakpoint, GDB could be taught
1306 to step-over at most one breakpoint per address space (so this info
1307 could move to the address space object if/when GDB is extended).
1308 The set of breakpoints being stepped over will normally be much
1309 smaller than the set of all breakpoints, so a flag in the
1310 breakpoint location structure would be wasteful. A separate list
1311 also saves complexity and run-time, as otherwise we'd have to go
1312 through all breakpoint locations clearing their flag whenever we
1313 start a new sequence. Similar considerations weigh against storing
1314 this info in the thread object. Plus, not all step overs actually
1315 have breakpoint locations -- e.g., stepping past a single-step
1316 breakpoint, or stepping to complete a non-continuable
1317 watchpoint. */
1318 static struct step_over_info step_over_info;
1319
1320 /* Record the address of the breakpoint/instruction we're currently
1321 stepping over.
1322 N.B. We record the aspace and address now, instead of say just the thread,
1323 because when we need the info later the thread may be running. */
1324
1325 static void
1326 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1327 int nonsteppable_watchpoint_p,
1328 int thread)
1329 {
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1333 step_over_info.thread = thread;
1334 }
1335
1336 /* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339 static void
1340 clear_step_over_info (void)
1341 {
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static int
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
1476 /* Default destructor for displaced_step_closure. */
1477
1478 displaced_step_closure::~displaced_step_closure () = default;
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 inferior *inf;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not nullptr, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 thread_info *step_thread;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (inferior *inf)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->inf == inf)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (state->step_thread != nullptr)
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (thread_info *thread)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (thread != NULL);
1559
1560 displaced = get_displaced_stepping_state (thread->inf);
1561
1562 return (displaced != NULL && displaced->step_thread == thread);
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (inferior *inf)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (inf);
1573 if (displaced != NULL && displaced->step_thread != nullptr)
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (inferior *inf)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->inf == inf)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->inf = inf;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (current_inferior ());
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced != NULL
1614 && displaced->step_thread != nullptr
1615 && displaced->step_copy == addr)
1616 return displaced->step_closure;
1617
1618 return NULL;
1619 }
1620
1621 /* Remove the displaced stepping state of process PID. */
1622
1623 static void
1624 remove_displaced_stepping_state (inferior *inf)
1625 {
1626 struct displaced_step_inferior_state *it, **prev_next_p;
1627
1628 gdb_assert (inf != nullptr);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->inf == inf)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644 }
1645
1646 static void
1647 infrun_inferior_exit (struct inferior *inf)
1648 {
1649 remove_displaced_stepping_state (inf);
1650 }
1651
1652 /* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
1660 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1661
1662 static void
1663 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666 {
1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
1671 value, target_is_non_stop_p () ? "on" : "off");
1672 else
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
1676 }
1677
1678 /* Return non-zero if displaced stepping can/should be used to step
1679 over breakpoints of thread TP. */
1680
1681 static int
1682 use_displaced_stepping (struct thread_info *tp)
1683 {
1684 struct regcache *regcache = get_thread_regcache (tp);
1685 struct gdbarch *gdbarch = regcache->arch ();
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (tp->inf);
1689
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
1697 }
1698
1699 /* Clean out any stray displaced stepping state. */
1700 static void
1701 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1702 {
1703 /* Indicate that there is no cleanup pending. */
1704 displaced->step_thread = nullptr;
1705
1706 delete displaced->step_closure;
1707 displaced->step_closure = NULL;
1708 }
1709
1710 static void
1711 displaced_step_clear_cleanup (void *arg)
1712 {
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
1715
1716 displaced_step_clear (state);
1717 }
1718
1719 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720 void
1721 displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724 {
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730 }
1731
1732 /* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
1748 static int
1749 displaced_step_prepare_throw (thread_info *tp)
1750 {
1751 struct cleanup *ignore_cleanups;
1752 regcache *regcache = get_thread_regcache (tp);
1753 struct gdbarch *gdbarch = regcache->arch ();
1754 const address_space *aspace = regcache->aspace ();
1755 CORE_ADDR original, copy;
1756 ULONGEST len;
1757 struct displaced_step_closure *closure;
1758 struct displaced_step_inferior_state *displaced;
1759 int status;
1760
1761 /* We should never reach this function if the architecture does not
1762 support displaced stepping. */
1763 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1764
1765 /* Nor if the thread isn't meant to step over a breakpoint. */
1766 gdb_assert (tp->control.trap_expected);
1767
1768 /* Disable range stepping while executing in the scratch pad. We
1769 want a single-step even if executing the displaced instruction in
1770 the scratch buffer lands within the stepping range (e.g., a
1771 jump/branch). */
1772 tp->control.may_range_step = 0;
1773
1774 /* We have to displaced step one thread at a time, as we only have
1775 access to a single scratch space per inferior. */
1776
1777 displaced = add_displaced_stepping_state (tp->inf);
1778
1779 if (displaced->step_thread != nullptr)
1780 {
1781 /* Already waiting for a displaced step to finish. Defer this
1782 request and place in queue. */
1783
1784 if (debug_displaced)
1785 fprintf_unfiltered (gdb_stdlog,
1786 "displaced: deferring step of %s\n",
1787 target_pid_to_str (tp->ptid));
1788
1789 thread_step_over_chain_enqueue (tp);
1790 return 0;
1791 }
1792 else
1793 {
1794 if (debug_displaced)
1795 fprintf_unfiltered (gdb_stdlog,
1796 "displaced: stepping %s now\n",
1797 target_pid_to_str (tp->ptid));
1798 }
1799
1800 displaced_step_clear (displaced);
1801
1802 scoped_restore_current_thread restore_thread;
1803
1804 switch_to_thread (tp);
1805
1806 original = regcache_read_pc (regcache);
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
1829 return -1;
1830 }
1831
1832 /* Save the original contents of the copy area. */
1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1834 ignore_cleanups = make_cleanup (free_current_contents,
1835 &displaced->step_saved_copy);
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
1842 if (debug_displaced)
1843 {
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1852 original, copy, regcache);
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
1858 do_cleanups (ignore_cleanups);
1859 return -1;
1860 }
1861
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
1864 displaced->step_thread = tp;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
1869
1870 make_cleanup (displaced_step_clear_cleanup, displaced);
1871
1872 /* Resume execution at the copy. */
1873 regcache_write_pc (regcache, copy);
1874
1875 discard_cleanups (ignore_cleanups);
1876
1877 if (debug_displaced)
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
1880
1881 return 1;
1882 }
1883
1884 /* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887 static int
1888 displaced_step_prepare (thread_info *thread)
1889 {
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (thread);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
1915 warning (_("disabling displaced stepping: %s"),
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (thread->inf);
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927 }
1928
1929 static void
1930 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
1932 {
1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1934
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
1937 }
1938
1939 /* Restore the contents of the copy area for thread PTID. */
1940
1941 static void
1942 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944 {
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954 }
1955
1956 /* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962 static int
1963 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1964 {
1965 struct cleanup *old_cleanups;
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (event_thread->inf);
1968 int ret;
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
1972 return 0;
1973
1974 /* Was this event for the thread we displaced? */
1975 if (displaced->step_thread != event_thread)
1976 return 0;
1977
1978 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1979
1980 displaced_step_restore (displaced, displaced->step_thread->ptid);
1981
1982 /* Fixup may need to read memory/registers. Switch to the thread
1983 that we're fixing up. Also, target_stopped_by_watchpoint checks
1984 the current thread. */
1985 switch_to_thread (event_thread);
1986
1987 /* Did the instruction complete successfully? */
1988 if (signal == GDB_SIGNAL_TRAP
1989 && !(target_stopped_by_watchpoint ()
1990 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1991 || target_have_steppable_watchpoint)))
1992 {
1993 /* Fix up the resulting state. */
1994 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1995 displaced->step_closure,
1996 displaced->step_original,
1997 displaced->step_copy,
1998 get_thread_regcache (displaced->step_thread));
1999 ret = 1;
2000 }
2001 else
2002 {
2003 /* Since the instruction didn't complete, all we can do is
2004 relocate the PC. */
2005 struct regcache *regcache = get_thread_regcache (event_thread);
2006 CORE_ADDR pc = regcache_read_pc (regcache);
2007
2008 pc = displaced->step_original + (pc - displaced->step_copy);
2009 regcache_write_pc (regcache, pc);
2010 ret = -1;
2011 }
2012
2013 do_cleanups (old_cleanups);
2014
2015 displaced->step_thread = nullptr;
2016
2017 return ret;
2018 }
2019
2020 /* Data to be passed around while handling an event. This data is
2021 discarded between events. */
2022 struct execution_control_state
2023 {
2024 ptid_t ptid;
2025 /* The thread that got the event, if this was a thread event; NULL
2026 otherwise. */
2027 struct thread_info *event_thread;
2028
2029 struct target_waitstatus ws;
2030 int stop_func_filled_in;
2031 CORE_ADDR stop_func_start;
2032 CORE_ADDR stop_func_end;
2033 const char *stop_func_name;
2034 int wait_some_more;
2035
2036 /* True if the event thread hit the single-step breakpoint of
2037 another thread. Thus the event doesn't cause a stop, the thread
2038 needs to be single-stepped past the single-step breakpoint before
2039 we can switch back to the original stepping thread. */
2040 int hit_singlestep_breakpoint;
2041 };
2042
2043 /* Clear ECS and set it to point at TP. */
2044
2045 static void
2046 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2047 {
2048 memset (ecs, 0, sizeof (*ecs));
2049 ecs->event_thread = tp;
2050 ecs->ptid = tp->ptid;
2051 }
2052
2053 static void keep_going_pass_signal (struct execution_control_state *ecs);
2054 static void prepare_to_wait (struct execution_control_state *ecs);
2055 static int keep_going_stepped_thread (struct thread_info *tp);
2056 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2057
2058 /* Are there any pending step-over requests? If so, run all we can
2059 now and return true. Otherwise, return false. */
2060
2061 static int
2062 start_step_over (void)
2063 {
2064 struct thread_info *tp, *next;
2065
2066 /* Don't start a new step-over if we already have an in-line
2067 step-over operation ongoing. */
2068 if (step_over_info_valid_p ())
2069 return 0;
2070
2071 for (tp = step_over_queue_head; tp != NULL; tp = next)
2072 {
2073 struct execution_control_state ecss;
2074 struct execution_control_state *ecs = &ecss;
2075 step_over_what step_what;
2076 int must_be_in_line;
2077
2078 gdb_assert (!tp->stop_requested);
2079
2080 next = thread_step_over_chain_next (tp);
2081
2082 /* If this inferior already has a displaced step in process,
2083 don't start a new one. */
2084 if (displaced_step_in_progress (tp->inf))
2085 continue;
2086
2087 step_what = thread_still_needs_step_over (tp);
2088 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2089 || ((step_what & STEP_OVER_BREAKPOINT)
2090 && !use_displaced_stepping (tp)));
2091
2092 /* We currently stop all threads of all processes to step-over
2093 in-line. If we need to start a new in-line step-over, let
2094 any pending displaced steps finish first. */
2095 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2096 return 0;
2097
2098 thread_step_over_chain_remove (tp);
2099
2100 if (step_over_queue_head == NULL)
2101 {
2102 if (debug_infrun)
2103 fprintf_unfiltered (gdb_stdlog,
2104 "infrun: step-over queue now empty\n");
2105 }
2106
2107 if (tp->control.trap_expected
2108 || tp->resumed
2109 || tp->executing)
2110 {
2111 internal_error (__FILE__, __LINE__,
2112 "[%s] has inconsistent state: "
2113 "trap_expected=%d, resumed=%d, executing=%d\n",
2114 target_pid_to_str (tp->ptid),
2115 tp->control.trap_expected,
2116 tp->resumed,
2117 tp->executing);
2118 }
2119
2120 if (debug_infrun)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "infrun: resuming [%s] for step-over\n",
2123 target_pid_to_str (tp->ptid));
2124
2125 /* keep_going_pass_signal skips the step-over if the breakpoint
2126 is no longer inserted. In all-stop, we want to keep looking
2127 for a thread that needs a step-over instead of resuming TP,
2128 because we wouldn't be able to resume anything else until the
2129 target stops again. In non-stop, the resume always resumes
2130 only TP, so it's OK to let the thread resume freely. */
2131 if (!target_is_non_stop_p () && !step_what)
2132 continue;
2133
2134 switch_to_thread (tp);
2135 reset_ecs (ecs, tp);
2136 keep_going_pass_signal (ecs);
2137
2138 if (!ecs->wait_some_more)
2139 error (_("Command aborted."));
2140
2141 gdb_assert (tp->resumed);
2142
2143 /* If we started a new in-line step-over, we're done. */
2144 if (step_over_info_valid_p ())
2145 {
2146 gdb_assert (tp->control.trap_expected);
2147 return 1;
2148 }
2149
2150 if (!target_is_non_stop_p ())
2151 {
2152 /* On all-stop, shouldn't have resumed unless we needed a
2153 step over. */
2154 gdb_assert (tp->control.trap_expected
2155 || tp->step_after_step_resume_breakpoint);
2156
2157 /* With remote targets (at least), in all-stop, we can't
2158 issue any further remote commands until the program stops
2159 again. */
2160 return 1;
2161 }
2162
2163 /* Either the thread no longer needed a step-over, or a new
2164 displaced stepping sequence started. Even in the latter
2165 case, continue looking. Maybe we can also start another
2166 displaced step on a thread of other process. */
2167 }
2168
2169 return 0;
2170 }
2171
2172 /* Update global variables holding ptids to hold NEW_PTID if they were
2173 holding OLD_PTID. */
2174 static void
2175 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2176 {
2177 struct displaced_step_inferior_state *displaced;
2178
2179 if (ptid_equal (inferior_ptid, old_ptid))
2180 inferior_ptid = new_ptid;
2181 }
2182
2183 \f
2184
2185 static const char schedlock_off[] = "off";
2186 static const char schedlock_on[] = "on";
2187 static const char schedlock_step[] = "step";
2188 static const char schedlock_replay[] = "replay";
2189 static const char *const scheduler_enums[] = {
2190 schedlock_off,
2191 schedlock_on,
2192 schedlock_step,
2193 schedlock_replay,
2194 NULL
2195 };
2196 static const char *scheduler_mode = schedlock_replay;
2197 static void
2198 show_scheduler_mode (struct ui_file *file, int from_tty,
2199 struct cmd_list_element *c, const char *value)
2200 {
2201 fprintf_filtered (file,
2202 _("Mode for locking scheduler "
2203 "during execution is \"%s\".\n"),
2204 value);
2205 }
2206
2207 static void
2208 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2209 {
2210 if (!target_can_lock_scheduler)
2211 {
2212 scheduler_mode = schedlock_off;
2213 error (_("Target '%s' cannot support this command."), target_shortname);
2214 }
2215 }
2216
2217 /* True if execution commands resume all threads of all processes by
2218 default; otherwise, resume only threads of the current inferior
2219 process. */
2220 int sched_multi = 0;
2221
2222 /* Try to setup for software single stepping over the specified location.
2223 Return 1 if target_resume() should use hardware single step.
2224
2225 GDBARCH the current gdbarch.
2226 PC the location to step over. */
2227
2228 static int
2229 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2230 {
2231 int hw_step = 1;
2232
2233 if (execution_direction == EXEC_FORWARD
2234 && gdbarch_software_single_step_p (gdbarch))
2235 hw_step = !insert_single_step_breakpoints (gdbarch);
2236
2237 return hw_step;
2238 }
2239
2240 /* See infrun.h. */
2241
2242 ptid_t
2243 user_visible_resume_ptid (int step)
2244 {
2245 ptid_t resume_ptid;
2246
2247 if (non_stop)
2248 {
2249 /* With non-stop mode on, threads are always handled
2250 individually. */
2251 resume_ptid = inferior_ptid;
2252 }
2253 else if ((scheduler_mode == schedlock_on)
2254 || (scheduler_mode == schedlock_step && step))
2255 {
2256 /* User-settable 'scheduler' mode requires solo thread
2257 resume. */
2258 resume_ptid = inferior_ptid;
2259 }
2260 else if ((scheduler_mode == schedlock_replay)
2261 && target_record_will_replay (minus_one_ptid, execution_direction))
2262 {
2263 /* User-settable 'scheduler' mode requires solo thread resume in replay
2264 mode. */
2265 resume_ptid = inferior_ptid;
2266 }
2267 else if (!sched_multi && target_supports_multi_process ())
2268 {
2269 /* Resume all threads of the current process (and none of other
2270 processes). */
2271 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2272 }
2273 else
2274 {
2275 /* Resume all threads of all processes. */
2276 resume_ptid = RESUME_ALL;
2277 }
2278
2279 return resume_ptid;
2280 }
2281
2282 /* Return a ptid representing the set of threads that we will resume,
2283 in the perspective of the target, assuming run control handling
2284 does not require leaving some threads stopped (e.g., stepping past
2285 breakpoint). USER_STEP indicates whether we're about to start the
2286 target for a stepping command. */
2287
2288 static ptid_t
2289 internal_resume_ptid (int user_step)
2290 {
2291 /* In non-stop, we always control threads individually. Note that
2292 the target may always work in non-stop mode even with "set
2293 non-stop off", in which case user_visible_resume_ptid could
2294 return a wildcard ptid. */
2295 if (target_is_non_stop_p ())
2296 return inferior_ptid;
2297 else
2298 return user_visible_resume_ptid (user_step);
2299 }
2300
2301 /* Wrapper for target_resume, that handles infrun-specific
2302 bookkeeping. */
2303
2304 static void
2305 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2306 {
2307 struct thread_info *tp = inferior_thread ();
2308
2309 gdb_assert (!tp->stop_requested);
2310
2311 /* Install inferior's terminal modes. */
2312 target_terminal::inferior ();
2313
2314 /* Avoid confusing the next resume, if the next stop/resume
2315 happens to apply to another thread. */
2316 tp->suspend.stop_signal = GDB_SIGNAL_0;
2317
2318 /* Advise target which signals may be handled silently.
2319
2320 If we have removed breakpoints because we are stepping over one
2321 in-line (in any thread), we need to receive all signals to avoid
2322 accidentally skipping a breakpoint during execution of a signal
2323 handler.
2324
2325 Likewise if we're displaced stepping, otherwise a trap for a
2326 breakpoint in a signal handler might be confused with the
2327 displaced step finishing. We don't make the displaced_step_fixup
2328 step distinguish the cases instead, because:
2329
2330 - a backtrace while stopped in the signal handler would show the
2331 scratch pad as frame older than the signal handler, instead of
2332 the real mainline code.
2333
2334 - when the thread is later resumed, the signal handler would
2335 return to the scratch pad area, which would no longer be
2336 valid. */
2337 if (step_over_info_valid_p ()
2338 || displaced_step_in_progress (tp->inf))
2339 target_pass_signals (0, NULL);
2340 else
2341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2342
2343 target_resume (resume_ptid, step, sig);
2344
2345 target_commit_resume ();
2346 }
2347
2348 /* Resume the inferior. SIG is the signal to give the inferior
2349 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2350 call 'resume', which handles exceptions. */
2351
2352 static void
2353 resume_1 (enum gdb_signal sig)
2354 {
2355 struct regcache *regcache = get_current_regcache ();
2356 struct gdbarch *gdbarch = regcache->arch ();
2357 struct thread_info *tp = inferior_thread ();
2358 CORE_ADDR pc = regcache_read_pc (regcache);
2359 const address_space *aspace = regcache->aspace ();
2360 ptid_t resume_ptid;
2361 /* This represents the user's step vs continue request. When
2362 deciding whether "set scheduler-locking step" applies, it's the
2363 user's intention that counts. */
2364 const int user_step = tp->control.stepping_command;
2365 /* This represents what we'll actually request the target to do.
2366 This can decay from a step to a continue, if e.g., we need to
2367 implement single-stepping with breakpoints (software
2368 single-step). */
2369 int step;
2370
2371 gdb_assert (!tp->stop_requested);
2372 gdb_assert (!thread_is_in_step_over_chain (tp));
2373
2374 if (tp->suspend.waitstatus_pending_p)
2375 {
2376 if (debug_infrun)
2377 {
2378 std::string statstr
2379 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2380
2381 fprintf_unfiltered (gdb_stdlog,
2382 "infrun: resume: thread %s has pending wait "
2383 "status %s (currently_stepping=%d).\n",
2384 target_pid_to_str (tp->ptid), statstr.c_str (),
2385 currently_stepping (tp));
2386 }
2387
2388 tp->resumed = 1;
2389
2390 /* FIXME: What should we do if we are supposed to resume this
2391 thread with a signal? Maybe we should maintain a queue of
2392 pending signals to deliver. */
2393 if (sig != GDB_SIGNAL_0)
2394 {
2395 warning (_("Couldn't deliver signal %s to %s."),
2396 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2397 }
2398
2399 tp->suspend.stop_signal = GDB_SIGNAL_0;
2400
2401 if (target_can_async_p ())
2402 {
2403 target_async (1);
2404 /* Tell the event loop we have an event to process. */
2405 mark_async_event_handler (infrun_async_inferior_event_token);
2406 }
2407 return;
2408 }
2409
2410 tp->stepped_breakpoint = 0;
2411
2412 /* Depends on stepped_breakpoint. */
2413 step = currently_stepping (tp);
2414
2415 if (current_inferior ()->waiting_for_vfork_done)
2416 {
2417 /* Don't try to single-step a vfork parent that is waiting for
2418 the child to get out of the shared memory region (by exec'ing
2419 or exiting). This is particularly important on software
2420 single-step archs, as the child process would trip on the
2421 software single step breakpoint inserted for the parent
2422 process. Since the parent will not actually execute any
2423 instruction until the child is out of the shared region (such
2424 are vfork's semantics), it is safe to simply continue it.
2425 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2426 the parent, and tell it to `keep_going', which automatically
2427 re-sets it stepping. */
2428 if (debug_infrun)
2429 fprintf_unfiltered (gdb_stdlog,
2430 "infrun: resume : clear step\n");
2431 step = 0;
2432 }
2433
2434 if (debug_infrun)
2435 fprintf_unfiltered (gdb_stdlog,
2436 "infrun: resume (step=%d, signal=%s), "
2437 "trap_expected=%d, current thread [%s] at %s\n",
2438 step, gdb_signal_to_symbol_string (sig),
2439 tp->control.trap_expected,
2440 target_pid_to_str (inferior_ptid),
2441 paddress (gdbarch, pc));
2442
2443 /* Normally, by the time we reach `resume', the breakpoints are either
2444 removed or inserted, as appropriate. The exception is if we're sitting
2445 at a permanent breakpoint; we need to step over it, but permanent
2446 breakpoints can't be removed. So we have to test for it here. */
2447 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2448 {
2449 if (sig != GDB_SIGNAL_0)
2450 {
2451 /* We have a signal to pass to the inferior. The resume
2452 may, or may not take us to the signal handler. If this
2453 is a step, we'll need to stop in the signal handler, if
2454 there's one, (if the target supports stepping into
2455 handlers), or in the next mainline instruction, if
2456 there's no handler. If this is a continue, we need to be
2457 sure to run the handler with all breakpoints inserted.
2458 In all cases, set a breakpoint at the current address
2459 (where the handler returns to), and once that breakpoint
2460 is hit, resume skipping the permanent breakpoint. If
2461 that breakpoint isn't hit, then we've stepped into the
2462 signal handler (or hit some other event). We'll delete
2463 the step-resume breakpoint then. */
2464
2465 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog,
2467 "infrun: resume: skipping permanent breakpoint, "
2468 "deliver signal first\n");
2469
2470 clear_step_over_info ();
2471 tp->control.trap_expected = 0;
2472
2473 if (tp->control.step_resume_breakpoint == NULL)
2474 {
2475 /* Set a "high-priority" step-resume, as we don't want
2476 user breakpoints at PC to trigger (again) when this
2477 hits. */
2478 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2479 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2480
2481 tp->step_after_step_resume_breakpoint = step;
2482 }
2483
2484 insert_breakpoints ();
2485 }
2486 else
2487 {
2488 /* There's no signal to pass, we can go ahead and skip the
2489 permanent breakpoint manually. */
2490 if (debug_infrun)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "infrun: resume: skipping permanent breakpoint\n");
2493 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2494 /* Update pc to reflect the new address from which we will
2495 execute instructions. */
2496 pc = regcache_read_pc (regcache);
2497
2498 if (step)
2499 {
2500 /* We've already advanced the PC, so the stepping part
2501 is done. Now we need to arrange for a trap to be
2502 reported to handle_inferior_event. Set a breakpoint
2503 at the current PC, and run to it. Don't update
2504 prev_pc, because if we end in
2505 switch_back_to_stepped_thread, we want the "expected
2506 thread advanced also" branch to be taken. IOW, we
2507 don't want this thread to step further from PC
2508 (overstep). */
2509 gdb_assert (!step_over_info_valid_p ());
2510 insert_single_step_breakpoint (gdbarch, aspace, pc);
2511 insert_breakpoints ();
2512
2513 resume_ptid = internal_resume_ptid (user_step);
2514 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2515 tp->resumed = 1;
2516 return;
2517 }
2518 }
2519 }
2520
2521 /* If we have a breakpoint to step over, make sure to do a single
2522 step only. Same if we have software watchpoints. */
2523 if (tp->control.trap_expected || bpstat_should_step ())
2524 tp->control.may_range_step = 0;
2525
2526 /* If enabled, step over breakpoints by executing a copy of the
2527 instruction at a different address.
2528
2529 We can't use displaced stepping when we have a signal to deliver;
2530 the comments for displaced_step_prepare explain why. The
2531 comments in the handle_inferior event for dealing with 'random
2532 signals' explain what we do instead.
2533
2534 We can't use displaced stepping when we are waiting for vfork_done
2535 event, displaced stepping breaks the vfork child similarly as single
2536 step software breakpoint. */
2537 if (tp->control.trap_expected
2538 && use_displaced_stepping (tp)
2539 && !step_over_info_valid_p ()
2540 && sig == GDB_SIGNAL_0
2541 && !current_inferior ()->waiting_for_vfork_done)
2542 {
2543 int prepared = displaced_step_prepare (tp);
2544
2545 if (prepared == 0)
2546 {
2547 if (debug_infrun)
2548 fprintf_unfiltered (gdb_stdlog,
2549 "Got placed in step-over queue\n");
2550
2551 tp->control.trap_expected = 0;
2552 return;
2553 }
2554 else if (prepared < 0)
2555 {
2556 /* Fallback to stepping over the breakpoint in-line. */
2557
2558 if (target_is_non_stop_p ())
2559 stop_all_threads ();
2560
2561 set_step_over_info (regcache->aspace (),
2562 regcache_read_pc (regcache), 0, tp->global_num);
2563
2564 step = maybe_software_singlestep (gdbarch, pc);
2565
2566 insert_breakpoints ();
2567 }
2568 else if (prepared > 0)
2569 {
2570 struct displaced_step_inferior_state *displaced;
2571
2572 /* Update pc to reflect the new address from which we will
2573 execute instructions due to displaced stepping. */
2574 pc = regcache_read_pc (get_thread_regcache (tp));
2575
2576 displaced = get_displaced_stepping_state (tp->inf);
2577 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2578 displaced->step_closure);
2579 }
2580 }
2581
2582 /* Do we need to do it the hard way, w/temp breakpoints? */
2583 else if (step)
2584 step = maybe_software_singlestep (gdbarch, pc);
2585
2586 /* Currently, our software single-step implementation leads to different
2587 results than hardware single-stepping in one situation: when stepping
2588 into delivering a signal which has an associated signal handler,
2589 hardware single-step will stop at the first instruction of the handler,
2590 while software single-step will simply skip execution of the handler.
2591
2592 For now, this difference in behavior is accepted since there is no
2593 easy way to actually implement single-stepping into a signal handler
2594 without kernel support.
2595
2596 However, there is one scenario where this difference leads to follow-on
2597 problems: if we're stepping off a breakpoint by removing all breakpoints
2598 and then single-stepping. In this case, the software single-step
2599 behavior means that even if there is a *breakpoint* in the signal
2600 handler, GDB still would not stop.
2601
2602 Fortunately, we can at least fix this particular issue. We detect
2603 here the case where we are about to deliver a signal while software
2604 single-stepping with breakpoints removed. In this situation, we
2605 revert the decisions to remove all breakpoints and insert single-
2606 step breakpoints, and instead we install a step-resume breakpoint
2607 at the current address, deliver the signal without stepping, and
2608 once we arrive back at the step-resume breakpoint, actually step
2609 over the breakpoint we originally wanted to step over. */
2610 if (thread_has_single_step_breakpoints_set (tp)
2611 && sig != GDB_SIGNAL_0
2612 && step_over_info_valid_p ())
2613 {
2614 /* If we have nested signals or a pending signal is delivered
2615 immediately after a handler returns, might might already have
2616 a step-resume breakpoint set on the earlier handler. We cannot
2617 set another step-resume breakpoint; just continue on until the
2618 original breakpoint is hit. */
2619 if (tp->control.step_resume_breakpoint == NULL)
2620 {
2621 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2622 tp->step_after_step_resume_breakpoint = 1;
2623 }
2624
2625 delete_single_step_breakpoints (tp);
2626
2627 clear_step_over_info ();
2628 tp->control.trap_expected = 0;
2629
2630 insert_breakpoints ();
2631 }
2632
2633 /* If STEP is set, it's a request to use hardware stepping
2634 facilities. But in that case, we should never
2635 use singlestep breakpoint. */
2636 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2637
2638 /* Decide the set of threads to ask the target to resume. */
2639 if (tp->control.trap_expected)
2640 {
2641 /* We're allowing a thread to run past a breakpoint it has
2642 hit, either by single-stepping the thread with the breakpoint
2643 removed, or by displaced stepping, with the breakpoint inserted.
2644 In the former case, we need to single-step only this thread,
2645 and keep others stopped, as they can miss this breakpoint if
2646 allowed to run. That's not really a problem for displaced
2647 stepping, but, we still keep other threads stopped, in case
2648 another thread is also stopped for a breakpoint waiting for
2649 its turn in the displaced stepping queue. */
2650 resume_ptid = inferior_ptid;
2651 }
2652 else
2653 resume_ptid = internal_resume_ptid (user_step);
2654
2655 if (execution_direction != EXEC_REVERSE
2656 && step && breakpoint_inserted_here_p (aspace, pc))
2657 {
2658 /* There are two cases where we currently need to step a
2659 breakpoint instruction when we have a signal to deliver:
2660
2661 - See handle_signal_stop where we handle random signals that
2662 could take out us out of the stepping range. Normally, in
2663 that case we end up continuing (instead of stepping) over the
2664 signal handler with a breakpoint at PC, but there are cases
2665 where we should _always_ single-step, even if we have a
2666 step-resume breakpoint, like when a software watchpoint is
2667 set. Assuming single-stepping and delivering a signal at the
2668 same time would takes us to the signal handler, then we could
2669 have removed the breakpoint at PC to step over it. However,
2670 some hardware step targets (like e.g., Mac OS) can't step
2671 into signal handlers, and for those, we need to leave the
2672 breakpoint at PC inserted, as otherwise if the handler
2673 recurses and executes PC again, it'll miss the breakpoint.
2674 So we leave the breakpoint inserted anyway, but we need to
2675 record that we tried to step a breakpoint instruction, so
2676 that adjust_pc_after_break doesn't end up confused.
2677
2678 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2679 in one thread after another thread that was stepping had been
2680 momentarily paused for a step-over. When we re-resume the
2681 stepping thread, it may be resumed from that address with a
2682 breakpoint that hasn't trapped yet. Seen with
2683 gdb.threads/non-stop-fair-events.exp, on targets that don't
2684 do displaced stepping. */
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: resume: [%s] stepped breakpoint\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->stepped_breakpoint = 1;
2692
2693 /* Most targets can step a breakpoint instruction, thus
2694 executing it normally. But if this one cannot, just
2695 continue and we will hit it anyway. */
2696 if (gdbarch_cannot_step_breakpoint (gdbarch))
2697 step = 0;
2698 }
2699
2700 if (debug_displaced
2701 && tp->control.trap_expected
2702 && use_displaced_stepping (tp)
2703 && !step_over_info_valid_p ())
2704 {
2705 struct regcache *resume_regcache = get_thread_regcache (tp);
2706 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2707 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2708 gdb_byte buf[4];
2709
2710 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2711 paddress (resume_gdbarch, actual_pc));
2712 read_memory (actual_pc, buf, sizeof (buf));
2713 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2714 }
2715
2716 if (tp->control.may_range_step)
2717 {
2718 /* If we're resuming a thread with the PC out of the step
2719 range, then we're doing some nested/finer run control
2720 operation, like stepping the thread out of the dynamic
2721 linker or the displaced stepping scratch pad. We
2722 shouldn't have allowed a range step then. */
2723 gdb_assert (pc_in_thread_step_range (pc, tp));
2724 }
2725
2726 do_target_resume (resume_ptid, step, sig);
2727 tp->resumed = 1;
2728 }
2729
2730 /* Resume the inferior. SIG is the signal to give the inferior
2731 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2732 rolls back state on error. */
2733
2734 void
2735 resume (gdb_signal sig)
2736 {
2737 TRY
2738 {
2739 resume_1 (sig);
2740 }
2741 CATCH (ex, RETURN_MASK_ALL)
2742 {
2743 /* If resuming is being aborted for any reason, delete any
2744 single-step breakpoint resume_1 may have created, to avoid
2745 confusing the following resumption, and to avoid leaving
2746 single-step breakpoints perturbing other threads, in case
2747 we're running in non-stop mode. */
2748 if (inferior_ptid != null_ptid)
2749 delete_single_step_breakpoints (inferior_thread ());
2750 throw_exception (ex);
2751 }
2752 END_CATCH
2753 }
2754
2755 \f
2756 /* Proceeding. */
2757
2758 /* See infrun.h. */
2759
2760 /* Counter that tracks number of user visible stops. This can be used
2761 to tell whether a command has proceeded the inferior past the
2762 current location. This allows e.g., inferior function calls in
2763 breakpoint commands to not interrupt the command list. When the
2764 call finishes successfully, the inferior is standing at the same
2765 breakpoint as if nothing happened (and so we don't call
2766 normal_stop). */
2767 static ULONGEST current_stop_id;
2768
2769 /* See infrun.h. */
2770
2771 ULONGEST
2772 get_stop_id (void)
2773 {
2774 return current_stop_id;
2775 }
2776
2777 /* Called when we report a user visible stop. */
2778
2779 static void
2780 new_stop_id (void)
2781 {
2782 current_stop_id++;
2783 }
2784
2785 /* Clear out all variables saying what to do when inferior is continued.
2786 First do this, then set the ones you want, then call `proceed'. */
2787
2788 static void
2789 clear_proceed_status_thread (struct thread_info *tp)
2790 {
2791 if (debug_infrun)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "infrun: clear_proceed_status_thread (%s)\n",
2794 target_pid_to_str (tp->ptid));
2795
2796 /* If we're starting a new sequence, then the previous finished
2797 single-step is no longer relevant. */
2798 if (tp->suspend.waitstatus_pending_p)
2799 {
2800 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2801 {
2802 if (debug_infrun)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "infrun: clear_proceed_status: pending "
2805 "event of %s was a finished step. "
2806 "Discarding.\n",
2807 target_pid_to_str (tp->ptid));
2808
2809 tp->suspend.waitstatus_pending_p = 0;
2810 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2811 }
2812 else if (debug_infrun)
2813 {
2814 std::string statstr
2815 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2816
2817 fprintf_unfiltered (gdb_stdlog,
2818 "infrun: clear_proceed_status_thread: thread %s "
2819 "has pending wait status %s "
2820 "(currently_stepping=%d).\n",
2821 target_pid_to_str (tp->ptid), statstr.c_str (),
2822 currently_stepping (tp));
2823 }
2824 }
2825
2826 /* If this signal should not be seen by program, give it zero.
2827 Used for debugging signals. */
2828 if (!signal_pass_state (tp->suspend.stop_signal))
2829 tp->suspend.stop_signal = GDB_SIGNAL_0;
2830
2831 thread_fsm_delete (tp->thread_fsm);
2832 tp->thread_fsm = NULL;
2833
2834 tp->control.trap_expected = 0;
2835 tp->control.step_range_start = 0;
2836 tp->control.step_range_end = 0;
2837 tp->control.may_range_step = 0;
2838 tp->control.step_frame_id = null_frame_id;
2839 tp->control.step_stack_frame_id = null_frame_id;
2840 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2841 tp->control.step_start_function = NULL;
2842 tp->stop_requested = 0;
2843
2844 tp->control.stop_step = 0;
2845
2846 tp->control.proceed_to_finish = 0;
2847
2848 tp->control.stepping_command = 0;
2849
2850 /* Discard any remaining commands or status from previous stop. */
2851 bpstat_clear (&tp->control.stop_bpstat);
2852 }
2853
2854 void
2855 clear_proceed_status (int step)
2856 {
2857 /* With scheduler-locking replay, stop replaying other threads if we're
2858 not replaying the user-visible resume ptid.
2859
2860 This is a convenience feature to not require the user to explicitly
2861 stop replaying the other threads. We're assuming that the user's
2862 intent is to resume tracing the recorded process. */
2863 if (!non_stop && scheduler_mode == schedlock_replay
2864 && target_record_is_replaying (minus_one_ptid)
2865 && !target_record_will_replay (user_visible_resume_ptid (step),
2866 execution_direction))
2867 target_record_stop_replaying ();
2868
2869 if (!non_stop)
2870 {
2871 struct thread_info *tp;
2872 ptid_t resume_ptid;
2873
2874 resume_ptid = user_visible_resume_ptid (step);
2875
2876 /* In all-stop mode, delete the per-thread status of all threads
2877 we're about to resume, implicitly and explicitly. */
2878 ALL_NON_EXITED_THREADS (tp)
2879 {
2880 if (!ptid_match (tp->ptid, resume_ptid))
2881 continue;
2882 clear_proceed_status_thread (tp);
2883 }
2884 }
2885
2886 if (!ptid_equal (inferior_ptid, null_ptid))
2887 {
2888 struct inferior *inferior;
2889
2890 if (non_stop)
2891 {
2892 /* If in non-stop mode, only delete the per-thread status of
2893 the current thread. */
2894 clear_proceed_status_thread (inferior_thread ());
2895 }
2896
2897 inferior = current_inferior ();
2898 inferior->control.stop_soon = NO_STOP_QUIETLY;
2899 }
2900
2901 gdb::observers::about_to_proceed.notify ();
2902 }
2903
2904 /* Returns true if TP is still stopped at a breakpoint that needs
2905 stepping-over in order to make progress. If the breakpoint is gone
2906 meanwhile, we can skip the whole step-over dance. */
2907
2908 static int
2909 thread_still_needs_step_over_bp (struct thread_info *tp)
2910 {
2911 if (tp->stepping_over_breakpoint)
2912 {
2913 struct regcache *regcache = get_thread_regcache (tp);
2914
2915 if (breakpoint_here_p (regcache->aspace (),
2916 regcache_read_pc (regcache))
2917 == ordinary_breakpoint_here)
2918 return 1;
2919
2920 tp->stepping_over_breakpoint = 0;
2921 }
2922
2923 return 0;
2924 }
2925
2926 /* Check whether thread TP still needs to start a step-over in order
2927 to make progress when resumed. Returns an bitwise or of enum
2928 step_over_what bits, indicating what needs to be stepped over. */
2929
2930 static step_over_what
2931 thread_still_needs_step_over (struct thread_info *tp)
2932 {
2933 step_over_what what = 0;
2934
2935 if (thread_still_needs_step_over_bp (tp))
2936 what |= STEP_OVER_BREAKPOINT;
2937
2938 if (tp->stepping_over_watchpoint
2939 && !target_have_steppable_watchpoint)
2940 what |= STEP_OVER_WATCHPOINT;
2941
2942 return what;
2943 }
2944
2945 /* Returns true if scheduler locking applies. STEP indicates whether
2946 we're about to do a step/next-like command to a thread. */
2947
2948 static int
2949 schedlock_applies (struct thread_info *tp)
2950 {
2951 return (scheduler_mode == schedlock_on
2952 || (scheduler_mode == schedlock_step
2953 && tp->control.stepping_command)
2954 || (scheduler_mode == schedlock_replay
2955 && target_record_will_replay (minus_one_ptid,
2956 execution_direction)));
2957 }
2958
2959 /* Basic routine for continuing the program in various fashions.
2960
2961 ADDR is the address to resume at, or -1 for resume where stopped.
2962 SIGGNAL is the signal to give it, or 0 for none,
2963 or -1 for act according to how it stopped.
2964 STEP is nonzero if should trap after one instruction.
2965 -1 means return after that and print nothing.
2966 You should probably set various step_... variables
2967 before calling here, if you are stepping.
2968
2969 You should call clear_proceed_status before calling proceed. */
2970
2971 void
2972 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2973 {
2974 struct regcache *regcache;
2975 struct gdbarch *gdbarch;
2976 struct thread_info *tp;
2977 CORE_ADDR pc;
2978 ptid_t resume_ptid;
2979 struct execution_control_state ecss;
2980 struct execution_control_state *ecs = &ecss;
2981 int started;
2982
2983 /* If we're stopped at a fork/vfork, follow the branch set by the
2984 "set follow-fork-mode" command; otherwise, we'll just proceed
2985 resuming the current thread. */
2986 if (!follow_fork ())
2987 {
2988 /* The target for some reason decided not to resume. */
2989 normal_stop ();
2990 if (target_can_async_p ())
2991 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2992 return;
2993 }
2994
2995 /* We'll update this if & when we switch to a new thread. */
2996 previous_inferior_ptid = inferior_ptid;
2997
2998 regcache = get_current_regcache ();
2999 gdbarch = regcache->arch ();
3000 const address_space *aspace = regcache->aspace ();
3001
3002 pc = regcache_read_pc (regcache);
3003 tp = inferior_thread ();
3004
3005 /* Fill in with reasonable starting values. */
3006 init_thread_stepping_state (tp);
3007
3008 gdb_assert (!thread_is_in_step_over_chain (tp));
3009
3010 if (addr == (CORE_ADDR) -1)
3011 {
3012 if (pc == stop_pc
3013 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3014 && execution_direction != EXEC_REVERSE)
3015 /* There is a breakpoint at the address we will resume at,
3016 step one instruction before inserting breakpoints so that
3017 we do not stop right away (and report a second hit at this
3018 breakpoint).
3019
3020 Note, we don't do this in reverse, because we won't
3021 actually be executing the breakpoint insn anyway.
3022 We'll be (un-)executing the previous instruction. */
3023 tp->stepping_over_breakpoint = 1;
3024 else if (gdbarch_single_step_through_delay_p (gdbarch)
3025 && gdbarch_single_step_through_delay (gdbarch,
3026 get_current_frame ()))
3027 /* We stepped onto an instruction that needs to be stepped
3028 again before re-inserting the breakpoint, do so. */
3029 tp->stepping_over_breakpoint = 1;
3030 }
3031 else
3032 {
3033 regcache_write_pc (regcache, addr);
3034 }
3035
3036 if (siggnal != GDB_SIGNAL_DEFAULT)
3037 tp->suspend.stop_signal = siggnal;
3038
3039 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3040
3041 /* If an exception is thrown from this point on, make sure to
3042 propagate GDB's knowledge of the executing state to the
3043 frontend/user running state. */
3044 scoped_finish_thread_state finish_state (resume_ptid);
3045
3046 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3047 threads (e.g., we might need to set threads stepping over
3048 breakpoints first), from the user/frontend's point of view, all
3049 threads in RESUME_PTID are now running. Unless we're calling an
3050 inferior function, as in that case we pretend the inferior
3051 doesn't run at all. */
3052 if (!tp->control.in_infcall)
3053 set_running (resume_ptid, 1);
3054
3055 if (debug_infrun)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "infrun: proceed (addr=%s, signal=%s)\n",
3058 paddress (gdbarch, addr),
3059 gdb_signal_to_symbol_string (siggnal));
3060
3061 annotate_starting ();
3062
3063 /* Make sure that output from GDB appears before output from the
3064 inferior. */
3065 gdb_flush (gdb_stdout);
3066
3067 /* Since we've marked the inferior running, give it the terminal. A
3068 QUIT/Ctrl-C from here on is forwarded to the target (which can
3069 still detect attempts to unblock a stuck connection with repeated
3070 Ctrl-C from within target_pass_ctrlc). */
3071 target_terminal::inferior ();
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
3087 {
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
3096
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
3100
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
3109 target_pid_to_str (tp->ptid));
3110
3111 thread_step_over_chain_enqueue (tp);
3112 }
3113
3114 tp = current;
3115 }
3116
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
3121
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
3128
3129 {
3130 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3131
3132 started = start_step_over ();
3133
3134 if (step_over_info_valid_p ())
3135 {
3136 /* Either this thread started a new in-line step over, or some
3137 other thread was already doing one. In either case, don't
3138 resume anything else until the step-over is finished. */
3139 }
3140 else if (started && !target_is_non_stop_p ())
3141 {
3142 /* A new displaced stepping sequence was started. In all-stop,
3143 we can't talk to the target anymore until it next stops. */
3144 }
3145 else if (!non_stop && target_is_non_stop_p ())
3146 {
3147 /* In all-stop, but the target is always in non-stop mode.
3148 Start all other threads that are implicitly resumed too. */
3149 ALL_NON_EXITED_THREADS (tp)
3150 {
3151 /* Ignore threads of processes we're not resuming. */
3152 if (!ptid_match (tp->ptid, resume_ptid))
3153 continue;
3154
3155 if (tp->resumed)
3156 {
3157 if (debug_infrun)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "infrun: proceed: [%s] resumed\n",
3160 target_pid_to_str (tp->ptid));
3161 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3162 continue;
3163 }
3164
3165 if (thread_is_in_step_over_chain (tp))
3166 {
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: proceed: [%s] needs step-over\n",
3170 target_pid_to_str (tp->ptid));
3171 continue;
3172 }
3173
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: proceed: resuming %s\n",
3177 target_pid_to_str (tp->ptid));
3178
3179 reset_ecs (ecs, tp);
3180 switch_to_thread (tp);
3181 keep_going_pass_signal (ecs);
3182 if (!ecs->wait_some_more)
3183 error (_("Command aborted."));
3184 }
3185 }
3186 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3187 {
3188 /* The thread wasn't started, and isn't queued, run it now. */
3189 reset_ecs (ecs, tp);
3190 switch_to_thread (tp);
3191 keep_going_pass_signal (ecs);
3192 if (!ecs->wait_some_more)
3193 error (_("Command aborted."));
3194 }
3195 }
3196
3197 target_commit_resume ();
3198
3199 finish_state.release ();
3200
3201 /* Tell the event loop to wait for it to stop. If the target
3202 supports asynchronous execution, it'll do this from within
3203 target_resume. */
3204 if (!target_can_async_p ())
3205 mark_async_event_handler (infrun_async_inferior_event_token);
3206 }
3207 \f
3208
3209 /* Start remote-debugging of a machine over a serial link. */
3210
3211 void
3212 start_remote (int from_tty)
3213 {
3214 struct inferior *inferior;
3215
3216 inferior = current_inferior ();
3217 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3218
3219 /* Always go on waiting for the target, regardless of the mode. */
3220 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3221 indicate to wait_for_inferior that a target should timeout if
3222 nothing is returned (instead of just blocking). Because of this,
3223 targets expecting an immediate response need to, internally, set
3224 things up so that the target_wait() is forced to eventually
3225 timeout. */
3226 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3227 differentiate to its caller what the state of the target is after
3228 the initial open has been performed. Here we're assuming that
3229 the target has stopped. It should be possible to eventually have
3230 target_open() return to the caller an indication that the target
3231 is currently running and GDB state should be set to the same as
3232 for an async run. */
3233 wait_for_inferior ();
3234
3235 /* Now that the inferior has stopped, do any bookkeeping like
3236 loading shared libraries. We want to do this before normal_stop,
3237 so that the displayed frame is up to date. */
3238 post_create_inferior (current_top_target (), from_tty);
3239
3240 normal_stop ();
3241 }
3242
3243 /* Initialize static vars when a new inferior begins. */
3244
3245 void
3246 init_wait_for_inferior (void)
3247 {
3248 /* These are meaningless until the first time through wait_for_inferior. */
3249
3250 breakpoint_init_inferior (inf_starting);
3251
3252 clear_proceed_status (0);
3253
3254 target_last_wait_ptid = minus_one_ptid;
3255
3256 previous_inferior_ptid = inferior_ptid;
3257
3258 /* Discard any skipped inlined frames. */
3259 clear_inline_frame_state (minus_one_ptid);
3260 }
3261
3262 \f
3263
3264 static void handle_inferior_event (struct execution_control_state *ecs);
3265
3266 static void handle_step_into_function (struct gdbarch *gdbarch,
3267 struct execution_control_state *ecs);
3268 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
3270 static void handle_signal_stop (struct execution_control_state *ecs);
3271 static void check_exception_resume (struct execution_control_state *,
3272 struct frame_info *);
3273
3274 static void end_stepping_range (struct execution_control_state *ecs);
3275 static void stop_waiting (struct execution_control_state *ecs);
3276 static void keep_going (struct execution_control_state *ecs);
3277 static void process_event_stop_test (struct execution_control_state *ecs);
3278 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3279
3280 /* This function is attached as a "thread_stop_requested" observer.
3281 Cleanup local state that assumed the PTID was to be resumed, and
3282 report the stop to the frontend. */
3283
3284 static void
3285 infrun_thread_stop_requested (ptid_t ptid)
3286 {
3287 struct thread_info *tp;
3288
3289 /* PTID was requested to stop. If the thread was already stopped,
3290 but the user/frontend doesn't know about that yet (e.g., the
3291 thread had been temporarily paused for some step-over), set up
3292 for reporting the stop now. */
3293 ALL_NON_EXITED_THREADS (tp)
3294 if (ptid_match (tp->ptid, ptid))
3295 {
3296 if (tp->state != THREAD_RUNNING)
3297 continue;
3298 if (tp->executing)
3299 continue;
3300
3301 /* Remove matching threads from the step-over queue, so
3302 start_step_over doesn't try to resume them
3303 automatically. */
3304 if (thread_is_in_step_over_chain (tp))
3305 thread_step_over_chain_remove (tp);
3306
3307 /* If the thread is stopped, but the user/frontend doesn't
3308 know about that yet, queue a pending event, as if the
3309 thread had just stopped now. Unless the thread already had
3310 a pending event. */
3311 if (!tp->suspend.waitstatus_pending_p)
3312 {
3313 tp->suspend.waitstatus_pending_p = 1;
3314 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3315 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3316 }
3317
3318 /* Clear the inline-frame state, since we're re-processing the
3319 stop. */
3320 clear_inline_frame_state (tp->ptid);
3321
3322 /* If this thread was paused because some other thread was
3323 doing an inline-step over, let that finish first. Once
3324 that happens, we'll restart all threads and consume pending
3325 stop events then. */
3326 if (step_over_info_valid_p ())
3327 continue;
3328
3329 /* Otherwise we can process the (new) pending event now. Set
3330 it so this pending event is considered by
3331 do_target_wait. */
3332 tp->resumed = 1;
3333 }
3334 }
3335
3336 static void
3337 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3338 {
3339 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3340 nullify_last_target_wait_ptid ();
3341 }
3342
3343 /* Delete the step resume, single-step and longjmp/exception resume
3344 breakpoints of TP. */
3345
3346 static void
3347 delete_thread_infrun_breakpoints (struct thread_info *tp)
3348 {
3349 delete_step_resume_breakpoint (tp);
3350 delete_exception_resume_breakpoint (tp);
3351 delete_single_step_breakpoints (tp);
3352 }
3353
3354 /* If the target still has execution, call FUNC for each thread that
3355 just stopped. In all-stop, that's all the non-exited threads; in
3356 non-stop, that's the current thread, only. */
3357
3358 typedef void (*for_each_just_stopped_thread_callback_func)
3359 (struct thread_info *tp);
3360
3361 static void
3362 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3363 {
3364 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3365 return;
3366
3367 if (target_is_non_stop_p ())
3368 {
3369 /* If in non-stop mode, only the current thread stopped. */
3370 func (inferior_thread ());
3371 }
3372 else
3373 {
3374 struct thread_info *tp;
3375
3376 /* In all-stop mode, all threads have stopped. */
3377 ALL_NON_EXITED_THREADS (tp)
3378 {
3379 func (tp);
3380 }
3381 }
3382 }
3383
3384 /* Delete the step resume and longjmp/exception resume breakpoints of
3385 the threads that just stopped. */
3386
3387 static void
3388 delete_just_stopped_threads_infrun_breakpoints (void)
3389 {
3390 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3391 }
3392
3393 /* Delete the single-step breakpoints of the threads that just
3394 stopped. */
3395
3396 static void
3397 delete_just_stopped_threads_single_step_breakpoints (void)
3398 {
3399 for_each_just_stopped_thread (delete_single_step_breakpoints);
3400 }
3401
3402 /* A cleanup wrapper. */
3403
3404 static void
3405 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3406 {
3407 delete_just_stopped_threads_infrun_breakpoints ();
3408 }
3409
3410 /* See infrun.h. */
3411
3412 void
3413 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3414 const struct target_waitstatus *ws)
3415 {
3416 std::string status_string = target_waitstatus_to_string (ws);
3417 string_file stb;
3418
3419 /* The text is split over several lines because it was getting too long.
3420 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3421 output as a unit; we want only one timestamp printed if debug_timestamp
3422 is set. */
3423
3424 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3425 ptid_get_pid (waiton_ptid),
3426 ptid_get_lwp (waiton_ptid),
3427 ptid_get_tid (waiton_ptid));
3428 if (ptid_get_pid (waiton_ptid) != -1)
3429 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3430 stb.printf (", status) =\n");
3431 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3432 ptid_get_pid (result_ptid),
3433 ptid_get_lwp (result_ptid),
3434 ptid_get_tid (result_ptid),
3435 target_pid_to_str (result_ptid));
3436 stb.printf ("infrun: %s\n", status_string.c_str ());
3437
3438 /* This uses %s in part to handle %'s in the text, but also to avoid
3439 a gcc error: the format attribute requires a string literal. */
3440 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3441 }
3442
3443 /* Select a thread at random, out of those which are resumed and have
3444 had events. */
3445
3446 static struct thread_info *
3447 random_pending_event_thread (ptid_t waiton_ptid)
3448 {
3449 struct thread_info *event_tp;
3450 int num_events = 0;
3451 int random_selector;
3452
3453 /* First see how many events we have. Count only resumed threads
3454 that have an event pending. */
3455 ALL_NON_EXITED_THREADS (event_tp)
3456 if (ptid_match (event_tp->ptid, waiton_ptid)
3457 && event_tp->resumed
3458 && event_tp->suspend.waitstatus_pending_p)
3459 num_events++;
3460
3461 if (num_events == 0)
3462 return NULL;
3463
3464 /* Now randomly pick a thread out of those that have had events. */
3465 random_selector = (int)
3466 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3467
3468 if (debug_infrun && num_events > 1)
3469 fprintf_unfiltered (gdb_stdlog,
3470 "infrun: Found %d events, selecting #%d\n",
3471 num_events, random_selector);
3472
3473 /* Select the Nth thread that has had an event. */
3474 ALL_NON_EXITED_THREADS (event_tp)
3475 if (ptid_match (event_tp->ptid, waiton_ptid)
3476 && event_tp->resumed
3477 && event_tp->suspend.waitstatus_pending_p)
3478 if (random_selector-- == 0)
3479 break;
3480
3481 return event_tp;
3482 }
3483
3484 /* Wrapper for target_wait that first checks whether threads have
3485 pending statuses to report before actually asking the target for
3486 more events. */
3487
3488 static ptid_t
3489 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3490 {
3491 ptid_t event_ptid;
3492 struct thread_info *tp;
3493
3494 /* First check if there is a resumed thread with a wait status
3495 pending. */
3496 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3497 {
3498 tp = random_pending_event_thread (ptid);
3499 }
3500 else
3501 {
3502 if (debug_infrun)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Waiting for specific thread %s.\n",
3505 target_pid_to_str (ptid));
3506
3507 /* We have a specific thread to check. */
3508 tp = find_thread_ptid (ptid);
3509 gdb_assert (tp != NULL);
3510 if (!tp->suspend.waitstatus_pending_p)
3511 tp = NULL;
3512 }
3513
3514 if (tp != NULL
3515 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3517 {
3518 struct regcache *regcache = get_thread_regcache (tp);
3519 struct gdbarch *gdbarch = regcache->arch ();
3520 CORE_ADDR pc;
3521 int discard = 0;
3522
3523 pc = regcache_read_pc (regcache);
3524
3525 if (pc != tp->suspend.stop_pc)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: PC of %s changed. was=%s, now=%s\n",
3530 target_pid_to_str (tp->ptid),
3531 paddress (gdbarch, tp->suspend.stop_pc),
3532 paddress (gdbarch, pc));
3533 discard = 1;
3534 }
3535 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: previous breakpoint of %s, at %s gone\n",
3540 target_pid_to_str (tp->ptid),
3541 paddress (gdbarch, pc));
3542
3543 discard = 1;
3544 }
3545
3546 if (discard)
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: pending event of %s cancelled.\n",
3551 target_pid_to_str (tp->ptid));
3552
3553 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3554 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3555 }
3556 }
3557
3558 if (tp != NULL)
3559 {
3560 if (debug_infrun)
3561 {
3562 std::string statstr
3563 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3564
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: Using pending wait status %s for %s.\n",
3567 statstr.c_str (),
3568 target_pid_to_str (tp->ptid));
3569 }
3570
3571 /* Now that we've selected our final event LWP, un-adjust its PC
3572 if it was a software breakpoint (and the target doesn't
3573 always adjust the PC itself). */
3574 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3575 && !target_supports_stopped_by_sw_breakpoint ())
3576 {
3577 struct regcache *regcache;
3578 struct gdbarch *gdbarch;
3579 int decr_pc;
3580
3581 regcache = get_thread_regcache (tp);
3582 gdbarch = regcache->arch ();
3583
3584 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3595 *status = tp->suspend.waitstatus;
3596 tp->suspend.waitstatus_pending_p = 0;
3597
3598 /* Wake up the event loop again, until all pending events are
3599 processed. */
3600 if (target_is_async_p ())
3601 mark_async_event_handler (infrun_async_inferior_event_token);
3602 return tp->ptid;
3603 }
3604
3605 /* But if we don't find one, we'll have to wait. */
3606
3607 if (deprecated_target_wait_hook)
3608 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3609 else
3610 event_ptid = target_wait (ptid, status, options);
3611
3612 return event_ptid;
3613 }
3614
3615 /* Prepare and stabilize the inferior for detaching it. E.g.,
3616 detaching while a thread is displaced stepping is a recipe for
3617 crashing it, as nothing would readjust the PC out of the scratch
3618 pad. */
3619
3620 void
3621 prepare_for_detach (void)
3622 {
3623 struct inferior *inf = current_inferior ();
3624 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3625
3626 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3627
3628 /* Is any thread of this process displaced stepping? If not,
3629 there's nothing else to do. */
3630 if (displaced == NULL || displaced->step_thread == nullptr)
3631 return;
3632
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "displaced-stepping in-process while detaching");
3636
3637 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3638
3639 while (displaced->step_thread != nullptr)
3640 {
3641 struct execution_control_state ecss;
3642 struct execution_control_state *ecs;
3643
3644 ecs = &ecss;
3645 memset (ecs, 0, sizeof (*ecs));
3646
3647 overlay_cache_invalid = 1;
3648 /* Flush target cache before starting to handle each event.
3649 Target was running and cache could be stale. This is just a
3650 heuristic. Running threads may modify target memory, but we
3651 don't get any event. */
3652 target_dcache_invalidate ();
3653
3654 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3655
3656 if (debug_infrun)
3657 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3658
3659 /* If an error happens while handling the event, propagate GDB's
3660 knowledge of the executing state to the frontend/user running
3661 state. */
3662 scoped_finish_thread_state finish_state (minus_one_ptid);
3663
3664 /* Now figure out what to do with the result of the result. */
3665 handle_inferior_event (ecs);
3666
3667 /* No error, don't finish the state yet. */
3668 finish_state.release ();
3669
3670 /* Breakpoints and watchpoints are not installed on the target
3671 at this point, and signals are passed directly to the
3672 inferior, so this must mean the process is gone. */
3673 if (!ecs->wait_some_more)
3674 {
3675 restore_detaching.release ();
3676 error (_("Program exited while detaching"));
3677 }
3678 }
3679
3680 restore_detaching.release ();
3681 }
3682
3683 /* Wait for control to return from inferior to debugger.
3684
3685 If inferior gets a signal, we may decide to start it up again
3686 instead of returning. That is why there is a loop in this function.
3687 When this function actually returns it means the inferior
3688 should be left stopped and GDB should read more commands. */
3689
3690 void
3691 wait_for_inferior (void)
3692 {
3693 struct cleanup *old_cleanups;
3694
3695 if (debug_infrun)
3696 fprintf_unfiltered
3697 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3698
3699 old_cleanups
3700 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3701 NULL);
3702
3703 /* If an error happens while handling the event, propagate GDB's
3704 knowledge of the executing state to the frontend/user running
3705 state. */
3706 scoped_finish_thread_state finish_state (minus_one_ptid);
3707
3708 while (1)
3709 {
3710 struct execution_control_state ecss;
3711 struct execution_control_state *ecs = &ecss;
3712 ptid_t waiton_ptid = minus_one_ptid;
3713
3714 memset (ecs, 0, sizeof (*ecs));
3715
3716 overlay_cache_invalid = 1;
3717
3718 /* Flush target cache before starting to handle each event.
3719 Target was running and cache could be stale. This is just a
3720 heuristic. Running threads may modify target memory, but we
3721 don't get any event. */
3722 target_dcache_invalidate ();
3723
3724 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3725
3726 if (debug_infrun)
3727 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3728
3729 /* Now figure out what to do with the result of the result. */
3730 handle_inferior_event (ecs);
3731
3732 if (!ecs->wait_some_more)
3733 break;
3734 }
3735
3736 /* No error, don't finish the state yet. */
3737 finish_state.release ();
3738
3739 do_cleanups (old_cleanups);
3740 }
3741
3742 /* Cleanup that reinstalls the readline callback handler, if the
3743 target is running in the background. If while handling the target
3744 event something triggered a secondary prompt, like e.g., a
3745 pagination prompt, we'll have removed the callback handler (see
3746 gdb_readline_wrapper_line). Need to do this as we go back to the
3747 event loop, ready to process further input. Note this has no
3748 effect if the handler hasn't actually been removed, because calling
3749 rl_callback_handler_install resets the line buffer, thus losing
3750 input. */
3751
3752 static void
3753 reinstall_readline_callback_handler_cleanup (void *arg)
3754 {
3755 struct ui *ui = current_ui;
3756
3757 if (!ui->async)
3758 {
3759 /* We're not going back to the top level event loop yet. Don't
3760 install the readline callback, as it'd prep the terminal,
3761 readline-style (raw, noecho) (e.g., --batch). We'll install
3762 it the next time the prompt is displayed, when we're ready
3763 for input. */
3764 return;
3765 }
3766
3767 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3768 gdb_rl_callback_handler_reinstall ();
3769 }
3770
3771 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3772 that's just the event thread. In all-stop, that's all threads. */
3773
3774 static void
3775 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3776 {
3777 struct thread_info *thr = ecs->event_thread;
3778
3779 if (thr != NULL && thr->thread_fsm != NULL)
3780 thread_fsm_clean_up (thr->thread_fsm, thr);
3781
3782 if (!non_stop)
3783 {
3784 ALL_NON_EXITED_THREADS (thr)
3785 {
3786 if (thr->thread_fsm == NULL)
3787 continue;
3788 if (thr == ecs->event_thread)
3789 continue;
3790
3791 switch_to_thread (thr);
3792 thread_fsm_clean_up (thr->thread_fsm, thr);
3793 }
3794
3795 if (ecs->event_thread != NULL)
3796 switch_to_thread (ecs->event_thread);
3797 }
3798 }
3799
3800 /* Helper for all_uis_check_sync_execution_done that works on the
3801 current UI. */
3802
3803 static void
3804 check_curr_ui_sync_execution_done (void)
3805 {
3806 struct ui *ui = current_ui;
3807
3808 if (ui->prompt_state == PROMPT_NEEDED
3809 && ui->async
3810 && !gdb_in_secondary_prompt_p (ui))
3811 {
3812 target_terminal::ours ();
3813 gdb::observers::sync_execution_done.notify ();
3814 ui_register_input_event_handler (ui);
3815 }
3816 }
3817
3818 /* See infrun.h. */
3819
3820 void
3821 all_uis_check_sync_execution_done (void)
3822 {
3823 SWITCH_THRU_ALL_UIS ()
3824 {
3825 check_curr_ui_sync_execution_done ();
3826 }
3827 }
3828
3829 /* See infrun.h. */
3830
3831 void
3832 all_uis_on_sync_execution_starting (void)
3833 {
3834 SWITCH_THRU_ALL_UIS ()
3835 {
3836 if (current_ui->prompt_state == PROMPT_NEEDED)
3837 async_disable_stdin ();
3838 }
3839 }
3840
3841 /* Asynchronous version of wait_for_inferior. It is called by the
3842 event loop whenever a change of state is detected on the file
3843 descriptor corresponding to the target. It can be called more than
3844 once to complete a single execution command. In such cases we need
3845 to keep the state in a global variable ECSS. If it is the last time
3846 that this function is called for a single execution command, then
3847 report to the user that the inferior has stopped, and do the
3848 necessary cleanups. */
3849
3850 void
3851 fetch_inferior_event (void *client_data)
3852 {
3853 struct execution_control_state ecss;
3854 struct execution_control_state *ecs = &ecss;
3855 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3856 int cmd_done = 0;
3857 ptid_t waiton_ptid = minus_one_ptid;
3858
3859 memset (ecs, 0, sizeof (*ecs));
3860
3861 /* Events are always processed with the main UI as current UI. This
3862 way, warnings, debug output, etc. are always consistently sent to
3863 the main console. */
3864 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3865
3866 /* End up with readline processing input, if necessary. */
3867 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3868
3869 /* We're handling a live event, so make sure we're doing live
3870 debugging. If we're looking at traceframes while the target is
3871 running, we're going to need to get back to that mode after
3872 handling the event. */
3873 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3874 if (non_stop)
3875 {
3876 maybe_restore_traceframe.emplace ();
3877 set_current_traceframe (-1);
3878 }
3879
3880 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3881
3882 if (non_stop)
3883 /* In non-stop mode, the user/frontend should not notice a thread
3884 switch due to internal events. Make sure we reverse to the
3885 user selected thread and frame after handling the event and
3886 running any breakpoint commands. */
3887 maybe_restore_thread.emplace ();
3888
3889 overlay_cache_invalid = 1;
3890 /* Flush target cache before starting to handle each event. Target
3891 was running and cache could be stale. This is just a heuristic.
3892 Running threads may modify target memory, but we don't get any
3893 event. */
3894 target_dcache_invalidate ();
3895
3896 scoped_restore save_exec_dir
3897 = make_scoped_restore (&execution_direction, target_execution_direction ());
3898
3899 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3900 target_can_async_p () ? TARGET_WNOHANG : 0);
3901
3902 if (debug_infrun)
3903 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3904
3905 /* If an error happens while handling the event, propagate GDB's
3906 knowledge of the executing state to the frontend/user running
3907 state. */
3908 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3909 scoped_finish_thread_state finish_state (finish_ptid);
3910
3911 /* Get executed before make_cleanup_restore_current_thread above to apply
3912 still for the thread which has thrown the exception. */
3913 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
3914
3915 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3916
3917 /* Now figure out what to do with the result of the result. */
3918 handle_inferior_event (ecs);
3919
3920 if (!ecs->wait_some_more)
3921 {
3922 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3923 int should_stop = 1;
3924 struct thread_info *thr = ecs->event_thread;
3925
3926 delete_just_stopped_threads_infrun_breakpoints ();
3927
3928 if (thr != NULL)
3929 {
3930 struct thread_fsm *thread_fsm = thr->thread_fsm;
3931
3932 if (thread_fsm != NULL)
3933 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3934 }
3935
3936 if (!should_stop)
3937 {
3938 keep_going (ecs);
3939 }
3940 else
3941 {
3942 int should_notify_stop = 1;
3943 int proceeded = 0;
3944
3945 clean_up_just_stopped_threads_fsms (ecs);
3946
3947 if (thr != NULL && thr->thread_fsm != NULL)
3948 {
3949 should_notify_stop
3950 = thread_fsm_should_notify_stop (thr->thread_fsm);
3951 }
3952
3953 if (should_notify_stop)
3954 {
3955 /* We may not find an inferior if this was a process exit. */
3956 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3957 proceeded = normal_stop ();
3958 }
3959
3960 if (!proceeded)
3961 {
3962 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3963 cmd_done = 1;
3964 }
3965 }
3966 }
3967
3968 discard_cleanups (ts_old_chain);
3969
3970 /* No error, don't finish the thread states yet. */
3971 finish_state.release ();
3972
3973 /* Revert thread and frame. */
3974 do_cleanups (old_chain);
3975
3976 /* If a UI was in sync execution mode, and now isn't, restore its
3977 prompt (a synchronous execution command has finished, and we're
3978 ready for input). */
3979 all_uis_check_sync_execution_done ();
3980
3981 if (cmd_done
3982 && exec_done_display_p
3983 && (inferior_ptid == null_ptid
3984 || inferior_thread ()->state != THREAD_RUNNING))
3985 printf_unfiltered (_("completed.\n"));
3986 }
3987
3988 /* Record the frame and location we're currently stepping through. */
3989 void
3990 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3991 {
3992 struct thread_info *tp = inferior_thread ();
3993
3994 tp->control.step_frame_id = get_frame_id (frame);
3995 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3996
3997 tp->current_symtab = sal.symtab;
3998 tp->current_line = sal.line;
3999 }
4000
4001 /* Clear context switchable stepping state. */
4002
4003 void
4004 init_thread_stepping_state (struct thread_info *tss)
4005 {
4006 tss->stepped_breakpoint = 0;
4007 tss->stepping_over_breakpoint = 0;
4008 tss->stepping_over_watchpoint = 0;
4009 tss->step_after_step_resume_breakpoint = 0;
4010 }
4011
4012 /* Set the cached copy of the last ptid/waitstatus. */
4013
4014 void
4015 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4016 {
4017 target_last_wait_ptid = ptid;
4018 target_last_waitstatus = status;
4019 }
4020
4021 /* Return the cached copy of the last pid/waitstatus returned by
4022 target_wait()/deprecated_target_wait_hook(). The data is actually
4023 cached by handle_inferior_event(), which gets called immediately
4024 after target_wait()/deprecated_target_wait_hook(). */
4025
4026 void
4027 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4028 {
4029 *ptidp = target_last_wait_ptid;
4030 *status = target_last_waitstatus;
4031 }
4032
4033 void
4034 nullify_last_target_wait_ptid (void)
4035 {
4036 target_last_wait_ptid = minus_one_ptid;
4037 }
4038
4039 /* Switch thread contexts. */
4040
4041 static void
4042 context_switch (execution_control_state *ecs)
4043 {
4044 if (debug_infrun
4045 && ecs->ptid != inferior_ptid
4046 && ecs->event_thread != inferior_thread ())
4047 {
4048 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4049 target_pid_to_str (inferior_ptid));
4050 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4051 target_pid_to_str (ecs->ptid));
4052 }
4053
4054 switch_to_thread (ecs->event_thread);
4055 }
4056
4057 /* If the target can't tell whether we've hit breakpoints
4058 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4059 check whether that could have been caused by a breakpoint. If so,
4060 adjust the PC, per gdbarch_decr_pc_after_break. */
4061
4062 static void
4063 adjust_pc_after_break (struct thread_info *thread,
4064 struct target_waitstatus *ws)
4065 {
4066 struct regcache *regcache;
4067 struct gdbarch *gdbarch;
4068 CORE_ADDR breakpoint_pc, decr_pc;
4069
4070 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4071 we aren't, just return.
4072
4073 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4074 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4075 implemented by software breakpoints should be handled through the normal
4076 breakpoint layer.
4077
4078 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4079 different signals (SIGILL or SIGEMT for instance), but it is less
4080 clear where the PC is pointing afterwards. It may not match
4081 gdbarch_decr_pc_after_break. I don't know any specific target that
4082 generates these signals at breakpoints (the code has been in GDB since at
4083 least 1992) so I can not guess how to handle them here.
4084
4085 In earlier versions of GDB, a target with
4086 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4087 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4088 target with both of these set in GDB history, and it seems unlikely to be
4089 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4090
4091 if (ws->kind != TARGET_WAITKIND_STOPPED)
4092 return;
4093
4094 if (ws->value.sig != GDB_SIGNAL_TRAP)
4095 return;
4096
4097 /* In reverse execution, when a breakpoint is hit, the instruction
4098 under it has already been de-executed. The reported PC always
4099 points at the breakpoint address, so adjusting it further would
4100 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4101 architecture:
4102
4103 B1 0x08000000 : INSN1
4104 B2 0x08000001 : INSN2
4105 0x08000002 : INSN3
4106 PC -> 0x08000003 : INSN4
4107
4108 Say you're stopped at 0x08000003 as above. Reverse continuing
4109 from that point should hit B2 as below. Reading the PC when the
4110 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4111 been de-executed already.
4112
4113 B1 0x08000000 : INSN1
4114 B2 PC -> 0x08000001 : INSN2
4115 0x08000002 : INSN3
4116 0x08000003 : INSN4
4117
4118 We can't apply the same logic as for forward execution, because
4119 we would wrongly adjust the PC to 0x08000000, since there's a
4120 breakpoint at PC - 1. We'd then report a hit on B1, although
4121 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4122 behaviour. */
4123 if (execution_direction == EXEC_REVERSE)
4124 return;
4125
4126 /* If the target can tell whether the thread hit a SW breakpoint,
4127 trust it. Targets that can tell also adjust the PC
4128 themselves. */
4129 if (target_supports_stopped_by_sw_breakpoint ())
4130 return;
4131
4132 /* Note that relying on whether a breakpoint is planted in memory to
4133 determine this can fail. E.g,. the breakpoint could have been
4134 removed since. Or the thread could have been told to step an
4135 instruction the size of a breakpoint instruction, and only
4136 _after_ was a breakpoint inserted at its address. */
4137
4138 /* If this target does not decrement the PC after breakpoints, then
4139 we have nothing to do. */
4140 regcache = get_thread_regcache (thread);
4141 gdbarch = regcache->arch ();
4142
4143 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4144 if (decr_pc == 0)
4145 return;
4146
4147 const address_space *aspace = regcache->aspace ();
4148
4149 /* Find the location where (if we've hit a breakpoint) the
4150 breakpoint would be. */
4151 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4152
4153 /* If the target can't tell whether a software breakpoint triggered,
4154 fallback to figuring it out based on breakpoints we think were
4155 inserted in the target, and on whether the thread was stepped or
4156 continued. */
4157
4158 /* Check whether there actually is a software breakpoint inserted at
4159 that location.
4160
4161 If in non-stop mode, a race condition is possible where we've
4162 removed a breakpoint, but stop events for that breakpoint were
4163 already queued and arrive later. To suppress those spurious
4164 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4165 and retire them after a number of stop events are reported. Note
4166 this is an heuristic and can thus get confused. The real fix is
4167 to get the "stopped by SW BP and needs adjustment" info out of
4168 the target/kernel (and thus never reach here; see above). */
4169 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4170 || (target_is_non_stop_p ()
4171 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4172 {
4173 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4174
4175 if (record_full_is_used ())
4176 restore_operation_disable.emplace
4177 (record_full_gdb_operation_disable_set ());
4178
4179 /* When using hardware single-step, a SIGTRAP is reported for both
4180 a completed single-step and a software breakpoint. Need to
4181 differentiate between the two, as the latter needs adjusting
4182 but the former does not.
4183
4184 The SIGTRAP can be due to a completed hardware single-step only if
4185 - we didn't insert software single-step breakpoints
4186 - this thread is currently being stepped
4187
4188 If any of these events did not occur, we must have stopped due
4189 to hitting a software breakpoint, and have to back up to the
4190 breakpoint address.
4191
4192 As a special case, we could have hardware single-stepped a
4193 software breakpoint. In this case (prev_pc == breakpoint_pc),
4194 we also need to back up to the breakpoint address. */
4195
4196 if (thread_has_single_step_breakpoints_set (thread)
4197 || !currently_stepping (thread)
4198 || (thread->stepped_breakpoint
4199 && thread->prev_pc == breakpoint_pc))
4200 regcache_write_pc (regcache, breakpoint_pc);
4201 }
4202 }
4203
4204 static int
4205 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4206 {
4207 for (frame = get_prev_frame (frame);
4208 frame != NULL;
4209 frame = get_prev_frame (frame))
4210 {
4211 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4212 return 1;
4213 if (get_frame_type (frame) != INLINE_FRAME)
4214 break;
4215 }
4216
4217 return 0;
4218 }
4219
4220 /* If the event thread has the stop requested flag set, pretend it
4221 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4222 target_stop). */
4223
4224 static bool
4225 handle_stop_requested (struct execution_control_state *ecs)
4226 {
4227 if (ecs->event_thread->stop_requested)
4228 {
4229 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4230 ecs->ws.value.sig = GDB_SIGNAL_0;
4231 handle_signal_stop (ecs);
4232 return true;
4233 }
4234 return false;
4235 }
4236
4237 /* Auxiliary function that handles syscall entry/return events.
4238 It returns 1 if the inferior should keep going (and GDB
4239 should ignore the event), or 0 if the event deserves to be
4240 processed. */
4241
4242 static int
4243 handle_syscall_event (struct execution_control_state *ecs)
4244 {
4245 struct regcache *regcache;
4246 int syscall_number;
4247
4248 context_switch (ecs);
4249
4250 regcache = get_thread_regcache (ecs->event_thread);
4251 syscall_number = ecs->ws.value.syscall_number;
4252 stop_pc = regcache_read_pc (regcache);
4253
4254 if (catch_syscall_enabled () > 0
4255 && catching_syscall_number (syscall_number) > 0)
4256 {
4257 if (debug_infrun)
4258 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4259 syscall_number);
4260
4261 ecs->event_thread->control.stop_bpstat
4262 = bpstat_stop_status (regcache->aspace (),
4263 stop_pc, ecs->event_thread, &ecs->ws);
4264
4265 if (handle_stop_requested (ecs))
4266 return 0;
4267
4268 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4269 {
4270 /* Catchpoint hit. */
4271 return 0;
4272 }
4273 }
4274
4275 if (handle_stop_requested (ecs))
4276 return 0;
4277
4278 /* If no catchpoint triggered for this, then keep going. */
4279 keep_going (ecs);
4280 return 1;
4281 }
4282
4283 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4284
4285 static void
4286 fill_in_stop_func (struct gdbarch *gdbarch,
4287 struct execution_control_state *ecs)
4288 {
4289 if (!ecs->stop_func_filled_in)
4290 {
4291 /* Don't care about return value; stop_func_start and stop_func_name
4292 will both be 0 if it doesn't work. */
4293 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4294 &ecs->stop_func_start, &ecs->stop_func_end);
4295 ecs->stop_func_start
4296 += gdbarch_deprecated_function_start_offset (gdbarch);
4297
4298 if (gdbarch_skip_entrypoint_p (gdbarch))
4299 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4300 ecs->stop_func_start);
4301
4302 ecs->stop_func_filled_in = 1;
4303 }
4304 }
4305
4306
4307 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4308
4309 static enum stop_kind
4310 get_inferior_stop_soon (execution_control_state *ecs)
4311 {
4312 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4313
4314 gdb_assert (inf != NULL);
4315 return inf->control.stop_soon;
4316 }
4317
4318 /* Wait for one event. Store the resulting waitstatus in WS, and
4319 return the event ptid. */
4320
4321 static ptid_t
4322 wait_one (struct target_waitstatus *ws)
4323 {
4324 ptid_t event_ptid;
4325 ptid_t wait_ptid = minus_one_ptid;
4326
4327 overlay_cache_invalid = 1;
4328
4329 /* Flush target cache before starting to handle each event.
4330 Target was running and cache could be stale. This is just a
4331 heuristic. Running threads may modify target memory, but we
4332 don't get any event. */
4333 target_dcache_invalidate ();
4334
4335 if (deprecated_target_wait_hook)
4336 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4337 else
4338 event_ptid = target_wait (wait_ptid, ws, 0);
4339
4340 if (debug_infrun)
4341 print_target_wait_results (wait_ptid, event_ptid, ws);
4342
4343 return event_ptid;
4344 }
4345
4346 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4347 instead of the current thread. */
4348 #define THREAD_STOPPED_BY(REASON) \
4349 static int \
4350 thread_stopped_by_ ## REASON (ptid_t ptid) \
4351 { \
4352 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4353 inferior_ptid = ptid; \
4354 \
4355 return target_stopped_by_ ## REASON (); \
4356 }
4357
4358 /* Generate thread_stopped_by_watchpoint. */
4359 THREAD_STOPPED_BY (watchpoint)
4360 /* Generate thread_stopped_by_sw_breakpoint. */
4361 THREAD_STOPPED_BY (sw_breakpoint)
4362 /* Generate thread_stopped_by_hw_breakpoint. */
4363 THREAD_STOPPED_BY (hw_breakpoint)
4364
4365 /* Save the thread's event and stop reason to process it later. */
4366
4367 static void
4368 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4369 {
4370 if (debug_infrun)
4371 {
4372 std::string statstr = target_waitstatus_to_string (ws);
4373
4374 fprintf_unfiltered (gdb_stdlog,
4375 "infrun: saving status %s for %d.%ld.%ld\n",
4376 statstr.c_str (),
4377 ptid_get_pid (tp->ptid),
4378 ptid_get_lwp (tp->ptid),
4379 ptid_get_tid (tp->ptid));
4380 }
4381
4382 /* Record for later. */
4383 tp->suspend.waitstatus = *ws;
4384 tp->suspend.waitstatus_pending_p = 1;
4385
4386 struct regcache *regcache = get_thread_regcache (tp);
4387 const address_space *aspace = regcache->aspace ();
4388
4389 if (ws->kind == TARGET_WAITKIND_STOPPED
4390 && ws->value.sig == GDB_SIGNAL_TRAP)
4391 {
4392 CORE_ADDR pc = regcache_read_pc (regcache);
4393
4394 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4395
4396 if (thread_stopped_by_watchpoint (tp->ptid))
4397 {
4398 tp->suspend.stop_reason
4399 = TARGET_STOPPED_BY_WATCHPOINT;
4400 }
4401 else if (target_supports_stopped_by_sw_breakpoint ()
4402 && thread_stopped_by_sw_breakpoint (tp->ptid))
4403 {
4404 tp->suspend.stop_reason
4405 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4406 }
4407 else if (target_supports_stopped_by_hw_breakpoint ()
4408 && thread_stopped_by_hw_breakpoint (tp->ptid))
4409 {
4410 tp->suspend.stop_reason
4411 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4412 }
4413 else if (!target_supports_stopped_by_hw_breakpoint ()
4414 && hardware_breakpoint_inserted_here_p (aspace,
4415 pc))
4416 {
4417 tp->suspend.stop_reason
4418 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4419 }
4420 else if (!target_supports_stopped_by_sw_breakpoint ()
4421 && software_breakpoint_inserted_here_p (aspace,
4422 pc))
4423 {
4424 tp->suspend.stop_reason
4425 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4426 }
4427 else if (!thread_has_single_step_breakpoints_set (tp)
4428 && currently_stepping (tp))
4429 {
4430 tp->suspend.stop_reason
4431 = TARGET_STOPPED_BY_SINGLE_STEP;
4432 }
4433 }
4434 }
4435
4436 /* A cleanup that disables thread create/exit events. */
4437
4438 static void
4439 disable_thread_events (void *arg)
4440 {
4441 target_thread_events (0);
4442 }
4443
4444 /* See infrun.h. */
4445
4446 void
4447 stop_all_threads (void)
4448 {
4449 /* We may need multiple passes to discover all threads. */
4450 int pass;
4451 int iterations = 0;
4452 struct cleanup *old_chain;
4453
4454 gdb_assert (target_is_non_stop_p ());
4455
4456 if (debug_infrun)
4457 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4458
4459 scoped_restore_current_thread restore_thread;
4460
4461 target_thread_events (1);
4462 old_chain = make_cleanup (disable_thread_events, NULL);
4463
4464 /* Request threads to stop, and then wait for the stops. Because
4465 threads we already know about can spawn more threads while we're
4466 trying to stop them, and we only learn about new threads when we
4467 update the thread list, do this in a loop, and keep iterating
4468 until two passes find no threads that need to be stopped. */
4469 for (pass = 0; pass < 2; pass++, iterations++)
4470 {
4471 if (debug_infrun)
4472 fprintf_unfiltered (gdb_stdlog,
4473 "infrun: stop_all_threads, pass=%d, "
4474 "iterations=%d\n", pass, iterations);
4475 while (1)
4476 {
4477 ptid_t event_ptid;
4478 struct target_waitstatus ws;
4479 int need_wait = 0;
4480 struct thread_info *t;
4481
4482 update_thread_list ();
4483
4484 /* Go through all threads looking for threads that we need
4485 to tell the target to stop. */
4486 ALL_NON_EXITED_THREADS (t)
4487 {
4488 if (t->executing)
4489 {
4490 /* If already stopping, don't request a stop again.
4491 We just haven't seen the notification yet. */
4492 if (!t->stop_requested)
4493 {
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: %s executing, "
4497 "need stop\n",
4498 target_pid_to_str (t->ptid));
4499 target_stop (t->ptid);
4500 t->stop_requested = 1;
4501 }
4502 else
4503 {
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "infrun: %s executing, "
4507 "already stopping\n",
4508 target_pid_to_str (t->ptid));
4509 }
4510
4511 if (t->stop_requested)
4512 need_wait = 1;
4513 }
4514 else
4515 {
4516 if (debug_infrun)
4517 fprintf_unfiltered (gdb_stdlog,
4518 "infrun: %s not executing\n",
4519 target_pid_to_str (t->ptid));
4520
4521 /* The thread may be not executing, but still be
4522 resumed with a pending status to process. */
4523 t->resumed = 0;
4524 }
4525 }
4526
4527 if (!need_wait)
4528 break;
4529
4530 /* If we find new threads on the second iteration, restart
4531 over. We want to see two iterations in a row with all
4532 threads stopped. */
4533 if (pass > 0)
4534 pass = -1;
4535
4536 event_ptid = wait_one (&ws);
4537
4538 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4539 {
4540 /* All resumed threads exited. */
4541 }
4542 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4543 || ws.kind == TARGET_WAITKIND_EXITED
4544 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4545 {
4546 if (debug_infrun)
4547 {
4548 ptid_t ptid = pid_to_ptid (ws.value.integer);
4549
4550 fprintf_unfiltered (gdb_stdlog,
4551 "infrun: %s exited while "
4552 "stopping threads\n",
4553 target_pid_to_str (ptid));
4554 }
4555 }
4556 else
4557 {
4558 inferior *inf;
4559
4560 t = find_thread_ptid (event_ptid);
4561 if (t == NULL)
4562 t = add_thread (event_ptid);
4563
4564 t->stop_requested = 0;
4565 t->executing = 0;
4566 t->resumed = 0;
4567 t->control.may_range_step = 0;
4568
4569 /* This may be the first time we see the inferior report
4570 a stop. */
4571 inf = find_inferior_ptid (event_ptid);
4572 if (inf->needs_setup)
4573 {
4574 switch_to_thread_no_regs (t);
4575 setup_inferior (0);
4576 }
4577
4578 if (ws.kind == TARGET_WAITKIND_STOPPED
4579 && ws.value.sig == GDB_SIGNAL_0)
4580 {
4581 /* We caught the event that we intended to catch, so
4582 there's no event pending. */
4583 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4584 t->suspend.waitstatus_pending_p = 0;
4585
4586 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4587 {
4588 /* Add it back to the step-over queue. */
4589 if (debug_infrun)
4590 {
4591 fprintf_unfiltered (gdb_stdlog,
4592 "infrun: displaced-step of %s "
4593 "canceled: adding back to the "
4594 "step-over queue\n",
4595 target_pid_to_str (t->ptid));
4596 }
4597 t->control.trap_expected = 0;
4598 thread_step_over_chain_enqueue (t);
4599 }
4600 }
4601 else
4602 {
4603 enum gdb_signal sig;
4604 struct regcache *regcache;
4605
4606 if (debug_infrun)
4607 {
4608 std::string statstr = target_waitstatus_to_string (&ws);
4609
4610 fprintf_unfiltered (gdb_stdlog,
4611 "infrun: target_wait %s, saving "
4612 "status for %d.%ld.%ld\n",
4613 statstr.c_str (),
4614 ptid_get_pid (t->ptid),
4615 ptid_get_lwp (t->ptid),
4616 ptid_get_tid (t->ptid));
4617 }
4618
4619 /* Record for later. */
4620 save_waitstatus (t, &ws);
4621
4622 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4623 ? ws.value.sig : GDB_SIGNAL_0);
4624
4625 if (displaced_step_fixup (t, sig) < 0)
4626 {
4627 /* Add it back to the step-over queue. */
4628 t->control.trap_expected = 0;
4629 thread_step_over_chain_enqueue (t);
4630 }
4631
4632 regcache = get_thread_regcache (t);
4633 t->suspend.stop_pc = regcache_read_pc (regcache);
4634
4635 if (debug_infrun)
4636 {
4637 fprintf_unfiltered (gdb_stdlog,
4638 "infrun: saved stop_pc=%s for %s "
4639 "(currently_stepping=%d)\n",
4640 paddress (target_gdbarch (),
4641 t->suspend.stop_pc),
4642 target_pid_to_str (t->ptid),
4643 currently_stepping (t));
4644 }
4645 }
4646 }
4647 }
4648 }
4649
4650 do_cleanups (old_chain);
4651
4652 if (debug_infrun)
4653 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4654 }
4655
4656 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4657
4658 static int
4659 handle_no_resumed (struct execution_control_state *ecs)
4660 {
4661 struct inferior *inf;
4662 struct thread_info *thread;
4663
4664 if (target_can_async_p ())
4665 {
4666 struct ui *ui;
4667 int any_sync = 0;
4668
4669 ALL_UIS (ui)
4670 {
4671 if (ui->prompt_state == PROMPT_BLOCKED)
4672 {
4673 any_sync = 1;
4674 break;
4675 }
4676 }
4677 if (!any_sync)
4678 {
4679 /* There were no unwaited-for children left in the target, but,
4680 we're not synchronously waiting for events either. Just
4681 ignore. */
4682
4683 if (debug_infrun)
4684 fprintf_unfiltered (gdb_stdlog,
4685 "infrun: TARGET_WAITKIND_NO_RESUMED "
4686 "(ignoring: bg)\n");
4687 prepare_to_wait (ecs);
4688 return 1;
4689 }
4690 }
4691
4692 /* Otherwise, if we were running a synchronous execution command, we
4693 may need to cancel it and give the user back the terminal.
4694
4695 In non-stop mode, the target can't tell whether we've already
4696 consumed previous stop events, so it can end up sending us a
4697 no-resumed event like so:
4698
4699 #0 - thread 1 is left stopped
4700
4701 #1 - thread 2 is resumed and hits breakpoint
4702 -> TARGET_WAITKIND_STOPPED
4703
4704 #2 - thread 3 is resumed and exits
4705 this is the last resumed thread, so
4706 -> TARGET_WAITKIND_NO_RESUMED
4707
4708 #3 - gdb processes stop for thread 2 and decides to re-resume
4709 it.
4710
4711 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4712 thread 2 is now resumed, so the event should be ignored.
4713
4714 IOW, if the stop for thread 2 doesn't end a foreground command,
4715 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4716 event. But it could be that the event meant that thread 2 itself
4717 (or whatever other thread was the last resumed thread) exited.
4718
4719 To address this we refresh the thread list and check whether we
4720 have resumed threads _now_. In the example above, this removes
4721 thread 3 from the thread list. If thread 2 was re-resumed, we
4722 ignore this event. If we find no thread resumed, then we cancel
4723 the synchronous command show "no unwaited-for " to the user. */
4724 update_thread_list ();
4725
4726 ALL_NON_EXITED_THREADS (thread)
4727 {
4728 if (thread->executing
4729 || thread->suspend.waitstatus_pending_p)
4730 {
4731 /* There were no unwaited-for children left in the target at
4732 some point, but there are now. Just ignore. */
4733 if (debug_infrun)
4734 fprintf_unfiltered (gdb_stdlog,
4735 "infrun: TARGET_WAITKIND_NO_RESUMED "
4736 "(ignoring: found resumed)\n");
4737 prepare_to_wait (ecs);
4738 return 1;
4739 }
4740 }
4741
4742 /* Note however that we may find no resumed thread because the whole
4743 process exited meanwhile (thus updating the thread list results
4744 in an empty thread list). In this case we know we'll be getting
4745 a process exit event shortly. */
4746 ALL_INFERIORS (inf)
4747 {
4748 if (inf->pid == 0)
4749 continue;
4750
4751 thread_info *thread = any_live_thread_of_inferior (inf);
4752 if (thread == NULL)
4753 {
4754 if (debug_infrun)
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: TARGET_WAITKIND_NO_RESUMED "
4757 "(expect process exit)\n");
4758 prepare_to_wait (ecs);
4759 return 1;
4760 }
4761 }
4762
4763 /* Go ahead and report the event. */
4764 return 0;
4765 }
4766
4767 /* Given an execution control state that has been freshly filled in by
4768 an event from the inferior, figure out what it means and take
4769 appropriate action.
4770
4771 The alternatives are:
4772
4773 1) stop_waiting and return; to really stop and return to the
4774 debugger.
4775
4776 2) keep_going and return; to wait for the next event (set
4777 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4778 once). */
4779
4780 static void
4781 handle_inferior_event_1 (struct execution_control_state *ecs)
4782 {
4783 enum stop_kind stop_soon;
4784
4785 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4786 {
4787 /* We had an event in the inferior, but we are not interested in
4788 handling it at this level. The lower layers have already
4789 done what needs to be done, if anything.
4790
4791 One of the possible circumstances for this is when the
4792 inferior produces output for the console. The inferior has
4793 not stopped, and we are ignoring the event. Another possible
4794 circumstance is any event which the lower level knows will be
4795 reported multiple times without an intervening resume. */
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4798 prepare_to_wait (ecs);
4799 return;
4800 }
4801
4802 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4803 {
4804 if (debug_infrun)
4805 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4806 prepare_to_wait (ecs);
4807 return;
4808 }
4809
4810 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4811 && handle_no_resumed (ecs))
4812 return;
4813
4814 /* Cache the last pid/waitstatus. */
4815 set_last_target_status (ecs->ptid, ecs->ws);
4816
4817 /* Always clear state belonging to the previous time we stopped. */
4818 stop_stack_dummy = STOP_NONE;
4819
4820 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4821 {
4822 /* No unwaited-for children left. IOW, all resumed children
4823 have exited. */
4824 if (debug_infrun)
4825 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4826
4827 stop_print_frame = 0;
4828 stop_waiting (ecs);
4829 return;
4830 }
4831
4832 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4833 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4834 {
4835 ecs->event_thread = find_thread_ptid (ecs->ptid);
4836 /* If it's a new thread, add it to the thread database. */
4837 if (ecs->event_thread == NULL)
4838 ecs->event_thread = add_thread (ecs->ptid);
4839
4840 /* Disable range stepping. If the next step request could use a
4841 range, this will be end up re-enabled then. */
4842 ecs->event_thread->control.may_range_step = 0;
4843 }
4844
4845 /* Dependent on valid ECS->EVENT_THREAD. */
4846 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4847
4848 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4849 reinit_frame_cache ();
4850
4851 breakpoint_retire_moribund ();
4852
4853 /* First, distinguish signals caused by the debugger from signals
4854 that have to do with the program's own actions. Note that
4855 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4856 on the operating system version. Here we detect when a SIGILL or
4857 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4858 something similar for SIGSEGV, since a SIGSEGV will be generated
4859 when we're trying to execute a breakpoint instruction on a
4860 non-executable stack. This happens for call dummy breakpoints
4861 for architectures like SPARC that place call dummies on the
4862 stack. */
4863 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4864 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4865 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4866 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4867 {
4868 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4869
4870 if (breakpoint_inserted_here_p (regcache->aspace (),
4871 regcache_read_pc (regcache)))
4872 {
4873 if (debug_infrun)
4874 fprintf_unfiltered (gdb_stdlog,
4875 "infrun: Treating signal as SIGTRAP\n");
4876 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4877 }
4878 }
4879
4880 /* Mark the non-executing threads accordingly. In all-stop, all
4881 threads of all processes are stopped when we get any event
4882 reported. In non-stop mode, only the event thread stops. */
4883 {
4884 ptid_t mark_ptid;
4885
4886 if (!target_is_non_stop_p ())
4887 mark_ptid = minus_one_ptid;
4888 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4889 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4890 {
4891 /* If we're handling a process exit in non-stop mode, even
4892 though threads haven't been deleted yet, one would think
4893 that there is nothing to do, as threads of the dead process
4894 will be soon deleted, and threads of any other process were
4895 left running. However, on some targets, threads survive a
4896 process exit event. E.g., for the "checkpoint" command,
4897 when the current checkpoint/fork exits, linux-fork.c
4898 automatically switches to another fork from within
4899 target_mourn_inferior, by associating the same
4900 inferior/thread to another fork. We haven't mourned yet at
4901 this point, but we must mark any threads left in the
4902 process as not-executing so that finish_thread_state marks
4903 them stopped (in the user's perspective) if/when we present
4904 the stop to the user. */
4905 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4906 }
4907 else
4908 mark_ptid = ecs->ptid;
4909
4910 set_executing (mark_ptid, 0);
4911
4912 /* Likewise the resumed flag. */
4913 set_resumed (mark_ptid, 0);
4914 }
4915
4916 switch (ecs->ws.kind)
4917 {
4918 case TARGET_WAITKIND_LOADED:
4919 if (debug_infrun)
4920 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4921 context_switch (ecs);
4922 /* Ignore gracefully during startup of the inferior, as it might
4923 be the shell which has just loaded some objects, otherwise
4924 add the symbols for the newly loaded objects. Also ignore at
4925 the beginning of an attach or remote session; we will query
4926 the full list of libraries once the connection is
4927 established. */
4928
4929 stop_soon = get_inferior_stop_soon (ecs);
4930 if (stop_soon == NO_STOP_QUIETLY)
4931 {
4932 struct regcache *regcache;
4933
4934 regcache = get_thread_regcache (ecs->event_thread);
4935
4936 handle_solib_event ();
4937
4938 ecs->event_thread->control.stop_bpstat
4939 = bpstat_stop_status (regcache->aspace (),
4940 stop_pc, ecs->event_thread, &ecs->ws);
4941
4942 if (handle_stop_requested (ecs))
4943 return;
4944
4945 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4946 {
4947 /* A catchpoint triggered. */
4948 process_event_stop_test (ecs);
4949 return;
4950 }
4951
4952 /* If requested, stop when the dynamic linker notifies
4953 gdb of events. This allows the user to get control
4954 and place breakpoints in initializer routines for
4955 dynamically loaded objects (among other things). */
4956 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4957 if (stop_on_solib_events)
4958 {
4959 /* Make sure we print "Stopped due to solib-event" in
4960 normal_stop. */
4961 stop_print_frame = 1;
4962
4963 stop_waiting (ecs);
4964 return;
4965 }
4966 }
4967
4968 /* If we are skipping through a shell, or through shared library
4969 loading that we aren't interested in, resume the program. If
4970 we're running the program normally, also resume. */
4971 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4972 {
4973 /* Loading of shared libraries might have changed breakpoint
4974 addresses. Make sure new breakpoints are inserted. */
4975 if (stop_soon == NO_STOP_QUIETLY)
4976 insert_breakpoints ();
4977 resume (GDB_SIGNAL_0);
4978 prepare_to_wait (ecs);
4979 return;
4980 }
4981
4982 /* But stop if we're attaching or setting up a remote
4983 connection. */
4984 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4985 || stop_soon == STOP_QUIETLY_REMOTE)
4986 {
4987 if (debug_infrun)
4988 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4989 stop_waiting (ecs);
4990 return;
4991 }
4992
4993 internal_error (__FILE__, __LINE__,
4994 _("unhandled stop_soon: %d"), (int) stop_soon);
4995
4996 case TARGET_WAITKIND_SPURIOUS:
4997 if (debug_infrun)
4998 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4999 if (handle_stop_requested (ecs))
5000 return;
5001 context_switch (ecs);
5002 resume (GDB_SIGNAL_0);
5003 prepare_to_wait (ecs);
5004 return;
5005
5006 case TARGET_WAITKIND_THREAD_CREATED:
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5009 if (handle_stop_requested (ecs))
5010 return;
5011 context_switch (ecs);
5012 if (!switch_back_to_stepped_thread (ecs))
5013 keep_going (ecs);
5014 return;
5015
5016 case TARGET_WAITKIND_EXITED:
5017 case TARGET_WAITKIND_SIGNALLED:
5018 if (debug_infrun)
5019 {
5020 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5021 fprintf_unfiltered (gdb_stdlog,
5022 "infrun: TARGET_WAITKIND_EXITED\n");
5023 else
5024 fprintf_unfiltered (gdb_stdlog,
5025 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5026 }
5027
5028 inferior_ptid = ecs->ptid;
5029 set_current_inferior (find_inferior_ptid (ecs->ptid));
5030 set_current_program_space (current_inferior ()->pspace);
5031 handle_vfork_child_exec_or_exit (0);
5032 target_terminal::ours (); /* Must do this before mourn anyway. */
5033
5034 /* Clearing any previous state of convenience variables. */
5035 clear_exit_convenience_vars ();
5036
5037 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5038 {
5039 /* Record the exit code in the convenience variable $_exitcode, so
5040 that the user can inspect this again later. */
5041 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5042 (LONGEST) ecs->ws.value.integer);
5043
5044 /* Also record this in the inferior itself. */
5045 current_inferior ()->has_exit_code = 1;
5046 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5047
5048 /* Support the --return-child-result option. */
5049 return_child_result_value = ecs->ws.value.integer;
5050
5051 gdb::observers::exited.notify (ecs->ws.value.integer);
5052 }
5053 else
5054 {
5055 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5056
5057 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5058 {
5059 /* Set the value of the internal variable $_exitsignal,
5060 which holds the signal uncaught by the inferior. */
5061 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5062 gdbarch_gdb_signal_to_target (gdbarch,
5063 ecs->ws.value.sig));
5064 }
5065 else
5066 {
5067 /* We don't have access to the target's method used for
5068 converting between signal numbers (GDB's internal
5069 representation <-> target's representation).
5070 Therefore, we cannot do a good job at displaying this
5071 information to the user. It's better to just warn
5072 her about it (if infrun debugging is enabled), and
5073 give up. */
5074 if (debug_infrun)
5075 fprintf_filtered (gdb_stdlog, _("\
5076 Cannot fill $_exitsignal with the correct signal number.\n"));
5077 }
5078
5079 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5080 }
5081
5082 gdb_flush (gdb_stdout);
5083 target_mourn_inferior (inferior_ptid);
5084 stop_print_frame = 0;
5085 stop_waiting (ecs);
5086 return;
5087
5088 /* The following are the only cases in which we keep going;
5089 the above cases end in a continue or goto. */
5090 case TARGET_WAITKIND_FORKED:
5091 case TARGET_WAITKIND_VFORKED:
5092 if (debug_infrun)
5093 {
5094 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5095 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5096 else
5097 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5098 }
5099
5100 /* Check whether the inferior is displaced stepping. */
5101 {
5102 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5103 struct gdbarch *gdbarch = regcache->arch ();
5104
5105 /* If checking displaced stepping is supported, and thread
5106 ecs->ptid is displaced stepping. */
5107 if (displaced_step_in_progress_thread (ecs->event_thread))
5108 {
5109 struct inferior *parent_inf
5110 = find_inferior_ptid (ecs->ptid);
5111 struct regcache *child_regcache;
5112 CORE_ADDR parent_pc;
5113
5114 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5115 indicating that the displaced stepping of syscall instruction
5116 has been done. Perform cleanup for parent process here. Note
5117 that this operation also cleans up the child process for vfork,
5118 because their pages are shared. */
5119 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5120 /* Start a new step-over in another thread if there's one
5121 that needs it. */
5122 start_step_over ();
5123
5124 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5125 {
5126 struct displaced_step_inferior_state *displaced
5127 = get_displaced_stepping_state (parent_inf);
5128
5129 /* Restore scratch pad for child process. */
5130 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5131 }
5132
5133 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5134 the child's PC is also within the scratchpad. Set the child's PC
5135 to the parent's PC value, which has already been fixed up.
5136 FIXME: we use the parent's aspace here, although we're touching
5137 the child, because the child hasn't been added to the inferior
5138 list yet at this point. */
5139
5140 child_regcache
5141 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5142 gdbarch,
5143 parent_inf->aspace);
5144 /* Read PC value of parent process. */
5145 parent_pc = regcache_read_pc (regcache);
5146
5147 if (debug_displaced)
5148 fprintf_unfiltered (gdb_stdlog,
5149 "displaced: write child pc from %s to %s\n",
5150 paddress (gdbarch,
5151 regcache_read_pc (child_regcache)),
5152 paddress (gdbarch, parent_pc));
5153
5154 regcache_write_pc (child_regcache, parent_pc);
5155 }
5156 }
5157
5158 context_switch (ecs);
5159
5160 /* Immediately detach breakpoints from the child before there's
5161 any chance of letting the user delete breakpoints from the
5162 breakpoint lists. If we don't do this early, it's easy to
5163 leave left over traps in the child, vis: "break foo; catch
5164 fork; c; <fork>; del; c; <child calls foo>". We only follow
5165 the fork on the last `continue', and by that time the
5166 breakpoint at "foo" is long gone from the breakpoint table.
5167 If we vforked, then we don't need to unpatch here, since both
5168 parent and child are sharing the same memory pages; we'll
5169 need to unpatch at follow/detach time instead to be certain
5170 that new breakpoints added between catchpoint hit time and
5171 vfork follow are detached. */
5172 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5173 {
5174 /* This won't actually modify the breakpoint list, but will
5175 physically remove the breakpoints from the child. */
5176 detach_breakpoints (ecs->ws.value.related_pid);
5177 }
5178
5179 delete_just_stopped_threads_single_step_breakpoints ();
5180
5181 /* In case the event is caught by a catchpoint, remember that
5182 the event is to be followed at the next resume of the thread,
5183 and not immediately. */
5184 ecs->event_thread->pending_follow = ecs->ws;
5185
5186 stop_pc = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5187
5188 ecs->event_thread->control.stop_bpstat
5189 = bpstat_stop_status (get_current_regcache ()->aspace (),
5190 stop_pc, ecs->event_thread, &ecs->ws);
5191
5192 if (handle_stop_requested (ecs))
5193 return;
5194
5195 /* If no catchpoint triggered for this, then keep going. Note
5196 that we're interested in knowing the bpstat actually causes a
5197 stop, not just if it may explain the signal. Software
5198 watchpoints, for example, always appear in the bpstat. */
5199 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5200 {
5201 int should_resume;
5202 int follow_child
5203 = (follow_fork_mode_string == follow_fork_mode_child);
5204
5205 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5206
5207 should_resume = follow_fork ();
5208
5209 thread_info *parent = ecs->event_thread;
5210 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5211
5212 /* At this point, the parent is marked running, and the
5213 child is marked stopped. */
5214
5215 /* If not resuming the parent, mark it stopped. */
5216 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5217 parent->set_running (false);
5218
5219 /* If resuming the child, mark it running. */
5220 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5221 child->set_running (true);
5222
5223 /* In non-stop mode, also resume the other branch. */
5224 if (!detach_fork && (non_stop
5225 || (sched_multi && target_is_non_stop_p ())))
5226 {
5227 if (follow_child)
5228 switch_to_thread (parent);
5229 else
5230 switch_to_thread (child);
5231
5232 ecs->event_thread = inferior_thread ();
5233 ecs->ptid = inferior_ptid;
5234 keep_going (ecs);
5235 }
5236
5237 if (follow_child)
5238 switch_to_thread (child);
5239 else
5240 switch_to_thread (parent);
5241
5242 ecs->event_thread = inferior_thread ();
5243 ecs->ptid = inferior_ptid;
5244
5245 if (should_resume)
5246 keep_going (ecs);
5247 else
5248 stop_waiting (ecs);
5249 return;
5250 }
5251 process_event_stop_test (ecs);
5252 return;
5253
5254 case TARGET_WAITKIND_VFORK_DONE:
5255 /* Done with the shared memory region. Re-insert breakpoints in
5256 the parent, and keep going. */
5257
5258 if (debug_infrun)
5259 fprintf_unfiltered (gdb_stdlog,
5260 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5261
5262 context_switch (ecs);
5263
5264 current_inferior ()->waiting_for_vfork_done = 0;
5265 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5266
5267 if (handle_stop_requested (ecs))
5268 return;
5269
5270 /* This also takes care of reinserting breakpoints in the
5271 previously locked inferior. */
5272 keep_going (ecs);
5273 return;
5274
5275 case TARGET_WAITKIND_EXECD:
5276 if (debug_infrun)
5277 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5278
5279 /* Note we can't read registers yet (the stop_pc), because we
5280 don't yet know the inferior's post-exec architecture.
5281 'stop_pc' is explicitly read below instead. */
5282 switch_to_thread_no_regs (ecs->event_thread);
5283
5284 /* Do whatever is necessary to the parent branch of the vfork. */
5285 handle_vfork_child_exec_or_exit (1);
5286
5287 /* This causes the eventpoints and symbol table to be reset.
5288 Must do this now, before trying to determine whether to
5289 stop. */
5290 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5291
5292 stop_pc = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5293
5294 /* In follow_exec we may have deleted the original thread and
5295 created a new one. Make sure that the event thread is the
5296 execd thread for that case (this is a nop otherwise). */
5297 ecs->event_thread = inferior_thread ();
5298
5299 ecs->event_thread->control.stop_bpstat
5300 = bpstat_stop_status (get_current_regcache ()->aspace (),
5301 stop_pc, ecs->event_thread, &ecs->ws);
5302
5303 /* Note that this may be referenced from inside
5304 bpstat_stop_status above, through inferior_has_execd. */
5305 xfree (ecs->ws.value.execd_pathname);
5306 ecs->ws.value.execd_pathname = NULL;
5307
5308 if (handle_stop_requested (ecs))
5309 return;
5310
5311 /* If no catchpoint triggered for this, then keep going. */
5312 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5313 {
5314 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5315 keep_going (ecs);
5316 return;
5317 }
5318 process_event_stop_test (ecs);
5319 return;
5320
5321 /* Be careful not to try to gather much state about a thread
5322 that's in a syscall. It's frequently a losing proposition. */
5323 case TARGET_WAITKIND_SYSCALL_ENTRY:
5324 if (debug_infrun)
5325 fprintf_unfiltered (gdb_stdlog,
5326 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5327 /* Getting the current syscall number. */
5328 if (handle_syscall_event (ecs) == 0)
5329 process_event_stop_test (ecs);
5330 return;
5331
5332 /* Before examining the threads further, step this thread to
5333 get it entirely out of the syscall. (We get notice of the
5334 event when the thread is just on the verge of exiting a
5335 syscall. Stepping one instruction seems to get it back
5336 into user code.) */
5337 case TARGET_WAITKIND_SYSCALL_RETURN:
5338 if (debug_infrun)
5339 fprintf_unfiltered (gdb_stdlog,
5340 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5341 if (handle_syscall_event (ecs) == 0)
5342 process_event_stop_test (ecs);
5343 return;
5344
5345 case TARGET_WAITKIND_STOPPED:
5346 if (debug_infrun)
5347 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5348 handle_signal_stop (ecs);
5349 return;
5350
5351 case TARGET_WAITKIND_NO_HISTORY:
5352 if (debug_infrun)
5353 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5354 /* Reverse execution: target ran out of history info. */
5355
5356 /* Switch to the stopped thread. */
5357 context_switch (ecs);
5358 if (debug_infrun)
5359 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5360
5361 delete_just_stopped_threads_single_step_breakpoints ();
5362 stop_pc = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5363
5364 if (handle_stop_requested (ecs))
5365 return;
5366
5367 gdb::observers::no_history.notify ();
5368 stop_waiting (ecs);
5369 return;
5370 }
5371 }
5372
5373 /* A wrapper around handle_inferior_event_1, which also makes sure
5374 that all temporary struct value objects that were created during
5375 the handling of the event get deleted at the end. */
5376
5377 static void
5378 handle_inferior_event (struct execution_control_state *ecs)
5379 {
5380 struct value *mark = value_mark ();
5381
5382 handle_inferior_event_1 (ecs);
5383 /* Purge all temporary values created during the event handling,
5384 as it could be a long time before we return to the command level
5385 where such values would otherwise be purged. */
5386 value_free_to_mark (mark);
5387 }
5388
5389 /* Restart threads back to what they were trying to do back when we
5390 paused them for an in-line step-over. The EVENT_THREAD thread is
5391 ignored. */
5392
5393 static void
5394 restart_threads (struct thread_info *event_thread)
5395 {
5396 struct thread_info *tp;
5397
5398 /* In case the instruction just stepped spawned a new thread. */
5399 update_thread_list ();
5400
5401 ALL_NON_EXITED_THREADS (tp)
5402 {
5403 if (tp == event_thread)
5404 {
5405 if (debug_infrun)
5406 fprintf_unfiltered (gdb_stdlog,
5407 "infrun: restart threads: "
5408 "[%s] is event thread\n",
5409 target_pid_to_str (tp->ptid));
5410 continue;
5411 }
5412
5413 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5414 {
5415 if (debug_infrun)
5416 fprintf_unfiltered (gdb_stdlog,
5417 "infrun: restart threads: "
5418 "[%s] not meant to be running\n",
5419 target_pid_to_str (tp->ptid));
5420 continue;
5421 }
5422
5423 if (tp->resumed)
5424 {
5425 if (debug_infrun)
5426 fprintf_unfiltered (gdb_stdlog,
5427 "infrun: restart threads: [%s] resumed\n",
5428 target_pid_to_str (tp->ptid));
5429 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5430 continue;
5431 }
5432
5433 if (thread_is_in_step_over_chain (tp))
5434 {
5435 if (debug_infrun)
5436 fprintf_unfiltered (gdb_stdlog,
5437 "infrun: restart threads: "
5438 "[%s] needs step-over\n",
5439 target_pid_to_str (tp->ptid));
5440 gdb_assert (!tp->resumed);
5441 continue;
5442 }
5443
5444
5445 if (tp->suspend.waitstatus_pending_p)
5446 {
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: restart threads: "
5450 "[%s] has pending status\n",
5451 target_pid_to_str (tp->ptid));
5452 tp->resumed = 1;
5453 continue;
5454 }
5455
5456 gdb_assert (!tp->stop_requested);
5457
5458 /* If some thread needs to start a step-over at this point, it
5459 should still be in the step-over queue, and thus skipped
5460 above. */
5461 if (thread_still_needs_step_over (tp))
5462 {
5463 internal_error (__FILE__, __LINE__,
5464 "thread [%s] needs a step-over, but not in "
5465 "step-over queue\n",
5466 target_pid_to_str (tp->ptid));
5467 }
5468
5469 if (currently_stepping (tp))
5470 {
5471 if (debug_infrun)
5472 fprintf_unfiltered (gdb_stdlog,
5473 "infrun: restart threads: [%s] was stepping\n",
5474 target_pid_to_str (tp->ptid));
5475 keep_going_stepped_thread (tp);
5476 }
5477 else
5478 {
5479 struct execution_control_state ecss;
5480 struct execution_control_state *ecs = &ecss;
5481
5482 if (debug_infrun)
5483 fprintf_unfiltered (gdb_stdlog,
5484 "infrun: restart threads: [%s] continuing\n",
5485 target_pid_to_str (tp->ptid));
5486 reset_ecs (ecs, tp);
5487 switch_to_thread (tp);
5488 keep_going_pass_signal (ecs);
5489 }
5490 }
5491 }
5492
5493 /* Callback for iterate_over_threads. Find a resumed thread that has
5494 a pending waitstatus. */
5495
5496 static int
5497 resumed_thread_with_pending_status (struct thread_info *tp,
5498 void *arg)
5499 {
5500 return (tp->resumed
5501 && tp->suspend.waitstatus_pending_p);
5502 }
5503
5504 /* Called when we get an event that may finish an in-line or
5505 out-of-line (displaced stepping) step-over started previously.
5506 Return true if the event is processed and we should go back to the
5507 event loop; false if the caller should continue processing the
5508 event. */
5509
5510 static int
5511 finish_step_over (struct execution_control_state *ecs)
5512 {
5513 int had_step_over_info;
5514
5515 displaced_step_fixup (ecs->event_thread,
5516 ecs->event_thread->suspend.stop_signal);
5517
5518 had_step_over_info = step_over_info_valid_p ();
5519
5520 if (had_step_over_info)
5521 {
5522 /* If we're stepping over a breakpoint with all threads locked,
5523 then only the thread that was stepped should be reporting
5524 back an event. */
5525 gdb_assert (ecs->event_thread->control.trap_expected);
5526
5527 clear_step_over_info ();
5528 }
5529
5530 if (!target_is_non_stop_p ())
5531 return 0;
5532
5533 /* Start a new step-over in another thread if there's one that
5534 needs it. */
5535 start_step_over ();
5536
5537 /* If we were stepping over a breakpoint before, and haven't started
5538 a new in-line step-over sequence, then restart all other threads
5539 (except the event thread). We can't do this in all-stop, as then
5540 e.g., we wouldn't be able to issue any other remote packet until
5541 these other threads stop. */
5542 if (had_step_over_info && !step_over_info_valid_p ())
5543 {
5544 struct thread_info *pending;
5545
5546 /* If we only have threads with pending statuses, the restart
5547 below won't restart any thread and so nothing re-inserts the
5548 breakpoint we just stepped over. But we need it inserted
5549 when we later process the pending events, otherwise if
5550 another thread has a pending event for this breakpoint too,
5551 we'd discard its event (because the breakpoint that
5552 originally caused the event was no longer inserted). */
5553 context_switch (ecs);
5554 insert_breakpoints ();
5555
5556 restart_threads (ecs->event_thread);
5557
5558 /* If we have events pending, go through handle_inferior_event
5559 again, picking up a pending event at random. This avoids
5560 thread starvation. */
5561
5562 /* But not if we just stepped over a watchpoint in order to let
5563 the instruction execute so we can evaluate its expression.
5564 The set of watchpoints that triggered is recorded in the
5565 breakpoint objects themselves (see bp->watchpoint_triggered).
5566 If we processed another event first, that other event could
5567 clobber this info. */
5568 if (ecs->event_thread->stepping_over_watchpoint)
5569 return 0;
5570
5571 pending = iterate_over_threads (resumed_thread_with_pending_status,
5572 NULL);
5573 if (pending != NULL)
5574 {
5575 struct thread_info *tp = ecs->event_thread;
5576 struct regcache *regcache;
5577
5578 if (debug_infrun)
5579 {
5580 fprintf_unfiltered (gdb_stdlog,
5581 "infrun: found resumed threads with "
5582 "pending events, saving status\n");
5583 }
5584
5585 gdb_assert (pending != tp);
5586
5587 /* Record the event thread's event for later. */
5588 save_waitstatus (tp, &ecs->ws);
5589 /* This was cleared early, by handle_inferior_event. Set it
5590 so this pending event is considered by
5591 do_target_wait. */
5592 tp->resumed = 1;
5593
5594 gdb_assert (!tp->executing);
5595
5596 regcache = get_thread_regcache (tp);
5597 tp->suspend.stop_pc = regcache_read_pc (regcache);
5598
5599 if (debug_infrun)
5600 {
5601 fprintf_unfiltered (gdb_stdlog,
5602 "infrun: saved stop_pc=%s for %s "
5603 "(currently_stepping=%d)\n",
5604 paddress (target_gdbarch (),
5605 tp->suspend.stop_pc),
5606 target_pid_to_str (tp->ptid),
5607 currently_stepping (tp));
5608 }
5609
5610 /* This in-line step-over finished; clear this so we won't
5611 start a new one. This is what handle_signal_stop would
5612 do, if we returned false. */
5613 tp->stepping_over_breakpoint = 0;
5614
5615 /* Wake up the event loop again. */
5616 mark_async_event_handler (infrun_async_inferior_event_token);
5617
5618 prepare_to_wait (ecs);
5619 return 1;
5620 }
5621 }
5622
5623 return 0;
5624 }
5625
5626 /* Come here when the program has stopped with a signal. */
5627
5628 static void
5629 handle_signal_stop (struct execution_control_state *ecs)
5630 {
5631 struct frame_info *frame;
5632 struct gdbarch *gdbarch;
5633 int stopped_by_watchpoint;
5634 enum stop_kind stop_soon;
5635 int random_signal;
5636
5637 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5638
5639 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5640
5641 /* Do we need to clean up the state of a thread that has
5642 completed a displaced single-step? (Doing so usually affects
5643 the PC, so do it here, before we set stop_pc.) */
5644 if (finish_step_over (ecs))
5645 return;
5646
5647 /* If we either finished a single-step or hit a breakpoint, but
5648 the user wanted this thread to be stopped, pretend we got a
5649 SIG0 (generic unsignaled stop). */
5650 if (ecs->event_thread->stop_requested
5651 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5652 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5653
5654 stop_pc = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5655
5656 if (debug_infrun)
5657 {
5658 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5659 struct gdbarch *gdbarch = regcache->arch ();
5660 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5661
5662 inferior_ptid = ecs->ptid;
5663
5664 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5665 paddress (gdbarch, stop_pc));
5666 if (target_stopped_by_watchpoint ())
5667 {
5668 CORE_ADDR addr;
5669
5670 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5671
5672 if (target_stopped_data_address (current_top_target (), &addr))
5673 fprintf_unfiltered (gdb_stdlog,
5674 "infrun: stopped data address = %s\n",
5675 paddress (gdbarch, addr));
5676 else
5677 fprintf_unfiltered (gdb_stdlog,
5678 "infrun: (no data address available)\n");
5679 }
5680 }
5681
5682 /* This is originated from start_remote(), start_inferior() and
5683 shared libraries hook functions. */
5684 stop_soon = get_inferior_stop_soon (ecs);
5685 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5686 {
5687 context_switch (ecs);
5688 if (debug_infrun)
5689 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5690 stop_print_frame = 1;
5691 stop_waiting (ecs);
5692 return;
5693 }
5694
5695 /* This originates from attach_command(). We need to overwrite
5696 the stop_signal here, because some kernels don't ignore a
5697 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5698 See more comments in inferior.h. On the other hand, if we
5699 get a non-SIGSTOP, report it to the user - assume the backend
5700 will handle the SIGSTOP if it should show up later.
5701
5702 Also consider that the attach is complete when we see a
5703 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5704 target extended-remote report it instead of a SIGSTOP
5705 (e.g. gdbserver). We already rely on SIGTRAP being our
5706 signal, so this is no exception.
5707
5708 Also consider that the attach is complete when we see a
5709 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5710 the target to stop all threads of the inferior, in case the
5711 low level attach operation doesn't stop them implicitly. If
5712 they weren't stopped implicitly, then the stub will report a
5713 GDB_SIGNAL_0, meaning: stopped for no particular reason
5714 other than GDB's request. */
5715 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5716 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5717 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5718 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5719 {
5720 stop_print_frame = 1;
5721 stop_waiting (ecs);
5722 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5723 return;
5724 }
5725
5726 /* See if something interesting happened to the non-current thread. If
5727 so, then switch to that thread. */
5728 if (!ptid_equal (ecs->ptid, inferior_ptid))
5729 {
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5732
5733 context_switch (ecs);
5734
5735 if (deprecated_context_hook)
5736 deprecated_context_hook (ecs->event_thread->global_num);
5737 }
5738
5739 /* At this point, get hold of the now-current thread's frame. */
5740 frame = get_current_frame ();
5741 gdbarch = get_frame_arch (frame);
5742
5743 /* Pull the single step breakpoints out of the target. */
5744 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5745 {
5746 struct regcache *regcache;
5747 CORE_ADDR pc;
5748
5749 regcache = get_thread_regcache (ecs->event_thread);
5750 const address_space *aspace = regcache->aspace ();
5751
5752 pc = regcache_read_pc (regcache);
5753
5754 /* However, before doing so, if this single-step breakpoint was
5755 actually for another thread, set this thread up for moving
5756 past it. */
5757 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5758 aspace, pc))
5759 {
5760 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5761 {
5762 if (debug_infrun)
5763 {
5764 fprintf_unfiltered (gdb_stdlog,
5765 "infrun: [%s] hit another thread's "
5766 "single-step breakpoint\n",
5767 target_pid_to_str (ecs->ptid));
5768 }
5769 ecs->hit_singlestep_breakpoint = 1;
5770 }
5771 }
5772 else
5773 {
5774 if (debug_infrun)
5775 {
5776 fprintf_unfiltered (gdb_stdlog,
5777 "infrun: [%s] hit its "
5778 "single-step breakpoint\n",
5779 target_pid_to_str (ecs->ptid));
5780 }
5781 }
5782 }
5783 delete_just_stopped_threads_single_step_breakpoints ();
5784
5785 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5786 && ecs->event_thread->control.trap_expected
5787 && ecs->event_thread->stepping_over_watchpoint)
5788 stopped_by_watchpoint = 0;
5789 else
5790 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5791
5792 /* If necessary, step over this watchpoint. We'll be back to display
5793 it in a moment. */
5794 if (stopped_by_watchpoint
5795 && (target_have_steppable_watchpoint
5796 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5797 {
5798 /* At this point, we are stopped at an instruction which has
5799 attempted to write to a piece of memory under control of
5800 a watchpoint. The instruction hasn't actually executed
5801 yet. If we were to evaluate the watchpoint expression
5802 now, we would get the old value, and therefore no change
5803 would seem to have occurred.
5804
5805 In order to make watchpoints work `right', we really need
5806 to complete the memory write, and then evaluate the
5807 watchpoint expression. We do this by single-stepping the
5808 target.
5809
5810 It may not be necessary to disable the watchpoint to step over
5811 it. For example, the PA can (with some kernel cooperation)
5812 single step over a watchpoint without disabling the watchpoint.
5813
5814 It is far more common to need to disable a watchpoint to step
5815 the inferior over it. If we have non-steppable watchpoints,
5816 we must disable the current watchpoint; it's simplest to
5817 disable all watchpoints.
5818
5819 Any breakpoint at PC must also be stepped over -- if there's
5820 one, it will have already triggered before the watchpoint
5821 triggered, and we either already reported it to the user, or
5822 it didn't cause a stop and we called keep_going. In either
5823 case, if there was a breakpoint at PC, we must be trying to
5824 step past it. */
5825 ecs->event_thread->stepping_over_watchpoint = 1;
5826 keep_going (ecs);
5827 return;
5828 }
5829
5830 ecs->event_thread->stepping_over_breakpoint = 0;
5831 ecs->event_thread->stepping_over_watchpoint = 0;
5832 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5833 ecs->event_thread->control.stop_step = 0;
5834 stop_print_frame = 1;
5835 stopped_by_random_signal = 0;
5836 bpstat stop_chain = NULL;
5837
5838 /* Hide inlined functions starting here, unless we just performed stepi or
5839 nexti. After stepi and nexti, always show the innermost frame (not any
5840 inline function call sites). */
5841 if (ecs->event_thread->control.step_range_end != 1)
5842 {
5843 const address_space *aspace
5844 = get_thread_regcache (ecs->event_thread)->aspace ();
5845
5846 /* skip_inline_frames is expensive, so we avoid it if we can
5847 determine that the address is one where functions cannot have
5848 been inlined. This improves performance with inferiors that
5849 load a lot of shared libraries, because the solib event
5850 breakpoint is defined as the address of a function (i.e. not
5851 inline). Note that we have to check the previous PC as well
5852 as the current one to catch cases when we have just
5853 single-stepped off a breakpoint prior to reinstating it.
5854 Note that we're assuming that the code we single-step to is
5855 not inline, but that's not definitive: there's nothing
5856 preventing the event breakpoint function from containing
5857 inlined code, and the single-step ending up there. If the
5858 user had set a breakpoint on that inlined code, the missing
5859 skip_inline_frames call would break things. Fortunately
5860 that's an extremely unlikely scenario. */
5861 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5862 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5863 && ecs->event_thread->control.trap_expected
5864 && pc_at_non_inline_function (aspace,
5865 ecs->event_thread->prev_pc,
5866 &ecs->ws)))
5867 {
5868 stop_chain = build_bpstat_chain (aspace, stop_pc, &ecs->ws);
5869 skip_inline_frames (ecs->event_thread, stop_chain);
5870
5871 /* Re-fetch current thread's frame in case that invalidated
5872 the frame cache. */
5873 frame = get_current_frame ();
5874 gdbarch = get_frame_arch (frame);
5875 }
5876 }
5877
5878 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5879 && ecs->event_thread->control.trap_expected
5880 && gdbarch_single_step_through_delay_p (gdbarch)
5881 && currently_stepping (ecs->event_thread))
5882 {
5883 /* We're trying to step off a breakpoint. Turns out that we're
5884 also on an instruction that needs to be stepped multiple
5885 times before it's been fully executing. E.g., architectures
5886 with a delay slot. It needs to be stepped twice, once for
5887 the instruction and once for the delay slot. */
5888 int step_through_delay
5889 = gdbarch_single_step_through_delay (gdbarch, frame);
5890
5891 if (debug_infrun && step_through_delay)
5892 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5893 if (ecs->event_thread->control.step_range_end == 0
5894 && step_through_delay)
5895 {
5896 /* The user issued a continue when stopped at a breakpoint.
5897 Set up for another trap and get out of here. */
5898 ecs->event_thread->stepping_over_breakpoint = 1;
5899 keep_going (ecs);
5900 return;
5901 }
5902 else if (step_through_delay)
5903 {
5904 /* The user issued a step when stopped at a breakpoint.
5905 Maybe we should stop, maybe we should not - the delay
5906 slot *might* correspond to a line of source. In any
5907 case, don't decide that here, just set
5908 ecs->stepping_over_breakpoint, making sure we
5909 single-step again before breakpoints are re-inserted. */
5910 ecs->event_thread->stepping_over_breakpoint = 1;
5911 }
5912 }
5913
5914 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5915 handles this event. */
5916 ecs->event_thread->control.stop_bpstat
5917 = bpstat_stop_status (get_current_regcache ()->aspace (),
5918 stop_pc, ecs->event_thread, &ecs->ws, stop_chain);
5919
5920 /* Following in case break condition called a
5921 function. */
5922 stop_print_frame = 1;
5923
5924 /* This is where we handle "moribund" watchpoints. Unlike
5925 software breakpoints traps, hardware watchpoint traps are
5926 always distinguishable from random traps. If no high-level
5927 watchpoint is associated with the reported stop data address
5928 anymore, then the bpstat does not explain the signal ---
5929 simply make sure to ignore it if `stopped_by_watchpoint' is
5930 set. */
5931
5932 if (debug_infrun
5933 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5934 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5935 GDB_SIGNAL_TRAP)
5936 && stopped_by_watchpoint)
5937 fprintf_unfiltered (gdb_stdlog,
5938 "infrun: no user watchpoint explains "
5939 "watchpoint SIGTRAP, ignoring\n");
5940
5941 /* NOTE: cagney/2003-03-29: These checks for a random signal
5942 at one stage in the past included checks for an inferior
5943 function call's call dummy's return breakpoint. The original
5944 comment, that went with the test, read:
5945
5946 ``End of a stack dummy. Some systems (e.g. Sony news) give
5947 another signal besides SIGTRAP, so check here as well as
5948 above.''
5949
5950 If someone ever tries to get call dummys on a
5951 non-executable stack to work (where the target would stop
5952 with something like a SIGSEGV), then those tests might need
5953 to be re-instated. Given, however, that the tests were only
5954 enabled when momentary breakpoints were not being used, I
5955 suspect that it won't be the case.
5956
5957 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5958 be necessary for call dummies on a non-executable stack on
5959 SPARC. */
5960
5961 /* See if the breakpoints module can explain the signal. */
5962 random_signal
5963 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5964 ecs->event_thread->suspend.stop_signal);
5965
5966 /* Maybe this was a trap for a software breakpoint that has since
5967 been removed. */
5968 if (random_signal && target_stopped_by_sw_breakpoint ())
5969 {
5970 if (program_breakpoint_here_p (gdbarch, stop_pc))
5971 {
5972 struct regcache *regcache;
5973 int decr_pc;
5974
5975 /* Re-adjust PC to what the program would see if GDB was not
5976 debugging it. */
5977 regcache = get_thread_regcache (ecs->event_thread);
5978 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5979 if (decr_pc != 0)
5980 {
5981 gdb::optional<scoped_restore_tmpl<int>>
5982 restore_operation_disable;
5983
5984 if (record_full_is_used ())
5985 restore_operation_disable.emplace
5986 (record_full_gdb_operation_disable_set ());
5987
5988 regcache_write_pc (regcache, stop_pc + decr_pc);
5989 }
5990 }
5991 else
5992 {
5993 /* A delayed software breakpoint event. Ignore the trap. */
5994 if (debug_infrun)
5995 fprintf_unfiltered (gdb_stdlog,
5996 "infrun: delayed software breakpoint "
5997 "trap, ignoring\n");
5998 random_signal = 0;
5999 }
6000 }
6001
6002 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6003 has since been removed. */
6004 if (random_signal && target_stopped_by_hw_breakpoint ())
6005 {
6006 /* A delayed hardware breakpoint event. Ignore the trap. */
6007 if (debug_infrun)
6008 fprintf_unfiltered (gdb_stdlog,
6009 "infrun: delayed hardware breakpoint/watchpoint "
6010 "trap, ignoring\n");
6011 random_signal = 0;
6012 }
6013
6014 /* If not, perhaps stepping/nexting can. */
6015 if (random_signal)
6016 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6017 && currently_stepping (ecs->event_thread));
6018
6019 /* Perhaps the thread hit a single-step breakpoint of _another_
6020 thread. Single-step breakpoints are transparent to the
6021 breakpoints module. */
6022 if (random_signal)
6023 random_signal = !ecs->hit_singlestep_breakpoint;
6024
6025 /* No? Perhaps we got a moribund watchpoint. */
6026 if (random_signal)
6027 random_signal = !stopped_by_watchpoint;
6028
6029 /* Always stop if the user explicitly requested this thread to
6030 remain stopped. */
6031 if (ecs->event_thread->stop_requested)
6032 {
6033 random_signal = 1;
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6036 }
6037
6038 /* For the program's own signals, act according to
6039 the signal handling tables. */
6040
6041 if (random_signal)
6042 {
6043 /* Signal not for debugging purposes. */
6044 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6045 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6046
6047 if (debug_infrun)
6048 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6049 gdb_signal_to_symbol_string (stop_signal));
6050
6051 stopped_by_random_signal = 1;
6052
6053 /* Always stop on signals if we're either just gaining control
6054 of the program, or the user explicitly requested this thread
6055 to remain stopped. */
6056 if (stop_soon != NO_STOP_QUIETLY
6057 || ecs->event_thread->stop_requested
6058 || (!inf->detaching
6059 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6060 {
6061 stop_waiting (ecs);
6062 return;
6063 }
6064
6065 /* Notify observers the signal has "handle print" set. Note we
6066 returned early above if stopping; normal_stop handles the
6067 printing in that case. */
6068 if (signal_print[ecs->event_thread->suspend.stop_signal])
6069 {
6070 /* The signal table tells us to print about this signal. */
6071 target_terminal::ours_for_output ();
6072 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6073 target_terminal::inferior ();
6074 }
6075
6076 /* Clear the signal if it should not be passed. */
6077 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6079
6080 if (ecs->event_thread->prev_pc == stop_pc
6081 && ecs->event_thread->control.trap_expected
6082 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6083 {
6084 /* We were just starting a new sequence, attempting to
6085 single-step off of a breakpoint and expecting a SIGTRAP.
6086 Instead this signal arrives. This signal will take us out
6087 of the stepping range so GDB needs to remember to, when
6088 the signal handler returns, resume stepping off that
6089 breakpoint. */
6090 /* To simplify things, "continue" is forced to use the same
6091 code paths as single-step - set a breakpoint at the
6092 signal return address and then, once hit, step off that
6093 breakpoint. */
6094 if (debug_infrun)
6095 fprintf_unfiltered (gdb_stdlog,
6096 "infrun: signal arrived while stepping over "
6097 "breakpoint\n");
6098
6099 insert_hp_step_resume_breakpoint_at_frame (frame);
6100 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6101 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6102 ecs->event_thread->control.trap_expected = 0;
6103
6104 /* If we were nexting/stepping some other thread, switch to
6105 it, so that we don't continue it, losing control. */
6106 if (!switch_back_to_stepped_thread (ecs))
6107 keep_going (ecs);
6108 return;
6109 }
6110
6111 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6112 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6113 || ecs->event_thread->control.step_range_end == 1)
6114 && frame_id_eq (get_stack_frame_id (frame),
6115 ecs->event_thread->control.step_stack_frame_id)
6116 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6117 {
6118 /* The inferior is about to take a signal that will take it
6119 out of the single step range. Set a breakpoint at the
6120 current PC (which is presumably where the signal handler
6121 will eventually return) and then allow the inferior to
6122 run free.
6123
6124 Note that this is only needed for a signal delivered
6125 while in the single-step range. Nested signals aren't a
6126 problem as they eventually all return. */
6127 if (debug_infrun)
6128 fprintf_unfiltered (gdb_stdlog,
6129 "infrun: signal may take us out of "
6130 "single-step range\n");
6131
6132 clear_step_over_info ();
6133 insert_hp_step_resume_breakpoint_at_frame (frame);
6134 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6135 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6136 ecs->event_thread->control.trap_expected = 0;
6137 keep_going (ecs);
6138 return;
6139 }
6140
6141 /* Note: step_resume_breakpoint may be non-NULL. This occures
6142 when either there's a nested signal, or when there's a
6143 pending signal enabled just as the signal handler returns
6144 (leaving the inferior at the step-resume-breakpoint without
6145 actually executing it). Either way continue until the
6146 breakpoint is really hit. */
6147
6148 if (!switch_back_to_stepped_thread (ecs))
6149 {
6150 if (debug_infrun)
6151 fprintf_unfiltered (gdb_stdlog,
6152 "infrun: random signal, keep going\n");
6153
6154 keep_going (ecs);
6155 }
6156 return;
6157 }
6158
6159 process_event_stop_test (ecs);
6160 }
6161
6162 /* Come here when we've got some debug event / signal we can explain
6163 (IOW, not a random signal), and test whether it should cause a
6164 stop, or whether we should resume the inferior (transparently).
6165 E.g., could be a breakpoint whose condition evaluates false; we
6166 could be still stepping within the line; etc. */
6167
6168 static void
6169 process_event_stop_test (struct execution_control_state *ecs)
6170 {
6171 struct symtab_and_line stop_pc_sal;
6172 struct frame_info *frame;
6173 struct gdbarch *gdbarch;
6174 CORE_ADDR jmp_buf_pc;
6175 struct bpstat_what what;
6176
6177 /* Handle cases caused by hitting a breakpoint. */
6178
6179 frame = get_current_frame ();
6180 gdbarch = get_frame_arch (frame);
6181
6182 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6183
6184 if (what.call_dummy)
6185 {
6186 stop_stack_dummy = what.call_dummy;
6187 }
6188
6189 /* A few breakpoint types have callbacks associated (e.g.,
6190 bp_jit_event). Run them now. */
6191 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6192
6193 /* If we hit an internal event that triggers symbol changes, the
6194 current frame will be invalidated within bpstat_what (e.g., if we
6195 hit an internal solib event). Re-fetch it. */
6196 frame = get_current_frame ();
6197 gdbarch = get_frame_arch (frame);
6198
6199 switch (what.main_action)
6200 {
6201 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6202 /* If we hit the breakpoint at longjmp while stepping, we
6203 install a momentary breakpoint at the target of the
6204 jmp_buf. */
6205
6206 if (debug_infrun)
6207 fprintf_unfiltered (gdb_stdlog,
6208 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6209
6210 ecs->event_thread->stepping_over_breakpoint = 1;
6211
6212 if (what.is_longjmp)
6213 {
6214 struct value *arg_value;
6215
6216 /* If we set the longjmp breakpoint via a SystemTap probe,
6217 then use it to extract the arguments. The destination PC
6218 is the third argument to the probe. */
6219 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6220 if (arg_value)
6221 {
6222 jmp_buf_pc = value_as_address (arg_value);
6223 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6224 }
6225 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6226 || !gdbarch_get_longjmp_target (gdbarch,
6227 frame, &jmp_buf_pc))
6228 {
6229 if (debug_infrun)
6230 fprintf_unfiltered (gdb_stdlog,
6231 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6232 "(!gdbarch_get_longjmp_target)\n");
6233 keep_going (ecs);
6234 return;
6235 }
6236
6237 /* Insert a breakpoint at resume address. */
6238 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6239 }
6240 else
6241 check_exception_resume (ecs, frame);
6242 keep_going (ecs);
6243 return;
6244
6245 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6246 {
6247 struct frame_info *init_frame;
6248
6249 /* There are several cases to consider.
6250
6251 1. The initiating frame no longer exists. In this case we
6252 must stop, because the exception or longjmp has gone too
6253 far.
6254
6255 2. The initiating frame exists, and is the same as the
6256 current frame. We stop, because the exception or longjmp
6257 has been caught.
6258
6259 3. The initiating frame exists and is different from the
6260 current frame. This means the exception or longjmp has
6261 been caught beneath the initiating frame, so keep going.
6262
6263 4. longjmp breakpoint has been placed just to protect
6264 against stale dummy frames and user is not interested in
6265 stopping around longjmps. */
6266
6267 if (debug_infrun)
6268 fprintf_unfiltered (gdb_stdlog,
6269 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6270
6271 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6272 != NULL);
6273 delete_exception_resume_breakpoint (ecs->event_thread);
6274
6275 if (what.is_longjmp)
6276 {
6277 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6278
6279 if (!frame_id_p (ecs->event_thread->initiating_frame))
6280 {
6281 /* Case 4. */
6282 keep_going (ecs);
6283 return;
6284 }
6285 }
6286
6287 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6288
6289 if (init_frame)
6290 {
6291 struct frame_id current_id
6292 = get_frame_id (get_current_frame ());
6293 if (frame_id_eq (current_id,
6294 ecs->event_thread->initiating_frame))
6295 {
6296 /* Case 2. Fall through. */
6297 }
6298 else
6299 {
6300 /* Case 3. */
6301 keep_going (ecs);
6302 return;
6303 }
6304 }
6305
6306 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6307 exists. */
6308 delete_step_resume_breakpoint (ecs->event_thread);
6309
6310 end_stepping_range (ecs);
6311 }
6312 return;
6313
6314 case BPSTAT_WHAT_SINGLE:
6315 if (debug_infrun)
6316 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6317 ecs->event_thread->stepping_over_breakpoint = 1;
6318 /* Still need to check other stuff, at least the case where we
6319 are stepping and step out of the right range. */
6320 break;
6321
6322 case BPSTAT_WHAT_STEP_RESUME:
6323 if (debug_infrun)
6324 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6325
6326 delete_step_resume_breakpoint (ecs->event_thread);
6327 if (ecs->event_thread->control.proceed_to_finish
6328 && execution_direction == EXEC_REVERSE)
6329 {
6330 struct thread_info *tp = ecs->event_thread;
6331
6332 /* We are finishing a function in reverse, and just hit the
6333 step-resume breakpoint at the start address of the
6334 function, and we're almost there -- just need to back up
6335 by one more single-step, which should take us back to the
6336 function call. */
6337 tp->control.step_range_start = tp->control.step_range_end = 1;
6338 keep_going (ecs);
6339 return;
6340 }
6341 fill_in_stop_func (gdbarch, ecs);
6342 if (stop_pc == ecs->stop_func_start
6343 && execution_direction == EXEC_REVERSE)
6344 {
6345 /* We are stepping over a function call in reverse, and just
6346 hit the step-resume breakpoint at the start address of
6347 the function. Go back to single-stepping, which should
6348 take us back to the function call. */
6349 ecs->event_thread->stepping_over_breakpoint = 1;
6350 keep_going (ecs);
6351 return;
6352 }
6353 break;
6354
6355 case BPSTAT_WHAT_STOP_NOISY:
6356 if (debug_infrun)
6357 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6358 stop_print_frame = 1;
6359
6360 /* Assume the thread stopped for a breapoint. We'll still check
6361 whether a/the breakpoint is there when the thread is next
6362 resumed. */
6363 ecs->event_thread->stepping_over_breakpoint = 1;
6364
6365 stop_waiting (ecs);
6366 return;
6367
6368 case BPSTAT_WHAT_STOP_SILENT:
6369 if (debug_infrun)
6370 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6371 stop_print_frame = 0;
6372
6373 /* Assume the thread stopped for a breapoint. We'll still check
6374 whether a/the breakpoint is there when the thread is next
6375 resumed. */
6376 ecs->event_thread->stepping_over_breakpoint = 1;
6377 stop_waiting (ecs);
6378 return;
6379
6380 case BPSTAT_WHAT_HP_STEP_RESUME:
6381 if (debug_infrun)
6382 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6383
6384 delete_step_resume_breakpoint (ecs->event_thread);
6385 if (ecs->event_thread->step_after_step_resume_breakpoint)
6386 {
6387 /* Back when the step-resume breakpoint was inserted, we
6388 were trying to single-step off a breakpoint. Go back to
6389 doing that. */
6390 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6391 ecs->event_thread->stepping_over_breakpoint = 1;
6392 keep_going (ecs);
6393 return;
6394 }
6395 break;
6396
6397 case BPSTAT_WHAT_KEEP_CHECKING:
6398 break;
6399 }
6400
6401 /* If we stepped a permanent breakpoint and we had a high priority
6402 step-resume breakpoint for the address we stepped, but we didn't
6403 hit it, then we must have stepped into the signal handler. The
6404 step-resume was only necessary to catch the case of _not_
6405 stepping into the handler, so delete it, and fall through to
6406 checking whether the step finished. */
6407 if (ecs->event_thread->stepped_breakpoint)
6408 {
6409 struct breakpoint *sr_bp
6410 = ecs->event_thread->control.step_resume_breakpoint;
6411
6412 if (sr_bp != NULL
6413 && sr_bp->loc->permanent
6414 && sr_bp->type == bp_hp_step_resume
6415 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6416 {
6417 if (debug_infrun)
6418 fprintf_unfiltered (gdb_stdlog,
6419 "infrun: stepped permanent breakpoint, stopped in "
6420 "handler\n");
6421 delete_step_resume_breakpoint (ecs->event_thread);
6422 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6423 }
6424 }
6425
6426 /* We come here if we hit a breakpoint but should not stop for it.
6427 Possibly we also were stepping and should stop for that. So fall
6428 through and test for stepping. But, if not stepping, do not
6429 stop. */
6430
6431 /* In all-stop mode, if we're currently stepping but have stopped in
6432 some other thread, we need to switch back to the stepped thread. */
6433 if (switch_back_to_stepped_thread (ecs))
6434 return;
6435
6436 if (ecs->event_thread->control.step_resume_breakpoint)
6437 {
6438 if (debug_infrun)
6439 fprintf_unfiltered (gdb_stdlog,
6440 "infrun: step-resume breakpoint is inserted\n");
6441
6442 /* Having a step-resume breakpoint overrides anything
6443 else having to do with stepping commands until
6444 that breakpoint is reached. */
6445 keep_going (ecs);
6446 return;
6447 }
6448
6449 if (ecs->event_thread->control.step_range_end == 0)
6450 {
6451 if (debug_infrun)
6452 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6453 /* Likewise if we aren't even stepping. */
6454 keep_going (ecs);
6455 return;
6456 }
6457
6458 /* Re-fetch current thread's frame in case the code above caused
6459 the frame cache to be re-initialized, making our FRAME variable
6460 a dangling pointer. */
6461 frame = get_current_frame ();
6462 gdbarch = get_frame_arch (frame);
6463 fill_in_stop_func (gdbarch, ecs);
6464
6465 /* If stepping through a line, keep going if still within it.
6466
6467 Note that step_range_end is the address of the first instruction
6468 beyond the step range, and NOT the address of the last instruction
6469 within it!
6470
6471 Note also that during reverse execution, we may be stepping
6472 through a function epilogue and therefore must detect when
6473 the current-frame changes in the middle of a line. */
6474
6475 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6476 && (execution_direction != EXEC_REVERSE
6477 || frame_id_eq (get_frame_id (frame),
6478 ecs->event_thread->control.step_frame_id)))
6479 {
6480 if (debug_infrun)
6481 fprintf_unfiltered
6482 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6483 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6484 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6485
6486 /* Tentatively re-enable range stepping; `resume' disables it if
6487 necessary (e.g., if we're stepping over a breakpoint or we
6488 have software watchpoints). */
6489 ecs->event_thread->control.may_range_step = 1;
6490
6491 /* When stepping backward, stop at beginning of line range
6492 (unless it's the function entry point, in which case
6493 keep going back to the call point). */
6494 if (stop_pc == ecs->event_thread->control.step_range_start
6495 && stop_pc != ecs->stop_func_start
6496 && execution_direction == EXEC_REVERSE)
6497 end_stepping_range (ecs);
6498 else
6499 keep_going (ecs);
6500
6501 return;
6502 }
6503
6504 /* We stepped out of the stepping range. */
6505
6506 /* If we are stepping at the source level and entered the runtime
6507 loader dynamic symbol resolution code...
6508
6509 EXEC_FORWARD: we keep on single stepping until we exit the run
6510 time loader code and reach the callee's address.
6511
6512 EXEC_REVERSE: we've already executed the callee (backward), and
6513 the runtime loader code is handled just like any other
6514 undebuggable function call. Now we need only keep stepping
6515 backward through the trampoline code, and that's handled further
6516 down, so there is nothing for us to do here. */
6517
6518 if (execution_direction != EXEC_REVERSE
6519 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6520 && in_solib_dynsym_resolve_code (stop_pc))
6521 {
6522 CORE_ADDR pc_after_resolver =
6523 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6524
6525 if (debug_infrun)
6526 fprintf_unfiltered (gdb_stdlog,
6527 "infrun: stepped into dynsym resolve code\n");
6528
6529 if (pc_after_resolver)
6530 {
6531 /* Set up a step-resume breakpoint at the address
6532 indicated by SKIP_SOLIB_RESOLVER. */
6533 symtab_and_line sr_sal;
6534 sr_sal.pc = pc_after_resolver;
6535 sr_sal.pspace = get_frame_program_space (frame);
6536
6537 insert_step_resume_breakpoint_at_sal (gdbarch,
6538 sr_sal, null_frame_id);
6539 }
6540
6541 keep_going (ecs);
6542 return;
6543 }
6544
6545 /* Step through an indirect branch thunk. */
6546 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6547 && gdbarch_in_indirect_branch_thunk (gdbarch, stop_pc))
6548 {
6549 if (debug_infrun)
6550 fprintf_unfiltered (gdb_stdlog,
6551 "infrun: stepped into indirect branch thunk\n");
6552 keep_going (ecs);
6553 return;
6554 }
6555
6556 if (ecs->event_thread->control.step_range_end != 1
6557 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6558 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6559 && get_frame_type (frame) == SIGTRAMP_FRAME)
6560 {
6561 if (debug_infrun)
6562 fprintf_unfiltered (gdb_stdlog,
6563 "infrun: stepped into signal trampoline\n");
6564 /* The inferior, while doing a "step" or "next", has ended up in
6565 a signal trampoline (either by a signal being delivered or by
6566 the signal handler returning). Just single-step until the
6567 inferior leaves the trampoline (either by calling the handler
6568 or returning). */
6569 keep_going (ecs);
6570 return;
6571 }
6572
6573 /* If we're in the return path from a shared library trampoline,
6574 we want to proceed through the trampoline when stepping. */
6575 /* macro/2012-04-25: This needs to come before the subroutine
6576 call check below as on some targets return trampolines look
6577 like subroutine calls (MIPS16 return thunks). */
6578 if (gdbarch_in_solib_return_trampoline (gdbarch,
6579 stop_pc, ecs->stop_func_name)
6580 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6581 {
6582 /* Determine where this trampoline returns. */
6583 CORE_ADDR real_stop_pc;
6584
6585 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6586
6587 if (debug_infrun)
6588 fprintf_unfiltered (gdb_stdlog,
6589 "infrun: stepped into solib return tramp\n");
6590
6591 /* Only proceed through if we know where it's going. */
6592 if (real_stop_pc)
6593 {
6594 /* And put the step-breakpoint there and go until there. */
6595 symtab_and_line sr_sal;
6596 sr_sal.pc = real_stop_pc;
6597 sr_sal.section = find_pc_overlay (sr_sal.pc);
6598 sr_sal.pspace = get_frame_program_space (frame);
6599
6600 /* Do not specify what the fp should be when we stop since
6601 on some machines the prologue is where the new fp value
6602 is established. */
6603 insert_step_resume_breakpoint_at_sal (gdbarch,
6604 sr_sal, null_frame_id);
6605
6606 /* Restart without fiddling with the step ranges or
6607 other state. */
6608 keep_going (ecs);
6609 return;
6610 }
6611 }
6612
6613 /* Check for subroutine calls. The check for the current frame
6614 equalling the step ID is not necessary - the check of the
6615 previous frame's ID is sufficient - but it is a common case and
6616 cheaper than checking the previous frame's ID.
6617
6618 NOTE: frame_id_eq will never report two invalid frame IDs as
6619 being equal, so to get into this block, both the current and
6620 previous frame must have valid frame IDs. */
6621 /* The outer_frame_id check is a heuristic to detect stepping
6622 through startup code. If we step over an instruction which
6623 sets the stack pointer from an invalid value to a valid value,
6624 we may detect that as a subroutine call from the mythical
6625 "outermost" function. This could be fixed by marking
6626 outermost frames as !stack_p,code_p,special_p. Then the
6627 initial outermost frame, before sp was valid, would
6628 have code_addr == &_start. See the comment in frame_id_eq
6629 for more. */
6630 if (!frame_id_eq (get_stack_frame_id (frame),
6631 ecs->event_thread->control.step_stack_frame_id)
6632 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6633 ecs->event_thread->control.step_stack_frame_id)
6634 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6635 outer_frame_id)
6636 || (ecs->event_thread->control.step_start_function
6637 != find_pc_function (stop_pc)))))
6638 {
6639 CORE_ADDR real_stop_pc;
6640
6641 if (debug_infrun)
6642 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6643
6644 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6645 {
6646 /* I presume that step_over_calls is only 0 when we're
6647 supposed to be stepping at the assembly language level
6648 ("stepi"). Just stop. */
6649 /* And this works the same backward as frontward. MVS */
6650 end_stepping_range (ecs);
6651 return;
6652 }
6653
6654 /* Reverse stepping through solib trampolines. */
6655
6656 if (execution_direction == EXEC_REVERSE
6657 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6658 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6659 || (ecs->stop_func_start == 0
6660 && in_solib_dynsym_resolve_code (stop_pc))))
6661 {
6662 /* Any solib trampoline code can be handled in reverse
6663 by simply continuing to single-step. We have already
6664 executed the solib function (backwards), and a few
6665 steps will take us back through the trampoline to the
6666 caller. */
6667 keep_going (ecs);
6668 return;
6669 }
6670
6671 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6672 {
6673 /* We're doing a "next".
6674
6675 Normal (forward) execution: set a breakpoint at the
6676 callee's return address (the address at which the caller
6677 will resume).
6678
6679 Reverse (backward) execution. set the step-resume
6680 breakpoint at the start of the function that we just
6681 stepped into (backwards), and continue to there. When we
6682 get there, we'll need to single-step back to the caller. */
6683
6684 if (execution_direction == EXEC_REVERSE)
6685 {
6686 /* If we're already at the start of the function, we've either
6687 just stepped backward into a single instruction function,
6688 or stepped back out of a signal handler to the first instruction
6689 of the function. Just keep going, which will single-step back
6690 to the caller. */
6691 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6692 {
6693 /* Normal function call return (static or dynamic). */
6694 symtab_and_line sr_sal;
6695 sr_sal.pc = ecs->stop_func_start;
6696 sr_sal.pspace = get_frame_program_space (frame);
6697 insert_step_resume_breakpoint_at_sal (gdbarch,
6698 sr_sal, null_frame_id);
6699 }
6700 }
6701 else
6702 insert_step_resume_breakpoint_at_caller (frame);
6703
6704 keep_going (ecs);
6705 return;
6706 }
6707
6708 /* If we are in a function call trampoline (a stub between the
6709 calling routine and the real function), locate the real
6710 function. That's what tells us (a) whether we want to step
6711 into it at all, and (b) what prologue we want to run to the
6712 end of, if we do step into it. */
6713 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6714 if (real_stop_pc == 0)
6715 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6716 if (real_stop_pc != 0)
6717 ecs->stop_func_start = real_stop_pc;
6718
6719 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6720 {
6721 symtab_and_line sr_sal;
6722 sr_sal.pc = ecs->stop_func_start;
6723 sr_sal.pspace = get_frame_program_space (frame);
6724
6725 insert_step_resume_breakpoint_at_sal (gdbarch,
6726 sr_sal, null_frame_id);
6727 keep_going (ecs);
6728 return;
6729 }
6730
6731 /* If we have line number information for the function we are
6732 thinking of stepping into and the function isn't on the skip
6733 list, step into it.
6734
6735 If there are several symtabs at that PC (e.g. with include
6736 files), just want to know whether *any* of them have line
6737 numbers. find_pc_line handles this. */
6738 {
6739 struct symtab_and_line tmp_sal;
6740
6741 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6742 if (tmp_sal.line != 0
6743 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6744 tmp_sal))
6745 {
6746 if (execution_direction == EXEC_REVERSE)
6747 handle_step_into_function_backward (gdbarch, ecs);
6748 else
6749 handle_step_into_function (gdbarch, ecs);
6750 return;
6751 }
6752 }
6753
6754 /* If we have no line number and the step-stop-if-no-debug is
6755 set, we stop the step so that the user has a chance to switch
6756 in assembly mode. */
6757 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6758 && step_stop_if_no_debug)
6759 {
6760 end_stepping_range (ecs);
6761 return;
6762 }
6763
6764 if (execution_direction == EXEC_REVERSE)
6765 {
6766 /* If we're already at the start of the function, we've either just
6767 stepped backward into a single instruction function without line
6768 number info, or stepped back out of a signal handler to the first
6769 instruction of the function without line number info. Just keep
6770 going, which will single-step back to the caller. */
6771 if (ecs->stop_func_start != stop_pc)
6772 {
6773 /* Set a breakpoint at callee's start address.
6774 From there we can step once and be back in the caller. */
6775 symtab_and_line sr_sal;
6776 sr_sal.pc = ecs->stop_func_start;
6777 sr_sal.pspace = get_frame_program_space (frame);
6778 insert_step_resume_breakpoint_at_sal (gdbarch,
6779 sr_sal, null_frame_id);
6780 }
6781 }
6782 else
6783 /* Set a breakpoint at callee's return address (the address
6784 at which the caller will resume). */
6785 insert_step_resume_breakpoint_at_caller (frame);
6786
6787 keep_going (ecs);
6788 return;
6789 }
6790
6791 /* Reverse stepping through solib trampolines. */
6792
6793 if (execution_direction == EXEC_REVERSE
6794 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6795 {
6796 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6797 || (ecs->stop_func_start == 0
6798 && in_solib_dynsym_resolve_code (stop_pc)))
6799 {
6800 /* Any solib trampoline code can be handled in reverse
6801 by simply continuing to single-step. We have already
6802 executed the solib function (backwards), and a few
6803 steps will take us back through the trampoline to the
6804 caller. */
6805 keep_going (ecs);
6806 return;
6807 }
6808 else if (in_solib_dynsym_resolve_code (stop_pc))
6809 {
6810 /* Stepped backward into the solib dynsym resolver.
6811 Set a breakpoint at its start and continue, then
6812 one more step will take us out. */
6813 symtab_and_line sr_sal;
6814 sr_sal.pc = ecs->stop_func_start;
6815 sr_sal.pspace = get_frame_program_space (frame);
6816 insert_step_resume_breakpoint_at_sal (gdbarch,
6817 sr_sal, null_frame_id);
6818 keep_going (ecs);
6819 return;
6820 }
6821 }
6822
6823 stop_pc_sal = find_pc_line (stop_pc, 0);
6824
6825 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6826 the trampoline processing logic, however, there are some trampolines
6827 that have no names, so we should do trampoline handling first. */
6828 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6829 && ecs->stop_func_name == NULL
6830 && stop_pc_sal.line == 0)
6831 {
6832 if (debug_infrun)
6833 fprintf_unfiltered (gdb_stdlog,
6834 "infrun: stepped into undebuggable function\n");
6835
6836 /* The inferior just stepped into, or returned to, an
6837 undebuggable function (where there is no debugging information
6838 and no line number corresponding to the address where the
6839 inferior stopped). Since we want to skip this kind of code,
6840 we keep going until the inferior returns from this
6841 function - unless the user has asked us not to (via
6842 set step-mode) or we no longer know how to get back
6843 to the call site. */
6844 if (step_stop_if_no_debug
6845 || !frame_id_p (frame_unwind_caller_id (frame)))
6846 {
6847 /* If we have no line number and the step-stop-if-no-debug
6848 is set, we stop the step so that the user has a chance to
6849 switch in assembly mode. */
6850 end_stepping_range (ecs);
6851 return;
6852 }
6853 else
6854 {
6855 /* Set a breakpoint at callee's return address (the address
6856 at which the caller will resume). */
6857 insert_step_resume_breakpoint_at_caller (frame);
6858 keep_going (ecs);
6859 return;
6860 }
6861 }
6862
6863 if (ecs->event_thread->control.step_range_end == 1)
6864 {
6865 /* It is stepi or nexti. We always want to stop stepping after
6866 one instruction. */
6867 if (debug_infrun)
6868 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6869 end_stepping_range (ecs);
6870 return;
6871 }
6872
6873 if (stop_pc_sal.line == 0)
6874 {
6875 /* We have no line number information. That means to stop
6876 stepping (does this always happen right after one instruction,
6877 when we do "s" in a function with no line numbers,
6878 or can this happen as a result of a return or longjmp?). */
6879 if (debug_infrun)
6880 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6881 end_stepping_range (ecs);
6882 return;
6883 }
6884
6885 /* Look for "calls" to inlined functions, part one. If the inline
6886 frame machinery detected some skipped call sites, we have entered
6887 a new inline function. */
6888
6889 if (frame_id_eq (get_frame_id (get_current_frame ()),
6890 ecs->event_thread->control.step_frame_id)
6891 && inline_skipped_frames (ecs->event_thread))
6892 {
6893 if (debug_infrun)
6894 fprintf_unfiltered (gdb_stdlog,
6895 "infrun: stepped into inlined function\n");
6896
6897 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6898
6899 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6900 {
6901 /* For "step", we're going to stop. But if the call site
6902 for this inlined function is on the same source line as
6903 we were previously stepping, go down into the function
6904 first. Otherwise stop at the call site. */
6905
6906 if (call_sal.line == ecs->event_thread->current_line
6907 && call_sal.symtab == ecs->event_thread->current_symtab)
6908 step_into_inline_frame (ecs->event_thread);
6909
6910 end_stepping_range (ecs);
6911 return;
6912 }
6913 else
6914 {
6915 /* For "next", we should stop at the call site if it is on a
6916 different source line. Otherwise continue through the
6917 inlined function. */
6918 if (call_sal.line == ecs->event_thread->current_line
6919 && call_sal.symtab == ecs->event_thread->current_symtab)
6920 keep_going (ecs);
6921 else
6922 end_stepping_range (ecs);
6923 return;
6924 }
6925 }
6926
6927 /* Look for "calls" to inlined functions, part two. If we are still
6928 in the same real function we were stepping through, but we have
6929 to go further up to find the exact frame ID, we are stepping
6930 through a more inlined call beyond its call site. */
6931
6932 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6933 && !frame_id_eq (get_frame_id (get_current_frame ()),
6934 ecs->event_thread->control.step_frame_id)
6935 && stepped_in_from (get_current_frame (),
6936 ecs->event_thread->control.step_frame_id))
6937 {
6938 if (debug_infrun)
6939 fprintf_unfiltered (gdb_stdlog,
6940 "infrun: stepping through inlined function\n");
6941
6942 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6943 keep_going (ecs);
6944 else
6945 end_stepping_range (ecs);
6946 return;
6947 }
6948
6949 if ((stop_pc == stop_pc_sal.pc)
6950 && (ecs->event_thread->current_line != stop_pc_sal.line
6951 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6952 {
6953 /* We are at the start of a different line. So stop. Note that
6954 we don't stop if we step into the middle of a different line.
6955 That is said to make things like for (;;) statements work
6956 better. */
6957 if (debug_infrun)
6958 fprintf_unfiltered (gdb_stdlog,
6959 "infrun: stepped to a different line\n");
6960 end_stepping_range (ecs);
6961 return;
6962 }
6963
6964 /* We aren't done stepping.
6965
6966 Optimize by setting the stepping range to the line.
6967 (We might not be in the original line, but if we entered a
6968 new line in mid-statement, we continue stepping. This makes
6969 things like for(;;) statements work better.) */
6970
6971 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6972 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6973 ecs->event_thread->control.may_range_step = 1;
6974 set_step_info (frame, stop_pc_sal);
6975
6976 if (debug_infrun)
6977 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6978 keep_going (ecs);
6979 }
6980
6981 /* In all-stop mode, if we're currently stepping but have stopped in
6982 some other thread, we may need to switch back to the stepped
6983 thread. Returns true we set the inferior running, false if we left
6984 it stopped (and the event needs further processing). */
6985
6986 static int
6987 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6988 {
6989 if (!target_is_non_stop_p ())
6990 {
6991 struct thread_info *tp;
6992 struct thread_info *stepping_thread;
6993
6994 /* If any thread is blocked on some internal breakpoint, and we
6995 simply need to step over that breakpoint to get it going
6996 again, do that first. */
6997
6998 /* However, if we see an event for the stepping thread, then we
6999 know all other threads have been moved past their breakpoints
7000 already. Let the caller check whether the step is finished,
7001 etc., before deciding to move it past a breakpoint. */
7002 if (ecs->event_thread->control.step_range_end != 0)
7003 return 0;
7004
7005 /* Check if the current thread is blocked on an incomplete
7006 step-over, interrupted by a random signal. */
7007 if (ecs->event_thread->control.trap_expected
7008 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7009 {
7010 if (debug_infrun)
7011 {
7012 fprintf_unfiltered (gdb_stdlog,
7013 "infrun: need to finish step-over of [%s]\n",
7014 target_pid_to_str (ecs->event_thread->ptid));
7015 }
7016 keep_going (ecs);
7017 return 1;
7018 }
7019
7020 /* Check if the current thread is blocked by a single-step
7021 breakpoint of another thread. */
7022 if (ecs->hit_singlestep_breakpoint)
7023 {
7024 if (debug_infrun)
7025 {
7026 fprintf_unfiltered (gdb_stdlog,
7027 "infrun: need to step [%s] over single-step "
7028 "breakpoint\n",
7029 target_pid_to_str (ecs->ptid));
7030 }
7031 keep_going (ecs);
7032 return 1;
7033 }
7034
7035 /* If this thread needs yet another step-over (e.g., stepping
7036 through a delay slot), do it first before moving on to
7037 another thread. */
7038 if (thread_still_needs_step_over (ecs->event_thread))
7039 {
7040 if (debug_infrun)
7041 {
7042 fprintf_unfiltered (gdb_stdlog,
7043 "infrun: thread [%s] still needs step-over\n",
7044 target_pid_to_str (ecs->event_thread->ptid));
7045 }
7046 keep_going (ecs);
7047 return 1;
7048 }
7049
7050 /* If scheduler locking applies even if not stepping, there's no
7051 need to walk over threads. Above we've checked whether the
7052 current thread is stepping. If some other thread not the
7053 event thread is stepping, then it must be that scheduler
7054 locking is not in effect. */
7055 if (schedlock_applies (ecs->event_thread))
7056 return 0;
7057
7058 /* Otherwise, we no longer expect a trap in the current thread.
7059 Clear the trap_expected flag before switching back -- this is
7060 what keep_going does as well, if we call it. */
7061 ecs->event_thread->control.trap_expected = 0;
7062
7063 /* Likewise, clear the signal if it should not be passed. */
7064 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7065 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7066
7067 /* Do all pending step-overs before actually proceeding with
7068 step/next/etc. */
7069 if (start_step_over ())
7070 {
7071 prepare_to_wait (ecs);
7072 return 1;
7073 }
7074
7075 /* Look for the stepping/nexting thread. */
7076 stepping_thread = NULL;
7077
7078 ALL_NON_EXITED_THREADS (tp)
7079 {
7080 /* Ignore threads of processes the caller is not
7081 resuming. */
7082 if (!sched_multi
7083 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7084 continue;
7085
7086 /* When stepping over a breakpoint, we lock all threads
7087 except the one that needs to move past the breakpoint.
7088 If a non-event thread has this set, the "incomplete
7089 step-over" check above should have caught it earlier. */
7090 if (tp->control.trap_expected)
7091 {
7092 internal_error (__FILE__, __LINE__,
7093 "[%s] has inconsistent state: "
7094 "trap_expected=%d\n",
7095 target_pid_to_str (tp->ptid),
7096 tp->control.trap_expected);
7097 }
7098
7099 /* Did we find the stepping thread? */
7100 if (tp->control.step_range_end)
7101 {
7102 /* Yep. There should only one though. */
7103 gdb_assert (stepping_thread == NULL);
7104
7105 /* The event thread is handled at the top, before we
7106 enter this loop. */
7107 gdb_assert (tp != ecs->event_thread);
7108
7109 /* If some thread other than the event thread is
7110 stepping, then scheduler locking can't be in effect,
7111 otherwise we wouldn't have resumed the current event
7112 thread in the first place. */
7113 gdb_assert (!schedlock_applies (tp));
7114
7115 stepping_thread = tp;
7116 }
7117 }
7118
7119 if (stepping_thread != NULL)
7120 {
7121 if (debug_infrun)
7122 fprintf_unfiltered (gdb_stdlog,
7123 "infrun: switching back to stepped thread\n");
7124
7125 if (keep_going_stepped_thread (stepping_thread))
7126 {
7127 prepare_to_wait (ecs);
7128 return 1;
7129 }
7130 }
7131 }
7132
7133 return 0;
7134 }
7135
7136 /* Set a previously stepped thread back to stepping. Returns true on
7137 success, false if the resume is not possible (e.g., the thread
7138 vanished). */
7139
7140 static int
7141 keep_going_stepped_thread (struct thread_info *tp)
7142 {
7143 struct frame_info *frame;
7144 struct execution_control_state ecss;
7145 struct execution_control_state *ecs = &ecss;
7146
7147 /* If the stepping thread exited, then don't try to switch back and
7148 resume it, which could fail in several different ways depending
7149 on the target. Instead, just keep going.
7150
7151 We can find a stepping dead thread in the thread list in two
7152 cases:
7153
7154 - The target supports thread exit events, and when the target
7155 tries to delete the thread from the thread list, inferior_ptid
7156 pointed at the exiting thread. In such case, calling
7157 delete_thread does not really remove the thread from the list;
7158 instead, the thread is left listed, with 'exited' state.
7159
7160 - The target's debug interface does not support thread exit
7161 events, and so we have no idea whatsoever if the previously
7162 stepping thread is still alive. For that reason, we need to
7163 synchronously query the target now. */
7164
7165 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7166 {
7167 if (debug_infrun)
7168 fprintf_unfiltered (gdb_stdlog,
7169 "infrun: not resuming previously "
7170 "stepped thread, it has vanished\n");
7171
7172 delete_thread (tp);
7173 return 0;
7174 }
7175
7176 if (debug_infrun)
7177 fprintf_unfiltered (gdb_stdlog,
7178 "infrun: resuming previously stepped thread\n");
7179
7180 reset_ecs (ecs, tp);
7181 switch_to_thread (tp);
7182
7183 stop_pc = regcache_read_pc (get_thread_regcache (tp));
7184 frame = get_current_frame ();
7185
7186 /* If the PC of the thread we were trying to single-step has
7187 changed, then that thread has trapped or been signaled, but the
7188 event has not been reported to GDB yet. Re-poll the target
7189 looking for this particular thread's event (i.e. temporarily
7190 enable schedlock) by:
7191
7192 - setting a break at the current PC
7193 - resuming that particular thread, only (by setting trap
7194 expected)
7195
7196 This prevents us continuously moving the single-step breakpoint
7197 forward, one instruction at a time, overstepping. */
7198
7199 if (stop_pc != tp->prev_pc)
7200 {
7201 ptid_t resume_ptid;
7202
7203 if (debug_infrun)
7204 fprintf_unfiltered (gdb_stdlog,
7205 "infrun: expected thread advanced also (%s -> %s)\n",
7206 paddress (target_gdbarch (), tp->prev_pc),
7207 paddress (target_gdbarch (), stop_pc));
7208
7209 /* Clear the info of the previous step-over, as it's no longer
7210 valid (if the thread was trying to step over a breakpoint, it
7211 has already succeeded). It's what keep_going would do too,
7212 if we called it. Do this before trying to insert the sss
7213 breakpoint, otherwise if we were previously trying to step
7214 over this exact address in another thread, the breakpoint is
7215 skipped. */
7216 clear_step_over_info ();
7217 tp->control.trap_expected = 0;
7218
7219 insert_single_step_breakpoint (get_frame_arch (frame),
7220 get_frame_address_space (frame),
7221 stop_pc);
7222
7223 tp->resumed = 1;
7224 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7225 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7226 }
7227 else
7228 {
7229 if (debug_infrun)
7230 fprintf_unfiltered (gdb_stdlog,
7231 "infrun: expected thread still hasn't advanced\n");
7232
7233 keep_going_pass_signal (ecs);
7234 }
7235 return 1;
7236 }
7237
7238 /* Is thread TP in the middle of (software or hardware)
7239 single-stepping? (Note the result of this function must never be
7240 passed directly as target_resume's STEP parameter.) */
7241
7242 static int
7243 currently_stepping (struct thread_info *tp)
7244 {
7245 return ((tp->control.step_range_end
7246 && tp->control.step_resume_breakpoint == NULL)
7247 || tp->control.trap_expected
7248 || tp->stepped_breakpoint
7249 || bpstat_should_step ());
7250 }
7251
7252 /* Inferior has stepped into a subroutine call with source code that
7253 we should not step over. Do step to the first line of code in
7254 it. */
7255
7256 static void
7257 handle_step_into_function (struct gdbarch *gdbarch,
7258 struct execution_control_state *ecs)
7259 {
7260 fill_in_stop_func (gdbarch, ecs);
7261
7262 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7263 if (cust != NULL && compunit_language (cust) != language_asm)
7264 ecs->stop_func_start
7265 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7266
7267 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7268 /* Use the step_resume_break to step until the end of the prologue,
7269 even if that involves jumps (as it seems to on the vax under
7270 4.2). */
7271 /* If the prologue ends in the middle of a source line, continue to
7272 the end of that source line (if it is still within the function).
7273 Otherwise, just go to end of prologue. */
7274 if (stop_func_sal.end
7275 && stop_func_sal.pc != ecs->stop_func_start
7276 && stop_func_sal.end < ecs->stop_func_end)
7277 ecs->stop_func_start = stop_func_sal.end;
7278
7279 /* Architectures which require breakpoint adjustment might not be able
7280 to place a breakpoint at the computed address. If so, the test
7281 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7282 ecs->stop_func_start to an address at which a breakpoint may be
7283 legitimately placed.
7284
7285 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7286 made, GDB will enter an infinite loop when stepping through
7287 optimized code consisting of VLIW instructions which contain
7288 subinstructions corresponding to different source lines. On
7289 FR-V, it's not permitted to place a breakpoint on any but the
7290 first subinstruction of a VLIW instruction. When a breakpoint is
7291 set, GDB will adjust the breakpoint address to the beginning of
7292 the VLIW instruction. Thus, we need to make the corresponding
7293 adjustment here when computing the stop address. */
7294
7295 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7296 {
7297 ecs->stop_func_start
7298 = gdbarch_adjust_breakpoint_address (gdbarch,
7299 ecs->stop_func_start);
7300 }
7301
7302 if (ecs->stop_func_start == stop_pc)
7303 {
7304 /* We are already there: stop now. */
7305 end_stepping_range (ecs);
7306 return;
7307 }
7308 else
7309 {
7310 /* Put the step-breakpoint there and go until there. */
7311 symtab_and_line sr_sal;
7312 sr_sal.pc = ecs->stop_func_start;
7313 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7314 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7315
7316 /* Do not specify what the fp should be when we stop since on
7317 some machines the prologue is where the new fp value is
7318 established. */
7319 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7320
7321 /* And make sure stepping stops right away then. */
7322 ecs->event_thread->control.step_range_end
7323 = ecs->event_thread->control.step_range_start;
7324 }
7325 keep_going (ecs);
7326 }
7327
7328 /* Inferior has stepped backward into a subroutine call with source
7329 code that we should not step over. Do step to the beginning of the
7330 last line of code in it. */
7331
7332 static void
7333 handle_step_into_function_backward (struct gdbarch *gdbarch,
7334 struct execution_control_state *ecs)
7335 {
7336 struct compunit_symtab *cust;
7337 struct symtab_and_line stop_func_sal;
7338
7339 fill_in_stop_func (gdbarch, ecs);
7340
7341 cust = find_pc_compunit_symtab (stop_pc);
7342 if (cust != NULL && compunit_language (cust) != language_asm)
7343 ecs->stop_func_start
7344 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7345
7346 stop_func_sal = find_pc_line (stop_pc, 0);
7347
7348 /* OK, we're just going to keep stepping here. */
7349 if (stop_func_sal.pc == stop_pc)
7350 {
7351 /* We're there already. Just stop stepping now. */
7352 end_stepping_range (ecs);
7353 }
7354 else
7355 {
7356 /* Else just reset the step range and keep going.
7357 No step-resume breakpoint, they don't work for
7358 epilogues, which can have multiple entry paths. */
7359 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7360 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7361 keep_going (ecs);
7362 }
7363 return;
7364 }
7365
7366 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7367 This is used to both functions and to skip over code. */
7368
7369 static void
7370 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7371 struct symtab_and_line sr_sal,
7372 struct frame_id sr_id,
7373 enum bptype sr_type)
7374 {
7375 /* There should never be more than one step-resume or longjmp-resume
7376 breakpoint per thread, so we should never be setting a new
7377 step_resume_breakpoint when one is already active. */
7378 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7379 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7380
7381 if (debug_infrun)
7382 fprintf_unfiltered (gdb_stdlog,
7383 "infrun: inserting step-resume breakpoint at %s\n",
7384 paddress (gdbarch, sr_sal.pc));
7385
7386 inferior_thread ()->control.step_resume_breakpoint
7387 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7388 }
7389
7390 void
7391 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7392 struct symtab_and_line sr_sal,
7393 struct frame_id sr_id)
7394 {
7395 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7396 sr_sal, sr_id,
7397 bp_step_resume);
7398 }
7399
7400 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7401 This is used to skip a potential signal handler.
7402
7403 This is called with the interrupted function's frame. The signal
7404 handler, when it returns, will resume the interrupted function at
7405 RETURN_FRAME.pc. */
7406
7407 static void
7408 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7409 {
7410 gdb_assert (return_frame != NULL);
7411
7412 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7413
7414 symtab_and_line sr_sal;
7415 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7416 sr_sal.section = find_pc_overlay (sr_sal.pc);
7417 sr_sal.pspace = get_frame_program_space (return_frame);
7418
7419 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7420 get_stack_frame_id (return_frame),
7421 bp_hp_step_resume);
7422 }
7423
7424 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7425 is used to skip a function after stepping into it (for "next" or if
7426 the called function has no debugging information).
7427
7428 The current function has almost always been reached by single
7429 stepping a call or return instruction. NEXT_FRAME belongs to the
7430 current function, and the breakpoint will be set at the caller's
7431 resume address.
7432
7433 This is a separate function rather than reusing
7434 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7435 get_prev_frame, which may stop prematurely (see the implementation
7436 of frame_unwind_caller_id for an example). */
7437
7438 static void
7439 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7440 {
7441 /* We shouldn't have gotten here if we don't know where the call site
7442 is. */
7443 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7444
7445 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7446
7447 symtab_and_line sr_sal;
7448 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7449 frame_unwind_caller_pc (next_frame));
7450 sr_sal.section = find_pc_overlay (sr_sal.pc);
7451 sr_sal.pspace = frame_unwind_program_space (next_frame);
7452
7453 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7454 frame_unwind_caller_id (next_frame));
7455 }
7456
7457 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7458 new breakpoint at the target of a jmp_buf. The handling of
7459 longjmp-resume uses the same mechanisms used for handling
7460 "step-resume" breakpoints. */
7461
7462 static void
7463 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7464 {
7465 /* There should never be more than one longjmp-resume breakpoint per
7466 thread, so we should never be setting a new
7467 longjmp_resume_breakpoint when one is already active. */
7468 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7469
7470 if (debug_infrun)
7471 fprintf_unfiltered (gdb_stdlog,
7472 "infrun: inserting longjmp-resume breakpoint at %s\n",
7473 paddress (gdbarch, pc));
7474
7475 inferior_thread ()->control.exception_resume_breakpoint =
7476 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7477 }
7478
7479 /* Insert an exception resume breakpoint. TP is the thread throwing
7480 the exception. The block B is the block of the unwinder debug hook
7481 function. FRAME is the frame corresponding to the call to this
7482 function. SYM is the symbol of the function argument holding the
7483 target PC of the exception. */
7484
7485 static void
7486 insert_exception_resume_breakpoint (struct thread_info *tp,
7487 const struct block *b,
7488 struct frame_info *frame,
7489 struct symbol *sym)
7490 {
7491 TRY
7492 {
7493 struct block_symbol vsym;
7494 struct value *value;
7495 CORE_ADDR handler;
7496 struct breakpoint *bp;
7497
7498 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7499 b, VAR_DOMAIN);
7500 value = read_var_value (vsym.symbol, vsym.block, frame);
7501 /* If the value was optimized out, revert to the old behavior. */
7502 if (! value_optimized_out (value))
7503 {
7504 handler = value_as_address (value);
7505
7506 if (debug_infrun)
7507 fprintf_unfiltered (gdb_stdlog,
7508 "infrun: exception resume at %lx\n",
7509 (unsigned long) handler);
7510
7511 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7512 handler,
7513 bp_exception_resume).release ();
7514
7515 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7516 frame = NULL;
7517
7518 bp->thread = tp->global_num;
7519 inferior_thread ()->control.exception_resume_breakpoint = bp;
7520 }
7521 }
7522 CATCH (e, RETURN_MASK_ERROR)
7523 {
7524 /* We want to ignore errors here. */
7525 }
7526 END_CATCH
7527 }
7528
7529 /* A helper for check_exception_resume that sets an
7530 exception-breakpoint based on a SystemTap probe. */
7531
7532 static void
7533 insert_exception_resume_from_probe (struct thread_info *tp,
7534 const struct bound_probe *probe,
7535 struct frame_info *frame)
7536 {
7537 struct value *arg_value;
7538 CORE_ADDR handler;
7539 struct breakpoint *bp;
7540
7541 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7542 if (!arg_value)
7543 return;
7544
7545 handler = value_as_address (arg_value);
7546
7547 if (debug_infrun)
7548 fprintf_unfiltered (gdb_stdlog,
7549 "infrun: exception resume at %s\n",
7550 paddress (get_objfile_arch (probe->objfile),
7551 handler));
7552
7553 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7554 handler, bp_exception_resume).release ();
7555 bp->thread = tp->global_num;
7556 inferior_thread ()->control.exception_resume_breakpoint = bp;
7557 }
7558
7559 /* This is called when an exception has been intercepted. Check to
7560 see whether the exception's destination is of interest, and if so,
7561 set an exception resume breakpoint there. */
7562
7563 static void
7564 check_exception_resume (struct execution_control_state *ecs,
7565 struct frame_info *frame)
7566 {
7567 struct bound_probe probe;
7568 struct symbol *func;
7569
7570 /* First see if this exception unwinding breakpoint was set via a
7571 SystemTap probe point. If so, the probe has two arguments: the
7572 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7573 set a breakpoint there. */
7574 probe = find_probe_by_pc (get_frame_pc (frame));
7575 if (probe.prob)
7576 {
7577 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7578 return;
7579 }
7580
7581 func = get_frame_function (frame);
7582 if (!func)
7583 return;
7584
7585 TRY
7586 {
7587 const struct block *b;
7588 struct block_iterator iter;
7589 struct symbol *sym;
7590 int argno = 0;
7591
7592 /* The exception breakpoint is a thread-specific breakpoint on
7593 the unwinder's debug hook, declared as:
7594
7595 void _Unwind_DebugHook (void *cfa, void *handler);
7596
7597 The CFA argument indicates the frame to which control is
7598 about to be transferred. HANDLER is the destination PC.
7599
7600 We ignore the CFA and set a temporary breakpoint at HANDLER.
7601 This is not extremely efficient but it avoids issues in gdb
7602 with computing the DWARF CFA, and it also works even in weird
7603 cases such as throwing an exception from inside a signal
7604 handler. */
7605
7606 b = SYMBOL_BLOCK_VALUE (func);
7607 ALL_BLOCK_SYMBOLS (b, iter, sym)
7608 {
7609 if (!SYMBOL_IS_ARGUMENT (sym))
7610 continue;
7611
7612 if (argno == 0)
7613 ++argno;
7614 else
7615 {
7616 insert_exception_resume_breakpoint (ecs->event_thread,
7617 b, frame, sym);
7618 break;
7619 }
7620 }
7621 }
7622 CATCH (e, RETURN_MASK_ERROR)
7623 {
7624 }
7625 END_CATCH
7626 }
7627
7628 static void
7629 stop_waiting (struct execution_control_state *ecs)
7630 {
7631 if (debug_infrun)
7632 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7633
7634 /* Let callers know we don't want to wait for the inferior anymore. */
7635 ecs->wait_some_more = 0;
7636
7637 /* If all-stop, but the target is always in non-stop mode, stop all
7638 threads now that we're presenting the stop to the user. */
7639 if (!non_stop && target_is_non_stop_p ())
7640 stop_all_threads ();
7641 }
7642
7643 /* Like keep_going, but passes the signal to the inferior, even if the
7644 signal is set to nopass. */
7645
7646 static void
7647 keep_going_pass_signal (struct execution_control_state *ecs)
7648 {
7649 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7650 gdb_assert (!ecs->event_thread->resumed);
7651
7652 /* Save the pc before execution, to compare with pc after stop. */
7653 ecs->event_thread->prev_pc
7654 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7655
7656 if (ecs->event_thread->control.trap_expected)
7657 {
7658 struct thread_info *tp = ecs->event_thread;
7659
7660 if (debug_infrun)
7661 fprintf_unfiltered (gdb_stdlog,
7662 "infrun: %s has trap_expected set, "
7663 "resuming to collect trap\n",
7664 target_pid_to_str (tp->ptid));
7665
7666 /* We haven't yet gotten our trap, and either: intercepted a
7667 non-signal event (e.g., a fork); or took a signal which we
7668 are supposed to pass through to the inferior. Simply
7669 continue. */
7670 resume (ecs->event_thread->suspend.stop_signal);
7671 }
7672 else if (step_over_info_valid_p ())
7673 {
7674 /* Another thread is stepping over a breakpoint in-line. If
7675 this thread needs a step-over too, queue the request. In
7676 either case, this resume must be deferred for later. */
7677 struct thread_info *tp = ecs->event_thread;
7678
7679 if (ecs->hit_singlestep_breakpoint
7680 || thread_still_needs_step_over (tp))
7681 {
7682 if (debug_infrun)
7683 fprintf_unfiltered (gdb_stdlog,
7684 "infrun: step-over already in progress: "
7685 "step-over for %s deferred\n",
7686 target_pid_to_str (tp->ptid));
7687 thread_step_over_chain_enqueue (tp);
7688 }
7689 else
7690 {
7691 if (debug_infrun)
7692 fprintf_unfiltered (gdb_stdlog,
7693 "infrun: step-over in progress: "
7694 "resume of %s deferred\n",
7695 target_pid_to_str (tp->ptid));
7696 }
7697 }
7698 else
7699 {
7700 struct regcache *regcache = get_current_regcache ();
7701 int remove_bp;
7702 int remove_wps;
7703 step_over_what step_what;
7704
7705 /* Either the trap was not expected, but we are continuing
7706 anyway (if we got a signal, the user asked it be passed to
7707 the child)
7708 -- or --
7709 We got our expected trap, but decided we should resume from
7710 it.
7711
7712 We're going to run this baby now!
7713
7714 Note that insert_breakpoints won't try to re-insert
7715 already inserted breakpoints. Therefore, we don't
7716 care if breakpoints were already inserted, or not. */
7717
7718 /* If we need to step over a breakpoint, and we're not using
7719 displaced stepping to do so, insert all breakpoints
7720 (watchpoints, etc.) but the one we're stepping over, step one
7721 instruction, and then re-insert the breakpoint when that step
7722 is finished. */
7723
7724 step_what = thread_still_needs_step_over (ecs->event_thread);
7725
7726 remove_bp = (ecs->hit_singlestep_breakpoint
7727 || (step_what & STEP_OVER_BREAKPOINT));
7728 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7729
7730 /* We can't use displaced stepping if we need to step past a
7731 watchpoint. The instruction copied to the scratch pad would
7732 still trigger the watchpoint. */
7733 if (remove_bp
7734 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7735 {
7736 set_step_over_info (regcache->aspace (),
7737 regcache_read_pc (regcache), remove_wps,
7738 ecs->event_thread->global_num);
7739 }
7740 else if (remove_wps)
7741 set_step_over_info (NULL, 0, remove_wps, -1);
7742
7743 /* If we now need to do an in-line step-over, we need to stop
7744 all other threads. Note this must be done before
7745 insert_breakpoints below, because that removes the breakpoint
7746 we're about to step over, otherwise other threads could miss
7747 it. */
7748 if (step_over_info_valid_p () && target_is_non_stop_p ())
7749 stop_all_threads ();
7750
7751 /* Stop stepping if inserting breakpoints fails. */
7752 TRY
7753 {
7754 insert_breakpoints ();
7755 }
7756 CATCH (e, RETURN_MASK_ERROR)
7757 {
7758 exception_print (gdb_stderr, e);
7759 stop_waiting (ecs);
7760 clear_step_over_info ();
7761 return;
7762 }
7763 END_CATCH
7764
7765 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7766
7767 resume (ecs->event_thread->suspend.stop_signal);
7768 }
7769
7770 prepare_to_wait (ecs);
7771 }
7772
7773 /* Called when we should continue running the inferior, because the
7774 current event doesn't cause a user visible stop. This does the
7775 resuming part; waiting for the next event is done elsewhere. */
7776
7777 static void
7778 keep_going (struct execution_control_state *ecs)
7779 {
7780 if (ecs->event_thread->control.trap_expected
7781 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7782 ecs->event_thread->control.trap_expected = 0;
7783
7784 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7785 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7786 keep_going_pass_signal (ecs);
7787 }
7788
7789 /* This function normally comes after a resume, before
7790 handle_inferior_event exits. It takes care of any last bits of
7791 housekeeping, and sets the all-important wait_some_more flag. */
7792
7793 static void
7794 prepare_to_wait (struct execution_control_state *ecs)
7795 {
7796 if (debug_infrun)
7797 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7798
7799 ecs->wait_some_more = 1;
7800
7801 if (!target_is_async_p ())
7802 mark_infrun_async_event_handler ();
7803 }
7804
7805 /* We are done with the step range of a step/next/si/ni command.
7806 Called once for each n of a "step n" operation. */
7807
7808 static void
7809 end_stepping_range (struct execution_control_state *ecs)
7810 {
7811 ecs->event_thread->control.stop_step = 1;
7812 stop_waiting (ecs);
7813 }
7814
7815 /* Several print_*_reason functions to print why the inferior has stopped.
7816 We always print something when the inferior exits, or receives a signal.
7817 The rest of the cases are dealt with later on in normal_stop and
7818 print_it_typical. Ideally there should be a call to one of these
7819 print_*_reason functions functions from handle_inferior_event each time
7820 stop_waiting is called.
7821
7822 Note that we don't call these directly, instead we delegate that to
7823 the interpreters, through observers. Interpreters then call these
7824 with whatever uiout is right. */
7825
7826 void
7827 print_end_stepping_range_reason (struct ui_out *uiout)
7828 {
7829 /* For CLI-like interpreters, print nothing. */
7830
7831 if (uiout->is_mi_like_p ())
7832 {
7833 uiout->field_string ("reason",
7834 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7835 }
7836 }
7837
7838 void
7839 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7840 {
7841 annotate_signalled ();
7842 if (uiout->is_mi_like_p ())
7843 uiout->field_string
7844 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7845 uiout->text ("\nProgram terminated with signal ");
7846 annotate_signal_name ();
7847 uiout->field_string ("signal-name",
7848 gdb_signal_to_name (siggnal));
7849 annotate_signal_name_end ();
7850 uiout->text (", ");
7851 annotate_signal_string ();
7852 uiout->field_string ("signal-meaning",
7853 gdb_signal_to_string (siggnal));
7854 annotate_signal_string_end ();
7855 uiout->text (".\n");
7856 uiout->text ("The program no longer exists.\n");
7857 }
7858
7859 void
7860 print_exited_reason (struct ui_out *uiout, int exitstatus)
7861 {
7862 struct inferior *inf = current_inferior ();
7863 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7864
7865 annotate_exited (exitstatus);
7866 if (exitstatus)
7867 {
7868 if (uiout->is_mi_like_p ())
7869 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7870 uiout->text ("[Inferior ");
7871 uiout->text (plongest (inf->num));
7872 uiout->text (" (");
7873 uiout->text (pidstr);
7874 uiout->text (") exited with code ");
7875 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7876 uiout->text ("]\n");
7877 }
7878 else
7879 {
7880 if (uiout->is_mi_like_p ())
7881 uiout->field_string
7882 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7883 uiout->text ("[Inferior ");
7884 uiout->text (plongest (inf->num));
7885 uiout->text (" (");
7886 uiout->text (pidstr);
7887 uiout->text (") exited normally]\n");
7888 }
7889 }
7890
7891 /* Some targets/architectures can do extra processing/display of
7892 segmentation faults. E.g., Intel MPX boundary faults.
7893 Call the architecture dependent function to handle the fault. */
7894
7895 static void
7896 handle_segmentation_fault (struct ui_out *uiout)
7897 {
7898 struct regcache *regcache = get_current_regcache ();
7899 struct gdbarch *gdbarch = regcache->arch ();
7900
7901 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7902 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7903 }
7904
7905 void
7906 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7907 {
7908 struct thread_info *thr = inferior_thread ();
7909
7910 annotate_signal ();
7911
7912 if (uiout->is_mi_like_p ())
7913 ;
7914 else if (show_thread_that_caused_stop ())
7915 {
7916 const char *name;
7917
7918 uiout->text ("\nThread ");
7919 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7920
7921 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7922 if (name != NULL)
7923 {
7924 uiout->text (" \"");
7925 uiout->field_fmt ("name", "%s", name);
7926 uiout->text ("\"");
7927 }
7928 }
7929 else
7930 uiout->text ("\nProgram");
7931
7932 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7933 uiout->text (" stopped");
7934 else
7935 {
7936 uiout->text (" received signal ");
7937 annotate_signal_name ();
7938 if (uiout->is_mi_like_p ())
7939 uiout->field_string
7940 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7941 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7942 annotate_signal_name_end ();
7943 uiout->text (", ");
7944 annotate_signal_string ();
7945 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7946
7947 if (siggnal == GDB_SIGNAL_SEGV)
7948 handle_segmentation_fault (uiout);
7949
7950 annotate_signal_string_end ();
7951 }
7952 uiout->text (".\n");
7953 }
7954
7955 void
7956 print_no_history_reason (struct ui_out *uiout)
7957 {
7958 uiout->text ("\nNo more reverse-execution history.\n");
7959 }
7960
7961 /* Print current location without a level number, if we have changed
7962 functions or hit a breakpoint. Print source line if we have one.
7963 bpstat_print contains the logic deciding in detail what to print,
7964 based on the event(s) that just occurred. */
7965
7966 static void
7967 print_stop_location (struct target_waitstatus *ws)
7968 {
7969 int bpstat_ret;
7970 enum print_what source_flag;
7971 int do_frame_printing = 1;
7972 struct thread_info *tp = inferior_thread ();
7973
7974 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7975 switch (bpstat_ret)
7976 {
7977 case PRINT_UNKNOWN:
7978 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7979 should) carry around the function and does (or should) use
7980 that when doing a frame comparison. */
7981 if (tp->control.stop_step
7982 && frame_id_eq (tp->control.step_frame_id,
7983 get_frame_id (get_current_frame ()))
7984 && tp->control.step_start_function == find_pc_function (stop_pc))
7985 {
7986 /* Finished step, just print source line. */
7987 source_flag = SRC_LINE;
7988 }
7989 else
7990 {
7991 /* Print location and source line. */
7992 source_flag = SRC_AND_LOC;
7993 }
7994 break;
7995 case PRINT_SRC_AND_LOC:
7996 /* Print location and source line. */
7997 source_flag = SRC_AND_LOC;
7998 break;
7999 case PRINT_SRC_ONLY:
8000 source_flag = SRC_LINE;
8001 break;
8002 case PRINT_NOTHING:
8003 /* Something bogus. */
8004 source_flag = SRC_LINE;
8005 do_frame_printing = 0;
8006 break;
8007 default:
8008 internal_error (__FILE__, __LINE__, _("Unknown value."));
8009 }
8010
8011 /* The behavior of this routine with respect to the source
8012 flag is:
8013 SRC_LINE: Print only source line
8014 LOCATION: Print only location
8015 SRC_AND_LOC: Print location and source line. */
8016 if (do_frame_printing)
8017 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8018 }
8019
8020 /* See infrun.h. */
8021
8022 void
8023 print_stop_event (struct ui_out *uiout)
8024 {
8025 struct target_waitstatus last;
8026 ptid_t last_ptid;
8027 struct thread_info *tp;
8028
8029 get_last_target_status (&last_ptid, &last);
8030
8031 {
8032 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8033
8034 print_stop_location (&last);
8035
8036 /* Display the auto-display expressions. */
8037 do_displays ();
8038 }
8039
8040 tp = inferior_thread ();
8041 if (tp->thread_fsm != NULL
8042 && thread_fsm_finished_p (tp->thread_fsm))
8043 {
8044 struct return_value_info *rv;
8045
8046 rv = thread_fsm_return_value (tp->thread_fsm);
8047 if (rv != NULL)
8048 print_return_value (uiout, rv);
8049 }
8050 }
8051
8052 /* See infrun.h. */
8053
8054 void
8055 maybe_remove_breakpoints (void)
8056 {
8057 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8058 {
8059 if (remove_breakpoints ())
8060 {
8061 target_terminal::ours_for_output ();
8062 printf_filtered (_("Cannot remove breakpoints because "
8063 "program is no longer writable.\nFurther "
8064 "execution is probably impossible.\n"));
8065 }
8066 }
8067 }
8068
8069 /* The execution context that just caused a normal stop. */
8070
8071 struct stop_context
8072 {
8073 /* The stop ID. */
8074 ULONGEST stop_id;
8075
8076 /* The event PTID. */
8077
8078 ptid_t ptid;
8079
8080 /* If stopp for a thread event, this is the thread that caused the
8081 stop. */
8082 struct thread_info *thread;
8083
8084 /* The inferior that caused the stop. */
8085 int inf_num;
8086 };
8087
8088 /* Returns a new stop context. If stopped for a thread event, this
8089 takes a strong reference to the thread. */
8090
8091 static struct stop_context *
8092 save_stop_context (void)
8093 {
8094 struct stop_context *sc = XNEW (struct stop_context);
8095
8096 sc->stop_id = get_stop_id ();
8097 sc->ptid = inferior_ptid;
8098 sc->inf_num = current_inferior ()->num;
8099
8100 if (!ptid_equal (inferior_ptid, null_ptid))
8101 {
8102 /* Take a strong reference so that the thread can't be deleted
8103 yet. */
8104 sc->thread = inferior_thread ();
8105 sc->thread->incref ();
8106 }
8107 else
8108 sc->thread = NULL;
8109
8110 return sc;
8111 }
8112
8113 /* Release a stop context previously created with save_stop_context.
8114 Releases the strong reference to the thread as well. */
8115
8116 static void
8117 release_stop_context_cleanup (void *arg)
8118 {
8119 struct stop_context *sc = (struct stop_context *) arg;
8120
8121 if (sc->thread != NULL)
8122 sc->thread->decref ();
8123 xfree (sc);
8124 }
8125
8126 /* Return true if the current context no longer matches the saved stop
8127 context. */
8128
8129 static int
8130 stop_context_changed (struct stop_context *prev)
8131 {
8132 if (!ptid_equal (prev->ptid, inferior_ptid))
8133 return 1;
8134 if (prev->inf_num != current_inferior ()->num)
8135 return 1;
8136 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8137 return 1;
8138 if (get_stop_id () != prev->stop_id)
8139 return 1;
8140 return 0;
8141 }
8142
8143 /* See infrun.h. */
8144
8145 int
8146 normal_stop (void)
8147 {
8148 struct target_waitstatus last;
8149 ptid_t last_ptid;
8150
8151 get_last_target_status (&last_ptid, &last);
8152
8153 new_stop_id ();
8154
8155 /* If an exception is thrown from this point on, make sure to
8156 propagate GDB's knowledge of the executing state to the
8157 frontend/user running state. A QUIT is an easy exception to see
8158 here, so do this before any filtered output. */
8159
8160 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8161
8162 if (!non_stop)
8163 maybe_finish_thread_state.emplace (minus_one_ptid);
8164 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8165 || last.kind == TARGET_WAITKIND_EXITED)
8166 {
8167 /* On some targets, we may still have live threads in the
8168 inferior when we get a process exit event. E.g., for
8169 "checkpoint", when the current checkpoint/fork exits,
8170 linux-fork.c automatically switches to another fork from
8171 within target_mourn_inferior. */
8172 if (inferior_ptid != null_ptid)
8173 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8174 }
8175 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8176 maybe_finish_thread_state.emplace (inferior_ptid);
8177
8178 /* As we're presenting a stop, and potentially removing breakpoints,
8179 update the thread list so we can tell whether there are threads
8180 running on the target. With target remote, for example, we can
8181 only learn about new threads when we explicitly update the thread
8182 list. Do this before notifying the interpreters about signal
8183 stops, end of stepping ranges, etc., so that the "new thread"
8184 output is emitted before e.g., "Program received signal FOO",
8185 instead of after. */
8186 update_thread_list ();
8187
8188 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8189 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8190
8191 /* As with the notification of thread events, we want to delay
8192 notifying the user that we've switched thread context until
8193 the inferior actually stops.
8194
8195 There's no point in saying anything if the inferior has exited.
8196 Note that SIGNALLED here means "exited with a signal", not
8197 "received a signal".
8198
8199 Also skip saying anything in non-stop mode. In that mode, as we
8200 don't want GDB to switch threads behind the user's back, to avoid
8201 races where the user is typing a command to apply to thread x,
8202 but GDB switches to thread y before the user finishes entering
8203 the command, fetch_inferior_event installs a cleanup to restore
8204 the current thread back to the thread the user had selected right
8205 after this event is handled, so we're not really switching, only
8206 informing of a stop. */
8207 if (!non_stop
8208 && previous_inferior_ptid != inferior_ptid
8209 && target_has_execution
8210 && last.kind != TARGET_WAITKIND_SIGNALLED
8211 && last.kind != TARGET_WAITKIND_EXITED
8212 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8213 {
8214 SWITCH_THRU_ALL_UIS ()
8215 {
8216 target_terminal::ours_for_output ();
8217 printf_filtered (_("[Switching to %s]\n"),
8218 target_pid_to_str (inferior_ptid));
8219 annotate_thread_changed ();
8220 }
8221 previous_inferior_ptid = inferior_ptid;
8222 }
8223
8224 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8225 {
8226 SWITCH_THRU_ALL_UIS ()
8227 if (current_ui->prompt_state == PROMPT_BLOCKED)
8228 {
8229 target_terminal::ours_for_output ();
8230 printf_filtered (_("No unwaited-for children left.\n"));
8231 }
8232 }
8233
8234 /* Note: this depends on the update_thread_list call above. */
8235 maybe_remove_breakpoints ();
8236
8237 /* If an auto-display called a function and that got a signal,
8238 delete that auto-display to avoid an infinite recursion. */
8239
8240 if (stopped_by_random_signal)
8241 disable_current_display ();
8242
8243 SWITCH_THRU_ALL_UIS ()
8244 {
8245 async_enable_stdin ();
8246 }
8247
8248 /* Let the user/frontend see the threads as stopped. */
8249 maybe_finish_thread_state.reset ();
8250
8251 /* Select innermost stack frame - i.e., current frame is frame 0,
8252 and current location is based on that. Handle the case where the
8253 dummy call is returning after being stopped. E.g. the dummy call
8254 previously hit a breakpoint. (If the dummy call returns
8255 normally, we won't reach here.) Do this before the stop hook is
8256 run, so that it doesn't get to see the temporary dummy frame,
8257 which is not where we'll present the stop. */
8258 if (has_stack_frames ())
8259 {
8260 if (stop_stack_dummy == STOP_STACK_DUMMY)
8261 {
8262 /* Pop the empty frame that contains the stack dummy. This
8263 also restores inferior state prior to the call (struct
8264 infcall_suspend_state). */
8265 struct frame_info *frame = get_current_frame ();
8266
8267 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8268 frame_pop (frame);
8269 /* frame_pop calls reinit_frame_cache as the last thing it
8270 does which means there's now no selected frame. */
8271 }
8272
8273 select_frame (get_current_frame ());
8274
8275 /* Set the current source location. */
8276 set_current_sal_from_frame (get_current_frame ());
8277 }
8278
8279 /* Look up the hook_stop and run it (CLI internally handles problem
8280 of stop_command's pre-hook not existing). */
8281 if (stop_command != NULL)
8282 {
8283 struct stop_context *saved_context = save_stop_context ();
8284 struct cleanup *old_chain
8285 = make_cleanup (release_stop_context_cleanup, saved_context);
8286
8287 TRY
8288 {
8289 execute_cmd_pre_hook (stop_command);
8290 }
8291 CATCH (ex, RETURN_MASK_ALL)
8292 {
8293 exception_fprintf (gdb_stderr, ex,
8294 "Error while running hook_stop:\n");
8295 }
8296 END_CATCH
8297
8298 /* If the stop hook resumes the target, then there's no point in
8299 trying to notify about the previous stop; its context is
8300 gone. Likewise if the command switches thread or inferior --
8301 the observers would print a stop for the wrong
8302 thread/inferior. */
8303 if (stop_context_changed (saved_context))
8304 {
8305 do_cleanups (old_chain);
8306 return 1;
8307 }
8308 do_cleanups (old_chain);
8309 }
8310
8311 /* Notify observers about the stop. This is where the interpreters
8312 print the stop event. */
8313 if (!ptid_equal (inferior_ptid, null_ptid))
8314 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8315 stop_print_frame);
8316 else
8317 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8318
8319 annotate_stopped ();
8320
8321 if (target_has_execution)
8322 {
8323 if (last.kind != TARGET_WAITKIND_SIGNALLED
8324 && last.kind != TARGET_WAITKIND_EXITED)
8325 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8326 Delete any breakpoint that is to be deleted at the next stop. */
8327 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8328 }
8329
8330 /* Try to get rid of automatically added inferiors that are no
8331 longer needed. Keeping those around slows down things linearly.
8332 Note that this never removes the current inferior. */
8333 prune_inferiors ();
8334
8335 return 0;
8336 }
8337 \f
8338 int
8339 signal_stop_state (int signo)
8340 {
8341 return signal_stop[signo];
8342 }
8343
8344 int
8345 signal_print_state (int signo)
8346 {
8347 return signal_print[signo];
8348 }
8349
8350 int
8351 signal_pass_state (int signo)
8352 {
8353 return signal_program[signo];
8354 }
8355
8356 static void
8357 signal_cache_update (int signo)
8358 {
8359 if (signo == -1)
8360 {
8361 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8362 signal_cache_update (signo);
8363
8364 return;
8365 }
8366
8367 signal_pass[signo] = (signal_stop[signo] == 0
8368 && signal_print[signo] == 0
8369 && signal_program[signo] == 1
8370 && signal_catch[signo] == 0);
8371 }
8372
8373 int
8374 signal_stop_update (int signo, int state)
8375 {
8376 int ret = signal_stop[signo];
8377
8378 signal_stop[signo] = state;
8379 signal_cache_update (signo);
8380 return ret;
8381 }
8382
8383 int
8384 signal_print_update (int signo, int state)
8385 {
8386 int ret = signal_print[signo];
8387
8388 signal_print[signo] = state;
8389 signal_cache_update (signo);
8390 return ret;
8391 }
8392
8393 int
8394 signal_pass_update (int signo, int state)
8395 {
8396 int ret = signal_program[signo];
8397
8398 signal_program[signo] = state;
8399 signal_cache_update (signo);
8400 return ret;
8401 }
8402
8403 /* Update the global 'signal_catch' from INFO and notify the
8404 target. */
8405
8406 void
8407 signal_catch_update (const unsigned int *info)
8408 {
8409 int i;
8410
8411 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8412 signal_catch[i] = info[i] > 0;
8413 signal_cache_update (-1);
8414 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8415 }
8416
8417 static void
8418 sig_print_header (void)
8419 {
8420 printf_filtered (_("Signal Stop\tPrint\tPass "
8421 "to program\tDescription\n"));
8422 }
8423
8424 static void
8425 sig_print_info (enum gdb_signal oursig)
8426 {
8427 const char *name = gdb_signal_to_name (oursig);
8428 int name_padding = 13 - strlen (name);
8429
8430 if (name_padding <= 0)
8431 name_padding = 0;
8432
8433 printf_filtered ("%s", name);
8434 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8435 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8436 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8437 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8438 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8439 }
8440
8441 /* Specify how various signals in the inferior should be handled. */
8442
8443 static void
8444 handle_command (const char *args, int from_tty)
8445 {
8446 int digits, wordlen;
8447 int sigfirst, signum, siglast;
8448 enum gdb_signal oursig;
8449 int allsigs;
8450 int nsigs;
8451 unsigned char *sigs;
8452
8453 if (args == NULL)
8454 {
8455 error_no_arg (_("signal to handle"));
8456 }
8457
8458 /* Allocate and zero an array of flags for which signals to handle. */
8459
8460 nsigs = (int) GDB_SIGNAL_LAST;
8461 sigs = (unsigned char *) alloca (nsigs);
8462 memset (sigs, 0, nsigs);
8463
8464 /* Break the command line up into args. */
8465
8466 gdb_argv built_argv (args);
8467
8468 /* Walk through the args, looking for signal oursigs, signal names, and
8469 actions. Signal numbers and signal names may be interspersed with
8470 actions, with the actions being performed for all signals cumulatively
8471 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8472
8473 for (char *arg : built_argv)
8474 {
8475 wordlen = strlen (arg);
8476 for (digits = 0; isdigit (arg[digits]); digits++)
8477 {;
8478 }
8479 allsigs = 0;
8480 sigfirst = siglast = -1;
8481
8482 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8483 {
8484 /* Apply action to all signals except those used by the
8485 debugger. Silently skip those. */
8486 allsigs = 1;
8487 sigfirst = 0;
8488 siglast = nsigs - 1;
8489 }
8490 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8491 {
8492 SET_SIGS (nsigs, sigs, signal_stop);
8493 SET_SIGS (nsigs, sigs, signal_print);
8494 }
8495 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8496 {
8497 UNSET_SIGS (nsigs, sigs, signal_program);
8498 }
8499 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8500 {
8501 SET_SIGS (nsigs, sigs, signal_print);
8502 }
8503 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8504 {
8505 SET_SIGS (nsigs, sigs, signal_program);
8506 }
8507 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8508 {
8509 UNSET_SIGS (nsigs, sigs, signal_stop);
8510 }
8511 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8512 {
8513 SET_SIGS (nsigs, sigs, signal_program);
8514 }
8515 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8516 {
8517 UNSET_SIGS (nsigs, sigs, signal_print);
8518 UNSET_SIGS (nsigs, sigs, signal_stop);
8519 }
8520 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8521 {
8522 UNSET_SIGS (nsigs, sigs, signal_program);
8523 }
8524 else if (digits > 0)
8525 {
8526 /* It is numeric. The numeric signal refers to our own
8527 internal signal numbering from target.h, not to host/target
8528 signal number. This is a feature; users really should be
8529 using symbolic names anyway, and the common ones like
8530 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8531
8532 sigfirst = siglast = (int)
8533 gdb_signal_from_command (atoi (arg));
8534 if (arg[digits] == '-')
8535 {
8536 siglast = (int)
8537 gdb_signal_from_command (atoi (arg + digits + 1));
8538 }
8539 if (sigfirst > siglast)
8540 {
8541 /* Bet he didn't figure we'd think of this case... */
8542 signum = sigfirst;
8543 sigfirst = siglast;
8544 siglast = signum;
8545 }
8546 }
8547 else
8548 {
8549 oursig = gdb_signal_from_name (arg);
8550 if (oursig != GDB_SIGNAL_UNKNOWN)
8551 {
8552 sigfirst = siglast = (int) oursig;
8553 }
8554 else
8555 {
8556 /* Not a number and not a recognized flag word => complain. */
8557 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8558 }
8559 }
8560
8561 /* If any signal numbers or symbol names were found, set flags for
8562 which signals to apply actions to. */
8563
8564 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8565 {
8566 switch ((enum gdb_signal) signum)
8567 {
8568 case GDB_SIGNAL_TRAP:
8569 case GDB_SIGNAL_INT:
8570 if (!allsigs && !sigs[signum])
8571 {
8572 if (query (_("%s is used by the debugger.\n\
8573 Are you sure you want to change it? "),
8574 gdb_signal_to_name ((enum gdb_signal) signum)))
8575 {
8576 sigs[signum] = 1;
8577 }
8578 else
8579 {
8580 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8581 gdb_flush (gdb_stdout);
8582 }
8583 }
8584 break;
8585 case GDB_SIGNAL_0:
8586 case GDB_SIGNAL_DEFAULT:
8587 case GDB_SIGNAL_UNKNOWN:
8588 /* Make sure that "all" doesn't print these. */
8589 break;
8590 default:
8591 sigs[signum] = 1;
8592 break;
8593 }
8594 }
8595 }
8596
8597 for (signum = 0; signum < nsigs; signum++)
8598 if (sigs[signum])
8599 {
8600 signal_cache_update (-1);
8601 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8602 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8603
8604 if (from_tty)
8605 {
8606 /* Show the results. */
8607 sig_print_header ();
8608 for (; signum < nsigs; signum++)
8609 if (sigs[signum])
8610 sig_print_info ((enum gdb_signal) signum);
8611 }
8612
8613 break;
8614 }
8615 }
8616
8617 /* Complete the "handle" command. */
8618
8619 static void
8620 handle_completer (struct cmd_list_element *ignore,
8621 completion_tracker &tracker,
8622 const char *text, const char *word)
8623 {
8624 static const char * const keywords[] =
8625 {
8626 "all",
8627 "stop",
8628 "ignore",
8629 "print",
8630 "pass",
8631 "nostop",
8632 "noignore",
8633 "noprint",
8634 "nopass",
8635 NULL,
8636 };
8637
8638 signal_completer (ignore, tracker, text, word);
8639 complete_on_enum (tracker, keywords, word, word);
8640 }
8641
8642 enum gdb_signal
8643 gdb_signal_from_command (int num)
8644 {
8645 if (num >= 1 && num <= 15)
8646 return (enum gdb_signal) num;
8647 error (_("Only signals 1-15 are valid as numeric signals.\n\
8648 Use \"info signals\" for a list of symbolic signals."));
8649 }
8650
8651 /* Print current contents of the tables set by the handle command.
8652 It is possible we should just be printing signals actually used
8653 by the current target (but for things to work right when switching
8654 targets, all signals should be in the signal tables). */
8655
8656 static void
8657 info_signals_command (const char *signum_exp, int from_tty)
8658 {
8659 enum gdb_signal oursig;
8660
8661 sig_print_header ();
8662
8663 if (signum_exp)
8664 {
8665 /* First see if this is a symbol name. */
8666 oursig = gdb_signal_from_name (signum_exp);
8667 if (oursig == GDB_SIGNAL_UNKNOWN)
8668 {
8669 /* No, try numeric. */
8670 oursig =
8671 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8672 }
8673 sig_print_info (oursig);
8674 return;
8675 }
8676
8677 printf_filtered ("\n");
8678 /* These ugly casts brought to you by the native VAX compiler. */
8679 for (oursig = GDB_SIGNAL_FIRST;
8680 (int) oursig < (int) GDB_SIGNAL_LAST;
8681 oursig = (enum gdb_signal) ((int) oursig + 1))
8682 {
8683 QUIT;
8684
8685 if (oursig != GDB_SIGNAL_UNKNOWN
8686 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8687 sig_print_info (oursig);
8688 }
8689
8690 printf_filtered (_("\nUse the \"handle\" command "
8691 "to change these tables.\n"));
8692 }
8693
8694 /* The $_siginfo convenience variable is a bit special. We don't know
8695 for sure the type of the value until we actually have a chance to
8696 fetch the data. The type can change depending on gdbarch, so it is
8697 also dependent on which thread you have selected.
8698
8699 1. making $_siginfo be an internalvar that creates a new value on
8700 access.
8701
8702 2. making the value of $_siginfo be an lval_computed value. */
8703
8704 /* This function implements the lval_computed support for reading a
8705 $_siginfo value. */
8706
8707 static void
8708 siginfo_value_read (struct value *v)
8709 {
8710 LONGEST transferred;
8711
8712 /* If we can access registers, so can we access $_siginfo. Likewise
8713 vice versa. */
8714 validate_registers_access ();
8715
8716 transferred =
8717 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8718 NULL,
8719 value_contents_all_raw (v),
8720 value_offset (v),
8721 TYPE_LENGTH (value_type (v)));
8722
8723 if (transferred != TYPE_LENGTH (value_type (v)))
8724 error (_("Unable to read siginfo"));
8725 }
8726
8727 /* This function implements the lval_computed support for writing a
8728 $_siginfo value. */
8729
8730 static void
8731 siginfo_value_write (struct value *v, struct value *fromval)
8732 {
8733 LONGEST transferred;
8734
8735 /* If we can access registers, so can we access $_siginfo. Likewise
8736 vice versa. */
8737 validate_registers_access ();
8738
8739 transferred = target_write (current_top_target (),
8740 TARGET_OBJECT_SIGNAL_INFO,
8741 NULL,
8742 value_contents_all_raw (fromval),
8743 value_offset (v),
8744 TYPE_LENGTH (value_type (fromval)));
8745
8746 if (transferred != TYPE_LENGTH (value_type (fromval)))
8747 error (_("Unable to write siginfo"));
8748 }
8749
8750 static const struct lval_funcs siginfo_value_funcs =
8751 {
8752 siginfo_value_read,
8753 siginfo_value_write
8754 };
8755
8756 /* Return a new value with the correct type for the siginfo object of
8757 the current thread using architecture GDBARCH. Return a void value
8758 if there's no object available. */
8759
8760 static struct value *
8761 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8762 void *ignore)
8763 {
8764 if (target_has_stack
8765 && !ptid_equal (inferior_ptid, null_ptid)
8766 && gdbarch_get_siginfo_type_p (gdbarch))
8767 {
8768 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8769
8770 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8771 }
8772
8773 return allocate_value (builtin_type (gdbarch)->builtin_void);
8774 }
8775
8776 \f
8777 /* infcall_suspend_state contains state about the program itself like its
8778 registers and any signal it received when it last stopped.
8779 This state must be restored regardless of how the inferior function call
8780 ends (either successfully, or after it hits a breakpoint or signal)
8781 if the program is to properly continue where it left off. */
8782
8783 struct infcall_suspend_state
8784 {
8785 struct thread_suspend_state thread_suspend;
8786
8787 /* Other fields: */
8788 CORE_ADDR stop_pc;
8789 readonly_detached_regcache *registers;
8790
8791 /* Format of SIGINFO_DATA or NULL if it is not present. */
8792 struct gdbarch *siginfo_gdbarch;
8793
8794 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8795 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8796 content would be invalid. */
8797 gdb_byte *siginfo_data;
8798 };
8799
8800 struct infcall_suspend_state *
8801 save_infcall_suspend_state (void)
8802 {
8803 struct infcall_suspend_state *inf_state;
8804 struct thread_info *tp = inferior_thread ();
8805 struct regcache *regcache = get_current_regcache ();
8806 struct gdbarch *gdbarch = regcache->arch ();
8807 gdb_byte *siginfo_data = NULL;
8808
8809 if (gdbarch_get_siginfo_type_p (gdbarch))
8810 {
8811 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8812 size_t len = TYPE_LENGTH (type);
8813 struct cleanup *back_to;
8814
8815 siginfo_data = (gdb_byte *) xmalloc (len);
8816 back_to = make_cleanup (xfree, siginfo_data);
8817
8818 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8819 siginfo_data, 0, len) == len)
8820 discard_cleanups (back_to);
8821 else
8822 {
8823 /* Errors ignored. */
8824 do_cleanups (back_to);
8825 siginfo_data = NULL;
8826 }
8827 }
8828
8829 inf_state = XCNEW (struct infcall_suspend_state);
8830
8831 if (siginfo_data)
8832 {
8833 inf_state->siginfo_gdbarch = gdbarch;
8834 inf_state->siginfo_data = siginfo_data;
8835 }
8836
8837 inf_state->thread_suspend = tp->suspend;
8838
8839 /* run_inferior_call will not use the signal due to its `proceed' call with
8840 GDB_SIGNAL_0 anyway. */
8841 tp->suspend.stop_signal = GDB_SIGNAL_0;
8842
8843 inf_state->stop_pc = stop_pc;
8844
8845 inf_state->registers = new readonly_detached_regcache (*regcache);
8846
8847 return inf_state;
8848 }
8849
8850 /* Restore inferior session state to INF_STATE. */
8851
8852 void
8853 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8854 {
8855 struct thread_info *tp = inferior_thread ();
8856 struct regcache *regcache = get_current_regcache ();
8857 struct gdbarch *gdbarch = regcache->arch ();
8858
8859 tp->suspend = inf_state->thread_suspend;
8860
8861 stop_pc = inf_state->stop_pc;
8862
8863 if (inf_state->siginfo_gdbarch == gdbarch)
8864 {
8865 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8866
8867 /* Errors ignored. */
8868 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8869 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8870 }
8871
8872 /* The inferior can be gone if the user types "print exit(0)"
8873 (and perhaps other times). */
8874 if (target_has_execution)
8875 /* NB: The register write goes through to the target. */
8876 regcache->restore (inf_state->registers);
8877
8878 discard_infcall_suspend_state (inf_state);
8879 }
8880
8881 static void
8882 do_restore_infcall_suspend_state_cleanup (void *state)
8883 {
8884 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8885 }
8886
8887 struct cleanup *
8888 make_cleanup_restore_infcall_suspend_state
8889 (struct infcall_suspend_state *inf_state)
8890 {
8891 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8892 }
8893
8894 void
8895 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8896 {
8897 delete inf_state->registers;
8898 xfree (inf_state->siginfo_data);
8899 xfree (inf_state);
8900 }
8901
8902 readonly_detached_regcache *
8903 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8904 {
8905 return inf_state->registers;
8906 }
8907
8908 /* infcall_control_state contains state regarding gdb's control of the
8909 inferior itself like stepping control. It also contains session state like
8910 the user's currently selected frame. */
8911
8912 struct infcall_control_state
8913 {
8914 struct thread_control_state thread_control;
8915 struct inferior_control_state inferior_control;
8916
8917 /* Other fields: */
8918 enum stop_stack_kind stop_stack_dummy;
8919 int stopped_by_random_signal;
8920
8921 /* ID if the selected frame when the inferior function call was made. */
8922 struct frame_id selected_frame_id;
8923 };
8924
8925 /* Save all of the information associated with the inferior<==>gdb
8926 connection. */
8927
8928 struct infcall_control_state *
8929 save_infcall_control_state (void)
8930 {
8931 struct infcall_control_state *inf_status =
8932 XNEW (struct infcall_control_state);
8933 struct thread_info *tp = inferior_thread ();
8934 struct inferior *inf = current_inferior ();
8935
8936 inf_status->thread_control = tp->control;
8937 inf_status->inferior_control = inf->control;
8938
8939 tp->control.step_resume_breakpoint = NULL;
8940 tp->control.exception_resume_breakpoint = NULL;
8941
8942 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8943 chain. If caller's caller is walking the chain, they'll be happier if we
8944 hand them back the original chain when restore_infcall_control_state is
8945 called. */
8946 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8947
8948 /* Other fields: */
8949 inf_status->stop_stack_dummy = stop_stack_dummy;
8950 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8951
8952 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8953
8954 return inf_status;
8955 }
8956
8957 static void
8958 restore_selected_frame (const frame_id &fid)
8959 {
8960 frame_info *frame = frame_find_by_id (fid);
8961
8962 /* If inf_status->selected_frame_id is NULL, there was no previously
8963 selected frame. */
8964 if (frame == NULL)
8965 {
8966 warning (_("Unable to restore previously selected frame."));
8967 return;
8968 }
8969
8970 select_frame (frame);
8971 }
8972
8973 /* Restore inferior session state to INF_STATUS. */
8974
8975 void
8976 restore_infcall_control_state (struct infcall_control_state *inf_status)
8977 {
8978 struct thread_info *tp = inferior_thread ();
8979 struct inferior *inf = current_inferior ();
8980
8981 if (tp->control.step_resume_breakpoint)
8982 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8983
8984 if (tp->control.exception_resume_breakpoint)
8985 tp->control.exception_resume_breakpoint->disposition
8986 = disp_del_at_next_stop;
8987
8988 /* Handle the bpstat_copy of the chain. */
8989 bpstat_clear (&tp->control.stop_bpstat);
8990
8991 tp->control = inf_status->thread_control;
8992 inf->control = inf_status->inferior_control;
8993
8994 /* Other fields: */
8995 stop_stack_dummy = inf_status->stop_stack_dummy;
8996 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8997
8998 if (target_has_stack)
8999 {
9000 /* The point of the try/catch is that if the stack is clobbered,
9001 walking the stack might encounter a garbage pointer and
9002 error() trying to dereference it. */
9003 TRY
9004 {
9005 restore_selected_frame (inf_status->selected_frame_id);
9006 }
9007 CATCH (ex, RETURN_MASK_ERROR)
9008 {
9009 exception_fprintf (gdb_stderr, ex,
9010 "Unable to restore previously selected frame:\n");
9011 /* Error in restoring the selected frame. Select the
9012 innermost frame. */
9013 select_frame (get_current_frame ());
9014 }
9015 END_CATCH
9016 }
9017
9018 xfree (inf_status);
9019 }
9020
9021 static void
9022 do_restore_infcall_control_state_cleanup (void *sts)
9023 {
9024 restore_infcall_control_state ((struct infcall_control_state *) sts);
9025 }
9026
9027 struct cleanup *
9028 make_cleanup_restore_infcall_control_state
9029 (struct infcall_control_state *inf_status)
9030 {
9031 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9032 }
9033
9034 void
9035 discard_infcall_control_state (struct infcall_control_state *inf_status)
9036 {
9037 if (inf_status->thread_control.step_resume_breakpoint)
9038 inf_status->thread_control.step_resume_breakpoint->disposition
9039 = disp_del_at_next_stop;
9040
9041 if (inf_status->thread_control.exception_resume_breakpoint)
9042 inf_status->thread_control.exception_resume_breakpoint->disposition
9043 = disp_del_at_next_stop;
9044
9045 /* See save_infcall_control_state for info on stop_bpstat. */
9046 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9047
9048 xfree (inf_status);
9049 }
9050 \f
9051 /* See infrun.h. */
9052
9053 void
9054 clear_exit_convenience_vars (void)
9055 {
9056 clear_internalvar (lookup_internalvar ("_exitsignal"));
9057 clear_internalvar (lookup_internalvar ("_exitcode"));
9058 }
9059 \f
9060
9061 /* User interface for reverse debugging:
9062 Set exec-direction / show exec-direction commands
9063 (returns error unless target implements to_set_exec_direction method). */
9064
9065 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9066 static const char exec_forward[] = "forward";
9067 static const char exec_reverse[] = "reverse";
9068 static const char *exec_direction = exec_forward;
9069 static const char *const exec_direction_names[] = {
9070 exec_forward,
9071 exec_reverse,
9072 NULL
9073 };
9074
9075 static void
9076 set_exec_direction_func (const char *args, int from_tty,
9077 struct cmd_list_element *cmd)
9078 {
9079 if (target_can_execute_reverse)
9080 {
9081 if (!strcmp (exec_direction, exec_forward))
9082 execution_direction = EXEC_FORWARD;
9083 else if (!strcmp (exec_direction, exec_reverse))
9084 execution_direction = EXEC_REVERSE;
9085 }
9086 else
9087 {
9088 exec_direction = exec_forward;
9089 error (_("Target does not support this operation."));
9090 }
9091 }
9092
9093 static void
9094 show_exec_direction_func (struct ui_file *out, int from_tty,
9095 struct cmd_list_element *cmd, const char *value)
9096 {
9097 switch (execution_direction) {
9098 case EXEC_FORWARD:
9099 fprintf_filtered (out, _("Forward.\n"));
9100 break;
9101 case EXEC_REVERSE:
9102 fprintf_filtered (out, _("Reverse.\n"));
9103 break;
9104 default:
9105 internal_error (__FILE__, __LINE__,
9106 _("bogus execution_direction value: %d"),
9107 (int) execution_direction);
9108 }
9109 }
9110
9111 static void
9112 show_schedule_multiple (struct ui_file *file, int from_tty,
9113 struct cmd_list_element *c, const char *value)
9114 {
9115 fprintf_filtered (file, _("Resuming the execution of threads "
9116 "of all processes is %s.\n"), value);
9117 }
9118
9119 /* Implementation of `siginfo' variable. */
9120
9121 static const struct internalvar_funcs siginfo_funcs =
9122 {
9123 siginfo_make_value,
9124 NULL,
9125 NULL
9126 };
9127
9128 /* Callback for infrun's target events source. This is marked when a
9129 thread has a pending status to process. */
9130
9131 static void
9132 infrun_async_inferior_event_handler (gdb_client_data data)
9133 {
9134 inferior_event_handler (INF_REG_EVENT, NULL);
9135 }
9136
9137 void
9138 _initialize_infrun (void)
9139 {
9140 int i;
9141 int numsigs;
9142 struct cmd_list_element *c;
9143
9144 /* Register extra event sources in the event loop. */
9145 infrun_async_inferior_event_token
9146 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9147
9148 add_info ("signals", info_signals_command, _("\
9149 What debugger does when program gets various signals.\n\
9150 Specify a signal as argument to print info on that signal only."));
9151 add_info_alias ("handle", "signals", 0);
9152
9153 c = add_com ("handle", class_run, handle_command, _("\
9154 Specify how to handle signals.\n\
9155 Usage: handle SIGNAL [ACTIONS]\n\
9156 Args are signals and actions to apply to those signals.\n\
9157 If no actions are specified, the current settings for the specified signals\n\
9158 will be displayed instead.\n\
9159 \n\
9160 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9161 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9162 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9163 The special arg \"all\" is recognized to mean all signals except those\n\
9164 used by the debugger, typically SIGTRAP and SIGINT.\n\
9165 \n\
9166 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9167 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9168 Stop means reenter debugger if this signal happens (implies print).\n\
9169 Print means print a message if this signal happens.\n\
9170 Pass means let program see this signal; otherwise program doesn't know.\n\
9171 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9172 Pass and Stop may be combined.\n\
9173 \n\
9174 Multiple signals may be specified. Signal numbers and signal names\n\
9175 may be interspersed with actions, with the actions being performed for\n\
9176 all signals cumulatively specified."));
9177 set_cmd_completer (c, handle_completer);
9178
9179 if (!dbx_commands)
9180 stop_command = add_cmd ("stop", class_obscure,
9181 not_just_help_class_command, _("\
9182 There is no `stop' command, but you can set a hook on `stop'.\n\
9183 This allows you to set a list of commands to be run each time execution\n\
9184 of the program stops."), &cmdlist);
9185
9186 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9187 Set inferior debugging."), _("\
9188 Show inferior debugging."), _("\
9189 When non-zero, inferior specific debugging is enabled."),
9190 NULL,
9191 show_debug_infrun,
9192 &setdebuglist, &showdebuglist);
9193
9194 add_setshow_boolean_cmd ("displaced", class_maintenance,
9195 &debug_displaced, _("\
9196 Set displaced stepping debugging."), _("\
9197 Show displaced stepping debugging."), _("\
9198 When non-zero, displaced stepping specific debugging is enabled."),
9199 NULL,
9200 show_debug_displaced,
9201 &setdebuglist, &showdebuglist);
9202
9203 add_setshow_boolean_cmd ("non-stop", no_class,
9204 &non_stop_1, _("\
9205 Set whether gdb controls the inferior in non-stop mode."), _("\
9206 Show whether gdb controls the inferior in non-stop mode."), _("\
9207 When debugging a multi-threaded program and this setting is\n\
9208 off (the default, also called all-stop mode), when one thread stops\n\
9209 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9210 all other threads in the program while you interact with the thread of\n\
9211 interest. When you continue or step a thread, you can allow the other\n\
9212 threads to run, or have them remain stopped, but while you inspect any\n\
9213 thread's state, all threads stop.\n\
9214 \n\
9215 In non-stop mode, when one thread stops, other threads can continue\n\
9216 to run freely. You'll be able to step each thread independently,\n\
9217 leave it stopped or free to run as needed."),
9218 set_non_stop,
9219 show_non_stop,
9220 &setlist,
9221 &showlist);
9222
9223 numsigs = (int) GDB_SIGNAL_LAST;
9224 signal_stop = XNEWVEC (unsigned char, numsigs);
9225 signal_print = XNEWVEC (unsigned char, numsigs);
9226 signal_program = XNEWVEC (unsigned char, numsigs);
9227 signal_catch = XNEWVEC (unsigned char, numsigs);
9228 signal_pass = XNEWVEC (unsigned char, numsigs);
9229 for (i = 0; i < numsigs; i++)
9230 {
9231 signal_stop[i] = 1;
9232 signal_print[i] = 1;
9233 signal_program[i] = 1;
9234 signal_catch[i] = 0;
9235 }
9236
9237 /* Signals caused by debugger's own actions should not be given to
9238 the program afterwards.
9239
9240 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9241 explicitly specifies that it should be delivered to the target
9242 program. Typically, that would occur when a user is debugging a
9243 target monitor on a simulator: the target monitor sets a
9244 breakpoint; the simulator encounters this breakpoint and halts
9245 the simulation handing control to GDB; GDB, noting that the stop
9246 address doesn't map to any known breakpoint, returns control back
9247 to the simulator; the simulator then delivers the hardware
9248 equivalent of a GDB_SIGNAL_TRAP to the program being
9249 debugged. */
9250 signal_program[GDB_SIGNAL_TRAP] = 0;
9251 signal_program[GDB_SIGNAL_INT] = 0;
9252
9253 /* Signals that are not errors should not normally enter the debugger. */
9254 signal_stop[GDB_SIGNAL_ALRM] = 0;
9255 signal_print[GDB_SIGNAL_ALRM] = 0;
9256 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9257 signal_print[GDB_SIGNAL_VTALRM] = 0;
9258 signal_stop[GDB_SIGNAL_PROF] = 0;
9259 signal_print[GDB_SIGNAL_PROF] = 0;
9260 signal_stop[GDB_SIGNAL_CHLD] = 0;
9261 signal_print[GDB_SIGNAL_CHLD] = 0;
9262 signal_stop[GDB_SIGNAL_IO] = 0;
9263 signal_print[GDB_SIGNAL_IO] = 0;
9264 signal_stop[GDB_SIGNAL_POLL] = 0;
9265 signal_print[GDB_SIGNAL_POLL] = 0;
9266 signal_stop[GDB_SIGNAL_URG] = 0;
9267 signal_print[GDB_SIGNAL_URG] = 0;
9268 signal_stop[GDB_SIGNAL_WINCH] = 0;
9269 signal_print[GDB_SIGNAL_WINCH] = 0;
9270 signal_stop[GDB_SIGNAL_PRIO] = 0;
9271 signal_print[GDB_SIGNAL_PRIO] = 0;
9272
9273 /* These signals are used internally by user-level thread
9274 implementations. (See signal(5) on Solaris.) Like the above
9275 signals, a healthy program receives and handles them as part of
9276 its normal operation. */
9277 signal_stop[GDB_SIGNAL_LWP] = 0;
9278 signal_print[GDB_SIGNAL_LWP] = 0;
9279 signal_stop[GDB_SIGNAL_WAITING] = 0;
9280 signal_print[GDB_SIGNAL_WAITING] = 0;
9281 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9282 signal_print[GDB_SIGNAL_CANCEL] = 0;
9283 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9284 signal_print[GDB_SIGNAL_LIBRT] = 0;
9285
9286 /* Update cached state. */
9287 signal_cache_update (-1);
9288
9289 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9290 &stop_on_solib_events, _("\
9291 Set stopping for shared library events."), _("\
9292 Show stopping for shared library events."), _("\
9293 If nonzero, gdb will give control to the user when the dynamic linker\n\
9294 notifies gdb of shared library events. The most common event of interest\n\
9295 to the user would be loading/unloading of a new library."),
9296 set_stop_on_solib_events,
9297 show_stop_on_solib_events,
9298 &setlist, &showlist);
9299
9300 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9301 follow_fork_mode_kind_names,
9302 &follow_fork_mode_string, _("\
9303 Set debugger response to a program call of fork or vfork."), _("\
9304 Show debugger response to a program call of fork or vfork."), _("\
9305 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9306 parent - the original process is debugged after a fork\n\
9307 child - the new process is debugged after a fork\n\
9308 The unfollowed process will continue to run.\n\
9309 By default, the debugger will follow the parent process."),
9310 NULL,
9311 show_follow_fork_mode_string,
9312 &setlist, &showlist);
9313
9314 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9315 follow_exec_mode_names,
9316 &follow_exec_mode_string, _("\
9317 Set debugger response to a program call of exec."), _("\
9318 Show debugger response to a program call of exec."), _("\
9319 An exec call replaces the program image of a process.\n\
9320 \n\
9321 follow-exec-mode can be:\n\
9322 \n\
9323 new - the debugger creates a new inferior and rebinds the process\n\
9324 to this new inferior. The program the process was running before\n\
9325 the exec call can be restarted afterwards by restarting the original\n\
9326 inferior.\n\
9327 \n\
9328 same - the debugger keeps the process bound to the same inferior.\n\
9329 The new executable image replaces the previous executable loaded in\n\
9330 the inferior. Restarting the inferior after the exec call restarts\n\
9331 the executable the process was running after the exec call.\n\
9332 \n\
9333 By default, the debugger will use the same inferior."),
9334 NULL,
9335 show_follow_exec_mode_string,
9336 &setlist, &showlist);
9337
9338 add_setshow_enum_cmd ("scheduler-locking", class_run,
9339 scheduler_enums, &scheduler_mode, _("\
9340 Set mode for locking scheduler during execution."), _("\
9341 Show mode for locking scheduler during execution."), _("\
9342 off == no locking (threads may preempt at any time)\n\
9343 on == full locking (no thread except the current thread may run)\n\
9344 This applies to both normal execution and replay mode.\n\
9345 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9346 In this mode, other threads may run during other commands.\n\
9347 This applies to both normal execution and replay mode.\n\
9348 replay == scheduler locked in replay mode and unlocked during normal execution."),
9349 set_schedlock_func, /* traps on target vector */
9350 show_scheduler_mode,
9351 &setlist, &showlist);
9352
9353 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9354 Set mode for resuming threads of all processes."), _("\
9355 Show mode for resuming threads of all processes."), _("\
9356 When on, execution commands (such as 'continue' or 'next') resume all\n\
9357 threads of all processes. When off (which is the default), execution\n\
9358 commands only resume the threads of the current process. The set of\n\
9359 threads that are resumed is further refined by the scheduler-locking\n\
9360 mode (see help set scheduler-locking)."),
9361 NULL,
9362 show_schedule_multiple,
9363 &setlist, &showlist);
9364
9365 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9366 Set mode of the step operation."), _("\
9367 Show mode of the step operation."), _("\
9368 When set, doing a step over a function without debug line information\n\
9369 will stop at the first instruction of that function. Otherwise, the\n\
9370 function is skipped and the step command stops at a different source line."),
9371 NULL,
9372 show_step_stop_if_no_debug,
9373 &setlist, &showlist);
9374
9375 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9376 &can_use_displaced_stepping, _("\
9377 Set debugger's willingness to use displaced stepping."), _("\
9378 Show debugger's willingness to use displaced stepping."), _("\
9379 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9380 supported by the target architecture. If off, gdb will not use displaced\n\
9381 stepping to step over breakpoints, even if such is supported by the target\n\
9382 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9383 if the target architecture supports it and non-stop mode is active, but will not\n\
9384 use it in all-stop mode (see help set non-stop)."),
9385 NULL,
9386 show_can_use_displaced_stepping,
9387 &setlist, &showlist);
9388
9389 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9390 &exec_direction, _("Set direction of execution.\n\
9391 Options are 'forward' or 'reverse'."),
9392 _("Show direction of execution (forward/reverse)."),
9393 _("Tells gdb whether to execute forward or backward."),
9394 set_exec_direction_func, show_exec_direction_func,
9395 &setlist, &showlist);
9396
9397 /* Set/show detach-on-fork: user-settable mode. */
9398
9399 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9400 Set whether gdb will detach the child of a fork."), _("\
9401 Show whether gdb will detach the child of a fork."), _("\
9402 Tells gdb whether to detach the child of a fork."),
9403 NULL, NULL, &setlist, &showlist);
9404
9405 /* Set/show disable address space randomization mode. */
9406
9407 add_setshow_boolean_cmd ("disable-randomization", class_support,
9408 &disable_randomization, _("\
9409 Set disabling of debuggee's virtual address space randomization."), _("\
9410 Show disabling of debuggee's virtual address space randomization."), _("\
9411 When this mode is on (which is the default), randomization of the virtual\n\
9412 address space is disabled. Standalone programs run with the randomization\n\
9413 enabled by default on some platforms."),
9414 &set_disable_randomization,
9415 &show_disable_randomization,
9416 &setlist, &showlist);
9417
9418 /* ptid initializations */
9419 inferior_ptid = null_ptid;
9420 target_last_wait_ptid = minus_one_ptid;
9421
9422 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9423 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9424 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9425 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9426
9427 /* Explicitly create without lookup, since that tries to create a
9428 value with a void typed value, and when we get here, gdbarch
9429 isn't initialized yet. At this point, we're quite sure there
9430 isn't another convenience variable of the same name. */
9431 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9432
9433 add_setshow_boolean_cmd ("observer", no_class,
9434 &observer_mode_1, _("\
9435 Set whether gdb controls the inferior in observer mode."), _("\
9436 Show whether gdb controls the inferior in observer mode."), _("\
9437 In observer mode, GDB can get data from the inferior, but not\n\
9438 affect its execution. Registers and memory may not be changed,\n\
9439 breakpoints may not be set, and the program cannot be interrupted\n\
9440 or signalled."),
9441 set_observer_mode,
9442 show_observer_mode,
9443 &setlist,
9444 &showlist);
9445 }
This page took 0.307462 seconds and 5 git commands to generate.