Change record_full_gdb_operation_disable_set not to return a cleanup
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void info_signals_command (char *, int);
74
75 static void handle_command (char *, int);
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void resume_cleanups (void *);
82
83 static int hook_stop_stub (void *);
84
85 static int restore_selected_frame (void *);
86
87 static int follow_fork (void);
88
89 static int follow_fork_inferior (int follow_child, int detach_fork);
90
91 static void follow_inferior_reset_breakpoints (void);
92
93 static void set_schedlock_func (char *args, int from_tty,
94 struct cmd_list_element *c);
95
96 static int currently_stepping (struct thread_info *tp);
97
98 void nullify_last_target_wait_ptid (void);
99
100 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
101
102 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
103
104 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
105
106 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
107
108 /* Asynchronous signal handler registered as event loop source for
109 when we have pending events ready to be passed to the core. */
110 static struct async_event_handler *infrun_async_inferior_event_token;
111
112 /* Stores whether infrun_async was previously enabled or disabled.
113 Starts off as -1, indicating "never enabled/disabled". */
114 static int infrun_is_async = -1;
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 if (debug_infrun)
126 fprintf_unfiltered (gdb_stdlog,
127 "infrun: infrun_async(%d)\n",
128 enable);
129
130 if (enable)
131 mark_async_event_handler (infrun_async_inferior_event_token);
132 else
133 clear_async_event_handler (infrun_async_inferior_event_token);
134 }
135 }
136
137 /* See infrun.h. */
138
139 void
140 mark_infrun_async_event_handler (void)
141 {
142 mark_async_event_handler (infrun_async_inferior_event_token);
143 }
144
145 /* When set, stop the 'step' command if we enter a function which has
146 no line number information. The normal behavior is that we step
147 over such function. */
148 int step_stop_if_no_debug = 0;
149 static void
150 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
154 }
155
156 /* proceed and normal_stop use this to notify the user when the
157 inferior stopped in a different thread than it had been running
158 in. */
159
160 static ptid_t previous_inferior_ptid;
161
162 /* If set (default for legacy reasons), when following a fork, GDB
163 will detach from one of the fork branches, child or parent.
164 Exactly which branch is detached depends on 'set follow-fork-mode'
165 setting. */
166
167 static int detach_fork = 1;
168
169 int debug_displaced = 0;
170 static void
171 show_debug_displaced (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
175 }
176
177 unsigned int debug_infrun = 0;
178 static void
179 show_debug_infrun (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
183 }
184
185
186 /* Support for disabling address space randomization. */
187
188 int disable_randomization = 1;
189
190 static void
191 show_disable_randomization (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 if (target_supports_disable_randomization ())
195 fprintf_filtered (file,
196 _("Disabling randomization of debuggee's "
197 "virtual address space is %s.\n"),
198 value);
199 else
200 fputs_filtered (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform.\n"), file);
203 }
204
205 static void
206 set_disable_randomization (char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (!target_supports_disable_randomization ())
210 error (_("Disabling randomization of debuggee's "
211 "virtual address space is unsupported on\n"
212 "this platform."));
213 }
214
215 /* User interface for non-stop mode. */
216
217 int non_stop = 0;
218 static int non_stop_1 = 0;
219
220 static void
221 set_non_stop (char *args, int from_tty,
222 struct cmd_list_element *c)
223 {
224 if (target_has_execution)
225 {
226 non_stop_1 = non_stop;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 non_stop = non_stop_1;
231 }
232
233 static void
234 show_non_stop (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236 {
237 fprintf_filtered (file,
238 _("Controlling the inferior in non-stop mode is %s.\n"),
239 value);
240 }
241
242 /* "Observer mode" is somewhat like a more extreme version of
243 non-stop, in which all GDB operations that might affect the
244 target's execution have been disabled. */
245
246 int observer_mode = 0;
247 static int observer_mode_1 = 0;
248
249 static void
250 set_observer_mode (char *args, int from_tty,
251 struct cmd_list_element *c)
252 {
253 if (target_has_execution)
254 {
255 observer_mode_1 = observer_mode;
256 error (_("Cannot change this setting while the inferior is running."));
257 }
258
259 observer_mode = observer_mode_1;
260
261 may_write_registers = !observer_mode;
262 may_write_memory = !observer_mode;
263 may_insert_breakpoints = !observer_mode;
264 may_insert_tracepoints = !observer_mode;
265 /* We can insert fast tracepoints in or out of observer mode,
266 but enable them if we're going into this mode. */
267 if (observer_mode)
268 may_insert_fast_tracepoints = 1;
269 may_stop = !observer_mode;
270 update_target_permissions ();
271
272 /* Going *into* observer mode we must force non-stop, then
273 going out we leave it that way. */
274 if (observer_mode)
275 {
276 pagination_enabled = 0;
277 non_stop = non_stop_1 = 1;
278 }
279
280 if (from_tty)
281 printf_filtered (_("Observer mode is now %s.\n"),
282 (observer_mode ? "on" : "off"));
283 }
284
285 static void
286 show_observer_mode (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
290 }
291
292 /* This updates the value of observer mode based on changes in
293 permissions. Note that we are deliberately ignoring the values of
294 may-write-registers and may-write-memory, since the user may have
295 reason to enable these during a session, for instance to turn on a
296 debugging-related global. */
297
298 void
299 update_observer_mode (void)
300 {
301 int newval;
302
303 newval = (!may_insert_breakpoints
304 && !may_insert_tracepoints
305 && may_insert_fast_tracepoints
306 && !may_stop
307 && non_stop);
308
309 /* Let the user know if things change. */
310 if (newval != observer_mode)
311 printf_filtered (_("Observer mode is now %s.\n"),
312 (newval ? "on" : "off"));
313
314 observer_mode = observer_mode_1 = newval;
315 }
316
317 /* Tables of how to react to signals; the user sets them. */
318
319 static unsigned char *signal_stop;
320 static unsigned char *signal_print;
321 static unsigned char *signal_program;
322
323 /* Table of signals that are registered with "catch signal". A
324 non-zero entry indicates that the signal is caught by some "catch
325 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
326 signals. */
327 static unsigned char *signal_catch;
328
329 /* Table of signals that the target may silently handle.
330 This is automatically determined from the flags above,
331 and simply cached here. */
332 static unsigned char *signal_pass;
333
334 #define SET_SIGS(nsigs,sigs,flags) \
335 do { \
336 int signum = (nsigs); \
337 while (signum-- > 0) \
338 if ((sigs)[signum]) \
339 (flags)[signum] = 1; \
340 } while (0)
341
342 #define UNSET_SIGS(nsigs,sigs,flags) \
343 do { \
344 int signum = (nsigs); \
345 while (signum-- > 0) \
346 if ((sigs)[signum]) \
347 (flags)[signum] = 0; \
348 } while (0)
349
350 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
351 this function is to avoid exporting `signal_program'. */
352
353 void
354 update_signals_program_target (void)
355 {
356 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
357 }
358
359 /* Value to pass to target_resume() to cause all threads to resume. */
360
361 #define RESUME_ALL minus_one_ptid
362
363 /* Command list pointer for the "stop" placeholder. */
364
365 static struct cmd_list_element *stop_command;
366
367 /* Nonzero if we want to give control to the user when we're notified
368 of shared library events by the dynamic linker. */
369 int stop_on_solib_events;
370
371 /* Enable or disable optional shared library event breakpoints
372 as appropriate when the above flag is changed. */
373
374 static void
375 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
376 {
377 update_solib_breakpoints ();
378 }
379
380 static void
381 show_stop_on_solib_events (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
385 value);
386 }
387
388 /* Nonzero after stop if current stack frame should be printed. */
389
390 static int stop_print_frame;
391
392 /* This is a cached copy of the pid/waitstatus of the last event
393 returned by target_wait()/deprecated_target_wait_hook(). This
394 information is returned by get_last_target_status(). */
395 static ptid_t target_last_wait_ptid;
396 static struct target_waitstatus target_last_waitstatus;
397
398 static void context_switch (ptid_t ptid);
399
400 void init_thread_stepping_state (struct thread_info *tss);
401
402 static const char follow_fork_mode_child[] = "child";
403 static const char follow_fork_mode_parent[] = "parent";
404
405 static const char *const follow_fork_mode_kind_names[] = {
406 follow_fork_mode_child,
407 follow_fork_mode_parent,
408 NULL
409 };
410
411 static const char *follow_fork_mode_string = follow_fork_mode_parent;
412 static void
413 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c, const char *value)
415 {
416 fprintf_filtered (file,
417 _("Debugger response to a program "
418 "call of fork or vfork is \"%s\".\n"),
419 value);
420 }
421 \f
422
423 /* Handle changes to the inferior list based on the type of fork,
424 which process is being followed, and whether the other process
425 should be detached. On entry inferior_ptid must be the ptid of
426 the fork parent. At return inferior_ptid is the ptid of the
427 followed inferior. */
428
429 static int
430 follow_fork_inferior (int follow_child, int detach_fork)
431 {
432 int has_vforked;
433 ptid_t parent_ptid, child_ptid;
434
435 has_vforked = (inferior_thread ()->pending_follow.kind
436 == TARGET_WAITKIND_VFORKED);
437 parent_ptid = inferior_ptid;
438 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
439
440 if (has_vforked
441 && !non_stop /* Non-stop always resumes both branches. */
442 && current_ui->prompt_state == PROMPT_BLOCKED
443 && !(follow_child || detach_fork || sched_multi))
444 {
445 /* The parent stays blocked inside the vfork syscall until the
446 child execs or exits. If we don't let the child run, then
447 the parent stays blocked. If we're telling the parent to run
448 in the foreground, the user will not be able to ctrl-c to get
449 back the terminal, effectively hanging the debug session. */
450 fprintf_filtered (gdb_stderr, _("\
451 Can not resume the parent process over vfork in the foreground while\n\
452 holding the child stopped. Try \"set detach-on-fork\" or \
453 \"set schedule-multiple\".\n"));
454 /* FIXME output string > 80 columns. */
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 }
475
476 if (info_verbose || debug_infrun)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("Detaching after %s from child %s.\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid));
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 inferior_ptid = child_ptid;
504 add_thread (inferior_ptid);
505 set_current_inferior (child_inf);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539 }
540
541 if (has_vforked)
542 {
543 struct inferior *parent_inf;
544
545 parent_inf = current_inferior ();
546
547 /* If we detached from the child, then we have to be careful
548 to not insert breakpoints in the parent until the child
549 is done with the shared memory region. However, if we're
550 staying attached to the child, then we can and should
551 insert breakpoints, so that we can debug it. A
552 subsequent child exec or exit is enough to know when does
553 the child stops using the parent's address space. */
554 parent_inf->waiting_for_vfork_done = detach_fork;
555 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
556 }
557 }
558 else
559 {
560 /* Follow the child. */
561 struct inferior *parent_inf, *child_inf;
562 struct program_space *parent_pspace;
563
564 if (info_verbose || debug_infrun)
565 {
566 target_terminal::ours_for_output ();
567 fprintf_filtered (gdb_stdlog,
568 _("Attaching after %s %s to child %s.\n"),
569 target_pid_to_str (parent_ptid),
570 has_vforked ? "vfork" : "fork",
571 target_pid_to_str (child_ptid));
572 }
573
574 /* Add the new inferior first, so that the target_detach below
575 doesn't unpush the target. */
576
577 child_inf = add_inferior (ptid_get_pid (child_ptid));
578
579 parent_inf = current_inferior ();
580 child_inf->attach_flag = parent_inf->attach_flag;
581 copy_terminal_info (child_inf, parent_inf);
582 child_inf->gdbarch = parent_inf->gdbarch;
583 copy_inferior_target_desc_info (child_inf, parent_inf);
584
585 parent_pspace = parent_inf->pspace;
586
587 /* If we're vforking, we want to hold on to the parent until the
588 child exits or execs. At child exec or exit time we can
589 remove the old breakpoints from the parent and detach or
590 resume debugging it. Otherwise, detach the parent now; we'll
591 want to reuse it's program/address spaces, but we can't set
592 them to the child before removing breakpoints from the
593 parent, otherwise, the breakpoints module could decide to
594 remove breakpoints from the wrong process (since they'd be
595 assigned to the same address space). */
596
597 if (has_vforked)
598 {
599 gdb_assert (child_inf->vfork_parent == NULL);
600 gdb_assert (parent_inf->vfork_child == NULL);
601 child_inf->vfork_parent = parent_inf;
602 child_inf->pending_detach = 0;
603 parent_inf->vfork_child = child_inf;
604 parent_inf->pending_detach = detach_fork;
605 parent_inf->waiting_for_vfork_done = 0;
606 }
607 else if (detach_fork)
608 {
609 if (info_verbose || debug_infrun)
610 {
611 /* Ensure that we have a process ptid. */
612 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
613
614 target_terminal::ours_for_output ();
615 fprintf_filtered (gdb_stdlog,
616 _("Detaching after fork from "
617 "child %s.\n"),
618 target_pid_to_str (process_ptid));
619 }
620
621 target_detach (NULL, 0);
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch to
627 this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 inferior_ptid = child_ptid;
631 add_thread (inferior_ptid);
632 set_current_inferior (child_inf);
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641 }
642 else
643 {
644 child_inf->aspace = new_address_space ();
645 child_inf->pspace = add_program_space (child_inf->aspace);
646 child_inf->removable = 1;
647 child_inf->symfile_flags = SYMFILE_NO_READ;
648 set_current_program_space (child_inf->pspace);
649 clone_program_space (child_inf->pspace, parent_pspace);
650
651 /* Let the shared library layer (e.g., solib-svr4) learn
652 about this new process, relocate the cloned exec, pull in
653 shared libraries, and install the solib event breakpoint.
654 If a "cloned-VM" event was propagated better throughout
655 the core, this wouldn't be required. */
656 solib_create_inferior_hook (0);
657 }
658 }
659
660 return target_follow_fork (follow_child, detach_fork);
661 }
662
663 /* Tell the target to follow the fork we're stopped at. Returns true
664 if the inferior should be resumed; false, if the target for some
665 reason decided it's best not to resume. */
666
667 static int
668 follow_fork (void)
669 {
670 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
671 int should_resume = 1;
672 struct thread_info *tp;
673
674 /* Copy user stepping state to the new inferior thread. FIXME: the
675 followed fork child thread should have a copy of most of the
676 parent thread structure's run control related fields, not just these.
677 Initialized to avoid "may be used uninitialized" warnings from gcc. */
678 struct breakpoint *step_resume_breakpoint = NULL;
679 struct breakpoint *exception_resume_breakpoint = NULL;
680 CORE_ADDR step_range_start = 0;
681 CORE_ADDR step_range_end = 0;
682 struct frame_id step_frame_id = { 0 };
683 struct thread_fsm *thread_fsm = NULL;
684
685 if (!non_stop)
686 {
687 ptid_t wait_ptid;
688 struct target_waitstatus wait_status;
689
690 /* Get the last target status returned by target_wait(). */
691 get_last_target_status (&wait_ptid, &wait_status);
692
693 /* If not stopped at a fork event, then there's nothing else to
694 do. */
695 if (wait_status.kind != TARGET_WAITKIND_FORKED
696 && wait_status.kind != TARGET_WAITKIND_VFORKED)
697 return 1;
698
699 /* Check if we switched over from WAIT_PTID, since the event was
700 reported. */
701 if (!ptid_equal (wait_ptid, minus_one_ptid)
702 && !ptid_equal (inferior_ptid, wait_ptid))
703 {
704 /* We did. Switch back to WAIT_PTID thread, to tell the
705 target to follow it (in either direction). We'll
706 afterwards refuse to resume, and inform the user what
707 happened. */
708 switch_to_thread (wait_ptid);
709 should_resume = 0;
710 }
711 }
712
713 tp = inferior_thread ();
714
715 /* If there were any forks/vforks that were caught and are now to be
716 followed, then do so now. */
717 switch (tp->pending_follow.kind)
718 {
719 case TARGET_WAITKIND_FORKED:
720 case TARGET_WAITKIND_VFORKED:
721 {
722 ptid_t parent, child;
723
724 /* If the user did a next/step, etc, over a fork call,
725 preserve the stepping state in the fork child. */
726 if (follow_child && should_resume)
727 {
728 step_resume_breakpoint = clone_momentary_breakpoint
729 (tp->control.step_resume_breakpoint);
730 step_range_start = tp->control.step_range_start;
731 step_range_end = tp->control.step_range_end;
732 step_frame_id = tp->control.step_frame_id;
733 exception_resume_breakpoint
734 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
735 thread_fsm = tp->thread_fsm;
736
737 /* For now, delete the parent's sr breakpoint, otherwise,
738 parent/child sr breakpoints are considered duplicates,
739 and the child version will not be installed. Remove
740 this when the breakpoints module becomes aware of
741 inferiors and address spaces. */
742 delete_step_resume_breakpoint (tp);
743 tp->control.step_range_start = 0;
744 tp->control.step_range_end = 0;
745 tp->control.step_frame_id = null_frame_id;
746 delete_exception_resume_breakpoint (tp);
747 tp->thread_fsm = NULL;
748 }
749
750 parent = inferior_ptid;
751 child = tp->pending_follow.value.related_pid;
752
753 /* Set up inferior(s) as specified by the caller, and tell the
754 target to do whatever is necessary to follow either parent
755 or child. */
756 if (follow_fork_inferior (follow_child, detach_fork))
757 {
758 /* Target refused to follow, or there's some other reason
759 we shouldn't resume. */
760 should_resume = 0;
761 }
762 else
763 {
764 /* This pending follow fork event is now handled, one way
765 or another. The previous selected thread may be gone
766 from the lists by now, but if it is still around, need
767 to clear the pending follow request. */
768 tp = find_thread_ptid (parent);
769 if (tp)
770 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
771
772 /* This makes sure we don't try to apply the "Switched
773 over from WAIT_PID" logic above. */
774 nullify_last_target_wait_ptid ();
775
776 /* If we followed the child, switch to it... */
777 if (follow_child)
778 {
779 switch_to_thread (child);
780
781 /* ... and preserve the stepping state, in case the
782 user was stepping over the fork call. */
783 if (should_resume)
784 {
785 tp = inferior_thread ();
786 tp->control.step_resume_breakpoint
787 = step_resume_breakpoint;
788 tp->control.step_range_start = step_range_start;
789 tp->control.step_range_end = step_range_end;
790 tp->control.step_frame_id = step_frame_id;
791 tp->control.exception_resume_breakpoint
792 = exception_resume_breakpoint;
793 tp->thread_fsm = thread_fsm;
794 }
795 else
796 {
797 /* If we get here, it was because we're trying to
798 resume from a fork catchpoint, but, the user
799 has switched threads away from the thread that
800 forked. In that case, the resume command
801 issued is most likely not applicable to the
802 child, so just warn, and refuse to resume. */
803 warning (_("Not resuming: switched threads "
804 "before following fork child."));
805 }
806
807 /* Reset breakpoints in the child as appropriate. */
808 follow_inferior_reset_breakpoints ();
809 }
810 else
811 switch_to_thread (parent);
812 }
813 }
814 break;
815 case TARGET_WAITKIND_SPURIOUS:
816 /* Nothing to follow. */
817 break;
818 default:
819 internal_error (__FILE__, __LINE__,
820 "Unexpected pending_follow.kind %d\n",
821 tp->pending_follow.kind);
822 break;
823 }
824
825 return should_resume;
826 }
827
828 static void
829 follow_inferior_reset_breakpoints (void)
830 {
831 struct thread_info *tp = inferior_thread ();
832
833 /* Was there a step_resume breakpoint? (There was if the user
834 did a "next" at the fork() call.) If so, explicitly reset its
835 thread number. Cloned step_resume breakpoints are disabled on
836 creation, so enable it here now that it is associated with the
837 correct thread.
838
839 step_resumes are a form of bp that are made to be per-thread.
840 Since we created the step_resume bp when the parent process
841 was being debugged, and now are switching to the child process,
842 from the breakpoint package's viewpoint, that's a switch of
843 "threads". We must update the bp's notion of which thread
844 it is for, or it'll be ignored when it triggers. */
845
846 if (tp->control.step_resume_breakpoint)
847 {
848 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
849 tp->control.step_resume_breakpoint->loc->enabled = 1;
850 }
851
852 /* Treat exception_resume breakpoints like step_resume breakpoints. */
853 if (tp->control.exception_resume_breakpoint)
854 {
855 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
856 tp->control.exception_resume_breakpoint->loc->enabled = 1;
857 }
858
859 /* Reinsert all breakpoints in the child. The user may have set
860 breakpoints after catching the fork, in which case those
861 were never set in the child, but only in the parent. This makes
862 sure the inserted breakpoints match the breakpoint list. */
863
864 breakpoint_re_set ();
865 insert_breakpoints ();
866 }
867
868 /* The child has exited or execed: resume threads of the parent the
869 user wanted to be executing. */
870
871 static int
872 proceed_after_vfork_done (struct thread_info *thread,
873 void *arg)
874 {
875 int pid = * (int *) arg;
876
877 if (ptid_get_pid (thread->ptid) == pid
878 && is_running (thread->ptid)
879 && !is_executing (thread->ptid)
880 && !thread->stop_requested
881 && thread->suspend.stop_signal == GDB_SIGNAL_0)
882 {
883 if (debug_infrun)
884 fprintf_unfiltered (gdb_stdlog,
885 "infrun: resuming vfork parent thread %s\n",
886 target_pid_to_str (thread->ptid));
887
888 switch_to_thread (thread->ptid);
889 clear_proceed_status (0);
890 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
891 }
892
893 return 0;
894 }
895
896 /* Save/restore inferior_ptid, current program space and current
897 inferior. Only use this if the current context points at an exited
898 inferior (and therefore there's no current thread to save). */
899 class scoped_restore_exited_inferior
900 {
901 public:
902 scoped_restore_exited_inferior ()
903 : m_saved_ptid (&inferior_ptid)
904 {}
905
906 private:
907 scoped_restore_tmpl<ptid_t> m_saved_ptid;
908 scoped_restore_current_program_space m_pspace;
909 scoped_restore_current_inferior m_inferior;
910 };
911
912 /* Called whenever we notice an exec or exit event, to handle
913 detaching or resuming a vfork parent. */
914
915 static void
916 handle_vfork_child_exec_or_exit (int exec)
917 {
918 struct inferior *inf = current_inferior ();
919
920 if (inf->vfork_parent)
921 {
922 int resume_parent = -1;
923
924 /* This exec or exit marks the end of the shared memory region
925 between the parent and the child. If the user wanted to
926 detach from the parent, now is the time. */
927
928 if (inf->vfork_parent->pending_detach)
929 {
930 struct thread_info *tp;
931 struct program_space *pspace;
932 struct address_space *aspace;
933
934 /* follow-fork child, detach-on-fork on. */
935
936 inf->vfork_parent->pending_detach = 0;
937
938 gdb::optional<scoped_restore_exited_inferior>
939 maybe_restore_inferior;
940 gdb::optional<scoped_restore_current_pspace_and_thread>
941 maybe_restore_thread;
942
943 /* If we're handling a child exit, then inferior_ptid points
944 at the inferior's pid, not to a thread. */
945 if (!exec)
946 maybe_restore_inferior.emplace ();
947 else
948 maybe_restore_thread.emplace ();
949
950 /* We're letting loose of the parent. */
951 tp = any_live_thread_of_process (inf->vfork_parent->pid);
952 switch_to_thread (tp->ptid);
953
954 /* We're about to detach from the parent, which implicitly
955 removes breakpoints from its address space. There's a
956 catch here: we want to reuse the spaces for the child,
957 but, parent/child are still sharing the pspace at this
958 point, although the exec in reality makes the kernel give
959 the child a fresh set of new pages. The problem here is
960 that the breakpoints module being unaware of this, would
961 likely chose the child process to write to the parent
962 address space. Swapping the child temporarily away from
963 the spaces has the desired effect. Yes, this is "sort
964 of" a hack. */
965
966 pspace = inf->pspace;
967 aspace = inf->aspace;
968 inf->aspace = NULL;
969 inf->pspace = NULL;
970
971 if (debug_infrun || info_verbose)
972 {
973 target_terminal::ours_for_output ();
974
975 if (exec)
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("Detaching vfork parent process "
979 "%d after child exec.\n"),
980 inf->vfork_parent->pid);
981 }
982 else
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("Detaching vfork parent process "
986 "%d after child exit.\n"),
987 inf->vfork_parent->pid);
988 }
989 }
990
991 target_detach (NULL, 0);
992
993 /* Put it back. */
994 inf->pspace = pspace;
995 inf->aspace = aspace;
996 }
997 else if (exec)
998 {
999 /* We're staying attached to the parent, so, really give the
1000 child a new address space. */
1001 inf->pspace = add_program_space (maybe_new_address_space ());
1002 inf->aspace = inf->pspace->aspace;
1003 inf->removable = 1;
1004 set_current_program_space (inf->pspace);
1005
1006 resume_parent = inf->vfork_parent->pid;
1007
1008 /* Break the bonds. */
1009 inf->vfork_parent->vfork_child = NULL;
1010 }
1011 else
1012 {
1013 struct program_space *pspace;
1014
1015 /* If this is a vfork child exiting, then the pspace and
1016 aspaces were shared with the parent. Since we're
1017 reporting the process exit, we'll be mourning all that is
1018 found in the address space, and switching to null_ptid,
1019 preparing to start a new inferior. But, since we don't
1020 want to clobber the parent's address/program spaces, we
1021 go ahead and create a new one for this exiting
1022 inferior. */
1023
1024 /* Switch to null_ptid while running clone_program_space, so
1025 that clone_program_space doesn't want to read the
1026 selected frame of a dead process. */
1027 scoped_restore restore_ptid
1028 = make_scoped_restore (&inferior_ptid, null_ptid);
1029
1030 /* This inferior is dead, so avoid giving the breakpoints
1031 module the option to write through to it (cloning a
1032 program space resets breakpoints). */
1033 inf->aspace = NULL;
1034 inf->pspace = NULL;
1035 pspace = add_program_space (maybe_new_address_space ());
1036 set_current_program_space (pspace);
1037 inf->removable = 1;
1038 inf->symfile_flags = SYMFILE_NO_READ;
1039 clone_program_space (pspace, inf->vfork_parent->pspace);
1040 inf->pspace = pspace;
1041 inf->aspace = pspace->aspace;
1042
1043 resume_parent = inf->vfork_parent->pid;
1044 /* Break the bonds. */
1045 inf->vfork_parent->vfork_child = NULL;
1046 }
1047
1048 inf->vfork_parent = NULL;
1049
1050 gdb_assert (current_program_space == inf->pspace);
1051
1052 if (non_stop && resume_parent != -1)
1053 {
1054 /* If the user wanted the parent to be running, let it go
1055 free now. */
1056 scoped_restore_current_thread restore_thread;
1057
1058 if (debug_infrun)
1059 fprintf_unfiltered (gdb_stdlog,
1060 "infrun: resuming vfork parent process %d\n",
1061 resume_parent);
1062
1063 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1064 }
1065 }
1066 }
1067
1068 /* Enum strings for "set|show follow-exec-mode". */
1069
1070 static const char follow_exec_mode_new[] = "new";
1071 static const char follow_exec_mode_same[] = "same";
1072 static const char *const follow_exec_mode_names[] =
1073 {
1074 follow_exec_mode_new,
1075 follow_exec_mode_same,
1076 NULL,
1077 };
1078
1079 static const char *follow_exec_mode_string = follow_exec_mode_same;
1080 static void
1081 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1082 struct cmd_list_element *c, const char *value)
1083 {
1084 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1085 }
1086
1087 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1088
1089 static void
1090 follow_exec (ptid_t ptid, char *exec_file_target)
1091 {
1092 struct thread_info *th, *tmp;
1093 struct inferior *inf = current_inferior ();
1094 int pid = ptid_get_pid (ptid);
1095 ptid_t process_ptid;
1096 char *exec_file_host;
1097 struct cleanup *old_chain;
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 ALL_THREADS_SAFE (th, tmp)
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 process_ptid = pid_to_ptid (pid);
1165 printf_unfiltered (_("%s is executing new program: %s\n"),
1166 target_pid_to_str (process_ptid),
1167 exec_file_target);
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1170 inferior has essentially been killed & reborn. */
1171
1172 gdb_flush (gdb_stdout);
1173
1174 breakpoint_init_inferior (inf_execd);
1175
1176 exec_file_host = exec_file_find (exec_file_target, NULL);
1177 old_chain = make_cleanup (xfree, exec_file_host);
1178
1179 /* If we were unable to map the executable target pathname onto a host
1180 pathname, tell the user that. Otherwise GDB's subsequent behavior
1181 is confusing. Maybe it would even be better to stop at this point
1182 so that the user can specify a file manually before continuing. */
1183 if (exec_file_host == NULL)
1184 warning (_("Could not load symbols for executable %s.\n"
1185 "Do you need \"set sysroot\"?"),
1186 exec_file_target);
1187
1188 /* Reset the shared library package. This ensures that we get a
1189 shlib event when the child reaches "_start", at which point the
1190 dld will have had a chance to initialize the child. */
1191 /* Also, loading a symbol file below may trigger symbol lookups, and
1192 we don't want those to be satisfied by the libraries of the
1193 previous incarnation of this process. */
1194 no_shared_libraries (NULL, 0);
1195
1196 if (follow_exec_mode_string == follow_exec_mode_new)
1197 {
1198 /* The user wants to keep the old inferior and program spaces
1199 around. Create a new fresh one, and switch to it. */
1200
1201 /* Do exit processing for the original inferior before adding
1202 the new inferior so we don't have two active inferiors with
1203 the same ptid, which can confuse find_inferior_ptid. */
1204 exit_inferior_num_silent (current_inferior ()->num);
1205
1206 inf = add_inferior_with_spaces ();
1207 inf->pid = pid;
1208 target_follow_exec (inf, exec_file_target);
1209
1210 set_current_inferior (inf);
1211 set_current_program_space (inf->pspace);
1212 }
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
1226 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1227 because the proper displacement for a PIE (Position Independent
1228 Executable) main symbol file will only be computed by
1229 solib_create_inferior_hook below. breakpoint_re_set would fail
1230 to insert the breakpoints with the zero displacement. */
1231 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1232
1233 do_cleanups (old_chain);
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 /* The add_thread call ends up reading registers, so do it after updating the
1244 target description. */
1245 if (follow_exec_mode_string == follow_exec_mode_new)
1246 add_thread (ptid);
1247
1248 solib_create_inferior_hook (0);
1249
1250 jit_inferior_created_hook ();
1251
1252 breakpoint_re_set ();
1253
1254 /* Reinsert all breakpoints. (Those which were symbolic have
1255 been reset to the proper address in the new a.out, thanks
1256 to symbol_file_command...). */
1257 insert_breakpoints ();
1258
1259 /* The next resume of this inferior should bring it to the shlib
1260 startup breakpoints. (If the user had also set bp's on
1261 "main" from the old (parent) process, then they'll auto-
1262 matically get reset there in the new process.). */
1263 }
1264
1265 /* The queue of threads that need to do a step-over operation to get
1266 past e.g., a breakpoint. What technique is used to step over the
1267 breakpoint/watchpoint does not matter -- all threads end up in the
1268 same queue, to maintain rough temporal order of execution, in order
1269 to avoid starvation, otherwise, we could e.g., find ourselves
1270 constantly stepping the same couple threads past their breakpoints
1271 over and over, if the single-step finish fast enough. */
1272 struct thread_info *step_over_queue_head;
1273
1274 /* Bit flags indicating what the thread needs to step over. */
1275
1276 enum step_over_what_flag
1277 {
1278 /* Step over a breakpoint. */
1279 STEP_OVER_BREAKPOINT = 1,
1280
1281 /* Step past a non-continuable watchpoint, in order to let the
1282 instruction execute so we can evaluate the watchpoint
1283 expression. */
1284 STEP_OVER_WATCHPOINT = 2
1285 };
1286 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1287
1288 /* Info about an instruction that is being stepped over. */
1289
1290 struct step_over_info
1291 {
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
1296 struct address_space *aspace;
1297 CORE_ADDR address;
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
1302
1303 /* The thread's global number. */
1304 int thread;
1305 };
1306
1307 /* The step-over info of the location that is being stepped over.
1308
1309 Note that with async/breakpoint always-inserted mode, a user might
1310 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1311 being stepped over. As setting a new breakpoint inserts all
1312 breakpoints, we need to make sure the breakpoint being stepped over
1313 isn't inserted then. We do that by only clearing the step-over
1314 info when the step-over is actually finished (or aborted).
1315
1316 Presently GDB can only step over one breakpoint at any given time.
1317 Given threads that can't run code in the same address space as the
1318 breakpoint's can't really miss the breakpoint, GDB could be taught
1319 to step-over at most one breakpoint per address space (so this info
1320 could move to the address space object if/when GDB is extended).
1321 The set of breakpoints being stepped over will normally be much
1322 smaller than the set of all breakpoints, so a flag in the
1323 breakpoint location structure would be wasteful. A separate list
1324 also saves complexity and run-time, as otherwise we'd have to go
1325 through all breakpoint locations clearing their flag whenever we
1326 start a new sequence. Similar considerations weigh against storing
1327 this info in the thread object. Plus, not all step overs actually
1328 have breakpoint locations -- e.g., stepping past a single-step
1329 breakpoint, or stepping to complete a non-continuable
1330 watchpoint. */
1331 static struct step_over_info step_over_info;
1332
1333 /* Record the address of the breakpoint/instruction we're currently
1334 stepping over.
1335 N.B. We record the aspace and address now, instead of say just the thread,
1336 because when we need the info later the thread may be running. */
1337
1338 static void
1339 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1340 int nonsteppable_watchpoint_p,
1341 int thread)
1342 {
1343 step_over_info.aspace = aspace;
1344 step_over_info.address = address;
1345 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1346 step_over_info.thread = thread;
1347 }
1348
1349 /* Called when we're not longer stepping over a breakpoint / an
1350 instruction, so all breakpoints are free to be (re)inserted. */
1351
1352 static void
1353 clear_step_over_info (void)
1354 {
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "infrun: clear_step_over_info\n");
1358 step_over_info.aspace = NULL;
1359 step_over_info.address = 0;
1360 step_over_info.nonsteppable_watchpoint_p = 0;
1361 step_over_info.thread = -1;
1362 }
1363
1364 /* See infrun.h. */
1365
1366 int
1367 stepping_past_instruction_at (struct address_space *aspace,
1368 CORE_ADDR address)
1369 {
1370 return (step_over_info.aspace != NULL
1371 && breakpoint_address_match (aspace, address,
1372 step_over_info.aspace,
1373 step_over_info.address));
1374 }
1375
1376 /* See infrun.h. */
1377
1378 int
1379 thread_is_stepping_over_breakpoint (int thread)
1380 {
1381 return (step_over_info.thread != -1
1382 && thread == step_over_info.thread);
1383 }
1384
1385 /* See infrun.h. */
1386
1387 int
1388 stepping_past_nonsteppable_watchpoint (void)
1389 {
1390 return step_over_info.nonsteppable_watchpoint_p;
1391 }
1392
1393 /* Returns true if step-over info is valid. */
1394
1395 static int
1396 step_over_info_valid_p (void)
1397 {
1398 return (step_over_info.aspace != NULL
1399 || stepping_past_nonsteppable_watchpoint ());
1400 }
1401
1402 \f
1403 /* Displaced stepping. */
1404
1405 /* In non-stop debugging mode, we must take special care to manage
1406 breakpoints properly; in particular, the traditional strategy for
1407 stepping a thread past a breakpoint it has hit is unsuitable.
1408 'Displaced stepping' is a tactic for stepping one thread past a
1409 breakpoint it has hit while ensuring that other threads running
1410 concurrently will hit the breakpoint as they should.
1411
1412 The traditional way to step a thread T off a breakpoint in a
1413 multi-threaded program in all-stop mode is as follows:
1414
1415 a0) Initially, all threads are stopped, and breakpoints are not
1416 inserted.
1417 a1) We single-step T, leaving breakpoints uninserted.
1418 a2) We insert breakpoints, and resume all threads.
1419
1420 In non-stop debugging, however, this strategy is unsuitable: we
1421 don't want to have to stop all threads in the system in order to
1422 continue or step T past a breakpoint. Instead, we use displaced
1423 stepping:
1424
1425 n0) Initially, T is stopped, other threads are running, and
1426 breakpoints are inserted.
1427 n1) We copy the instruction "under" the breakpoint to a separate
1428 location, outside the main code stream, making any adjustments
1429 to the instruction, register, and memory state as directed by
1430 T's architecture.
1431 n2) We single-step T over the instruction at its new location.
1432 n3) We adjust the resulting register and memory state as directed
1433 by T's architecture. This includes resetting T's PC to point
1434 back into the main instruction stream.
1435 n4) We resume T.
1436
1437 This approach depends on the following gdbarch methods:
1438
1439 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1440 indicate where to copy the instruction, and how much space must
1441 be reserved there. We use these in step n1.
1442
1443 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1444 address, and makes any necessary adjustments to the instruction,
1445 register contents, and memory. We use this in step n1.
1446
1447 - gdbarch_displaced_step_fixup adjusts registers and memory after
1448 we have successfuly single-stepped the instruction, to yield the
1449 same effect the instruction would have had if we had executed it
1450 at its original address. We use this in step n3.
1451
1452 - gdbarch_displaced_step_free_closure provides cleanup.
1453
1454 The gdbarch_displaced_step_copy_insn and
1455 gdbarch_displaced_step_fixup functions must be written so that
1456 copying an instruction with gdbarch_displaced_step_copy_insn,
1457 single-stepping across the copied instruction, and then applying
1458 gdbarch_displaced_insn_fixup should have the same effects on the
1459 thread's memory and registers as stepping the instruction in place
1460 would have. Exactly which responsibilities fall to the copy and
1461 which fall to the fixup is up to the author of those functions.
1462
1463 See the comments in gdbarch.sh for details.
1464
1465 Note that displaced stepping and software single-step cannot
1466 currently be used in combination, although with some care I think
1467 they could be made to. Software single-step works by placing
1468 breakpoints on all possible subsequent instructions; if the
1469 displaced instruction is a PC-relative jump, those breakpoints
1470 could fall in very strange places --- on pages that aren't
1471 executable, or at addresses that are not proper instruction
1472 boundaries. (We do generally let other threads run while we wait
1473 to hit the software single-step breakpoint, and they might
1474 encounter such a corrupted instruction.) One way to work around
1475 this would be to have gdbarch_displaced_step_copy_insn fully
1476 simulate the effect of PC-relative instructions (and return NULL)
1477 on architectures that use software single-stepping.
1478
1479 In non-stop mode, we can have independent and simultaneous step
1480 requests, so more than one thread may need to simultaneously step
1481 over a breakpoint. The current implementation assumes there is
1482 only one scratch space per process. In this case, we have to
1483 serialize access to the scratch space. If thread A wants to step
1484 over a breakpoint, but we are currently waiting for some other
1485 thread to complete a displaced step, we leave thread A stopped and
1486 place it in the displaced_step_request_queue. Whenever a displaced
1487 step finishes, we pick the next thread in the queue and start a new
1488 displaced step operation on it. See displaced_step_prepare and
1489 displaced_step_fixup for details. */
1490
1491 /* Per-inferior displaced stepping state. */
1492 struct displaced_step_inferior_state
1493 {
1494 /* Pointer to next in linked list. */
1495 struct displaced_step_inferior_state *next;
1496
1497 /* The process this displaced step state refers to. */
1498 int pid;
1499
1500 /* True if preparing a displaced step ever failed. If so, we won't
1501 try displaced stepping for this inferior again. */
1502 int failed_before;
1503
1504 /* If this is not null_ptid, this is the thread carrying out a
1505 displaced single-step in process PID. This thread's state will
1506 require fixing up once it has completed its step. */
1507 ptid_t step_ptid;
1508
1509 /* The architecture the thread had when we stepped it. */
1510 struct gdbarch *step_gdbarch;
1511
1512 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1513 for post-step cleanup. */
1514 struct displaced_step_closure *step_closure;
1515
1516 /* The address of the original instruction, and the copy we
1517 made. */
1518 CORE_ADDR step_original, step_copy;
1519
1520 /* Saved contents of copy area. */
1521 gdb_byte *step_saved_copy;
1522 };
1523
1524 /* The list of states of processes involved in displaced stepping
1525 presently. */
1526 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1527
1528 /* Get the displaced stepping state of process PID. */
1529
1530 static struct displaced_step_inferior_state *
1531 get_displaced_stepping_state (int pid)
1532 {
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (state->pid == pid)
1539 return state;
1540
1541 return NULL;
1542 }
1543
1544 /* Returns true if any inferior has a thread doing a displaced
1545 step. */
1546
1547 static int
1548 displaced_step_in_progress_any_inferior (void)
1549 {
1550 struct displaced_step_inferior_state *state;
1551
1552 for (state = displaced_step_inferior_states;
1553 state != NULL;
1554 state = state->next)
1555 if (!ptid_equal (state->step_ptid, null_ptid))
1556 return 1;
1557
1558 return 0;
1559 }
1560
1561 /* Return true if thread represented by PTID is doing a displaced
1562 step. */
1563
1564 static int
1565 displaced_step_in_progress_thread (ptid_t ptid)
1566 {
1567 struct displaced_step_inferior_state *displaced;
1568
1569 gdb_assert (!ptid_equal (ptid, null_ptid));
1570
1571 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1572
1573 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1574 }
1575
1576 /* Return true if process PID has a thread doing a displaced step. */
1577
1578 static int
1579 displaced_step_in_progress (int pid)
1580 {
1581 struct displaced_step_inferior_state *displaced;
1582
1583 displaced = get_displaced_stepping_state (pid);
1584 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1585 return 1;
1586
1587 return 0;
1588 }
1589
1590 /* Add a new displaced stepping state for process PID to the displaced
1591 stepping state list, or return a pointer to an already existing
1592 entry, if it already exists. Never returns NULL. */
1593
1594 static struct displaced_step_inferior_state *
1595 add_displaced_stepping_state (int pid)
1596 {
1597 struct displaced_step_inferior_state *state;
1598
1599 for (state = displaced_step_inferior_states;
1600 state != NULL;
1601 state = state->next)
1602 if (state->pid == pid)
1603 return state;
1604
1605 state = XCNEW (struct displaced_step_inferior_state);
1606 state->pid = pid;
1607 state->next = displaced_step_inferior_states;
1608 displaced_step_inferior_states = state;
1609
1610 return state;
1611 }
1612
1613 /* If inferior is in displaced stepping, and ADDR equals to starting address
1614 of copy area, return corresponding displaced_step_closure. Otherwise,
1615 return NULL. */
1616
1617 struct displaced_step_closure*
1618 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1619 {
1620 struct displaced_step_inferior_state *displaced
1621 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1622
1623 /* If checking the mode of displaced instruction in copy area. */
1624 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1625 && (displaced->step_copy == addr))
1626 return displaced->step_closure;
1627
1628 return NULL;
1629 }
1630
1631 /* Remove the displaced stepping state of process PID. */
1632
1633 static void
1634 remove_displaced_stepping_state (int pid)
1635 {
1636 struct displaced_step_inferior_state *it, **prev_next_p;
1637
1638 gdb_assert (pid != 0);
1639
1640 it = displaced_step_inferior_states;
1641 prev_next_p = &displaced_step_inferior_states;
1642 while (it)
1643 {
1644 if (it->pid == pid)
1645 {
1646 *prev_next_p = it->next;
1647 xfree (it);
1648 return;
1649 }
1650
1651 prev_next_p = &it->next;
1652 it = *prev_next_p;
1653 }
1654 }
1655
1656 static void
1657 infrun_inferior_exit (struct inferior *inf)
1658 {
1659 remove_displaced_stepping_state (inf->pid);
1660 }
1661
1662 /* If ON, and the architecture supports it, GDB will use displaced
1663 stepping to step over breakpoints. If OFF, or if the architecture
1664 doesn't support it, GDB will instead use the traditional
1665 hold-and-step approach. If AUTO (which is the default), GDB will
1666 decide which technique to use to step over breakpoints depending on
1667 which of all-stop or non-stop mode is active --- displaced stepping
1668 in non-stop mode; hold-and-step in all-stop mode. */
1669
1670 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1671
1672 static void
1673 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1674 struct cmd_list_element *c,
1675 const char *value)
1676 {
1677 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1678 fprintf_filtered (file,
1679 _("Debugger's willingness to use displaced stepping "
1680 "to step over breakpoints is %s (currently %s).\n"),
1681 value, target_is_non_stop_p () ? "on" : "off");
1682 else
1683 fprintf_filtered (file,
1684 _("Debugger's willingness to use displaced stepping "
1685 "to step over breakpoints is %s.\n"), value);
1686 }
1687
1688 /* Return non-zero if displaced stepping can/should be used to step
1689 over breakpoints of thread TP. */
1690
1691 static int
1692 use_displaced_stepping (struct thread_info *tp)
1693 {
1694 struct regcache *regcache = get_thread_regcache (tp->ptid);
1695 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1696 struct displaced_step_inferior_state *displaced_state;
1697
1698 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1699
1700 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1701 && target_is_non_stop_p ())
1702 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1703 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1704 && find_record_target () == NULL
1705 && (displaced_state == NULL
1706 || !displaced_state->failed_before));
1707 }
1708
1709 /* Clean out any stray displaced stepping state. */
1710 static void
1711 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1712 {
1713 /* Indicate that there is no cleanup pending. */
1714 displaced->step_ptid = null_ptid;
1715
1716 xfree (displaced->step_closure);
1717 displaced->step_closure = NULL;
1718 }
1719
1720 static void
1721 displaced_step_clear_cleanup (void *arg)
1722 {
1723 struct displaced_step_inferior_state *state
1724 = (struct displaced_step_inferior_state *) arg;
1725
1726 displaced_step_clear (state);
1727 }
1728
1729 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1730 void
1731 displaced_step_dump_bytes (struct ui_file *file,
1732 const gdb_byte *buf,
1733 size_t len)
1734 {
1735 int i;
1736
1737 for (i = 0; i < len; i++)
1738 fprintf_unfiltered (file, "%02x ", buf[i]);
1739 fputs_unfiltered ("\n", file);
1740 }
1741
1742 /* Prepare to single-step, using displaced stepping.
1743
1744 Note that we cannot use displaced stepping when we have a signal to
1745 deliver. If we have a signal to deliver and an instruction to step
1746 over, then after the step, there will be no indication from the
1747 target whether the thread entered a signal handler or ignored the
1748 signal and stepped over the instruction successfully --- both cases
1749 result in a simple SIGTRAP. In the first case we mustn't do a
1750 fixup, and in the second case we must --- but we can't tell which.
1751 Comments in the code for 'random signals' in handle_inferior_event
1752 explain how we handle this case instead.
1753
1754 Returns 1 if preparing was successful -- this thread is going to be
1755 stepped now; 0 if displaced stepping this thread got queued; or -1
1756 if this instruction can't be displaced stepped. */
1757
1758 static int
1759 displaced_step_prepare_throw (ptid_t ptid)
1760 {
1761 struct cleanup *ignore_cleanups;
1762 struct thread_info *tp = find_thread_ptid (ptid);
1763 struct regcache *regcache = get_thread_regcache (ptid);
1764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1765 struct address_space *aspace = get_regcache_aspace (regcache);
1766 CORE_ADDR original, copy;
1767 ULONGEST len;
1768 struct displaced_step_closure *closure;
1769 struct displaced_step_inferior_state *displaced;
1770 int status;
1771
1772 /* We should never reach this function if the architecture does not
1773 support displaced stepping. */
1774 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1775
1776 /* Nor if the thread isn't meant to step over a breakpoint. */
1777 gdb_assert (tp->control.trap_expected);
1778
1779 /* Disable range stepping while executing in the scratch pad. We
1780 want a single-step even if executing the displaced instruction in
1781 the scratch buffer lands within the stepping range (e.g., a
1782 jump/branch). */
1783 tp->control.may_range_step = 0;
1784
1785 /* We have to displaced step one thread at a time, as we only have
1786 access to a single scratch space per inferior. */
1787
1788 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1789
1790 if (!ptid_equal (displaced->step_ptid, null_ptid))
1791 {
1792 /* Already waiting for a displaced step to finish. Defer this
1793 request and place in queue. */
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: deferring step of %s\n",
1798 target_pid_to_str (ptid));
1799
1800 thread_step_over_chain_enqueue (tp);
1801 return 0;
1802 }
1803 else
1804 {
1805 if (debug_displaced)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "displaced: stepping %s now\n",
1808 target_pid_to_str (ptid));
1809 }
1810
1811 displaced_step_clear (displaced);
1812
1813 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1814 inferior_ptid = ptid;
1815
1816 original = regcache_read_pc (regcache);
1817
1818 copy = gdbarch_displaced_step_location (gdbarch);
1819 len = gdbarch_max_insn_length (gdbarch);
1820
1821 if (breakpoint_in_range_p (aspace, copy, len))
1822 {
1823 /* There's a breakpoint set in the scratch pad location range
1824 (which is usually around the entry point). We'd either
1825 install it before resuming, which would overwrite/corrupt the
1826 scratch pad, or if it was already inserted, this displaced
1827 step would overwrite it. The latter is OK in the sense that
1828 we already assume that no thread is going to execute the code
1829 in the scratch pad range (after initial startup) anyway, but
1830 the former is unacceptable. Simply punt and fallback to
1831 stepping over this breakpoint in-line. */
1832 if (debug_displaced)
1833 {
1834 fprintf_unfiltered (gdb_stdlog,
1835 "displaced: breakpoint set in scratch pad. "
1836 "Stepping over breakpoint in-line instead.\n");
1837 }
1838
1839 return -1;
1840 }
1841
1842 /* Save the original contents of the copy area. */
1843 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1844 ignore_cleanups = make_cleanup (free_current_contents,
1845 &displaced->step_saved_copy);
1846 status = target_read_memory (copy, displaced->step_saved_copy, len);
1847 if (status != 0)
1848 throw_error (MEMORY_ERROR,
1849 _("Error accessing memory address %s (%s) for "
1850 "displaced-stepping scratch space."),
1851 paddress (gdbarch, copy), safe_strerror (status));
1852 if (debug_displaced)
1853 {
1854 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1855 paddress (gdbarch, copy));
1856 displaced_step_dump_bytes (gdb_stdlog,
1857 displaced->step_saved_copy,
1858 len);
1859 };
1860
1861 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1862 original, copy, regcache);
1863 if (closure == NULL)
1864 {
1865 /* The architecture doesn't know how or want to displaced step
1866 this instruction or instruction sequence. Fallback to
1867 stepping over the breakpoint in-line. */
1868 do_cleanups (ignore_cleanups);
1869 return -1;
1870 }
1871
1872 /* Save the information we need to fix things up if the step
1873 succeeds. */
1874 displaced->step_ptid = ptid;
1875 displaced->step_gdbarch = gdbarch;
1876 displaced->step_closure = closure;
1877 displaced->step_original = original;
1878 displaced->step_copy = copy;
1879
1880 make_cleanup (displaced_step_clear_cleanup, displaced);
1881
1882 /* Resume execution at the copy. */
1883 regcache_write_pc (regcache, copy);
1884
1885 discard_cleanups (ignore_cleanups);
1886
1887 if (debug_displaced)
1888 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1889 paddress (gdbarch, copy));
1890
1891 return 1;
1892 }
1893
1894 /* Wrapper for displaced_step_prepare_throw that disabled further
1895 attempts at displaced stepping if we get a memory error. */
1896
1897 static int
1898 displaced_step_prepare (ptid_t ptid)
1899 {
1900 int prepared = -1;
1901
1902 TRY
1903 {
1904 prepared = displaced_step_prepare_throw (ptid);
1905 }
1906 CATCH (ex, RETURN_MASK_ERROR)
1907 {
1908 struct displaced_step_inferior_state *displaced_state;
1909
1910 if (ex.error != MEMORY_ERROR
1911 && ex.error != NOT_SUPPORTED_ERROR)
1912 throw_exception (ex);
1913
1914 if (debug_infrun)
1915 {
1916 fprintf_unfiltered (gdb_stdlog,
1917 "infrun: disabling displaced stepping: %s\n",
1918 ex.message);
1919 }
1920
1921 /* Be verbose if "set displaced-stepping" is "on", silent if
1922 "auto". */
1923 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1924 {
1925 warning (_("disabling displaced stepping: %s"),
1926 ex.message);
1927 }
1928
1929 /* Disable further displaced stepping attempts. */
1930 displaced_state
1931 = get_displaced_stepping_state (ptid_get_pid (ptid));
1932 displaced_state->failed_before = 1;
1933 }
1934 END_CATCH
1935
1936 return prepared;
1937 }
1938
1939 static void
1940 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1941 const gdb_byte *myaddr, int len)
1942 {
1943 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1944
1945 inferior_ptid = ptid;
1946 write_memory (memaddr, myaddr, len);
1947 }
1948
1949 /* Restore the contents of the copy area for thread PTID. */
1950
1951 static void
1952 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1953 ptid_t ptid)
1954 {
1955 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1956
1957 write_memory_ptid (ptid, displaced->step_copy,
1958 displaced->step_saved_copy, len);
1959 if (debug_displaced)
1960 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1961 target_pid_to_str (ptid),
1962 paddress (displaced->step_gdbarch,
1963 displaced->step_copy));
1964 }
1965
1966 /* If we displaced stepped an instruction successfully, adjust
1967 registers and memory to yield the same effect the instruction would
1968 have had if we had executed it at its original address, and return
1969 1. If the instruction didn't complete, relocate the PC and return
1970 -1. If the thread wasn't displaced stepping, return 0. */
1971
1972 static int
1973 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1974 {
1975 struct cleanup *old_cleanups;
1976 struct displaced_step_inferior_state *displaced
1977 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1978 int ret;
1979
1980 /* Was any thread of this process doing a displaced step? */
1981 if (displaced == NULL)
1982 return 0;
1983
1984 /* Was this event for the pid we displaced? */
1985 if (ptid_equal (displaced->step_ptid, null_ptid)
1986 || ! ptid_equal (displaced->step_ptid, event_ptid))
1987 return 0;
1988
1989 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1990
1991 displaced_step_restore (displaced, displaced->step_ptid);
1992
1993 /* Fixup may need to read memory/registers. Switch to the thread
1994 that we're fixing up. Also, target_stopped_by_watchpoint checks
1995 the current thread. */
1996 switch_to_thread (event_ptid);
1997
1998 /* Did the instruction complete successfully? */
1999 if (signal == GDB_SIGNAL_TRAP
2000 && !(target_stopped_by_watchpoint ()
2001 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2002 || target_have_steppable_watchpoint)))
2003 {
2004 /* Fix up the resulting state. */
2005 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2006 displaced->step_closure,
2007 displaced->step_original,
2008 displaced->step_copy,
2009 get_thread_regcache (displaced->step_ptid));
2010 ret = 1;
2011 }
2012 else
2013 {
2014 /* Since the instruction didn't complete, all we can do is
2015 relocate the PC. */
2016 struct regcache *regcache = get_thread_regcache (event_ptid);
2017 CORE_ADDR pc = regcache_read_pc (regcache);
2018
2019 pc = displaced->step_original + (pc - displaced->step_copy);
2020 regcache_write_pc (regcache, pc);
2021 ret = -1;
2022 }
2023
2024 do_cleanups (old_cleanups);
2025
2026 displaced->step_ptid = null_ptid;
2027
2028 return ret;
2029 }
2030
2031 /* Data to be passed around while handling an event. This data is
2032 discarded between events. */
2033 struct execution_control_state
2034 {
2035 ptid_t ptid;
2036 /* The thread that got the event, if this was a thread event; NULL
2037 otherwise. */
2038 struct thread_info *event_thread;
2039
2040 struct target_waitstatus ws;
2041 int stop_func_filled_in;
2042 CORE_ADDR stop_func_start;
2043 CORE_ADDR stop_func_end;
2044 const char *stop_func_name;
2045 int wait_some_more;
2046
2047 /* True if the event thread hit the single-step breakpoint of
2048 another thread. Thus the event doesn't cause a stop, the thread
2049 needs to be single-stepped past the single-step breakpoint before
2050 we can switch back to the original stepping thread. */
2051 int hit_singlestep_breakpoint;
2052 };
2053
2054 /* Clear ECS and set it to point at TP. */
2055
2056 static void
2057 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2058 {
2059 memset (ecs, 0, sizeof (*ecs));
2060 ecs->event_thread = tp;
2061 ecs->ptid = tp->ptid;
2062 }
2063
2064 static void keep_going_pass_signal (struct execution_control_state *ecs);
2065 static void prepare_to_wait (struct execution_control_state *ecs);
2066 static int keep_going_stepped_thread (struct thread_info *tp);
2067 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2068
2069 /* Are there any pending step-over requests? If so, run all we can
2070 now and return true. Otherwise, return false. */
2071
2072 static int
2073 start_step_over (void)
2074 {
2075 struct thread_info *tp, *next;
2076
2077 /* Don't start a new step-over if we already have an in-line
2078 step-over operation ongoing. */
2079 if (step_over_info_valid_p ())
2080 return 0;
2081
2082 for (tp = step_over_queue_head; tp != NULL; tp = next)
2083 {
2084 struct execution_control_state ecss;
2085 struct execution_control_state *ecs = &ecss;
2086 step_over_what step_what;
2087 int must_be_in_line;
2088
2089 gdb_assert (!tp->stop_requested);
2090
2091 next = thread_step_over_chain_next (tp);
2092
2093 /* If this inferior already has a displaced step in process,
2094 don't start a new one. */
2095 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2096 continue;
2097
2098 step_what = thread_still_needs_step_over (tp);
2099 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2100 || ((step_what & STEP_OVER_BREAKPOINT)
2101 && !use_displaced_stepping (tp)));
2102
2103 /* We currently stop all threads of all processes to step-over
2104 in-line. If we need to start a new in-line step-over, let
2105 any pending displaced steps finish first. */
2106 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2107 return 0;
2108
2109 thread_step_over_chain_remove (tp);
2110
2111 if (step_over_queue_head == NULL)
2112 {
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: step-over queue now empty\n");
2116 }
2117
2118 if (tp->control.trap_expected
2119 || tp->resumed
2120 || tp->executing)
2121 {
2122 internal_error (__FILE__, __LINE__,
2123 "[%s] has inconsistent state: "
2124 "trap_expected=%d, resumed=%d, executing=%d\n",
2125 target_pid_to_str (tp->ptid),
2126 tp->control.trap_expected,
2127 tp->resumed,
2128 tp->executing);
2129 }
2130
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog,
2133 "infrun: resuming [%s] for step-over\n",
2134 target_pid_to_str (tp->ptid));
2135
2136 /* keep_going_pass_signal skips the step-over if the breakpoint
2137 is no longer inserted. In all-stop, we want to keep looking
2138 for a thread that needs a step-over instead of resuming TP,
2139 because we wouldn't be able to resume anything else until the
2140 target stops again. In non-stop, the resume always resumes
2141 only TP, so it's OK to let the thread resume freely. */
2142 if (!target_is_non_stop_p () && !step_what)
2143 continue;
2144
2145 switch_to_thread (tp->ptid);
2146 reset_ecs (ecs, tp);
2147 keep_going_pass_signal (ecs);
2148
2149 if (!ecs->wait_some_more)
2150 error (_("Command aborted."));
2151
2152 gdb_assert (tp->resumed);
2153
2154 /* If we started a new in-line step-over, we're done. */
2155 if (step_over_info_valid_p ())
2156 {
2157 gdb_assert (tp->control.trap_expected);
2158 return 1;
2159 }
2160
2161 if (!target_is_non_stop_p ())
2162 {
2163 /* On all-stop, shouldn't have resumed unless we needed a
2164 step over. */
2165 gdb_assert (tp->control.trap_expected
2166 || tp->step_after_step_resume_breakpoint);
2167
2168 /* With remote targets (at least), in all-stop, we can't
2169 issue any further remote commands until the program stops
2170 again. */
2171 return 1;
2172 }
2173
2174 /* Either the thread no longer needed a step-over, or a new
2175 displaced stepping sequence started. Even in the latter
2176 case, continue looking. Maybe we can also start another
2177 displaced step on a thread of other process. */
2178 }
2179
2180 return 0;
2181 }
2182
2183 /* Update global variables holding ptids to hold NEW_PTID if they were
2184 holding OLD_PTID. */
2185 static void
2186 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2187 {
2188 struct displaced_step_inferior_state *displaced;
2189
2190 if (ptid_equal (inferior_ptid, old_ptid))
2191 inferior_ptid = new_ptid;
2192
2193 for (displaced = displaced_step_inferior_states;
2194 displaced;
2195 displaced = displaced->next)
2196 {
2197 if (ptid_equal (displaced->step_ptid, old_ptid))
2198 displaced->step_ptid = new_ptid;
2199 }
2200 }
2201
2202 \f
2203 /* Resuming. */
2204
2205 /* Things to clean up if we QUIT out of resume (). */
2206 static void
2207 resume_cleanups (void *ignore)
2208 {
2209 if (!ptid_equal (inferior_ptid, null_ptid))
2210 delete_single_step_breakpoints (inferior_thread ());
2211
2212 normal_stop ();
2213 }
2214
2215 static const char schedlock_off[] = "off";
2216 static const char schedlock_on[] = "on";
2217 static const char schedlock_step[] = "step";
2218 static const char schedlock_replay[] = "replay";
2219 static const char *const scheduler_enums[] = {
2220 schedlock_off,
2221 schedlock_on,
2222 schedlock_step,
2223 schedlock_replay,
2224 NULL
2225 };
2226 static const char *scheduler_mode = schedlock_replay;
2227 static void
2228 show_scheduler_mode (struct ui_file *file, int from_tty,
2229 struct cmd_list_element *c, const char *value)
2230 {
2231 fprintf_filtered (file,
2232 _("Mode for locking scheduler "
2233 "during execution is \"%s\".\n"),
2234 value);
2235 }
2236
2237 static void
2238 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2239 {
2240 if (!target_can_lock_scheduler)
2241 {
2242 scheduler_mode = schedlock_off;
2243 error (_("Target '%s' cannot support this command."), target_shortname);
2244 }
2245 }
2246
2247 /* True if execution commands resume all threads of all processes by
2248 default; otherwise, resume only threads of the current inferior
2249 process. */
2250 int sched_multi = 0;
2251
2252 /* Try to setup for software single stepping over the specified location.
2253 Return 1 if target_resume() should use hardware single step.
2254
2255 GDBARCH the current gdbarch.
2256 PC the location to step over. */
2257
2258 static int
2259 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2260 {
2261 int hw_step = 1;
2262
2263 if (execution_direction == EXEC_FORWARD
2264 && gdbarch_software_single_step_p (gdbarch))
2265 hw_step = !insert_single_step_breakpoints (gdbarch);
2266
2267 return hw_step;
2268 }
2269
2270 /* See infrun.h. */
2271
2272 ptid_t
2273 user_visible_resume_ptid (int step)
2274 {
2275 ptid_t resume_ptid;
2276
2277 if (non_stop)
2278 {
2279 /* With non-stop mode on, threads are always handled
2280 individually. */
2281 resume_ptid = inferior_ptid;
2282 }
2283 else if ((scheduler_mode == schedlock_on)
2284 || (scheduler_mode == schedlock_step && step))
2285 {
2286 /* User-settable 'scheduler' mode requires solo thread
2287 resume. */
2288 resume_ptid = inferior_ptid;
2289 }
2290 else if ((scheduler_mode == schedlock_replay)
2291 && target_record_will_replay (minus_one_ptid, execution_direction))
2292 {
2293 /* User-settable 'scheduler' mode requires solo thread resume in replay
2294 mode. */
2295 resume_ptid = inferior_ptid;
2296 }
2297 else if (!sched_multi && target_supports_multi_process ())
2298 {
2299 /* Resume all threads of the current process (and none of other
2300 processes). */
2301 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2302 }
2303 else
2304 {
2305 /* Resume all threads of all processes. */
2306 resume_ptid = RESUME_ALL;
2307 }
2308
2309 return resume_ptid;
2310 }
2311
2312 /* Return a ptid representing the set of threads that we will resume,
2313 in the perspective of the target, assuming run control handling
2314 does not require leaving some threads stopped (e.g., stepping past
2315 breakpoint). USER_STEP indicates whether we're about to start the
2316 target for a stepping command. */
2317
2318 static ptid_t
2319 internal_resume_ptid (int user_step)
2320 {
2321 /* In non-stop, we always control threads individually. Note that
2322 the target may always work in non-stop mode even with "set
2323 non-stop off", in which case user_visible_resume_ptid could
2324 return a wildcard ptid. */
2325 if (target_is_non_stop_p ())
2326 return inferior_ptid;
2327 else
2328 return user_visible_resume_ptid (user_step);
2329 }
2330
2331 /* Wrapper for target_resume, that handles infrun-specific
2332 bookkeeping. */
2333
2334 static void
2335 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2336 {
2337 struct thread_info *tp = inferior_thread ();
2338
2339 gdb_assert (!tp->stop_requested);
2340
2341 /* Install inferior's terminal modes. */
2342 target_terminal::inferior ();
2343
2344 /* Avoid confusing the next resume, if the next stop/resume
2345 happens to apply to another thread. */
2346 tp->suspend.stop_signal = GDB_SIGNAL_0;
2347
2348 /* Advise target which signals may be handled silently.
2349
2350 If we have removed breakpoints because we are stepping over one
2351 in-line (in any thread), we need to receive all signals to avoid
2352 accidentally skipping a breakpoint during execution of a signal
2353 handler.
2354
2355 Likewise if we're displaced stepping, otherwise a trap for a
2356 breakpoint in a signal handler might be confused with the
2357 displaced step finishing. We don't make the displaced_step_fixup
2358 step distinguish the cases instead, because:
2359
2360 - a backtrace while stopped in the signal handler would show the
2361 scratch pad as frame older than the signal handler, instead of
2362 the real mainline code.
2363
2364 - when the thread is later resumed, the signal handler would
2365 return to the scratch pad area, which would no longer be
2366 valid. */
2367 if (step_over_info_valid_p ()
2368 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2369 target_pass_signals (0, NULL);
2370 else
2371 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2372
2373 target_resume (resume_ptid, step, sig);
2374
2375 target_commit_resume ();
2376 }
2377
2378 /* Resume the inferior, but allow a QUIT. This is useful if the user
2379 wants to interrupt some lengthy single-stepping operation
2380 (for child processes, the SIGINT goes to the inferior, and so
2381 we get a SIGINT random_signal, but for remote debugging and perhaps
2382 other targets, that's not true).
2383
2384 SIG is the signal to give the inferior (zero for none). */
2385 void
2386 resume (enum gdb_signal sig)
2387 {
2388 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2389 struct regcache *regcache = get_current_regcache ();
2390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2391 struct thread_info *tp = inferior_thread ();
2392 CORE_ADDR pc = regcache_read_pc (regcache);
2393 struct address_space *aspace = get_regcache_aspace (regcache);
2394 ptid_t resume_ptid;
2395 /* This represents the user's step vs continue request. When
2396 deciding whether "set scheduler-locking step" applies, it's the
2397 user's intention that counts. */
2398 const int user_step = tp->control.stepping_command;
2399 /* This represents what we'll actually request the target to do.
2400 This can decay from a step to a continue, if e.g., we need to
2401 implement single-stepping with breakpoints (software
2402 single-step). */
2403 int step;
2404
2405 gdb_assert (!tp->stop_requested);
2406 gdb_assert (!thread_is_in_step_over_chain (tp));
2407
2408 QUIT;
2409
2410 if (tp->suspend.waitstatus_pending_p)
2411 {
2412 if (debug_infrun)
2413 {
2414 std::string statstr
2415 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2416
2417 fprintf_unfiltered (gdb_stdlog,
2418 "infrun: resume: thread %s has pending wait "
2419 "status %s (currently_stepping=%d).\n",
2420 target_pid_to_str (tp->ptid), statstr.c_str (),
2421 currently_stepping (tp));
2422 }
2423
2424 tp->resumed = 1;
2425
2426 /* FIXME: What should we do if we are supposed to resume this
2427 thread with a signal? Maybe we should maintain a queue of
2428 pending signals to deliver. */
2429 if (sig != GDB_SIGNAL_0)
2430 {
2431 warning (_("Couldn't deliver signal %s to %s."),
2432 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2433 }
2434
2435 tp->suspend.stop_signal = GDB_SIGNAL_0;
2436 discard_cleanups (old_cleanups);
2437
2438 if (target_can_async_p ())
2439 target_async (1);
2440 return;
2441 }
2442
2443 tp->stepped_breakpoint = 0;
2444
2445 /* Depends on stepped_breakpoint. */
2446 step = currently_stepping (tp);
2447
2448 if (current_inferior ()->waiting_for_vfork_done)
2449 {
2450 /* Don't try to single-step a vfork parent that is waiting for
2451 the child to get out of the shared memory region (by exec'ing
2452 or exiting). This is particularly important on software
2453 single-step archs, as the child process would trip on the
2454 software single step breakpoint inserted for the parent
2455 process. Since the parent will not actually execute any
2456 instruction until the child is out of the shared region (such
2457 are vfork's semantics), it is safe to simply continue it.
2458 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2459 the parent, and tell it to `keep_going', which automatically
2460 re-sets it stepping. */
2461 if (debug_infrun)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "infrun: resume : clear step\n");
2464 step = 0;
2465 }
2466
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog,
2469 "infrun: resume (step=%d, signal=%s), "
2470 "trap_expected=%d, current thread [%s] at %s\n",
2471 step, gdb_signal_to_symbol_string (sig),
2472 tp->control.trap_expected,
2473 target_pid_to_str (inferior_ptid),
2474 paddress (gdbarch, pc));
2475
2476 /* Normally, by the time we reach `resume', the breakpoints are either
2477 removed or inserted, as appropriate. The exception is if we're sitting
2478 at a permanent breakpoint; we need to step over it, but permanent
2479 breakpoints can't be removed. So we have to test for it here. */
2480 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2481 {
2482 if (sig != GDB_SIGNAL_0)
2483 {
2484 /* We have a signal to pass to the inferior. The resume
2485 may, or may not take us to the signal handler. If this
2486 is a step, we'll need to stop in the signal handler, if
2487 there's one, (if the target supports stepping into
2488 handlers), or in the next mainline instruction, if
2489 there's no handler. If this is a continue, we need to be
2490 sure to run the handler with all breakpoints inserted.
2491 In all cases, set a breakpoint at the current address
2492 (where the handler returns to), and once that breakpoint
2493 is hit, resume skipping the permanent breakpoint. If
2494 that breakpoint isn't hit, then we've stepped into the
2495 signal handler (or hit some other event). We'll delete
2496 the step-resume breakpoint then. */
2497
2498 if (debug_infrun)
2499 fprintf_unfiltered (gdb_stdlog,
2500 "infrun: resume: skipping permanent breakpoint, "
2501 "deliver signal first\n");
2502
2503 clear_step_over_info ();
2504 tp->control.trap_expected = 0;
2505
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2508 /* Set a "high-priority" step-resume, as we don't want
2509 user breakpoints at PC to trigger (again) when this
2510 hits. */
2511 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2512 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2513
2514 tp->step_after_step_resume_breakpoint = step;
2515 }
2516
2517 insert_breakpoints ();
2518 }
2519 else
2520 {
2521 /* There's no signal to pass, we can go ahead and skip the
2522 permanent breakpoint manually. */
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: resume: skipping permanent breakpoint\n");
2526 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2527 /* Update pc to reflect the new address from which we will
2528 execute instructions. */
2529 pc = regcache_read_pc (regcache);
2530
2531 if (step)
2532 {
2533 /* We've already advanced the PC, so the stepping part
2534 is done. Now we need to arrange for a trap to be
2535 reported to handle_inferior_event. Set a breakpoint
2536 at the current PC, and run to it. Don't update
2537 prev_pc, because if we end in
2538 switch_back_to_stepped_thread, we want the "expected
2539 thread advanced also" branch to be taken. IOW, we
2540 don't want this thread to step further from PC
2541 (overstep). */
2542 gdb_assert (!step_over_info_valid_p ());
2543 insert_single_step_breakpoint (gdbarch, aspace, pc);
2544 insert_breakpoints ();
2545
2546 resume_ptid = internal_resume_ptid (user_step);
2547 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2548 discard_cleanups (old_cleanups);
2549 tp->resumed = 1;
2550 return;
2551 }
2552 }
2553 }
2554
2555 /* If we have a breakpoint to step over, make sure to do a single
2556 step only. Same if we have software watchpoints. */
2557 if (tp->control.trap_expected || bpstat_should_step ())
2558 tp->control.may_range_step = 0;
2559
2560 /* If enabled, step over breakpoints by executing a copy of the
2561 instruction at a different address.
2562
2563 We can't use displaced stepping when we have a signal to deliver;
2564 the comments for displaced_step_prepare explain why. The
2565 comments in the handle_inferior event for dealing with 'random
2566 signals' explain what we do instead.
2567
2568 We can't use displaced stepping when we are waiting for vfork_done
2569 event, displaced stepping breaks the vfork child similarly as single
2570 step software breakpoint. */
2571 if (tp->control.trap_expected
2572 && use_displaced_stepping (tp)
2573 && !step_over_info_valid_p ()
2574 && sig == GDB_SIGNAL_0
2575 && !current_inferior ()->waiting_for_vfork_done)
2576 {
2577 int prepared = displaced_step_prepare (inferior_ptid);
2578
2579 if (prepared == 0)
2580 {
2581 if (debug_infrun)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "Got placed in step-over queue\n");
2584
2585 tp->control.trap_expected = 0;
2586 discard_cleanups (old_cleanups);
2587 return;
2588 }
2589 else if (prepared < 0)
2590 {
2591 /* Fallback to stepping over the breakpoint in-line. */
2592
2593 if (target_is_non_stop_p ())
2594 stop_all_threads ();
2595
2596 set_step_over_info (get_regcache_aspace (regcache),
2597 regcache_read_pc (regcache), 0, tp->global_num);
2598
2599 step = maybe_software_singlestep (gdbarch, pc);
2600
2601 insert_breakpoints ();
2602 }
2603 else if (prepared > 0)
2604 {
2605 struct displaced_step_inferior_state *displaced;
2606
2607 /* Update pc to reflect the new address from which we will
2608 execute instructions due to displaced stepping. */
2609 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2610
2611 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2612 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2613 displaced->step_closure);
2614 }
2615 }
2616
2617 /* Do we need to do it the hard way, w/temp breakpoints? */
2618 else if (step)
2619 step = maybe_software_singlestep (gdbarch, pc);
2620
2621 /* Currently, our software single-step implementation leads to different
2622 results than hardware single-stepping in one situation: when stepping
2623 into delivering a signal which has an associated signal handler,
2624 hardware single-step will stop at the first instruction of the handler,
2625 while software single-step will simply skip execution of the handler.
2626
2627 For now, this difference in behavior is accepted since there is no
2628 easy way to actually implement single-stepping into a signal handler
2629 without kernel support.
2630
2631 However, there is one scenario where this difference leads to follow-on
2632 problems: if we're stepping off a breakpoint by removing all breakpoints
2633 and then single-stepping. In this case, the software single-step
2634 behavior means that even if there is a *breakpoint* in the signal
2635 handler, GDB still would not stop.
2636
2637 Fortunately, we can at least fix this particular issue. We detect
2638 here the case where we are about to deliver a signal while software
2639 single-stepping with breakpoints removed. In this situation, we
2640 revert the decisions to remove all breakpoints and insert single-
2641 step breakpoints, and instead we install a step-resume breakpoint
2642 at the current address, deliver the signal without stepping, and
2643 once we arrive back at the step-resume breakpoint, actually step
2644 over the breakpoint we originally wanted to step over. */
2645 if (thread_has_single_step_breakpoints_set (tp)
2646 && sig != GDB_SIGNAL_0
2647 && step_over_info_valid_p ())
2648 {
2649 /* If we have nested signals or a pending signal is delivered
2650 immediately after a handler returns, might might already have
2651 a step-resume breakpoint set on the earlier handler. We cannot
2652 set another step-resume breakpoint; just continue on until the
2653 original breakpoint is hit. */
2654 if (tp->control.step_resume_breakpoint == NULL)
2655 {
2656 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2657 tp->step_after_step_resume_breakpoint = 1;
2658 }
2659
2660 delete_single_step_breakpoints (tp);
2661
2662 clear_step_over_info ();
2663 tp->control.trap_expected = 0;
2664
2665 insert_breakpoints ();
2666 }
2667
2668 /* If STEP is set, it's a request to use hardware stepping
2669 facilities. But in that case, we should never
2670 use singlestep breakpoint. */
2671 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2672
2673 /* Decide the set of threads to ask the target to resume. */
2674 if (tp->control.trap_expected)
2675 {
2676 /* We're allowing a thread to run past a breakpoint it has
2677 hit, either by single-stepping the thread with the breakpoint
2678 removed, or by displaced stepping, with the breakpoint inserted.
2679 In the former case, we need to single-step only this thread,
2680 and keep others stopped, as they can miss this breakpoint if
2681 allowed to run. That's not really a problem for displaced
2682 stepping, but, we still keep other threads stopped, in case
2683 another thread is also stopped for a breakpoint waiting for
2684 its turn in the displaced stepping queue. */
2685 resume_ptid = inferior_ptid;
2686 }
2687 else
2688 resume_ptid = internal_resume_ptid (user_step);
2689
2690 if (execution_direction != EXEC_REVERSE
2691 && step && breakpoint_inserted_here_p (aspace, pc))
2692 {
2693 /* There are two cases where we currently need to step a
2694 breakpoint instruction when we have a signal to deliver:
2695
2696 - See handle_signal_stop where we handle random signals that
2697 could take out us out of the stepping range. Normally, in
2698 that case we end up continuing (instead of stepping) over the
2699 signal handler with a breakpoint at PC, but there are cases
2700 where we should _always_ single-step, even if we have a
2701 step-resume breakpoint, like when a software watchpoint is
2702 set. Assuming single-stepping and delivering a signal at the
2703 same time would takes us to the signal handler, then we could
2704 have removed the breakpoint at PC to step over it. However,
2705 some hardware step targets (like e.g., Mac OS) can't step
2706 into signal handlers, and for those, we need to leave the
2707 breakpoint at PC inserted, as otherwise if the handler
2708 recurses and executes PC again, it'll miss the breakpoint.
2709 So we leave the breakpoint inserted anyway, but we need to
2710 record that we tried to step a breakpoint instruction, so
2711 that adjust_pc_after_break doesn't end up confused.
2712
2713 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2714 in one thread after another thread that was stepping had been
2715 momentarily paused for a step-over. When we re-resume the
2716 stepping thread, it may be resumed from that address with a
2717 breakpoint that hasn't trapped yet. Seen with
2718 gdb.threads/non-stop-fair-events.exp, on targets that don't
2719 do displaced stepping. */
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: resume: [%s] stepped breakpoint\n",
2724 target_pid_to_str (tp->ptid));
2725
2726 tp->stepped_breakpoint = 1;
2727
2728 /* Most targets can step a breakpoint instruction, thus
2729 executing it normally. But if this one cannot, just
2730 continue and we will hit it anyway. */
2731 if (gdbarch_cannot_step_breakpoint (gdbarch))
2732 step = 0;
2733 }
2734
2735 if (debug_displaced
2736 && tp->control.trap_expected
2737 && use_displaced_stepping (tp)
2738 && !step_over_info_valid_p ())
2739 {
2740 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2741 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2742 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2743 gdb_byte buf[4];
2744
2745 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2746 paddress (resume_gdbarch, actual_pc));
2747 read_memory (actual_pc, buf, sizeof (buf));
2748 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2749 }
2750
2751 if (tp->control.may_range_step)
2752 {
2753 /* If we're resuming a thread with the PC out of the step
2754 range, then we're doing some nested/finer run control
2755 operation, like stepping the thread out of the dynamic
2756 linker or the displaced stepping scratch pad. We
2757 shouldn't have allowed a range step then. */
2758 gdb_assert (pc_in_thread_step_range (pc, tp));
2759 }
2760
2761 do_target_resume (resume_ptid, step, sig);
2762 tp->resumed = 1;
2763 discard_cleanups (old_cleanups);
2764 }
2765 \f
2766 /* Proceeding. */
2767
2768 /* See infrun.h. */
2769
2770 /* Counter that tracks number of user visible stops. This can be used
2771 to tell whether a command has proceeded the inferior past the
2772 current location. This allows e.g., inferior function calls in
2773 breakpoint commands to not interrupt the command list. When the
2774 call finishes successfully, the inferior is standing at the same
2775 breakpoint as if nothing happened (and so we don't call
2776 normal_stop). */
2777 static ULONGEST current_stop_id;
2778
2779 /* See infrun.h. */
2780
2781 ULONGEST
2782 get_stop_id (void)
2783 {
2784 return current_stop_id;
2785 }
2786
2787 /* Called when we report a user visible stop. */
2788
2789 static void
2790 new_stop_id (void)
2791 {
2792 current_stop_id++;
2793 }
2794
2795 /* Clear out all variables saying what to do when inferior is continued.
2796 First do this, then set the ones you want, then call `proceed'. */
2797
2798 static void
2799 clear_proceed_status_thread (struct thread_info *tp)
2800 {
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: clear_proceed_status_thread (%s)\n",
2804 target_pid_to_str (tp->ptid));
2805
2806 /* If we're starting a new sequence, then the previous finished
2807 single-step is no longer relevant. */
2808 if (tp->suspend.waitstatus_pending_p)
2809 {
2810 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2811 {
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "infrun: clear_proceed_status: pending "
2815 "event of %s was a finished step. "
2816 "Discarding.\n",
2817 target_pid_to_str (tp->ptid));
2818
2819 tp->suspend.waitstatus_pending_p = 0;
2820 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2821 }
2822 else if (debug_infrun)
2823 {
2824 std::string statstr
2825 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2826
2827 fprintf_unfiltered (gdb_stdlog,
2828 "infrun: clear_proceed_status_thread: thread %s "
2829 "has pending wait status %s "
2830 "(currently_stepping=%d).\n",
2831 target_pid_to_str (tp->ptid), statstr.c_str (),
2832 currently_stepping (tp));
2833 }
2834 }
2835
2836 /* If this signal should not be seen by program, give it zero.
2837 Used for debugging signals. */
2838 if (!signal_pass_state (tp->suspend.stop_signal))
2839 tp->suspend.stop_signal = GDB_SIGNAL_0;
2840
2841 thread_fsm_delete (tp->thread_fsm);
2842 tp->thread_fsm = NULL;
2843
2844 tp->control.trap_expected = 0;
2845 tp->control.step_range_start = 0;
2846 tp->control.step_range_end = 0;
2847 tp->control.may_range_step = 0;
2848 tp->control.step_frame_id = null_frame_id;
2849 tp->control.step_stack_frame_id = null_frame_id;
2850 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2851 tp->control.step_start_function = NULL;
2852 tp->stop_requested = 0;
2853
2854 tp->control.stop_step = 0;
2855
2856 tp->control.proceed_to_finish = 0;
2857
2858 tp->control.stepping_command = 0;
2859
2860 /* Discard any remaining commands or status from previous stop. */
2861 bpstat_clear (&tp->control.stop_bpstat);
2862 }
2863
2864 void
2865 clear_proceed_status (int step)
2866 {
2867 /* With scheduler-locking replay, stop replaying other threads if we're
2868 not replaying the user-visible resume ptid.
2869
2870 This is a convenience feature to not require the user to explicitly
2871 stop replaying the other threads. We're assuming that the user's
2872 intent is to resume tracing the recorded process. */
2873 if (!non_stop && scheduler_mode == schedlock_replay
2874 && target_record_is_replaying (minus_one_ptid)
2875 && !target_record_will_replay (user_visible_resume_ptid (step),
2876 execution_direction))
2877 target_record_stop_replaying ();
2878
2879 if (!non_stop)
2880 {
2881 struct thread_info *tp;
2882 ptid_t resume_ptid;
2883
2884 resume_ptid = user_visible_resume_ptid (step);
2885
2886 /* In all-stop mode, delete the per-thread status of all threads
2887 we're about to resume, implicitly and explicitly. */
2888 ALL_NON_EXITED_THREADS (tp)
2889 {
2890 if (!ptid_match (tp->ptid, resume_ptid))
2891 continue;
2892 clear_proceed_status_thread (tp);
2893 }
2894 }
2895
2896 if (!ptid_equal (inferior_ptid, null_ptid))
2897 {
2898 struct inferior *inferior;
2899
2900 if (non_stop)
2901 {
2902 /* If in non-stop mode, only delete the per-thread status of
2903 the current thread. */
2904 clear_proceed_status_thread (inferior_thread ());
2905 }
2906
2907 inferior = current_inferior ();
2908 inferior->control.stop_soon = NO_STOP_QUIETLY;
2909 }
2910
2911 observer_notify_about_to_proceed ();
2912 }
2913
2914 /* Returns true if TP is still stopped at a breakpoint that needs
2915 stepping-over in order to make progress. If the breakpoint is gone
2916 meanwhile, we can skip the whole step-over dance. */
2917
2918 static int
2919 thread_still_needs_step_over_bp (struct thread_info *tp)
2920 {
2921 if (tp->stepping_over_breakpoint)
2922 {
2923 struct regcache *regcache = get_thread_regcache (tp->ptid);
2924
2925 if (breakpoint_here_p (get_regcache_aspace (regcache),
2926 regcache_read_pc (regcache))
2927 == ordinary_breakpoint_here)
2928 return 1;
2929
2930 tp->stepping_over_breakpoint = 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* Check whether thread TP still needs to start a step-over in order
2937 to make progress when resumed. Returns an bitwise or of enum
2938 step_over_what bits, indicating what needs to be stepped over. */
2939
2940 static step_over_what
2941 thread_still_needs_step_over (struct thread_info *tp)
2942 {
2943 step_over_what what = 0;
2944
2945 if (thread_still_needs_step_over_bp (tp))
2946 what |= STEP_OVER_BREAKPOINT;
2947
2948 if (tp->stepping_over_watchpoint
2949 && !target_have_steppable_watchpoint)
2950 what |= STEP_OVER_WATCHPOINT;
2951
2952 return what;
2953 }
2954
2955 /* Returns true if scheduler locking applies. STEP indicates whether
2956 we're about to do a step/next-like command to a thread. */
2957
2958 static int
2959 schedlock_applies (struct thread_info *tp)
2960 {
2961 return (scheduler_mode == schedlock_on
2962 || (scheduler_mode == schedlock_step
2963 && tp->control.stepping_command)
2964 || (scheduler_mode == schedlock_replay
2965 && target_record_will_replay (minus_one_ptid,
2966 execution_direction)));
2967 }
2968
2969 /* Basic routine for continuing the program in various fashions.
2970
2971 ADDR is the address to resume at, or -1 for resume where stopped.
2972 SIGGNAL is the signal to give it, or 0 for none,
2973 or -1 for act according to how it stopped.
2974 STEP is nonzero if should trap after one instruction.
2975 -1 means return after that and print nothing.
2976 You should probably set various step_... variables
2977 before calling here, if you are stepping.
2978
2979 You should call clear_proceed_status before calling proceed. */
2980
2981 void
2982 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2983 {
2984 struct regcache *regcache;
2985 struct gdbarch *gdbarch;
2986 struct thread_info *tp;
2987 CORE_ADDR pc;
2988 struct address_space *aspace;
2989 ptid_t resume_ptid;
2990 struct execution_control_state ecss;
2991 struct execution_control_state *ecs = &ecss;
2992 struct cleanup *old_chain;
2993 int started;
2994
2995 /* If we're stopped at a fork/vfork, follow the branch set by the
2996 "set follow-fork-mode" command; otherwise, we'll just proceed
2997 resuming the current thread. */
2998 if (!follow_fork ())
2999 {
3000 /* The target for some reason decided not to resume. */
3001 normal_stop ();
3002 if (target_can_async_p ())
3003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3004 return;
3005 }
3006
3007 /* We'll update this if & when we switch to a new thread. */
3008 previous_inferior_ptid = inferior_ptid;
3009
3010 regcache = get_current_regcache ();
3011 gdbarch = get_regcache_arch (regcache);
3012 aspace = get_regcache_aspace (regcache);
3013 pc = regcache_read_pc (regcache);
3014 tp = inferior_thread ();
3015
3016 /* Fill in with reasonable starting values. */
3017 init_thread_stepping_state (tp);
3018
3019 gdb_assert (!thread_is_in_step_over_chain (tp));
3020
3021 if (addr == (CORE_ADDR) -1)
3022 {
3023 if (pc == stop_pc
3024 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3025 && execution_direction != EXEC_REVERSE)
3026 /* There is a breakpoint at the address we will resume at,
3027 step one instruction before inserting breakpoints so that
3028 we do not stop right away (and report a second hit at this
3029 breakpoint).
3030
3031 Note, we don't do this in reverse, because we won't
3032 actually be executing the breakpoint insn anyway.
3033 We'll be (un-)executing the previous instruction. */
3034 tp->stepping_over_breakpoint = 1;
3035 else if (gdbarch_single_step_through_delay_p (gdbarch)
3036 && gdbarch_single_step_through_delay (gdbarch,
3037 get_current_frame ()))
3038 /* We stepped onto an instruction that needs to be stepped
3039 again before re-inserting the breakpoint, do so. */
3040 tp->stepping_over_breakpoint = 1;
3041 }
3042 else
3043 {
3044 regcache_write_pc (regcache, addr);
3045 }
3046
3047 if (siggnal != GDB_SIGNAL_DEFAULT)
3048 tp->suspend.stop_signal = siggnal;
3049
3050 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3051
3052 /* If an exception is thrown from this point on, make sure to
3053 propagate GDB's knowledge of the executing state to the
3054 frontend/user running state. */
3055 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3056
3057 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3058 threads (e.g., we might need to set threads stepping over
3059 breakpoints first), from the user/frontend's point of view, all
3060 threads in RESUME_PTID are now running. Unless we're calling an
3061 inferior function, as in that case we pretend the inferior
3062 doesn't run at all. */
3063 if (!tp->control.in_infcall)
3064 set_running (resume_ptid, 1);
3065
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "infrun: proceed (addr=%s, signal=%s)\n",
3069 paddress (gdbarch, addr),
3070 gdb_signal_to_symbol_string (siggnal));
3071
3072 annotate_starting ();
3073
3074 /* Make sure that output from GDB appears before output from the
3075 inferior. */
3076 gdb_flush (gdb_stdout);
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
3092 {
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
3101
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
3105
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
3110
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
3114 target_pid_to_str (tp->ptid));
3115
3116 thread_step_over_chain_enqueue (tp);
3117 }
3118
3119 tp = current;
3120 }
3121
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
3126
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
3133
3134 {
3135 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3136
3137 started = start_step_over ();
3138
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
3188 error (_("Command aborted."));
3189 }
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200 }
3201
3202 target_commit_resume ();
3203
3204 discard_cleanups (old_chain);
3205
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
3209 if (!target_can_async_p ())
3210 mark_async_event_handler (infrun_async_inferior_event_token);
3211 }
3212 \f
3213
3214 /* Start remote-debugging of a machine over a serial link. */
3215
3216 void
3217 start_remote (int from_tty)
3218 {
3219 struct inferior *inferior;
3220
3221 inferior = current_inferior ();
3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3223
3224 /* Always go on waiting for the target, regardless of the mode. */
3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3226 indicate to wait_for_inferior that a target should timeout if
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
3230 timeout. */
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
3237 for an async run. */
3238 wait_for_inferior ();
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (&current_target, from_tty);
3244
3245 normal_stop ();
3246 }
3247
3248 /* Initialize static vars when a new inferior begins. */
3249
3250 void
3251 init_wait_for_inferior (void)
3252 {
3253 /* These are meaningless until the first time through wait_for_inferior. */
3254
3255 breakpoint_init_inferior (inf_starting);
3256
3257 clear_proceed_status (0);
3258
3259 target_last_wait_ptid = minus_one_ptid;
3260
3261 previous_inferior_ptid = inferior_ptid;
3262
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
3265 }
3266
3267 \f
3268
3269 static void handle_inferior_event (struct execution_control_state *ecs);
3270
3271 static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
3275 static void handle_signal_stop (struct execution_control_state *ecs);
3276 static void check_exception_resume (struct execution_control_state *,
3277 struct frame_info *);
3278
3279 static void end_stepping_range (struct execution_control_state *ecs);
3280 static void stop_waiting (struct execution_control_state *ecs);
3281 static void keep_going (struct execution_control_state *ecs);
3282 static void process_event_stop_test (struct execution_control_state *ecs);
3283 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3284
3285 /* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
3289 static void
3290 infrun_thread_stop_requested (ptid_t ptid)
3291 {
3292 struct thread_info *tp;
3293
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
3311
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
3339 }
3340
3341 static void
3342 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343 {
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346 }
3347
3348 /* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
3350
3351 static void
3352 delete_thread_infrun_breakpoints (struct thread_info *tp)
3353 {
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
3356 delete_single_step_breakpoints (tp);
3357 }
3358
3359 /* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363 typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
3365
3366 static void
3367 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3368 {
3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3370 return;
3371
3372 if (target_is_non_stop_p ())
3373 {
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
3376 }
3377 else
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387 }
3388
3389 /* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_infrun_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3396 }
3397
3398 /* Delete the single-step breakpoints of the threads that just
3399 stopped. */
3400
3401 static void
3402 delete_just_stopped_threads_single_step_breakpoints (void)
3403 {
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
3405 }
3406
3407 /* A cleanup wrapper. */
3408
3409 static void
3410 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3411 {
3412 delete_just_stopped_threads_infrun_breakpoints ();
3413 }
3414
3415 /* See infrun.h. */
3416
3417 void
3418 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420 {
3421 std::string status_string = target_waitstatus_to_string (ws);
3422 string_file stb;
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
3433 if (ptid_get_pid (waiton_ptid) != -1)
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
3441 stb.printf ("infrun: %s\n", status_string.c_str ());
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3446 }
3447
3448 /* Select a thread at random, out of those which are resumed and have
3449 had events. */
3450
3451 static struct thread_info *
3452 random_pending_event_thread (ptid_t waiton_ptid)
3453 {
3454 struct thread_info *event_tp;
3455 int num_events = 0;
3456 int random_selector;
3457
3458 /* First see how many events we have. Count only resumed threads
3459 that have an event pending. */
3460 ALL_NON_EXITED_THREADS (event_tp)
3461 if (ptid_match (event_tp->ptid, waiton_ptid)
3462 && event_tp->resumed
3463 && event_tp->suspend.waitstatus_pending_p)
3464 num_events++;
3465
3466 if (num_events == 0)
3467 return NULL;
3468
3469 /* Now randomly pick a thread out of those that have had events. */
3470 random_selector = (int)
3471 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3472
3473 if (debug_infrun && num_events > 1)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Found %d events, selecting #%d\n",
3476 num_events, random_selector);
3477
3478 /* Select the Nth thread that has had an event. */
3479 ALL_NON_EXITED_THREADS (event_tp)
3480 if (ptid_match (event_tp->ptid, waiton_ptid)
3481 && event_tp->resumed
3482 && event_tp->suspend.waitstatus_pending_p)
3483 if (random_selector-- == 0)
3484 break;
3485
3486 return event_tp;
3487 }
3488
3489 /* Wrapper for target_wait that first checks whether threads have
3490 pending statuses to report before actually asking the target for
3491 more events. */
3492
3493 static ptid_t
3494 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3495 {
3496 ptid_t event_ptid;
3497 struct thread_info *tp;
3498
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 tp = random_pending_event_thread (ptid);
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
3510 target_pid_to_str (ptid));
3511
3512 /* We have a specific thread to check. */
3513 tp = find_thread_ptid (ptid);
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
3523 struct regcache *regcache = get_thread_regcache (tp->ptid);
3524 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, tp->prev_pc),
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
3540 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
3545 target_pid_to_str (tp->ptid),
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
3556 target_pid_to_str (tp->ptid));
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3569
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
3572 statstr.c_str (),
3573 target_pid_to_str (tp->ptid));
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
3586 regcache = get_thread_regcache (tp->ptid);
3587 gdbarch = get_regcache_arch (regcache);
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618 }
3619
3620 /* Prepare and stabilize the inferior for detaching it. E.g.,
3621 detaching while a thread is displaced stepping is a recipe for
3622 crashing it, as nothing would readjust the PC out of the scratch
3623 pad. */
3624
3625 void
3626 prepare_for_detach (void)
3627 {
3628 struct inferior *inf = current_inferior ();
3629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3630 struct displaced_step_inferior_state *displaced;
3631
3632 displaced = get_displaced_stepping_state (inf->pid);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3637 return;
3638
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "displaced-stepping in-process while detaching");
3642
3643 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3644
3645 while (!ptid_equal (displaced->step_ptid, null_ptid))
3646 {
3647 struct cleanup *old_chain_2;
3648 struct execution_control_state ecss;
3649 struct execution_control_state *ecs;
3650
3651 ecs = &ecss;
3652 memset (ecs, 0, sizeof (*ecs));
3653
3654 overlay_cache_invalid = 1;
3655 /* Flush target cache before starting to handle each event.
3656 Target was running and cache could be stale. This is just a
3657 heuristic. Running threads may modify target memory, but we
3658 don't get any event. */
3659 target_dcache_invalidate ();
3660
3661 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3662
3663 if (debug_infrun)
3664 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3665
3666 /* If an error happens while handling the event, propagate GDB's
3667 knowledge of the executing state to the frontend/user running
3668 state. */
3669 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3670 &minus_one_ptid);
3671
3672 /* Now figure out what to do with the result of the result. */
3673 handle_inferior_event (ecs);
3674
3675 /* No error, don't finish the state yet. */
3676 discard_cleanups (old_chain_2);
3677
3678 /* Breakpoints and watchpoints are not installed on the target
3679 at this point, and signals are passed directly to the
3680 inferior, so this must mean the process is gone. */
3681 if (!ecs->wait_some_more)
3682 {
3683 restore_detaching.release ();
3684 error (_("Program exited while detaching"));
3685 }
3686 }
3687
3688 restore_detaching.release ();
3689 }
3690
3691 /* Wait for control to return from inferior to debugger.
3692
3693 If inferior gets a signal, we may decide to start it up again
3694 instead of returning. That is why there is a loop in this function.
3695 When this function actually returns it means the inferior
3696 should be left stopped and GDB should read more commands. */
3697
3698 void
3699 wait_for_inferior (void)
3700 {
3701 struct cleanup *old_cleanups;
3702 struct cleanup *thread_state_chain;
3703
3704 if (debug_infrun)
3705 fprintf_unfiltered
3706 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3707
3708 old_cleanups
3709 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3710 NULL);
3711
3712 /* If an error happens while handling the event, propagate GDB's
3713 knowledge of the executing state to the frontend/user running
3714 state. */
3715 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3716
3717 while (1)
3718 {
3719 struct execution_control_state ecss;
3720 struct execution_control_state *ecs = &ecss;
3721 ptid_t waiton_ptid = minus_one_ptid;
3722
3723 memset (ecs, 0, sizeof (*ecs));
3724
3725 overlay_cache_invalid = 1;
3726
3727 /* Flush target cache before starting to handle each event.
3728 Target was running and cache could be stale. This is just a
3729 heuristic. Running threads may modify target memory, but we
3730 don't get any event. */
3731 target_dcache_invalidate ();
3732
3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3734
3735 if (debug_infrun)
3736 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3737
3738 /* Now figure out what to do with the result of the result. */
3739 handle_inferior_event (ecs);
3740
3741 if (!ecs->wait_some_more)
3742 break;
3743 }
3744
3745 /* No error, don't finish the state yet. */
3746 discard_cleanups (thread_state_chain);
3747
3748 do_cleanups (old_cleanups);
3749 }
3750
3751 /* Cleanup that reinstalls the readline callback handler, if the
3752 target is running in the background. If while handling the target
3753 event something triggered a secondary prompt, like e.g., a
3754 pagination prompt, we'll have removed the callback handler (see
3755 gdb_readline_wrapper_line). Need to do this as we go back to the
3756 event loop, ready to process further input. Note this has no
3757 effect if the handler hasn't actually been removed, because calling
3758 rl_callback_handler_install resets the line buffer, thus losing
3759 input. */
3760
3761 static void
3762 reinstall_readline_callback_handler_cleanup (void *arg)
3763 {
3764 struct ui *ui = current_ui;
3765
3766 if (!ui->async)
3767 {
3768 /* We're not going back to the top level event loop yet. Don't
3769 install the readline callback, as it'd prep the terminal,
3770 readline-style (raw, noecho) (e.g., --batch). We'll install
3771 it the next time the prompt is displayed, when we're ready
3772 for input. */
3773 return;
3774 }
3775
3776 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3777 gdb_rl_callback_handler_reinstall ();
3778 }
3779
3780 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3781 that's just the event thread. In all-stop, that's all threads. */
3782
3783 static void
3784 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3785 {
3786 struct thread_info *thr = ecs->event_thread;
3787
3788 if (thr != NULL && thr->thread_fsm != NULL)
3789 thread_fsm_clean_up (thr->thread_fsm, thr);
3790
3791 if (!non_stop)
3792 {
3793 ALL_NON_EXITED_THREADS (thr)
3794 {
3795 if (thr->thread_fsm == NULL)
3796 continue;
3797 if (thr == ecs->event_thread)
3798 continue;
3799
3800 switch_to_thread (thr->ptid);
3801 thread_fsm_clean_up (thr->thread_fsm, thr);
3802 }
3803
3804 if (ecs->event_thread != NULL)
3805 switch_to_thread (ecs->event_thread->ptid);
3806 }
3807 }
3808
3809 /* Helper for all_uis_check_sync_execution_done that works on the
3810 current UI. */
3811
3812 static void
3813 check_curr_ui_sync_execution_done (void)
3814 {
3815 struct ui *ui = current_ui;
3816
3817 if (ui->prompt_state == PROMPT_NEEDED
3818 && ui->async
3819 && !gdb_in_secondary_prompt_p (ui))
3820 {
3821 target_terminal::ours ();
3822 observer_notify_sync_execution_done ();
3823 ui_register_input_event_handler (ui);
3824 }
3825 }
3826
3827 /* See infrun.h. */
3828
3829 void
3830 all_uis_check_sync_execution_done (void)
3831 {
3832 SWITCH_THRU_ALL_UIS ()
3833 {
3834 check_curr_ui_sync_execution_done ();
3835 }
3836 }
3837
3838 /* See infrun.h. */
3839
3840 void
3841 all_uis_on_sync_execution_starting (void)
3842 {
3843 SWITCH_THRU_ALL_UIS ()
3844 {
3845 if (current_ui->prompt_state == PROMPT_NEEDED)
3846 async_disable_stdin ();
3847 }
3848 }
3849
3850 /* Asynchronous version of wait_for_inferior. It is called by the
3851 event loop whenever a change of state is detected on the file
3852 descriptor corresponding to the target. It can be called more than
3853 once to complete a single execution command. In such cases we need
3854 to keep the state in a global variable ECSS. If it is the last time
3855 that this function is called for a single execution command, then
3856 report to the user that the inferior has stopped, and do the
3857 necessary cleanups. */
3858
3859 void
3860 fetch_inferior_event (void *client_data)
3861 {
3862 struct execution_control_state ecss;
3863 struct execution_control_state *ecs = &ecss;
3864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3865 struct cleanup *ts_old_chain;
3866 int cmd_done = 0;
3867 ptid_t waiton_ptid = minus_one_ptid;
3868
3869 memset (ecs, 0, sizeof (*ecs));
3870
3871 /* Events are always processed with the main UI as current UI. This
3872 way, warnings, debug output, etc. are always consistently sent to
3873 the main console. */
3874 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3875
3876 /* End up with readline processing input, if necessary. */
3877 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3878
3879 /* We're handling a live event, so make sure we're doing live
3880 debugging. If we're looking at traceframes while the target is
3881 running, we're going to need to get back to that mode after
3882 handling the event. */
3883 if (non_stop)
3884 {
3885 make_cleanup_restore_current_traceframe ();
3886 set_current_traceframe (-1);
3887 }
3888
3889 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3890
3891 if (non_stop)
3892 /* In non-stop mode, the user/frontend should not notice a thread
3893 switch due to internal events. Make sure we reverse to the
3894 user selected thread and frame after handling the event and
3895 running any breakpoint commands. */
3896 maybe_restore_thread.emplace ();
3897
3898 overlay_cache_invalid = 1;
3899 /* Flush target cache before starting to handle each event. Target
3900 was running and cache could be stale. This is just a heuristic.
3901 Running threads may modify target memory, but we don't get any
3902 event. */
3903 target_dcache_invalidate ();
3904
3905 scoped_restore save_exec_dir
3906 = make_scoped_restore (&execution_direction, target_execution_direction ());
3907
3908 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3909 target_can_async_p () ? TARGET_WNOHANG : 0);
3910
3911 if (debug_infrun)
3912 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3913
3914 /* If an error happens while handling the event, propagate GDB's
3915 knowledge of the executing state to the frontend/user running
3916 state. */
3917 if (!target_is_non_stop_p ())
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3919 else
3920 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3921
3922 /* Get executed before make_cleanup_restore_current_thread above to apply
3923 still for the thread which has thrown the exception. */
3924 make_bpstat_clear_actions_cleanup ();
3925
3926 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3927
3928 /* Now figure out what to do with the result of the result. */
3929 handle_inferior_event (ecs);
3930
3931 if (!ecs->wait_some_more)
3932 {
3933 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3934 int should_stop = 1;
3935 struct thread_info *thr = ecs->event_thread;
3936 int should_notify_stop = 1;
3937
3938 delete_just_stopped_threads_infrun_breakpoints ();
3939
3940 if (thr != NULL)
3941 {
3942 struct thread_fsm *thread_fsm = thr->thread_fsm;
3943
3944 if (thread_fsm != NULL)
3945 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3946 }
3947
3948 if (!should_stop)
3949 {
3950 keep_going (ecs);
3951 }
3952 else
3953 {
3954 clean_up_just_stopped_threads_fsms (ecs);
3955
3956 if (thr != NULL && thr->thread_fsm != NULL)
3957 {
3958 should_notify_stop
3959 = thread_fsm_should_notify_stop (thr->thread_fsm);
3960 }
3961
3962 if (should_notify_stop)
3963 {
3964 int proceeded = 0;
3965
3966 /* We may not find an inferior if this was a process exit. */
3967 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3968 proceeded = normal_stop ();
3969
3970 if (!proceeded)
3971 {
3972 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3973 cmd_done = 1;
3974 }
3975 }
3976 }
3977 }
3978
3979 /* No error, don't finish the thread states yet. */
3980 discard_cleanups (ts_old_chain);
3981
3982 /* Revert thread and frame. */
3983 do_cleanups (old_chain);
3984
3985 /* If a UI was in sync execution mode, and now isn't, restore its
3986 prompt (a synchronous execution command has finished, and we're
3987 ready for input). */
3988 all_uis_check_sync_execution_done ();
3989
3990 if (cmd_done
3991 && exec_done_display_p
3992 && (ptid_equal (inferior_ptid, null_ptid)
3993 || !is_running (inferior_ptid)))
3994 printf_unfiltered (_("completed.\n"));
3995 }
3996
3997 /* Record the frame and location we're currently stepping through. */
3998 void
3999 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4000 {
4001 struct thread_info *tp = inferior_thread ();
4002
4003 tp->control.step_frame_id = get_frame_id (frame);
4004 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4005
4006 tp->current_symtab = sal.symtab;
4007 tp->current_line = sal.line;
4008 }
4009
4010 /* Clear context switchable stepping state. */
4011
4012 void
4013 init_thread_stepping_state (struct thread_info *tss)
4014 {
4015 tss->stepped_breakpoint = 0;
4016 tss->stepping_over_breakpoint = 0;
4017 tss->stepping_over_watchpoint = 0;
4018 tss->step_after_step_resume_breakpoint = 0;
4019 }
4020
4021 /* Set the cached copy of the last ptid/waitstatus. */
4022
4023 void
4024 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4025 {
4026 target_last_wait_ptid = ptid;
4027 target_last_waitstatus = status;
4028 }
4029
4030 /* Return the cached copy of the last pid/waitstatus returned by
4031 target_wait()/deprecated_target_wait_hook(). The data is actually
4032 cached by handle_inferior_event(), which gets called immediately
4033 after target_wait()/deprecated_target_wait_hook(). */
4034
4035 void
4036 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4037 {
4038 *ptidp = target_last_wait_ptid;
4039 *status = target_last_waitstatus;
4040 }
4041
4042 void
4043 nullify_last_target_wait_ptid (void)
4044 {
4045 target_last_wait_ptid = minus_one_ptid;
4046 }
4047
4048 /* Switch thread contexts. */
4049
4050 static void
4051 context_switch (ptid_t ptid)
4052 {
4053 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4054 {
4055 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4056 target_pid_to_str (inferior_ptid));
4057 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4058 target_pid_to_str (ptid));
4059 }
4060
4061 switch_to_thread (ptid);
4062 }
4063
4064 /* If the target can't tell whether we've hit breakpoints
4065 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4066 check whether that could have been caused by a breakpoint. If so,
4067 adjust the PC, per gdbarch_decr_pc_after_break. */
4068
4069 static void
4070 adjust_pc_after_break (struct thread_info *thread,
4071 struct target_waitstatus *ws)
4072 {
4073 struct regcache *regcache;
4074 struct gdbarch *gdbarch;
4075 struct address_space *aspace;
4076 CORE_ADDR breakpoint_pc, decr_pc;
4077
4078 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4079 we aren't, just return.
4080
4081 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4082 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4083 implemented by software breakpoints should be handled through the normal
4084 breakpoint layer.
4085
4086 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4087 different signals (SIGILL or SIGEMT for instance), but it is less
4088 clear where the PC is pointing afterwards. It may not match
4089 gdbarch_decr_pc_after_break. I don't know any specific target that
4090 generates these signals at breakpoints (the code has been in GDB since at
4091 least 1992) so I can not guess how to handle them here.
4092
4093 In earlier versions of GDB, a target with
4094 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4095 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4096 target with both of these set in GDB history, and it seems unlikely to be
4097 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4098
4099 if (ws->kind != TARGET_WAITKIND_STOPPED)
4100 return;
4101
4102 if (ws->value.sig != GDB_SIGNAL_TRAP)
4103 return;
4104
4105 /* In reverse execution, when a breakpoint is hit, the instruction
4106 under it has already been de-executed. The reported PC always
4107 points at the breakpoint address, so adjusting it further would
4108 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4109 architecture:
4110
4111 B1 0x08000000 : INSN1
4112 B2 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 PC -> 0x08000003 : INSN4
4115
4116 Say you're stopped at 0x08000003 as above. Reverse continuing
4117 from that point should hit B2 as below. Reading the PC when the
4118 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4119 been de-executed already.
4120
4121 B1 0x08000000 : INSN1
4122 B2 PC -> 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 0x08000003 : INSN4
4125
4126 We can't apply the same logic as for forward execution, because
4127 we would wrongly adjust the PC to 0x08000000, since there's a
4128 breakpoint at PC - 1. We'd then report a hit on B1, although
4129 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4130 behaviour. */
4131 if (execution_direction == EXEC_REVERSE)
4132 return;
4133
4134 /* If the target can tell whether the thread hit a SW breakpoint,
4135 trust it. Targets that can tell also adjust the PC
4136 themselves. */
4137 if (target_supports_stopped_by_sw_breakpoint ())
4138 return;
4139
4140 /* Note that relying on whether a breakpoint is planted in memory to
4141 determine this can fail. E.g,. the breakpoint could have been
4142 removed since. Or the thread could have been told to step an
4143 instruction the size of a breakpoint instruction, and only
4144 _after_ was a breakpoint inserted at its address. */
4145
4146 /* If this target does not decrement the PC after breakpoints, then
4147 we have nothing to do. */
4148 regcache = get_thread_regcache (thread->ptid);
4149 gdbarch = get_regcache_arch (regcache);
4150
4151 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4152 if (decr_pc == 0)
4153 return;
4154
4155 aspace = get_regcache_aspace (regcache);
4156
4157 /* Find the location where (if we've hit a breakpoint) the
4158 breakpoint would be. */
4159 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4160
4161 /* If the target can't tell whether a software breakpoint triggered,
4162 fallback to figuring it out based on breakpoints we think were
4163 inserted in the target, and on whether the thread was stepped or
4164 continued. */
4165
4166 /* Check whether there actually is a software breakpoint inserted at
4167 that location.
4168
4169 If in non-stop mode, a race condition is possible where we've
4170 removed a breakpoint, but stop events for that breakpoint were
4171 already queued and arrive later. To suppress those spurious
4172 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4173 and retire them after a number of stop events are reported. Note
4174 this is an heuristic and can thus get confused. The real fix is
4175 to get the "stopped by SW BP and needs adjustment" info out of
4176 the target/kernel (and thus never reach here; see above). */
4177 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4178 || (target_is_non_stop_p ()
4179 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4180 {
4181 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4182
4183 if (record_full_is_used ())
4184 restore_operation_disable.emplace
4185 (record_full_gdb_operation_disable_set ());
4186
4187 /* When using hardware single-step, a SIGTRAP is reported for both
4188 a completed single-step and a software breakpoint. Need to
4189 differentiate between the two, as the latter needs adjusting
4190 but the former does not.
4191
4192 The SIGTRAP can be due to a completed hardware single-step only if
4193 - we didn't insert software single-step breakpoints
4194 - this thread is currently being stepped
4195
4196 If any of these events did not occur, we must have stopped due
4197 to hitting a software breakpoint, and have to back up to the
4198 breakpoint address.
4199
4200 As a special case, we could have hardware single-stepped a
4201 software breakpoint. In this case (prev_pc == breakpoint_pc),
4202 we also need to back up to the breakpoint address. */
4203
4204 if (thread_has_single_step_breakpoints_set (thread)
4205 || !currently_stepping (thread)
4206 || (thread->stepped_breakpoint
4207 && thread->prev_pc == breakpoint_pc))
4208 regcache_write_pc (regcache, breakpoint_pc);
4209 }
4210 }
4211
4212 static int
4213 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4214 {
4215 for (frame = get_prev_frame (frame);
4216 frame != NULL;
4217 frame = get_prev_frame (frame))
4218 {
4219 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4220 return 1;
4221 if (get_frame_type (frame) != INLINE_FRAME)
4222 break;
4223 }
4224
4225 return 0;
4226 }
4227
4228 /* If the event thread has the stop requested flag set, pretend it
4229 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4230 target_stop). */
4231
4232 static bool
4233 handle_stop_requested (struct execution_control_state *ecs)
4234 {
4235 if (ecs->event_thread->stop_requested)
4236 {
4237 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4238 ecs->ws.value.sig = GDB_SIGNAL_0;
4239 handle_signal_stop (ecs);
4240 return true;
4241 }
4242 return false;
4243 }
4244
4245 /* Auxiliary function that handles syscall entry/return events.
4246 It returns 1 if the inferior should keep going (and GDB
4247 should ignore the event), or 0 if the event deserves to be
4248 processed. */
4249
4250 static int
4251 handle_syscall_event (struct execution_control_state *ecs)
4252 {
4253 struct regcache *regcache;
4254 int syscall_number;
4255
4256 if (!ptid_equal (ecs->ptid, inferior_ptid))
4257 context_switch (ecs->ptid);
4258
4259 regcache = get_thread_regcache (ecs->ptid);
4260 syscall_number = ecs->ws.value.syscall_number;
4261 stop_pc = regcache_read_pc (regcache);
4262
4263 if (catch_syscall_enabled () > 0
4264 && catching_syscall_number (syscall_number) > 0)
4265 {
4266 if (debug_infrun)
4267 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4268 syscall_number);
4269
4270 ecs->event_thread->control.stop_bpstat
4271 = bpstat_stop_status (get_regcache_aspace (regcache),
4272 stop_pc, ecs->ptid, &ecs->ws);
4273
4274 if (handle_stop_requested (ecs))
4275 return 0;
4276
4277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4278 {
4279 /* Catchpoint hit. */
4280 return 0;
4281 }
4282 }
4283
4284 if (handle_stop_requested (ecs))
4285 return 0;
4286
4287 /* If no catchpoint triggered for this, then keep going. */
4288 keep_going (ecs);
4289 return 1;
4290 }
4291
4292 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4293
4294 static void
4295 fill_in_stop_func (struct gdbarch *gdbarch,
4296 struct execution_control_state *ecs)
4297 {
4298 if (!ecs->stop_func_filled_in)
4299 {
4300 /* Don't care about return value; stop_func_start and stop_func_name
4301 will both be 0 if it doesn't work. */
4302 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4303 &ecs->stop_func_start, &ecs->stop_func_end);
4304 ecs->stop_func_start
4305 += gdbarch_deprecated_function_start_offset (gdbarch);
4306
4307 if (gdbarch_skip_entrypoint_p (gdbarch))
4308 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4309 ecs->stop_func_start);
4310
4311 ecs->stop_func_filled_in = 1;
4312 }
4313 }
4314
4315
4316 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4317
4318 static enum stop_kind
4319 get_inferior_stop_soon (ptid_t ptid)
4320 {
4321 struct inferior *inf = find_inferior_ptid (ptid);
4322
4323 gdb_assert (inf != NULL);
4324 return inf->control.stop_soon;
4325 }
4326
4327 /* Wait for one event. Store the resulting waitstatus in WS, and
4328 return the event ptid. */
4329
4330 static ptid_t
4331 wait_one (struct target_waitstatus *ws)
4332 {
4333 ptid_t event_ptid;
4334 ptid_t wait_ptid = minus_one_ptid;
4335
4336 overlay_cache_invalid = 1;
4337
4338 /* Flush target cache before starting to handle each event.
4339 Target was running and cache could be stale. This is just a
4340 heuristic. Running threads may modify target memory, but we
4341 don't get any event. */
4342 target_dcache_invalidate ();
4343
4344 if (deprecated_target_wait_hook)
4345 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4346 else
4347 event_ptid = target_wait (wait_ptid, ws, 0);
4348
4349 if (debug_infrun)
4350 print_target_wait_results (wait_ptid, event_ptid, ws);
4351
4352 return event_ptid;
4353 }
4354
4355 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4356 instead of the current thread. */
4357 #define THREAD_STOPPED_BY(REASON) \
4358 static int \
4359 thread_stopped_by_ ## REASON (ptid_t ptid) \
4360 { \
4361 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4362 inferior_ptid = ptid; \
4363 \
4364 return target_stopped_by_ ## REASON (); \
4365 }
4366
4367 /* Generate thread_stopped_by_watchpoint. */
4368 THREAD_STOPPED_BY (watchpoint)
4369 /* Generate thread_stopped_by_sw_breakpoint. */
4370 THREAD_STOPPED_BY (sw_breakpoint)
4371 /* Generate thread_stopped_by_hw_breakpoint. */
4372 THREAD_STOPPED_BY (hw_breakpoint)
4373
4374 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4375
4376 static void
4377 switch_to_thread_cleanup (void *ptid_p)
4378 {
4379 ptid_t ptid = *(ptid_t *) ptid_p;
4380
4381 switch_to_thread (ptid);
4382 }
4383
4384 /* Save the thread's event and stop reason to process it later. */
4385
4386 static void
4387 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4388 {
4389 struct regcache *regcache;
4390 struct address_space *aspace;
4391
4392 if (debug_infrun)
4393 {
4394 std::string statstr = target_waitstatus_to_string (ws);
4395
4396 fprintf_unfiltered (gdb_stdlog,
4397 "infrun: saving status %s for %d.%ld.%ld\n",
4398 statstr.c_str (),
4399 ptid_get_pid (tp->ptid),
4400 ptid_get_lwp (tp->ptid),
4401 ptid_get_tid (tp->ptid));
4402 }
4403
4404 /* Record for later. */
4405 tp->suspend.waitstatus = *ws;
4406 tp->suspend.waitstatus_pending_p = 1;
4407
4408 regcache = get_thread_regcache (tp->ptid);
4409 aspace = get_regcache_aspace (regcache);
4410
4411 if (ws->kind == TARGET_WAITKIND_STOPPED
4412 && ws->value.sig == GDB_SIGNAL_TRAP)
4413 {
4414 CORE_ADDR pc = regcache_read_pc (regcache);
4415
4416 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4417
4418 if (thread_stopped_by_watchpoint (tp->ptid))
4419 {
4420 tp->suspend.stop_reason
4421 = TARGET_STOPPED_BY_WATCHPOINT;
4422 }
4423 else if (target_supports_stopped_by_sw_breakpoint ()
4424 && thread_stopped_by_sw_breakpoint (tp->ptid))
4425 {
4426 tp->suspend.stop_reason
4427 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4428 }
4429 else if (target_supports_stopped_by_hw_breakpoint ()
4430 && thread_stopped_by_hw_breakpoint (tp->ptid))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4434 }
4435 else if (!target_supports_stopped_by_hw_breakpoint ()
4436 && hardware_breakpoint_inserted_here_p (aspace,
4437 pc))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4441 }
4442 else if (!target_supports_stopped_by_sw_breakpoint ()
4443 && software_breakpoint_inserted_here_p (aspace,
4444 pc))
4445 {
4446 tp->suspend.stop_reason
4447 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4448 }
4449 else if (!thread_has_single_step_breakpoints_set (tp)
4450 && currently_stepping (tp))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_SINGLE_STEP;
4454 }
4455 }
4456 }
4457
4458 /* A cleanup that disables thread create/exit events. */
4459
4460 static void
4461 disable_thread_events (void *arg)
4462 {
4463 target_thread_events (0);
4464 }
4465
4466 /* See infrun.h. */
4467
4468 void
4469 stop_all_threads (void)
4470 {
4471 /* We may need multiple passes to discover all threads. */
4472 int pass;
4473 int iterations = 0;
4474 ptid_t entry_ptid;
4475 struct cleanup *old_chain;
4476
4477 gdb_assert (target_is_non_stop_p ());
4478
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4481
4482 entry_ptid = inferior_ptid;
4483 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4484
4485 target_thread_events (1);
4486 make_cleanup (disable_thread_events, NULL);
4487
4488 /* Request threads to stop, and then wait for the stops. Because
4489 threads we already know about can spawn more threads while we're
4490 trying to stop them, and we only learn about new threads when we
4491 update the thread list, do this in a loop, and keep iterating
4492 until two passes find no threads that need to be stopped. */
4493 for (pass = 0; pass < 2; pass++, iterations++)
4494 {
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog,
4497 "infrun: stop_all_threads, pass=%d, "
4498 "iterations=%d\n", pass, iterations);
4499 while (1)
4500 {
4501 ptid_t event_ptid;
4502 struct target_waitstatus ws;
4503 int need_wait = 0;
4504 struct thread_info *t;
4505
4506 update_thread_list ();
4507
4508 /* Go through all threads looking for threads that we need
4509 to tell the target to stop. */
4510 ALL_NON_EXITED_THREADS (t)
4511 {
4512 if (t->executing)
4513 {
4514 /* If already stopping, don't request a stop again.
4515 We just haven't seen the notification yet. */
4516 if (!t->stop_requested)
4517 {
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog,
4520 "infrun: %s executing, "
4521 "need stop\n",
4522 target_pid_to_str (t->ptid));
4523 target_stop (t->ptid);
4524 t->stop_requested = 1;
4525 }
4526 else
4527 {
4528 if (debug_infrun)
4529 fprintf_unfiltered (gdb_stdlog,
4530 "infrun: %s executing, "
4531 "already stopping\n",
4532 target_pid_to_str (t->ptid));
4533 }
4534
4535 if (t->stop_requested)
4536 need_wait = 1;
4537 }
4538 else
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: %s not executing\n",
4543 target_pid_to_str (t->ptid));
4544
4545 /* The thread may be not executing, but still be
4546 resumed with a pending status to process. */
4547 t->resumed = 0;
4548 }
4549 }
4550
4551 if (!need_wait)
4552 break;
4553
4554 /* If we find new threads on the second iteration, restart
4555 over. We want to see two iterations in a row with all
4556 threads stopped. */
4557 if (pass > 0)
4558 pass = -1;
4559
4560 event_ptid = wait_one (&ws);
4561 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4562 {
4563 /* All resumed threads exited. */
4564 }
4565 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4566 || ws.kind == TARGET_WAITKIND_EXITED
4567 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4568 {
4569 if (debug_infrun)
4570 {
4571 ptid_t ptid = pid_to_ptid (ws.value.integer);
4572
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: %s exited while "
4575 "stopping threads\n",
4576 target_pid_to_str (ptid));
4577 }
4578 }
4579 else
4580 {
4581 struct inferior *inf;
4582
4583 t = find_thread_ptid (event_ptid);
4584 if (t == NULL)
4585 t = add_thread (event_ptid);
4586
4587 t->stop_requested = 0;
4588 t->executing = 0;
4589 t->resumed = 0;
4590 t->control.may_range_step = 0;
4591
4592 /* This may be the first time we see the inferior report
4593 a stop. */
4594 inf = find_inferior_ptid (event_ptid);
4595 if (inf->needs_setup)
4596 {
4597 switch_to_thread_no_regs (t);
4598 setup_inferior (0);
4599 }
4600
4601 if (ws.kind == TARGET_WAITKIND_STOPPED
4602 && ws.value.sig == GDB_SIGNAL_0)
4603 {
4604 /* We caught the event that we intended to catch, so
4605 there's no event pending. */
4606 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4607 t->suspend.waitstatus_pending_p = 0;
4608
4609 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4610 {
4611 /* Add it back to the step-over queue. */
4612 if (debug_infrun)
4613 {
4614 fprintf_unfiltered (gdb_stdlog,
4615 "infrun: displaced-step of %s "
4616 "canceled: adding back to the "
4617 "step-over queue\n",
4618 target_pid_to_str (t->ptid));
4619 }
4620 t->control.trap_expected = 0;
4621 thread_step_over_chain_enqueue (t);
4622 }
4623 }
4624 else
4625 {
4626 enum gdb_signal sig;
4627 struct regcache *regcache;
4628
4629 if (debug_infrun)
4630 {
4631 std::string statstr = target_waitstatus_to_string (&ws);
4632
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: target_wait %s, saving "
4635 "status for %d.%ld.%ld\n",
4636 statstr.c_str (),
4637 ptid_get_pid (t->ptid),
4638 ptid_get_lwp (t->ptid),
4639 ptid_get_tid (t->ptid));
4640 }
4641
4642 /* Record for later. */
4643 save_waitstatus (t, &ws);
4644
4645 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4646 ? ws.value.sig : GDB_SIGNAL_0);
4647
4648 if (displaced_step_fixup (t->ptid, sig) < 0)
4649 {
4650 /* Add it back to the step-over queue. */
4651 t->control.trap_expected = 0;
4652 thread_step_over_chain_enqueue (t);
4653 }
4654
4655 regcache = get_thread_regcache (t->ptid);
4656 t->suspend.stop_pc = regcache_read_pc (regcache);
4657
4658 if (debug_infrun)
4659 {
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: saved stop_pc=%s for %s "
4662 "(currently_stepping=%d)\n",
4663 paddress (target_gdbarch (),
4664 t->suspend.stop_pc),
4665 target_pid_to_str (t->ptid),
4666 currently_stepping (t));
4667 }
4668 }
4669 }
4670 }
4671 }
4672
4673 do_cleanups (old_chain);
4674
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4677 }
4678
4679 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4680
4681 static int
4682 handle_no_resumed (struct execution_control_state *ecs)
4683 {
4684 struct inferior *inf;
4685 struct thread_info *thread;
4686
4687 if (target_can_async_p ())
4688 {
4689 struct ui *ui;
4690 int any_sync = 0;
4691
4692 ALL_UIS (ui)
4693 {
4694 if (ui->prompt_state == PROMPT_BLOCKED)
4695 {
4696 any_sync = 1;
4697 break;
4698 }
4699 }
4700 if (!any_sync)
4701 {
4702 /* There were no unwaited-for children left in the target, but,
4703 we're not synchronously waiting for events either. Just
4704 ignore. */
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog,
4708 "infrun: TARGET_WAITKIND_NO_RESUMED "
4709 "(ignoring: bg)\n");
4710 prepare_to_wait (ecs);
4711 return 1;
4712 }
4713 }
4714
4715 /* Otherwise, if we were running a synchronous execution command, we
4716 may need to cancel it and give the user back the terminal.
4717
4718 In non-stop mode, the target can't tell whether we've already
4719 consumed previous stop events, so it can end up sending us a
4720 no-resumed event like so:
4721
4722 #0 - thread 1 is left stopped
4723
4724 #1 - thread 2 is resumed and hits breakpoint
4725 -> TARGET_WAITKIND_STOPPED
4726
4727 #2 - thread 3 is resumed and exits
4728 this is the last resumed thread, so
4729 -> TARGET_WAITKIND_NO_RESUMED
4730
4731 #3 - gdb processes stop for thread 2 and decides to re-resume
4732 it.
4733
4734 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4735 thread 2 is now resumed, so the event should be ignored.
4736
4737 IOW, if the stop for thread 2 doesn't end a foreground command,
4738 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4739 event. But it could be that the event meant that thread 2 itself
4740 (or whatever other thread was the last resumed thread) exited.
4741
4742 To address this we refresh the thread list and check whether we
4743 have resumed threads _now_. In the example above, this removes
4744 thread 3 from the thread list. If thread 2 was re-resumed, we
4745 ignore this event. If we find no thread resumed, then we cancel
4746 the synchronous command show "no unwaited-for " to the user. */
4747 update_thread_list ();
4748
4749 ALL_NON_EXITED_THREADS (thread)
4750 {
4751 if (thread->executing
4752 || thread->suspend.waitstatus_pending_p)
4753 {
4754 /* There were no unwaited-for children left in the target at
4755 some point, but there are now. Just ignore. */
4756 if (debug_infrun)
4757 fprintf_unfiltered (gdb_stdlog,
4758 "infrun: TARGET_WAITKIND_NO_RESUMED "
4759 "(ignoring: found resumed)\n");
4760 prepare_to_wait (ecs);
4761 return 1;
4762 }
4763 }
4764
4765 /* Note however that we may find no resumed thread because the whole
4766 process exited meanwhile (thus updating the thread list results
4767 in an empty thread list). In this case we know we'll be getting
4768 a process exit event shortly. */
4769 ALL_INFERIORS (inf)
4770 {
4771 if (inf->pid == 0)
4772 continue;
4773
4774 thread = any_live_thread_of_process (inf->pid);
4775 if (thread == NULL)
4776 {
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: TARGET_WAITKIND_NO_RESUMED "
4780 "(expect process exit)\n");
4781 prepare_to_wait (ecs);
4782 return 1;
4783 }
4784 }
4785
4786 /* Go ahead and report the event. */
4787 return 0;
4788 }
4789
4790 /* Given an execution control state that has been freshly filled in by
4791 an event from the inferior, figure out what it means and take
4792 appropriate action.
4793
4794 The alternatives are:
4795
4796 1) stop_waiting and return; to really stop and return to the
4797 debugger.
4798
4799 2) keep_going and return; to wait for the next event (set
4800 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4801 once). */
4802
4803 static void
4804 handle_inferior_event_1 (struct execution_control_state *ecs)
4805 {
4806 enum stop_kind stop_soon;
4807
4808 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4809 {
4810 /* We had an event in the inferior, but we are not interested in
4811 handling it at this level. The lower layers have already
4812 done what needs to be done, if anything.
4813
4814 One of the possible circumstances for this is when the
4815 inferior produces output for the console. The inferior has
4816 not stopped, and we are ignoring the event. Another possible
4817 circumstance is any event which the lower level knows will be
4818 reported multiple times without an intervening resume. */
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4821 prepare_to_wait (ecs);
4822 return;
4823 }
4824
4825 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4826 {
4827 if (debug_infrun)
4828 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4829 prepare_to_wait (ecs);
4830 return;
4831 }
4832
4833 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4834 && handle_no_resumed (ecs))
4835 return;
4836
4837 /* Cache the last pid/waitstatus. */
4838 set_last_target_status (ecs->ptid, ecs->ws);
4839
4840 /* Always clear state belonging to the previous time we stopped. */
4841 stop_stack_dummy = STOP_NONE;
4842
4843 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4844 {
4845 /* No unwaited-for children left. IOW, all resumed children
4846 have exited. */
4847 if (debug_infrun)
4848 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4849
4850 stop_print_frame = 0;
4851 stop_waiting (ecs);
4852 return;
4853 }
4854
4855 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4856 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4857 {
4858 ecs->event_thread = find_thread_ptid (ecs->ptid);
4859 /* If it's a new thread, add it to the thread database. */
4860 if (ecs->event_thread == NULL)
4861 ecs->event_thread = add_thread (ecs->ptid);
4862
4863 /* Disable range stepping. If the next step request could use a
4864 range, this will be end up re-enabled then. */
4865 ecs->event_thread->control.may_range_step = 0;
4866 }
4867
4868 /* Dependent on valid ECS->EVENT_THREAD. */
4869 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4870
4871 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4872 reinit_frame_cache ();
4873
4874 breakpoint_retire_moribund ();
4875
4876 /* First, distinguish signals caused by the debugger from signals
4877 that have to do with the program's own actions. Note that
4878 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4879 on the operating system version. Here we detect when a SIGILL or
4880 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4881 something similar for SIGSEGV, since a SIGSEGV will be generated
4882 when we're trying to execute a breakpoint instruction on a
4883 non-executable stack. This happens for call dummy breakpoints
4884 for architectures like SPARC that place call dummies on the
4885 stack. */
4886 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4887 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4888 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4889 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4890 {
4891 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4892
4893 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4894 regcache_read_pc (regcache)))
4895 {
4896 if (debug_infrun)
4897 fprintf_unfiltered (gdb_stdlog,
4898 "infrun: Treating signal as SIGTRAP\n");
4899 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4900 }
4901 }
4902
4903 /* Mark the non-executing threads accordingly. In all-stop, all
4904 threads of all processes are stopped when we get any event
4905 reported. In non-stop mode, only the event thread stops. */
4906 {
4907 ptid_t mark_ptid;
4908
4909 if (!target_is_non_stop_p ())
4910 mark_ptid = minus_one_ptid;
4911 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4912 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4913 {
4914 /* If we're handling a process exit in non-stop mode, even
4915 though threads haven't been deleted yet, one would think
4916 that there is nothing to do, as threads of the dead process
4917 will be soon deleted, and threads of any other process were
4918 left running. However, on some targets, threads survive a
4919 process exit event. E.g., for the "checkpoint" command,
4920 when the current checkpoint/fork exits, linux-fork.c
4921 automatically switches to another fork from within
4922 target_mourn_inferior, by associating the same
4923 inferior/thread to another fork. We haven't mourned yet at
4924 this point, but we must mark any threads left in the
4925 process as not-executing so that finish_thread_state marks
4926 them stopped (in the user's perspective) if/when we present
4927 the stop to the user. */
4928 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4929 }
4930 else
4931 mark_ptid = ecs->ptid;
4932
4933 set_executing (mark_ptid, 0);
4934
4935 /* Likewise the resumed flag. */
4936 set_resumed (mark_ptid, 0);
4937 }
4938
4939 switch (ecs->ws.kind)
4940 {
4941 case TARGET_WAITKIND_LOADED:
4942 if (debug_infrun)
4943 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4944 if (!ptid_equal (ecs->ptid, inferior_ptid))
4945 context_switch (ecs->ptid);
4946 /* Ignore gracefully during startup of the inferior, as it might
4947 be the shell which has just loaded some objects, otherwise
4948 add the symbols for the newly loaded objects. Also ignore at
4949 the beginning of an attach or remote session; we will query
4950 the full list of libraries once the connection is
4951 established. */
4952
4953 stop_soon = get_inferior_stop_soon (ecs->ptid);
4954 if (stop_soon == NO_STOP_QUIETLY)
4955 {
4956 struct regcache *regcache;
4957
4958 regcache = get_thread_regcache (ecs->ptid);
4959
4960 handle_solib_event ();
4961
4962 ecs->event_thread->control.stop_bpstat
4963 = bpstat_stop_status (get_regcache_aspace (regcache),
4964 stop_pc, ecs->ptid, &ecs->ws);
4965
4966 if (handle_stop_requested (ecs))
4967 return;
4968
4969 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4970 {
4971 /* A catchpoint triggered. */
4972 process_event_stop_test (ecs);
4973 return;
4974 }
4975
4976 /* If requested, stop when the dynamic linker notifies
4977 gdb of events. This allows the user to get control
4978 and place breakpoints in initializer routines for
4979 dynamically loaded objects (among other things). */
4980 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4981 if (stop_on_solib_events)
4982 {
4983 /* Make sure we print "Stopped due to solib-event" in
4984 normal_stop. */
4985 stop_print_frame = 1;
4986
4987 stop_waiting (ecs);
4988 return;
4989 }
4990 }
4991
4992 /* If we are skipping through a shell, or through shared library
4993 loading that we aren't interested in, resume the program. If
4994 we're running the program normally, also resume. */
4995 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4996 {
4997 /* Loading of shared libraries might have changed breakpoint
4998 addresses. Make sure new breakpoints are inserted. */
4999 if (stop_soon == NO_STOP_QUIETLY)
5000 insert_breakpoints ();
5001 resume (GDB_SIGNAL_0);
5002 prepare_to_wait (ecs);
5003 return;
5004 }
5005
5006 /* But stop if we're attaching or setting up a remote
5007 connection. */
5008 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5009 || stop_soon == STOP_QUIETLY_REMOTE)
5010 {
5011 if (debug_infrun)
5012 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5013 stop_waiting (ecs);
5014 return;
5015 }
5016
5017 internal_error (__FILE__, __LINE__,
5018 _("unhandled stop_soon: %d"), (int) stop_soon);
5019
5020 case TARGET_WAITKIND_SPURIOUS:
5021 if (debug_infrun)
5022 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5023 if (handle_stop_requested (ecs))
5024 return;
5025 if (!ptid_equal (ecs->ptid, inferior_ptid))
5026 context_switch (ecs->ptid);
5027 resume (GDB_SIGNAL_0);
5028 prepare_to_wait (ecs);
5029 return;
5030
5031 case TARGET_WAITKIND_THREAD_CREATED:
5032 if (debug_infrun)
5033 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5034 if (handle_stop_requested (ecs))
5035 return;
5036 if (!ptid_equal (ecs->ptid, inferior_ptid))
5037 context_switch (ecs->ptid);
5038 if (!switch_back_to_stepped_thread (ecs))
5039 keep_going (ecs);
5040 return;
5041
5042 case TARGET_WAITKIND_EXITED:
5043 case TARGET_WAITKIND_SIGNALLED:
5044 if (debug_infrun)
5045 {
5046 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5047 fprintf_unfiltered (gdb_stdlog,
5048 "infrun: TARGET_WAITKIND_EXITED\n");
5049 else
5050 fprintf_unfiltered (gdb_stdlog,
5051 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5052 }
5053
5054 inferior_ptid = ecs->ptid;
5055 set_current_inferior (find_inferior_ptid (ecs->ptid));
5056 set_current_program_space (current_inferior ()->pspace);
5057 handle_vfork_child_exec_or_exit (0);
5058 target_terminal::ours (); /* Must do this before mourn anyway. */
5059
5060 /* Clearing any previous state of convenience variables. */
5061 clear_exit_convenience_vars ();
5062
5063 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5064 {
5065 /* Record the exit code in the convenience variable $_exitcode, so
5066 that the user can inspect this again later. */
5067 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5068 (LONGEST) ecs->ws.value.integer);
5069
5070 /* Also record this in the inferior itself. */
5071 current_inferior ()->has_exit_code = 1;
5072 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5073
5074 /* Support the --return-child-result option. */
5075 return_child_result_value = ecs->ws.value.integer;
5076
5077 observer_notify_exited (ecs->ws.value.integer);
5078 }
5079 else
5080 {
5081 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5083
5084 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5085 {
5086 /* Set the value of the internal variable $_exitsignal,
5087 which holds the signal uncaught by the inferior. */
5088 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5089 gdbarch_gdb_signal_to_target (gdbarch,
5090 ecs->ws.value.sig));
5091 }
5092 else
5093 {
5094 /* We don't have access to the target's method used for
5095 converting between signal numbers (GDB's internal
5096 representation <-> target's representation).
5097 Therefore, we cannot do a good job at displaying this
5098 information to the user. It's better to just warn
5099 her about it (if infrun debugging is enabled), and
5100 give up. */
5101 if (debug_infrun)
5102 fprintf_filtered (gdb_stdlog, _("\
5103 Cannot fill $_exitsignal with the correct signal number.\n"));
5104 }
5105
5106 observer_notify_signal_exited (ecs->ws.value.sig);
5107 }
5108
5109 gdb_flush (gdb_stdout);
5110 target_mourn_inferior (inferior_ptid);
5111 stop_print_frame = 0;
5112 stop_waiting (ecs);
5113 return;
5114
5115 /* The following are the only cases in which we keep going;
5116 the above cases end in a continue or goto. */
5117 case TARGET_WAITKIND_FORKED:
5118 case TARGET_WAITKIND_VFORKED:
5119 if (debug_infrun)
5120 {
5121 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5122 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5123 else
5124 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5125 }
5126
5127 /* Check whether the inferior is displaced stepping. */
5128 {
5129 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5131
5132 /* If checking displaced stepping is supported, and thread
5133 ecs->ptid is displaced stepping. */
5134 if (displaced_step_in_progress_thread (ecs->ptid))
5135 {
5136 struct inferior *parent_inf
5137 = find_inferior_ptid (ecs->ptid);
5138 struct regcache *child_regcache;
5139 CORE_ADDR parent_pc;
5140
5141 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5142 indicating that the displaced stepping of syscall instruction
5143 has been done. Perform cleanup for parent process here. Note
5144 that this operation also cleans up the child process for vfork,
5145 because their pages are shared. */
5146 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5147 /* Start a new step-over in another thread if there's one
5148 that needs it. */
5149 start_step_over ();
5150
5151 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5152 {
5153 struct displaced_step_inferior_state *displaced
5154 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5155
5156 /* Restore scratch pad for child process. */
5157 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5158 }
5159
5160 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5161 the child's PC is also within the scratchpad. Set the child's PC
5162 to the parent's PC value, which has already been fixed up.
5163 FIXME: we use the parent's aspace here, although we're touching
5164 the child, because the child hasn't been added to the inferior
5165 list yet at this point. */
5166
5167 child_regcache
5168 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5169 gdbarch,
5170 parent_inf->aspace);
5171 /* Read PC value of parent process. */
5172 parent_pc = regcache_read_pc (regcache);
5173
5174 if (debug_displaced)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "displaced: write child pc from %s to %s\n",
5177 paddress (gdbarch,
5178 regcache_read_pc (child_regcache)),
5179 paddress (gdbarch, parent_pc));
5180
5181 regcache_write_pc (child_regcache, parent_pc);
5182 }
5183 }
5184
5185 if (!ptid_equal (ecs->ptid, inferior_ptid))
5186 context_switch (ecs->ptid);
5187
5188 /* Immediately detach breakpoints from the child before there's
5189 any chance of letting the user delete breakpoints from the
5190 breakpoint lists. If we don't do this early, it's easy to
5191 leave left over traps in the child, vis: "break foo; catch
5192 fork; c; <fork>; del; c; <child calls foo>". We only follow
5193 the fork on the last `continue', and by that time the
5194 breakpoint at "foo" is long gone from the breakpoint table.
5195 If we vforked, then we don't need to unpatch here, since both
5196 parent and child are sharing the same memory pages; we'll
5197 need to unpatch at follow/detach time instead to be certain
5198 that new breakpoints added between catchpoint hit time and
5199 vfork follow are detached. */
5200 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5201 {
5202 /* This won't actually modify the breakpoint list, but will
5203 physically remove the breakpoints from the child. */
5204 detach_breakpoints (ecs->ws.value.related_pid);
5205 }
5206
5207 delete_just_stopped_threads_single_step_breakpoints ();
5208
5209 /* In case the event is caught by a catchpoint, remember that
5210 the event is to be followed at the next resume of the thread,
5211 and not immediately. */
5212 ecs->event_thread->pending_follow = ecs->ws;
5213
5214 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5215
5216 ecs->event_thread->control.stop_bpstat
5217 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5218 stop_pc, ecs->ptid, &ecs->ws);
5219
5220 if (handle_stop_requested (ecs))
5221 return;
5222
5223 /* If no catchpoint triggered for this, then keep going. Note
5224 that we're interested in knowing the bpstat actually causes a
5225 stop, not just if it may explain the signal. Software
5226 watchpoints, for example, always appear in the bpstat. */
5227 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5228 {
5229 ptid_t parent;
5230 ptid_t child;
5231 int should_resume;
5232 int follow_child
5233 = (follow_fork_mode_string == follow_fork_mode_child);
5234
5235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5236
5237 should_resume = follow_fork ();
5238
5239 parent = ecs->ptid;
5240 child = ecs->ws.value.related_pid;
5241
5242 /* At this point, the parent is marked running, and the
5243 child is marked stopped. */
5244
5245 /* If not resuming the parent, mark it stopped. */
5246 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5247 set_running (parent, 0);
5248
5249 /* If resuming the child, mark it running. */
5250 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5251 set_running (child, 1);
5252
5253 /* In non-stop mode, also resume the other branch. */
5254 if (!detach_fork && (non_stop
5255 || (sched_multi && target_is_non_stop_p ())))
5256 {
5257 if (follow_child)
5258 switch_to_thread (parent);
5259 else
5260 switch_to_thread (child);
5261
5262 ecs->event_thread = inferior_thread ();
5263 ecs->ptid = inferior_ptid;
5264 keep_going (ecs);
5265 }
5266
5267 if (follow_child)
5268 switch_to_thread (child);
5269 else
5270 switch_to_thread (parent);
5271
5272 ecs->event_thread = inferior_thread ();
5273 ecs->ptid = inferior_ptid;
5274
5275 if (should_resume)
5276 keep_going (ecs);
5277 else
5278 stop_waiting (ecs);
5279 return;
5280 }
5281 process_event_stop_test (ecs);
5282 return;
5283
5284 case TARGET_WAITKIND_VFORK_DONE:
5285 /* Done with the shared memory region. Re-insert breakpoints in
5286 the parent, and keep going. */
5287
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5291
5292 if (!ptid_equal (ecs->ptid, inferior_ptid))
5293 context_switch (ecs->ptid);
5294
5295 current_inferior ()->waiting_for_vfork_done = 0;
5296 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5297
5298 if (handle_stop_requested (ecs))
5299 return;
5300
5301 /* This also takes care of reinserting breakpoints in the
5302 previously locked inferior. */
5303 keep_going (ecs);
5304 return;
5305
5306 case TARGET_WAITKIND_EXECD:
5307 if (debug_infrun)
5308 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5309
5310 if (!ptid_equal (ecs->ptid, inferior_ptid))
5311 context_switch (ecs->ptid);
5312
5313 /* Do whatever is necessary to the parent branch of the vfork. */
5314 handle_vfork_child_exec_or_exit (1);
5315
5316 /* This causes the eventpoints and symbol table to be reset.
5317 Must do this now, before trying to determine whether to
5318 stop. */
5319 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5320
5321 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5322
5323 /* In follow_exec we may have deleted the original thread and
5324 created a new one. Make sure that the event thread is the
5325 execd thread for that case (this is a nop otherwise). */
5326 ecs->event_thread = inferior_thread ();
5327
5328 ecs->event_thread->control.stop_bpstat
5329 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5330 stop_pc, ecs->ptid, &ecs->ws);
5331
5332 /* Note that this may be referenced from inside
5333 bpstat_stop_status above, through inferior_has_execd. */
5334 xfree (ecs->ws.value.execd_pathname);
5335 ecs->ws.value.execd_pathname = NULL;
5336
5337 if (handle_stop_requested (ecs))
5338 return;
5339
5340 /* If no catchpoint triggered for this, then keep going. */
5341 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5342 {
5343 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5344 keep_going (ecs);
5345 return;
5346 }
5347 process_event_stop_test (ecs);
5348 return;
5349
5350 /* Be careful not to try to gather much state about a thread
5351 that's in a syscall. It's frequently a losing proposition. */
5352 case TARGET_WAITKIND_SYSCALL_ENTRY:
5353 if (debug_infrun)
5354 fprintf_unfiltered (gdb_stdlog,
5355 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5356 /* Getting the current syscall number. */
5357 if (handle_syscall_event (ecs) == 0)
5358 process_event_stop_test (ecs);
5359 return;
5360
5361 /* Before examining the threads further, step this thread to
5362 get it entirely out of the syscall. (We get notice of the
5363 event when the thread is just on the verge of exiting a
5364 syscall. Stepping one instruction seems to get it back
5365 into user code.) */
5366 case TARGET_WAITKIND_SYSCALL_RETURN:
5367 if (debug_infrun)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5370 if (handle_syscall_event (ecs) == 0)
5371 process_event_stop_test (ecs);
5372 return;
5373
5374 case TARGET_WAITKIND_STOPPED:
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5377 handle_signal_stop (ecs);
5378 return;
5379
5380 case TARGET_WAITKIND_NO_HISTORY:
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5383 /* Reverse execution: target ran out of history info. */
5384
5385 /* Switch to the stopped thread. */
5386 if (!ptid_equal (ecs->ptid, inferior_ptid))
5387 context_switch (ecs->ptid);
5388 if (debug_infrun)
5389 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5390
5391 delete_just_stopped_threads_single_step_breakpoints ();
5392 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5393
5394 if (handle_stop_requested (ecs))
5395 return;
5396
5397 observer_notify_no_history ();
5398 stop_waiting (ecs);
5399 return;
5400 }
5401 }
5402
5403 /* A wrapper around handle_inferior_event_1, which also makes sure
5404 that all temporary struct value objects that were created during
5405 the handling of the event get deleted at the end. */
5406
5407 static void
5408 handle_inferior_event (struct execution_control_state *ecs)
5409 {
5410 struct value *mark = value_mark ();
5411
5412 handle_inferior_event_1 (ecs);
5413 /* Purge all temporary values created during the event handling,
5414 as it could be a long time before we return to the command level
5415 where such values would otherwise be purged. */
5416 value_free_to_mark (mark);
5417 }
5418
5419 /* Restart threads back to what they were trying to do back when we
5420 paused them for an in-line step-over. The EVENT_THREAD thread is
5421 ignored. */
5422
5423 static void
5424 restart_threads (struct thread_info *event_thread)
5425 {
5426 struct thread_info *tp;
5427
5428 /* In case the instruction just stepped spawned a new thread. */
5429 update_thread_list ();
5430
5431 ALL_NON_EXITED_THREADS (tp)
5432 {
5433 if (tp == event_thread)
5434 {
5435 if (debug_infrun)
5436 fprintf_unfiltered (gdb_stdlog,
5437 "infrun: restart threads: "
5438 "[%s] is event thread\n",
5439 target_pid_to_str (tp->ptid));
5440 continue;
5441 }
5442
5443 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5444 {
5445 if (debug_infrun)
5446 fprintf_unfiltered (gdb_stdlog,
5447 "infrun: restart threads: "
5448 "[%s] not meant to be running\n",
5449 target_pid_to_str (tp->ptid));
5450 continue;
5451 }
5452
5453 if (tp->resumed)
5454 {
5455 if (debug_infrun)
5456 fprintf_unfiltered (gdb_stdlog,
5457 "infrun: restart threads: [%s] resumed\n",
5458 target_pid_to_str (tp->ptid));
5459 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5460 continue;
5461 }
5462
5463 if (thread_is_in_step_over_chain (tp))
5464 {
5465 if (debug_infrun)
5466 fprintf_unfiltered (gdb_stdlog,
5467 "infrun: restart threads: "
5468 "[%s] needs step-over\n",
5469 target_pid_to_str (tp->ptid));
5470 gdb_assert (!tp->resumed);
5471 continue;
5472 }
5473
5474
5475 if (tp->suspend.waitstatus_pending_p)
5476 {
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: restart threads: "
5480 "[%s] has pending status\n",
5481 target_pid_to_str (tp->ptid));
5482 tp->resumed = 1;
5483 continue;
5484 }
5485
5486 gdb_assert (!tp->stop_requested);
5487
5488 /* If some thread needs to start a step-over at this point, it
5489 should still be in the step-over queue, and thus skipped
5490 above. */
5491 if (thread_still_needs_step_over (tp))
5492 {
5493 internal_error (__FILE__, __LINE__,
5494 "thread [%s] needs a step-over, but not in "
5495 "step-over queue\n",
5496 target_pid_to_str (tp->ptid));
5497 }
5498
5499 if (currently_stepping (tp))
5500 {
5501 if (debug_infrun)
5502 fprintf_unfiltered (gdb_stdlog,
5503 "infrun: restart threads: [%s] was stepping\n",
5504 target_pid_to_str (tp->ptid));
5505 keep_going_stepped_thread (tp);
5506 }
5507 else
5508 {
5509 struct execution_control_state ecss;
5510 struct execution_control_state *ecs = &ecss;
5511
5512 if (debug_infrun)
5513 fprintf_unfiltered (gdb_stdlog,
5514 "infrun: restart threads: [%s] continuing\n",
5515 target_pid_to_str (tp->ptid));
5516 reset_ecs (ecs, tp);
5517 switch_to_thread (tp->ptid);
5518 keep_going_pass_signal (ecs);
5519 }
5520 }
5521 }
5522
5523 /* Callback for iterate_over_threads. Find a resumed thread that has
5524 a pending waitstatus. */
5525
5526 static int
5527 resumed_thread_with_pending_status (struct thread_info *tp,
5528 void *arg)
5529 {
5530 return (tp->resumed
5531 && tp->suspend.waitstatus_pending_p);
5532 }
5533
5534 /* Called when we get an event that may finish an in-line or
5535 out-of-line (displaced stepping) step-over started previously.
5536 Return true if the event is processed and we should go back to the
5537 event loop; false if the caller should continue processing the
5538 event. */
5539
5540 static int
5541 finish_step_over (struct execution_control_state *ecs)
5542 {
5543 int had_step_over_info;
5544
5545 displaced_step_fixup (ecs->ptid,
5546 ecs->event_thread->suspend.stop_signal);
5547
5548 had_step_over_info = step_over_info_valid_p ();
5549
5550 if (had_step_over_info)
5551 {
5552 /* If we're stepping over a breakpoint with all threads locked,
5553 then only the thread that was stepped should be reporting
5554 back an event. */
5555 gdb_assert (ecs->event_thread->control.trap_expected);
5556
5557 clear_step_over_info ();
5558 }
5559
5560 if (!target_is_non_stop_p ())
5561 return 0;
5562
5563 /* Start a new step-over in another thread if there's one that
5564 needs it. */
5565 start_step_over ();
5566
5567 /* If we were stepping over a breakpoint before, and haven't started
5568 a new in-line step-over sequence, then restart all other threads
5569 (except the event thread). We can't do this in all-stop, as then
5570 e.g., we wouldn't be able to issue any other remote packet until
5571 these other threads stop. */
5572 if (had_step_over_info && !step_over_info_valid_p ())
5573 {
5574 struct thread_info *pending;
5575
5576 /* If we only have threads with pending statuses, the restart
5577 below won't restart any thread and so nothing re-inserts the
5578 breakpoint we just stepped over. But we need it inserted
5579 when we later process the pending events, otherwise if
5580 another thread has a pending event for this breakpoint too,
5581 we'd discard its event (because the breakpoint that
5582 originally caused the event was no longer inserted). */
5583 context_switch (ecs->ptid);
5584 insert_breakpoints ();
5585
5586 restart_threads (ecs->event_thread);
5587
5588 /* If we have events pending, go through handle_inferior_event
5589 again, picking up a pending event at random. This avoids
5590 thread starvation. */
5591
5592 /* But not if we just stepped over a watchpoint in order to let
5593 the instruction execute so we can evaluate its expression.
5594 The set of watchpoints that triggered is recorded in the
5595 breakpoint objects themselves (see bp->watchpoint_triggered).
5596 If we processed another event first, that other event could
5597 clobber this info. */
5598 if (ecs->event_thread->stepping_over_watchpoint)
5599 return 0;
5600
5601 pending = iterate_over_threads (resumed_thread_with_pending_status,
5602 NULL);
5603 if (pending != NULL)
5604 {
5605 struct thread_info *tp = ecs->event_thread;
5606 struct regcache *regcache;
5607
5608 if (debug_infrun)
5609 {
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: found resumed threads with "
5612 "pending events, saving status\n");
5613 }
5614
5615 gdb_assert (pending != tp);
5616
5617 /* Record the event thread's event for later. */
5618 save_waitstatus (tp, &ecs->ws);
5619 /* This was cleared early, by handle_inferior_event. Set it
5620 so this pending event is considered by
5621 do_target_wait. */
5622 tp->resumed = 1;
5623
5624 gdb_assert (!tp->executing);
5625
5626 regcache = get_thread_regcache (tp->ptid);
5627 tp->suspend.stop_pc = regcache_read_pc (regcache);
5628
5629 if (debug_infrun)
5630 {
5631 fprintf_unfiltered (gdb_stdlog,
5632 "infrun: saved stop_pc=%s for %s "
5633 "(currently_stepping=%d)\n",
5634 paddress (target_gdbarch (),
5635 tp->suspend.stop_pc),
5636 target_pid_to_str (tp->ptid),
5637 currently_stepping (tp));
5638 }
5639
5640 /* This in-line step-over finished; clear this so we won't
5641 start a new one. This is what handle_signal_stop would
5642 do, if we returned false. */
5643 tp->stepping_over_breakpoint = 0;
5644
5645 /* Wake up the event loop again. */
5646 mark_async_event_handler (infrun_async_inferior_event_token);
5647
5648 prepare_to_wait (ecs);
5649 return 1;
5650 }
5651 }
5652
5653 return 0;
5654 }
5655
5656 /* Come here when the program has stopped with a signal. */
5657
5658 static void
5659 handle_signal_stop (struct execution_control_state *ecs)
5660 {
5661 struct frame_info *frame;
5662 struct gdbarch *gdbarch;
5663 int stopped_by_watchpoint;
5664 enum stop_kind stop_soon;
5665 int random_signal;
5666
5667 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5668
5669 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5670
5671 /* Do we need to clean up the state of a thread that has
5672 completed a displaced single-step? (Doing so usually affects
5673 the PC, so do it here, before we set stop_pc.) */
5674 if (finish_step_over (ecs))
5675 return;
5676
5677 /* If we either finished a single-step or hit a breakpoint, but
5678 the user wanted this thread to be stopped, pretend we got a
5679 SIG0 (generic unsignaled stop). */
5680 if (ecs->event_thread->stop_requested
5681 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5682 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5683
5684 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5685
5686 if (debug_infrun)
5687 {
5688 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5689 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5690 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5691
5692 inferior_ptid = ecs->ptid;
5693
5694 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5695 paddress (gdbarch, stop_pc));
5696 if (target_stopped_by_watchpoint ())
5697 {
5698 CORE_ADDR addr;
5699
5700 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5701
5702 if (target_stopped_data_address (&current_target, &addr))
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: stopped data address = %s\n",
5705 paddress (gdbarch, addr));
5706 else
5707 fprintf_unfiltered (gdb_stdlog,
5708 "infrun: (no data address available)\n");
5709 }
5710 }
5711
5712 /* This is originated from start_remote(), start_inferior() and
5713 shared libraries hook functions. */
5714 stop_soon = get_inferior_stop_soon (ecs->ptid);
5715 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5716 {
5717 if (!ptid_equal (ecs->ptid, inferior_ptid))
5718 context_switch (ecs->ptid);
5719 if (debug_infrun)
5720 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5721 stop_print_frame = 1;
5722 stop_waiting (ecs);
5723 return;
5724 }
5725
5726 /* This originates from attach_command(). We need to overwrite
5727 the stop_signal here, because some kernels don't ignore a
5728 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5729 See more comments in inferior.h. On the other hand, if we
5730 get a non-SIGSTOP, report it to the user - assume the backend
5731 will handle the SIGSTOP if it should show up later.
5732
5733 Also consider that the attach is complete when we see a
5734 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5735 target extended-remote report it instead of a SIGSTOP
5736 (e.g. gdbserver). We already rely on SIGTRAP being our
5737 signal, so this is no exception.
5738
5739 Also consider that the attach is complete when we see a
5740 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5741 the target to stop all threads of the inferior, in case the
5742 low level attach operation doesn't stop them implicitly. If
5743 they weren't stopped implicitly, then the stub will report a
5744 GDB_SIGNAL_0, meaning: stopped for no particular reason
5745 other than GDB's request. */
5746 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5747 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5749 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5750 {
5751 stop_print_frame = 1;
5752 stop_waiting (ecs);
5753 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5754 return;
5755 }
5756
5757 /* See if something interesting happened to the non-current thread. If
5758 so, then switch to that thread. */
5759 if (!ptid_equal (ecs->ptid, inferior_ptid))
5760 {
5761 if (debug_infrun)
5762 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5763
5764 context_switch (ecs->ptid);
5765
5766 if (deprecated_context_hook)
5767 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5768 }
5769
5770 /* At this point, get hold of the now-current thread's frame. */
5771 frame = get_current_frame ();
5772 gdbarch = get_frame_arch (frame);
5773
5774 /* Pull the single step breakpoints out of the target. */
5775 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5776 {
5777 struct regcache *regcache;
5778 struct address_space *aspace;
5779 CORE_ADDR pc;
5780
5781 regcache = get_thread_regcache (ecs->ptid);
5782 aspace = get_regcache_aspace (regcache);
5783 pc = regcache_read_pc (regcache);
5784
5785 /* However, before doing so, if this single-step breakpoint was
5786 actually for another thread, set this thread up for moving
5787 past it. */
5788 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5789 aspace, pc))
5790 {
5791 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5792 {
5793 if (debug_infrun)
5794 {
5795 fprintf_unfiltered (gdb_stdlog,
5796 "infrun: [%s] hit another thread's "
5797 "single-step breakpoint\n",
5798 target_pid_to_str (ecs->ptid));
5799 }
5800 ecs->hit_singlestep_breakpoint = 1;
5801 }
5802 }
5803 else
5804 {
5805 if (debug_infrun)
5806 {
5807 fprintf_unfiltered (gdb_stdlog,
5808 "infrun: [%s] hit its "
5809 "single-step breakpoint\n",
5810 target_pid_to_str (ecs->ptid));
5811 }
5812 }
5813 }
5814 delete_just_stopped_threads_single_step_breakpoints ();
5815
5816 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5817 && ecs->event_thread->control.trap_expected
5818 && ecs->event_thread->stepping_over_watchpoint)
5819 stopped_by_watchpoint = 0;
5820 else
5821 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5822
5823 /* If necessary, step over this watchpoint. We'll be back to display
5824 it in a moment. */
5825 if (stopped_by_watchpoint
5826 && (target_have_steppable_watchpoint
5827 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5828 {
5829 /* At this point, we are stopped at an instruction which has
5830 attempted to write to a piece of memory under control of
5831 a watchpoint. The instruction hasn't actually executed
5832 yet. If we were to evaluate the watchpoint expression
5833 now, we would get the old value, and therefore no change
5834 would seem to have occurred.
5835
5836 In order to make watchpoints work `right', we really need
5837 to complete the memory write, and then evaluate the
5838 watchpoint expression. We do this by single-stepping the
5839 target.
5840
5841 It may not be necessary to disable the watchpoint to step over
5842 it. For example, the PA can (with some kernel cooperation)
5843 single step over a watchpoint without disabling the watchpoint.
5844
5845 It is far more common to need to disable a watchpoint to step
5846 the inferior over it. If we have non-steppable watchpoints,
5847 we must disable the current watchpoint; it's simplest to
5848 disable all watchpoints.
5849
5850 Any breakpoint at PC must also be stepped over -- if there's
5851 one, it will have already triggered before the watchpoint
5852 triggered, and we either already reported it to the user, or
5853 it didn't cause a stop and we called keep_going. In either
5854 case, if there was a breakpoint at PC, we must be trying to
5855 step past it. */
5856 ecs->event_thread->stepping_over_watchpoint = 1;
5857 keep_going (ecs);
5858 return;
5859 }
5860
5861 ecs->event_thread->stepping_over_breakpoint = 0;
5862 ecs->event_thread->stepping_over_watchpoint = 0;
5863 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5864 ecs->event_thread->control.stop_step = 0;
5865 stop_print_frame = 1;
5866 stopped_by_random_signal = 0;
5867
5868 /* Hide inlined functions starting here, unless we just performed stepi or
5869 nexti. After stepi and nexti, always show the innermost frame (not any
5870 inline function call sites). */
5871 if (ecs->event_thread->control.step_range_end != 1)
5872 {
5873 struct address_space *aspace =
5874 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5875
5876 /* skip_inline_frames is expensive, so we avoid it if we can
5877 determine that the address is one where functions cannot have
5878 been inlined. This improves performance with inferiors that
5879 load a lot of shared libraries, because the solib event
5880 breakpoint is defined as the address of a function (i.e. not
5881 inline). Note that we have to check the previous PC as well
5882 as the current one to catch cases when we have just
5883 single-stepped off a breakpoint prior to reinstating it.
5884 Note that we're assuming that the code we single-step to is
5885 not inline, but that's not definitive: there's nothing
5886 preventing the event breakpoint function from containing
5887 inlined code, and the single-step ending up there. If the
5888 user had set a breakpoint on that inlined code, the missing
5889 skip_inline_frames call would break things. Fortunately
5890 that's an extremely unlikely scenario. */
5891 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5892 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5893 && ecs->event_thread->control.trap_expected
5894 && pc_at_non_inline_function (aspace,
5895 ecs->event_thread->prev_pc,
5896 &ecs->ws)))
5897 {
5898 skip_inline_frames (ecs->ptid);
5899
5900 /* Re-fetch current thread's frame in case that invalidated
5901 the frame cache. */
5902 frame = get_current_frame ();
5903 gdbarch = get_frame_arch (frame);
5904 }
5905 }
5906
5907 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5908 && ecs->event_thread->control.trap_expected
5909 && gdbarch_single_step_through_delay_p (gdbarch)
5910 && currently_stepping (ecs->event_thread))
5911 {
5912 /* We're trying to step off a breakpoint. Turns out that we're
5913 also on an instruction that needs to be stepped multiple
5914 times before it's been fully executing. E.g., architectures
5915 with a delay slot. It needs to be stepped twice, once for
5916 the instruction and once for the delay slot. */
5917 int step_through_delay
5918 = gdbarch_single_step_through_delay (gdbarch, frame);
5919
5920 if (debug_infrun && step_through_delay)
5921 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5922 if (ecs->event_thread->control.step_range_end == 0
5923 && step_through_delay)
5924 {
5925 /* The user issued a continue when stopped at a breakpoint.
5926 Set up for another trap and get out of here. */
5927 ecs->event_thread->stepping_over_breakpoint = 1;
5928 keep_going (ecs);
5929 return;
5930 }
5931 else if (step_through_delay)
5932 {
5933 /* The user issued a step when stopped at a breakpoint.
5934 Maybe we should stop, maybe we should not - the delay
5935 slot *might* correspond to a line of source. In any
5936 case, don't decide that here, just set
5937 ecs->stepping_over_breakpoint, making sure we
5938 single-step again before breakpoints are re-inserted. */
5939 ecs->event_thread->stepping_over_breakpoint = 1;
5940 }
5941 }
5942
5943 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5944 handles this event. */
5945 ecs->event_thread->control.stop_bpstat
5946 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5947 stop_pc, ecs->ptid, &ecs->ws);
5948
5949 /* Following in case break condition called a
5950 function. */
5951 stop_print_frame = 1;
5952
5953 /* This is where we handle "moribund" watchpoints. Unlike
5954 software breakpoints traps, hardware watchpoint traps are
5955 always distinguishable from random traps. If no high-level
5956 watchpoint is associated with the reported stop data address
5957 anymore, then the bpstat does not explain the signal ---
5958 simply make sure to ignore it if `stopped_by_watchpoint' is
5959 set. */
5960
5961 if (debug_infrun
5962 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5963 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5964 GDB_SIGNAL_TRAP)
5965 && stopped_by_watchpoint)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: no user watchpoint explains "
5968 "watchpoint SIGTRAP, ignoring\n");
5969
5970 /* NOTE: cagney/2003-03-29: These checks for a random signal
5971 at one stage in the past included checks for an inferior
5972 function call's call dummy's return breakpoint. The original
5973 comment, that went with the test, read:
5974
5975 ``End of a stack dummy. Some systems (e.g. Sony news) give
5976 another signal besides SIGTRAP, so check here as well as
5977 above.''
5978
5979 If someone ever tries to get call dummys on a
5980 non-executable stack to work (where the target would stop
5981 with something like a SIGSEGV), then those tests might need
5982 to be re-instated. Given, however, that the tests were only
5983 enabled when momentary breakpoints were not being used, I
5984 suspect that it won't be the case.
5985
5986 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5987 be necessary for call dummies on a non-executable stack on
5988 SPARC. */
5989
5990 /* See if the breakpoints module can explain the signal. */
5991 random_signal
5992 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5993 ecs->event_thread->suspend.stop_signal);
5994
5995 /* Maybe this was a trap for a software breakpoint that has since
5996 been removed. */
5997 if (random_signal && target_stopped_by_sw_breakpoint ())
5998 {
5999 if (program_breakpoint_here_p (gdbarch, stop_pc))
6000 {
6001 struct regcache *regcache;
6002 int decr_pc;
6003
6004 /* Re-adjust PC to what the program would see if GDB was not
6005 debugging it. */
6006 regcache = get_thread_regcache (ecs->event_thread->ptid);
6007 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6008 if (decr_pc != 0)
6009 {
6010 gdb::optional<scoped_restore_tmpl<int>>
6011 restore_operation_disable;
6012
6013 if (record_full_is_used ())
6014 restore_operation_disable.emplace
6015 (record_full_gdb_operation_disable_set ());
6016
6017 regcache_write_pc (regcache, stop_pc + decr_pc);
6018 }
6019 }
6020 else
6021 {
6022 /* A delayed software breakpoint event. Ignore the trap. */
6023 if (debug_infrun)
6024 fprintf_unfiltered (gdb_stdlog,
6025 "infrun: delayed software breakpoint "
6026 "trap, ignoring\n");
6027 random_signal = 0;
6028 }
6029 }
6030
6031 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6032 has since been removed. */
6033 if (random_signal && target_stopped_by_hw_breakpoint ())
6034 {
6035 /* A delayed hardware breakpoint event. Ignore the trap. */
6036 if (debug_infrun)
6037 fprintf_unfiltered (gdb_stdlog,
6038 "infrun: delayed hardware breakpoint/watchpoint "
6039 "trap, ignoring\n");
6040 random_signal = 0;
6041 }
6042
6043 /* If not, perhaps stepping/nexting can. */
6044 if (random_signal)
6045 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6046 && currently_stepping (ecs->event_thread));
6047
6048 /* Perhaps the thread hit a single-step breakpoint of _another_
6049 thread. Single-step breakpoints are transparent to the
6050 breakpoints module. */
6051 if (random_signal)
6052 random_signal = !ecs->hit_singlestep_breakpoint;
6053
6054 /* No? Perhaps we got a moribund watchpoint. */
6055 if (random_signal)
6056 random_signal = !stopped_by_watchpoint;
6057
6058 /* Always stop if the user explicitly requested this thread to
6059 remain stopped. */
6060 if (ecs->event_thread->stop_requested)
6061 {
6062 random_signal = 1;
6063 if (debug_infrun)
6064 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6065 }
6066
6067 /* For the program's own signals, act according to
6068 the signal handling tables. */
6069
6070 if (random_signal)
6071 {
6072 /* Signal not for debugging purposes. */
6073 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6074 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6075
6076 if (debug_infrun)
6077 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6078 gdb_signal_to_symbol_string (stop_signal));
6079
6080 stopped_by_random_signal = 1;
6081
6082 /* Always stop on signals if we're either just gaining control
6083 of the program, or the user explicitly requested this thread
6084 to remain stopped. */
6085 if (stop_soon != NO_STOP_QUIETLY
6086 || ecs->event_thread->stop_requested
6087 || (!inf->detaching
6088 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6089 {
6090 stop_waiting (ecs);
6091 return;
6092 }
6093
6094 /* Notify observers the signal has "handle print" set. Note we
6095 returned early above if stopping; normal_stop handles the
6096 printing in that case. */
6097 if (signal_print[ecs->event_thread->suspend.stop_signal])
6098 {
6099 /* The signal table tells us to print about this signal. */
6100 target_terminal::ours_for_output ();
6101 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6102 target_terminal::inferior ();
6103 }
6104
6105 /* Clear the signal if it should not be passed. */
6106 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6108
6109 if (ecs->event_thread->prev_pc == stop_pc
6110 && ecs->event_thread->control.trap_expected
6111 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6112 {
6113 /* We were just starting a new sequence, attempting to
6114 single-step off of a breakpoint and expecting a SIGTRAP.
6115 Instead this signal arrives. This signal will take us out
6116 of the stepping range so GDB needs to remember to, when
6117 the signal handler returns, resume stepping off that
6118 breakpoint. */
6119 /* To simplify things, "continue" is forced to use the same
6120 code paths as single-step - set a breakpoint at the
6121 signal return address and then, once hit, step off that
6122 breakpoint. */
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog,
6125 "infrun: signal arrived while stepping over "
6126 "breakpoint\n");
6127
6128 insert_hp_step_resume_breakpoint_at_frame (frame);
6129 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6130 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6131 ecs->event_thread->control.trap_expected = 0;
6132
6133 /* If we were nexting/stepping some other thread, switch to
6134 it, so that we don't continue it, losing control. */
6135 if (!switch_back_to_stepped_thread (ecs))
6136 keep_going (ecs);
6137 return;
6138 }
6139
6140 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6141 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6142 || ecs->event_thread->control.step_range_end == 1)
6143 && frame_id_eq (get_stack_frame_id (frame),
6144 ecs->event_thread->control.step_stack_frame_id)
6145 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6146 {
6147 /* The inferior is about to take a signal that will take it
6148 out of the single step range. Set a breakpoint at the
6149 current PC (which is presumably where the signal handler
6150 will eventually return) and then allow the inferior to
6151 run free.
6152
6153 Note that this is only needed for a signal delivered
6154 while in the single-step range. Nested signals aren't a
6155 problem as they eventually all return. */
6156 if (debug_infrun)
6157 fprintf_unfiltered (gdb_stdlog,
6158 "infrun: signal may take us out of "
6159 "single-step range\n");
6160
6161 clear_step_over_info ();
6162 insert_hp_step_resume_breakpoint_at_frame (frame);
6163 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6164 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6165 ecs->event_thread->control.trap_expected = 0;
6166 keep_going (ecs);
6167 return;
6168 }
6169
6170 /* Note: step_resume_breakpoint may be non-NULL. This occures
6171 when either there's a nested signal, or when there's a
6172 pending signal enabled just as the signal handler returns
6173 (leaving the inferior at the step-resume-breakpoint without
6174 actually executing it). Either way continue until the
6175 breakpoint is really hit. */
6176
6177 if (!switch_back_to_stepped_thread (ecs))
6178 {
6179 if (debug_infrun)
6180 fprintf_unfiltered (gdb_stdlog,
6181 "infrun: random signal, keep going\n");
6182
6183 keep_going (ecs);
6184 }
6185 return;
6186 }
6187
6188 process_event_stop_test (ecs);
6189 }
6190
6191 /* Come here when we've got some debug event / signal we can explain
6192 (IOW, not a random signal), and test whether it should cause a
6193 stop, or whether we should resume the inferior (transparently).
6194 E.g., could be a breakpoint whose condition evaluates false; we
6195 could be still stepping within the line; etc. */
6196
6197 static void
6198 process_event_stop_test (struct execution_control_state *ecs)
6199 {
6200 struct symtab_and_line stop_pc_sal;
6201 struct frame_info *frame;
6202 struct gdbarch *gdbarch;
6203 CORE_ADDR jmp_buf_pc;
6204 struct bpstat_what what;
6205
6206 /* Handle cases caused by hitting a breakpoint. */
6207
6208 frame = get_current_frame ();
6209 gdbarch = get_frame_arch (frame);
6210
6211 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6212
6213 if (what.call_dummy)
6214 {
6215 stop_stack_dummy = what.call_dummy;
6216 }
6217
6218 /* A few breakpoint types have callbacks associated (e.g.,
6219 bp_jit_event). Run them now. */
6220 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6221
6222 /* If we hit an internal event that triggers symbol changes, the
6223 current frame will be invalidated within bpstat_what (e.g., if we
6224 hit an internal solib event). Re-fetch it. */
6225 frame = get_current_frame ();
6226 gdbarch = get_frame_arch (frame);
6227
6228 switch (what.main_action)
6229 {
6230 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6231 /* If we hit the breakpoint at longjmp while stepping, we
6232 install a momentary breakpoint at the target of the
6233 jmp_buf. */
6234
6235 if (debug_infrun)
6236 fprintf_unfiltered (gdb_stdlog,
6237 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6238
6239 ecs->event_thread->stepping_over_breakpoint = 1;
6240
6241 if (what.is_longjmp)
6242 {
6243 struct value *arg_value;
6244
6245 /* If we set the longjmp breakpoint via a SystemTap probe,
6246 then use it to extract the arguments. The destination PC
6247 is the third argument to the probe. */
6248 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6249 if (arg_value)
6250 {
6251 jmp_buf_pc = value_as_address (arg_value);
6252 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6253 }
6254 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6255 || !gdbarch_get_longjmp_target (gdbarch,
6256 frame, &jmp_buf_pc))
6257 {
6258 if (debug_infrun)
6259 fprintf_unfiltered (gdb_stdlog,
6260 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6261 "(!gdbarch_get_longjmp_target)\n");
6262 keep_going (ecs);
6263 return;
6264 }
6265
6266 /* Insert a breakpoint at resume address. */
6267 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6268 }
6269 else
6270 check_exception_resume (ecs, frame);
6271 keep_going (ecs);
6272 return;
6273
6274 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6275 {
6276 struct frame_info *init_frame;
6277
6278 /* There are several cases to consider.
6279
6280 1. The initiating frame no longer exists. In this case we
6281 must stop, because the exception or longjmp has gone too
6282 far.
6283
6284 2. The initiating frame exists, and is the same as the
6285 current frame. We stop, because the exception or longjmp
6286 has been caught.
6287
6288 3. The initiating frame exists and is different from the
6289 current frame. This means the exception or longjmp has
6290 been caught beneath the initiating frame, so keep going.
6291
6292 4. longjmp breakpoint has been placed just to protect
6293 against stale dummy frames and user is not interested in
6294 stopping around longjmps. */
6295
6296 if (debug_infrun)
6297 fprintf_unfiltered (gdb_stdlog,
6298 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6299
6300 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6301 != NULL);
6302 delete_exception_resume_breakpoint (ecs->event_thread);
6303
6304 if (what.is_longjmp)
6305 {
6306 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6307
6308 if (!frame_id_p (ecs->event_thread->initiating_frame))
6309 {
6310 /* Case 4. */
6311 keep_going (ecs);
6312 return;
6313 }
6314 }
6315
6316 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6317
6318 if (init_frame)
6319 {
6320 struct frame_id current_id
6321 = get_frame_id (get_current_frame ());
6322 if (frame_id_eq (current_id,
6323 ecs->event_thread->initiating_frame))
6324 {
6325 /* Case 2. Fall through. */
6326 }
6327 else
6328 {
6329 /* Case 3. */
6330 keep_going (ecs);
6331 return;
6332 }
6333 }
6334
6335 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6336 exists. */
6337 delete_step_resume_breakpoint (ecs->event_thread);
6338
6339 end_stepping_range (ecs);
6340 }
6341 return;
6342
6343 case BPSTAT_WHAT_SINGLE:
6344 if (debug_infrun)
6345 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6346 ecs->event_thread->stepping_over_breakpoint = 1;
6347 /* Still need to check other stuff, at least the case where we
6348 are stepping and step out of the right range. */
6349 break;
6350
6351 case BPSTAT_WHAT_STEP_RESUME:
6352 if (debug_infrun)
6353 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6354
6355 delete_step_resume_breakpoint (ecs->event_thread);
6356 if (ecs->event_thread->control.proceed_to_finish
6357 && execution_direction == EXEC_REVERSE)
6358 {
6359 struct thread_info *tp = ecs->event_thread;
6360
6361 /* We are finishing a function in reverse, and just hit the
6362 step-resume breakpoint at the start address of the
6363 function, and we're almost there -- just need to back up
6364 by one more single-step, which should take us back to the
6365 function call. */
6366 tp->control.step_range_start = tp->control.step_range_end = 1;
6367 keep_going (ecs);
6368 return;
6369 }
6370 fill_in_stop_func (gdbarch, ecs);
6371 if (stop_pc == ecs->stop_func_start
6372 && execution_direction == EXEC_REVERSE)
6373 {
6374 /* We are stepping over a function call in reverse, and just
6375 hit the step-resume breakpoint at the start address of
6376 the function. Go back to single-stepping, which should
6377 take us back to the function call. */
6378 ecs->event_thread->stepping_over_breakpoint = 1;
6379 keep_going (ecs);
6380 return;
6381 }
6382 break;
6383
6384 case BPSTAT_WHAT_STOP_NOISY:
6385 if (debug_infrun)
6386 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6387 stop_print_frame = 1;
6388
6389 /* Assume the thread stopped for a breapoint. We'll still check
6390 whether a/the breakpoint is there when the thread is next
6391 resumed. */
6392 ecs->event_thread->stepping_over_breakpoint = 1;
6393
6394 stop_waiting (ecs);
6395 return;
6396
6397 case BPSTAT_WHAT_STOP_SILENT:
6398 if (debug_infrun)
6399 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6400 stop_print_frame = 0;
6401
6402 /* Assume the thread stopped for a breapoint. We'll still check
6403 whether a/the breakpoint is there when the thread is next
6404 resumed. */
6405 ecs->event_thread->stepping_over_breakpoint = 1;
6406 stop_waiting (ecs);
6407 return;
6408
6409 case BPSTAT_WHAT_HP_STEP_RESUME:
6410 if (debug_infrun)
6411 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6412
6413 delete_step_resume_breakpoint (ecs->event_thread);
6414 if (ecs->event_thread->step_after_step_resume_breakpoint)
6415 {
6416 /* Back when the step-resume breakpoint was inserted, we
6417 were trying to single-step off a breakpoint. Go back to
6418 doing that. */
6419 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6420 ecs->event_thread->stepping_over_breakpoint = 1;
6421 keep_going (ecs);
6422 return;
6423 }
6424 break;
6425
6426 case BPSTAT_WHAT_KEEP_CHECKING:
6427 break;
6428 }
6429
6430 /* If we stepped a permanent breakpoint and we had a high priority
6431 step-resume breakpoint for the address we stepped, but we didn't
6432 hit it, then we must have stepped into the signal handler. The
6433 step-resume was only necessary to catch the case of _not_
6434 stepping into the handler, so delete it, and fall through to
6435 checking whether the step finished. */
6436 if (ecs->event_thread->stepped_breakpoint)
6437 {
6438 struct breakpoint *sr_bp
6439 = ecs->event_thread->control.step_resume_breakpoint;
6440
6441 if (sr_bp != NULL
6442 && sr_bp->loc->permanent
6443 && sr_bp->type == bp_hp_step_resume
6444 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6445 {
6446 if (debug_infrun)
6447 fprintf_unfiltered (gdb_stdlog,
6448 "infrun: stepped permanent breakpoint, stopped in "
6449 "handler\n");
6450 delete_step_resume_breakpoint (ecs->event_thread);
6451 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6452 }
6453 }
6454
6455 /* We come here if we hit a breakpoint but should not stop for it.
6456 Possibly we also were stepping and should stop for that. So fall
6457 through and test for stepping. But, if not stepping, do not
6458 stop. */
6459
6460 /* In all-stop mode, if we're currently stepping but have stopped in
6461 some other thread, we need to switch back to the stepped thread. */
6462 if (switch_back_to_stepped_thread (ecs))
6463 return;
6464
6465 if (ecs->event_thread->control.step_resume_breakpoint)
6466 {
6467 if (debug_infrun)
6468 fprintf_unfiltered (gdb_stdlog,
6469 "infrun: step-resume breakpoint is inserted\n");
6470
6471 /* Having a step-resume breakpoint overrides anything
6472 else having to do with stepping commands until
6473 that breakpoint is reached. */
6474 keep_going (ecs);
6475 return;
6476 }
6477
6478 if (ecs->event_thread->control.step_range_end == 0)
6479 {
6480 if (debug_infrun)
6481 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6482 /* Likewise if we aren't even stepping. */
6483 keep_going (ecs);
6484 return;
6485 }
6486
6487 /* Re-fetch current thread's frame in case the code above caused
6488 the frame cache to be re-initialized, making our FRAME variable
6489 a dangling pointer. */
6490 frame = get_current_frame ();
6491 gdbarch = get_frame_arch (frame);
6492 fill_in_stop_func (gdbarch, ecs);
6493
6494 /* If stepping through a line, keep going if still within it.
6495
6496 Note that step_range_end is the address of the first instruction
6497 beyond the step range, and NOT the address of the last instruction
6498 within it!
6499
6500 Note also that during reverse execution, we may be stepping
6501 through a function epilogue and therefore must detect when
6502 the current-frame changes in the middle of a line. */
6503
6504 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6505 && (execution_direction != EXEC_REVERSE
6506 || frame_id_eq (get_frame_id (frame),
6507 ecs->event_thread->control.step_frame_id)))
6508 {
6509 if (debug_infrun)
6510 fprintf_unfiltered
6511 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6512 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6513 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6514
6515 /* Tentatively re-enable range stepping; `resume' disables it if
6516 necessary (e.g., if we're stepping over a breakpoint or we
6517 have software watchpoints). */
6518 ecs->event_thread->control.may_range_step = 1;
6519
6520 /* When stepping backward, stop at beginning of line range
6521 (unless it's the function entry point, in which case
6522 keep going back to the call point). */
6523 if (stop_pc == ecs->event_thread->control.step_range_start
6524 && stop_pc != ecs->stop_func_start
6525 && execution_direction == EXEC_REVERSE)
6526 end_stepping_range (ecs);
6527 else
6528 keep_going (ecs);
6529
6530 return;
6531 }
6532
6533 /* We stepped out of the stepping range. */
6534
6535 /* If we are stepping at the source level and entered the runtime
6536 loader dynamic symbol resolution code...
6537
6538 EXEC_FORWARD: we keep on single stepping until we exit the run
6539 time loader code and reach the callee's address.
6540
6541 EXEC_REVERSE: we've already executed the callee (backward), and
6542 the runtime loader code is handled just like any other
6543 undebuggable function call. Now we need only keep stepping
6544 backward through the trampoline code, and that's handled further
6545 down, so there is nothing for us to do here. */
6546
6547 if (execution_direction != EXEC_REVERSE
6548 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6549 && in_solib_dynsym_resolve_code (stop_pc))
6550 {
6551 CORE_ADDR pc_after_resolver =
6552 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6553
6554 if (debug_infrun)
6555 fprintf_unfiltered (gdb_stdlog,
6556 "infrun: stepped into dynsym resolve code\n");
6557
6558 if (pc_after_resolver)
6559 {
6560 /* Set up a step-resume breakpoint at the address
6561 indicated by SKIP_SOLIB_RESOLVER. */
6562 symtab_and_line sr_sal;
6563 sr_sal.pc = pc_after_resolver;
6564 sr_sal.pspace = get_frame_program_space (frame);
6565
6566 insert_step_resume_breakpoint_at_sal (gdbarch,
6567 sr_sal, null_frame_id);
6568 }
6569
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 if (ecs->event_thread->control.step_range_end != 1
6575 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6576 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6577 && get_frame_type (frame) == SIGTRAMP_FRAME)
6578 {
6579 if (debug_infrun)
6580 fprintf_unfiltered (gdb_stdlog,
6581 "infrun: stepped into signal trampoline\n");
6582 /* The inferior, while doing a "step" or "next", has ended up in
6583 a signal trampoline (either by a signal being delivered or by
6584 the signal handler returning). Just single-step until the
6585 inferior leaves the trampoline (either by calling the handler
6586 or returning). */
6587 keep_going (ecs);
6588 return;
6589 }
6590
6591 /* If we're in the return path from a shared library trampoline,
6592 we want to proceed through the trampoline when stepping. */
6593 /* macro/2012-04-25: This needs to come before the subroutine
6594 call check below as on some targets return trampolines look
6595 like subroutine calls (MIPS16 return thunks). */
6596 if (gdbarch_in_solib_return_trampoline (gdbarch,
6597 stop_pc, ecs->stop_func_name)
6598 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6599 {
6600 /* Determine where this trampoline returns. */
6601 CORE_ADDR real_stop_pc;
6602
6603 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6604
6605 if (debug_infrun)
6606 fprintf_unfiltered (gdb_stdlog,
6607 "infrun: stepped into solib return tramp\n");
6608
6609 /* Only proceed through if we know where it's going. */
6610 if (real_stop_pc)
6611 {
6612 /* And put the step-breakpoint there and go until there. */
6613 symtab_and_line sr_sal;
6614 sr_sal.pc = real_stop_pc;
6615 sr_sal.section = find_pc_overlay (sr_sal.pc);
6616 sr_sal.pspace = get_frame_program_space (frame);
6617
6618 /* Do not specify what the fp should be when we stop since
6619 on some machines the prologue is where the new fp value
6620 is established. */
6621 insert_step_resume_breakpoint_at_sal (gdbarch,
6622 sr_sal, null_frame_id);
6623
6624 /* Restart without fiddling with the step ranges or
6625 other state. */
6626 keep_going (ecs);
6627 return;
6628 }
6629 }
6630
6631 /* Check for subroutine calls. The check for the current frame
6632 equalling the step ID is not necessary - the check of the
6633 previous frame's ID is sufficient - but it is a common case and
6634 cheaper than checking the previous frame's ID.
6635
6636 NOTE: frame_id_eq will never report two invalid frame IDs as
6637 being equal, so to get into this block, both the current and
6638 previous frame must have valid frame IDs. */
6639 /* The outer_frame_id check is a heuristic to detect stepping
6640 through startup code. If we step over an instruction which
6641 sets the stack pointer from an invalid value to a valid value,
6642 we may detect that as a subroutine call from the mythical
6643 "outermost" function. This could be fixed by marking
6644 outermost frames as !stack_p,code_p,special_p. Then the
6645 initial outermost frame, before sp was valid, would
6646 have code_addr == &_start. See the comment in frame_id_eq
6647 for more. */
6648 if (!frame_id_eq (get_stack_frame_id (frame),
6649 ecs->event_thread->control.step_stack_frame_id)
6650 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6651 ecs->event_thread->control.step_stack_frame_id)
6652 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6653 outer_frame_id)
6654 || (ecs->event_thread->control.step_start_function
6655 != find_pc_function (stop_pc)))))
6656 {
6657 CORE_ADDR real_stop_pc;
6658
6659 if (debug_infrun)
6660 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6661
6662 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6663 {
6664 /* I presume that step_over_calls is only 0 when we're
6665 supposed to be stepping at the assembly language level
6666 ("stepi"). Just stop. */
6667 /* And this works the same backward as frontward. MVS */
6668 end_stepping_range (ecs);
6669 return;
6670 }
6671
6672 /* Reverse stepping through solib trampolines. */
6673
6674 if (execution_direction == EXEC_REVERSE
6675 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6676 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6677 || (ecs->stop_func_start == 0
6678 && in_solib_dynsym_resolve_code (stop_pc))))
6679 {
6680 /* Any solib trampoline code can be handled in reverse
6681 by simply continuing to single-step. We have already
6682 executed the solib function (backwards), and a few
6683 steps will take us back through the trampoline to the
6684 caller. */
6685 keep_going (ecs);
6686 return;
6687 }
6688
6689 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6690 {
6691 /* We're doing a "next".
6692
6693 Normal (forward) execution: set a breakpoint at the
6694 callee's return address (the address at which the caller
6695 will resume).
6696
6697 Reverse (backward) execution. set the step-resume
6698 breakpoint at the start of the function that we just
6699 stepped into (backwards), and continue to there. When we
6700 get there, we'll need to single-step back to the caller. */
6701
6702 if (execution_direction == EXEC_REVERSE)
6703 {
6704 /* If we're already at the start of the function, we've either
6705 just stepped backward into a single instruction function,
6706 or stepped back out of a signal handler to the first instruction
6707 of the function. Just keep going, which will single-step back
6708 to the caller. */
6709 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6710 {
6711 /* Normal function call return (static or dynamic). */
6712 symtab_and_line sr_sal;
6713 sr_sal.pc = ecs->stop_func_start;
6714 sr_sal.pspace = get_frame_program_space (frame);
6715 insert_step_resume_breakpoint_at_sal (gdbarch,
6716 sr_sal, null_frame_id);
6717 }
6718 }
6719 else
6720 insert_step_resume_breakpoint_at_caller (frame);
6721
6722 keep_going (ecs);
6723 return;
6724 }
6725
6726 /* If we are in a function call trampoline (a stub between the
6727 calling routine and the real function), locate the real
6728 function. That's what tells us (a) whether we want to step
6729 into it at all, and (b) what prologue we want to run to the
6730 end of, if we do step into it. */
6731 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6732 if (real_stop_pc == 0)
6733 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6734 if (real_stop_pc != 0)
6735 ecs->stop_func_start = real_stop_pc;
6736
6737 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6738 {
6739 symtab_and_line sr_sal;
6740 sr_sal.pc = ecs->stop_func_start;
6741 sr_sal.pspace = get_frame_program_space (frame);
6742
6743 insert_step_resume_breakpoint_at_sal (gdbarch,
6744 sr_sal, null_frame_id);
6745 keep_going (ecs);
6746 return;
6747 }
6748
6749 /* If we have line number information for the function we are
6750 thinking of stepping into and the function isn't on the skip
6751 list, step into it.
6752
6753 If there are several symtabs at that PC (e.g. with include
6754 files), just want to know whether *any* of them have line
6755 numbers. find_pc_line handles this. */
6756 {
6757 struct symtab_and_line tmp_sal;
6758
6759 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6760 if (tmp_sal.line != 0
6761 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6762 tmp_sal))
6763 {
6764 if (execution_direction == EXEC_REVERSE)
6765 handle_step_into_function_backward (gdbarch, ecs);
6766 else
6767 handle_step_into_function (gdbarch, ecs);
6768 return;
6769 }
6770 }
6771
6772 /* If we have no line number and the step-stop-if-no-debug is
6773 set, we stop the step so that the user has a chance to switch
6774 in assembly mode. */
6775 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6776 && step_stop_if_no_debug)
6777 {
6778 end_stepping_range (ecs);
6779 return;
6780 }
6781
6782 if (execution_direction == EXEC_REVERSE)
6783 {
6784 /* If we're already at the start of the function, we've either just
6785 stepped backward into a single instruction function without line
6786 number info, or stepped back out of a signal handler to the first
6787 instruction of the function without line number info. Just keep
6788 going, which will single-step back to the caller. */
6789 if (ecs->stop_func_start != stop_pc)
6790 {
6791 /* Set a breakpoint at callee's start address.
6792 From there we can step once and be back in the caller. */
6793 symtab_and_line sr_sal;
6794 sr_sal.pc = ecs->stop_func_start;
6795 sr_sal.pspace = get_frame_program_space (frame);
6796 insert_step_resume_breakpoint_at_sal (gdbarch,
6797 sr_sal, null_frame_id);
6798 }
6799 }
6800 else
6801 /* Set a breakpoint at callee's return address (the address
6802 at which the caller will resume). */
6803 insert_step_resume_breakpoint_at_caller (frame);
6804
6805 keep_going (ecs);
6806 return;
6807 }
6808
6809 /* Reverse stepping through solib trampolines. */
6810
6811 if (execution_direction == EXEC_REVERSE
6812 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6813 {
6814 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6815 || (ecs->stop_func_start == 0
6816 && in_solib_dynsym_resolve_code (stop_pc)))
6817 {
6818 /* Any solib trampoline code can be handled in reverse
6819 by simply continuing to single-step. We have already
6820 executed the solib function (backwards), and a few
6821 steps will take us back through the trampoline to the
6822 caller. */
6823 keep_going (ecs);
6824 return;
6825 }
6826 else if (in_solib_dynsym_resolve_code (stop_pc))
6827 {
6828 /* Stepped backward into the solib dynsym resolver.
6829 Set a breakpoint at its start and continue, then
6830 one more step will take us out. */
6831 symtab_and_line sr_sal;
6832 sr_sal.pc = ecs->stop_func_start;
6833 sr_sal.pspace = get_frame_program_space (frame);
6834 insert_step_resume_breakpoint_at_sal (gdbarch,
6835 sr_sal, null_frame_id);
6836 keep_going (ecs);
6837 return;
6838 }
6839 }
6840
6841 stop_pc_sal = find_pc_line (stop_pc, 0);
6842
6843 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6844 the trampoline processing logic, however, there are some trampolines
6845 that have no names, so we should do trampoline handling first. */
6846 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6847 && ecs->stop_func_name == NULL
6848 && stop_pc_sal.line == 0)
6849 {
6850 if (debug_infrun)
6851 fprintf_unfiltered (gdb_stdlog,
6852 "infrun: stepped into undebuggable function\n");
6853
6854 /* The inferior just stepped into, or returned to, an
6855 undebuggable function (where there is no debugging information
6856 and no line number corresponding to the address where the
6857 inferior stopped). Since we want to skip this kind of code,
6858 we keep going until the inferior returns from this
6859 function - unless the user has asked us not to (via
6860 set step-mode) or we no longer know how to get back
6861 to the call site. */
6862 if (step_stop_if_no_debug
6863 || !frame_id_p (frame_unwind_caller_id (frame)))
6864 {
6865 /* If we have no line number and the step-stop-if-no-debug
6866 is set, we stop the step so that the user has a chance to
6867 switch in assembly mode. */
6868 end_stepping_range (ecs);
6869 return;
6870 }
6871 else
6872 {
6873 /* Set a breakpoint at callee's return address (the address
6874 at which the caller will resume). */
6875 insert_step_resume_breakpoint_at_caller (frame);
6876 keep_going (ecs);
6877 return;
6878 }
6879 }
6880
6881 if (ecs->event_thread->control.step_range_end == 1)
6882 {
6883 /* It is stepi or nexti. We always want to stop stepping after
6884 one instruction. */
6885 if (debug_infrun)
6886 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6887 end_stepping_range (ecs);
6888 return;
6889 }
6890
6891 if (stop_pc_sal.line == 0)
6892 {
6893 /* We have no line number information. That means to stop
6894 stepping (does this always happen right after one instruction,
6895 when we do "s" in a function with no line numbers,
6896 or can this happen as a result of a return or longjmp?). */
6897 if (debug_infrun)
6898 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6899 end_stepping_range (ecs);
6900 return;
6901 }
6902
6903 /* Look for "calls" to inlined functions, part one. If the inline
6904 frame machinery detected some skipped call sites, we have entered
6905 a new inline function. */
6906
6907 if (frame_id_eq (get_frame_id (get_current_frame ()),
6908 ecs->event_thread->control.step_frame_id)
6909 && inline_skipped_frames (ecs->ptid))
6910 {
6911 if (debug_infrun)
6912 fprintf_unfiltered (gdb_stdlog,
6913 "infrun: stepped into inlined function\n");
6914
6915 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6916
6917 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6918 {
6919 /* For "step", we're going to stop. But if the call site
6920 for this inlined function is on the same source line as
6921 we were previously stepping, go down into the function
6922 first. Otherwise stop at the call site. */
6923
6924 if (call_sal.line == ecs->event_thread->current_line
6925 && call_sal.symtab == ecs->event_thread->current_symtab)
6926 step_into_inline_frame (ecs->ptid);
6927
6928 end_stepping_range (ecs);
6929 return;
6930 }
6931 else
6932 {
6933 /* For "next", we should stop at the call site if it is on a
6934 different source line. Otherwise continue through the
6935 inlined function. */
6936 if (call_sal.line == ecs->event_thread->current_line
6937 && call_sal.symtab == ecs->event_thread->current_symtab)
6938 keep_going (ecs);
6939 else
6940 end_stepping_range (ecs);
6941 return;
6942 }
6943 }
6944
6945 /* Look for "calls" to inlined functions, part two. If we are still
6946 in the same real function we were stepping through, but we have
6947 to go further up to find the exact frame ID, we are stepping
6948 through a more inlined call beyond its call site. */
6949
6950 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6951 && !frame_id_eq (get_frame_id (get_current_frame ()),
6952 ecs->event_thread->control.step_frame_id)
6953 && stepped_in_from (get_current_frame (),
6954 ecs->event_thread->control.step_frame_id))
6955 {
6956 if (debug_infrun)
6957 fprintf_unfiltered (gdb_stdlog,
6958 "infrun: stepping through inlined function\n");
6959
6960 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6961 keep_going (ecs);
6962 else
6963 end_stepping_range (ecs);
6964 return;
6965 }
6966
6967 if ((stop_pc == stop_pc_sal.pc)
6968 && (ecs->event_thread->current_line != stop_pc_sal.line
6969 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6970 {
6971 /* We are at the start of a different line. So stop. Note that
6972 we don't stop if we step into the middle of a different line.
6973 That is said to make things like for (;;) statements work
6974 better. */
6975 if (debug_infrun)
6976 fprintf_unfiltered (gdb_stdlog,
6977 "infrun: stepped to a different line\n");
6978 end_stepping_range (ecs);
6979 return;
6980 }
6981
6982 /* We aren't done stepping.
6983
6984 Optimize by setting the stepping range to the line.
6985 (We might not be in the original line, but if we entered a
6986 new line in mid-statement, we continue stepping. This makes
6987 things like for(;;) statements work better.) */
6988
6989 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6990 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6991 ecs->event_thread->control.may_range_step = 1;
6992 set_step_info (frame, stop_pc_sal);
6993
6994 if (debug_infrun)
6995 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6996 keep_going (ecs);
6997 }
6998
6999 /* In all-stop mode, if we're currently stepping but have stopped in
7000 some other thread, we may need to switch back to the stepped
7001 thread. Returns true we set the inferior running, false if we left
7002 it stopped (and the event needs further processing). */
7003
7004 static int
7005 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7006 {
7007 if (!target_is_non_stop_p ())
7008 {
7009 struct thread_info *tp;
7010 struct thread_info *stepping_thread;
7011
7012 /* If any thread is blocked on some internal breakpoint, and we
7013 simply need to step over that breakpoint to get it going
7014 again, do that first. */
7015
7016 /* However, if we see an event for the stepping thread, then we
7017 know all other threads have been moved past their breakpoints
7018 already. Let the caller check whether the step is finished,
7019 etc., before deciding to move it past a breakpoint. */
7020 if (ecs->event_thread->control.step_range_end != 0)
7021 return 0;
7022
7023 /* Check if the current thread is blocked on an incomplete
7024 step-over, interrupted by a random signal. */
7025 if (ecs->event_thread->control.trap_expected
7026 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7027 {
7028 if (debug_infrun)
7029 {
7030 fprintf_unfiltered (gdb_stdlog,
7031 "infrun: need to finish step-over of [%s]\n",
7032 target_pid_to_str (ecs->event_thread->ptid));
7033 }
7034 keep_going (ecs);
7035 return 1;
7036 }
7037
7038 /* Check if the current thread is blocked by a single-step
7039 breakpoint of another thread. */
7040 if (ecs->hit_singlestep_breakpoint)
7041 {
7042 if (debug_infrun)
7043 {
7044 fprintf_unfiltered (gdb_stdlog,
7045 "infrun: need to step [%s] over single-step "
7046 "breakpoint\n",
7047 target_pid_to_str (ecs->ptid));
7048 }
7049 keep_going (ecs);
7050 return 1;
7051 }
7052
7053 /* If this thread needs yet another step-over (e.g., stepping
7054 through a delay slot), do it first before moving on to
7055 another thread. */
7056 if (thread_still_needs_step_over (ecs->event_thread))
7057 {
7058 if (debug_infrun)
7059 {
7060 fprintf_unfiltered (gdb_stdlog,
7061 "infrun: thread [%s] still needs step-over\n",
7062 target_pid_to_str (ecs->event_thread->ptid));
7063 }
7064 keep_going (ecs);
7065 return 1;
7066 }
7067
7068 /* If scheduler locking applies even if not stepping, there's no
7069 need to walk over threads. Above we've checked whether the
7070 current thread is stepping. If some other thread not the
7071 event thread is stepping, then it must be that scheduler
7072 locking is not in effect. */
7073 if (schedlock_applies (ecs->event_thread))
7074 return 0;
7075
7076 /* Otherwise, we no longer expect a trap in the current thread.
7077 Clear the trap_expected flag before switching back -- this is
7078 what keep_going does as well, if we call it. */
7079 ecs->event_thread->control.trap_expected = 0;
7080
7081 /* Likewise, clear the signal if it should not be passed. */
7082 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7083 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7084
7085 /* Do all pending step-overs before actually proceeding with
7086 step/next/etc. */
7087 if (start_step_over ())
7088 {
7089 prepare_to_wait (ecs);
7090 return 1;
7091 }
7092
7093 /* Look for the stepping/nexting thread. */
7094 stepping_thread = NULL;
7095
7096 ALL_NON_EXITED_THREADS (tp)
7097 {
7098 /* Ignore threads of processes the caller is not
7099 resuming. */
7100 if (!sched_multi
7101 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7102 continue;
7103
7104 /* When stepping over a breakpoint, we lock all threads
7105 except the one that needs to move past the breakpoint.
7106 If a non-event thread has this set, the "incomplete
7107 step-over" check above should have caught it earlier. */
7108 if (tp->control.trap_expected)
7109 {
7110 internal_error (__FILE__, __LINE__,
7111 "[%s] has inconsistent state: "
7112 "trap_expected=%d\n",
7113 target_pid_to_str (tp->ptid),
7114 tp->control.trap_expected);
7115 }
7116
7117 /* Did we find the stepping thread? */
7118 if (tp->control.step_range_end)
7119 {
7120 /* Yep. There should only one though. */
7121 gdb_assert (stepping_thread == NULL);
7122
7123 /* The event thread is handled at the top, before we
7124 enter this loop. */
7125 gdb_assert (tp != ecs->event_thread);
7126
7127 /* If some thread other than the event thread is
7128 stepping, then scheduler locking can't be in effect,
7129 otherwise we wouldn't have resumed the current event
7130 thread in the first place. */
7131 gdb_assert (!schedlock_applies (tp));
7132
7133 stepping_thread = tp;
7134 }
7135 }
7136
7137 if (stepping_thread != NULL)
7138 {
7139 if (debug_infrun)
7140 fprintf_unfiltered (gdb_stdlog,
7141 "infrun: switching back to stepped thread\n");
7142
7143 if (keep_going_stepped_thread (stepping_thread))
7144 {
7145 prepare_to_wait (ecs);
7146 return 1;
7147 }
7148 }
7149 }
7150
7151 return 0;
7152 }
7153
7154 /* Set a previously stepped thread back to stepping. Returns true on
7155 success, false if the resume is not possible (e.g., the thread
7156 vanished). */
7157
7158 static int
7159 keep_going_stepped_thread (struct thread_info *tp)
7160 {
7161 struct frame_info *frame;
7162 struct execution_control_state ecss;
7163 struct execution_control_state *ecs = &ecss;
7164
7165 /* If the stepping thread exited, then don't try to switch back and
7166 resume it, which could fail in several different ways depending
7167 on the target. Instead, just keep going.
7168
7169 We can find a stepping dead thread in the thread list in two
7170 cases:
7171
7172 - The target supports thread exit events, and when the target
7173 tries to delete the thread from the thread list, inferior_ptid
7174 pointed at the exiting thread. In such case, calling
7175 delete_thread does not really remove the thread from the list;
7176 instead, the thread is left listed, with 'exited' state.
7177
7178 - The target's debug interface does not support thread exit
7179 events, and so we have no idea whatsoever if the previously
7180 stepping thread is still alive. For that reason, we need to
7181 synchronously query the target now. */
7182
7183 if (is_exited (tp->ptid)
7184 || !target_thread_alive (tp->ptid))
7185 {
7186 if (debug_infrun)
7187 fprintf_unfiltered (gdb_stdlog,
7188 "infrun: not resuming previously "
7189 "stepped thread, it has vanished\n");
7190
7191 delete_thread (tp->ptid);
7192 return 0;
7193 }
7194
7195 if (debug_infrun)
7196 fprintf_unfiltered (gdb_stdlog,
7197 "infrun: resuming previously stepped thread\n");
7198
7199 reset_ecs (ecs, tp);
7200 switch_to_thread (tp->ptid);
7201
7202 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7203 frame = get_current_frame ();
7204
7205 /* If the PC of the thread we were trying to single-step has
7206 changed, then that thread has trapped or been signaled, but the
7207 event has not been reported to GDB yet. Re-poll the target
7208 looking for this particular thread's event (i.e. temporarily
7209 enable schedlock) by:
7210
7211 - setting a break at the current PC
7212 - resuming that particular thread, only (by setting trap
7213 expected)
7214
7215 This prevents us continuously moving the single-step breakpoint
7216 forward, one instruction at a time, overstepping. */
7217
7218 if (stop_pc != tp->prev_pc)
7219 {
7220 ptid_t resume_ptid;
7221
7222 if (debug_infrun)
7223 fprintf_unfiltered (gdb_stdlog,
7224 "infrun: expected thread advanced also (%s -> %s)\n",
7225 paddress (target_gdbarch (), tp->prev_pc),
7226 paddress (target_gdbarch (), stop_pc));
7227
7228 /* Clear the info of the previous step-over, as it's no longer
7229 valid (if the thread was trying to step over a breakpoint, it
7230 has already succeeded). It's what keep_going would do too,
7231 if we called it. Do this before trying to insert the sss
7232 breakpoint, otherwise if we were previously trying to step
7233 over this exact address in another thread, the breakpoint is
7234 skipped. */
7235 clear_step_over_info ();
7236 tp->control.trap_expected = 0;
7237
7238 insert_single_step_breakpoint (get_frame_arch (frame),
7239 get_frame_address_space (frame),
7240 stop_pc);
7241
7242 tp->resumed = 1;
7243 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7244 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7245 }
7246 else
7247 {
7248 if (debug_infrun)
7249 fprintf_unfiltered (gdb_stdlog,
7250 "infrun: expected thread still hasn't advanced\n");
7251
7252 keep_going_pass_signal (ecs);
7253 }
7254 return 1;
7255 }
7256
7257 /* Is thread TP in the middle of (software or hardware)
7258 single-stepping? (Note the result of this function must never be
7259 passed directly as target_resume's STEP parameter.) */
7260
7261 static int
7262 currently_stepping (struct thread_info *tp)
7263 {
7264 return ((tp->control.step_range_end
7265 && tp->control.step_resume_breakpoint == NULL)
7266 || tp->control.trap_expected
7267 || tp->stepped_breakpoint
7268 || bpstat_should_step ());
7269 }
7270
7271 /* Inferior has stepped into a subroutine call with source code that
7272 we should not step over. Do step to the first line of code in
7273 it. */
7274
7275 static void
7276 handle_step_into_function (struct gdbarch *gdbarch,
7277 struct execution_control_state *ecs)
7278 {
7279 fill_in_stop_func (gdbarch, ecs);
7280
7281 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7282 if (cust != NULL && compunit_language (cust) != language_asm)
7283 ecs->stop_func_start
7284 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7285
7286 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7287 /* Use the step_resume_break to step until the end of the prologue,
7288 even if that involves jumps (as it seems to on the vax under
7289 4.2). */
7290 /* If the prologue ends in the middle of a source line, continue to
7291 the end of that source line (if it is still within the function).
7292 Otherwise, just go to end of prologue. */
7293 if (stop_func_sal.end
7294 && stop_func_sal.pc != ecs->stop_func_start
7295 && stop_func_sal.end < ecs->stop_func_end)
7296 ecs->stop_func_start = stop_func_sal.end;
7297
7298 /* Architectures which require breakpoint adjustment might not be able
7299 to place a breakpoint at the computed address. If so, the test
7300 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7301 ecs->stop_func_start to an address at which a breakpoint may be
7302 legitimately placed.
7303
7304 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7305 made, GDB will enter an infinite loop when stepping through
7306 optimized code consisting of VLIW instructions which contain
7307 subinstructions corresponding to different source lines. On
7308 FR-V, it's not permitted to place a breakpoint on any but the
7309 first subinstruction of a VLIW instruction. When a breakpoint is
7310 set, GDB will adjust the breakpoint address to the beginning of
7311 the VLIW instruction. Thus, we need to make the corresponding
7312 adjustment here when computing the stop address. */
7313
7314 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7315 {
7316 ecs->stop_func_start
7317 = gdbarch_adjust_breakpoint_address (gdbarch,
7318 ecs->stop_func_start);
7319 }
7320
7321 if (ecs->stop_func_start == stop_pc)
7322 {
7323 /* We are already there: stop now. */
7324 end_stepping_range (ecs);
7325 return;
7326 }
7327 else
7328 {
7329 /* Put the step-breakpoint there and go until there. */
7330 symtab_and_line sr_sal;
7331 sr_sal.pc = ecs->stop_func_start;
7332 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7333 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7334
7335 /* Do not specify what the fp should be when we stop since on
7336 some machines the prologue is where the new fp value is
7337 established. */
7338 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7339
7340 /* And make sure stepping stops right away then. */
7341 ecs->event_thread->control.step_range_end
7342 = ecs->event_thread->control.step_range_start;
7343 }
7344 keep_going (ecs);
7345 }
7346
7347 /* Inferior has stepped backward into a subroutine call with source
7348 code that we should not step over. Do step to the beginning of the
7349 last line of code in it. */
7350
7351 static void
7352 handle_step_into_function_backward (struct gdbarch *gdbarch,
7353 struct execution_control_state *ecs)
7354 {
7355 struct compunit_symtab *cust;
7356 struct symtab_and_line stop_func_sal;
7357
7358 fill_in_stop_func (gdbarch, ecs);
7359
7360 cust = find_pc_compunit_symtab (stop_pc);
7361 if (cust != NULL && compunit_language (cust) != language_asm)
7362 ecs->stop_func_start
7363 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7364
7365 stop_func_sal = find_pc_line (stop_pc, 0);
7366
7367 /* OK, we're just going to keep stepping here. */
7368 if (stop_func_sal.pc == stop_pc)
7369 {
7370 /* We're there already. Just stop stepping now. */
7371 end_stepping_range (ecs);
7372 }
7373 else
7374 {
7375 /* Else just reset the step range and keep going.
7376 No step-resume breakpoint, they don't work for
7377 epilogues, which can have multiple entry paths. */
7378 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7379 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7380 keep_going (ecs);
7381 }
7382 return;
7383 }
7384
7385 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7386 This is used to both functions and to skip over code. */
7387
7388 static void
7389 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7390 struct symtab_and_line sr_sal,
7391 struct frame_id sr_id,
7392 enum bptype sr_type)
7393 {
7394 /* There should never be more than one step-resume or longjmp-resume
7395 breakpoint per thread, so we should never be setting a new
7396 step_resume_breakpoint when one is already active. */
7397 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7398 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7399
7400 if (debug_infrun)
7401 fprintf_unfiltered (gdb_stdlog,
7402 "infrun: inserting step-resume breakpoint at %s\n",
7403 paddress (gdbarch, sr_sal.pc));
7404
7405 inferior_thread ()->control.step_resume_breakpoint
7406 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7407 }
7408
7409 void
7410 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7411 struct symtab_and_line sr_sal,
7412 struct frame_id sr_id)
7413 {
7414 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7415 sr_sal, sr_id,
7416 bp_step_resume);
7417 }
7418
7419 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7420 This is used to skip a potential signal handler.
7421
7422 This is called with the interrupted function's frame. The signal
7423 handler, when it returns, will resume the interrupted function at
7424 RETURN_FRAME.pc. */
7425
7426 static void
7427 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7428 {
7429 gdb_assert (return_frame != NULL);
7430
7431 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7432
7433 symtab_and_line sr_sal;
7434 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7435 sr_sal.section = find_pc_overlay (sr_sal.pc);
7436 sr_sal.pspace = get_frame_program_space (return_frame);
7437
7438 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7439 get_stack_frame_id (return_frame),
7440 bp_hp_step_resume);
7441 }
7442
7443 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7444 is used to skip a function after stepping into it (for "next" or if
7445 the called function has no debugging information).
7446
7447 The current function has almost always been reached by single
7448 stepping a call or return instruction. NEXT_FRAME belongs to the
7449 current function, and the breakpoint will be set at the caller's
7450 resume address.
7451
7452 This is a separate function rather than reusing
7453 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7454 get_prev_frame, which may stop prematurely (see the implementation
7455 of frame_unwind_caller_id for an example). */
7456
7457 static void
7458 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7459 {
7460 /* We shouldn't have gotten here if we don't know where the call site
7461 is. */
7462 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7463
7464 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7465
7466 symtab_and_line sr_sal;
7467 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7468 frame_unwind_caller_pc (next_frame));
7469 sr_sal.section = find_pc_overlay (sr_sal.pc);
7470 sr_sal.pspace = frame_unwind_program_space (next_frame);
7471
7472 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7473 frame_unwind_caller_id (next_frame));
7474 }
7475
7476 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7477 new breakpoint at the target of a jmp_buf. The handling of
7478 longjmp-resume uses the same mechanisms used for handling
7479 "step-resume" breakpoints. */
7480
7481 static void
7482 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7483 {
7484 /* There should never be more than one longjmp-resume breakpoint per
7485 thread, so we should never be setting a new
7486 longjmp_resume_breakpoint when one is already active. */
7487 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7488
7489 if (debug_infrun)
7490 fprintf_unfiltered (gdb_stdlog,
7491 "infrun: inserting longjmp-resume breakpoint at %s\n",
7492 paddress (gdbarch, pc));
7493
7494 inferior_thread ()->control.exception_resume_breakpoint =
7495 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7496 }
7497
7498 /* Insert an exception resume breakpoint. TP is the thread throwing
7499 the exception. The block B is the block of the unwinder debug hook
7500 function. FRAME is the frame corresponding to the call to this
7501 function. SYM is the symbol of the function argument holding the
7502 target PC of the exception. */
7503
7504 static void
7505 insert_exception_resume_breakpoint (struct thread_info *tp,
7506 const struct block *b,
7507 struct frame_info *frame,
7508 struct symbol *sym)
7509 {
7510 TRY
7511 {
7512 struct block_symbol vsym;
7513 struct value *value;
7514 CORE_ADDR handler;
7515 struct breakpoint *bp;
7516
7517 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7518 value = read_var_value (vsym.symbol, vsym.block, frame);
7519 /* If the value was optimized out, revert to the old behavior. */
7520 if (! value_optimized_out (value))
7521 {
7522 handler = value_as_address (value);
7523
7524 if (debug_infrun)
7525 fprintf_unfiltered (gdb_stdlog,
7526 "infrun: exception resume at %lx\n",
7527 (unsigned long) handler);
7528
7529 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7530 handler, bp_exception_resume);
7531
7532 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7533 frame = NULL;
7534
7535 bp->thread = tp->global_num;
7536 inferior_thread ()->control.exception_resume_breakpoint = bp;
7537 }
7538 }
7539 CATCH (e, RETURN_MASK_ERROR)
7540 {
7541 /* We want to ignore errors here. */
7542 }
7543 END_CATCH
7544 }
7545
7546 /* A helper for check_exception_resume that sets an
7547 exception-breakpoint based on a SystemTap probe. */
7548
7549 static void
7550 insert_exception_resume_from_probe (struct thread_info *tp,
7551 const struct bound_probe *probe,
7552 struct frame_info *frame)
7553 {
7554 struct value *arg_value;
7555 CORE_ADDR handler;
7556 struct breakpoint *bp;
7557
7558 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7559 if (!arg_value)
7560 return;
7561
7562 handler = value_as_address (arg_value);
7563
7564 if (debug_infrun)
7565 fprintf_unfiltered (gdb_stdlog,
7566 "infrun: exception resume at %s\n",
7567 paddress (get_objfile_arch (probe->objfile),
7568 handler));
7569
7570 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7571 handler, bp_exception_resume);
7572 bp->thread = tp->global_num;
7573 inferior_thread ()->control.exception_resume_breakpoint = bp;
7574 }
7575
7576 /* This is called when an exception has been intercepted. Check to
7577 see whether the exception's destination is of interest, and if so,
7578 set an exception resume breakpoint there. */
7579
7580 static void
7581 check_exception_resume (struct execution_control_state *ecs,
7582 struct frame_info *frame)
7583 {
7584 struct bound_probe probe;
7585 struct symbol *func;
7586
7587 /* First see if this exception unwinding breakpoint was set via a
7588 SystemTap probe point. If so, the probe has two arguments: the
7589 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7590 set a breakpoint there. */
7591 probe = find_probe_by_pc (get_frame_pc (frame));
7592 if (probe.probe)
7593 {
7594 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7595 return;
7596 }
7597
7598 func = get_frame_function (frame);
7599 if (!func)
7600 return;
7601
7602 TRY
7603 {
7604 const struct block *b;
7605 struct block_iterator iter;
7606 struct symbol *sym;
7607 int argno = 0;
7608
7609 /* The exception breakpoint is a thread-specific breakpoint on
7610 the unwinder's debug hook, declared as:
7611
7612 void _Unwind_DebugHook (void *cfa, void *handler);
7613
7614 The CFA argument indicates the frame to which control is
7615 about to be transferred. HANDLER is the destination PC.
7616
7617 We ignore the CFA and set a temporary breakpoint at HANDLER.
7618 This is not extremely efficient but it avoids issues in gdb
7619 with computing the DWARF CFA, and it also works even in weird
7620 cases such as throwing an exception from inside a signal
7621 handler. */
7622
7623 b = SYMBOL_BLOCK_VALUE (func);
7624 ALL_BLOCK_SYMBOLS (b, iter, sym)
7625 {
7626 if (!SYMBOL_IS_ARGUMENT (sym))
7627 continue;
7628
7629 if (argno == 0)
7630 ++argno;
7631 else
7632 {
7633 insert_exception_resume_breakpoint (ecs->event_thread,
7634 b, frame, sym);
7635 break;
7636 }
7637 }
7638 }
7639 CATCH (e, RETURN_MASK_ERROR)
7640 {
7641 }
7642 END_CATCH
7643 }
7644
7645 static void
7646 stop_waiting (struct execution_control_state *ecs)
7647 {
7648 if (debug_infrun)
7649 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7650
7651 /* Let callers know we don't want to wait for the inferior anymore. */
7652 ecs->wait_some_more = 0;
7653
7654 /* If all-stop, but the target is always in non-stop mode, stop all
7655 threads now that we're presenting the stop to the user. */
7656 if (!non_stop && target_is_non_stop_p ())
7657 stop_all_threads ();
7658 }
7659
7660 /* Like keep_going, but passes the signal to the inferior, even if the
7661 signal is set to nopass. */
7662
7663 static void
7664 keep_going_pass_signal (struct execution_control_state *ecs)
7665 {
7666 /* Make sure normal_stop is called if we get a QUIT handled before
7667 reaching resume. */
7668 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7669
7670 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7671 gdb_assert (!ecs->event_thread->resumed);
7672
7673 /* Save the pc before execution, to compare with pc after stop. */
7674 ecs->event_thread->prev_pc
7675 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7676
7677 if (ecs->event_thread->control.trap_expected)
7678 {
7679 struct thread_info *tp = ecs->event_thread;
7680
7681 if (debug_infrun)
7682 fprintf_unfiltered (gdb_stdlog,
7683 "infrun: %s has trap_expected set, "
7684 "resuming to collect trap\n",
7685 target_pid_to_str (tp->ptid));
7686
7687 /* We haven't yet gotten our trap, and either: intercepted a
7688 non-signal event (e.g., a fork); or took a signal which we
7689 are supposed to pass through to the inferior. Simply
7690 continue. */
7691 discard_cleanups (old_cleanups);
7692 resume (ecs->event_thread->suspend.stop_signal);
7693 }
7694 else if (step_over_info_valid_p ())
7695 {
7696 /* Another thread is stepping over a breakpoint in-line. If
7697 this thread needs a step-over too, queue the request. In
7698 either case, this resume must be deferred for later. */
7699 struct thread_info *tp = ecs->event_thread;
7700
7701 if (ecs->hit_singlestep_breakpoint
7702 || thread_still_needs_step_over (tp))
7703 {
7704 if (debug_infrun)
7705 fprintf_unfiltered (gdb_stdlog,
7706 "infrun: step-over already in progress: "
7707 "step-over for %s deferred\n",
7708 target_pid_to_str (tp->ptid));
7709 thread_step_over_chain_enqueue (tp);
7710 }
7711 else
7712 {
7713 if (debug_infrun)
7714 fprintf_unfiltered (gdb_stdlog,
7715 "infrun: step-over in progress: "
7716 "resume of %s deferred\n",
7717 target_pid_to_str (tp->ptid));
7718 }
7719
7720 discard_cleanups (old_cleanups);
7721 }
7722 else
7723 {
7724 struct regcache *regcache = get_current_regcache ();
7725 int remove_bp;
7726 int remove_wps;
7727 step_over_what step_what;
7728
7729 /* Either the trap was not expected, but we are continuing
7730 anyway (if we got a signal, the user asked it be passed to
7731 the child)
7732 -- or --
7733 We got our expected trap, but decided we should resume from
7734 it.
7735
7736 We're going to run this baby now!
7737
7738 Note that insert_breakpoints won't try to re-insert
7739 already inserted breakpoints. Therefore, we don't
7740 care if breakpoints were already inserted, or not. */
7741
7742 /* If we need to step over a breakpoint, and we're not using
7743 displaced stepping to do so, insert all breakpoints
7744 (watchpoints, etc.) but the one we're stepping over, step one
7745 instruction, and then re-insert the breakpoint when that step
7746 is finished. */
7747
7748 step_what = thread_still_needs_step_over (ecs->event_thread);
7749
7750 remove_bp = (ecs->hit_singlestep_breakpoint
7751 || (step_what & STEP_OVER_BREAKPOINT));
7752 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7753
7754 /* We can't use displaced stepping if we need to step past a
7755 watchpoint. The instruction copied to the scratch pad would
7756 still trigger the watchpoint. */
7757 if (remove_bp
7758 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7759 {
7760 set_step_over_info (get_regcache_aspace (regcache),
7761 regcache_read_pc (regcache), remove_wps,
7762 ecs->event_thread->global_num);
7763 }
7764 else if (remove_wps)
7765 set_step_over_info (NULL, 0, remove_wps, -1);
7766
7767 /* If we now need to do an in-line step-over, we need to stop
7768 all other threads. Note this must be done before
7769 insert_breakpoints below, because that removes the breakpoint
7770 we're about to step over, otherwise other threads could miss
7771 it. */
7772 if (step_over_info_valid_p () && target_is_non_stop_p ())
7773 stop_all_threads ();
7774
7775 /* Stop stepping if inserting breakpoints fails. */
7776 TRY
7777 {
7778 insert_breakpoints ();
7779 }
7780 CATCH (e, RETURN_MASK_ERROR)
7781 {
7782 exception_print (gdb_stderr, e);
7783 stop_waiting (ecs);
7784 discard_cleanups (old_cleanups);
7785 return;
7786 }
7787 END_CATCH
7788
7789 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7790
7791 discard_cleanups (old_cleanups);
7792 resume (ecs->event_thread->suspend.stop_signal);
7793 }
7794
7795 prepare_to_wait (ecs);
7796 }
7797
7798 /* Called when we should continue running the inferior, because the
7799 current event doesn't cause a user visible stop. This does the
7800 resuming part; waiting for the next event is done elsewhere. */
7801
7802 static void
7803 keep_going (struct execution_control_state *ecs)
7804 {
7805 if (ecs->event_thread->control.trap_expected
7806 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7807 ecs->event_thread->control.trap_expected = 0;
7808
7809 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7810 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7811 keep_going_pass_signal (ecs);
7812 }
7813
7814 /* This function normally comes after a resume, before
7815 handle_inferior_event exits. It takes care of any last bits of
7816 housekeeping, and sets the all-important wait_some_more flag. */
7817
7818 static void
7819 prepare_to_wait (struct execution_control_state *ecs)
7820 {
7821 if (debug_infrun)
7822 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7823
7824 ecs->wait_some_more = 1;
7825
7826 if (!target_is_async_p ())
7827 mark_infrun_async_event_handler ();
7828 }
7829
7830 /* We are done with the step range of a step/next/si/ni command.
7831 Called once for each n of a "step n" operation. */
7832
7833 static void
7834 end_stepping_range (struct execution_control_state *ecs)
7835 {
7836 ecs->event_thread->control.stop_step = 1;
7837 stop_waiting (ecs);
7838 }
7839
7840 /* Several print_*_reason functions to print why the inferior has stopped.
7841 We always print something when the inferior exits, or receives a signal.
7842 The rest of the cases are dealt with later on in normal_stop and
7843 print_it_typical. Ideally there should be a call to one of these
7844 print_*_reason functions functions from handle_inferior_event each time
7845 stop_waiting is called.
7846
7847 Note that we don't call these directly, instead we delegate that to
7848 the interpreters, through observers. Interpreters then call these
7849 with whatever uiout is right. */
7850
7851 void
7852 print_end_stepping_range_reason (struct ui_out *uiout)
7853 {
7854 /* For CLI-like interpreters, print nothing. */
7855
7856 if (uiout->is_mi_like_p ())
7857 {
7858 uiout->field_string ("reason",
7859 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7860 }
7861 }
7862
7863 void
7864 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7865 {
7866 annotate_signalled ();
7867 if (uiout->is_mi_like_p ())
7868 uiout->field_string
7869 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7870 uiout->text ("\nProgram terminated with signal ");
7871 annotate_signal_name ();
7872 uiout->field_string ("signal-name",
7873 gdb_signal_to_name (siggnal));
7874 annotate_signal_name_end ();
7875 uiout->text (", ");
7876 annotate_signal_string ();
7877 uiout->field_string ("signal-meaning",
7878 gdb_signal_to_string (siggnal));
7879 annotate_signal_string_end ();
7880 uiout->text (".\n");
7881 uiout->text ("The program no longer exists.\n");
7882 }
7883
7884 void
7885 print_exited_reason (struct ui_out *uiout, int exitstatus)
7886 {
7887 struct inferior *inf = current_inferior ();
7888 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7889
7890 annotate_exited (exitstatus);
7891 if (exitstatus)
7892 {
7893 if (uiout->is_mi_like_p ())
7894 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7895 uiout->text ("[Inferior ");
7896 uiout->text (plongest (inf->num));
7897 uiout->text (" (");
7898 uiout->text (pidstr);
7899 uiout->text (") exited with code ");
7900 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7901 uiout->text ("]\n");
7902 }
7903 else
7904 {
7905 if (uiout->is_mi_like_p ())
7906 uiout->field_string
7907 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7908 uiout->text ("[Inferior ");
7909 uiout->text (plongest (inf->num));
7910 uiout->text (" (");
7911 uiout->text (pidstr);
7912 uiout->text (") exited normally]\n");
7913 }
7914 }
7915
7916 /* Some targets/architectures can do extra processing/display of
7917 segmentation faults. E.g., Intel MPX boundary faults.
7918 Call the architecture dependent function to handle the fault. */
7919
7920 static void
7921 handle_segmentation_fault (struct ui_out *uiout)
7922 {
7923 struct regcache *regcache = get_current_regcache ();
7924 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7925
7926 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7927 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7928 }
7929
7930 void
7931 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7932 {
7933 struct thread_info *thr = inferior_thread ();
7934
7935 annotate_signal ();
7936
7937 if (uiout->is_mi_like_p ())
7938 ;
7939 else if (show_thread_that_caused_stop ())
7940 {
7941 const char *name;
7942
7943 uiout->text ("\nThread ");
7944 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7945
7946 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7947 if (name != NULL)
7948 {
7949 uiout->text (" \"");
7950 uiout->field_fmt ("name", "%s", name);
7951 uiout->text ("\"");
7952 }
7953 }
7954 else
7955 uiout->text ("\nProgram");
7956
7957 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7958 uiout->text (" stopped");
7959 else
7960 {
7961 uiout->text (" received signal ");
7962 annotate_signal_name ();
7963 if (uiout->is_mi_like_p ())
7964 uiout->field_string
7965 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7966 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7967 annotate_signal_name_end ();
7968 uiout->text (", ");
7969 annotate_signal_string ();
7970 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7971
7972 if (siggnal == GDB_SIGNAL_SEGV)
7973 handle_segmentation_fault (uiout);
7974
7975 annotate_signal_string_end ();
7976 }
7977 uiout->text (".\n");
7978 }
7979
7980 void
7981 print_no_history_reason (struct ui_out *uiout)
7982 {
7983 uiout->text ("\nNo more reverse-execution history.\n");
7984 }
7985
7986 /* Print current location without a level number, if we have changed
7987 functions or hit a breakpoint. Print source line if we have one.
7988 bpstat_print contains the logic deciding in detail what to print,
7989 based on the event(s) that just occurred. */
7990
7991 static void
7992 print_stop_location (struct target_waitstatus *ws)
7993 {
7994 int bpstat_ret;
7995 enum print_what source_flag;
7996 int do_frame_printing = 1;
7997 struct thread_info *tp = inferior_thread ();
7998
7999 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8000 switch (bpstat_ret)
8001 {
8002 case PRINT_UNKNOWN:
8003 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8004 should) carry around the function and does (or should) use
8005 that when doing a frame comparison. */
8006 if (tp->control.stop_step
8007 && frame_id_eq (tp->control.step_frame_id,
8008 get_frame_id (get_current_frame ()))
8009 && tp->control.step_start_function == find_pc_function (stop_pc))
8010 {
8011 /* Finished step, just print source line. */
8012 source_flag = SRC_LINE;
8013 }
8014 else
8015 {
8016 /* Print location and source line. */
8017 source_flag = SRC_AND_LOC;
8018 }
8019 break;
8020 case PRINT_SRC_AND_LOC:
8021 /* Print location and source line. */
8022 source_flag = SRC_AND_LOC;
8023 break;
8024 case PRINT_SRC_ONLY:
8025 source_flag = SRC_LINE;
8026 break;
8027 case PRINT_NOTHING:
8028 /* Something bogus. */
8029 source_flag = SRC_LINE;
8030 do_frame_printing = 0;
8031 break;
8032 default:
8033 internal_error (__FILE__, __LINE__, _("Unknown value."));
8034 }
8035
8036 /* The behavior of this routine with respect to the source
8037 flag is:
8038 SRC_LINE: Print only source line
8039 LOCATION: Print only location
8040 SRC_AND_LOC: Print location and source line. */
8041 if (do_frame_printing)
8042 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8043 }
8044
8045 /* See infrun.h. */
8046
8047 void
8048 print_stop_event (struct ui_out *uiout)
8049 {
8050 struct target_waitstatus last;
8051 ptid_t last_ptid;
8052 struct thread_info *tp;
8053
8054 get_last_target_status (&last_ptid, &last);
8055
8056 {
8057 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8058
8059 print_stop_location (&last);
8060
8061 /* Display the auto-display expressions. */
8062 do_displays ();
8063 }
8064
8065 tp = inferior_thread ();
8066 if (tp->thread_fsm != NULL
8067 && thread_fsm_finished_p (tp->thread_fsm))
8068 {
8069 struct return_value_info *rv;
8070
8071 rv = thread_fsm_return_value (tp->thread_fsm);
8072 if (rv != NULL)
8073 print_return_value (uiout, rv);
8074 }
8075 }
8076
8077 /* See infrun.h. */
8078
8079 void
8080 maybe_remove_breakpoints (void)
8081 {
8082 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8083 {
8084 if (remove_breakpoints ())
8085 {
8086 target_terminal::ours_for_output ();
8087 printf_filtered (_("Cannot remove breakpoints because "
8088 "program is no longer writable.\nFurther "
8089 "execution is probably impossible.\n"));
8090 }
8091 }
8092 }
8093
8094 /* The execution context that just caused a normal stop. */
8095
8096 struct stop_context
8097 {
8098 /* The stop ID. */
8099 ULONGEST stop_id;
8100
8101 /* The event PTID. */
8102
8103 ptid_t ptid;
8104
8105 /* If stopp for a thread event, this is the thread that caused the
8106 stop. */
8107 struct thread_info *thread;
8108
8109 /* The inferior that caused the stop. */
8110 int inf_num;
8111 };
8112
8113 /* Returns a new stop context. If stopped for a thread event, this
8114 takes a strong reference to the thread. */
8115
8116 static struct stop_context *
8117 save_stop_context (void)
8118 {
8119 struct stop_context *sc = XNEW (struct stop_context);
8120
8121 sc->stop_id = get_stop_id ();
8122 sc->ptid = inferior_ptid;
8123 sc->inf_num = current_inferior ()->num;
8124
8125 if (!ptid_equal (inferior_ptid, null_ptid))
8126 {
8127 /* Take a strong reference so that the thread can't be deleted
8128 yet. */
8129 sc->thread = inferior_thread ();
8130 sc->thread->incref ();
8131 }
8132 else
8133 sc->thread = NULL;
8134
8135 return sc;
8136 }
8137
8138 /* Release a stop context previously created with save_stop_context.
8139 Releases the strong reference to the thread as well. */
8140
8141 static void
8142 release_stop_context_cleanup (void *arg)
8143 {
8144 struct stop_context *sc = (struct stop_context *) arg;
8145
8146 if (sc->thread != NULL)
8147 sc->thread->decref ();
8148 xfree (sc);
8149 }
8150
8151 /* Return true if the current context no longer matches the saved stop
8152 context. */
8153
8154 static int
8155 stop_context_changed (struct stop_context *prev)
8156 {
8157 if (!ptid_equal (prev->ptid, inferior_ptid))
8158 return 1;
8159 if (prev->inf_num != current_inferior ()->num)
8160 return 1;
8161 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8162 return 1;
8163 if (get_stop_id () != prev->stop_id)
8164 return 1;
8165 return 0;
8166 }
8167
8168 /* See infrun.h. */
8169
8170 int
8171 normal_stop (void)
8172 {
8173 struct target_waitstatus last;
8174 ptid_t last_ptid;
8175 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8176 ptid_t pid_ptid;
8177
8178 get_last_target_status (&last_ptid, &last);
8179
8180 new_stop_id ();
8181
8182 /* If an exception is thrown from this point on, make sure to
8183 propagate GDB's knowledge of the executing state to the
8184 frontend/user running state. A QUIT is an easy exception to see
8185 here, so do this before any filtered output. */
8186 if (!non_stop)
8187 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8188 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8189 || last.kind == TARGET_WAITKIND_EXITED)
8190 {
8191 /* On some targets, we may still have live threads in the
8192 inferior when we get a process exit event. E.g., for
8193 "checkpoint", when the current checkpoint/fork exits,
8194 linux-fork.c automatically switches to another fork from
8195 within target_mourn_inferior. */
8196 if (!ptid_equal (inferior_ptid, null_ptid))
8197 {
8198 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8199 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8200 }
8201 }
8202 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8203 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8204
8205 /* As we're presenting a stop, and potentially removing breakpoints,
8206 update the thread list so we can tell whether there are threads
8207 running on the target. With target remote, for example, we can
8208 only learn about new threads when we explicitly update the thread
8209 list. Do this before notifying the interpreters about signal
8210 stops, end of stepping ranges, etc., so that the "new thread"
8211 output is emitted before e.g., "Program received signal FOO",
8212 instead of after. */
8213 update_thread_list ();
8214
8215 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8216 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8217
8218 /* As with the notification of thread events, we want to delay
8219 notifying the user that we've switched thread context until
8220 the inferior actually stops.
8221
8222 There's no point in saying anything if the inferior has exited.
8223 Note that SIGNALLED here means "exited with a signal", not
8224 "received a signal".
8225
8226 Also skip saying anything in non-stop mode. In that mode, as we
8227 don't want GDB to switch threads behind the user's back, to avoid
8228 races where the user is typing a command to apply to thread x,
8229 but GDB switches to thread y before the user finishes entering
8230 the command, fetch_inferior_event installs a cleanup to restore
8231 the current thread back to the thread the user had selected right
8232 after this event is handled, so we're not really switching, only
8233 informing of a stop. */
8234 if (!non_stop
8235 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8236 && target_has_execution
8237 && last.kind != TARGET_WAITKIND_SIGNALLED
8238 && last.kind != TARGET_WAITKIND_EXITED
8239 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8240 {
8241 SWITCH_THRU_ALL_UIS ()
8242 {
8243 target_terminal::ours_for_output ();
8244 printf_filtered (_("[Switching to %s]\n"),
8245 target_pid_to_str (inferior_ptid));
8246 annotate_thread_changed ();
8247 }
8248 previous_inferior_ptid = inferior_ptid;
8249 }
8250
8251 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8252 {
8253 SWITCH_THRU_ALL_UIS ()
8254 if (current_ui->prompt_state == PROMPT_BLOCKED)
8255 {
8256 target_terminal::ours_for_output ();
8257 printf_filtered (_("No unwaited-for children left.\n"));
8258 }
8259 }
8260
8261 /* Note: this depends on the update_thread_list call above. */
8262 maybe_remove_breakpoints ();
8263
8264 /* If an auto-display called a function and that got a signal,
8265 delete that auto-display to avoid an infinite recursion. */
8266
8267 if (stopped_by_random_signal)
8268 disable_current_display ();
8269
8270 SWITCH_THRU_ALL_UIS ()
8271 {
8272 async_enable_stdin ();
8273 }
8274
8275 /* Let the user/frontend see the threads as stopped. */
8276 do_cleanups (old_chain);
8277
8278 /* Select innermost stack frame - i.e., current frame is frame 0,
8279 and current location is based on that. Handle the case where the
8280 dummy call is returning after being stopped. E.g. the dummy call
8281 previously hit a breakpoint. (If the dummy call returns
8282 normally, we won't reach here.) Do this before the stop hook is
8283 run, so that it doesn't get to see the temporary dummy frame,
8284 which is not where we'll present the stop. */
8285 if (has_stack_frames ())
8286 {
8287 if (stop_stack_dummy == STOP_STACK_DUMMY)
8288 {
8289 /* Pop the empty frame that contains the stack dummy. This
8290 also restores inferior state prior to the call (struct
8291 infcall_suspend_state). */
8292 struct frame_info *frame = get_current_frame ();
8293
8294 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8295 frame_pop (frame);
8296 /* frame_pop calls reinit_frame_cache as the last thing it
8297 does which means there's now no selected frame. */
8298 }
8299
8300 select_frame (get_current_frame ());
8301
8302 /* Set the current source location. */
8303 set_current_sal_from_frame (get_current_frame ());
8304 }
8305
8306 /* Look up the hook_stop and run it (CLI internally handles problem
8307 of stop_command's pre-hook not existing). */
8308 if (stop_command != NULL)
8309 {
8310 struct stop_context *saved_context = save_stop_context ();
8311 struct cleanup *old_chain
8312 = make_cleanup (release_stop_context_cleanup, saved_context);
8313
8314 catch_errors (hook_stop_stub, stop_command,
8315 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8316
8317 /* If the stop hook resumes the target, then there's no point in
8318 trying to notify about the previous stop; its context is
8319 gone. Likewise if the command switches thread or inferior --
8320 the observers would print a stop for the wrong
8321 thread/inferior. */
8322 if (stop_context_changed (saved_context))
8323 {
8324 do_cleanups (old_chain);
8325 return 1;
8326 }
8327 do_cleanups (old_chain);
8328 }
8329
8330 /* Notify observers about the stop. This is where the interpreters
8331 print the stop event. */
8332 if (!ptid_equal (inferior_ptid, null_ptid))
8333 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8334 stop_print_frame);
8335 else
8336 observer_notify_normal_stop (NULL, stop_print_frame);
8337
8338 annotate_stopped ();
8339
8340 if (target_has_execution)
8341 {
8342 if (last.kind != TARGET_WAITKIND_SIGNALLED
8343 && last.kind != TARGET_WAITKIND_EXITED)
8344 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8345 Delete any breakpoint that is to be deleted at the next stop. */
8346 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8347 }
8348
8349 /* Try to get rid of automatically added inferiors that are no
8350 longer needed. Keeping those around slows down things linearly.
8351 Note that this never removes the current inferior. */
8352 prune_inferiors ();
8353
8354 return 0;
8355 }
8356
8357 static int
8358 hook_stop_stub (void *cmd)
8359 {
8360 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8361 return (0);
8362 }
8363 \f
8364 int
8365 signal_stop_state (int signo)
8366 {
8367 return signal_stop[signo];
8368 }
8369
8370 int
8371 signal_print_state (int signo)
8372 {
8373 return signal_print[signo];
8374 }
8375
8376 int
8377 signal_pass_state (int signo)
8378 {
8379 return signal_program[signo];
8380 }
8381
8382 static void
8383 signal_cache_update (int signo)
8384 {
8385 if (signo == -1)
8386 {
8387 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8388 signal_cache_update (signo);
8389
8390 return;
8391 }
8392
8393 signal_pass[signo] = (signal_stop[signo] == 0
8394 && signal_print[signo] == 0
8395 && signal_program[signo] == 1
8396 && signal_catch[signo] == 0);
8397 }
8398
8399 int
8400 signal_stop_update (int signo, int state)
8401 {
8402 int ret = signal_stop[signo];
8403
8404 signal_stop[signo] = state;
8405 signal_cache_update (signo);
8406 return ret;
8407 }
8408
8409 int
8410 signal_print_update (int signo, int state)
8411 {
8412 int ret = signal_print[signo];
8413
8414 signal_print[signo] = state;
8415 signal_cache_update (signo);
8416 return ret;
8417 }
8418
8419 int
8420 signal_pass_update (int signo, int state)
8421 {
8422 int ret = signal_program[signo];
8423
8424 signal_program[signo] = state;
8425 signal_cache_update (signo);
8426 return ret;
8427 }
8428
8429 /* Update the global 'signal_catch' from INFO and notify the
8430 target. */
8431
8432 void
8433 signal_catch_update (const unsigned int *info)
8434 {
8435 int i;
8436
8437 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8438 signal_catch[i] = info[i] > 0;
8439 signal_cache_update (-1);
8440 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8441 }
8442
8443 static void
8444 sig_print_header (void)
8445 {
8446 printf_filtered (_("Signal Stop\tPrint\tPass "
8447 "to program\tDescription\n"));
8448 }
8449
8450 static void
8451 sig_print_info (enum gdb_signal oursig)
8452 {
8453 const char *name = gdb_signal_to_name (oursig);
8454 int name_padding = 13 - strlen (name);
8455
8456 if (name_padding <= 0)
8457 name_padding = 0;
8458
8459 printf_filtered ("%s", name);
8460 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8461 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8462 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8463 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8464 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8465 }
8466
8467 /* Specify how various signals in the inferior should be handled. */
8468
8469 static void
8470 handle_command (char *args, int from_tty)
8471 {
8472 int digits, wordlen;
8473 int sigfirst, signum, siglast;
8474 enum gdb_signal oursig;
8475 int allsigs;
8476 int nsigs;
8477 unsigned char *sigs;
8478
8479 if (args == NULL)
8480 {
8481 error_no_arg (_("signal to handle"));
8482 }
8483
8484 /* Allocate and zero an array of flags for which signals to handle. */
8485
8486 nsigs = (int) GDB_SIGNAL_LAST;
8487 sigs = (unsigned char *) alloca (nsigs);
8488 memset (sigs, 0, nsigs);
8489
8490 /* Break the command line up into args. */
8491
8492 gdb_argv built_argv (args);
8493
8494 /* Walk through the args, looking for signal oursigs, signal names, and
8495 actions. Signal numbers and signal names may be interspersed with
8496 actions, with the actions being performed for all signals cumulatively
8497 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8498
8499 for (char *arg : built_argv)
8500 {
8501 wordlen = strlen (arg);
8502 for (digits = 0; isdigit (arg[digits]); digits++)
8503 {;
8504 }
8505 allsigs = 0;
8506 sigfirst = siglast = -1;
8507
8508 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8509 {
8510 /* Apply action to all signals except those used by the
8511 debugger. Silently skip those. */
8512 allsigs = 1;
8513 sigfirst = 0;
8514 siglast = nsigs - 1;
8515 }
8516 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8517 {
8518 SET_SIGS (nsigs, sigs, signal_stop);
8519 SET_SIGS (nsigs, sigs, signal_print);
8520 }
8521 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8522 {
8523 UNSET_SIGS (nsigs, sigs, signal_program);
8524 }
8525 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8526 {
8527 SET_SIGS (nsigs, sigs, signal_print);
8528 }
8529 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8530 {
8531 SET_SIGS (nsigs, sigs, signal_program);
8532 }
8533 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8534 {
8535 UNSET_SIGS (nsigs, sigs, signal_stop);
8536 }
8537 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8538 {
8539 SET_SIGS (nsigs, sigs, signal_program);
8540 }
8541 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8542 {
8543 UNSET_SIGS (nsigs, sigs, signal_print);
8544 UNSET_SIGS (nsigs, sigs, signal_stop);
8545 }
8546 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8547 {
8548 UNSET_SIGS (nsigs, sigs, signal_program);
8549 }
8550 else if (digits > 0)
8551 {
8552 /* It is numeric. The numeric signal refers to our own
8553 internal signal numbering from target.h, not to host/target
8554 signal number. This is a feature; users really should be
8555 using symbolic names anyway, and the common ones like
8556 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8557
8558 sigfirst = siglast = (int)
8559 gdb_signal_from_command (atoi (arg));
8560 if (arg[digits] == '-')
8561 {
8562 siglast = (int)
8563 gdb_signal_from_command (atoi (arg + digits + 1));
8564 }
8565 if (sigfirst > siglast)
8566 {
8567 /* Bet he didn't figure we'd think of this case... */
8568 signum = sigfirst;
8569 sigfirst = siglast;
8570 siglast = signum;
8571 }
8572 }
8573 else
8574 {
8575 oursig = gdb_signal_from_name (arg);
8576 if (oursig != GDB_SIGNAL_UNKNOWN)
8577 {
8578 sigfirst = siglast = (int) oursig;
8579 }
8580 else
8581 {
8582 /* Not a number and not a recognized flag word => complain. */
8583 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8584 }
8585 }
8586
8587 /* If any signal numbers or symbol names were found, set flags for
8588 which signals to apply actions to. */
8589
8590 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8591 {
8592 switch ((enum gdb_signal) signum)
8593 {
8594 case GDB_SIGNAL_TRAP:
8595 case GDB_SIGNAL_INT:
8596 if (!allsigs && !sigs[signum])
8597 {
8598 if (query (_("%s is used by the debugger.\n\
8599 Are you sure you want to change it? "),
8600 gdb_signal_to_name ((enum gdb_signal) signum)))
8601 {
8602 sigs[signum] = 1;
8603 }
8604 else
8605 {
8606 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8607 gdb_flush (gdb_stdout);
8608 }
8609 }
8610 break;
8611 case GDB_SIGNAL_0:
8612 case GDB_SIGNAL_DEFAULT:
8613 case GDB_SIGNAL_UNKNOWN:
8614 /* Make sure that "all" doesn't print these. */
8615 break;
8616 default:
8617 sigs[signum] = 1;
8618 break;
8619 }
8620 }
8621 }
8622
8623 for (signum = 0; signum < nsigs; signum++)
8624 if (sigs[signum])
8625 {
8626 signal_cache_update (-1);
8627 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8628 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8629
8630 if (from_tty)
8631 {
8632 /* Show the results. */
8633 sig_print_header ();
8634 for (; signum < nsigs; signum++)
8635 if (sigs[signum])
8636 sig_print_info ((enum gdb_signal) signum);
8637 }
8638
8639 break;
8640 }
8641 }
8642
8643 /* Complete the "handle" command. */
8644
8645 static void
8646 handle_completer (struct cmd_list_element *ignore,
8647 completion_tracker &tracker,
8648 const char *text, const char *word)
8649 {
8650 static const char * const keywords[] =
8651 {
8652 "all",
8653 "stop",
8654 "ignore",
8655 "print",
8656 "pass",
8657 "nostop",
8658 "noignore",
8659 "noprint",
8660 "nopass",
8661 NULL,
8662 };
8663
8664 signal_completer (ignore, tracker, text, word);
8665 complete_on_enum (tracker, keywords, word, word);
8666 }
8667
8668 enum gdb_signal
8669 gdb_signal_from_command (int num)
8670 {
8671 if (num >= 1 && num <= 15)
8672 return (enum gdb_signal) num;
8673 error (_("Only signals 1-15 are valid as numeric signals.\n\
8674 Use \"info signals\" for a list of symbolic signals."));
8675 }
8676
8677 /* Print current contents of the tables set by the handle command.
8678 It is possible we should just be printing signals actually used
8679 by the current target (but for things to work right when switching
8680 targets, all signals should be in the signal tables). */
8681
8682 static void
8683 info_signals_command (char *signum_exp, int from_tty)
8684 {
8685 enum gdb_signal oursig;
8686
8687 sig_print_header ();
8688
8689 if (signum_exp)
8690 {
8691 /* First see if this is a symbol name. */
8692 oursig = gdb_signal_from_name (signum_exp);
8693 if (oursig == GDB_SIGNAL_UNKNOWN)
8694 {
8695 /* No, try numeric. */
8696 oursig =
8697 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8698 }
8699 sig_print_info (oursig);
8700 return;
8701 }
8702
8703 printf_filtered ("\n");
8704 /* These ugly casts brought to you by the native VAX compiler. */
8705 for (oursig = GDB_SIGNAL_FIRST;
8706 (int) oursig < (int) GDB_SIGNAL_LAST;
8707 oursig = (enum gdb_signal) ((int) oursig + 1))
8708 {
8709 QUIT;
8710
8711 if (oursig != GDB_SIGNAL_UNKNOWN
8712 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8713 sig_print_info (oursig);
8714 }
8715
8716 printf_filtered (_("\nUse the \"handle\" command "
8717 "to change these tables.\n"));
8718 }
8719
8720 /* The $_siginfo convenience variable is a bit special. We don't know
8721 for sure the type of the value until we actually have a chance to
8722 fetch the data. The type can change depending on gdbarch, so it is
8723 also dependent on which thread you have selected.
8724
8725 1. making $_siginfo be an internalvar that creates a new value on
8726 access.
8727
8728 2. making the value of $_siginfo be an lval_computed value. */
8729
8730 /* This function implements the lval_computed support for reading a
8731 $_siginfo value. */
8732
8733 static void
8734 siginfo_value_read (struct value *v)
8735 {
8736 LONGEST transferred;
8737
8738 /* If we can access registers, so can we access $_siginfo. Likewise
8739 vice versa. */
8740 validate_registers_access ();
8741
8742 transferred =
8743 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8744 NULL,
8745 value_contents_all_raw (v),
8746 value_offset (v),
8747 TYPE_LENGTH (value_type (v)));
8748
8749 if (transferred != TYPE_LENGTH (value_type (v)))
8750 error (_("Unable to read siginfo"));
8751 }
8752
8753 /* This function implements the lval_computed support for writing a
8754 $_siginfo value. */
8755
8756 static void
8757 siginfo_value_write (struct value *v, struct value *fromval)
8758 {
8759 LONGEST transferred;
8760
8761 /* If we can access registers, so can we access $_siginfo. Likewise
8762 vice versa. */
8763 validate_registers_access ();
8764
8765 transferred = target_write (&current_target,
8766 TARGET_OBJECT_SIGNAL_INFO,
8767 NULL,
8768 value_contents_all_raw (fromval),
8769 value_offset (v),
8770 TYPE_LENGTH (value_type (fromval)));
8771
8772 if (transferred != TYPE_LENGTH (value_type (fromval)))
8773 error (_("Unable to write siginfo"));
8774 }
8775
8776 static const struct lval_funcs siginfo_value_funcs =
8777 {
8778 siginfo_value_read,
8779 siginfo_value_write
8780 };
8781
8782 /* Return a new value with the correct type for the siginfo object of
8783 the current thread using architecture GDBARCH. Return a void value
8784 if there's no object available. */
8785
8786 static struct value *
8787 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8788 void *ignore)
8789 {
8790 if (target_has_stack
8791 && !ptid_equal (inferior_ptid, null_ptid)
8792 && gdbarch_get_siginfo_type_p (gdbarch))
8793 {
8794 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8795
8796 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8797 }
8798
8799 return allocate_value (builtin_type (gdbarch)->builtin_void);
8800 }
8801
8802 \f
8803 /* infcall_suspend_state contains state about the program itself like its
8804 registers and any signal it received when it last stopped.
8805 This state must be restored regardless of how the inferior function call
8806 ends (either successfully, or after it hits a breakpoint or signal)
8807 if the program is to properly continue where it left off. */
8808
8809 struct infcall_suspend_state
8810 {
8811 struct thread_suspend_state thread_suspend;
8812
8813 /* Other fields: */
8814 CORE_ADDR stop_pc;
8815 struct regcache *registers;
8816
8817 /* Format of SIGINFO_DATA or NULL if it is not present. */
8818 struct gdbarch *siginfo_gdbarch;
8819
8820 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8821 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8822 content would be invalid. */
8823 gdb_byte *siginfo_data;
8824 };
8825
8826 struct infcall_suspend_state *
8827 save_infcall_suspend_state (void)
8828 {
8829 struct infcall_suspend_state *inf_state;
8830 struct thread_info *tp = inferior_thread ();
8831 struct regcache *regcache = get_current_regcache ();
8832 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8833 gdb_byte *siginfo_data = NULL;
8834
8835 if (gdbarch_get_siginfo_type_p (gdbarch))
8836 {
8837 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8838 size_t len = TYPE_LENGTH (type);
8839 struct cleanup *back_to;
8840
8841 siginfo_data = (gdb_byte *) xmalloc (len);
8842 back_to = make_cleanup (xfree, siginfo_data);
8843
8844 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8845 siginfo_data, 0, len) == len)
8846 discard_cleanups (back_to);
8847 else
8848 {
8849 /* Errors ignored. */
8850 do_cleanups (back_to);
8851 siginfo_data = NULL;
8852 }
8853 }
8854
8855 inf_state = XCNEW (struct infcall_suspend_state);
8856
8857 if (siginfo_data)
8858 {
8859 inf_state->siginfo_gdbarch = gdbarch;
8860 inf_state->siginfo_data = siginfo_data;
8861 }
8862
8863 inf_state->thread_suspend = tp->suspend;
8864
8865 /* run_inferior_call will not use the signal due to its `proceed' call with
8866 GDB_SIGNAL_0 anyway. */
8867 tp->suspend.stop_signal = GDB_SIGNAL_0;
8868
8869 inf_state->stop_pc = stop_pc;
8870
8871 inf_state->registers = regcache_dup (regcache);
8872
8873 return inf_state;
8874 }
8875
8876 /* Restore inferior session state to INF_STATE. */
8877
8878 void
8879 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8880 {
8881 struct thread_info *tp = inferior_thread ();
8882 struct regcache *regcache = get_current_regcache ();
8883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8884
8885 tp->suspend = inf_state->thread_suspend;
8886
8887 stop_pc = inf_state->stop_pc;
8888
8889 if (inf_state->siginfo_gdbarch == gdbarch)
8890 {
8891 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8892
8893 /* Errors ignored. */
8894 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8895 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8896 }
8897
8898 /* The inferior can be gone if the user types "print exit(0)"
8899 (and perhaps other times). */
8900 if (target_has_execution)
8901 /* NB: The register write goes through to the target. */
8902 regcache_cpy (regcache, inf_state->registers);
8903
8904 discard_infcall_suspend_state (inf_state);
8905 }
8906
8907 static void
8908 do_restore_infcall_suspend_state_cleanup (void *state)
8909 {
8910 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8911 }
8912
8913 struct cleanup *
8914 make_cleanup_restore_infcall_suspend_state
8915 (struct infcall_suspend_state *inf_state)
8916 {
8917 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8918 }
8919
8920 void
8921 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8922 {
8923 delete inf_state->registers;
8924 xfree (inf_state->siginfo_data);
8925 xfree (inf_state);
8926 }
8927
8928 struct regcache *
8929 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8930 {
8931 return inf_state->registers;
8932 }
8933
8934 /* infcall_control_state contains state regarding gdb's control of the
8935 inferior itself like stepping control. It also contains session state like
8936 the user's currently selected frame. */
8937
8938 struct infcall_control_state
8939 {
8940 struct thread_control_state thread_control;
8941 struct inferior_control_state inferior_control;
8942
8943 /* Other fields: */
8944 enum stop_stack_kind stop_stack_dummy;
8945 int stopped_by_random_signal;
8946
8947 /* ID if the selected frame when the inferior function call was made. */
8948 struct frame_id selected_frame_id;
8949 };
8950
8951 /* Save all of the information associated with the inferior<==>gdb
8952 connection. */
8953
8954 struct infcall_control_state *
8955 save_infcall_control_state (void)
8956 {
8957 struct infcall_control_state *inf_status =
8958 XNEW (struct infcall_control_state);
8959 struct thread_info *tp = inferior_thread ();
8960 struct inferior *inf = current_inferior ();
8961
8962 inf_status->thread_control = tp->control;
8963 inf_status->inferior_control = inf->control;
8964
8965 tp->control.step_resume_breakpoint = NULL;
8966 tp->control.exception_resume_breakpoint = NULL;
8967
8968 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8969 chain. If caller's caller is walking the chain, they'll be happier if we
8970 hand them back the original chain when restore_infcall_control_state is
8971 called. */
8972 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8973
8974 /* Other fields: */
8975 inf_status->stop_stack_dummy = stop_stack_dummy;
8976 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8977
8978 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8979
8980 return inf_status;
8981 }
8982
8983 static int
8984 restore_selected_frame (void *args)
8985 {
8986 struct frame_id *fid = (struct frame_id *) args;
8987 struct frame_info *frame;
8988
8989 frame = frame_find_by_id (*fid);
8990
8991 /* If inf_status->selected_frame_id is NULL, there was no previously
8992 selected frame. */
8993 if (frame == NULL)
8994 {
8995 warning (_("Unable to restore previously selected frame."));
8996 return 0;
8997 }
8998
8999 select_frame (frame);
9000
9001 return (1);
9002 }
9003
9004 /* Restore inferior session state to INF_STATUS. */
9005
9006 void
9007 restore_infcall_control_state (struct infcall_control_state *inf_status)
9008 {
9009 struct thread_info *tp = inferior_thread ();
9010 struct inferior *inf = current_inferior ();
9011
9012 if (tp->control.step_resume_breakpoint)
9013 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9014
9015 if (tp->control.exception_resume_breakpoint)
9016 tp->control.exception_resume_breakpoint->disposition
9017 = disp_del_at_next_stop;
9018
9019 /* Handle the bpstat_copy of the chain. */
9020 bpstat_clear (&tp->control.stop_bpstat);
9021
9022 tp->control = inf_status->thread_control;
9023 inf->control = inf_status->inferior_control;
9024
9025 /* Other fields: */
9026 stop_stack_dummy = inf_status->stop_stack_dummy;
9027 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9028
9029 if (target_has_stack)
9030 {
9031 /* The point of catch_errors is that if the stack is clobbered,
9032 walking the stack might encounter a garbage pointer and
9033 error() trying to dereference it. */
9034 if (catch_errors
9035 (restore_selected_frame, &inf_status->selected_frame_id,
9036 "Unable to restore previously selected frame:\n",
9037 RETURN_MASK_ERROR) == 0)
9038 /* Error in restoring the selected frame. Select the innermost
9039 frame. */
9040 select_frame (get_current_frame ());
9041 }
9042
9043 xfree (inf_status);
9044 }
9045
9046 static void
9047 do_restore_infcall_control_state_cleanup (void *sts)
9048 {
9049 restore_infcall_control_state ((struct infcall_control_state *) sts);
9050 }
9051
9052 struct cleanup *
9053 make_cleanup_restore_infcall_control_state
9054 (struct infcall_control_state *inf_status)
9055 {
9056 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9057 }
9058
9059 void
9060 discard_infcall_control_state (struct infcall_control_state *inf_status)
9061 {
9062 if (inf_status->thread_control.step_resume_breakpoint)
9063 inf_status->thread_control.step_resume_breakpoint->disposition
9064 = disp_del_at_next_stop;
9065
9066 if (inf_status->thread_control.exception_resume_breakpoint)
9067 inf_status->thread_control.exception_resume_breakpoint->disposition
9068 = disp_del_at_next_stop;
9069
9070 /* See save_infcall_control_state for info on stop_bpstat. */
9071 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9072
9073 xfree (inf_status);
9074 }
9075 \f
9076 /* See infrun.h. */
9077
9078 void
9079 clear_exit_convenience_vars (void)
9080 {
9081 clear_internalvar (lookup_internalvar ("_exitsignal"));
9082 clear_internalvar (lookup_internalvar ("_exitcode"));
9083 }
9084 \f
9085
9086 /* User interface for reverse debugging:
9087 Set exec-direction / show exec-direction commands
9088 (returns error unless target implements to_set_exec_direction method). */
9089
9090 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9091 static const char exec_forward[] = "forward";
9092 static const char exec_reverse[] = "reverse";
9093 static const char *exec_direction = exec_forward;
9094 static const char *const exec_direction_names[] = {
9095 exec_forward,
9096 exec_reverse,
9097 NULL
9098 };
9099
9100 static void
9101 set_exec_direction_func (char *args, int from_tty,
9102 struct cmd_list_element *cmd)
9103 {
9104 if (target_can_execute_reverse)
9105 {
9106 if (!strcmp (exec_direction, exec_forward))
9107 execution_direction = EXEC_FORWARD;
9108 else if (!strcmp (exec_direction, exec_reverse))
9109 execution_direction = EXEC_REVERSE;
9110 }
9111 else
9112 {
9113 exec_direction = exec_forward;
9114 error (_("Target does not support this operation."));
9115 }
9116 }
9117
9118 static void
9119 show_exec_direction_func (struct ui_file *out, int from_tty,
9120 struct cmd_list_element *cmd, const char *value)
9121 {
9122 switch (execution_direction) {
9123 case EXEC_FORWARD:
9124 fprintf_filtered (out, _("Forward.\n"));
9125 break;
9126 case EXEC_REVERSE:
9127 fprintf_filtered (out, _("Reverse.\n"));
9128 break;
9129 default:
9130 internal_error (__FILE__, __LINE__,
9131 _("bogus execution_direction value: %d"),
9132 (int) execution_direction);
9133 }
9134 }
9135
9136 static void
9137 show_schedule_multiple (struct ui_file *file, int from_tty,
9138 struct cmd_list_element *c, const char *value)
9139 {
9140 fprintf_filtered (file, _("Resuming the execution of threads "
9141 "of all processes is %s.\n"), value);
9142 }
9143
9144 /* Implementation of `siginfo' variable. */
9145
9146 static const struct internalvar_funcs siginfo_funcs =
9147 {
9148 siginfo_make_value,
9149 NULL,
9150 NULL
9151 };
9152
9153 /* Callback for infrun's target events source. This is marked when a
9154 thread has a pending status to process. */
9155
9156 static void
9157 infrun_async_inferior_event_handler (gdb_client_data data)
9158 {
9159 inferior_event_handler (INF_REG_EVENT, NULL);
9160 }
9161
9162 void
9163 _initialize_infrun (void)
9164 {
9165 int i;
9166 int numsigs;
9167 struct cmd_list_element *c;
9168
9169 /* Register extra event sources in the event loop. */
9170 infrun_async_inferior_event_token
9171 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9172
9173 add_info ("signals", info_signals_command, _("\
9174 What debugger does when program gets various signals.\n\
9175 Specify a signal as argument to print info on that signal only."));
9176 add_info_alias ("handle", "signals", 0);
9177
9178 c = add_com ("handle", class_run, handle_command, _("\
9179 Specify how to handle signals.\n\
9180 Usage: handle SIGNAL [ACTIONS]\n\
9181 Args are signals and actions to apply to those signals.\n\
9182 If no actions are specified, the current settings for the specified signals\n\
9183 will be displayed instead.\n\
9184 \n\
9185 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9186 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9187 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9188 The special arg \"all\" is recognized to mean all signals except those\n\
9189 used by the debugger, typically SIGTRAP and SIGINT.\n\
9190 \n\
9191 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9192 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9193 Stop means reenter debugger if this signal happens (implies print).\n\
9194 Print means print a message if this signal happens.\n\
9195 Pass means let program see this signal; otherwise program doesn't know.\n\
9196 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9197 Pass and Stop may be combined.\n\
9198 \n\
9199 Multiple signals may be specified. Signal numbers and signal names\n\
9200 may be interspersed with actions, with the actions being performed for\n\
9201 all signals cumulatively specified."));
9202 set_cmd_completer (c, handle_completer);
9203
9204 if (!dbx_commands)
9205 stop_command = add_cmd ("stop", class_obscure,
9206 not_just_help_class_command, _("\
9207 There is no `stop' command, but you can set a hook on `stop'.\n\
9208 This allows you to set a list of commands to be run each time execution\n\
9209 of the program stops."), &cmdlist);
9210
9211 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9212 Set inferior debugging."), _("\
9213 Show inferior debugging."), _("\
9214 When non-zero, inferior specific debugging is enabled."),
9215 NULL,
9216 show_debug_infrun,
9217 &setdebuglist, &showdebuglist);
9218
9219 add_setshow_boolean_cmd ("displaced", class_maintenance,
9220 &debug_displaced, _("\
9221 Set displaced stepping debugging."), _("\
9222 Show displaced stepping debugging."), _("\
9223 When non-zero, displaced stepping specific debugging is enabled."),
9224 NULL,
9225 show_debug_displaced,
9226 &setdebuglist, &showdebuglist);
9227
9228 add_setshow_boolean_cmd ("non-stop", no_class,
9229 &non_stop_1, _("\
9230 Set whether gdb controls the inferior in non-stop mode."), _("\
9231 Show whether gdb controls the inferior in non-stop mode."), _("\
9232 When debugging a multi-threaded program and this setting is\n\
9233 off (the default, also called all-stop mode), when one thread stops\n\
9234 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9235 all other threads in the program while you interact with the thread of\n\
9236 interest. When you continue or step a thread, you can allow the other\n\
9237 threads to run, or have them remain stopped, but while you inspect any\n\
9238 thread's state, all threads stop.\n\
9239 \n\
9240 In non-stop mode, when one thread stops, other threads can continue\n\
9241 to run freely. You'll be able to step each thread independently,\n\
9242 leave it stopped or free to run as needed."),
9243 set_non_stop,
9244 show_non_stop,
9245 &setlist,
9246 &showlist);
9247
9248 numsigs = (int) GDB_SIGNAL_LAST;
9249 signal_stop = XNEWVEC (unsigned char, numsigs);
9250 signal_print = XNEWVEC (unsigned char, numsigs);
9251 signal_program = XNEWVEC (unsigned char, numsigs);
9252 signal_catch = XNEWVEC (unsigned char, numsigs);
9253 signal_pass = XNEWVEC (unsigned char, numsigs);
9254 for (i = 0; i < numsigs; i++)
9255 {
9256 signal_stop[i] = 1;
9257 signal_print[i] = 1;
9258 signal_program[i] = 1;
9259 signal_catch[i] = 0;
9260 }
9261
9262 /* Signals caused by debugger's own actions should not be given to
9263 the program afterwards.
9264
9265 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9266 explicitly specifies that it should be delivered to the target
9267 program. Typically, that would occur when a user is debugging a
9268 target monitor on a simulator: the target monitor sets a
9269 breakpoint; the simulator encounters this breakpoint and halts
9270 the simulation handing control to GDB; GDB, noting that the stop
9271 address doesn't map to any known breakpoint, returns control back
9272 to the simulator; the simulator then delivers the hardware
9273 equivalent of a GDB_SIGNAL_TRAP to the program being
9274 debugged. */
9275 signal_program[GDB_SIGNAL_TRAP] = 0;
9276 signal_program[GDB_SIGNAL_INT] = 0;
9277
9278 /* Signals that are not errors should not normally enter the debugger. */
9279 signal_stop[GDB_SIGNAL_ALRM] = 0;
9280 signal_print[GDB_SIGNAL_ALRM] = 0;
9281 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9282 signal_print[GDB_SIGNAL_VTALRM] = 0;
9283 signal_stop[GDB_SIGNAL_PROF] = 0;
9284 signal_print[GDB_SIGNAL_PROF] = 0;
9285 signal_stop[GDB_SIGNAL_CHLD] = 0;
9286 signal_print[GDB_SIGNAL_CHLD] = 0;
9287 signal_stop[GDB_SIGNAL_IO] = 0;
9288 signal_print[GDB_SIGNAL_IO] = 0;
9289 signal_stop[GDB_SIGNAL_POLL] = 0;
9290 signal_print[GDB_SIGNAL_POLL] = 0;
9291 signal_stop[GDB_SIGNAL_URG] = 0;
9292 signal_print[GDB_SIGNAL_URG] = 0;
9293 signal_stop[GDB_SIGNAL_WINCH] = 0;
9294 signal_print[GDB_SIGNAL_WINCH] = 0;
9295 signal_stop[GDB_SIGNAL_PRIO] = 0;
9296 signal_print[GDB_SIGNAL_PRIO] = 0;
9297
9298 /* These signals are used internally by user-level thread
9299 implementations. (See signal(5) on Solaris.) Like the above
9300 signals, a healthy program receives and handles them as part of
9301 its normal operation. */
9302 signal_stop[GDB_SIGNAL_LWP] = 0;
9303 signal_print[GDB_SIGNAL_LWP] = 0;
9304 signal_stop[GDB_SIGNAL_WAITING] = 0;
9305 signal_print[GDB_SIGNAL_WAITING] = 0;
9306 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9307 signal_print[GDB_SIGNAL_CANCEL] = 0;
9308 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9309 signal_print[GDB_SIGNAL_LIBRT] = 0;
9310
9311 /* Update cached state. */
9312 signal_cache_update (-1);
9313
9314 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9315 &stop_on_solib_events, _("\
9316 Set stopping for shared library events."), _("\
9317 Show stopping for shared library events."), _("\
9318 If nonzero, gdb will give control to the user when the dynamic linker\n\
9319 notifies gdb of shared library events. The most common event of interest\n\
9320 to the user would be loading/unloading of a new library."),
9321 set_stop_on_solib_events,
9322 show_stop_on_solib_events,
9323 &setlist, &showlist);
9324
9325 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9326 follow_fork_mode_kind_names,
9327 &follow_fork_mode_string, _("\
9328 Set debugger response to a program call of fork or vfork."), _("\
9329 Show debugger response to a program call of fork or vfork."), _("\
9330 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9331 parent - the original process is debugged after a fork\n\
9332 child - the new process is debugged after a fork\n\
9333 The unfollowed process will continue to run.\n\
9334 By default, the debugger will follow the parent process."),
9335 NULL,
9336 show_follow_fork_mode_string,
9337 &setlist, &showlist);
9338
9339 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9340 follow_exec_mode_names,
9341 &follow_exec_mode_string, _("\
9342 Set debugger response to a program call of exec."), _("\
9343 Show debugger response to a program call of exec."), _("\
9344 An exec call replaces the program image of a process.\n\
9345 \n\
9346 follow-exec-mode can be:\n\
9347 \n\
9348 new - the debugger creates a new inferior and rebinds the process\n\
9349 to this new inferior. The program the process was running before\n\
9350 the exec call can be restarted afterwards by restarting the original\n\
9351 inferior.\n\
9352 \n\
9353 same - the debugger keeps the process bound to the same inferior.\n\
9354 The new executable image replaces the previous executable loaded in\n\
9355 the inferior. Restarting the inferior after the exec call restarts\n\
9356 the executable the process was running after the exec call.\n\
9357 \n\
9358 By default, the debugger will use the same inferior."),
9359 NULL,
9360 show_follow_exec_mode_string,
9361 &setlist, &showlist);
9362
9363 add_setshow_enum_cmd ("scheduler-locking", class_run,
9364 scheduler_enums, &scheduler_mode, _("\
9365 Set mode for locking scheduler during execution."), _("\
9366 Show mode for locking scheduler during execution."), _("\
9367 off == no locking (threads may preempt at any time)\n\
9368 on == full locking (no thread except the current thread may run)\n\
9369 This applies to both normal execution and replay mode.\n\
9370 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9371 In this mode, other threads may run during other commands.\n\
9372 This applies to both normal execution and replay mode.\n\
9373 replay == scheduler locked in replay mode and unlocked during normal execution."),
9374 set_schedlock_func, /* traps on target vector */
9375 show_scheduler_mode,
9376 &setlist, &showlist);
9377
9378 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9379 Set mode for resuming threads of all processes."), _("\
9380 Show mode for resuming threads of all processes."), _("\
9381 When on, execution commands (such as 'continue' or 'next') resume all\n\
9382 threads of all processes. When off (which is the default), execution\n\
9383 commands only resume the threads of the current process. The set of\n\
9384 threads that are resumed is further refined by the scheduler-locking\n\
9385 mode (see help set scheduler-locking)."),
9386 NULL,
9387 show_schedule_multiple,
9388 &setlist, &showlist);
9389
9390 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9391 Set mode of the step operation."), _("\
9392 Show mode of the step operation."), _("\
9393 When set, doing a step over a function without debug line information\n\
9394 will stop at the first instruction of that function. Otherwise, the\n\
9395 function is skipped and the step command stops at a different source line."),
9396 NULL,
9397 show_step_stop_if_no_debug,
9398 &setlist, &showlist);
9399
9400 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9401 &can_use_displaced_stepping, _("\
9402 Set debugger's willingness to use displaced stepping."), _("\
9403 Show debugger's willingness to use displaced stepping."), _("\
9404 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9405 supported by the target architecture. If off, gdb will not use displaced\n\
9406 stepping to step over breakpoints, even if such is supported by the target\n\
9407 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9408 if the target architecture supports it and non-stop mode is active, but will not\n\
9409 use it in all-stop mode (see help set non-stop)."),
9410 NULL,
9411 show_can_use_displaced_stepping,
9412 &setlist, &showlist);
9413
9414 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9415 &exec_direction, _("Set direction of execution.\n\
9416 Options are 'forward' or 'reverse'."),
9417 _("Show direction of execution (forward/reverse)."),
9418 _("Tells gdb whether to execute forward or backward."),
9419 set_exec_direction_func, show_exec_direction_func,
9420 &setlist, &showlist);
9421
9422 /* Set/show detach-on-fork: user-settable mode. */
9423
9424 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9425 Set whether gdb will detach the child of a fork."), _("\
9426 Show whether gdb will detach the child of a fork."), _("\
9427 Tells gdb whether to detach the child of a fork."),
9428 NULL, NULL, &setlist, &showlist);
9429
9430 /* Set/show disable address space randomization mode. */
9431
9432 add_setshow_boolean_cmd ("disable-randomization", class_support,
9433 &disable_randomization, _("\
9434 Set disabling of debuggee's virtual address space randomization."), _("\
9435 Show disabling of debuggee's virtual address space randomization."), _("\
9436 When this mode is on (which is the default), randomization of the virtual\n\
9437 address space is disabled. Standalone programs run with the randomization\n\
9438 enabled by default on some platforms."),
9439 &set_disable_randomization,
9440 &show_disable_randomization,
9441 &setlist, &showlist);
9442
9443 /* ptid initializations */
9444 inferior_ptid = null_ptid;
9445 target_last_wait_ptid = minus_one_ptid;
9446
9447 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9448 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9449 observer_attach_thread_exit (infrun_thread_thread_exit);
9450 observer_attach_inferior_exit (infrun_inferior_exit);
9451
9452 /* Explicitly create without lookup, since that tries to create a
9453 value with a void typed value, and when we get here, gdbarch
9454 isn't initialized yet. At this point, we're quite sure there
9455 isn't another convenience variable of the same name. */
9456 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9457
9458 add_setshow_boolean_cmd ("observer", no_class,
9459 &observer_mode_1, _("\
9460 Set whether gdb controls the inferior in observer mode."), _("\
9461 Show whether gdb controls the inferior in observer mode."), _("\
9462 In observer mode, GDB can get data from the inferior, but not\n\
9463 affect its execution. Registers and memory may not be changed,\n\
9464 breakpoints may not be set, and the program cannot be interrupted\n\
9465 or signalled."),
9466 set_observer_mode,
9467 show_observer_mode,
9468 &setlist,
9469 &showlist);
9470 }
This page took 0.223111 seconds and 5 git commands to generate.