Merge branch 'master' into merge-job
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 Copyright (C) 2019 Advanced Micro Devices, Inc. All rights reserved.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67
68 /* Prototypes for local functions */
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static int follow_fork (void);
75
76 static int follow_fork_inferior (int follow_child, int detach_fork);
77
78 static void follow_inferior_reset_breakpoints (void);
79
80 static int currently_stepping (struct thread_info *tp);
81
82 void nullify_last_target_wait_ptid (void);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 /* Asynchronous signal handler registered as event loop source for
95 when we have pending events ready to be passed to the core. */
96 static struct async_event_handler *infrun_async_inferior_event_token;
97
98 /* Stores whether infrun_async was previously enabled or disabled.
99 Starts off as -1, indicating "never enabled/disabled". */
100 static int infrun_is_async = -1;
101
102 /* See infrun.h. */
103
104 void
105 infrun_async (int enable)
106 {
107 if (infrun_is_async != enable)
108 {
109 infrun_is_async = enable;
110
111 if (debug_infrun)
112 fprintf_unfiltered (gdb_stdlog,
113 "infrun: infrun_async(%d)\n",
114 enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 mark_infrun_async_event_handler (void)
127 {
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 }
130
131 /* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
134 bool step_stop_if_no_debug = false;
135 static void
136 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140 }
141
142 /* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
145
146 static ptid_t previous_inferior_ptid;
147
148 /* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
153 static bool detach_fork = true;
154
155 bool debug_displaced = false;
156 static void
157 show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161 }
162
163 unsigned int debug_infrun = 0;
164 static void
165 show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169 }
170
171
172 /* Support for disabling address space randomization. */
173
174 bool disable_randomization = true;
175
176 static void
177 show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 if (target_supports_disable_randomization ())
181 fprintf_filtered (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 fputs_filtered (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189 }
190
191 static void
192 set_disable_randomization (const char *args, int from_tty,
193 struct cmd_list_element *c)
194 {
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199 }
200
201 /* User interface for non-stop mode. */
202
203 bool non_stop = false;
204 static bool non_stop_1 = false;
205
206 static void
207 set_non_stop (const char *args, int from_tty,
208 struct cmd_list_element *c)
209 {
210 if (target_has_execution)
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217 }
218
219 static void
220 show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226 }
227
228 /* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
232 bool observer_mode = false;
233 static bool observer_mode_1 = false;
234
235 static void
236 set_observer_mode (const char *args, int from_tty,
237 struct cmd_list_element *c)
238 {
239 if (target_has_execution)
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
254 may_insert_fast_tracepoints = true;
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
262 pagination_enabled = 0;
263 non_stop = non_stop_1 = true;
264 }
265
266 if (from_tty)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269 }
270
271 static void
272 show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274 {
275 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
276 }
277
278 /* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284 void
285 update_observer_mode (void)
286 {
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 printf_filtered (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299 }
300
301 /* Tables of how to react to signals; the user sets them. */
302
303 static unsigned char signal_stop[GDB_SIGNAL_LAST];
304 static unsigned char signal_print[GDB_SIGNAL_LAST];
305 static unsigned char signal_program[GDB_SIGNAL_LAST];
306
307 /* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
309 signal" command. */
310 static unsigned char signal_catch[GDB_SIGNAL_LAST];
311
312 /* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
315 static unsigned char signal_pass[GDB_SIGNAL_LAST];
316
317 #define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325 #define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
333 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336 void
337 update_signals_program_target (void)
338 {
339 target_program_signals (signal_program);
340 }
341
342 /* Value to pass to target_resume() to cause all threads to resume. */
343
344 #define RESUME_ALL minus_one_ptid
345
346 /* Command list pointer for the "stop" placeholder. */
347
348 static struct cmd_list_element *stop_command;
349
350 /* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352 int stop_on_solib_events;
353
354 /* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357 static void
358 set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
360 {
361 update_solib_breakpoints ();
362 }
363
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero after stop if current stack frame should be printed. */
373
374 static int stop_print_frame;
375
376 /* This is a cached copy of the pid/waitstatus of the last event
377 returned by target_wait()/deprecated_target_wait_hook(). This
378 information is returned by get_last_target_status(). */
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static int
412 follow_fork_inferior (int follow_child, int detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 inferior_ptid = child_ptid;
485 add_thread_silent (inferior_ptid);
486 set_current_inferior (child_inf);
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
507 child_inf->pspace = new program_space (child_inf->aspace);
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
545 if (print_inferior_events)
546 {
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
550 target_terminal::ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
554 has_vforked ? "vfork" : "fork",
555 child_pid.c_str ());
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
561 child_inf = add_inferior (child_ptid.pid ());
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
592 {
593 if (print_inferior_events)
594 {
595 /* Ensure that we have a process ptid. */
596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
597
598 target_terminal::ours_for_output ();
599 fprintf_filtered (gdb_stdlog,
600 _("[Detaching after fork from "
601 "parent %s]\n"),
602 target_pid_to_str (process_ptid).c_str ());
603 }
604
605 target_detach (parent_inf, 0);
606 }
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
614 inferior_ptid = child_ptid;
615 add_thread_silent (inferior_ptid);
616 set_current_inferior (child_inf);
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
629 child_inf->pspace = new program_space (child_inf->aspace);
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645 }
646
647 /* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
651 static int
652 follow_fork (void)
653 {
654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
663 struct breakpoint *exception_resume_breakpoint = NULL;
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
667 struct thread_fsm *thread_fsm = NULL;
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
721 thread_fsm = tp->thread_fsm;
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
732 delete_exception_resume_breakpoint (tp);
733 tp->thread_fsm = NULL;
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
754 tp = find_thread_ptid (parent);
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
762 /* If we followed the child, switch to it... */
763 if (follow_child)
764 {
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
780 tp->thread_fsm = thread_fsm;
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
790 warning (_("Not resuming: switched threads "
791 "before following fork child."));
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
809
810 return should_resume;
811 }
812
813 static void
814 follow_inferior_reset_breakpoints (void)
815 {
816 struct thread_info *tp = inferior_thread ();
817
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
831 if (tp->control.step_resume_breakpoint)
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
836
837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
838 if (tp->control.exception_resume_breakpoint)
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
843
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
851 }
852
853 /* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856 static int
857 proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859 {
860 int pid = * (int *) arg;
861
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
865 && !thread->stop_requested
866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
871 target_pid_to_str (thread->ptid).c_str ());
872
873 switch_to_thread (thread);
874 clear_proceed_status (0);
875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
876 }
877
878 return 0;
879 }
880
881 /* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884 class scoped_restore_exited_inferior
885 {
886 public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891 private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895 };
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
914
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
918 {
919 struct thread_info *tp;
920 struct program_space *pspace;
921 struct address_space *aspace;
922
923 /* follow-fork child, detach-on-fork on. */
924
925 vfork_parent->pending_detach = 0;
926
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
934 if (!exec)
935 maybe_restore_inferior.emplace ();
936 else
937 maybe_restore_thread.emplace ();
938
939 /* We're letting loose of the parent. */
940 tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = new program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 resume_parent = vfork_parent->pid;
1031 }
1032
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
1039 scoped_restore_current_thread restore_thread;
1040
1041 if (debug_infrun)
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1047 }
1048 }
1049 }
1050
1051 /* Enum strings for "set|show follow-exec-mode". */
1052
1053 static const char follow_exec_mode_new[] = "new";
1054 static const char follow_exec_mode_same[] = "same";
1055 static const char *const follow_exec_mode_names[] =
1056 {
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060 };
1061
1062 static const char *follow_exec_mode_string = follow_exec_mode_same;
1063 static void
1064 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066 {
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068 }
1069
1070 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1071
1072 static void
1073 follow_exec (ptid_t ptid, const char *exec_file_target)
1074 {
1075 struct inferior *inf = current_inferior ();
1076 int pid = ptid.pid ();
1077 ptid_t process_ptid;
1078
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
1101 value that was overwritten with a TRAP instruction). Since
1102 we now have a new a.out, those shadow contents aren't valid. */
1103
1104 mark_breakpoints_out ();
1105
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
1125 for (thread_info *th : all_threads_safe ())
1126 if (th->ptid.pid () == pid && th->ptid != ptid)
1127 delete_thread (th);
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
1133 thread_info *th = inferior_thread ();
1134 th->control.step_resume_breakpoint = NULL;
1135 th->control.exception_resume_breakpoint = NULL;
1136 th->control.single_step_breakpoints = NULL;
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
1139
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
1143 th->stop_requested = 0;
1144
1145 update_breakpoints_after_exec ();
1146
1147 /* What is this a.out's name? */
1148 process_ptid = ptid_t (pid);
1149 printf_unfiltered (_("%s is executing new program: %s\n"),
1150 target_pid_to_str (process_ptid).c_str (),
1151 exec_file_target);
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1154 inferior has essentially been killed & reborn. */
1155
1156 breakpoint_init_inferior (inf_execd);
1157
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
1160
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
1169
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
1189 exit_inferior_silent (current_inferior ());
1190
1191 inf->pid = pid;
1192 target_follow_exec (inf, exec_file_target);
1193
1194 set_current_inferior (inf);
1195 set_current_program_space (inf->pspace);
1196 add_thread (ptid);
1197 }
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1217
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
1226 solib_create_inferior_hook (0);
1227
1228 jit_inferior_created_hook ();
1229
1230 breakpoint_re_set ();
1231
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1234 to symbol_file_command...). */
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1240 matically get reset there in the new process.). */
1241 }
1242
1243 /* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250 struct thread_info *step_over_queue_head;
1251
1252 /* Bit flags indicating what the thread needs to step over. */
1253
1254 enum step_over_what_flag
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
1264 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1265
1266 /* Info about an instruction that is being stepped over. */
1267
1268 struct step_over_info
1269 {
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
1274 const address_space *aspace;
1275 CORE_ADDR address;
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
1280
1281 /* The thread's global number. */
1282 int thread;
1283 };
1284
1285 /* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309 static struct step_over_info step_over_info;
1310
1311 /* Record the address of the breakpoint/instruction we're currently
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
1315
1316 static void
1317 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1318 int nonsteppable_watchpoint_p,
1319 int thread)
1320 {
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1324 step_over_info.thread = thread;
1325 }
1326
1327 /* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330 static void
1331 clear_step_over_info (void)
1332 {
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
1338 step_over_info.nonsteppable_watchpoint_p = 0;
1339 step_over_info.thread = -1;
1340 }
1341
1342 /* See infrun.h. */
1343
1344 int
1345 stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347 {
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352 }
1353
1354 /* See infrun.h. */
1355
1356 int
1357 thread_is_stepping_over_breakpoint (int thread)
1358 {
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 stepping_past_nonsteppable_watchpoint (void)
1367 {
1368 return step_over_info.nonsteppable_watchpoint_p;
1369 }
1370
1371 /* Returns true if step-over info is valid. */
1372
1373 static int
1374 step_over_info_valid_p (void)
1375 {
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378 }
1379
1380 \f
1381 /* Displaced stepping. */
1382
1383 /* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfully single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
1467 /* Default destructor for displaced_step_closure. */
1468
1469 displaced_step_closure::~displaced_step_closure () = default;
1470
1471 /* Get the displaced stepping state of process PID. */
1472
1473 static displaced_step_inferior_state *
1474 get_displaced_stepping_state (inferior *inf)
1475 {
1476 return &inf->displaced_step_state;
1477 }
1478
1479 /* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
1482 static bool
1483 displaced_step_in_progress_any_inferior ()
1484 {
1485 for (inferior *i : all_inferiors ())
1486 {
1487 if (i->displaced_step_state.step_thread != nullptr)
1488 return true;
1489 }
1490
1491 return false;
1492 }
1493
1494 /* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497 static int
1498 displaced_step_in_progress_thread (thread_info *thread)
1499 {
1500 gdb_assert (thread != NULL);
1501
1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1503 }
1504
1505 /* Return true if process PID has a thread doing a displaced step. */
1506
1507 static int
1508 displaced_step_in_progress (inferior *inf)
1509 {
1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1511 }
1512
1513 /* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_closure. Otherwise,
1515 return NULL. */
1516
1517 struct displaced_step_closure*
1518 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1519 {
1520 displaced_step_inferior_state *displaced
1521 = get_displaced_stepping_state (current_inferior ());
1522
1523 /* If checking the mode of displaced instruction in copy area. */
1524 if (displaced->step_thread != nullptr
1525 && displaced->step_copy == addr)
1526 return displaced->step_closure;
1527
1528 return NULL;
1529 }
1530
1531 static void
1532 infrun_inferior_exit (struct inferior *inf)
1533 {
1534 inf->displaced_step_state.reset ();
1535 }
1536
1537 /* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 which of all-stop or non-stop mode is active --- displaced stepping
1543 in non-stop mode; hold-and-step in all-stop mode. */
1544
1545 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1546
1547 static void
1548 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551 {
1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
1556 value, target_is_non_stop_p () ? "on" : "off");
1557 else
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
1561 }
1562
1563 /* Return non-zero if displaced stepping can/should be used to step
1564 over breakpoints of thread TP. */
1565
1566 static int
1567 use_displaced_stepping (struct thread_info *tp)
1568 {
1569 struct regcache *regcache = get_thread_regcache (tp);
1570 struct gdbarch *gdbarch = regcache->arch ();
1571 displaced_step_inferior_state *displaced_state
1572 = get_displaced_stepping_state (tp->inf);
1573
1574 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1575 && target_is_non_stop_p ())
1576 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1577 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1578 && find_record_target () == NULL
1579 && !displaced_state->failed_before);
1580 }
1581
1582 /* Clean out any stray displaced stepping state. */
1583 static void
1584 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1585 {
1586 /* Indicate that there is no cleanup pending. */
1587 displaced->step_thread = nullptr;
1588
1589 delete displaced->step_closure;
1590 displaced->step_closure = NULL;
1591 }
1592
1593 /* A cleanup that wraps displaced_step_clear. */
1594 using displaced_step_clear_cleanup
1595 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1596
1597 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1598 void
1599 displaced_step_dump_bytes (struct ui_file *file,
1600 const gdb_byte *buf,
1601 size_t len)
1602 {
1603 int i;
1604
1605 for (i = 0; i < len; i++)
1606 fprintf_unfiltered (file, "%02x ", buf[i]);
1607 fputs_unfiltered ("\n", file);
1608 }
1609
1610 /* Prepare to single-step, using displaced stepping.
1611
1612 Note that we cannot use displaced stepping when we have a signal to
1613 deliver. If we have a signal to deliver and an instruction to step
1614 over, then after the step, there will be no indication from the
1615 target whether the thread entered a signal handler or ignored the
1616 signal and stepped over the instruction successfully --- both cases
1617 result in a simple SIGTRAP. In the first case we mustn't do a
1618 fixup, and in the second case we must --- but we can't tell which.
1619 Comments in the code for 'random signals' in handle_inferior_event
1620 explain how we handle this case instead.
1621
1622 Returns 1 if preparing was successful -- this thread is going to be
1623 stepped now; 0 if displaced stepping this thread got queued; or -1
1624 if this instruction can't be displaced stepped. */
1625
1626 static int
1627 displaced_step_prepare_throw (thread_info *tp)
1628 {
1629 regcache *regcache = get_thread_regcache (tp);
1630 struct gdbarch *gdbarch = regcache->arch ();
1631 const address_space *aspace = regcache->aspace ();
1632 CORE_ADDR original, copy;
1633 ULONGEST len;
1634 struct displaced_step_closure *closure;
1635 int status;
1636
1637 /* We should never reach this function if the architecture does not
1638 support displaced stepping. */
1639 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1640
1641 /* Nor if the thread isn't meant to step over a breakpoint. */
1642 gdb_assert (tp->control.trap_expected);
1643
1644 /* Disable range stepping while executing in the scratch pad. We
1645 want a single-step even if executing the displaced instruction in
1646 the scratch buffer lands within the stepping range (e.g., a
1647 jump/branch). */
1648 tp->control.may_range_step = 0;
1649
1650 /* We have to displaced step one thread at a time, as we only have
1651 access to a single scratch space per inferior. */
1652
1653 displaced_step_inferior_state *displaced
1654 = get_displaced_stepping_state (tp->inf);
1655
1656 if (displaced->step_thread != nullptr)
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "displaced: deferring step of %s\n",
1664 target_pid_to_str (tp->ptid).c_str ());
1665
1666 thread_step_over_chain_enqueue (tp);
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (tp->ptid).c_str ());
1675 }
1676
1677 displaced_step_clear (displaced);
1678
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
1682
1683 original = regcache_read_pc (regcache);
1684
1685 copy = gdbarch_displaced_step_location (gdbarch);
1686 len = gdbarch_max_insn_length (gdbarch);
1687
1688 if (breakpoint_in_range_p (aspace, copy, len))
1689 {
1690 /* There's a breakpoint set in the scratch pad location range
1691 (which is usually around the entry point). We'd either
1692 install it before resuming, which would overwrite/corrupt the
1693 scratch pad, or if it was already inserted, this displaced
1694 step would overwrite it. The latter is OK in the sense that
1695 we already assume that no thread is going to execute the code
1696 in the scratch pad range (after initial startup) anyway, but
1697 the former is unacceptable. Simply punt and fallback to
1698 stepping over this breakpoint in-line. */
1699 if (debug_displaced)
1700 {
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: breakpoint set in scratch pad. "
1703 "Stepping over breakpoint in-line instead.\n");
1704 }
1705
1706 return -1;
1707 }
1708
1709 /* Save the original contents of the copy area. */
1710 displaced->step_saved_copy.resize (len);
1711 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1712 if (status != 0)
1713 throw_error (MEMORY_ERROR,
1714 _("Error accessing memory address %s (%s) for "
1715 "displaced-stepping scratch space."),
1716 paddress (gdbarch, copy), safe_strerror (status));
1717 if (debug_displaced)
1718 {
1719 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1720 paddress (gdbarch, copy));
1721 displaced_step_dump_bytes (gdb_stdlog,
1722 displaced->step_saved_copy.data (),
1723 len);
1724 };
1725
1726 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1727 original, copy, regcache);
1728 if (closure == NULL)
1729 {
1730 /* The architecture doesn't know how or want to displaced step
1731 this instruction or instruction sequence. Fallback to
1732 stepping over the breakpoint in-line. */
1733 return -1;
1734 }
1735
1736 /* Save the information we need to fix things up if the step
1737 succeeds. */
1738 displaced->step_thread = tp;
1739 displaced->step_gdbarch = gdbarch;
1740 displaced->step_closure = closure;
1741 displaced->step_original = original;
1742 displaced->step_copy = copy;
1743
1744 {
1745 displaced_step_clear_cleanup cleanup (displaced);
1746
1747 /* Resume execution at the copy. */
1748 regcache_write_pc (regcache, copy);
1749
1750 cleanup.release ();
1751 }
1752
1753 if (debug_displaced)
1754 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1755 paddress (gdbarch, copy));
1756
1757 return 1;
1758 }
1759
1760 /* Wrapper for displaced_step_prepare_throw that disabled further
1761 attempts at displaced stepping if we get a memory error. */
1762
1763 static int
1764 displaced_step_prepare (thread_info *thread)
1765 {
1766 int prepared = -1;
1767
1768 try
1769 {
1770 prepared = displaced_step_prepare_throw (thread);
1771 }
1772 catch (const gdb_exception_error &ex)
1773 {
1774 struct displaced_step_inferior_state *displaced_state;
1775
1776 if (ex.error != MEMORY_ERROR
1777 && ex.error != NOT_SUPPORTED_ERROR)
1778 throw;
1779
1780 if (debug_infrun)
1781 {
1782 fprintf_unfiltered (gdb_stdlog,
1783 "infrun: disabling displaced stepping: %s\n",
1784 ex.what ());
1785 }
1786
1787 /* Be verbose if "set displaced-stepping" is "on", silent if
1788 "auto". */
1789 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1790 {
1791 warning (_("disabling displaced stepping: %s"),
1792 ex.what ());
1793 }
1794
1795 /* Disable further displaced stepping attempts. */
1796 displaced_state
1797 = get_displaced_stepping_state (thread->inf);
1798 displaced_state->failed_before = 1;
1799 }
1800
1801 return prepared;
1802 }
1803
1804 static void
1805 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1806 const gdb_byte *myaddr, int len)
1807 {
1808 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1809
1810 inferior_ptid = ptid;
1811 write_memory (memaddr, myaddr, len);
1812 }
1813
1814 /* Restore the contents of the copy area for thread PTID. */
1815
1816 static void
1817 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1818 ptid_t ptid)
1819 {
1820 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1821
1822 write_memory_ptid (ptid, displaced->step_copy,
1823 displaced->step_saved_copy.data (), len);
1824 if (debug_displaced)
1825 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1826 target_pid_to_str (ptid).c_str (),
1827 paddress (displaced->step_gdbarch,
1828 displaced->step_copy));
1829 }
1830
1831 /* If we displaced stepped an instruction successfully, adjust
1832 registers and memory to yield the same effect the instruction would
1833 have had if we had executed it at its original address, and return
1834 1. If the instruction didn't complete, relocate the PC and return
1835 -1. If the thread wasn't displaced stepping, return 0. */
1836
1837 static int
1838 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1839 {
1840 struct displaced_step_inferior_state *displaced
1841 = get_displaced_stepping_state (event_thread->inf);
1842 int ret;
1843
1844 /* Was this event for the thread we displaced? */
1845 if (displaced->step_thread != event_thread)
1846 return 0;
1847
1848 displaced_step_clear_cleanup cleanup (displaced);
1849
1850 displaced_step_restore (displaced, displaced->step_thread->ptid);
1851
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread. */
1855 switch_to_thread (event_thread);
1856
1857 /* Did the instruction complete successfully? */
1858 if (signal == GDB_SIGNAL_TRAP
1859 && !(target_stopped_by_watchpoint ()
1860 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1861 || target_have_steppable_watchpoint)))
1862 {
1863 /* Fix up the resulting state. */
1864 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1865 displaced->step_closure,
1866 displaced->step_original,
1867 displaced->step_copy,
1868 get_thread_regcache (displaced->step_thread));
1869 ret = 1;
1870 }
1871 else
1872 {
1873 /* Since the instruction didn't complete, all we can do is
1874 relocate the PC. */
1875 struct regcache *regcache = get_thread_regcache (event_thread);
1876 CORE_ADDR pc = regcache_read_pc (regcache);
1877
1878 pc = displaced->step_original + (pc - displaced->step_copy);
1879 regcache_write_pc (regcache, pc);
1880 ret = -1;
1881 }
1882
1883 return ret;
1884 }
1885
1886 /* Data to be passed around while handling an event. This data is
1887 discarded between events. */
1888 struct execution_control_state
1889 {
1890 ptid_t ptid;
1891 /* The thread that got the event, if this was a thread event; NULL
1892 otherwise. */
1893 struct thread_info *event_thread;
1894
1895 struct target_waitstatus ws;
1896 int stop_func_filled_in;
1897 CORE_ADDR stop_func_start;
1898 CORE_ADDR stop_func_end;
1899 const char *stop_func_name;
1900 int wait_some_more;
1901
1902 /* True if the event thread hit the single-step breakpoint of
1903 another thread. Thus the event doesn't cause a stop, the thread
1904 needs to be single-stepped past the single-step breakpoint before
1905 we can switch back to the original stepping thread. */
1906 int hit_singlestep_breakpoint;
1907 };
1908
1909 /* Clear ECS and set it to point at TP. */
1910
1911 static void
1912 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1913 {
1914 memset (ecs, 0, sizeof (*ecs));
1915 ecs->event_thread = tp;
1916 ecs->ptid = tp->ptid;
1917 }
1918
1919 static void keep_going_pass_signal (struct execution_control_state *ecs);
1920 static void prepare_to_wait (struct execution_control_state *ecs);
1921 static int keep_going_stepped_thread (struct thread_info *tp);
1922 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1923
1924 /* Are there any pending step-over requests? If so, run all we can
1925 now and return true. Otherwise, return false. */
1926
1927 static int
1928 start_step_over (void)
1929 {
1930 struct thread_info *tp, *next;
1931
1932 /* Don't start a new step-over if we already have an in-line
1933 step-over operation ongoing. */
1934 if (step_over_info_valid_p ())
1935 return 0;
1936
1937 for (tp = step_over_queue_head; tp != NULL; tp = next)
1938 {
1939 struct execution_control_state ecss;
1940 struct execution_control_state *ecs = &ecss;
1941 step_over_what step_what;
1942 int must_be_in_line;
1943
1944 gdb_assert (!tp->stop_requested);
1945
1946 next = thread_step_over_chain_next (tp);
1947
1948 /* If this inferior already has a displaced step in process,
1949 don't start a new one. */
1950 if (displaced_step_in_progress (tp->inf))
1951 continue;
1952
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
1956 && !use_displaced_stepping (tp)));
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
1961 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1962 return 0;
1963
1964 thread_step_over_chain_remove (tp);
1965
1966 if (step_over_queue_head == NULL)
1967 {
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog,
1970 "infrun: step-over queue now empty\n");
1971 }
1972
1973 if (tp->control.trap_expected
1974 || tp->resumed
1975 || tp->executing)
1976 {
1977 internal_error (__FILE__, __LINE__,
1978 "[%s] has inconsistent state: "
1979 "trap_expected=%d, resumed=%d, executing=%d\n",
1980 target_pid_to_str (tp->ptid).c_str (),
1981 tp->control.trap_expected,
1982 tp->resumed,
1983 tp->executing);
1984 }
1985
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: resuming [%s] for step-over\n",
1989 target_pid_to_str (tp->ptid).c_str ());
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
1997 if (!target_is_non_stop_p () && !step_what)
1998 continue;
1999
2000 switch_to_thread (tp);
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
2003
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
2006
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return 1;
2014 }
2015
2016 if (!target_is_non_stop_p ())
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return 1;
2027 }
2028
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040 static void
2041 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2042 {
2043 if (inferior_ptid == old_ptid)
2044 inferior_ptid = new_ptid;
2045 }
2046
2047 \f
2048
2049 static const char schedlock_off[] = "off";
2050 static const char schedlock_on[] = "on";
2051 static const char schedlock_step[] = "step";
2052 static const char schedlock_replay[] = "replay";
2053 static const char *const scheduler_enums[] = {
2054 schedlock_off,
2055 schedlock_on,
2056 schedlock_step,
2057 schedlock_replay,
2058 NULL
2059 };
2060 static const char *scheduler_mode = schedlock_replay;
2061 static void
2062 show_scheduler_mode (struct ui_file *file, int from_tty,
2063 struct cmd_list_element *c, const char *value)
2064 {
2065 fprintf_filtered (file,
2066 _("Mode for locking scheduler "
2067 "during execution is \"%s\".\n"),
2068 value);
2069 }
2070
2071 static void
2072 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2073 {
2074 if (!target_can_lock_scheduler)
2075 {
2076 scheduler_mode = schedlock_off;
2077 error (_("Target '%s' cannot support this command."), target_shortname);
2078 }
2079 }
2080
2081 /* True if execution commands resume all threads of all processes by
2082 default; otherwise, resume only threads of the current inferior
2083 process. */
2084 bool sched_multi = false;
2085
2086 /* Try to setup for software single stepping over the specified location.
2087 Return 1 if target_resume() should use hardware single step.
2088
2089 GDBARCH the current gdbarch.
2090 PC the location to step over. */
2091
2092 static int
2093 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2094 {
2095 int hw_step = 1;
2096
2097 if (execution_direction == EXEC_FORWARD
2098 && gdbarch_software_single_step_p (gdbarch))
2099 hw_step = !insert_single_step_breakpoints (gdbarch);
2100
2101 return hw_step;
2102 }
2103
2104 /* See infrun.h. */
2105
2106 ptid_t
2107 user_visible_resume_ptid (int step)
2108 {
2109 ptid_t resume_ptid;
2110
2111 if (non_stop)
2112 {
2113 /* With non-stop mode on, threads are always handled
2114 individually. */
2115 resume_ptid = inferior_ptid;
2116 }
2117 else if ((scheduler_mode == schedlock_on)
2118 || (scheduler_mode == schedlock_step && step))
2119 {
2120 /* User-settable 'scheduler' mode requires solo thread
2121 resume. */
2122 resume_ptid = inferior_ptid;
2123 }
2124 else if ((scheduler_mode == schedlock_replay)
2125 && target_record_will_replay (minus_one_ptid, execution_direction))
2126 {
2127 /* User-settable 'scheduler' mode requires solo thread resume in replay
2128 mode. */
2129 resume_ptid = inferior_ptid;
2130 }
2131 else if (!sched_multi && target_supports_multi_process ())
2132 {
2133 /* Resume all threads of the current process (and none of other
2134 processes). */
2135 resume_ptid = ptid_t (inferior_ptid.pid ());
2136 }
2137 else
2138 {
2139 /* Resume all threads of all processes. */
2140 resume_ptid = RESUME_ALL;
2141 }
2142
2143 return resume_ptid;
2144 }
2145
2146 /* Return a ptid representing the set of threads that we will resume,
2147 in the perspective of the target, assuming run control handling
2148 does not require leaving some threads stopped (e.g., stepping past
2149 breakpoint). USER_STEP indicates whether we're about to start the
2150 target for a stepping command. */
2151
2152 static ptid_t
2153 internal_resume_ptid (int user_step)
2154 {
2155 /* In non-stop, we always control threads individually. Note that
2156 the target may always work in non-stop mode even with "set
2157 non-stop off", in which case user_visible_resume_ptid could
2158 return a wildcard ptid. */
2159 if (target_is_non_stop_p ())
2160 return inferior_ptid;
2161 else
2162 return user_visible_resume_ptid (user_step);
2163 }
2164
2165 /* Wrapper for target_resume, that handles infrun-specific
2166 bookkeeping. */
2167
2168 static void
2169 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2170 {
2171 struct thread_info *tp = inferior_thread ();
2172
2173 gdb_assert (!tp->stop_requested);
2174
2175 /* Install inferior's terminal modes. */
2176 target_terminal::inferior ();
2177
2178 /* Avoid confusing the next resume, if the next stop/resume
2179 happens to apply to another thread. */
2180 tp->suspend.stop_signal = GDB_SIGNAL_0;
2181
2182 /* Advise target which signals may be handled silently.
2183
2184 If we have removed breakpoints because we are stepping over one
2185 in-line (in any thread), we need to receive all signals to avoid
2186 accidentally skipping a breakpoint during execution of a signal
2187 handler.
2188
2189 Likewise if we're displaced stepping, otherwise a trap for a
2190 breakpoint in a signal handler might be confused with the
2191 displaced step finishing. We don't make the displaced_step_fixup
2192 step distinguish the cases instead, because:
2193
2194 - a backtrace while stopped in the signal handler would show the
2195 scratch pad as frame older than the signal handler, instead of
2196 the real mainline code.
2197
2198 - when the thread is later resumed, the signal handler would
2199 return to the scratch pad area, which would no longer be
2200 valid. */
2201 if (step_over_info_valid_p ()
2202 || displaced_step_in_progress (tp->inf))
2203 target_pass_signals ({});
2204 else
2205 target_pass_signals (signal_pass);
2206
2207 target_resume (resume_ptid, step, sig);
2208
2209 target_commit_resume ();
2210 }
2211
2212 /* Resume the inferior. SIG is the signal to give the inferior
2213 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2214 call 'resume', which handles exceptions. */
2215
2216 static void
2217 resume_1 (enum gdb_signal sig)
2218 {
2219 struct regcache *regcache = get_current_regcache ();
2220 struct gdbarch *gdbarch = regcache->arch ();
2221 struct thread_info *tp = inferior_thread ();
2222 CORE_ADDR pc = regcache_read_pc (regcache);
2223 const address_space *aspace = regcache->aspace ();
2224 ptid_t resume_ptid;
2225 /* This represents the user's step vs continue request. When
2226 deciding whether "set scheduler-locking step" applies, it's the
2227 user's intention that counts. */
2228 const int user_step = tp->control.stepping_command;
2229 /* This represents what we'll actually request the target to do.
2230 This can decay from a step to a continue, if e.g., we need to
2231 implement single-stepping with breakpoints (software
2232 single-step). */
2233 int step;
2234
2235 gdb_assert (!tp->stop_requested);
2236 gdb_assert (!thread_is_in_step_over_chain (tp));
2237
2238 if (tp->suspend.waitstatus_pending_p)
2239 {
2240 if (debug_infrun)
2241 {
2242 std::string statstr
2243 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2244
2245 fprintf_unfiltered (gdb_stdlog,
2246 "infrun: resume: thread %s has pending wait "
2247 "status %s (currently_stepping=%d).\n",
2248 target_pid_to_str (tp->ptid).c_str (),
2249 statstr.c_str (),
2250 currently_stepping (tp));
2251 }
2252
2253 tp->resumed = 1;
2254
2255 /* FIXME: What should we do if we are supposed to resume this
2256 thread with a signal? Maybe we should maintain a queue of
2257 pending signals to deliver. */
2258 if (sig != GDB_SIGNAL_0)
2259 {
2260 warning (_("Couldn't deliver signal %s to %s."),
2261 gdb_signal_to_name (sig),
2262 target_pid_to_str (tp->ptid).c_str ());
2263 }
2264
2265 tp->suspend.stop_signal = GDB_SIGNAL_0;
2266
2267 if (target_can_async_p ())
2268 {
2269 target_async (1);
2270 /* Tell the event loop we have an event to process. */
2271 mark_async_event_handler (infrun_async_inferior_event_token);
2272 }
2273 return;
2274 }
2275
2276 tp->stepped_breakpoint = 0;
2277
2278 /* Depends on stepped_breakpoint. */
2279 step = currently_stepping (tp);
2280
2281 if (current_inferior ()->waiting_for_vfork_done)
2282 {
2283 /* Don't try to single-step a vfork parent that is waiting for
2284 the child to get out of the shared memory region (by exec'ing
2285 or exiting). This is particularly important on software
2286 single-step archs, as the child process would trip on the
2287 software single step breakpoint inserted for the parent
2288 process. Since the parent will not actually execute any
2289 instruction until the child is out of the shared region (such
2290 are vfork's semantics), it is safe to simply continue it.
2291 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2292 the parent, and tell it to `keep_going', which automatically
2293 re-sets it stepping. */
2294 if (debug_infrun)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "infrun: resume : clear step\n");
2297 step = 0;
2298 }
2299
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume (step=%d, signal=%s), "
2303 "trap_expected=%d, current thread [%s] at %s\n",
2304 step, gdb_signal_to_symbol_string (sig),
2305 tp->control.trap_expected,
2306 target_pid_to_str (inferior_ptid).c_str (),
2307 paddress (gdbarch, pc));
2308
2309 /* Normally, by the time we reach `resume', the breakpoints are either
2310 removed or inserted, as appropriate. The exception is if we're sitting
2311 at a permanent breakpoint; we need to step over it, but permanent
2312 breakpoints can't be removed. So we have to test for it here. */
2313 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2314 {
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 /* We have a signal to pass to the inferior. The resume
2318 may, or may not take us to the signal handler. If this
2319 is a step, we'll need to stop in the signal handler, if
2320 there's one, (if the target supports stepping into
2321 handlers), or in the next mainline instruction, if
2322 there's no handler. If this is a continue, we need to be
2323 sure to run the handler with all breakpoints inserted.
2324 In all cases, set a breakpoint at the current address
2325 (where the handler returns to), and once that breakpoint
2326 is hit, resume skipping the permanent breakpoint. If
2327 that breakpoint isn't hit, then we've stepped into the
2328 signal handler (or hit some other event). We'll delete
2329 the step-resume breakpoint then. */
2330
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "infrun: resume: skipping permanent breakpoint, "
2334 "deliver signal first\n");
2335
2336 clear_step_over_info ();
2337 tp->control.trap_expected = 0;
2338
2339 if (tp->control.step_resume_breakpoint == NULL)
2340 {
2341 /* Set a "high-priority" step-resume, as we don't want
2342 user breakpoints at PC to trigger (again) when this
2343 hits. */
2344 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2345 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2346
2347 tp->step_after_step_resume_breakpoint = step;
2348 }
2349
2350 insert_breakpoints ();
2351 }
2352 else
2353 {
2354 /* There's no signal to pass, we can go ahead and skip the
2355 permanent breakpoint manually. */
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint\n");
2359 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2360 /* Update pc to reflect the new address from which we will
2361 execute instructions. */
2362 pc = regcache_read_pc (regcache);
2363
2364 if (step)
2365 {
2366 /* We've already advanced the PC, so the stepping part
2367 is done. Now we need to arrange for a trap to be
2368 reported to handle_inferior_event. Set a breakpoint
2369 at the current PC, and run to it. Don't update
2370 prev_pc, because if we end in
2371 switch_back_to_stepped_thread, we want the "expected
2372 thread advanced also" branch to be taken. IOW, we
2373 don't want this thread to step further from PC
2374 (overstep). */
2375 gdb_assert (!step_over_info_valid_p ());
2376 insert_single_step_breakpoint (gdbarch, aspace, pc);
2377 insert_breakpoints ();
2378
2379 resume_ptid = internal_resume_ptid (user_step);
2380 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2381 tp->resumed = 1;
2382 return;
2383 }
2384 }
2385 }
2386
2387 /* If we have a breakpoint to step over, make sure to do a single
2388 step only. Same if we have software watchpoints. */
2389 if (tp->control.trap_expected || bpstat_should_step ())
2390 tp->control.may_range_step = 0;
2391
2392 /* If enabled, step over breakpoints by executing a copy of the
2393 instruction at a different address.
2394
2395 We can't use displaced stepping when we have a signal to deliver;
2396 the comments for displaced_step_prepare explain why. The
2397 comments in the handle_inferior event for dealing with 'random
2398 signals' explain what we do instead.
2399
2400 We can't use displaced stepping when we are waiting for vfork_done
2401 event, displaced stepping breaks the vfork child similarly as single
2402 step software breakpoint. */
2403 if (tp->control.trap_expected
2404 && use_displaced_stepping (tp)
2405 && !step_over_info_valid_p ()
2406 && sig == GDB_SIGNAL_0
2407 && !current_inferior ()->waiting_for_vfork_done)
2408 {
2409 int prepared = displaced_step_prepare (tp);
2410
2411 if (prepared == 0)
2412 {
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "Got placed in step-over queue\n");
2416
2417 tp->control.trap_expected = 0;
2418 return;
2419 }
2420 else if (prepared < 0)
2421 {
2422 /* Fallback to stepping over the breakpoint in-line. */
2423
2424 if (target_is_non_stop_p ())
2425 stop_all_threads ();
2426
2427 set_step_over_info (regcache->aspace (),
2428 regcache_read_pc (regcache), 0, tp->global_num);
2429
2430 step = maybe_software_singlestep (gdbarch, pc);
2431
2432 insert_breakpoints ();
2433 }
2434 else if (prepared > 0)
2435 {
2436 struct displaced_step_inferior_state *displaced;
2437
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
2440 pc = regcache_read_pc (get_thread_regcache (tp));
2441
2442 displaced = get_displaced_stepping_state (tp->inf);
2443 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2444 displaced->step_closure);
2445 }
2446 }
2447
2448 /* Do we need to do it the hard way, w/temp breakpoints? */
2449 else if (step)
2450 step = maybe_software_singlestep (gdbarch, pc);
2451
2452 /* Currently, our software single-step implementation leads to different
2453 results than hardware single-stepping in one situation: when stepping
2454 into delivering a signal which has an associated signal handler,
2455 hardware single-step will stop at the first instruction of the handler,
2456 while software single-step will simply skip execution of the handler.
2457
2458 For now, this difference in behavior is accepted since there is no
2459 easy way to actually implement single-stepping into a signal handler
2460 without kernel support.
2461
2462 However, there is one scenario where this difference leads to follow-on
2463 problems: if we're stepping off a breakpoint by removing all breakpoints
2464 and then single-stepping. In this case, the software single-step
2465 behavior means that even if there is a *breakpoint* in the signal
2466 handler, GDB still would not stop.
2467
2468 Fortunately, we can at least fix this particular issue. We detect
2469 here the case where we are about to deliver a signal while software
2470 single-stepping with breakpoints removed. In this situation, we
2471 revert the decisions to remove all breakpoints and insert single-
2472 step breakpoints, and instead we install a step-resume breakpoint
2473 at the current address, deliver the signal without stepping, and
2474 once we arrive back at the step-resume breakpoint, actually step
2475 over the breakpoint we originally wanted to step over. */
2476 if (thread_has_single_step_breakpoints_set (tp)
2477 && sig != GDB_SIGNAL_0
2478 && step_over_info_valid_p ())
2479 {
2480 /* If we have nested signals or a pending signal is delivered
2481 immediately after a handler returns, might might already have
2482 a step-resume breakpoint set on the earlier handler. We cannot
2483 set another step-resume breakpoint; just continue on until the
2484 original breakpoint is hit. */
2485 if (tp->control.step_resume_breakpoint == NULL)
2486 {
2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2488 tp->step_after_step_resume_breakpoint = 1;
2489 }
2490
2491 delete_single_step_breakpoints (tp);
2492
2493 clear_step_over_info ();
2494 tp->control.trap_expected = 0;
2495
2496 insert_breakpoints ();
2497 }
2498
2499 /* If STEP is set, it's a request to use hardware stepping
2500 facilities. But in that case, we should never
2501 use singlestep breakpoint. */
2502 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2503
2504 /* Decide the set of threads to ask the target to resume. */
2505 if (tp->control.trap_expected)
2506 {
2507 /* We're allowing a thread to run past a breakpoint it has
2508 hit, either by single-stepping the thread with the breakpoint
2509 removed, or by displaced stepping, with the breakpoint inserted.
2510 In the former case, we need to single-step only this thread,
2511 and keep others stopped, as they can miss this breakpoint if
2512 allowed to run. That's not really a problem for displaced
2513 stepping, but, we still keep other threads stopped, in case
2514 another thread is also stopped for a breakpoint waiting for
2515 its turn in the displaced stepping queue. */
2516 resume_ptid = inferior_ptid;
2517 }
2518 else
2519 resume_ptid = internal_resume_ptid (user_step);
2520
2521 if (execution_direction != EXEC_REVERSE
2522 && step && breakpoint_inserted_here_p (aspace, pc))
2523 {
2524 /* There are two cases where we currently need to step a
2525 breakpoint instruction when we have a signal to deliver:
2526
2527 - See handle_signal_stop where we handle random signals that
2528 could take out us out of the stepping range. Normally, in
2529 that case we end up continuing (instead of stepping) over the
2530 signal handler with a breakpoint at PC, but there are cases
2531 where we should _always_ single-step, even if we have a
2532 step-resume breakpoint, like when a software watchpoint is
2533 set. Assuming single-stepping and delivering a signal at the
2534 same time would takes us to the signal handler, then we could
2535 have removed the breakpoint at PC to step over it. However,
2536 some hardware step targets (like e.g., Mac OS) can't step
2537 into signal handlers, and for those, we need to leave the
2538 breakpoint at PC inserted, as otherwise if the handler
2539 recurses and executes PC again, it'll miss the breakpoint.
2540 So we leave the breakpoint inserted anyway, but we need to
2541 record that we tried to step a breakpoint instruction, so
2542 that adjust_pc_after_break doesn't end up confused.
2543
2544 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2545 in one thread after another thread that was stepping had been
2546 momentarily paused for a step-over. When we re-resume the
2547 stepping thread, it may be resumed from that address with a
2548 breakpoint that hasn't trapped yet. Seen with
2549 gdb.threads/non-stop-fair-events.exp, on targets that don't
2550 do displaced stepping. */
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "infrun: resume: [%s] stepped breakpoint\n",
2555 target_pid_to_str (tp->ptid).c_str ());
2556
2557 tp->stepped_breakpoint = 1;
2558
2559 /* Most targets can step a breakpoint instruction, thus
2560 executing it normally. But if this one cannot, just
2561 continue and we will hit it anyway. */
2562 if (gdbarch_cannot_step_breakpoint (gdbarch))
2563 step = 0;
2564 }
2565
2566 if (debug_displaced
2567 && tp->control.trap_expected
2568 && use_displaced_stepping (tp)
2569 && !step_over_info_valid_p ())
2570 {
2571 struct regcache *resume_regcache = get_thread_regcache (tp);
2572 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2573 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2574 gdb_byte buf[4];
2575
2576 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2577 paddress (resume_gdbarch, actual_pc));
2578 read_memory (actual_pc, buf, sizeof (buf));
2579 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2580 }
2581
2582 if (tp->control.may_range_step)
2583 {
2584 /* If we're resuming a thread with the PC out of the step
2585 range, then we're doing some nested/finer run control
2586 operation, like stepping the thread out of the dynamic
2587 linker or the displaced stepping scratch pad. We
2588 shouldn't have allowed a range step then. */
2589 gdb_assert (pc_in_thread_step_range (pc, tp));
2590 }
2591
2592 do_target_resume (resume_ptid, step, sig);
2593 tp->resumed = 1;
2594 }
2595
2596 /* Resume the inferior. SIG is the signal to give the inferior
2597 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2598 rolls back state on error. */
2599
2600 static void
2601 resume (gdb_signal sig)
2602 {
2603 try
2604 {
2605 resume_1 (sig);
2606 }
2607 catch (const gdb_exception &ex)
2608 {
2609 /* If resuming is being aborted for any reason, delete any
2610 single-step breakpoint resume_1 may have created, to avoid
2611 confusing the following resumption, and to avoid leaving
2612 single-step breakpoints perturbing other threads, in case
2613 we're running in non-stop mode. */
2614 if (inferior_ptid != null_ptid)
2615 delete_single_step_breakpoints (inferior_thread ());
2616 throw;
2617 }
2618 }
2619
2620 \f
2621 /* Proceeding. */
2622
2623 /* See infrun.h. */
2624
2625 /* Counter that tracks number of user visible stops. This can be used
2626 to tell whether a command has proceeded the inferior past the
2627 current location. This allows e.g., inferior function calls in
2628 breakpoint commands to not interrupt the command list. When the
2629 call finishes successfully, the inferior is standing at the same
2630 breakpoint as if nothing happened (and so we don't call
2631 normal_stop). */
2632 static ULONGEST current_stop_id;
2633
2634 /* See infrun.h. */
2635
2636 ULONGEST
2637 get_stop_id (void)
2638 {
2639 return current_stop_id;
2640 }
2641
2642 /* Called when we report a user visible stop. */
2643
2644 static void
2645 new_stop_id (void)
2646 {
2647 current_stop_id++;
2648 }
2649
2650 /* Clear out all variables saying what to do when inferior is continued.
2651 First do this, then set the ones you want, then call `proceed'. */
2652
2653 static void
2654 clear_proceed_status_thread (struct thread_info *tp)
2655 {
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "infrun: clear_proceed_status_thread (%s)\n",
2659 target_pid_to_str (tp->ptid).c_str ());
2660
2661 /* If we're starting a new sequence, then the previous finished
2662 single-step is no longer relevant. */
2663 if (tp->suspend.waitstatus_pending_p)
2664 {
2665 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2666 {
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: clear_proceed_status: pending "
2670 "event of %s was a finished step. "
2671 "Discarding.\n",
2672 target_pid_to_str (tp->ptid).c_str ());
2673
2674 tp->suspend.waitstatus_pending_p = 0;
2675 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2676 }
2677 else if (debug_infrun)
2678 {
2679 std::string statstr
2680 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2681
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread: thread %s "
2684 "has pending wait status %s "
2685 "(currently_stepping=%d).\n",
2686 target_pid_to_str (tp->ptid).c_str (),
2687 statstr.c_str (),
2688 currently_stepping (tp));
2689 }
2690 }
2691
2692 /* If this signal should not be seen by program, give it zero.
2693 Used for debugging signals. */
2694 if (!signal_pass_state (tp->suspend.stop_signal))
2695 tp->suspend.stop_signal = GDB_SIGNAL_0;
2696
2697 delete tp->thread_fsm;
2698 tp->thread_fsm = NULL;
2699
2700 tp->control.trap_expected = 0;
2701 tp->control.step_range_start = 0;
2702 tp->control.step_range_end = 0;
2703 tp->control.may_range_step = 0;
2704 tp->control.step_frame_id = null_frame_id;
2705 tp->control.step_stack_frame_id = null_frame_id;
2706 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2707 tp->control.step_start_function = NULL;
2708 tp->stop_requested = 0;
2709
2710 tp->control.stop_step = 0;
2711
2712 tp->control.proceed_to_finish = 0;
2713
2714 tp->control.stepping_command = 0;
2715
2716 /* Discard any remaining commands or status from previous stop. */
2717 bpstat_clear (&tp->control.stop_bpstat);
2718 }
2719
2720 void
2721 clear_proceed_status (int step)
2722 {
2723 /* With scheduler-locking replay, stop replaying other threads if we're
2724 not replaying the user-visible resume ptid.
2725
2726 This is a convenience feature to not require the user to explicitly
2727 stop replaying the other threads. We're assuming that the user's
2728 intent is to resume tracing the recorded process. */
2729 if (!non_stop && scheduler_mode == schedlock_replay
2730 && target_record_is_replaying (minus_one_ptid)
2731 && !target_record_will_replay (user_visible_resume_ptid (step),
2732 execution_direction))
2733 target_record_stop_replaying ();
2734
2735 if (!non_stop && inferior_ptid != null_ptid)
2736 {
2737 ptid_t resume_ptid = user_visible_resume_ptid (step);
2738
2739 /* In all-stop mode, delete the per-thread status of all threads
2740 we're about to resume, implicitly and explicitly. */
2741 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2742 clear_proceed_status_thread (tp);
2743 }
2744
2745 if (inferior_ptid != null_ptid)
2746 {
2747 struct inferior *inferior;
2748
2749 if (non_stop)
2750 {
2751 /* If in non-stop mode, only delete the per-thread status of
2752 the current thread. */
2753 clear_proceed_status_thread (inferior_thread ());
2754 }
2755
2756 inferior = current_inferior ();
2757 inferior->control.stop_soon = NO_STOP_QUIETLY;
2758 }
2759
2760 gdb::observers::about_to_proceed.notify ();
2761 }
2762
2763 /* Returns true if TP is still stopped at a breakpoint that needs
2764 stepping-over in order to make progress. If the breakpoint is gone
2765 meanwhile, we can skip the whole step-over dance. */
2766
2767 static int
2768 thread_still_needs_step_over_bp (struct thread_info *tp)
2769 {
2770 if (tp->stepping_over_breakpoint)
2771 {
2772 struct regcache *regcache = get_thread_regcache (tp);
2773
2774 if (breakpoint_here_p (regcache->aspace (),
2775 regcache_read_pc (regcache))
2776 == ordinary_breakpoint_here)
2777 return 1;
2778
2779 tp->stepping_over_breakpoint = 0;
2780 }
2781
2782 return 0;
2783 }
2784
2785 /* Check whether thread TP still needs to start a step-over in order
2786 to make progress when resumed. Returns an bitwise or of enum
2787 step_over_what bits, indicating what needs to be stepped over. */
2788
2789 static step_over_what
2790 thread_still_needs_step_over (struct thread_info *tp)
2791 {
2792 step_over_what what = 0;
2793
2794 if (thread_still_needs_step_over_bp (tp))
2795 what |= STEP_OVER_BREAKPOINT;
2796
2797 if (tp->stepping_over_watchpoint
2798 && !target_have_steppable_watchpoint)
2799 what |= STEP_OVER_WATCHPOINT;
2800
2801 return what;
2802 }
2803
2804 /* Returns true if scheduler locking applies. STEP indicates whether
2805 we're about to do a step/next-like command to a thread. */
2806
2807 static int
2808 schedlock_applies (struct thread_info *tp)
2809 {
2810 return (scheduler_mode == schedlock_on
2811 || (scheduler_mode == schedlock_step
2812 && tp->control.stepping_command)
2813 || (scheduler_mode == schedlock_replay
2814 && target_record_will_replay (minus_one_ptid,
2815 execution_direction)));
2816 }
2817
2818 /* Basic routine for continuing the program in various fashions.
2819
2820 ADDR is the address to resume at, or -1 for resume where stopped.
2821 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2822 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2823
2824 You should call clear_proceed_status before calling proceed. */
2825
2826 void
2827 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2828 {
2829 struct regcache *regcache;
2830 struct gdbarch *gdbarch;
2831 CORE_ADDR pc;
2832 ptid_t resume_ptid;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
2835 int started;
2836
2837 /* If we're stopped at a fork/vfork, follow the branch set by the
2838 "set follow-fork-mode" command; otherwise, we'll just proceed
2839 resuming the current thread. */
2840 if (!follow_fork ())
2841 {
2842 /* The target for some reason decided not to resume. */
2843 normal_stop ();
2844 if (target_can_async_p ())
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2846 return;
2847 }
2848
2849 /* We'll update this if & when we switch to a new thread. */
2850 previous_inferior_ptid = inferior_ptid;
2851
2852 regcache = get_current_regcache ();
2853 gdbarch = regcache->arch ();
2854 const address_space *aspace = regcache->aspace ();
2855
2856 pc = regcache_read_pc (regcache);
2857 thread_info *cur_thr = inferior_thread ();
2858
2859 /* Fill in with reasonable starting values. */
2860 init_thread_stepping_state (cur_thr);
2861
2862 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2863
2864 if (addr == (CORE_ADDR) -1)
2865 {
2866 if (pc == cur_thr->suspend.stop_pc
2867 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2868 && execution_direction != EXEC_REVERSE)
2869 /* There is a breakpoint at the address we will resume at,
2870 step one instruction before inserting breakpoints so that
2871 we do not stop right away (and report a second hit at this
2872 breakpoint).
2873
2874 Note, we don't do this in reverse, because we won't
2875 actually be executing the breakpoint insn anyway.
2876 We'll be (un-)executing the previous instruction. */
2877 cur_thr->stepping_over_breakpoint = 1;
2878 else if (gdbarch_single_step_through_delay_p (gdbarch)
2879 && gdbarch_single_step_through_delay (gdbarch,
2880 get_current_frame ()))
2881 /* We stepped onto an instruction that needs to be stepped
2882 again before re-inserting the breakpoint, do so. */
2883 cur_thr->stepping_over_breakpoint = 1;
2884 }
2885 else
2886 {
2887 regcache_write_pc (regcache, addr);
2888 }
2889
2890 if (siggnal != GDB_SIGNAL_DEFAULT)
2891 cur_thr->suspend.stop_signal = siggnal;
2892
2893 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2894
2895 /* If an exception is thrown from this point on, make sure to
2896 propagate GDB's knowledge of the executing state to the
2897 frontend/user running state. */
2898 scoped_finish_thread_state finish_state (resume_ptid);
2899
2900 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2901 threads (e.g., we might need to set threads stepping over
2902 breakpoints first), from the user/frontend's point of view, all
2903 threads in RESUME_PTID are now running. Unless we're calling an
2904 inferior function, as in that case we pretend the inferior
2905 doesn't run at all. */
2906 if (!cur_thr->control.in_infcall)
2907 set_running (resume_ptid, 1);
2908
2909 if (debug_infrun)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "infrun: proceed (addr=%s, signal=%s)\n",
2912 paddress (gdbarch, addr),
2913 gdb_signal_to_symbol_string (siggnal));
2914
2915 annotate_starting ();
2916
2917 /* Make sure that output from GDB appears before output from the
2918 inferior. */
2919 gdb_flush (gdb_stdout);
2920
2921 /* Since we've marked the inferior running, give it the terminal. A
2922 QUIT/Ctrl-C from here on is forwarded to the target (which can
2923 still detect attempts to unblock a stuck connection with repeated
2924 Ctrl-C from within target_pass_ctrlc). */
2925 target_terminal::inferior ();
2926
2927 /* In a multi-threaded task we may select another thread and
2928 then continue or step.
2929
2930 But if a thread that we're resuming had stopped at a breakpoint,
2931 it will immediately cause another breakpoint stop without any
2932 execution (i.e. it will report a breakpoint hit incorrectly). So
2933 we must step over it first.
2934
2935 Look for threads other than the current (TP) that reported a
2936 breakpoint hit and haven't been resumed yet since. */
2937
2938 /* If scheduler locking applies, we can avoid iterating over all
2939 threads. */
2940 if (!non_stop && !schedlock_applies (cur_thr))
2941 {
2942 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2943 {
2944 /* Ignore the current thread here. It's handled
2945 afterwards. */
2946 if (tp == cur_thr)
2947 continue;
2948
2949 if (!thread_still_needs_step_over (tp))
2950 continue;
2951
2952 gdb_assert (!thread_is_in_step_over_chain (tp));
2953
2954 if (debug_infrun)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "infrun: need to step-over [%s] first\n",
2957 target_pid_to_str (tp->ptid).c_str ());
2958
2959 thread_step_over_chain_enqueue (tp);
2960 }
2961 }
2962
2963 /* Enqueue the current thread last, so that we move all other
2964 threads over their breakpoints first. */
2965 if (cur_thr->stepping_over_breakpoint)
2966 thread_step_over_chain_enqueue (cur_thr);
2967
2968 /* If the thread isn't started, we'll still need to set its prev_pc,
2969 so that switch_back_to_stepped_thread knows the thread hasn't
2970 advanced. Must do this before resuming any thread, as in
2971 all-stop/remote, once we resume we can't send any other packet
2972 until the target stops again. */
2973 cur_thr->prev_pc = regcache_read_pc (regcache);
2974
2975 {
2976 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2977
2978 started = start_step_over ();
2979
2980 if (step_over_info_valid_p ())
2981 {
2982 /* Either this thread started a new in-line step over, or some
2983 other thread was already doing one. In either case, don't
2984 resume anything else until the step-over is finished. */
2985 }
2986 else if (started && !target_is_non_stop_p ())
2987 {
2988 /* A new displaced stepping sequence was started. In all-stop,
2989 we can't talk to the target anymore until it next stops. */
2990 }
2991 else if (!non_stop && target_is_non_stop_p ())
2992 {
2993 /* In all-stop, but the target is always in non-stop mode.
2994 Start all other threads that are implicitly resumed too. */
2995 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2996 {
2997 if (tp->resumed)
2998 {
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: proceed: [%s] resumed\n",
3002 target_pid_to_str (tp->ptid).c_str ());
3003 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3004 continue;
3005 }
3006
3007 if (thread_is_in_step_over_chain (tp))
3008 {
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "infrun: proceed: [%s] needs step-over\n",
3012 target_pid_to_str (tp->ptid).c_str ());
3013 continue;
3014 }
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: resuming %s\n",
3019 target_pid_to_str (tp->ptid).c_str ());
3020
3021 reset_ecs (ecs, tp);
3022 switch_to_thread (tp);
3023 keep_going_pass_signal (ecs);
3024 if (!ecs->wait_some_more)
3025 error (_("Command aborted."));
3026 }
3027 }
3028 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3029 {
3030 /* The thread wasn't started, and isn't queued, run it now. */
3031 reset_ecs (ecs, cur_thr);
3032 switch_to_thread (cur_thr);
3033 keep_going_pass_signal (ecs);
3034 if (!ecs->wait_some_more)
3035 error (_("Command aborted."));
3036 }
3037 }
3038
3039 target_commit_resume ();
3040
3041 finish_state.release ();
3042
3043 /* Tell the event loop to wait for it to stop. If the target
3044 supports asynchronous execution, it'll do this from within
3045 target_resume. */
3046 if (!target_can_async_p ())
3047 mark_async_event_handler (infrun_async_inferior_event_token);
3048 }
3049 \f
3050
3051 /* Start remote-debugging of a machine over a serial link. */
3052
3053 void
3054 start_remote (int from_tty)
3055 {
3056 struct inferior *inferior;
3057
3058 inferior = current_inferior ();
3059 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3060
3061 /* Always go on waiting for the target, regardless of the mode. */
3062 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3063 indicate to wait_for_inferior that a target should timeout if
3064 nothing is returned (instead of just blocking). Because of this,
3065 targets expecting an immediate response need to, internally, set
3066 things up so that the target_wait() is forced to eventually
3067 timeout. */
3068 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3069 differentiate to its caller what the state of the target is after
3070 the initial open has been performed. Here we're assuming that
3071 the target has stopped. It should be possible to eventually have
3072 target_open() return to the caller an indication that the target
3073 is currently running and GDB state should be set to the same as
3074 for an async run. */
3075 wait_for_inferior ();
3076
3077 /* Now that the inferior has stopped, do any bookkeeping like
3078 loading shared libraries. We want to do this before normal_stop,
3079 so that the displayed frame is up to date. */
3080 post_create_inferior (current_top_target (), from_tty);
3081
3082 normal_stop ();
3083 }
3084
3085 /* Initialize static vars when a new inferior begins. */
3086
3087 void
3088 init_wait_for_inferior (void)
3089 {
3090 /* These are meaningless until the first time through wait_for_inferior. */
3091
3092 breakpoint_init_inferior (inf_starting);
3093
3094 clear_proceed_status (0);
3095
3096 target_last_wait_ptid = minus_one_ptid;
3097
3098 previous_inferior_ptid = inferior_ptid;
3099 }
3100
3101 \f
3102
3103 static void handle_inferior_event (struct execution_control_state *ecs);
3104
3105 static void handle_step_into_function (struct gdbarch *gdbarch,
3106 struct execution_control_state *ecs);
3107 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3108 struct execution_control_state *ecs);
3109 static void handle_signal_stop (struct execution_control_state *ecs);
3110 static void check_exception_resume (struct execution_control_state *,
3111 struct frame_info *);
3112
3113 static void end_stepping_range (struct execution_control_state *ecs);
3114 static void stop_waiting (struct execution_control_state *ecs);
3115 static void keep_going (struct execution_control_state *ecs);
3116 static void process_event_stop_test (struct execution_control_state *ecs);
3117 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3118
3119 /* This function is attached as a "thread_stop_requested" observer.
3120 Cleanup local state that assumed the PTID was to be resumed, and
3121 report the stop to the frontend. */
3122
3123 static void
3124 infrun_thread_stop_requested (ptid_t ptid)
3125 {
3126 /* PTID was requested to stop. If the thread was already stopped,
3127 but the user/frontend doesn't know about that yet (e.g., the
3128 thread had been temporarily paused for some step-over), set up
3129 for reporting the stop now. */
3130 for (thread_info *tp : all_threads (ptid))
3131 {
3132 if (tp->state != THREAD_RUNNING)
3133 continue;
3134 if (tp->executing)
3135 continue;
3136
3137 /* Remove matching threads from the step-over queue, so
3138 start_step_over doesn't try to resume them
3139 automatically. */
3140 if (thread_is_in_step_over_chain (tp))
3141 thread_step_over_chain_remove (tp);
3142
3143 /* If the thread is stopped, but the user/frontend doesn't
3144 know about that yet, queue a pending event, as if the
3145 thread had just stopped now. Unless the thread already had
3146 a pending event. */
3147 if (!tp->suspend.waitstatus_pending_p)
3148 {
3149 tp->suspend.waitstatus_pending_p = 1;
3150 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3151 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3152 }
3153
3154 /* Clear the inline-frame state, since we're re-processing the
3155 stop. */
3156 clear_inline_frame_state (tp->ptid);
3157
3158 /* If this thread was paused because some other thread was
3159 doing an inline-step over, let that finish first. Once
3160 that happens, we'll restart all threads and consume pending
3161 stop events then. */
3162 if (step_over_info_valid_p ())
3163 continue;
3164
3165 /* Otherwise we can process the (new) pending event now. Set
3166 it so this pending event is considered by
3167 do_target_wait. */
3168 tp->resumed = 1;
3169 }
3170 }
3171
3172 static void
3173 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3174 {
3175 if (target_last_wait_ptid == tp->ptid)
3176 nullify_last_target_wait_ptid ();
3177 }
3178
3179 /* Delete the step resume, single-step and longjmp/exception resume
3180 breakpoints of TP. */
3181
3182 static void
3183 delete_thread_infrun_breakpoints (struct thread_info *tp)
3184 {
3185 delete_step_resume_breakpoint (tp);
3186 delete_exception_resume_breakpoint (tp);
3187 delete_single_step_breakpoints (tp);
3188 }
3189
3190 /* If the target still has execution, call FUNC for each thread that
3191 just stopped. In all-stop, that's all the non-exited threads; in
3192 non-stop, that's the current thread, only. */
3193
3194 typedef void (*for_each_just_stopped_thread_callback_func)
3195 (struct thread_info *tp);
3196
3197 static void
3198 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3199 {
3200 if (!target_has_execution || inferior_ptid == null_ptid)
3201 return;
3202
3203 if (target_is_non_stop_p ())
3204 {
3205 /* If in non-stop mode, only the current thread stopped. */
3206 func (inferior_thread ());
3207 }
3208 else
3209 {
3210 /* In all-stop mode, all threads have stopped. */
3211 for (thread_info *tp : all_non_exited_threads ())
3212 func (tp);
3213 }
3214 }
3215
3216 /* Delete the step resume and longjmp/exception resume breakpoints of
3217 the threads that just stopped. */
3218
3219 static void
3220 delete_just_stopped_threads_infrun_breakpoints (void)
3221 {
3222 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3223 }
3224
3225 /* Delete the single-step breakpoints of the threads that just
3226 stopped. */
3227
3228 static void
3229 delete_just_stopped_threads_single_step_breakpoints (void)
3230 {
3231 for_each_just_stopped_thread (delete_single_step_breakpoints);
3232 }
3233
3234 /* See infrun.h. */
3235
3236 void
3237 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3238 const struct target_waitstatus *ws)
3239 {
3240 std::string status_string = target_waitstatus_to_string (ws);
3241 string_file stb;
3242
3243 /* The text is split over several lines because it was getting too long.
3244 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3245 output as a unit; we want only one timestamp printed if debug_timestamp
3246 is set. */
3247
3248 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3249 waiton_ptid.pid (),
3250 waiton_ptid.lwp (),
3251 waiton_ptid.tid ());
3252 if (waiton_ptid.pid () != -1)
3253 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3254 stb.printf (", status) =\n");
3255 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3256 result_ptid.pid (),
3257 result_ptid.lwp (),
3258 result_ptid.tid (),
3259 target_pid_to_str (result_ptid).c_str ());
3260 stb.printf ("infrun: %s\n", status_string.c_str ());
3261
3262 /* This uses %s in part to handle %'s in the text, but also to avoid
3263 a gcc error: the format attribute requires a string literal. */
3264 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3265 }
3266
3267 /* Select a thread at random, out of those which are resumed and have
3268 had events. */
3269
3270 static struct thread_info *
3271 random_pending_event_thread (ptid_t waiton_ptid)
3272 {
3273 int num_events = 0;
3274
3275 auto has_event = [] (thread_info *tp)
3276 {
3277 return (tp->resumed
3278 && tp->suspend.waitstatus_pending_p);
3279 };
3280
3281 /* First see how many events we have. Count only resumed threads
3282 that have an event pending. */
3283 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3284 if (has_event (tp))
3285 num_events++;
3286
3287 if (num_events == 0)
3288 return NULL;
3289
3290 /* Now randomly pick a thread out of those that have had events. */
3291 int random_selector = (int) ((num_events * (double) rand ())
3292 / (RAND_MAX + 1.0));
3293
3294 if (debug_infrun && num_events > 1)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: Found %d events, selecting #%d\n",
3297 num_events, random_selector);
3298
3299 /* Select the Nth thread that has had an event. */
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
3302 if (random_selector-- == 0)
3303 return tp;
3304
3305 gdb_assert_not_reached ("event thread not found");
3306 }
3307
3308 /* Wrapper for target_wait that first checks whether threads have
3309 pending statuses to report before actually asking the target for
3310 more events. */
3311
3312 static ptid_t
3313 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3314 {
3315 ptid_t event_ptid;
3316 struct thread_info *tp;
3317
3318 /* First check if there is a resumed thread with a wait status
3319 pending. */
3320 if (ptid == minus_one_ptid || ptid.is_pid ())
3321 {
3322 tp = random_pending_event_thread (ptid);
3323 }
3324 else
3325 {
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: Waiting for specific thread %s.\n",
3329 target_pid_to_str (ptid).c_str ());
3330
3331 /* We have a specific thread to check. */
3332 tp = find_thread_ptid (ptid);
3333 gdb_assert (tp != NULL);
3334 if (!tp->suspend.waitstatus_pending_p)
3335 tp = NULL;
3336 }
3337
3338 if (tp != NULL
3339 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3340 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3341 {
3342 struct regcache *regcache = get_thread_regcache (tp);
3343 struct gdbarch *gdbarch = regcache->arch ();
3344 CORE_ADDR pc;
3345 int discard = 0;
3346
3347 pc = regcache_read_pc (regcache);
3348
3349 if (pc != tp->suspend.stop_pc)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: PC of %s changed. was=%s, now=%s\n",
3354 target_pid_to_str (tp->ptid).c_str (),
3355 paddress (gdbarch, tp->suspend.stop_pc),
3356 paddress (gdbarch, pc));
3357 discard = 1;
3358 }
3359 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: previous breakpoint of %s, at %s gone\n",
3364 target_pid_to_str (tp->ptid).c_str (),
3365 paddress (gdbarch, pc));
3366
3367 discard = 1;
3368 }
3369
3370 if (discard)
3371 {
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog,
3374 "infrun: pending event of %s cancelled.\n",
3375 target_pid_to_str (tp->ptid).c_str ());
3376
3377 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3378 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3379 }
3380 }
3381
3382 if (tp != NULL)
3383 {
3384 if (debug_infrun)
3385 {
3386 std::string statstr
3387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3388
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: Using pending wait status %s for %s.\n",
3391 statstr.c_str (),
3392 target_pid_to_str (tp->ptid).c_str ());
3393 }
3394
3395 /* Now that we've selected our final event LWP, un-adjust its PC
3396 if it was a software breakpoint (and the target doesn't
3397 always adjust the PC itself). */
3398 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3399 && !target_supports_stopped_by_sw_breakpoint ())
3400 {
3401 struct regcache *regcache;
3402 struct gdbarch *gdbarch;
3403 int decr_pc;
3404
3405 regcache = get_thread_regcache (tp);
3406 gdbarch = regcache->arch ();
3407
3408 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3409 if (decr_pc != 0)
3410 {
3411 CORE_ADDR pc;
3412
3413 pc = regcache_read_pc (regcache);
3414 regcache_write_pc (regcache, pc + decr_pc);
3415 }
3416 }
3417
3418 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3419 *status = tp->suspend.waitstatus;
3420 tp->suspend.waitstatus_pending_p = 0;
3421
3422 /* Wake up the event loop again, until all pending events are
3423 processed. */
3424 if (target_is_async_p ())
3425 mark_async_event_handler (infrun_async_inferior_event_token);
3426 return tp->ptid;
3427 }
3428
3429 /* But if we don't find one, we'll have to wait. */
3430
3431 if (deprecated_target_wait_hook)
3432 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3433 else
3434 event_ptid = target_wait (ptid, status, options);
3435
3436 return event_ptid;
3437 }
3438
3439 /* Prepare and stabilize the inferior for detaching it. E.g.,
3440 detaching while a thread is displaced stepping is a recipe for
3441 crashing it, as nothing would readjust the PC out of the scratch
3442 pad. */
3443
3444 void
3445 prepare_for_detach (void)
3446 {
3447 struct inferior *inf = current_inferior ();
3448 ptid_t pid_ptid = ptid_t (inf->pid);
3449
3450 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3451
3452 /* Is any thread of this process displaced stepping? If not,
3453 there's nothing else to do. */
3454 if (displaced->step_thread == nullptr)
3455 return;
3456
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced-stepping in-process while detaching");
3460
3461 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3462
3463 while (displaced->step_thread != nullptr)
3464 {
3465 struct execution_control_state ecss;
3466 struct execution_control_state *ecs;
3467
3468 ecs = &ecss;
3469 memset (ecs, 0, sizeof (*ecs));
3470
3471 overlay_cache_invalid = 1;
3472 /* Flush target cache before starting to handle each event.
3473 Target was running and cache could be stale. This is just a
3474 heuristic. Running threads may modify target memory, but we
3475 don't get any event. */
3476 target_dcache_invalidate ();
3477
3478 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3479
3480 if (debug_infrun)
3481 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3482
3483 /* If an error happens while handling the event, propagate GDB's
3484 knowledge of the executing state to the frontend/user running
3485 state. */
3486 scoped_finish_thread_state finish_state (minus_one_ptid);
3487
3488 /* Now figure out what to do with the result of the result. */
3489 handle_inferior_event (ecs);
3490
3491 /* No error, don't finish the state yet. */
3492 finish_state.release ();
3493
3494 /* Breakpoints and watchpoints are not installed on the target
3495 at this point, and signals are passed directly to the
3496 inferior, so this must mean the process is gone. */
3497 if (!ecs->wait_some_more)
3498 {
3499 restore_detaching.release ();
3500 error (_("Program exited while detaching"));
3501 }
3502 }
3503
3504 restore_detaching.release ();
3505 }
3506
3507 /* Wait for control to return from inferior to debugger.
3508
3509 If inferior gets a signal, we may decide to start it up again
3510 instead of returning. That is why there is a loop in this function.
3511 When this function actually returns it means the inferior
3512 should be left stopped and GDB should read more commands. */
3513
3514 void
3515 wait_for_inferior (void)
3516 {
3517 if (debug_infrun)
3518 fprintf_unfiltered
3519 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3520
3521 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3522
3523 /* If an error happens while handling the event, propagate GDB's
3524 knowledge of the executing state to the frontend/user running
3525 state. */
3526 scoped_finish_thread_state finish_state (minus_one_ptid);
3527
3528 while (1)
3529 {
3530 struct execution_control_state ecss;
3531 struct execution_control_state *ecs = &ecss;
3532 ptid_t waiton_ptid = minus_one_ptid;
3533
3534 memset (ecs, 0, sizeof (*ecs));
3535
3536 overlay_cache_invalid = 1;
3537
3538 /* Flush target cache before starting to handle each event.
3539 Target was running and cache could be stale. This is just a
3540 heuristic. Running threads may modify target memory, but we
3541 don't get any event. */
3542 target_dcache_invalidate ();
3543
3544 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3545
3546 if (debug_infrun)
3547 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3548
3549 /* Now figure out what to do with the result of the result. */
3550 handle_inferior_event (ecs);
3551
3552 if (!ecs->wait_some_more)
3553 break;
3554 }
3555
3556 /* No error, don't finish the state yet. */
3557 finish_state.release ();
3558 }
3559
3560 /* Cleanup that reinstalls the readline callback handler, if the
3561 target is running in the background. If while handling the target
3562 event something triggered a secondary prompt, like e.g., a
3563 pagination prompt, we'll have removed the callback handler (see
3564 gdb_readline_wrapper_line). Need to do this as we go back to the
3565 event loop, ready to process further input. Note this has no
3566 effect if the handler hasn't actually been removed, because calling
3567 rl_callback_handler_install resets the line buffer, thus losing
3568 input. */
3569
3570 static void
3571 reinstall_readline_callback_handler_cleanup ()
3572 {
3573 struct ui *ui = current_ui;
3574
3575 if (!ui->async)
3576 {
3577 /* We're not going back to the top level event loop yet. Don't
3578 install the readline callback, as it'd prep the terminal,
3579 readline-style (raw, noecho) (e.g., --batch). We'll install
3580 it the next time the prompt is displayed, when we're ready
3581 for input. */
3582 return;
3583 }
3584
3585 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3586 gdb_rl_callback_handler_reinstall ();
3587 }
3588
3589 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3590 that's just the event thread. In all-stop, that's all threads. */
3591
3592 static void
3593 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3594 {
3595 if (ecs->event_thread != NULL
3596 && ecs->event_thread->thread_fsm != NULL)
3597 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3598
3599 if (!non_stop)
3600 {
3601 for (thread_info *thr : all_non_exited_threads ())
3602 {
3603 if (thr->thread_fsm == NULL)
3604 continue;
3605 if (thr == ecs->event_thread)
3606 continue;
3607
3608 switch_to_thread (thr);
3609 thr->thread_fsm->clean_up (thr);
3610 }
3611
3612 if (ecs->event_thread != NULL)
3613 switch_to_thread (ecs->event_thread);
3614 }
3615 }
3616
3617 /* Helper for all_uis_check_sync_execution_done that works on the
3618 current UI. */
3619
3620 static void
3621 check_curr_ui_sync_execution_done (void)
3622 {
3623 struct ui *ui = current_ui;
3624
3625 if (ui->prompt_state == PROMPT_NEEDED
3626 && ui->async
3627 && !gdb_in_secondary_prompt_p (ui))
3628 {
3629 target_terminal::ours ();
3630 gdb::observers::sync_execution_done.notify ();
3631 ui_register_input_event_handler (ui);
3632 }
3633 }
3634
3635 /* See infrun.h. */
3636
3637 void
3638 all_uis_check_sync_execution_done (void)
3639 {
3640 SWITCH_THRU_ALL_UIS ()
3641 {
3642 check_curr_ui_sync_execution_done ();
3643 }
3644 }
3645
3646 /* See infrun.h. */
3647
3648 void
3649 all_uis_on_sync_execution_starting (void)
3650 {
3651 SWITCH_THRU_ALL_UIS ()
3652 {
3653 if (current_ui->prompt_state == PROMPT_NEEDED)
3654 async_disable_stdin ();
3655 }
3656 }
3657
3658 /* Asynchronous version of wait_for_inferior. It is called by the
3659 event loop whenever a change of state is detected on the file
3660 descriptor corresponding to the target. It can be called more than
3661 once to complete a single execution command. In such cases we need
3662 to keep the state in a global variable ECSS. If it is the last time
3663 that this function is called for a single execution command, then
3664 report to the user that the inferior has stopped, and do the
3665 necessary cleanups. */
3666
3667 void
3668 fetch_inferior_event (void *client_data)
3669 {
3670 struct execution_control_state ecss;
3671 struct execution_control_state *ecs = &ecss;
3672 int cmd_done = 0;
3673 ptid_t waiton_ptid = minus_one_ptid;
3674
3675 memset (ecs, 0, sizeof (*ecs));
3676
3677 /* Events are always processed with the main UI as current UI. This
3678 way, warnings, debug output, etc. are always consistently sent to
3679 the main console. */
3680 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3681
3682 /* End up with readline processing input, if necessary. */
3683 {
3684 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3685
3686 /* We're handling a live event, so make sure we're doing live
3687 debugging. If we're looking at traceframes while the target is
3688 running, we're going to need to get back to that mode after
3689 handling the event. */
3690 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3691 if (non_stop)
3692 {
3693 maybe_restore_traceframe.emplace ();
3694 set_current_traceframe (-1);
3695 }
3696
3697 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3698
3699 if (non_stop)
3700 /* In non-stop mode, the user/frontend should not notice a thread
3701 switch due to internal events. Make sure we reverse to the
3702 user selected thread and frame after handling the event and
3703 running any breakpoint commands. */
3704 maybe_restore_thread.emplace ();
3705
3706 overlay_cache_invalid = 1;
3707 /* Flush target cache before starting to handle each event. Target
3708 was running and cache could be stale. This is just a heuristic.
3709 Running threads may modify target memory, but we don't get any
3710 event. */
3711 target_dcache_invalidate ();
3712
3713 scoped_restore save_exec_dir
3714 = make_scoped_restore (&execution_direction,
3715 target_execution_direction ());
3716
3717 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3718 target_can_async_p () ? TARGET_WNOHANG : 0);
3719
3720 if (debug_infrun)
3721 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3722
3723 /* If an error happens while handling the event, propagate GDB's
3724 knowledge of the executing state to the frontend/user running
3725 state. */
3726 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3727 scoped_finish_thread_state finish_state (finish_ptid);
3728
3729 /* Get executed before scoped_restore_current_thread above to apply
3730 still for the thread which has thrown the exception. */
3731 auto defer_bpstat_clear
3732 = make_scope_exit (bpstat_clear_actions);
3733 auto defer_delete_threads
3734 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3735
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
3738
3739 if (!ecs->wait_some_more)
3740 {
3741 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3742 int should_stop = 1;
3743 struct thread_info *thr = ecs->event_thread;
3744
3745 delete_just_stopped_threads_infrun_breakpoints ();
3746
3747 if (thr != NULL)
3748 {
3749 struct thread_fsm *thread_fsm = thr->thread_fsm;
3750
3751 if (thread_fsm != NULL)
3752 should_stop = thread_fsm->should_stop (thr);
3753 }
3754
3755 if (!should_stop)
3756 {
3757 keep_going (ecs);
3758 }
3759 else
3760 {
3761 bool should_notify_stop = true;
3762 int proceeded = 0;
3763
3764 clean_up_just_stopped_threads_fsms (ecs);
3765
3766 if (thr != NULL && thr->thread_fsm != NULL)
3767 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3768
3769 if (should_notify_stop)
3770 {
3771 /* We may not find an inferior if this was a process exit. */
3772 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3773 proceeded = normal_stop ();
3774 }
3775
3776 if (!proceeded)
3777 {
3778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3779 cmd_done = 1;
3780 }
3781 }
3782 }
3783
3784 defer_delete_threads.release ();
3785 defer_bpstat_clear.release ();
3786
3787 /* No error, don't finish the thread states yet. */
3788 finish_state.release ();
3789
3790 /* This scope is used to ensure that readline callbacks are
3791 reinstalled here. */
3792 }
3793
3794 /* If a UI was in sync execution mode, and now isn't, restore its
3795 prompt (a synchronous execution command has finished, and we're
3796 ready for input). */
3797 all_uis_check_sync_execution_done ();
3798
3799 if (cmd_done
3800 && exec_done_display_p
3801 && (inferior_ptid == null_ptid
3802 || inferior_thread ()->state != THREAD_RUNNING))
3803 printf_unfiltered (_("completed.\n"));
3804 }
3805
3806 /* Record the frame and location we're currently stepping through. */
3807 void
3808 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3809 {
3810 struct thread_info *tp = inferior_thread ();
3811
3812 tp->control.step_frame_id = get_frame_id (frame);
3813 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3814
3815 tp->current_symtab = sal.symtab;
3816 tp->current_line = sal.line;
3817 }
3818
3819 /* Clear context switchable stepping state. */
3820
3821 void
3822 init_thread_stepping_state (struct thread_info *tss)
3823 {
3824 tss->stepped_breakpoint = 0;
3825 tss->stepping_over_breakpoint = 0;
3826 tss->stepping_over_watchpoint = 0;
3827 tss->step_after_step_resume_breakpoint = 0;
3828 }
3829
3830 /* Set the cached copy of the last ptid/waitstatus. */
3831
3832 void
3833 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3834 {
3835 target_last_wait_ptid = ptid;
3836 target_last_waitstatus = status;
3837 }
3838
3839 /* Return the cached copy of the last pid/waitstatus returned by
3840 target_wait()/deprecated_target_wait_hook(). The data is actually
3841 cached by handle_inferior_event(), which gets called immediately
3842 after target_wait()/deprecated_target_wait_hook(). */
3843
3844 void
3845 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3846 {
3847 *ptidp = target_last_wait_ptid;
3848 *status = target_last_waitstatus;
3849 }
3850
3851 void
3852 nullify_last_target_wait_ptid (void)
3853 {
3854 target_last_wait_ptid = minus_one_ptid;
3855 }
3856
3857 /* Switch thread contexts. */
3858
3859 static void
3860 context_switch (execution_control_state *ecs)
3861 {
3862 if (debug_infrun
3863 && ecs->ptid != inferior_ptid
3864 && ecs->event_thread != inferior_thread ())
3865 {
3866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3867 target_pid_to_str (inferior_ptid).c_str ());
3868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3869 target_pid_to_str (ecs->ptid).c_str ());
3870 }
3871
3872 switch_to_thread (ecs->event_thread);
3873 }
3874
3875 /* If the target can't tell whether we've hit breakpoints
3876 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3877 check whether that could have been caused by a breakpoint. If so,
3878 adjust the PC, per gdbarch_decr_pc_after_break. */
3879
3880 static void
3881 adjust_pc_after_break (struct thread_info *thread,
3882 struct target_waitstatus *ws)
3883 {
3884 struct regcache *regcache;
3885 struct gdbarch *gdbarch;
3886 CORE_ADDR breakpoint_pc, decr_pc;
3887
3888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3889 we aren't, just return.
3890
3891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3893 implemented by software breakpoints should be handled through the normal
3894 breakpoint layer.
3895
3896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3897 different signals (SIGILL or SIGEMT for instance), but it is less
3898 clear where the PC is pointing afterwards. It may not match
3899 gdbarch_decr_pc_after_break. I don't know any specific target that
3900 generates these signals at breakpoints (the code has been in GDB since at
3901 least 1992) so I can not guess how to handle them here.
3902
3903 In earlier versions of GDB, a target with
3904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3906 target with both of these set in GDB history, and it seems unlikely to be
3907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3908
3909 if (ws->kind != TARGET_WAITKIND_STOPPED)
3910 return;
3911
3912 if (ws->value.sig != GDB_SIGNAL_TRAP)
3913 return;
3914
3915 /* In reverse execution, when a breakpoint is hit, the instruction
3916 under it has already been de-executed. The reported PC always
3917 points at the breakpoint address, so adjusting it further would
3918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3919 architecture:
3920
3921 B1 0x08000000 : INSN1
3922 B2 0x08000001 : INSN2
3923 0x08000002 : INSN3
3924 PC -> 0x08000003 : INSN4
3925
3926 Say you're stopped at 0x08000003 as above. Reverse continuing
3927 from that point should hit B2 as below. Reading the PC when the
3928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3929 been de-executed already.
3930
3931 B1 0x08000000 : INSN1
3932 B2 PC -> 0x08000001 : INSN2
3933 0x08000002 : INSN3
3934 0x08000003 : INSN4
3935
3936 We can't apply the same logic as for forward execution, because
3937 we would wrongly adjust the PC to 0x08000000, since there's a
3938 breakpoint at PC - 1. We'd then report a hit on B1, although
3939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3940 behaviour. */
3941 if (execution_direction == EXEC_REVERSE)
3942 return;
3943
3944 /* If the target can tell whether the thread hit a SW breakpoint,
3945 trust it. Targets that can tell also adjust the PC
3946 themselves. */
3947 if (target_supports_stopped_by_sw_breakpoint ())
3948 return;
3949
3950 /* Note that relying on whether a breakpoint is planted in memory to
3951 determine this can fail. E.g,. the breakpoint could have been
3952 removed since. Or the thread could have been told to step an
3953 instruction the size of a breakpoint instruction, and only
3954 _after_ was a breakpoint inserted at its address. */
3955
3956 /* If this target does not decrement the PC after breakpoints, then
3957 we have nothing to do. */
3958 regcache = get_thread_regcache (thread);
3959 gdbarch = regcache->arch ();
3960
3961 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3962 if (decr_pc == 0)
3963 return;
3964
3965 const address_space *aspace = regcache->aspace ();
3966
3967 /* Find the location where (if we've hit a breakpoint) the
3968 breakpoint would be. */
3969 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3970
3971 /* If the target can't tell whether a software breakpoint triggered,
3972 fallback to figuring it out based on breakpoints we think were
3973 inserted in the target, and on whether the thread was stepped or
3974 continued. */
3975
3976 /* Check whether there actually is a software breakpoint inserted at
3977 that location.
3978
3979 If in non-stop mode, a race condition is possible where we've
3980 removed a breakpoint, but stop events for that breakpoint were
3981 already queued and arrive later. To suppress those spurious
3982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3983 and retire them after a number of stop events are reported. Note
3984 this is an heuristic and can thus get confused. The real fix is
3985 to get the "stopped by SW BP and needs adjustment" info out of
3986 the target/kernel (and thus never reach here; see above). */
3987 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3988 || (target_is_non_stop_p ()
3989 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3990 {
3991 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
3992
3993 if (record_full_is_used ())
3994 restore_operation_disable.emplace
3995 (record_full_gdb_operation_disable_set ());
3996
3997 /* When using hardware single-step, a SIGTRAP is reported for both
3998 a completed single-step and a software breakpoint. Need to
3999 differentiate between the two, as the latter needs adjusting
4000 but the former does not.
4001
4002 The SIGTRAP can be due to a completed hardware single-step only if
4003 - we didn't insert software single-step breakpoints
4004 - this thread is currently being stepped
4005
4006 If any of these events did not occur, we must have stopped due
4007 to hitting a software breakpoint, and have to back up to the
4008 breakpoint address.
4009
4010 As a special case, we could have hardware single-stepped a
4011 software breakpoint. In this case (prev_pc == breakpoint_pc),
4012 we also need to back up to the breakpoint address. */
4013
4014 if (thread_has_single_step_breakpoints_set (thread)
4015 || !currently_stepping (thread)
4016 || (thread->stepped_breakpoint
4017 && thread->prev_pc == breakpoint_pc))
4018 regcache_write_pc (regcache, breakpoint_pc);
4019 }
4020 }
4021
4022 static int
4023 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4024 {
4025 for (frame = get_prev_frame (frame);
4026 frame != NULL;
4027 frame = get_prev_frame (frame))
4028 {
4029 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4030 return 1;
4031 if (get_frame_type (frame) != INLINE_FRAME)
4032 break;
4033 }
4034
4035 return 0;
4036 }
4037
4038 /* Look for an inline frame that is marked for skip.
4039 If PREV_FRAME is TRUE start at the previous frame,
4040 otherwise start at the current frame. Stop at the
4041 first non-inline frame, or at the frame where the
4042 step started. */
4043
4044 static bool
4045 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4046 {
4047 struct frame_info *frame = get_current_frame ();
4048
4049 if (prev_frame)
4050 frame = get_prev_frame (frame);
4051
4052 for (; frame != NULL; frame = get_prev_frame (frame))
4053 {
4054 const char *fn = NULL;
4055 symtab_and_line sal;
4056 struct symbol *sym;
4057
4058 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4059 break;
4060 if (get_frame_type (frame) != INLINE_FRAME)
4061 break;
4062
4063 sal = find_frame_sal (frame);
4064 sym = get_frame_function (frame);
4065
4066 if (sym != NULL)
4067 fn = sym->print_name ();
4068
4069 if (sal.line != 0
4070 && function_name_is_marked_for_skip (fn, sal))
4071 return true;
4072 }
4073
4074 return false;
4075 }
4076
4077 /* If the event thread has the stop requested flag set, pretend it
4078 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4079 target_stop). */
4080
4081 static bool
4082 handle_stop_requested (struct execution_control_state *ecs)
4083 {
4084 if (ecs->event_thread->stop_requested)
4085 {
4086 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4087 ecs->ws.value.sig = GDB_SIGNAL_0;
4088 handle_signal_stop (ecs);
4089 return true;
4090 }
4091 return false;
4092 }
4093
4094 /* Auxiliary function that handles syscall entry/return events.
4095 It returns 1 if the inferior should keep going (and GDB
4096 should ignore the event), or 0 if the event deserves to be
4097 processed. */
4098
4099 static int
4100 handle_syscall_event (struct execution_control_state *ecs)
4101 {
4102 struct regcache *regcache;
4103 int syscall_number;
4104
4105 context_switch (ecs);
4106
4107 regcache = get_thread_regcache (ecs->event_thread);
4108 syscall_number = ecs->ws.value.syscall_number;
4109 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4110
4111 if (catch_syscall_enabled () > 0
4112 && catching_syscall_number (syscall_number) > 0)
4113 {
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4116 syscall_number);
4117
4118 ecs->event_thread->control.stop_bpstat
4119 = bpstat_stop_status (regcache->aspace (),
4120 ecs->event_thread->suspend.stop_pc,
4121 ecs->event_thread, &ecs->ws);
4122
4123 if (handle_stop_requested (ecs))
4124 return 0;
4125
4126 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4127 {
4128 /* Catchpoint hit. */
4129 return 0;
4130 }
4131 }
4132
4133 if (handle_stop_requested (ecs))
4134 return 0;
4135
4136 /* If no catchpoint triggered for this, then keep going. */
4137 keep_going (ecs);
4138 return 1;
4139 }
4140
4141 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4142
4143 static void
4144 fill_in_stop_func (struct gdbarch *gdbarch,
4145 struct execution_control_state *ecs)
4146 {
4147 if (!ecs->stop_func_filled_in)
4148 {
4149 const block *block;
4150
4151 /* Don't care about return value; stop_func_start and stop_func_name
4152 will both be 0 if it doesn't work. */
4153 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4154 &ecs->stop_func_name,
4155 &ecs->stop_func_start,
4156 &ecs->stop_func_end,
4157 &block);
4158
4159 /* The call to find_pc_partial_function, above, will set
4160 stop_func_start and stop_func_end to the start and end
4161 of the range containing the stop pc. If this range
4162 contains the entry pc for the block (which is always the
4163 case for contiguous blocks), advance stop_func_start past
4164 the function's start offset and entrypoint. Note that
4165 stop_func_start is NOT advanced when in a range of a
4166 non-contiguous block that does not contain the entry pc. */
4167 if (block != nullptr
4168 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4169 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4170 {
4171 ecs->stop_func_start
4172 += gdbarch_deprecated_function_start_offset (gdbarch);
4173
4174 if (gdbarch_skip_entrypoint_p (gdbarch))
4175 ecs->stop_func_start
4176 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4177 }
4178
4179 ecs->stop_func_filled_in = 1;
4180 }
4181 }
4182
4183
4184 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4185
4186 static enum stop_kind
4187 get_inferior_stop_soon (execution_control_state *ecs)
4188 {
4189 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4190
4191 gdb_assert (inf != NULL);
4192 return inf->control.stop_soon;
4193 }
4194
4195 /* Wait for one event. Store the resulting waitstatus in WS, and
4196 return the event ptid. */
4197
4198 static ptid_t
4199 wait_one (struct target_waitstatus *ws)
4200 {
4201 ptid_t event_ptid;
4202 ptid_t wait_ptid = minus_one_ptid;
4203
4204 overlay_cache_invalid = 1;
4205
4206 /* Flush target cache before starting to handle each event.
4207 Target was running and cache could be stale. This is just a
4208 heuristic. Running threads may modify target memory, but we
4209 don't get any event. */
4210 target_dcache_invalidate ();
4211
4212 if (deprecated_target_wait_hook)
4213 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4214 else
4215 event_ptid = target_wait (wait_ptid, ws, 0);
4216
4217 if (debug_infrun)
4218 print_target_wait_results (wait_ptid, event_ptid, ws);
4219
4220 return event_ptid;
4221 }
4222
4223 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4224 instead of the current thread. */
4225 #define THREAD_STOPPED_BY(REASON) \
4226 static int \
4227 thread_stopped_by_ ## REASON (ptid_t ptid) \
4228 { \
4229 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4230 inferior_ptid = ptid; \
4231 \
4232 return target_stopped_by_ ## REASON (); \
4233 }
4234
4235 /* Generate thread_stopped_by_watchpoint. */
4236 THREAD_STOPPED_BY (watchpoint)
4237 /* Generate thread_stopped_by_sw_breakpoint. */
4238 THREAD_STOPPED_BY (sw_breakpoint)
4239 /* Generate thread_stopped_by_hw_breakpoint. */
4240 THREAD_STOPPED_BY (hw_breakpoint)
4241
4242 /* Save the thread's event and stop reason to process it later. */
4243
4244 static void
4245 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4246 {
4247 if (debug_infrun)
4248 {
4249 std::string statstr = target_waitstatus_to_string (ws);
4250
4251 fprintf_unfiltered (gdb_stdlog,
4252 "infrun: saving status %s for %d.%ld.%ld\n",
4253 statstr.c_str (),
4254 tp->ptid.pid (),
4255 tp->ptid.lwp (),
4256 tp->ptid.tid ());
4257 }
4258
4259 /* Record for later. */
4260 tp->suspend.waitstatus = *ws;
4261 tp->suspend.waitstatus_pending_p = 1;
4262
4263 struct regcache *regcache = get_thread_regcache (tp);
4264 const address_space *aspace = regcache->aspace ();
4265
4266 if (ws->kind == TARGET_WAITKIND_STOPPED
4267 && ws->value.sig == GDB_SIGNAL_TRAP)
4268 {
4269 CORE_ADDR pc = regcache_read_pc (regcache);
4270
4271 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4272
4273 if (thread_stopped_by_watchpoint (tp->ptid))
4274 {
4275 tp->suspend.stop_reason
4276 = TARGET_STOPPED_BY_WATCHPOINT;
4277 }
4278 else if (target_supports_stopped_by_sw_breakpoint ()
4279 && thread_stopped_by_sw_breakpoint (tp->ptid))
4280 {
4281 tp->suspend.stop_reason
4282 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4283 }
4284 else if (target_supports_stopped_by_hw_breakpoint ()
4285 && thread_stopped_by_hw_breakpoint (tp->ptid))
4286 {
4287 tp->suspend.stop_reason
4288 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4289 }
4290 else if (!target_supports_stopped_by_hw_breakpoint ()
4291 && hardware_breakpoint_inserted_here_p (aspace,
4292 pc))
4293 {
4294 tp->suspend.stop_reason
4295 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4296 }
4297 else if (!target_supports_stopped_by_sw_breakpoint ()
4298 && software_breakpoint_inserted_here_p (aspace,
4299 pc))
4300 {
4301 tp->suspend.stop_reason
4302 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4303 }
4304 else if (!thread_has_single_step_breakpoints_set (tp)
4305 && currently_stepping (tp))
4306 {
4307 tp->suspend.stop_reason
4308 = TARGET_STOPPED_BY_SINGLE_STEP;
4309 }
4310 }
4311 }
4312
4313 /* See infrun.h. */
4314
4315 void
4316 stop_all_threads (void)
4317 {
4318 /* We may need multiple passes to discover all threads. */
4319 int pass;
4320 int iterations = 0;
4321
4322 gdb_assert (target_is_non_stop_p ());
4323
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4326
4327 scoped_restore_current_thread restore_thread;
4328
4329 target_thread_events (1);
4330 SCOPE_EXIT { target_thread_events (0); };
4331
4332 /* Request threads to stop, and then wait for the stops. Because
4333 threads we already know about can spawn more threads while we're
4334 trying to stop them, and we only learn about new threads when we
4335 update the thread list, do this in a loop, and keep iterating
4336 until two passes find no threads that need to be stopped. */
4337 for (pass = 0; pass < 2; pass++, iterations++)
4338 {
4339 if (debug_infrun)
4340 fprintf_unfiltered (gdb_stdlog,
4341 "infrun: stop_all_threads, pass=%d, "
4342 "iterations=%d\n", pass, iterations);
4343 while (1)
4344 {
4345 ptid_t event_ptid;
4346 struct target_waitstatus ws;
4347 int need_wait = 0;
4348
4349 update_thread_list ();
4350
4351 /* Go through all threads looking for threads that we need
4352 to tell the target to stop. */
4353 for (thread_info *t : all_non_exited_threads ())
4354 {
4355 if (t->executing)
4356 {
4357 /* If already stopping, don't request a stop again.
4358 We just haven't seen the notification yet. */
4359 if (!t->stop_requested)
4360 {
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog,
4363 "infrun: %s executing, "
4364 "need stop\n",
4365 target_pid_to_str (t->ptid).c_str ());
4366 target_stop (t->ptid);
4367 t->stop_requested = 1;
4368 }
4369 else
4370 {
4371 if (debug_infrun)
4372 fprintf_unfiltered (gdb_stdlog,
4373 "infrun: %s executing, "
4374 "already stopping\n",
4375 target_pid_to_str (t->ptid).c_str ());
4376 }
4377
4378 if (t->stop_requested)
4379 need_wait = 1;
4380 }
4381 else
4382 {
4383 if (debug_infrun)
4384 fprintf_unfiltered (gdb_stdlog,
4385 "infrun: %s not executing\n",
4386 target_pid_to_str (t->ptid).c_str ());
4387
4388 /* The thread may be not executing, but still be
4389 resumed with a pending status to process. */
4390 t->resumed = 0;
4391 }
4392 }
4393
4394 if (!need_wait)
4395 break;
4396
4397 /* If we find new threads on the second iteration, restart
4398 over. We want to see two iterations in a row with all
4399 threads stopped. */
4400 if (pass > 0)
4401 pass = -1;
4402
4403 event_ptid = wait_one (&ws);
4404 if (debug_infrun)
4405 {
4406 fprintf_unfiltered (gdb_stdlog,
4407 "infrun: stop_all_threads %s %s\n",
4408 target_waitstatus_to_string (&ws).c_str (),
4409 target_pid_to_str (event_ptid).c_str ());
4410 }
4411
4412 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4413 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4414 || ws.kind == TARGET_WAITKIND_EXITED
4415 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4416 {
4417 /* All resumed threads exited
4418 or one thread/process exited/signalled. */
4419 }
4420 else
4421 {
4422 thread_info *t = find_thread_ptid (event_ptid);
4423 if (t == NULL)
4424 t = add_thread (event_ptid);
4425
4426 t->stop_requested = 0;
4427 t->executing = 0;
4428 t->resumed = 0;
4429 t->control.may_range_step = 0;
4430
4431 /* This may be the first time we see the inferior report
4432 a stop. */
4433 inferior *inf = find_inferior_ptid (event_ptid);
4434 if (inf->needs_setup)
4435 {
4436 switch_to_thread_no_regs (t);
4437 setup_inferior (0);
4438 }
4439
4440 if (ws.kind == TARGET_WAITKIND_STOPPED
4441 && ws.value.sig == GDB_SIGNAL_0)
4442 {
4443 /* We caught the event that we intended to catch, so
4444 there's no event pending. */
4445 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4446 t->suspend.waitstatus_pending_p = 0;
4447
4448 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4449 {
4450 /* Add it back to the step-over queue. */
4451 if (debug_infrun)
4452 {
4453 fprintf_unfiltered (gdb_stdlog,
4454 "infrun: displaced-step of %s "
4455 "canceled: adding back to the "
4456 "step-over queue\n",
4457 target_pid_to_str (t->ptid).c_str ());
4458 }
4459 t->control.trap_expected = 0;
4460 thread_step_over_chain_enqueue (t);
4461 }
4462 }
4463 else
4464 {
4465 enum gdb_signal sig;
4466 struct regcache *regcache;
4467
4468 if (debug_infrun)
4469 {
4470 std::string statstr = target_waitstatus_to_string (&ws);
4471
4472 fprintf_unfiltered (gdb_stdlog,
4473 "infrun: target_wait %s, saving "
4474 "status for %d.%ld.%ld\n",
4475 statstr.c_str (),
4476 t->ptid.pid (),
4477 t->ptid.lwp (),
4478 t->ptid.tid ());
4479 }
4480
4481 /* Record for later. */
4482 save_waitstatus (t, &ws);
4483
4484 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4485 ? ws.value.sig : GDB_SIGNAL_0);
4486
4487 if (displaced_step_fixup (t, sig) < 0)
4488 {
4489 /* Add it back to the step-over queue. */
4490 t->control.trap_expected = 0;
4491 thread_step_over_chain_enqueue (t);
4492 }
4493
4494 regcache = get_thread_regcache (t);
4495 t->suspend.stop_pc = regcache_read_pc (regcache);
4496
4497 if (debug_infrun)
4498 {
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: saved stop_pc=%s for %s "
4501 "(currently_stepping=%d)\n",
4502 paddress (target_gdbarch (),
4503 t->suspend.stop_pc),
4504 target_pid_to_str (t->ptid).c_str (),
4505 currently_stepping (t));
4506 }
4507 }
4508 }
4509 }
4510 }
4511
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4514 }
4515
4516 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4517
4518 static int
4519 handle_no_resumed (struct execution_control_state *ecs)
4520 {
4521 if (target_can_async_p ())
4522 {
4523 struct ui *ui;
4524 int any_sync = 0;
4525
4526 ALL_UIS (ui)
4527 {
4528 if (ui->prompt_state == PROMPT_BLOCKED)
4529 {
4530 any_sync = 1;
4531 break;
4532 }
4533 }
4534 if (!any_sync)
4535 {
4536 /* There were no unwaited-for children left in the target, but,
4537 we're not synchronously waiting for events either. Just
4538 ignore. */
4539
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: TARGET_WAITKIND_NO_RESUMED "
4543 "(ignoring: bg)\n");
4544 prepare_to_wait (ecs);
4545 return 1;
4546 }
4547 }
4548
4549 /* Otherwise, if we were running a synchronous execution command, we
4550 may need to cancel it and give the user back the terminal.
4551
4552 In non-stop mode, the target can't tell whether we've already
4553 consumed previous stop events, so it can end up sending us a
4554 no-resumed event like so:
4555
4556 #0 - thread 1 is left stopped
4557
4558 #1 - thread 2 is resumed and hits breakpoint
4559 -> TARGET_WAITKIND_STOPPED
4560
4561 #2 - thread 3 is resumed and exits
4562 this is the last resumed thread, so
4563 -> TARGET_WAITKIND_NO_RESUMED
4564
4565 #3 - gdb processes stop for thread 2 and decides to re-resume
4566 it.
4567
4568 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4569 thread 2 is now resumed, so the event should be ignored.
4570
4571 IOW, if the stop for thread 2 doesn't end a foreground command,
4572 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4573 event. But it could be that the event meant that thread 2 itself
4574 (or whatever other thread was the last resumed thread) exited.
4575
4576 To address this we refresh the thread list and check whether we
4577 have resumed threads _now_. In the example above, this removes
4578 thread 3 from the thread list. If thread 2 was re-resumed, we
4579 ignore this event. If we find no thread resumed, then we cancel
4580 the synchronous command show "no unwaited-for " to the user. */
4581 update_thread_list ();
4582
4583 for (thread_info *thread : all_non_exited_threads ())
4584 {
4585 if (thread->executing
4586 || thread->suspend.waitstatus_pending_p)
4587 {
4588 /* There were no unwaited-for children left in the target at
4589 some point, but there are now. Just ignore. */
4590 if (debug_infrun)
4591 fprintf_unfiltered (gdb_stdlog,
4592 "infrun: TARGET_WAITKIND_NO_RESUMED "
4593 "(ignoring: found resumed)\n");
4594 prepare_to_wait (ecs);
4595 return 1;
4596 }
4597 }
4598
4599 /* Note however that we may find no resumed thread because the whole
4600 process exited meanwhile (thus updating the thread list results
4601 in an empty thread list). In this case we know we'll be getting
4602 a process exit event shortly. */
4603 for (inferior *inf : all_inferiors ())
4604 {
4605 if (inf->pid == 0)
4606 continue;
4607
4608 thread_info *thread = any_live_thread_of_inferior (inf);
4609 if (thread == NULL)
4610 {
4611 if (debug_infrun)
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: TARGET_WAITKIND_NO_RESUMED "
4614 "(expect process exit)\n");
4615 prepare_to_wait (ecs);
4616 return 1;
4617 }
4618 }
4619
4620 /* Go ahead and report the event. */
4621 return 0;
4622 }
4623
4624 /* Given an execution control state that has been freshly filled in by
4625 an event from the inferior, figure out what it means and take
4626 appropriate action.
4627
4628 The alternatives are:
4629
4630 1) stop_waiting and return; to really stop and return to the
4631 debugger.
4632
4633 2) keep_going and return; to wait for the next event (set
4634 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4635 once). */
4636
4637 static void
4638 handle_inferior_event (struct execution_control_state *ecs)
4639 {
4640 /* Make sure that all temporary struct value objects that were
4641 created during the handling of the event get deleted at the
4642 end. */
4643 scoped_value_mark free_values;
4644
4645 enum stop_kind stop_soon;
4646
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4649 target_waitstatus_to_string (&ecs->ws).c_str ());
4650
4651 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4652 {
4653 /* We had an event in the inferior, but we are not interested in
4654 handling it at this level. The lower layers have already
4655 done what needs to be done, if anything.
4656
4657 One of the possible circumstances for this is when the
4658 inferior produces output for the console. The inferior has
4659 not stopped, and we are ignoring the event. Another possible
4660 circumstance is any event which the lower level knows will be
4661 reported multiple times without an intervening resume. */
4662 prepare_to_wait (ecs);
4663 return;
4664 }
4665
4666 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4667 {
4668 prepare_to_wait (ecs);
4669 return;
4670 }
4671
4672 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4673 && handle_no_resumed (ecs))
4674 return;
4675
4676 /* Cache the last pid/waitstatus. */
4677 set_last_target_status (ecs->ptid, ecs->ws);
4678
4679 /* Always clear state belonging to the previous time we stopped. */
4680 stop_stack_dummy = STOP_NONE;
4681
4682 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4683 {
4684 /* No unwaited-for children left. IOW, all resumed children
4685 have exited. */
4686 stop_print_frame = 0;
4687 stop_waiting (ecs);
4688 return;
4689 }
4690
4691 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4692 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4693 {
4694 ecs->event_thread = find_thread_ptid (ecs->ptid);
4695 /* If it's a new thread, add it to the thread database. */
4696 if (ecs->event_thread == NULL)
4697 ecs->event_thread = add_thread (ecs->ptid);
4698
4699 /* Disable range stepping. If the next step request could use a
4700 range, this will be end up re-enabled then. */
4701 ecs->event_thread->control.may_range_step = 0;
4702 }
4703
4704 /* Dependent on valid ECS->EVENT_THREAD. */
4705 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4706
4707 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4708 reinit_frame_cache ();
4709
4710 breakpoint_retire_moribund ();
4711
4712 /* First, distinguish signals caused by the debugger from signals
4713 that have to do with the program's own actions. Note that
4714 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4715 on the operating system version. Here we detect when a SIGILL or
4716 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4717 something similar for SIGSEGV, since a SIGSEGV will be generated
4718 when we're trying to execute a breakpoint instruction on a
4719 non-executable stack. This happens for call dummy breakpoints
4720 for architectures like SPARC that place call dummies on the
4721 stack. */
4722 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4723 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4724 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4725 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4726 {
4727 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4728
4729 if (breakpoint_inserted_here_p (regcache->aspace (),
4730 regcache_read_pc (regcache)))
4731 {
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: Treating signal as SIGTRAP\n");
4735 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4736 }
4737 }
4738
4739 /* Mark the non-executing threads accordingly. In all-stop, all
4740 threads of all processes are stopped when we get any event
4741 reported. In non-stop mode, only the event thread stops. */
4742 {
4743 ptid_t mark_ptid;
4744
4745 if (!target_is_non_stop_p ())
4746 mark_ptid = minus_one_ptid;
4747 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4748 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4749 {
4750 /* If we're handling a process exit in non-stop mode, even
4751 though threads haven't been deleted yet, one would think
4752 that there is nothing to do, as threads of the dead process
4753 will be soon deleted, and threads of any other process were
4754 left running. However, on some targets, threads survive a
4755 process exit event. E.g., for the "checkpoint" command,
4756 when the current checkpoint/fork exits, linux-fork.c
4757 automatically switches to another fork from within
4758 target_mourn_inferior, by associating the same
4759 inferior/thread to another fork. We haven't mourned yet at
4760 this point, but we must mark any threads left in the
4761 process as not-executing so that finish_thread_state marks
4762 them stopped (in the user's perspective) if/when we present
4763 the stop to the user. */
4764 mark_ptid = ptid_t (ecs->ptid.pid ());
4765 }
4766 else
4767 mark_ptid = ecs->ptid;
4768
4769 set_executing (mark_ptid, 0);
4770
4771 /* Likewise the resumed flag. */
4772 set_resumed (mark_ptid, 0);
4773 }
4774
4775 switch (ecs->ws.kind)
4776 {
4777 case TARGET_WAITKIND_LOADED:
4778 context_switch (ecs);
4779 /* Ignore gracefully during startup of the inferior, as it might
4780 be the shell which has just loaded some objects, otherwise
4781 add the symbols for the newly loaded objects. Also ignore at
4782 the beginning of an attach or remote session; we will query
4783 the full list of libraries once the connection is
4784 established. */
4785
4786 stop_soon = get_inferior_stop_soon (ecs);
4787 if (stop_soon == NO_STOP_QUIETLY)
4788 {
4789 struct regcache *regcache;
4790
4791 regcache = get_thread_regcache (ecs->event_thread);
4792
4793 handle_solib_event ();
4794
4795 ecs->event_thread->control.stop_bpstat
4796 = bpstat_stop_status (regcache->aspace (),
4797 ecs->event_thread->suspend.stop_pc,
4798 ecs->event_thread, &ecs->ws);
4799
4800 if (handle_stop_requested (ecs))
4801 return;
4802
4803 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4804 {
4805 /* A catchpoint triggered. */
4806 process_event_stop_test (ecs);
4807 return;
4808 }
4809
4810 /* If requested, stop when the dynamic linker notifies
4811 gdb of events. This allows the user to get control
4812 and place breakpoints in initializer routines for
4813 dynamically loaded objects (among other things). */
4814 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4815 if (stop_on_solib_events)
4816 {
4817 /* Make sure we print "Stopped due to solib-event" in
4818 normal_stop. */
4819 stop_print_frame = 1;
4820
4821 stop_waiting (ecs);
4822 return;
4823 }
4824 }
4825
4826 /* If we are skipping through a shell, or through shared library
4827 loading that we aren't interested in, resume the program. If
4828 we're running the program normally, also resume. */
4829 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4830 {
4831 /* Loading of shared libraries might have changed breakpoint
4832 addresses. Make sure new breakpoints are inserted. */
4833 if (stop_soon == NO_STOP_QUIETLY)
4834 insert_breakpoints ();
4835 resume (GDB_SIGNAL_0);
4836 prepare_to_wait (ecs);
4837 return;
4838 }
4839
4840 /* But stop if we're attaching or setting up a remote
4841 connection. */
4842 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4843 || stop_soon == STOP_QUIETLY_REMOTE)
4844 {
4845 if (debug_infrun)
4846 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4847 stop_waiting (ecs);
4848 return;
4849 }
4850
4851 internal_error (__FILE__, __LINE__,
4852 _("unhandled stop_soon: %d"), (int) stop_soon);
4853
4854 case TARGET_WAITKIND_SPURIOUS:
4855 if (handle_stop_requested (ecs))
4856 return;
4857 context_switch (ecs);
4858 resume (GDB_SIGNAL_0);
4859 prepare_to_wait (ecs);
4860 return;
4861
4862 case TARGET_WAITKIND_THREAD_CREATED:
4863 if (handle_stop_requested (ecs))
4864 return;
4865 context_switch (ecs);
4866 if (!switch_back_to_stepped_thread (ecs))
4867 keep_going (ecs);
4868 return;
4869
4870 case TARGET_WAITKIND_EXITED:
4871 case TARGET_WAITKIND_SIGNALLED:
4872 inferior_ptid = ecs->ptid;
4873 set_current_inferior (find_inferior_ptid (ecs->ptid));
4874 set_current_program_space (current_inferior ()->pspace);
4875 handle_vfork_child_exec_or_exit (0);
4876 target_terminal::ours (); /* Must do this before mourn anyway. */
4877
4878 /* Clearing any previous state of convenience variables. */
4879 clear_exit_convenience_vars ();
4880
4881 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4882 {
4883 /* Record the exit code in the convenience variable $_exitcode, so
4884 that the user can inspect this again later. */
4885 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4886 (LONGEST) ecs->ws.value.integer);
4887
4888 /* Also record this in the inferior itself. */
4889 current_inferior ()->has_exit_code = 1;
4890 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4891
4892 /* Support the --return-child-result option. */
4893 return_child_result_value = ecs->ws.value.integer;
4894
4895 gdb::observers::exited.notify (ecs->ws.value.integer);
4896 }
4897 else
4898 {
4899 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4900
4901 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4902 {
4903 /* Set the value of the internal variable $_exitsignal,
4904 which holds the signal uncaught by the inferior. */
4905 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4906 gdbarch_gdb_signal_to_target (gdbarch,
4907 ecs->ws.value.sig));
4908 }
4909 else
4910 {
4911 /* We don't have access to the target's method used for
4912 converting between signal numbers (GDB's internal
4913 representation <-> target's representation).
4914 Therefore, we cannot do a good job at displaying this
4915 information to the user. It's better to just warn
4916 her about it (if infrun debugging is enabled), and
4917 give up. */
4918 if (debug_infrun)
4919 fprintf_filtered (gdb_stdlog, _("\
4920 Cannot fill $_exitsignal with the correct signal number.\n"));
4921 }
4922
4923 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4924 }
4925
4926 gdb_flush (gdb_stdout);
4927 target_mourn_inferior (inferior_ptid);
4928 stop_print_frame = 0;
4929 stop_waiting (ecs);
4930 return;
4931
4932 /* The following are the only cases in which we keep going;
4933 the above cases end in a continue or goto. */
4934 case TARGET_WAITKIND_FORKED:
4935 case TARGET_WAITKIND_VFORKED:
4936 /* Check whether the inferior is displaced stepping. */
4937 {
4938 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4939 struct gdbarch *gdbarch = regcache->arch ();
4940
4941 /* If checking displaced stepping is supported, and thread
4942 ecs->ptid is displaced stepping. */
4943 if (displaced_step_in_progress_thread (ecs->event_thread))
4944 {
4945 struct inferior *parent_inf
4946 = find_inferior_ptid (ecs->ptid);
4947 struct regcache *child_regcache;
4948 CORE_ADDR parent_pc;
4949
4950 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4951 indicating that the displaced stepping of syscall instruction
4952 has been done. Perform cleanup for parent process here. Note
4953 that this operation also cleans up the child process for vfork,
4954 because their pages are shared. */
4955 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4956 /* Start a new step-over in another thread if there's one
4957 that needs it. */
4958 start_step_over ();
4959
4960 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4961 {
4962 struct displaced_step_inferior_state *displaced
4963 = get_displaced_stepping_state (parent_inf);
4964
4965 /* Restore scratch pad for child process. */
4966 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4967 }
4968
4969 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4970 the child's PC is also within the scratchpad. Set the child's PC
4971 to the parent's PC value, which has already been fixed up.
4972 FIXME: we use the parent's aspace here, although we're touching
4973 the child, because the child hasn't been added to the inferior
4974 list yet at this point. */
4975
4976 child_regcache
4977 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4978 gdbarch,
4979 parent_inf->aspace);
4980 /* Read PC value of parent process. */
4981 parent_pc = regcache_read_pc (regcache);
4982
4983 if (debug_displaced)
4984 fprintf_unfiltered (gdb_stdlog,
4985 "displaced: write child pc from %s to %s\n",
4986 paddress (gdbarch,
4987 regcache_read_pc (child_regcache)),
4988 paddress (gdbarch, parent_pc));
4989
4990 regcache_write_pc (child_regcache, parent_pc);
4991 }
4992 }
4993
4994 context_switch (ecs);
4995
4996 /* Immediately detach breakpoints from the child before there's
4997 any chance of letting the user delete breakpoints from the
4998 breakpoint lists. If we don't do this early, it's easy to
4999 leave left over traps in the child, vis: "break foo; catch
5000 fork; c; <fork>; del; c; <child calls foo>". We only follow
5001 the fork on the last `continue', and by that time the
5002 breakpoint at "foo" is long gone from the breakpoint table.
5003 If we vforked, then we don't need to unpatch here, since both
5004 parent and child are sharing the same memory pages; we'll
5005 need to unpatch at follow/detach time instead to be certain
5006 that new breakpoints added between catchpoint hit time and
5007 vfork follow are detached. */
5008 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5009 {
5010 /* This won't actually modify the breakpoint list, but will
5011 physically remove the breakpoints from the child. */
5012 detach_breakpoints (ecs->ws.value.related_pid);
5013 }
5014
5015 delete_just_stopped_threads_single_step_breakpoints ();
5016
5017 /* In case the event is caught by a catchpoint, remember that
5018 the event is to be followed at the next resume of the thread,
5019 and not immediately. */
5020 ecs->event_thread->pending_follow = ecs->ws;
5021
5022 ecs->event_thread->suspend.stop_pc
5023 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5024
5025 ecs->event_thread->control.stop_bpstat
5026 = bpstat_stop_status (get_current_regcache ()->aspace (),
5027 ecs->event_thread->suspend.stop_pc,
5028 ecs->event_thread, &ecs->ws);
5029
5030 if (handle_stop_requested (ecs))
5031 return;
5032
5033 /* If no catchpoint triggered for this, then keep going. Note
5034 that we're interested in knowing the bpstat actually causes a
5035 stop, not just if it may explain the signal. Software
5036 watchpoints, for example, always appear in the bpstat. */
5037 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5038 {
5039 int should_resume;
5040 int follow_child
5041 = (follow_fork_mode_string == follow_fork_mode_child);
5042
5043 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5044
5045 should_resume = follow_fork ();
5046
5047 thread_info *parent = ecs->event_thread;
5048 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5049
5050 /* At this point, the parent is marked running, and the
5051 child is marked stopped. */
5052
5053 /* If not resuming the parent, mark it stopped. */
5054 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5055 parent->set_running (false);
5056
5057 /* If resuming the child, mark it running. */
5058 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5059 child->set_running (true);
5060
5061 /* In non-stop mode, also resume the other branch. */
5062 if (!detach_fork && (non_stop
5063 || (sched_multi && target_is_non_stop_p ())))
5064 {
5065 if (follow_child)
5066 switch_to_thread (parent);
5067 else
5068 switch_to_thread (child);
5069
5070 ecs->event_thread = inferior_thread ();
5071 ecs->ptid = inferior_ptid;
5072 keep_going (ecs);
5073 }
5074
5075 if (follow_child)
5076 switch_to_thread (child);
5077 else
5078 switch_to_thread (parent);
5079
5080 ecs->event_thread = inferior_thread ();
5081 ecs->ptid = inferior_ptid;
5082
5083 if (should_resume)
5084 keep_going (ecs);
5085 else
5086 stop_waiting (ecs);
5087 return;
5088 }
5089 process_event_stop_test (ecs);
5090 return;
5091
5092 case TARGET_WAITKIND_VFORK_DONE:
5093 /* Done with the shared memory region. Re-insert breakpoints in
5094 the parent, and keep going. */
5095
5096 context_switch (ecs);
5097
5098 current_inferior ()->waiting_for_vfork_done = 0;
5099 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5100
5101 if (handle_stop_requested (ecs))
5102 return;
5103
5104 /* This also takes care of reinserting breakpoints in the
5105 previously locked inferior. */
5106 keep_going (ecs);
5107 return;
5108
5109 case TARGET_WAITKIND_EXECD:
5110
5111 /* Note we can't read registers yet (the stop_pc), because we
5112 don't yet know the inferior's post-exec architecture.
5113 'stop_pc' is explicitly read below instead. */
5114 switch_to_thread_no_regs (ecs->event_thread);
5115
5116 /* Do whatever is necessary to the parent branch of the vfork. */
5117 handle_vfork_child_exec_or_exit (1);
5118
5119 /* This causes the eventpoints and symbol table to be reset.
5120 Must do this now, before trying to determine whether to
5121 stop. */
5122 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5123
5124 /* In follow_exec we may have deleted the original thread and
5125 created a new one. Make sure that the event thread is the
5126 execd thread for that case (this is a nop otherwise). */
5127 ecs->event_thread = inferior_thread ();
5128
5129 ecs->event_thread->suspend.stop_pc
5130 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5131
5132 ecs->event_thread->control.stop_bpstat
5133 = bpstat_stop_status (get_current_regcache ()->aspace (),
5134 ecs->event_thread->suspend.stop_pc,
5135 ecs->event_thread, &ecs->ws);
5136
5137 /* Note that this may be referenced from inside
5138 bpstat_stop_status above, through inferior_has_execd. */
5139 xfree (ecs->ws.value.execd_pathname);
5140 ecs->ws.value.execd_pathname = NULL;
5141
5142 if (handle_stop_requested (ecs))
5143 return;
5144
5145 /* If no catchpoint triggered for this, then keep going. */
5146 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5147 {
5148 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5149 keep_going (ecs);
5150 return;
5151 }
5152 process_event_stop_test (ecs);
5153 return;
5154
5155 /* Be careful not to try to gather much state about a thread
5156 that's in a syscall. It's frequently a losing proposition. */
5157 case TARGET_WAITKIND_SYSCALL_ENTRY:
5158 /* Getting the current syscall number. */
5159 if (handle_syscall_event (ecs) == 0)
5160 process_event_stop_test (ecs);
5161 return;
5162
5163 /* Before examining the threads further, step this thread to
5164 get it entirely out of the syscall. (We get notice of the
5165 event when the thread is just on the verge of exiting a
5166 syscall. Stepping one instruction seems to get it back
5167 into user code.) */
5168 case TARGET_WAITKIND_SYSCALL_RETURN:
5169 if (handle_syscall_event (ecs) == 0)
5170 process_event_stop_test (ecs);
5171 return;
5172
5173 case TARGET_WAITKIND_STOPPED:
5174 handle_signal_stop (ecs);
5175 return;
5176
5177 case TARGET_WAITKIND_NO_HISTORY:
5178 /* Reverse execution: target ran out of history info. */
5179
5180 /* Switch to the stopped thread. */
5181 context_switch (ecs);
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5184
5185 delete_just_stopped_threads_single_step_breakpoints ();
5186 ecs->event_thread->suspend.stop_pc
5187 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5188
5189 if (handle_stop_requested (ecs))
5190 return;
5191
5192 gdb::observers::no_history.notify ();
5193 stop_waiting (ecs);
5194 return;
5195 }
5196 }
5197
5198 /* Restart threads back to what they were trying to do back when we
5199 paused them for an in-line step-over. The EVENT_THREAD thread is
5200 ignored. */
5201
5202 static void
5203 restart_threads (struct thread_info *event_thread)
5204 {
5205 /* In case the instruction just stepped spawned a new thread. */
5206 update_thread_list ();
5207
5208 for (thread_info *tp : all_non_exited_threads ())
5209 {
5210 if (tp == event_thread)
5211 {
5212 if (debug_infrun)
5213 fprintf_unfiltered (gdb_stdlog,
5214 "infrun: restart threads: "
5215 "[%s] is event thread\n",
5216 target_pid_to_str (tp->ptid).c_str ());
5217 continue;
5218 }
5219
5220 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5221 {
5222 if (debug_infrun)
5223 fprintf_unfiltered (gdb_stdlog,
5224 "infrun: restart threads: "
5225 "[%s] not meant to be running\n",
5226 target_pid_to_str (tp->ptid).c_str ());
5227 continue;
5228 }
5229
5230 if (tp->resumed)
5231 {
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: restart threads: [%s] resumed\n",
5235 target_pid_to_str (tp->ptid).c_str ());
5236 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5237 continue;
5238 }
5239
5240 if (thread_is_in_step_over_chain (tp))
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: "
5245 "[%s] needs step-over\n",
5246 target_pid_to_str (tp->ptid).c_str ());
5247 gdb_assert (!tp->resumed);
5248 continue;
5249 }
5250
5251
5252 if (tp->suspend.waitstatus_pending_p)
5253 {
5254 if (debug_infrun)
5255 fprintf_unfiltered (gdb_stdlog,
5256 "infrun: restart threads: "
5257 "[%s] has pending status\n",
5258 target_pid_to_str (tp->ptid).c_str ());
5259 tp->resumed = 1;
5260 continue;
5261 }
5262
5263 gdb_assert (!tp->stop_requested);
5264
5265 /* If some thread needs to start a step-over at this point, it
5266 should still be in the step-over queue, and thus skipped
5267 above. */
5268 if (thread_still_needs_step_over (tp))
5269 {
5270 internal_error (__FILE__, __LINE__,
5271 "thread [%s] needs a step-over, but not in "
5272 "step-over queue\n",
5273 target_pid_to_str (tp->ptid).c_str ());
5274 }
5275
5276 if (currently_stepping (tp))
5277 {
5278 if (debug_infrun)
5279 fprintf_unfiltered (gdb_stdlog,
5280 "infrun: restart threads: [%s] was stepping\n",
5281 target_pid_to_str (tp->ptid).c_str ());
5282 keep_going_stepped_thread (tp);
5283 }
5284 else
5285 {
5286 struct execution_control_state ecss;
5287 struct execution_control_state *ecs = &ecss;
5288
5289 if (debug_infrun)
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: restart threads: [%s] continuing\n",
5292 target_pid_to_str (tp->ptid).c_str ());
5293 reset_ecs (ecs, tp);
5294 switch_to_thread (tp);
5295 keep_going_pass_signal (ecs);
5296 }
5297 }
5298 }
5299
5300 /* Callback for iterate_over_threads. Find a resumed thread that has
5301 a pending waitstatus. */
5302
5303 static int
5304 resumed_thread_with_pending_status (struct thread_info *tp,
5305 void *arg)
5306 {
5307 return (tp->resumed
5308 && tp->suspend.waitstatus_pending_p);
5309 }
5310
5311 /* Called when we get an event that may finish an in-line or
5312 out-of-line (displaced stepping) step-over started previously.
5313 Return true if the event is processed and we should go back to the
5314 event loop; false if the caller should continue processing the
5315 event. */
5316
5317 static int
5318 finish_step_over (struct execution_control_state *ecs)
5319 {
5320 int had_step_over_info;
5321
5322 displaced_step_fixup (ecs->event_thread,
5323 ecs->event_thread->suspend.stop_signal);
5324
5325 had_step_over_info = step_over_info_valid_p ();
5326
5327 if (had_step_over_info)
5328 {
5329 /* If we're stepping over a breakpoint with all threads locked,
5330 then only the thread that was stepped should be reporting
5331 back an event. */
5332 gdb_assert (ecs->event_thread->control.trap_expected);
5333
5334 clear_step_over_info ();
5335 }
5336
5337 if (!target_is_non_stop_p ())
5338 return 0;
5339
5340 /* Start a new step-over in another thread if there's one that
5341 needs it. */
5342 start_step_over ();
5343
5344 /* If we were stepping over a breakpoint before, and haven't started
5345 a new in-line step-over sequence, then restart all other threads
5346 (except the event thread). We can't do this in all-stop, as then
5347 e.g., we wouldn't be able to issue any other remote packet until
5348 these other threads stop. */
5349 if (had_step_over_info && !step_over_info_valid_p ())
5350 {
5351 struct thread_info *pending;
5352
5353 /* If we only have threads with pending statuses, the restart
5354 below won't restart any thread and so nothing re-inserts the
5355 breakpoint we just stepped over. But we need it inserted
5356 when we later process the pending events, otherwise if
5357 another thread has a pending event for this breakpoint too,
5358 we'd discard its event (because the breakpoint that
5359 originally caused the event was no longer inserted). */
5360 context_switch (ecs);
5361 insert_breakpoints ();
5362
5363 {
5364 scoped_restore save_defer_tc
5365 = make_scoped_defer_target_commit_resume ();
5366 restart_threads (ecs->event_thread);
5367 }
5368 target_commit_resume ();
5369
5370 /* If we have events pending, go through handle_inferior_event
5371 again, picking up a pending event at random. This avoids
5372 thread starvation. */
5373
5374 /* But not if we just stepped over a watchpoint in order to let
5375 the instruction execute so we can evaluate its expression.
5376 The set of watchpoints that triggered is recorded in the
5377 breakpoint objects themselves (see bp->watchpoint_triggered).
5378 If we processed another event first, that other event could
5379 clobber this info. */
5380 if (ecs->event_thread->stepping_over_watchpoint)
5381 return 0;
5382
5383 pending = iterate_over_threads (resumed_thread_with_pending_status,
5384 NULL);
5385 if (pending != NULL)
5386 {
5387 struct thread_info *tp = ecs->event_thread;
5388 struct regcache *regcache;
5389
5390 if (debug_infrun)
5391 {
5392 fprintf_unfiltered (gdb_stdlog,
5393 "infrun: found resumed threads with "
5394 "pending events, saving status\n");
5395 }
5396
5397 gdb_assert (pending != tp);
5398
5399 /* Record the event thread's event for later. */
5400 save_waitstatus (tp, &ecs->ws);
5401 /* This was cleared early, by handle_inferior_event. Set it
5402 so this pending event is considered by
5403 do_target_wait. */
5404 tp->resumed = 1;
5405
5406 gdb_assert (!tp->executing);
5407
5408 regcache = get_thread_regcache (tp);
5409 tp->suspend.stop_pc = regcache_read_pc (regcache);
5410
5411 if (debug_infrun)
5412 {
5413 fprintf_unfiltered (gdb_stdlog,
5414 "infrun: saved stop_pc=%s for %s "
5415 "(currently_stepping=%d)\n",
5416 paddress (target_gdbarch (),
5417 tp->suspend.stop_pc),
5418 target_pid_to_str (tp->ptid).c_str (),
5419 currently_stepping (tp));
5420 }
5421
5422 /* This in-line step-over finished; clear this so we won't
5423 start a new one. This is what handle_signal_stop would
5424 do, if we returned false. */
5425 tp->stepping_over_breakpoint = 0;
5426
5427 /* Wake up the event loop again. */
5428 mark_async_event_handler (infrun_async_inferior_event_token);
5429
5430 prepare_to_wait (ecs);
5431 return 1;
5432 }
5433 }
5434
5435 return 0;
5436 }
5437
5438 /* Come here when the program has stopped with a signal. */
5439
5440 static void
5441 handle_signal_stop (struct execution_control_state *ecs)
5442 {
5443 struct frame_info *frame;
5444 struct gdbarch *gdbarch;
5445 int stopped_by_watchpoint;
5446 enum stop_kind stop_soon;
5447 int random_signal;
5448
5449 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5450
5451 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5452
5453 /* Do we need to clean up the state of a thread that has
5454 completed a displaced single-step? (Doing so usually affects
5455 the PC, so do it here, before we set stop_pc.) */
5456 if (finish_step_over (ecs))
5457 return;
5458
5459 /* If we either finished a single-step or hit a breakpoint, but
5460 the user wanted this thread to be stopped, pretend we got a
5461 SIG0 (generic unsignaled stop). */
5462 if (ecs->event_thread->stop_requested
5463 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5464 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5465
5466 ecs->event_thread->suspend.stop_pc
5467 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5468
5469 if (debug_infrun)
5470 {
5471 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5472 struct gdbarch *reg_gdbarch = regcache->arch ();
5473 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5474
5475 inferior_ptid = ecs->ptid;
5476
5477 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5478 paddress (reg_gdbarch,
5479 ecs->event_thread->suspend.stop_pc));
5480 if (target_stopped_by_watchpoint ())
5481 {
5482 CORE_ADDR addr;
5483
5484 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5485
5486 if (target_stopped_data_address (current_top_target (), &addr))
5487 fprintf_unfiltered (gdb_stdlog,
5488 "infrun: stopped data address = %s\n",
5489 paddress (reg_gdbarch, addr));
5490 else
5491 fprintf_unfiltered (gdb_stdlog,
5492 "infrun: (no data address available)\n");
5493 }
5494 }
5495
5496 /* This is originated from start_remote(), start_inferior() and
5497 shared libraries hook functions. */
5498 stop_soon = get_inferior_stop_soon (ecs);
5499 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5500 {
5501 context_switch (ecs);
5502 if (debug_infrun)
5503 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5504 stop_print_frame = 1;
5505 stop_waiting (ecs);
5506 return;
5507 }
5508
5509 /* This originates from attach_command(). We need to overwrite
5510 the stop_signal here, because some kernels don't ignore a
5511 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5512 See more comments in inferior.h. On the other hand, if we
5513 get a non-SIGSTOP, report it to the user - assume the backend
5514 will handle the SIGSTOP if it should show up later.
5515
5516 Also consider that the attach is complete when we see a
5517 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5518 target extended-remote report it instead of a SIGSTOP
5519 (e.g. gdbserver). We already rely on SIGTRAP being our
5520 signal, so this is no exception.
5521
5522 Also consider that the attach is complete when we see a
5523 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5524 the target to stop all threads of the inferior, in case the
5525 low level attach operation doesn't stop them implicitly. If
5526 they weren't stopped implicitly, then the stub will report a
5527 GDB_SIGNAL_0, meaning: stopped for no particular reason
5528 other than GDB's request. */
5529 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5530 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5531 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5532 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5533 {
5534 stop_print_frame = 1;
5535 stop_waiting (ecs);
5536 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5537 return;
5538 }
5539
5540 /* See if something interesting happened to the non-current thread. If
5541 so, then switch to that thread. */
5542 if (ecs->ptid != inferior_ptid)
5543 {
5544 if (debug_infrun)
5545 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5546
5547 context_switch (ecs);
5548
5549 if (deprecated_context_hook)
5550 deprecated_context_hook (ecs->event_thread->global_num);
5551 }
5552
5553 /* At this point, get hold of the now-current thread's frame. */
5554 frame = get_current_frame ();
5555 gdbarch = get_frame_arch (frame);
5556
5557 /* Pull the single step breakpoints out of the target. */
5558 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5559 {
5560 struct regcache *regcache;
5561 CORE_ADDR pc;
5562
5563 regcache = get_thread_regcache (ecs->event_thread);
5564 const address_space *aspace = regcache->aspace ();
5565
5566 pc = regcache_read_pc (regcache);
5567
5568 /* However, before doing so, if this single-step breakpoint was
5569 actually for another thread, set this thread up for moving
5570 past it. */
5571 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5572 aspace, pc))
5573 {
5574 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5575 {
5576 if (debug_infrun)
5577 {
5578 fprintf_unfiltered (gdb_stdlog,
5579 "infrun: [%s] hit another thread's "
5580 "single-step breakpoint\n",
5581 target_pid_to_str (ecs->ptid).c_str ());
5582 }
5583 ecs->hit_singlestep_breakpoint = 1;
5584 }
5585 }
5586 else
5587 {
5588 if (debug_infrun)
5589 {
5590 fprintf_unfiltered (gdb_stdlog,
5591 "infrun: [%s] hit its "
5592 "single-step breakpoint\n",
5593 target_pid_to_str (ecs->ptid).c_str ());
5594 }
5595 }
5596 }
5597 delete_just_stopped_threads_single_step_breakpoints ();
5598
5599 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5600 && ecs->event_thread->control.trap_expected
5601 && ecs->event_thread->stepping_over_watchpoint)
5602 stopped_by_watchpoint = 0;
5603 else
5604 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5605
5606 /* If necessary, step over this watchpoint. We'll be back to display
5607 it in a moment. */
5608 if (stopped_by_watchpoint
5609 && (target_have_steppable_watchpoint
5610 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5611 {
5612 /* At this point, we are stopped at an instruction which has
5613 attempted to write to a piece of memory under control of
5614 a watchpoint. The instruction hasn't actually executed
5615 yet. If we were to evaluate the watchpoint expression
5616 now, we would get the old value, and therefore no change
5617 would seem to have occurred.
5618
5619 In order to make watchpoints work `right', we really need
5620 to complete the memory write, and then evaluate the
5621 watchpoint expression. We do this by single-stepping the
5622 target.
5623
5624 It may not be necessary to disable the watchpoint to step over
5625 it. For example, the PA can (with some kernel cooperation)
5626 single step over a watchpoint without disabling the watchpoint.
5627
5628 It is far more common to need to disable a watchpoint to step
5629 the inferior over it. If we have non-steppable watchpoints,
5630 we must disable the current watchpoint; it's simplest to
5631 disable all watchpoints.
5632
5633 Any breakpoint at PC must also be stepped over -- if there's
5634 one, it will have already triggered before the watchpoint
5635 triggered, and we either already reported it to the user, or
5636 it didn't cause a stop and we called keep_going. In either
5637 case, if there was a breakpoint at PC, we must be trying to
5638 step past it. */
5639 ecs->event_thread->stepping_over_watchpoint = 1;
5640 keep_going (ecs);
5641 return;
5642 }
5643
5644 ecs->event_thread->stepping_over_breakpoint = 0;
5645 ecs->event_thread->stepping_over_watchpoint = 0;
5646 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5647 ecs->event_thread->control.stop_step = 0;
5648 stop_print_frame = 1;
5649 stopped_by_random_signal = 0;
5650 bpstat stop_chain = NULL;
5651
5652 /* Hide inlined functions starting here, unless we just performed stepi or
5653 nexti. After stepi and nexti, always show the innermost frame (not any
5654 inline function call sites). */
5655 if (ecs->event_thread->control.step_range_end != 1)
5656 {
5657 const address_space *aspace
5658 = get_thread_regcache (ecs->event_thread)->aspace ();
5659
5660 /* skip_inline_frames is expensive, so we avoid it if we can
5661 determine that the address is one where functions cannot have
5662 been inlined. This improves performance with inferiors that
5663 load a lot of shared libraries, because the solib event
5664 breakpoint is defined as the address of a function (i.e. not
5665 inline). Note that we have to check the previous PC as well
5666 as the current one to catch cases when we have just
5667 single-stepped off a breakpoint prior to reinstating it.
5668 Note that we're assuming that the code we single-step to is
5669 not inline, but that's not definitive: there's nothing
5670 preventing the event breakpoint function from containing
5671 inlined code, and the single-step ending up there. If the
5672 user had set a breakpoint on that inlined code, the missing
5673 skip_inline_frames call would break things. Fortunately
5674 that's an extremely unlikely scenario. */
5675 if (!pc_at_non_inline_function (aspace,
5676 ecs->event_thread->suspend.stop_pc,
5677 &ecs->ws)
5678 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5679 && ecs->event_thread->control.trap_expected
5680 && pc_at_non_inline_function (aspace,
5681 ecs->event_thread->prev_pc,
5682 &ecs->ws)))
5683 {
5684 stop_chain = build_bpstat_chain (aspace,
5685 ecs->event_thread->suspend.stop_pc,
5686 &ecs->ws);
5687 skip_inline_frames (ecs->event_thread, stop_chain);
5688
5689 /* Re-fetch current thread's frame in case that invalidated
5690 the frame cache. */
5691 frame = get_current_frame ();
5692 gdbarch = get_frame_arch (frame);
5693 }
5694 }
5695
5696 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5697 && ecs->event_thread->control.trap_expected
5698 && gdbarch_single_step_through_delay_p (gdbarch)
5699 && currently_stepping (ecs->event_thread))
5700 {
5701 /* We're trying to step off a breakpoint. Turns out that we're
5702 also on an instruction that needs to be stepped multiple
5703 times before it's been fully executing. E.g., architectures
5704 with a delay slot. It needs to be stepped twice, once for
5705 the instruction and once for the delay slot. */
5706 int step_through_delay
5707 = gdbarch_single_step_through_delay (gdbarch, frame);
5708
5709 if (debug_infrun && step_through_delay)
5710 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5711 if (ecs->event_thread->control.step_range_end == 0
5712 && step_through_delay)
5713 {
5714 /* The user issued a continue when stopped at a breakpoint.
5715 Set up for another trap and get out of here. */
5716 ecs->event_thread->stepping_over_breakpoint = 1;
5717 keep_going (ecs);
5718 return;
5719 }
5720 else if (step_through_delay)
5721 {
5722 /* The user issued a step when stopped at a breakpoint.
5723 Maybe we should stop, maybe we should not - the delay
5724 slot *might* correspond to a line of source. In any
5725 case, don't decide that here, just set
5726 ecs->stepping_over_breakpoint, making sure we
5727 single-step again before breakpoints are re-inserted. */
5728 ecs->event_thread->stepping_over_breakpoint = 1;
5729 }
5730 }
5731
5732 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5733 handles this event. */
5734 ecs->event_thread->control.stop_bpstat
5735 = bpstat_stop_status (get_current_regcache ()->aspace (),
5736 ecs->event_thread->suspend.stop_pc,
5737 ecs->event_thread, &ecs->ws, stop_chain);
5738
5739 /* Following in case break condition called a
5740 function. */
5741 stop_print_frame = 1;
5742
5743 /* This is where we handle "moribund" watchpoints. Unlike
5744 software breakpoints traps, hardware watchpoint traps are
5745 always distinguishable from random traps. If no high-level
5746 watchpoint is associated with the reported stop data address
5747 anymore, then the bpstat does not explain the signal ---
5748 simply make sure to ignore it if `stopped_by_watchpoint' is
5749 set. */
5750
5751 if (debug_infrun
5752 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5753 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5754 GDB_SIGNAL_TRAP)
5755 && stopped_by_watchpoint)
5756 fprintf_unfiltered (gdb_stdlog,
5757 "infrun: no user watchpoint explains "
5758 "watchpoint SIGTRAP, ignoring\n");
5759
5760 /* NOTE: cagney/2003-03-29: These checks for a random signal
5761 at one stage in the past included checks for an inferior
5762 function call's call dummy's return breakpoint. The original
5763 comment, that went with the test, read:
5764
5765 ``End of a stack dummy. Some systems (e.g. Sony news) give
5766 another signal besides SIGTRAP, so check here as well as
5767 above.''
5768
5769 If someone ever tries to get call dummys on a
5770 non-executable stack to work (where the target would stop
5771 with something like a SIGSEGV), then those tests might need
5772 to be re-instated. Given, however, that the tests were only
5773 enabled when momentary breakpoints were not being used, I
5774 suspect that it won't be the case.
5775
5776 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5777 be necessary for call dummies on a non-executable stack on
5778 SPARC. */
5779
5780 /* See if the breakpoints module can explain the signal. */
5781 random_signal
5782 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5783 ecs->event_thread->suspend.stop_signal);
5784
5785 /* Maybe this was a trap for a software breakpoint that has since
5786 been removed. */
5787 if (random_signal && target_stopped_by_sw_breakpoint ())
5788 {
5789 if (program_breakpoint_here_p (gdbarch,
5790 ecs->event_thread->suspend.stop_pc))
5791 {
5792 struct regcache *regcache;
5793 int decr_pc;
5794
5795 /* Re-adjust PC to what the program would see if GDB was not
5796 debugging it. */
5797 regcache = get_thread_regcache (ecs->event_thread);
5798 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5799 if (decr_pc != 0)
5800 {
5801 gdb::optional<scoped_restore_tmpl<int>>
5802 restore_operation_disable;
5803
5804 if (record_full_is_used ())
5805 restore_operation_disable.emplace
5806 (record_full_gdb_operation_disable_set ());
5807
5808 regcache_write_pc (regcache,
5809 ecs->event_thread->suspend.stop_pc + decr_pc);
5810 }
5811 }
5812 else
5813 {
5814 /* A delayed software breakpoint event. Ignore the trap. */
5815 if (debug_infrun)
5816 fprintf_unfiltered (gdb_stdlog,
5817 "infrun: delayed software breakpoint "
5818 "trap, ignoring\n");
5819 random_signal = 0;
5820 }
5821 }
5822
5823 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5824 has since been removed. */
5825 if (random_signal && target_stopped_by_hw_breakpoint ())
5826 {
5827 /* A delayed hardware breakpoint event. Ignore the trap. */
5828 if (debug_infrun)
5829 fprintf_unfiltered (gdb_stdlog,
5830 "infrun: delayed hardware breakpoint/watchpoint "
5831 "trap, ignoring\n");
5832 random_signal = 0;
5833 }
5834
5835 /* If not, perhaps stepping/nexting can. */
5836 if (random_signal)
5837 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5838 && currently_stepping (ecs->event_thread));
5839
5840 /* Perhaps the thread hit a single-step breakpoint of _another_
5841 thread. Single-step breakpoints are transparent to the
5842 breakpoints module. */
5843 if (random_signal)
5844 random_signal = !ecs->hit_singlestep_breakpoint;
5845
5846 /* No? Perhaps we got a moribund watchpoint. */
5847 if (random_signal)
5848 random_signal = !stopped_by_watchpoint;
5849
5850 /* Always stop if the user explicitly requested this thread to
5851 remain stopped. */
5852 if (ecs->event_thread->stop_requested)
5853 {
5854 random_signal = 1;
5855 if (debug_infrun)
5856 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5857 }
5858
5859 /* For the program's own signals, act according to
5860 the signal handling tables. */
5861
5862 if (random_signal)
5863 {
5864 /* Signal not for debugging purposes. */
5865 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5866 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5867
5868 if (debug_infrun)
5869 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5870 gdb_signal_to_symbol_string (stop_signal));
5871
5872 stopped_by_random_signal = 1;
5873
5874 /* Always stop on signals if we're either just gaining control
5875 of the program, or the user explicitly requested this thread
5876 to remain stopped. */
5877 if (stop_soon != NO_STOP_QUIETLY
5878 || ecs->event_thread->stop_requested
5879 || (!inf->detaching
5880 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5881 {
5882 stop_waiting (ecs);
5883 return;
5884 }
5885
5886 /* Notify observers the signal has "handle print" set. Note we
5887 returned early above if stopping; normal_stop handles the
5888 printing in that case. */
5889 if (signal_print[ecs->event_thread->suspend.stop_signal])
5890 {
5891 /* The signal table tells us to print about this signal. */
5892 target_terminal::ours_for_output ();
5893 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5894 target_terminal::inferior ();
5895 }
5896
5897 /* Clear the signal if it should not be passed. */
5898 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5899 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5900
5901 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5902 && ecs->event_thread->control.trap_expected
5903 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5904 {
5905 /* We were just starting a new sequence, attempting to
5906 single-step off of a breakpoint and expecting a SIGTRAP.
5907 Instead this signal arrives. This signal will take us out
5908 of the stepping range so GDB needs to remember to, when
5909 the signal handler returns, resume stepping off that
5910 breakpoint. */
5911 /* To simplify things, "continue" is forced to use the same
5912 code paths as single-step - set a breakpoint at the
5913 signal return address and then, once hit, step off that
5914 breakpoint. */
5915 if (debug_infrun)
5916 fprintf_unfiltered (gdb_stdlog,
5917 "infrun: signal arrived while stepping over "
5918 "breakpoint\n");
5919
5920 insert_hp_step_resume_breakpoint_at_frame (frame);
5921 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5922 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5923 ecs->event_thread->control.trap_expected = 0;
5924
5925 /* If we were nexting/stepping some other thread, switch to
5926 it, so that we don't continue it, losing control. */
5927 if (!switch_back_to_stepped_thread (ecs))
5928 keep_going (ecs);
5929 return;
5930 }
5931
5932 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5933 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5934 ecs->event_thread)
5935 || ecs->event_thread->control.step_range_end == 1)
5936 && frame_id_eq (get_stack_frame_id (frame),
5937 ecs->event_thread->control.step_stack_frame_id)
5938 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5939 {
5940 /* The inferior is about to take a signal that will take it
5941 out of the single step range. Set a breakpoint at the
5942 current PC (which is presumably where the signal handler
5943 will eventually return) and then allow the inferior to
5944 run free.
5945
5946 Note that this is only needed for a signal delivered
5947 while in the single-step range. Nested signals aren't a
5948 problem as they eventually all return. */
5949 if (debug_infrun)
5950 fprintf_unfiltered (gdb_stdlog,
5951 "infrun: signal may take us out of "
5952 "single-step range\n");
5953
5954 clear_step_over_info ();
5955 insert_hp_step_resume_breakpoint_at_frame (frame);
5956 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5957 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5958 ecs->event_thread->control.trap_expected = 0;
5959 keep_going (ecs);
5960 return;
5961 }
5962
5963 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5964 when either there's a nested signal, or when there's a
5965 pending signal enabled just as the signal handler returns
5966 (leaving the inferior at the step-resume-breakpoint without
5967 actually executing it). Either way continue until the
5968 breakpoint is really hit. */
5969
5970 if (!switch_back_to_stepped_thread (ecs))
5971 {
5972 if (debug_infrun)
5973 fprintf_unfiltered (gdb_stdlog,
5974 "infrun: random signal, keep going\n");
5975
5976 keep_going (ecs);
5977 }
5978 return;
5979 }
5980
5981 process_event_stop_test (ecs);
5982 }
5983
5984 /* Come here when we've got some debug event / signal we can explain
5985 (IOW, not a random signal), and test whether it should cause a
5986 stop, or whether we should resume the inferior (transparently).
5987 E.g., could be a breakpoint whose condition evaluates false; we
5988 could be still stepping within the line; etc. */
5989
5990 static void
5991 process_event_stop_test (struct execution_control_state *ecs)
5992 {
5993 struct symtab_and_line stop_pc_sal;
5994 struct frame_info *frame;
5995 struct gdbarch *gdbarch;
5996 CORE_ADDR jmp_buf_pc;
5997 struct bpstat_what what;
5998
5999 /* Handle cases caused by hitting a breakpoint. */
6000
6001 frame = get_current_frame ();
6002 gdbarch = get_frame_arch (frame);
6003
6004 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6005
6006 if (what.call_dummy)
6007 {
6008 stop_stack_dummy = what.call_dummy;
6009 }
6010
6011 /* A few breakpoint types have callbacks associated (e.g.,
6012 bp_jit_event). Run them now. */
6013 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6014
6015 /* If we hit an internal event that triggers symbol changes, the
6016 current frame will be invalidated within bpstat_what (e.g., if we
6017 hit an internal solib event). Re-fetch it. */
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
6020
6021 switch (what.main_action)
6022 {
6023 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6024 /* If we hit the breakpoint at longjmp while stepping, we
6025 install a momentary breakpoint at the target of the
6026 jmp_buf. */
6027
6028 if (debug_infrun)
6029 fprintf_unfiltered (gdb_stdlog,
6030 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6031
6032 ecs->event_thread->stepping_over_breakpoint = 1;
6033
6034 if (what.is_longjmp)
6035 {
6036 struct value *arg_value;
6037
6038 /* If we set the longjmp breakpoint via a SystemTap probe,
6039 then use it to extract the arguments. The destination PC
6040 is the third argument to the probe. */
6041 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6042 if (arg_value)
6043 {
6044 jmp_buf_pc = value_as_address (arg_value);
6045 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6046 }
6047 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6048 || !gdbarch_get_longjmp_target (gdbarch,
6049 frame, &jmp_buf_pc))
6050 {
6051 if (debug_infrun)
6052 fprintf_unfiltered (gdb_stdlog,
6053 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6054 "(!gdbarch_get_longjmp_target)\n");
6055 keep_going (ecs);
6056 return;
6057 }
6058
6059 /* Insert a breakpoint at resume address. */
6060 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6061 }
6062 else
6063 check_exception_resume (ecs, frame);
6064 keep_going (ecs);
6065 return;
6066
6067 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6068 {
6069 struct frame_info *init_frame;
6070
6071 /* There are several cases to consider.
6072
6073 1. The initiating frame no longer exists. In this case we
6074 must stop, because the exception or longjmp has gone too
6075 far.
6076
6077 2. The initiating frame exists, and is the same as the
6078 current frame. We stop, because the exception or longjmp
6079 has been caught.
6080
6081 3. The initiating frame exists and is different from the
6082 current frame. This means the exception or longjmp has
6083 been caught beneath the initiating frame, so keep going.
6084
6085 4. longjmp breakpoint has been placed just to protect
6086 against stale dummy frames and user is not interested in
6087 stopping around longjmps. */
6088
6089 if (debug_infrun)
6090 fprintf_unfiltered (gdb_stdlog,
6091 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6092
6093 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6094 != NULL);
6095 delete_exception_resume_breakpoint (ecs->event_thread);
6096
6097 if (what.is_longjmp)
6098 {
6099 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6100
6101 if (!frame_id_p (ecs->event_thread->initiating_frame))
6102 {
6103 /* Case 4. */
6104 keep_going (ecs);
6105 return;
6106 }
6107 }
6108
6109 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6110
6111 if (init_frame)
6112 {
6113 struct frame_id current_id
6114 = get_frame_id (get_current_frame ());
6115 if (frame_id_eq (current_id,
6116 ecs->event_thread->initiating_frame))
6117 {
6118 /* Case 2. Fall through. */
6119 }
6120 else
6121 {
6122 /* Case 3. */
6123 keep_going (ecs);
6124 return;
6125 }
6126 }
6127
6128 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6129 exists. */
6130 delete_step_resume_breakpoint (ecs->event_thread);
6131
6132 end_stepping_range (ecs);
6133 }
6134 return;
6135
6136 case BPSTAT_WHAT_SINGLE:
6137 if (debug_infrun)
6138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6139 ecs->event_thread->stepping_over_breakpoint = 1;
6140 /* Still need to check other stuff, at least the case where we
6141 are stepping and step out of the right range. */
6142 break;
6143
6144 case BPSTAT_WHAT_STEP_RESUME:
6145 if (debug_infrun)
6146 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6147
6148 delete_step_resume_breakpoint (ecs->event_thread);
6149 if (ecs->event_thread->control.proceed_to_finish
6150 && execution_direction == EXEC_REVERSE)
6151 {
6152 struct thread_info *tp = ecs->event_thread;
6153
6154 /* We are finishing a function in reverse, and just hit the
6155 step-resume breakpoint at the start address of the
6156 function, and we're almost there -- just need to back up
6157 by one more single-step, which should take us back to the
6158 function call. */
6159 tp->control.step_range_start = tp->control.step_range_end = 1;
6160 keep_going (ecs);
6161 return;
6162 }
6163 fill_in_stop_func (gdbarch, ecs);
6164 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6165 && execution_direction == EXEC_REVERSE)
6166 {
6167 /* We are stepping over a function call in reverse, and just
6168 hit the step-resume breakpoint at the start address of
6169 the function. Go back to single-stepping, which should
6170 take us back to the function call. */
6171 ecs->event_thread->stepping_over_breakpoint = 1;
6172 keep_going (ecs);
6173 return;
6174 }
6175 break;
6176
6177 case BPSTAT_WHAT_STOP_NOISY:
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6180 stop_print_frame = 1;
6181
6182 /* Assume the thread stopped for a breapoint. We'll still check
6183 whether a/the breakpoint is there when the thread is next
6184 resumed. */
6185 ecs->event_thread->stepping_over_breakpoint = 1;
6186
6187 stop_waiting (ecs);
6188 return;
6189
6190 case BPSTAT_WHAT_STOP_SILENT:
6191 if (debug_infrun)
6192 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6193 stop_print_frame = 0;
6194
6195 /* Assume the thread stopped for a breapoint. We'll still check
6196 whether a/the breakpoint is there when the thread is next
6197 resumed. */
6198 ecs->event_thread->stepping_over_breakpoint = 1;
6199 stop_waiting (ecs);
6200 return;
6201
6202 case BPSTAT_WHAT_HP_STEP_RESUME:
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6205
6206 delete_step_resume_breakpoint (ecs->event_thread);
6207 if (ecs->event_thread->step_after_step_resume_breakpoint)
6208 {
6209 /* Back when the step-resume breakpoint was inserted, we
6210 were trying to single-step off a breakpoint. Go back to
6211 doing that. */
6212 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6213 ecs->event_thread->stepping_over_breakpoint = 1;
6214 keep_going (ecs);
6215 return;
6216 }
6217 break;
6218
6219 case BPSTAT_WHAT_KEEP_CHECKING:
6220 break;
6221 }
6222
6223 /* If we stepped a permanent breakpoint and we had a high priority
6224 step-resume breakpoint for the address we stepped, but we didn't
6225 hit it, then we must have stepped into the signal handler. The
6226 step-resume was only necessary to catch the case of _not_
6227 stepping into the handler, so delete it, and fall through to
6228 checking whether the step finished. */
6229 if (ecs->event_thread->stepped_breakpoint)
6230 {
6231 struct breakpoint *sr_bp
6232 = ecs->event_thread->control.step_resume_breakpoint;
6233
6234 if (sr_bp != NULL
6235 && sr_bp->loc->permanent
6236 && sr_bp->type == bp_hp_step_resume
6237 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: stepped permanent breakpoint, stopped in "
6242 "handler\n");
6243 delete_step_resume_breakpoint (ecs->event_thread);
6244 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6245 }
6246 }
6247
6248 /* We come here if we hit a breakpoint but should not stop for it.
6249 Possibly we also were stepping and should stop for that. So fall
6250 through and test for stepping. But, if not stepping, do not
6251 stop. */
6252
6253 /* In all-stop mode, if we're currently stepping but have stopped in
6254 some other thread, we need to switch back to the stepped thread. */
6255 if (switch_back_to_stepped_thread (ecs))
6256 return;
6257
6258 if (ecs->event_thread->control.step_resume_breakpoint)
6259 {
6260 if (debug_infrun)
6261 fprintf_unfiltered (gdb_stdlog,
6262 "infrun: step-resume breakpoint is inserted\n");
6263
6264 /* Having a step-resume breakpoint overrides anything
6265 else having to do with stepping commands until
6266 that breakpoint is reached. */
6267 keep_going (ecs);
6268 return;
6269 }
6270
6271 if (ecs->event_thread->control.step_range_end == 0)
6272 {
6273 if (debug_infrun)
6274 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6275 /* Likewise if we aren't even stepping. */
6276 keep_going (ecs);
6277 return;
6278 }
6279
6280 /* Re-fetch current thread's frame in case the code above caused
6281 the frame cache to be re-initialized, making our FRAME variable
6282 a dangling pointer. */
6283 frame = get_current_frame ();
6284 gdbarch = get_frame_arch (frame);
6285 fill_in_stop_func (gdbarch, ecs);
6286
6287 /* If stepping through a line, keep going if still within it.
6288
6289 Note that step_range_end is the address of the first instruction
6290 beyond the step range, and NOT the address of the last instruction
6291 within it!
6292
6293 Note also that during reverse execution, we may be stepping
6294 through a function epilogue and therefore must detect when
6295 the current-frame changes in the middle of a line. */
6296
6297 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6298 ecs->event_thread)
6299 && (execution_direction != EXEC_REVERSE
6300 || frame_id_eq (get_frame_id (frame),
6301 ecs->event_thread->control.step_frame_id)))
6302 {
6303 if (debug_infrun)
6304 fprintf_unfiltered
6305 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6306 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6307 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6308
6309 /* Tentatively re-enable range stepping; `resume' disables it if
6310 necessary (e.g., if we're stepping over a breakpoint or we
6311 have software watchpoints). */
6312 ecs->event_thread->control.may_range_step = 1;
6313
6314 /* When stepping backward, stop at beginning of line range
6315 (unless it's the function entry point, in which case
6316 keep going back to the call point). */
6317 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6318 if (stop_pc == ecs->event_thread->control.step_range_start
6319 && stop_pc != ecs->stop_func_start
6320 && execution_direction == EXEC_REVERSE)
6321 end_stepping_range (ecs);
6322 else
6323 keep_going (ecs);
6324
6325 return;
6326 }
6327
6328 /* We stepped out of the stepping range. */
6329
6330 /* If we are stepping at the source level and entered the runtime
6331 loader dynamic symbol resolution code...
6332
6333 EXEC_FORWARD: we keep on single stepping until we exit the run
6334 time loader code and reach the callee's address.
6335
6336 EXEC_REVERSE: we've already executed the callee (backward), and
6337 the runtime loader code is handled just like any other
6338 undebuggable function call. Now we need only keep stepping
6339 backward through the trampoline code, and that's handled further
6340 down, so there is nothing for us to do here. */
6341
6342 if (execution_direction != EXEC_REVERSE
6343 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6344 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6345 {
6346 CORE_ADDR pc_after_resolver =
6347 gdbarch_skip_solib_resolver (gdbarch,
6348 ecs->event_thread->suspend.stop_pc);
6349
6350 if (debug_infrun)
6351 fprintf_unfiltered (gdb_stdlog,
6352 "infrun: stepped into dynsym resolve code\n");
6353
6354 if (pc_after_resolver)
6355 {
6356 /* Set up a step-resume breakpoint at the address
6357 indicated by SKIP_SOLIB_RESOLVER. */
6358 symtab_and_line sr_sal;
6359 sr_sal.pc = pc_after_resolver;
6360 sr_sal.pspace = get_frame_program_space (frame);
6361
6362 insert_step_resume_breakpoint_at_sal (gdbarch,
6363 sr_sal, null_frame_id);
6364 }
6365
6366 keep_going (ecs);
6367 return;
6368 }
6369
6370 /* Step through an indirect branch thunk. */
6371 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6372 && gdbarch_in_indirect_branch_thunk (gdbarch,
6373 ecs->event_thread->suspend.stop_pc))
6374 {
6375 if (debug_infrun)
6376 fprintf_unfiltered (gdb_stdlog,
6377 "infrun: stepped into indirect branch thunk\n");
6378 keep_going (ecs);
6379 return;
6380 }
6381
6382 if (ecs->event_thread->control.step_range_end != 1
6383 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6384 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6385 && get_frame_type (frame) == SIGTRAMP_FRAME)
6386 {
6387 if (debug_infrun)
6388 fprintf_unfiltered (gdb_stdlog,
6389 "infrun: stepped into signal trampoline\n");
6390 /* The inferior, while doing a "step" or "next", has ended up in
6391 a signal trampoline (either by a signal being delivered or by
6392 the signal handler returning). Just single-step until the
6393 inferior leaves the trampoline (either by calling the handler
6394 or returning). */
6395 keep_going (ecs);
6396 return;
6397 }
6398
6399 /* If we're in the return path from a shared library trampoline,
6400 we want to proceed through the trampoline when stepping. */
6401 /* macro/2012-04-25: This needs to come before the subroutine
6402 call check below as on some targets return trampolines look
6403 like subroutine calls (MIPS16 return thunks). */
6404 if (gdbarch_in_solib_return_trampoline (gdbarch,
6405 ecs->event_thread->suspend.stop_pc,
6406 ecs->stop_func_name)
6407 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6408 {
6409 /* Determine where this trampoline returns. */
6410 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6411 CORE_ADDR real_stop_pc
6412 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6413
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog,
6416 "infrun: stepped into solib return tramp\n");
6417
6418 /* Only proceed through if we know where it's going. */
6419 if (real_stop_pc)
6420 {
6421 /* And put the step-breakpoint there and go until there. */
6422 symtab_and_line sr_sal;
6423 sr_sal.pc = real_stop_pc;
6424 sr_sal.section = find_pc_overlay (sr_sal.pc);
6425 sr_sal.pspace = get_frame_program_space (frame);
6426
6427 /* Do not specify what the fp should be when we stop since
6428 on some machines the prologue is where the new fp value
6429 is established. */
6430 insert_step_resume_breakpoint_at_sal (gdbarch,
6431 sr_sal, null_frame_id);
6432
6433 /* Restart without fiddling with the step ranges or
6434 other state. */
6435 keep_going (ecs);
6436 return;
6437 }
6438 }
6439
6440 /* Check for subroutine calls. The check for the current frame
6441 equalling the step ID is not necessary - the check of the
6442 previous frame's ID is sufficient - but it is a common case and
6443 cheaper than checking the previous frame's ID.
6444
6445 NOTE: frame_id_eq will never report two invalid frame IDs as
6446 being equal, so to get into this block, both the current and
6447 previous frame must have valid frame IDs. */
6448 /* The outer_frame_id check is a heuristic to detect stepping
6449 through startup code. If we step over an instruction which
6450 sets the stack pointer from an invalid value to a valid value,
6451 we may detect that as a subroutine call from the mythical
6452 "outermost" function. This could be fixed by marking
6453 outermost frames as !stack_p,code_p,special_p. Then the
6454 initial outermost frame, before sp was valid, would
6455 have code_addr == &_start. See the comment in frame_id_eq
6456 for more. */
6457 if (!frame_id_eq (get_stack_frame_id (frame),
6458 ecs->event_thread->control.step_stack_frame_id)
6459 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6460 ecs->event_thread->control.step_stack_frame_id)
6461 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6462 outer_frame_id)
6463 || (ecs->event_thread->control.step_start_function
6464 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6465 {
6466 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6467 CORE_ADDR real_stop_pc;
6468
6469 if (debug_infrun)
6470 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6471
6472 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6473 {
6474 /* I presume that step_over_calls is only 0 when we're
6475 supposed to be stepping at the assembly language level
6476 ("stepi"). Just stop. */
6477 /* And this works the same backward as frontward. MVS */
6478 end_stepping_range (ecs);
6479 return;
6480 }
6481
6482 /* Reverse stepping through solib trampolines. */
6483
6484 if (execution_direction == EXEC_REVERSE
6485 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6486 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6487 || (ecs->stop_func_start == 0
6488 && in_solib_dynsym_resolve_code (stop_pc))))
6489 {
6490 /* Any solib trampoline code can be handled in reverse
6491 by simply continuing to single-step. We have already
6492 executed the solib function (backwards), and a few
6493 steps will take us back through the trampoline to the
6494 caller. */
6495 keep_going (ecs);
6496 return;
6497 }
6498
6499 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6500 {
6501 /* We're doing a "next".
6502
6503 Normal (forward) execution: set a breakpoint at the
6504 callee's return address (the address at which the caller
6505 will resume).
6506
6507 Reverse (backward) execution. set the step-resume
6508 breakpoint at the start of the function that we just
6509 stepped into (backwards), and continue to there. When we
6510 get there, we'll need to single-step back to the caller. */
6511
6512 if (execution_direction == EXEC_REVERSE)
6513 {
6514 /* If we're already at the start of the function, we've either
6515 just stepped backward into a single instruction function,
6516 or stepped back out of a signal handler to the first instruction
6517 of the function. Just keep going, which will single-step back
6518 to the caller. */
6519 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6520 {
6521 /* Normal function call return (static or dynamic). */
6522 symtab_and_line sr_sal;
6523 sr_sal.pc = ecs->stop_func_start;
6524 sr_sal.pspace = get_frame_program_space (frame);
6525 insert_step_resume_breakpoint_at_sal (gdbarch,
6526 sr_sal, null_frame_id);
6527 }
6528 }
6529 else
6530 insert_step_resume_breakpoint_at_caller (frame);
6531
6532 keep_going (ecs);
6533 return;
6534 }
6535
6536 /* If we are in a function call trampoline (a stub between the
6537 calling routine and the real function), locate the real
6538 function. That's what tells us (a) whether we want to step
6539 into it at all, and (b) what prologue we want to run to the
6540 end of, if we do step into it. */
6541 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6542 if (real_stop_pc == 0)
6543 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6544 if (real_stop_pc != 0)
6545 ecs->stop_func_start = real_stop_pc;
6546
6547 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6548 {
6549 symtab_and_line sr_sal;
6550 sr_sal.pc = ecs->stop_func_start;
6551 sr_sal.pspace = get_frame_program_space (frame);
6552
6553 insert_step_resume_breakpoint_at_sal (gdbarch,
6554 sr_sal, null_frame_id);
6555 keep_going (ecs);
6556 return;
6557 }
6558
6559 /* If we have line number information for the function we are
6560 thinking of stepping into and the function isn't on the skip
6561 list, step into it.
6562
6563 If there are several symtabs at that PC (e.g. with include
6564 files), just want to know whether *any* of them have line
6565 numbers. find_pc_line handles this. */
6566 {
6567 struct symtab_and_line tmp_sal;
6568
6569 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6570 if (tmp_sal.line != 0
6571 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6572 tmp_sal)
6573 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6574 {
6575 if (execution_direction == EXEC_REVERSE)
6576 handle_step_into_function_backward (gdbarch, ecs);
6577 else
6578 handle_step_into_function (gdbarch, ecs);
6579 return;
6580 }
6581 }
6582
6583 /* If we have no line number and the step-stop-if-no-debug is
6584 set, we stop the step so that the user has a chance to switch
6585 in assembly mode. */
6586 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6587 && step_stop_if_no_debug)
6588 {
6589 end_stepping_range (ecs);
6590 return;
6591 }
6592
6593 if (execution_direction == EXEC_REVERSE)
6594 {
6595 /* If we're already at the start of the function, we've either just
6596 stepped backward into a single instruction function without line
6597 number info, or stepped back out of a signal handler to the first
6598 instruction of the function without line number info. Just keep
6599 going, which will single-step back to the caller. */
6600 if (ecs->stop_func_start != stop_pc)
6601 {
6602 /* Set a breakpoint at callee's start address.
6603 From there we can step once and be back in the caller. */
6604 symtab_and_line sr_sal;
6605 sr_sal.pc = ecs->stop_func_start;
6606 sr_sal.pspace = get_frame_program_space (frame);
6607 insert_step_resume_breakpoint_at_sal (gdbarch,
6608 sr_sal, null_frame_id);
6609 }
6610 }
6611 else
6612 /* Set a breakpoint at callee's return address (the address
6613 at which the caller will resume). */
6614 insert_step_resume_breakpoint_at_caller (frame);
6615
6616 keep_going (ecs);
6617 return;
6618 }
6619
6620 /* Reverse stepping through solib trampolines. */
6621
6622 if (execution_direction == EXEC_REVERSE
6623 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6624 {
6625 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6626
6627 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6628 || (ecs->stop_func_start == 0
6629 && in_solib_dynsym_resolve_code (stop_pc)))
6630 {
6631 /* Any solib trampoline code can be handled in reverse
6632 by simply continuing to single-step. We have already
6633 executed the solib function (backwards), and a few
6634 steps will take us back through the trampoline to the
6635 caller. */
6636 keep_going (ecs);
6637 return;
6638 }
6639 else if (in_solib_dynsym_resolve_code (stop_pc))
6640 {
6641 /* Stepped backward into the solib dynsym resolver.
6642 Set a breakpoint at its start and continue, then
6643 one more step will take us out. */
6644 symtab_and_line sr_sal;
6645 sr_sal.pc = ecs->stop_func_start;
6646 sr_sal.pspace = get_frame_program_space (frame);
6647 insert_step_resume_breakpoint_at_sal (gdbarch,
6648 sr_sal, null_frame_id);
6649 keep_going (ecs);
6650 return;
6651 }
6652 }
6653
6654 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6655
6656 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6657 the trampoline processing logic, however, there are some trampolines
6658 that have no names, so we should do trampoline handling first. */
6659 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6660 && ecs->stop_func_name == NULL
6661 && stop_pc_sal.line == 0)
6662 {
6663 if (debug_infrun)
6664 fprintf_unfiltered (gdb_stdlog,
6665 "infrun: stepped into undebuggable function\n");
6666
6667 /* The inferior just stepped into, or returned to, an
6668 undebuggable function (where there is no debugging information
6669 and no line number corresponding to the address where the
6670 inferior stopped). Since we want to skip this kind of code,
6671 we keep going until the inferior returns from this
6672 function - unless the user has asked us not to (via
6673 set step-mode) or we no longer know how to get back
6674 to the call site. */
6675 if (step_stop_if_no_debug
6676 || !frame_id_p (frame_unwind_caller_id (frame)))
6677 {
6678 /* If we have no line number and the step-stop-if-no-debug
6679 is set, we stop the step so that the user has a chance to
6680 switch in assembly mode. */
6681 end_stepping_range (ecs);
6682 return;
6683 }
6684 else
6685 {
6686 /* Set a breakpoint at callee's return address (the address
6687 at which the caller will resume). */
6688 insert_step_resume_breakpoint_at_caller (frame);
6689 keep_going (ecs);
6690 return;
6691 }
6692 }
6693
6694 if (ecs->event_thread->control.step_range_end == 1)
6695 {
6696 /* It is stepi or nexti. We always want to stop stepping after
6697 one instruction. */
6698 if (debug_infrun)
6699 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6700 end_stepping_range (ecs);
6701 return;
6702 }
6703
6704 if (stop_pc_sal.line == 0)
6705 {
6706 /* We have no line number information. That means to stop
6707 stepping (does this always happen right after one instruction,
6708 when we do "s" in a function with no line numbers,
6709 or can this happen as a result of a return or longjmp?). */
6710 if (debug_infrun)
6711 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6712 end_stepping_range (ecs);
6713 return;
6714 }
6715
6716 /* Look for "calls" to inlined functions, part one. If the inline
6717 frame machinery detected some skipped call sites, we have entered
6718 a new inline function. */
6719
6720 if (frame_id_eq (get_frame_id (get_current_frame ()),
6721 ecs->event_thread->control.step_frame_id)
6722 && inline_skipped_frames (ecs->event_thread))
6723 {
6724 if (debug_infrun)
6725 fprintf_unfiltered (gdb_stdlog,
6726 "infrun: stepped into inlined function\n");
6727
6728 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6729
6730 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6731 {
6732 /* For "step", we're going to stop. But if the call site
6733 for this inlined function is on the same source line as
6734 we were previously stepping, go down into the function
6735 first. Otherwise stop at the call site. */
6736
6737 if (call_sal.line == ecs->event_thread->current_line
6738 && call_sal.symtab == ecs->event_thread->current_symtab)
6739 {
6740 step_into_inline_frame (ecs->event_thread);
6741 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6742 {
6743 keep_going (ecs);
6744 return;
6745 }
6746 }
6747
6748 end_stepping_range (ecs);
6749 return;
6750 }
6751 else
6752 {
6753 /* For "next", we should stop at the call site if it is on a
6754 different source line. Otherwise continue through the
6755 inlined function. */
6756 if (call_sal.line == ecs->event_thread->current_line
6757 && call_sal.symtab == ecs->event_thread->current_symtab)
6758 keep_going (ecs);
6759 else
6760 end_stepping_range (ecs);
6761 return;
6762 }
6763 }
6764
6765 /* Look for "calls" to inlined functions, part two. If we are still
6766 in the same real function we were stepping through, but we have
6767 to go further up to find the exact frame ID, we are stepping
6768 through a more inlined call beyond its call site. */
6769
6770 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6771 && !frame_id_eq (get_frame_id (get_current_frame ()),
6772 ecs->event_thread->control.step_frame_id)
6773 && stepped_in_from (get_current_frame (),
6774 ecs->event_thread->control.step_frame_id))
6775 {
6776 if (debug_infrun)
6777 fprintf_unfiltered (gdb_stdlog,
6778 "infrun: stepping through inlined function\n");
6779
6780 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6781 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
6782 keep_going (ecs);
6783 else
6784 end_stepping_range (ecs);
6785 return;
6786 }
6787
6788 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6789 && (ecs->event_thread->current_line != stop_pc_sal.line
6790 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6791 {
6792 /* We are at the start of a different line. So stop. Note that
6793 we don't stop if we step into the middle of a different line.
6794 That is said to make things like for (;;) statements work
6795 better. */
6796 if (debug_infrun)
6797 fprintf_unfiltered (gdb_stdlog,
6798 "infrun: stepped to a different line\n");
6799 end_stepping_range (ecs);
6800 return;
6801 }
6802
6803 /* We aren't done stepping.
6804
6805 Optimize by setting the stepping range to the line.
6806 (We might not be in the original line, but if we entered a
6807 new line in mid-statement, we continue stepping. This makes
6808 things like for(;;) statements work better.) */
6809
6810 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6811 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6812 ecs->event_thread->control.may_range_step = 1;
6813 set_step_info (frame, stop_pc_sal);
6814
6815 if (debug_infrun)
6816 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6817 keep_going (ecs);
6818 }
6819
6820 /* In all-stop mode, if we're currently stepping but have stopped in
6821 some other thread, we may need to switch back to the stepped
6822 thread. Returns true we set the inferior running, false if we left
6823 it stopped (and the event needs further processing). */
6824
6825 static int
6826 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6827 {
6828 if (!target_is_non_stop_p ())
6829 {
6830 struct thread_info *stepping_thread;
6831
6832 /* If any thread is blocked on some internal breakpoint, and we
6833 simply need to step over that breakpoint to get it going
6834 again, do that first. */
6835
6836 /* However, if we see an event for the stepping thread, then we
6837 know all other threads have been moved past their breakpoints
6838 already. Let the caller check whether the step is finished,
6839 etc., before deciding to move it past a breakpoint. */
6840 if (ecs->event_thread->control.step_range_end != 0)
6841 return 0;
6842
6843 /* Check if the current thread is blocked on an incomplete
6844 step-over, interrupted by a random signal. */
6845 if (ecs->event_thread->control.trap_expected
6846 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6847 {
6848 if (debug_infrun)
6849 {
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: need to finish step-over of [%s]\n",
6852 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6853 }
6854 keep_going (ecs);
6855 return 1;
6856 }
6857
6858 /* Check if the current thread is blocked by a single-step
6859 breakpoint of another thread. */
6860 if (ecs->hit_singlestep_breakpoint)
6861 {
6862 if (debug_infrun)
6863 {
6864 fprintf_unfiltered (gdb_stdlog,
6865 "infrun: need to step [%s] over single-step "
6866 "breakpoint\n",
6867 target_pid_to_str (ecs->ptid).c_str ());
6868 }
6869 keep_going (ecs);
6870 return 1;
6871 }
6872
6873 /* If this thread needs yet another step-over (e.g., stepping
6874 through a delay slot), do it first before moving on to
6875 another thread. */
6876 if (thread_still_needs_step_over (ecs->event_thread))
6877 {
6878 if (debug_infrun)
6879 {
6880 fprintf_unfiltered (gdb_stdlog,
6881 "infrun: thread [%s] still needs step-over\n",
6882 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6883 }
6884 keep_going (ecs);
6885 return 1;
6886 }
6887
6888 /* If scheduler locking applies even if not stepping, there's no
6889 need to walk over threads. Above we've checked whether the
6890 current thread is stepping. If some other thread not the
6891 event thread is stepping, then it must be that scheduler
6892 locking is not in effect. */
6893 if (schedlock_applies (ecs->event_thread))
6894 return 0;
6895
6896 /* Otherwise, we no longer expect a trap in the current thread.
6897 Clear the trap_expected flag before switching back -- this is
6898 what keep_going does as well, if we call it. */
6899 ecs->event_thread->control.trap_expected = 0;
6900
6901 /* Likewise, clear the signal if it should not be passed. */
6902 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6903 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6904
6905 /* Do all pending step-overs before actually proceeding with
6906 step/next/etc. */
6907 if (start_step_over ())
6908 {
6909 prepare_to_wait (ecs);
6910 return 1;
6911 }
6912
6913 /* Look for the stepping/nexting thread. */
6914 stepping_thread = NULL;
6915
6916 for (thread_info *tp : all_non_exited_threads ())
6917 {
6918 /* Ignore threads of processes the caller is not
6919 resuming. */
6920 if (!sched_multi
6921 && tp->ptid.pid () != ecs->ptid.pid ())
6922 continue;
6923
6924 /* When stepping over a breakpoint, we lock all threads
6925 except the one that needs to move past the breakpoint.
6926 If a non-event thread has this set, the "incomplete
6927 step-over" check above should have caught it earlier. */
6928 if (tp->control.trap_expected)
6929 {
6930 internal_error (__FILE__, __LINE__,
6931 "[%s] has inconsistent state: "
6932 "trap_expected=%d\n",
6933 target_pid_to_str (tp->ptid).c_str (),
6934 tp->control.trap_expected);
6935 }
6936
6937 /* Did we find the stepping thread? */
6938 if (tp->control.step_range_end)
6939 {
6940 /* Yep. There should only one though. */
6941 gdb_assert (stepping_thread == NULL);
6942
6943 /* The event thread is handled at the top, before we
6944 enter this loop. */
6945 gdb_assert (tp != ecs->event_thread);
6946
6947 /* If some thread other than the event thread is
6948 stepping, then scheduler locking can't be in effect,
6949 otherwise we wouldn't have resumed the current event
6950 thread in the first place. */
6951 gdb_assert (!schedlock_applies (tp));
6952
6953 stepping_thread = tp;
6954 }
6955 }
6956
6957 if (stepping_thread != NULL)
6958 {
6959 if (debug_infrun)
6960 fprintf_unfiltered (gdb_stdlog,
6961 "infrun: switching back to stepped thread\n");
6962
6963 if (keep_going_stepped_thread (stepping_thread))
6964 {
6965 prepare_to_wait (ecs);
6966 return 1;
6967 }
6968 }
6969 }
6970
6971 return 0;
6972 }
6973
6974 /* Set a previously stepped thread back to stepping. Returns true on
6975 success, false if the resume is not possible (e.g., the thread
6976 vanished). */
6977
6978 static int
6979 keep_going_stepped_thread (struct thread_info *tp)
6980 {
6981 struct frame_info *frame;
6982 struct execution_control_state ecss;
6983 struct execution_control_state *ecs = &ecss;
6984
6985 /* If the stepping thread exited, then don't try to switch back and
6986 resume it, which could fail in several different ways depending
6987 on the target. Instead, just keep going.
6988
6989 We can find a stepping dead thread in the thread list in two
6990 cases:
6991
6992 - The target supports thread exit events, and when the target
6993 tries to delete the thread from the thread list, inferior_ptid
6994 pointed at the exiting thread. In such case, calling
6995 delete_thread does not really remove the thread from the list;
6996 instead, the thread is left listed, with 'exited' state.
6997
6998 - The target's debug interface does not support thread exit
6999 events, and so we have no idea whatsoever if the previously
7000 stepping thread is still alive. For that reason, we need to
7001 synchronously query the target now. */
7002
7003 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7004 {
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: not resuming previously "
7008 "stepped thread, it has vanished\n");
7009
7010 delete_thread (tp);
7011 return 0;
7012 }
7013
7014 if (debug_infrun)
7015 fprintf_unfiltered (gdb_stdlog,
7016 "infrun: resuming previously stepped thread\n");
7017
7018 reset_ecs (ecs, tp);
7019 switch_to_thread (tp);
7020
7021 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7022 frame = get_current_frame ();
7023
7024 /* If the PC of the thread we were trying to single-step has
7025 changed, then that thread has trapped or been signaled, but the
7026 event has not been reported to GDB yet. Re-poll the target
7027 looking for this particular thread's event (i.e. temporarily
7028 enable schedlock) by:
7029
7030 - setting a break at the current PC
7031 - resuming that particular thread, only (by setting trap
7032 expected)
7033
7034 This prevents us continuously moving the single-step breakpoint
7035 forward, one instruction at a time, overstepping. */
7036
7037 if (tp->suspend.stop_pc != tp->prev_pc)
7038 {
7039 ptid_t resume_ptid;
7040
7041 if (debug_infrun)
7042 fprintf_unfiltered (gdb_stdlog,
7043 "infrun: expected thread advanced also (%s -> %s)\n",
7044 paddress (target_gdbarch (), tp->prev_pc),
7045 paddress (target_gdbarch (), tp->suspend.stop_pc));
7046
7047 /* Clear the info of the previous step-over, as it's no longer
7048 valid (if the thread was trying to step over a breakpoint, it
7049 has already succeeded). It's what keep_going would do too,
7050 if we called it. Do this before trying to insert the sss
7051 breakpoint, otherwise if we were previously trying to step
7052 over this exact address in another thread, the breakpoint is
7053 skipped. */
7054 clear_step_over_info ();
7055 tp->control.trap_expected = 0;
7056
7057 insert_single_step_breakpoint (get_frame_arch (frame),
7058 get_frame_address_space (frame),
7059 tp->suspend.stop_pc);
7060
7061 tp->resumed = 1;
7062 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7063 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7064 }
7065 else
7066 {
7067 if (debug_infrun)
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: expected thread still hasn't advanced\n");
7070
7071 keep_going_pass_signal (ecs);
7072 }
7073 return 1;
7074 }
7075
7076 /* Is thread TP in the middle of (software or hardware)
7077 single-stepping? (Note the result of this function must never be
7078 passed directly as target_resume's STEP parameter.) */
7079
7080 static int
7081 currently_stepping (struct thread_info *tp)
7082 {
7083 return ((tp->control.step_range_end
7084 && tp->control.step_resume_breakpoint == NULL)
7085 || tp->control.trap_expected
7086 || tp->stepped_breakpoint
7087 || bpstat_should_step ());
7088 }
7089
7090 /* Inferior has stepped into a subroutine call with source code that
7091 we should not step over. Do step to the first line of code in
7092 it. */
7093
7094 static void
7095 handle_step_into_function (struct gdbarch *gdbarch,
7096 struct execution_control_state *ecs)
7097 {
7098 fill_in_stop_func (gdbarch, ecs);
7099
7100 compunit_symtab *cust
7101 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7102 if (cust != NULL && compunit_language (cust) != language_asm)
7103 ecs->stop_func_start
7104 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7105
7106 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7107 /* Use the step_resume_break to step until the end of the prologue,
7108 even if that involves jumps (as it seems to on the vax under
7109 4.2). */
7110 /* If the prologue ends in the middle of a source line, continue to
7111 the end of that source line (if it is still within the function).
7112 Otherwise, just go to end of prologue. */
7113 if (stop_func_sal.end
7114 && stop_func_sal.pc != ecs->stop_func_start
7115 && stop_func_sal.end < ecs->stop_func_end)
7116 ecs->stop_func_start = stop_func_sal.end;
7117
7118 /* Architectures which require breakpoint adjustment might not be able
7119 to place a breakpoint at the computed address. If so, the test
7120 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7121 ecs->stop_func_start to an address at which a breakpoint may be
7122 legitimately placed.
7123
7124 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7125 made, GDB will enter an infinite loop when stepping through
7126 optimized code consisting of VLIW instructions which contain
7127 subinstructions corresponding to different source lines. On
7128 FR-V, it's not permitted to place a breakpoint on any but the
7129 first subinstruction of a VLIW instruction. When a breakpoint is
7130 set, GDB will adjust the breakpoint address to the beginning of
7131 the VLIW instruction. Thus, we need to make the corresponding
7132 adjustment here when computing the stop address. */
7133
7134 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7135 {
7136 ecs->stop_func_start
7137 = gdbarch_adjust_breakpoint_address (gdbarch,
7138 ecs->stop_func_start);
7139 }
7140
7141 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7142 {
7143 /* We are already there: stop now. */
7144 end_stepping_range (ecs);
7145 return;
7146 }
7147 else
7148 {
7149 /* Put the step-breakpoint there and go until there. */
7150 symtab_and_line sr_sal;
7151 sr_sal.pc = ecs->stop_func_start;
7152 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7153 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7154
7155 /* Do not specify what the fp should be when we stop since on
7156 some machines the prologue is where the new fp value is
7157 established. */
7158 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7159
7160 /* And make sure stepping stops right away then. */
7161 ecs->event_thread->control.step_range_end
7162 = ecs->event_thread->control.step_range_start;
7163 }
7164 keep_going (ecs);
7165 }
7166
7167 /* Inferior has stepped backward into a subroutine call with source
7168 code that we should not step over. Do step to the beginning of the
7169 last line of code in it. */
7170
7171 static void
7172 handle_step_into_function_backward (struct gdbarch *gdbarch,
7173 struct execution_control_state *ecs)
7174 {
7175 struct compunit_symtab *cust;
7176 struct symtab_and_line stop_func_sal;
7177
7178 fill_in_stop_func (gdbarch, ecs);
7179
7180 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7181 if (cust != NULL && compunit_language (cust) != language_asm)
7182 ecs->stop_func_start
7183 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7184
7185 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7186
7187 /* OK, we're just going to keep stepping here. */
7188 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7189 {
7190 /* We're there already. Just stop stepping now. */
7191 end_stepping_range (ecs);
7192 }
7193 else
7194 {
7195 /* Else just reset the step range and keep going.
7196 No step-resume breakpoint, they don't work for
7197 epilogues, which can have multiple entry paths. */
7198 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7199 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7200 keep_going (ecs);
7201 }
7202 return;
7203 }
7204
7205 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7206 This is used to both functions and to skip over code. */
7207
7208 static void
7209 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7210 struct symtab_and_line sr_sal,
7211 struct frame_id sr_id,
7212 enum bptype sr_type)
7213 {
7214 /* There should never be more than one step-resume or longjmp-resume
7215 breakpoint per thread, so we should never be setting a new
7216 step_resume_breakpoint when one is already active. */
7217 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7218 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7219
7220 if (debug_infrun)
7221 fprintf_unfiltered (gdb_stdlog,
7222 "infrun: inserting step-resume breakpoint at %s\n",
7223 paddress (gdbarch, sr_sal.pc));
7224
7225 inferior_thread ()->control.step_resume_breakpoint
7226 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7227 }
7228
7229 void
7230 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7231 struct symtab_and_line sr_sal,
7232 struct frame_id sr_id)
7233 {
7234 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7235 sr_sal, sr_id,
7236 bp_step_resume);
7237 }
7238
7239 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7240 This is used to skip a potential signal handler.
7241
7242 This is called with the interrupted function's frame. The signal
7243 handler, when it returns, will resume the interrupted function at
7244 RETURN_FRAME.pc. */
7245
7246 static void
7247 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7248 {
7249 gdb_assert (return_frame != NULL);
7250
7251 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7252
7253 symtab_and_line sr_sal;
7254 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7255 sr_sal.section = find_pc_overlay (sr_sal.pc);
7256 sr_sal.pspace = get_frame_program_space (return_frame);
7257
7258 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7259 get_stack_frame_id (return_frame),
7260 bp_hp_step_resume);
7261 }
7262
7263 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7264 is used to skip a function after stepping into it (for "next" or if
7265 the called function has no debugging information).
7266
7267 The current function has almost always been reached by single
7268 stepping a call or return instruction. NEXT_FRAME belongs to the
7269 current function, and the breakpoint will be set at the caller's
7270 resume address.
7271
7272 This is a separate function rather than reusing
7273 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7274 get_prev_frame, which may stop prematurely (see the implementation
7275 of frame_unwind_caller_id for an example). */
7276
7277 static void
7278 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7279 {
7280 /* We shouldn't have gotten here if we don't know where the call site
7281 is. */
7282 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7283
7284 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7285
7286 symtab_and_line sr_sal;
7287 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7288 frame_unwind_caller_pc (next_frame));
7289 sr_sal.section = find_pc_overlay (sr_sal.pc);
7290 sr_sal.pspace = frame_unwind_program_space (next_frame);
7291
7292 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7293 frame_unwind_caller_id (next_frame));
7294 }
7295
7296 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7297 new breakpoint at the target of a jmp_buf. The handling of
7298 longjmp-resume uses the same mechanisms used for handling
7299 "step-resume" breakpoints. */
7300
7301 static void
7302 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7303 {
7304 /* There should never be more than one longjmp-resume breakpoint per
7305 thread, so we should never be setting a new
7306 longjmp_resume_breakpoint when one is already active. */
7307 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7308
7309 if (debug_infrun)
7310 fprintf_unfiltered (gdb_stdlog,
7311 "infrun: inserting longjmp-resume breakpoint at %s\n",
7312 paddress (gdbarch, pc));
7313
7314 inferior_thread ()->control.exception_resume_breakpoint =
7315 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7316 }
7317
7318 /* Insert an exception resume breakpoint. TP is the thread throwing
7319 the exception. The block B is the block of the unwinder debug hook
7320 function. FRAME is the frame corresponding to the call to this
7321 function. SYM is the symbol of the function argument holding the
7322 target PC of the exception. */
7323
7324 static void
7325 insert_exception_resume_breakpoint (struct thread_info *tp,
7326 const struct block *b,
7327 struct frame_info *frame,
7328 struct symbol *sym)
7329 {
7330 try
7331 {
7332 struct block_symbol vsym;
7333 struct value *value;
7334 CORE_ADDR handler;
7335 struct breakpoint *bp;
7336
7337 vsym = lookup_symbol_search_name (sym->search_name (),
7338 b, VAR_DOMAIN);
7339 value = read_var_value (vsym.symbol, vsym.block, frame);
7340 /* If the value was optimized out, revert to the old behavior. */
7341 if (! value_optimized_out (value))
7342 {
7343 handler = value_as_address (value);
7344
7345 if (debug_infrun)
7346 fprintf_unfiltered (gdb_stdlog,
7347 "infrun: exception resume at %lx\n",
7348 (unsigned long) handler);
7349
7350 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7351 handler,
7352 bp_exception_resume).release ();
7353
7354 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7355 frame = NULL;
7356
7357 bp->thread = tp->global_num;
7358 inferior_thread ()->control.exception_resume_breakpoint = bp;
7359 }
7360 }
7361 catch (const gdb_exception_error &e)
7362 {
7363 /* We want to ignore errors here. */
7364 }
7365 }
7366
7367 /* A helper for check_exception_resume that sets an
7368 exception-breakpoint based on a SystemTap probe. */
7369
7370 static void
7371 insert_exception_resume_from_probe (struct thread_info *tp,
7372 const struct bound_probe *probe,
7373 struct frame_info *frame)
7374 {
7375 struct value *arg_value;
7376 CORE_ADDR handler;
7377 struct breakpoint *bp;
7378
7379 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7380 if (!arg_value)
7381 return;
7382
7383 handler = value_as_address (arg_value);
7384
7385 if (debug_infrun)
7386 fprintf_unfiltered (gdb_stdlog,
7387 "infrun: exception resume at %s\n",
7388 paddress (get_objfile_arch (probe->objfile),
7389 handler));
7390
7391 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7392 handler, bp_exception_resume).release ();
7393 bp->thread = tp->global_num;
7394 inferior_thread ()->control.exception_resume_breakpoint = bp;
7395 }
7396
7397 /* This is called when an exception has been intercepted. Check to
7398 see whether the exception's destination is of interest, and if so,
7399 set an exception resume breakpoint there. */
7400
7401 static void
7402 check_exception_resume (struct execution_control_state *ecs,
7403 struct frame_info *frame)
7404 {
7405 struct bound_probe probe;
7406 struct symbol *func;
7407
7408 /* First see if this exception unwinding breakpoint was set via a
7409 SystemTap probe point. If so, the probe has two arguments: the
7410 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7411 set a breakpoint there. */
7412 probe = find_probe_by_pc (get_frame_pc (frame));
7413 if (probe.prob)
7414 {
7415 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7416 return;
7417 }
7418
7419 func = get_frame_function (frame);
7420 if (!func)
7421 return;
7422
7423 try
7424 {
7425 const struct block *b;
7426 struct block_iterator iter;
7427 struct symbol *sym;
7428 int argno = 0;
7429
7430 /* The exception breakpoint is a thread-specific breakpoint on
7431 the unwinder's debug hook, declared as:
7432
7433 void _Unwind_DebugHook (void *cfa, void *handler);
7434
7435 The CFA argument indicates the frame to which control is
7436 about to be transferred. HANDLER is the destination PC.
7437
7438 We ignore the CFA and set a temporary breakpoint at HANDLER.
7439 This is not extremely efficient but it avoids issues in gdb
7440 with computing the DWARF CFA, and it also works even in weird
7441 cases such as throwing an exception from inside a signal
7442 handler. */
7443
7444 b = SYMBOL_BLOCK_VALUE (func);
7445 ALL_BLOCK_SYMBOLS (b, iter, sym)
7446 {
7447 if (!SYMBOL_IS_ARGUMENT (sym))
7448 continue;
7449
7450 if (argno == 0)
7451 ++argno;
7452 else
7453 {
7454 insert_exception_resume_breakpoint (ecs->event_thread,
7455 b, frame, sym);
7456 break;
7457 }
7458 }
7459 }
7460 catch (const gdb_exception_error &e)
7461 {
7462 }
7463 }
7464
7465 static void
7466 stop_waiting (struct execution_control_state *ecs)
7467 {
7468 if (debug_infrun)
7469 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7470
7471 /* Let callers know we don't want to wait for the inferior anymore. */
7472 ecs->wait_some_more = 0;
7473
7474 /* If all-stop, but the target is always in non-stop mode, stop all
7475 threads now that we're presenting the stop to the user. */
7476 if (!non_stop && target_is_non_stop_p ())
7477 stop_all_threads ();
7478 }
7479
7480 /* Like keep_going, but passes the signal to the inferior, even if the
7481 signal is set to nopass. */
7482
7483 static void
7484 keep_going_pass_signal (struct execution_control_state *ecs)
7485 {
7486 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7487 gdb_assert (!ecs->event_thread->resumed);
7488
7489 /* Save the pc before execution, to compare with pc after stop. */
7490 ecs->event_thread->prev_pc
7491 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7492
7493 if (ecs->event_thread->control.trap_expected)
7494 {
7495 struct thread_info *tp = ecs->event_thread;
7496
7497 if (debug_infrun)
7498 fprintf_unfiltered (gdb_stdlog,
7499 "infrun: %s has trap_expected set, "
7500 "resuming to collect trap\n",
7501 target_pid_to_str (tp->ptid).c_str ());
7502
7503 /* We haven't yet gotten our trap, and either: intercepted a
7504 non-signal event (e.g., a fork); or took a signal which we
7505 are supposed to pass through to the inferior. Simply
7506 continue. */
7507 resume (ecs->event_thread->suspend.stop_signal);
7508 }
7509 else if (step_over_info_valid_p ())
7510 {
7511 /* Another thread is stepping over a breakpoint in-line. If
7512 this thread needs a step-over too, queue the request. In
7513 either case, this resume must be deferred for later. */
7514 struct thread_info *tp = ecs->event_thread;
7515
7516 if (ecs->hit_singlestep_breakpoint
7517 || thread_still_needs_step_over (tp))
7518 {
7519 if (debug_infrun)
7520 fprintf_unfiltered (gdb_stdlog,
7521 "infrun: step-over already in progress: "
7522 "step-over for %s deferred\n",
7523 target_pid_to_str (tp->ptid).c_str ());
7524 thread_step_over_chain_enqueue (tp);
7525 }
7526 else
7527 {
7528 if (debug_infrun)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "infrun: step-over in progress: "
7531 "resume of %s deferred\n",
7532 target_pid_to_str (tp->ptid).c_str ());
7533 }
7534 }
7535 else
7536 {
7537 struct regcache *regcache = get_current_regcache ();
7538 int remove_bp;
7539 int remove_wps;
7540 step_over_what step_what;
7541
7542 /* Either the trap was not expected, but we are continuing
7543 anyway (if we got a signal, the user asked it be passed to
7544 the child)
7545 -- or --
7546 We got our expected trap, but decided we should resume from
7547 it.
7548
7549 We're going to run this baby now!
7550
7551 Note that insert_breakpoints won't try to re-insert
7552 already inserted breakpoints. Therefore, we don't
7553 care if breakpoints were already inserted, or not. */
7554
7555 /* If we need to step over a breakpoint, and we're not using
7556 displaced stepping to do so, insert all breakpoints
7557 (watchpoints, etc.) but the one we're stepping over, step one
7558 instruction, and then re-insert the breakpoint when that step
7559 is finished. */
7560
7561 step_what = thread_still_needs_step_over (ecs->event_thread);
7562
7563 remove_bp = (ecs->hit_singlestep_breakpoint
7564 || (step_what & STEP_OVER_BREAKPOINT));
7565 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7566
7567 /* We can't use displaced stepping if we need to step past a
7568 watchpoint. The instruction copied to the scratch pad would
7569 still trigger the watchpoint. */
7570 if (remove_bp
7571 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7572 {
7573 set_step_over_info (regcache->aspace (),
7574 regcache_read_pc (regcache), remove_wps,
7575 ecs->event_thread->global_num);
7576 }
7577 else if (remove_wps)
7578 set_step_over_info (NULL, 0, remove_wps, -1);
7579
7580 /* If we now need to do an in-line step-over, we need to stop
7581 all other threads. Note this must be done before
7582 insert_breakpoints below, because that removes the breakpoint
7583 we're about to step over, otherwise other threads could miss
7584 it. */
7585 if (step_over_info_valid_p () && target_is_non_stop_p ())
7586 stop_all_threads ();
7587
7588 /* Stop stepping if inserting breakpoints fails. */
7589 try
7590 {
7591 insert_breakpoints ();
7592 }
7593 catch (const gdb_exception_error &e)
7594 {
7595 exception_print (gdb_stderr, e);
7596 stop_waiting (ecs);
7597 clear_step_over_info ();
7598 return;
7599 }
7600
7601 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7602
7603 resume (ecs->event_thread->suspend.stop_signal);
7604 }
7605
7606 prepare_to_wait (ecs);
7607 }
7608
7609 /* Called when we should continue running the inferior, because the
7610 current event doesn't cause a user visible stop. This does the
7611 resuming part; waiting for the next event is done elsewhere. */
7612
7613 static void
7614 keep_going (struct execution_control_state *ecs)
7615 {
7616 if (ecs->event_thread->control.trap_expected
7617 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7618 ecs->event_thread->control.trap_expected = 0;
7619
7620 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7621 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7622 keep_going_pass_signal (ecs);
7623 }
7624
7625 /* This function normally comes after a resume, before
7626 handle_inferior_event exits. It takes care of any last bits of
7627 housekeeping, and sets the all-important wait_some_more flag. */
7628
7629 static void
7630 prepare_to_wait (struct execution_control_state *ecs)
7631 {
7632 if (debug_infrun)
7633 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7634
7635 ecs->wait_some_more = 1;
7636
7637 if (!target_is_async_p ())
7638 mark_infrun_async_event_handler ();
7639 }
7640
7641 /* We are done with the step range of a step/next/si/ni command.
7642 Called once for each n of a "step n" operation. */
7643
7644 static void
7645 end_stepping_range (struct execution_control_state *ecs)
7646 {
7647 ecs->event_thread->control.stop_step = 1;
7648 stop_waiting (ecs);
7649 }
7650
7651 /* Several print_*_reason functions to print why the inferior has stopped.
7652 We always print something when the inferior exits, or receives a signal.
7653 The rest of the cases are dealt with later on in normal_stop and
7654 print_it_typical. Ideally there should be a call to one of these
7655 print_*_reason functions functions from handle_inferior_event each time
7656 stop_waiting is called.
7657
7658 Note that we don't call these directly, instead we delegate that to
7659 the interpreters, through observers. Interpreters then call these
7660 with whatever uiout is right. */
7661
7662 void
7663 print_end_stepping_range_reason (struct ui_out *uiout)
7664 {
7665 /* For CLI-like interpreters, print nothing. */
7666
7667 if (uiout->is_mi_like_p ())
7668 {
7669 uiout->field_string ("reason",
7670 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7671 }
7672 }
7673
7674 void
7675 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7676 {
7677 annotate_signalled ();
7678 if (uiout->is_mi_like_p ())
7679 uiout->field_string
7680 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7681 uiout->text ("\nProgram terminated with signal ");
7682 annotate_signal_name ();
7683 uiout->field_string ("signal-name",
7684 gdb_signal_to_name (siggnal));
7685 annotate_signal_name_end ();
7686 uiout->text (", ");
7687 annotate_signal_string ();
7688 uiout->field_string ("signal-meaning",
7689 gdb_signal_to_string (siggnal));
7690 annotate_signal_string_end ();
7691 uiout->text (".\n");
7692 uiout->text ("The program no longer exists.\n");
7693 }
7694
7695 void
7696 print_exited_reason (struct ui_out *uiout, int exitstatus)
7697 {
7698 struct inferior *inf = current_inferior ();
7699 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7700
7701 annotate_exited (exitstatus);
7702 if (exitstatus)
7703 {
7704 if (uiout->is_mi_like_p ())
7705 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7706 std::string exit_code_str
7707 = string_printf ("0%o", (unsigned int) exitstatus);
7708 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7709 plongest (inf->num), pidstr.c_str (),
7710 string_field ("exit-code", exit_code_str.c_str ()));
7711 }
7712 else
7713 {
7714 if (uiout->is_mi_like_p ())
7715 uiout->field_string
7716 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7717 uiout->message ("[Inferior %s (%s) exited normally]\n",
7718 plongest (inf->num), pidstr.c_str ());
7719 }
7720 }
7721
7722 /* Some targets/architectures can do extra processing/display of
7723 segmentation faults. E.g., Intel MPX boundary faults.
7724 Call the architecture dependent function to handle the fault. */
7725
7726 static void
7727 handle_segmentation_fault (struct ui_out *uiout)
7728 {
7729 struct regcache *regcache = get_current_regcache ();
7730 struct gdbarch *gdbarch = regcache->arch ();
7731
7732 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7733 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7734 }
7735
7736 void
7737 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7738 {
7739 struct thread_info *thr = inferior_thread ();
7740
7741 annotate_signal ();
7742
7743 if (uiout->is_mi_like_p ())
7744 ;
7745 else if (show_thread_that_caused_stop ())
7746 {
7747 const char *name;
7748
7749 uiout->text ("\nThread ");
7750 uiout->field_string ("thread-id", print_thread_id (thr));
7751
7752 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7753 if (name != NULL)
7754 {
7755 uiout->text (" \"");
7756 uiout->field_string ("name", name);
7757 uiout->text ("\"");
7758 }
7759 }
7760 else
7761 uiout->text ("\nProgram");
7762
7763 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7764 uiout->text (" stopped");
7765 else
7766 {
7767 uiout->text (" received signal ");
7768 annotate_signal_name ();
7769 if (uiout->is_mi_like_p ())
7770 uiout->field_string
7771 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7772 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7773 annotate_signal_name_end ();
7774 uiout->text (", ");
7775 annotate_signal_string ();
7776 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7777
7778 if (siggnal == GDB_SIGNAL_SEGV)
7779 handle_segmentation_fault (uiout);
7780
7781 annotate_signal_string_end ();
7782 }
7783 uiout->text (".\n");
7784 }
7785
7786 void
7787 print_no_history_reason (struct ui_out *uiout)
7788 {
7789 uiout->text ("\nNo more reverse-execution history.\n");
7790 }
7791
7792 /* Print current location without a level number, if we have changed
7793 functions or hit a breakpoint. Print source line if we have one.
7794 bpstat_print contains the logic deciding in detail what to print,
7795 based on the event(s) that just occurred. */
7796
7797 static void
7798 print_stop_location (struct target_waitstatus *ws)
7799 {
7800 int bpstat_ret;
7801 enum print_what source_flag;
7802 int do_frame_printing = 1;
7803 struct thread_info *tp = inferior_thread ();
7804
7805 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7806 switch (bpstat_ret)
7807 {
7808 case PRINT_UNKNOWN:
7809 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7810 should) carry around the function and does (or should) use
7811 that when doing a frame comparison. */
7812 if (tp->control.stop_step
7813 && frame_id_eq (tp->control.step_frame_id,
7814 get_frame_id (get_current_frame ()))
7815 && (tp->control.step_start_function
7816 == find_pc_function (tp->suspend.stop_pc)))
7817 {
7818 /* Finished step, just print source line. */
7819 source_flag = SRC_LINE;
7820 }
7821 else
7822 {
7823 /* Print location and source line. */
7824 source_flag = SRC_AND_LOC;
7825 }
7826 break;
7827 case PRINT_SRC_AND_LOC:
7828 /* Print location and source line. */
7829 source_flag = SRC_AND_LOC;
7830 break;
7831 case PRINT_SRC_ONLY:
7832 source_flag = SRC_LINE;
7833 break;
7834 case PRINT_NOTHING:
7835 /* Something bogus. */
7836 source_flag = SRC_LINE;
7837 do_frame_printing = 0;
7838 break;
7839 default:
7840 internal_error (__FILE__, __LINE__, _("Unknown value."));
7841 }
7842
7843 /* The behavior of this routine with respect to the source
7844 flag is:
7845 SRC_LINE: Print only source line
7846 LOCATION: Print only location
7847 SRC_AND_LOC: Print location and source line. */
7848 if (do_frame_printing)
7849 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7850 }
7851
7852 /* See infrun.h. */
7853
7854 void
7855 print_stop_event (struct ui_out *uiout, bool displays)
7856 {
7857 struct target_waitstatus last;
7858 ptid_t last_ptid;
7859 struct thread_info *tp;
7860
7861 get_last_target_status (&last_ptid, &last);
7862
7863 {
7864 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7865
7866 print_stop_location (&last);
7867
7868 /* Display the auto-display expressions. */
7869 if (displays)
7870 do_displays ();
7871 }
7872
7873 tp = inferior_thread ();
7874 if (tp->thread_fsm != NULL
7875 && tp->thread_fsm->finished_p ())
7876 {
7877 struct return_value_info *rv;
7878
7879 rv = tp->thread_fsm->return_value ();
7880 if (rv != NULL)
7881 print_return_value (uiout, rv);
7882 }
7883 }
7884
7885 /* See infrun.h. */
7886
7887 void
7888 maybe_remove_breakpoints (void)
7889 {
7890 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7891 {
7892 if (remove_breakpoints ())
7893 {
7894 target_terminal::ours_for_output ();
7895 printf_filtered (_("Cannot remove breakpoints because "
7896 "program is no longer writable.\nFurther "
7897 "execution is probably impossible.\n"));
7898 }
7899 }
7900 }
7901
7902 /* The execution context that just caused a normal stop. */
7903
7904 struct stop_context
7905 {
7906 stop_context ();
7907 ~stop_context ();
7908
7909 DISABLE_COPY_AND_ASSIGN (stop_context);
7910
7911 bool changed () const;
7912
7913 /* The stop ID. */
7914 ULONGEST stop_id;
7915
7916 /* The event PTID. */
7917
7918 ptid_t ptid;
7919
7920 /* If stopp for a thread event, this is the thread that caused the
7921 stop. */
7922 struct thread_info *thread;
7923
7924 /* The inferior that caused the stop. */
7925 int inf_num;
7926 };
7927
7928 /* Initializes a new stop context. If stopped for a thread event, this
7929 takes a strong reference to the thread. */
7930
7931 stop_context::stop_context ()
7932 {
7933 stop_id = get_stop_id ();
7934 ptid = inferior_ptid;
7935 inf_num = current_inferior ()->num;
7936
7937 if (inferior_ptid != null_ptid)
7938 {
7939 /* Take a strong reference so that the thread can't be deleted
7940 yet. */
7941 thread = inferior_thread ();
7942 thread->incref ();
7943 }
7944 else
7945 thread = NULL;
7946 }
7947
7948 /* Release a stop context previously created with save_stop_context.
7949 Releases the strong reference to the thread as well. */
7950
7951 stop_context::~stop_context ()
7952 {
7953 if (thread != NULL)
7954 thread->decref ();
7955 }
7956
7957 /* Return true if the current context no longer matches the saved stop
7958 context. */
7959
7960 bool
7961 stop_context::changed () const
7962 {
7963 if (ptid != inferior_ptid)
7964 return true;
7965 if (inf_num != current_inferior ()->num)
7966 return true;
7967 if (thread != NULL && thread->state != THREAD_STOPPED)
7968 return true;
7969 if (get_stop_id () != stop_id)
7970 return true;
7971 return false;
7972 }
7973
7974 /* See infrun.h. */
7975
7976 int
7977 normal_stop (void)
7978 {
7979 struct target_waitstatus last;
7980 ptid_t last_ptid;
7981
7982 get_last_target_status (&last_ptid, &last);
7983
7984 new_stop_id ();
7985
7986 /* If an exception is thrown from this point on, make sure to
7987 propagate GDB's knowledge of the executing state to the
7988 frontend/user running state. A QUIT is an easy exception to see
7989 here, so do this before any filtered output. */
7990
7991 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7992
7993 if (!non_stop)
7994 maybe_finish_thread_state.emplace (minus_one_ptid);
7995 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7996 || last.kind == TARGET_WAITKIND_EXITED)
7997 {
7998 /* On some targets, we may still have live threads in the
7999 inferior when we get a process exit event. E.g., for
8000 "checkpoint", when the current checkpoint/fork exits,
8001 linux-fork.c automatically switches to another fork from
8002 within target_mourn_inferior. */
8003 if (inferior_ptid != null_ptid)
8004 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8005 }
8006 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8007 maybe_finish_thread_state.emplace (inferior_ptid);
8008
8009 /* As we're presenting a stop, and potentially removing breakpoints,
8010 update the thread list so we can tell whether there are threads
8011 running on the target. With target remote, for example, we can
8012 only learn about new threads when we explicitly update the thread
8013 list. Do this before notifying the interpreters about signal
8014 stops, end of stepping ranges, etc., so that the "new thread"
8015 output is emitted before e.g., "Program received signal FOO",
8016 instead of after. */
8017 update_thread_list ();
8018
8019 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8020 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8021
8022 /* As with the notification of thread events, we want to delay
8023 notifying the user that we've switched thread context until
8024 the inferior actually stops.
8025
8026 There's no point in saying anything if the inferior has exited.
8027 Note that SIGNALLED here means "exited with a signal", not
8028 "received a signal".
8029
8030 Also skip saying anything in non-stop mode. In that mode, as we
8031 don't want GDB to switch threads behind the user's back, to avoid
8032 races where the user is typing a command to apply to thread x,
8033 but GDB switches to thread y before the user finishes entering
8034 the command, fetch_inferior_event installs a cleanup to restore
8035 the current thread back to the thread the user had selected right
8036 after this event is handled, so we're not really switching, only
8037 informing of a stop. */
8038 if (!non_stop
8039 && previous_inferior_ptid != inferior_ptid
8040 && target_has_execution
8041 && last.kind != TARGET_WAITKIND_SIGNALLED
8042 && last.kind != TARGET_WAITKIND_EXITED
8043 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8044 {
8045 SWITCH_THRU_ALL_UIS ()
8046 {
8047 target_terminal::ours_for_output ();
8048 printf_filtered (_("[Switching to %s]\n"),
8049 target_pid_to_str (inferior_ptid).c_str ());
8050 annotate_thread_changed ();
8051 }
8052 previous_inferior_ptid = inferior_ptid;
8053 }
8054
8055 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8056 {
8057 SWITCH_THRU_ALL_UIS ()
8058 if (current_ui->prompt_state == PROMPT_BLOCKED)
8059 {
8060 target_terminal::ours_for_output ();
8061 printf_filtered (_("No unwaited-for children left.\n"));
8062 }
8063 }
8064
8065 /* Note: this depends on the update_thread_list call above. */
8066 maybe_remove_breakpoints ();
8067
8068 /* If an auto-display called a function and that got a signal,
8069 delete that auto-display to avoid an infinite recursion. */
8070
8071 if (stopped_by_random_signal)
8072 disable_current_display ();
8073
8074 SWITCH_THRU_ALL_UIS ()
8075 {
8076 async_enable_stdin ();
8077 }
8078
8079 /* Let the user/frontend see the threads as stopped. */
8080 maybe_finish_thread_state.reset ();
8081
8082 /* Select innermost stack frame - i.e., current frame is frame 0,
8083 and current location is based on that. Handle the case where the
8084 dummy call is returning after being stopped. E.g. the dummy call
8085 previously hit a breakpoint. (If the dummy call returns
8086 normally, we won't reach here.) Do this before the stop hook is
8087 run, so that it doesn't get to see the temporary dummy frame,
8088 which is not where we'll present the stop. */
8089 if (has_stack_frames ())
8090 {
8091 if (stop_stack_dummy == STOP_STACK_DUMMY)
8092 {
8093 /* Pop the empty frame that contains the stack dummy. This
8094 also restores inferior state prior to the call (struct
8095 infcall_suspend_state). */
8096 struct frame_info *frame = get_current_frame ();
8097
8098 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8099 frame_pop (frame);
8100 /* frame_pop calls reinit_frame_cache as the last thing it
8101 does which means there's now no selected frame. */
8102 }
8103
8104 select_frame (get_current_frame ());
8105
8106 /* Set the current source location. */
8107 set_current_sal_from_frame (get_current_frame ());
8108 }
8109
8110 /* Look up the hook_stop and run it (CLI internally handles problem
8111 of stop_command's pre-hook not existing). */
8112 if (stop_command != NULL)
8113 {
8114 stop_context saved_context;
8115
8116 try
8117 {
8118 execute_cmd_pre_hook (stop_command);
8119 }
8120 catch (const gdb_exception &ex)
8121 {
8122 exception_fprintf (gdb_stderr, ex,
8123 "Error while running hook_stop:\n");
8124 }
8125
8126 /* If the stop hook resumes the target, then there's no point in
8127 trying to notify about the previous stop; its context is
8128 gone. Likewise if the command switches thread or inferior --
8129 the observers would print a stop for the wrong
8130 thread/inferior. */
8131 if (saved_context.changed ())
8132 return 1;
8133 }
8134
8135 /* Notify observers about the stop. This is where the interpreters
8136 print the stop event. */
8137 if (inferior_ptid != null_ptid)
8138 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8139 stop_print_frame);
8140 else
8141 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8142
8143 annotate_stopped ();
8144
8145 if (target_has_execution)
8146 {
8147 if (last.kind != TARGET_WAITKIND_SIGNALLED
8148 && last.kind != TARGET_WAITKIND_EXITED
8149 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8150 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8151 Delete any breakpoint that is to be deleted at the next stop. */
8152 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8153 }
8154
8155 /* Try to get rid of automatically added inferiors that are no
8156 longer needed. Keeping those around slows down things linearly.
8157 Note that this never removes the current inferior. */
8158 prune_inferiors ();
8159
8160 return 0;
8161 }
8162 \f
8163 int
8164 signal_stop_state (int signo)
8165 {
8166 return signal_stop[signo];
8167 }
8168
8169 int
8170 signal_print_state (int signo)
8171 {
8172 return signal_print[signo];
8173 }
8174
8175 int
8176 signal_pass_state (int signo)
8177 {
8178 return signal_program[signo];
8179 }
8180
8181 static void
8182 signal_cache_update (int signo)
8183 {
8184 if (signo == -1)
8185 {
8186 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8187 signal_cache_update (signo);
8188
8189 return;
8190 }
8191
8192 signal_pass[signo] = (signal_stop[signo] == 0
8193 && signal_print[signo] == 0
8194 && signal_program[signo] == 1
8195 && signal_catch[signo] == 0);
8196 }
8197
8198 int
8199 signal_stop_update (int signo, int state)
8200 {
8201 int ret = signal_stop[signo];
8202
8203 signal_stop[signo] = state;
8204 signal_cache_update (signo);
8205 return ret;
8206 }
8207
8208 int
8209 signal_print_update (int signo, int state)
8210 {
8211 int ret = signal_print[signo];
8212
8213 signal_print[signo] = state;
8214 signal_cache_update (signo);
8215 return ret;
8216 }
8217
8218 int
8219 signal_pass_update (int signo, int state)
8220 {
8221 int ret = signal_program[signo];
8222
8223 signal_program[signo] = state;
8224 signal_cache_update (signo);
8225 return ret;
8226 }
8227
8228 /* Update the global 'signal_catch' from INFO and notify the
8229 target. */
8230
8231 void
8232 signal_catch_update (const unsigned int *info)
8233 {
8234 int i;
8235
8236 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8237 signal_catch[i] = info[i] > 0;
8238 signal_cache_update (-1);
8239 target_pass_signals (signal_pass);
8240 }
8241
8242 static void
8243 sig_print_header (void)
8244 {
8245 printf_filtered (_("Signal Stop\tPrint\tPass "
8246 "to program\tDescription\n"));
8247 }
8248
8249 static void
8250 sig_print_info (enum gdb_signal oursig)
8251 {
8252 const char *name = gdb_signal_to_name (oursig);
8253 int name_padding = 13 - strlen (name);
8254
8255 if (name_padding <= 0)
8256 name_padding = 0;
8257
8258 printf_filtered ("%s", name);
8259 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8260 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8261 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8262 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8263 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8264 }
8265
8266 /* Specify how various signals in the inferior should be handled. */
8267
8268 static void
8269 handle_command (const char *args, int from_tty)
8270 {
8271 int digits, wordlen;
8272 int sigfirst, siglast;
8273 enum gdb_signal oursig;
8274 int allsigs;
8275
8276 if (args == NULL)
8277 {
8278 error_no_arg (_("signal to handle"));
8279 }
8280
8281 /* Allocate and zero an array of flags for which signals to handle. */
8282
8283 const size_t nsigs = GDB_SIGNAL_LAST;
8284 unsigned char sigs[nsigs] {};
8285
8286 /* Break the command line up into args. */
8287
8288 gdb_argv built_argv (args);
8289
8290 /* Walk through the args, looking for signal oursigs, signal names, and
8291 actions. Signal numbers and signal names may be interspersed with
8292 actions, with the actions being performed for all signals cumulatively
8293 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8294
8295 for (char *arg : built_argv)
8296 {
8297 wordlen = strlen (arg);
8298 for (digits = 0; isdigit (arg[digits]); digits++)
8299 {;
8300 }
8301 allsigs = 0;
8302 sigfirst = siglast = -1;
8303
8304 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8305 {
8306 /* Apply action to all signals except those used by the
8307 debugger. Silently skip those. */
8308 allsigs = 1;
8309 sigfirst = 0;
8310 siglast = nsigs - 1;
8311 }
8312 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8313 {
8314 SET_SIGS (nsigs, sigs, signal_stop);
8315 SET_SIGS (nsigs, sigs, signal_print);
8316 }
8317 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8318 {
8319 UNSET_SIGS (nsigs, sigs, signal_program);
8320 }
8321 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8322 {
8323 SET_SIGS (nsigs, sigs, signal_print);
8324 }
8325 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8326 {
8327 SET_SIGS (nsigs, sigs, signal_program);
8328 }
8329 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8330 {
8331 UNSET_SIGS (nsigs, sigs, signal_stop);
8332 }
8333 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8334 {
8335 SET_SIGS (nsigs, sigs, signal_program);
8336 }
8337 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8338 {
8339 UNSET_SIGS (nsigs, sigs, signal_print);
8340 UNSET_SIGS (nsigs, sigs, signal_stop);
8341 }
8342 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8343 {
8344 UNSET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (digits > 0)
8347 {
8348 /* It is numeric. The numeric signal refers to our own
8349 internal signal numbering from target.h, not to host/target
8350 signal number. This is a feature; users really should be
8351 using symbolic names anyway, and the common ones like
8352 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8353
8354 sigfirst = siglast = (int)
8355 gdb_signal_from_command (atoi (arg));
8356 if (arg[digits] == '-')
8357 {
8358 siglast = (int)
8359 gdb_signal_from_command (atoi (arg + digits + 1));
8360 }
8361 if (sigfirst > siglast)
8362 {
8363 /* Bet he didn't figure we'd think of this case... */
8364 std::swap (sigfirst, siglast);
8365 }
8366 }
8367 else
8368 {
8369 oursig = gdb_signal_from_name (arg);
8370 if (oursig != GDB_SIGNAL_UNKNOWN)
8371 {
8372 sigfirst = siglast = (int) oursig;
8373 }
8374 else
8375 {
8376 /* Not a number and not a recognized flag word => complain. */
8377 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8378 }
8379 }
8380
8381 /* If any signal numbers or symbol names were found, set flags for
8382 which signals to apply actions to. */
8383
8384 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8385 {
8386 switch ((enum gdb_signal) signum)
8387 {
8388 case GDB_SIGNAL_TRAP:
8389 case GDB_SIGNAL_INT:
8390 if (!allsigs && !sigs[signum])
8391 {
8392 if (query (_("%s is used by the debugger.\n\
8393 Are you sure you want to change it? "),
8394 gdb_signal_to_name ((enum gdb_signal) signum)))
8395 {
8396 sigs[signum] = 1;
8397 }
8398 else
8399 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8400 }
8401 break;
8402 case GDB_SIGNAL_0:
8403 case GDB_SIGNAL_DEFAULT:
8404 case GDB_SIGNAL_UNKNOWN:
8405 /* Make sure that "all" doesn't print these. */
8406 break;
8407 default:
8408 sigs[signum] = 1;
8409 break;
8410 }
8411 }
8412 }
8413
8414 for (int signum = 0; signum < nsigs; signum++)
8415 if (sigs[signum])
8416 {
8417 signal_cache_update (-1);
8418 target_pass_signals (signal_pass);
8419 target_program_signals (signal_program);
8420
8421 if (from_tty)
8422 {
8423 /* Show the results. */
8424 sig_print_header ();
8425 for (; signum < nsigs; signum++)
8426 if (sigs[signum])
8427 sig_print_info ((enum gdb_signal) signum);
8428 }
8429
8430 break;
8431 }
8432 }
8433
8434 /* Complete the "handle" command. */
8435
8436 static void
8437 handle_completer (struct cmd_list_element *ignore,
8438 completion_tracker &tracker,
8439 const char *text, const char *word)
8440 {
8441 static const char * const keywords[] =
8442 {
8443 "all",
8444 "stop",
8445 "ignore",
8446 "print",
8447 "pass",
8448 "nostop",
8449 "noignore",
8450 "noprint",
8451 "nopass",
8452 NULL,
8453 };
8454
8455 signal_completer (ignore, tracker, text, word);
8456 complete_on_enum (tracker, keywords, word, word);
8457 }
8458
8459 enum gdb_signal
8460 gdb_signal_from_command (int num)
8461 {
8462 if (num >= 1 && num <= 15)
8463 return (enum gdb_signal) num;
8464 error (_("Only signals 1-15 are valid as numeric signals.\n\
8465 Use \"info signals\" for a list of symbolic signals."));
8466 }
8467
8468 /* Print current contents of the tables set by the handle command.
8469 It is possible we should just be printing signals actually used
8470 by the current target (but for things to work right when switching
8471 targets, all signals should be in the signal tables). */
8472
8473 static void
8474 info_signals_command (const char *signum_exp, int from_tty)
8475 {
8476 enum gdb_signal oursig;
8477
8478 sig_print_header ();
8479
8480 if (signum_exp)
8481 {
8482 /* First see if this is a symbol name. */
8483 oursig = gdb_signal_from_name (signum_exp);
8484 if (oursig == GDB_SIGNAL_UNKNOWN)
8485 {
8486 /* No, try numeric. */
8487 oursig =
8488 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8489 }
8490 sig_print_info (oursig);
8491 return;
8492 }
8493
8494 printf_filtered ("\n");
8495 /* These ugly casts brought to you by the native VAX compiler. */
8496 for (oursig = GDB_SIGNAL_FIRST;
8497 (int) oursig < (int) GDB_SIGNAL_LAST;
8498 oursig = (enum gdb_signal) ((int) oursig + 1))
8499 {
8500 QUIT;
8501
8502 if (oursig != GDB_SIGNAL_UNKNOWN
8503 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8504 sig_print_info (oursig);
8505 }
8506
8507 printf_filtered (_("\nUse the \"handle\" command "
8508 "to change these tables.\n"));
8509 }
8510
8511 /* The $_siginfo convenience variable is a bit special. We don't know
8512 for sure the type of the value until we actually have a chance to
8513 fetch the data. The type can change depending on gdbarch, so it is
8514 also dependent on which thread you have selected.
8515
8516 1. making $_siginfo be an internalvar that creates a new value on
8517 access.
8518
8519 2. making the value of $_siginfo be an lval_computed value. */
8520
8521 /* This function implements the lval_computed support for reading a
8522 $_siginfo value. */
8523
8524 static void
8525 siginfo_value_read (struct value *v)
8526 {
8527 LONGEST transferred;
8528
8529 /* If we can access registers, so can we access $_siginfo. Likewise
8530 vice versa. */
8531 validate_registers_access ();
8532
8533 transferred =
8534 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8535 NULL,
8536 value_contents_all_raw (v),
8537 value_offset (v),
8538 TYPE_LENGTH (value_type (v)));
8539
8540 if (transferred != TYPE_LENGTH (value_type (v)))
8541 error (_("Unable to read siginfo"));
8542 }
8543
8544 /* This function implements the lval_computed support for writing a
8545 $_siginfo value. */
8546
8547 static void
8548 siginfo_value_write (struct value *v, struct value *fromval)
8549 {
8550 LONGEST transferred;
8551
8552 /* If we can access registers, so can we access $_siginfo. Likewise
8553 vice versa. */
8554 validate_registers_access ();
8555
8556 transferred = target_write (current_top_target (),
8557 TARGET_OBJECT_SIGNAL_INFO,
8558 NULL,
8559 value_contents_all_raw (fromval),
8560 value_offset (v),
8561 TYPE_LENGTH (value_type (fromval)));
8562
8563 if (transferred != TYPE_LENGTH (value_type (fromval)))
8564 error (_("Unable to write siginfo"));
8565 }
8566
8567 static const struct lval_funcs siginfo_value_funcs =
8568 {
8569 siginfo_value_read,
8570 siginfo_value_write
8571 };
8572
8573 /* Return a new value with the correct type for the siginfo object of
8574 the current thread using architecture GDBARCH. Return a void value
8575 if there's no object available. */
8576
8577 static struct value *
8578 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8579 void *ignore)
8580 {
8581 if (target_has_stack
8582 && inferior_ptid != null_ptid
8583 && gdbarch_get_siginfo_type_p (gdbarch))
8584 {
8585 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8586
8587 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8588 }
8589
8590 return allocate_value (builtin_type (gdbarch)->builtin_void);
8591 }
8592
8593 \f
8594 /* infcall_suspend_state contains state about the program itself like its
8595 registers and any signal it received when it last stopped.
8596 This state must be restored regardless of how the inferior function call
8597 ends (either successfully, or after it hits a breakpoint or signal)
8598 if the program is to properly continue where it left off. */
8599
8600 class infcall_suspend_state
8601 {
8602 public:
8603 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8604 once the inferior function call has finished. */
8605 infcall_suspend_state (struct gdbarch *gdbarch,
8606 const struct thread_info *tp,
8607 struct regcache *regcache)
8608 : m_thread_suspend (tp->suspend),
8609 m_registers (new readonly_detached_regcache (*regcache))
8610 {
8611 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8612
8613 if (gdbarch_get_siginfo_type_p (gdbarch))
8614 {
8615 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8616 size_t len = TYPE_LENGTH (type);
8617
8618 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8619
8620 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8621 siginfo_data.get (), 0, len) != len)
8622 {
8623 /* Errors ignored. */
8624 siginfo_data.reset (nullptr);
8625 }
8626 }
8627
8628 if (siginfo_data)
8629 {
8630 m_siginfo_gdbarch = gdbarch;
8631 m_siginfo_data = std::move (siginfo_data);
8632 }
8633 }
8634
8635 /* Return a pointer to the stored register state. */
8636
8637 readonly_detached_regcache *registers () const
8638 {
8639 return m_registers.get ();
8640 }
8641
8642 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8643
8644 void restore (struct gdbarch *gdbarch,
8645 struct thread_info *tp,
8646 struct regcache *regcache) const
8647 {
8648 tp->suspend = m_thread_suspend;
8649
8650 if (m_siginfo_gdbarch == gdbarch)
8651 {
8652 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8653
8654 /* Errors ignored. */
8655 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8656 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8657 }
8658
8659 /* The inferior can be gone if the user types "print exit(0)"
8660 (and perhaps other times). */
8661 if (target_has_execution)
8662 /* NB: The register write goes through to the target. */
8663 regcache->restore (registers ());
8664 }
8665
8666 private:
8667 /* How the current thread stopped before the inferior function call was
8668 executed. */
8669 struct thread_suspend_state m_thread_suspend;
8670
8671 /* The registers before the inferior function call was executed. */
8672 std::unique_ptr<readonly_detached_regcache> m_registers;
8673
8674 /* Format of SIGINFO_DATA or NULL if it is not present. */
8675 struct gdbarch *m_siginfo_gdbarch = nullptr;
8676
8677 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8678 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8679 content would be invalid. */
8680 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8681 };
8682
8683 infcall_suspend_state_up
8684 save_infcall_suspend_state ()
8685 {
8686 struct thread_info *tp = inferior_thread ();
8687 struct regcache *regcache = get_current_regcache ();
8688 struct gdbarch *gdbarch = regcache->arch ();
8689
8690 infcall_suspend_state_up inf_state
8691 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8692
8693 /* Having saved the current state, adjust the thread state, discarding
8694 any stop signal information. The stop signal is not useful when
8695 starting an inferior function call, and run_inferior_call will not use
8696 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8697 tp->suspend.stop_signal = GDB_SIGNAL_0;
8698
8699 return inf_state;
8700 }
8701
8702 /* Restore inferior session state to INF_STATE. */
8703
8704 void
8705 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8706 {
8707 struct thread_info *tp = inferior_thread ();
8708 struct regcache *regcache = get_current_regcache ();
8709 struct gdbarch *gdbarch = regcache->arch ();
8710
8711 inf_state->restore (gdbarch, tp, regcache);
8712 discard_infcall_suspend_state (inf_state);
8713 }
8714
8715 void
8716 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8717 {
8718 delete inf_state;
8719 }
8720
8721 readonly_detached_regcache *
8722 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8723 {
8724 return inf_state->registers ();
8725 }
8726
8727 /* infcall_control_state contains state regarding gdb's control of the
8728 inferior itself like stepping control. It also contains session state like
8729 the user's currently selected frame. */
8730
8731 struct infcall_control_state
8732 {
8733 struct thread_control_state thread_control;
8734 struct inferior_control_state inferior_control;
8735
8736 /* Other fields: */
8737 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8738 int stopped_by_random_signal = 0;
8739
8740 /* ID if the selected frame when the inferior function call was made. */
8741 struct frame_id selected_frame_id {};
8742 };
8743
8744 /* Save all of the information associated with the inferior<==>gdb
8745 connection. */
8746
8747 infcall_control_state_up
8748 save_infcall_control_state ()
8749 {
8750 infcall_control_state_up inf_status (new struct infcall_control_state);
8751 struct thread_info *tp = inferior_thread ();
8752 struct inferior *inf = current_inferior ();
8753
8754 inf_status->thread_control = tp->control;
8755 inf_status->inferior_control = inf->control;
8756
8757 tp->control.step_resume_breakpoint = NULL;
8758 tp->control.exception_resume_breakpoint = NULL;
8759
8760 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8761 chain. If caller's caller is walking the chain, they'll be happier if we
8762 hand them back the original chain when restore_infcall_control_state is
8763 called. */
8764 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8765
8766 /* Other fields: */
8767 inf_status->stop_stack_dummy = stop_stack_dummy;
8768 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8769
8770 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8771
8772 return inf_status;
8773 }
8774
8775 static void
8776 restore_selected_frame (const frame_id &fid)
8777 {
8778 frame_info *frame = frame_find_by_id (fid);
8779
8780 /* If inf_status->selected_frame_id is NULL, there was no previously
8781 selected frame. */
8782 if (frame == NULL)
8783 {
8784 warning (_("Unable to restore previously selected frame."));
8785 return;
8786 }
8787
8788 select_frame (frame);
8789 }
8790
8791 /* Restore inferior session state to INF_STATUS. */
8792
8793 void
8794 restore_infcall_control_state (struct infcall_control_state *inf_status)
8795 {
8796 struct thread_info *tp = inferior_thread ();
8797 struct inferior *inf = current_inferior ();
8798
8799 if (tp->control.step_resume_breakpoint)
8800 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8801
8802 if (tp->control.exception_resume_breakpoint)
8803 tp->control.exception_resume_breakpoint->disposition
8804 = disp_del_at_next_stop;
8805
8806 /* Handle the bpstat_copy of the chain. */
8807 bpstat_clear (&tp->control.stop_bpstat);
8808
8809 tp->control = inf_status->thread_control;
8810 inf->control = inf_status->inferior_control;
8811
8812 /* Other fields: */
8813 stop_stack_dummy = inf_status->stop_stack_dummy;
8814 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8815
8816 if (target_has_stack)
8817 {
8818 /* The point of the try/catch is that if the stack is clobbered,
8819 walking the stack might encounter a garbage pointer and
8820 error() trying to dereference it. */
8821 try
8822 {
8823 restore_selected_frame (inf_status->selected_frame_id);
8824 }
8825 catch (const gdb_exception_error &ex)
8826 {
8827 exception_fprintf (gdb_stderr, ex,
8828 "Unable to restore previously selected frame:\n");
8829 /* Error in restoring the selected frame. Select the
8830 innermost frame. */
8831 select_frame (get_current_frame ());
8832 }
8833 }
8834
8835 delete inf_status;
8836 }
8837
8838 void
8839 discard_infcall_control_state (struct infcall_control_state *inf_status)
8840 {
8841 if (inf_status->thread_control.step_resume_breakpoint)
8842 inf_status->thread_control.step_resume_breakpoint->disposition
8843 = disp_del_at_next_stop;
8844
8845 if (inf_status->thread_control.exception_resume_breakpoint)
8846 inf_status->thread_control.exception_resume_breakpoint->disposition
8847 = disp_del_at_next_stop;
8848
8849 /* See save_infcall_control_state for info on stop_bpstat. */
8850 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8851
8852 delete inf_status;
8853 }
8854 \f
8855 /* See infrun.h. */
8856
8857 void
8858 clear_exit_convenience_vars (void)
8859 {
8860 clear_internalvar (lookup_internalvar ("_exitsignal"));
8861 clear_internalvar (lookup_internalvar ("_exitcode"));
8862 }
8863 \f
8864
8865 /* User interface for reverse debugging:
8866 Set exec-direction / show exec-direction commands
8867 (returns error unless target implements to_set_exec_direction method). */
8868
8869 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8870 static const char exec_forward[] = "forward";
8871 static const char exec_reverse[] = "reverse";
8872 static const char *exec_direction = exec_forward;
8873 static const char *const exec_direction_names[] = {
8874 exec_forward,
8875 exec_reverse,
8876 NULL
8877 };
8878
8879 static void
8880 set_exec_direction_func (const char *args, int from_tty,
8881 struct cmd_list_element *cmd)
8882 {
8883 if (target_can_execute_reverse)
8884 {
8885 if (!strcmp (exec_direction, exec_forward))
8886 execution_direction = EXEC_FORWARD;
8887 else if (!strcmp (exec_direction, exec_reverse))
8888 execution_direction = EXEC_REVERSE;
8889 }
8890 else
8891 {
8892 exec_direction = exec_forward;
8893 error (_("Target does not support this operation."));
8894 }
8895 }
8896
8897 static void
8898 show_exec_direction_func (struct ui_file *out, int from_tty,
8899 struct cmd_list_element *cmd, const char *value)
8900 {
8901 switch (execution_direction) {
8902 case EXEC_FORWARD:
8903 fprintf_filtered (out, _("Forward.\n"));
8904 break;
8905 case EXEC_REVERSE:
8906 fprintf_filtered (out, _("Reverse.\n"));
8907 break;
8908 default:
8909 internal_error (__FILE__, __LINE__,
8910 _("bogus execution_direction value: %d"),
8911 (int) execution_direction);
8912 }
8913 }
8914
8915 static void
8916 show_schedule_multiple (struct ui_file *file, int from_tty,
8917 struct cmd_list_element *c, const char *value)
8918 {
8919 fprintf_filtered (file, _("Resuming the execution of threads "
8920 "of all processes is %s.\n"), value);
8921 }
8922
8923 /* Implementation of `siginfo' variable. */
8924
8925 static const struct internalvar_funcs siginfo_funcs =
8926 {
8927 siginfo_make_value,
8928 NULL,
8929 NULL
8930 };
8931
8932 /* Callback for infrun's target events source. This is marked when a
8933 thread has a pending status to process. */
8934
8935 static void
8936 infrun_async_inferior_event_handler (gdb_client_data data)
8937 {
8938 inferior_event_handler (INF_REG_EVENT, NULL);
8939 }
8940
8941 void
8942 _initialize_infrun (void)
8943 {
8944 struct cmd_list_element *c;
8945
8946 /* Register extra event sources in the event loop. */
8947 infrun_async_inferior_event_token
8948 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8949
8950 add_info ("signals", info_signals_command, _("\
8951 What debugger does when program gets various signals.\n\
8952 Specify a signal as argument to print info on that signal only."));
8953 add_info_alias ("handle", "signals", 0);
8954
8955 c = add_com ("handle", class_run, handle_command, _("\
8956 Specify how to handle signals.\n\
8957 Usage: handle SIGNAL [ACTIONS]\n\
8958 Args are signals and actions to apply to those signals.\n\
8959 If no actions are specified, the current settings for the specified signals\n\
8960 will be displayed instead.\n\
8961 \n\
8962 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8963 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8964 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8965 The special arg \"all\" is recognized to mean all signals except those\n\
8966 used by the debugger, typically SIGTRAP and SIGINT.\n\
8967 \n\
8968 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8969 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8970 Stop means reenter debugger if this signal happens (implies print).\n\
8971 Print means print a message if this signal happens.\n\
8972 Pass means let program see this signal; otherwise program doesn't know.\n\
8973 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8974 Pass and Stop may be combined.\n\
8975 \n\
8976 Multiple signals may be specified. Signal numbers and signal names\n\
8977 may be interspersed with actions, with the actions being performed for\n\
8978 all signals cumulatively specified."));
8979 set_cmd_completer (c, handle_completer);
8980
8981 if (!dbx_commands)
8982 stop_command = add_cmd ("stop", class_obscure,
8983 not_just_help_class_command, _("\
8984 There is no `stop' command, but you can set a hook on `stop'.\n\
8985 This allows you to set a list of commands to be run each time execution\n\
8986 of the program stops."), &cmdlist);
8987
8988 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8989 Set inferior debugging."), _("\
8990 Show inferior debugging."), _("\
8991 When non-zero, inferior specific debugging is enabled."),
8992 NULL,
8993 show_debug_infrun,
8994 &setdebuglist, &showdebuglist);
8995
8996 add_setshow_boolean_cmd ("displaced", class_maintenance,
8997 &debug_displaced, _("\
8998 Set displaced stepping debugging."), _("\
8999 Show displaced stepping debugging."), _("\
9000 When non-zero, displaced stepping specific debugging is enabled."),
9001 NULL,
9002 show_debug_displaced,
9003 &setdebuglist, &showdebuglist);
9004
9005 add_setshow_boolean_cmd ("non-stop", no_class,
9006 &non_stop_1, _("\
9007 Set whether gdb controls the inferior in non-stop mode."), _("\
9008 Show whether gdb controls the inferior in non-stop mode."), _("\
9009 When debugging a multi-threaded program and this setting is\n\
9010 off (the default, also called all-stop mode), when one thread stops\n\
9011 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9012 all other threads in the program while you interact with the thread of\n\
9013 interest. When you continue or step a thread, you can allow the other\n\
9014 threads to run, or have them remain stopped, but while you inspect any\n\
9015 thread's state, all threads stop.\n\
9016 \n\
9017 In non-stop mode, when one thread stops, other threads can continue\n\
9018 to run freely. You'll be able to step each thread independently,\n\
9019 leave it stopped or free to run as needed."),
9020 set_non_stop,
9021 show_non_stop,
9022 &setlist,
9023 &showlist);
9024
9025 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9026 {
9027 signal_stop[i] = 1;
9028 signal_print[i] = 1;
9029 signal_program[i] = 1;
9030 signal_catch[i] = 0;
9031 }
9032
9033 /* Signals caused by debugger's own actions should not be given to
9034 the program afterwards.
9035
9036 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9037 explicitly specifies that it should be delivered to the target
9038 program. Typically, that would occur when a user is debugging a
9039 target monitor on a simulator: the target monitor sets a
9040 breakpoint; the simulator encounters this breakpoint and halts
9041 the simulation handing control to GDB; GDB, noting that the stop
9042 address doesn't map to any known breakpoint, returns control back
9043 to the simulator; the simulator then delivers the hardware
9044 equivalent of a GDB_SIGNAL_TRAP to the program being
9045 debugged. */
9046 signal_program[GDB_SIGNAL_TRAP] = 0;
9047 signal_program[GDB_SIGNAL_INT] = 0;
9048
9049 /* Signals that are not errors should not normally enter the debugger. */
9050 signal_stop[GDB_SIGNAL_ALRM] = 0;
9051 signal_print[GDB_SIGNAL_ALRM] = 0;
9052 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9053 signal_print[GDB_SIGNAL_VTALRM] = 0;
9054 signal_stop[GDB_SIGNAL_PROF] = 0;
9055 signal_print[GDB_SIGNAL_PROF] = 0;
9056 signal_stop[GDB_SIGNAL_CHLD] = 0;
9057 signal_print[GDB_SIGNAL_CHLD] = 0;
9058 signal_stop[GDB_SIGNAL_IO] = 0;
9059 signal_print[GDB_SIGNAL_IO] = 0;
9060 signal_stop[GDB_SIGNAL_POLL] = 0;
9061 signal_print[GDB_SIGNAL_POLL] = 0;
9062 signal_stop[GDB_SIGNAL_URG] = 0;
9063 signal_print[GDB_SIGNAL_URG] = 0;
9064 signal_stop[GDB_SIGNAL_WINCH] = 0;
9065 signal_print[GDB_SIGNAL_WINCH] = 0;
9066 signal_stop[GDB_SIGNAL_PRIO] = 0;
9067 signal_print[GDB_SIGNAL_PRIO] = 0;
9068
9069 /* These signals are used internally by user-level thread
9070 implementations. (See signal(5) on Solaris.) Like the above
9071 signals, a healthy program receives and handles them as part of
9072 its normal operation. */
9073 signal_stop[GDB_SIGNAL_LWP] = 0;
9074 signal_print[GDB_SIGNAL_LWP] = 0;
9075 signal_stop[GDB_SIGNAL_WAITING] = 0;
9076 signal_print[GDB_SIGNAL_WAITING] = 0;
9077 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9078 signal_print[GDB_SIGNAL_CANCEL] = 0;
9079 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9080 signal_print[GDB_SIGNAL_LIBRT] = 0;
9081
9082 /* Update cached state. */
9083 signal_cache_update (-1);
9084
9085 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9086 &stop_on_solib_events, _("\
9087 Set stopping for shared library events."), _("\
9088 Show stopping for shared library events."), _("\
9089 If nonzero, gdb will give control to the user when the dynamic linker\n\
9090 notifies gdb of shared library events. The most common event of interest\n\
9091 to the user would be loading/unloading of a new library."),
9092 set_stop_on_solib_events,
9093 show_stop_on_solib_events,
9094 &setlist, &showlist);
9095
9096 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9097 follow_fork_mode_kind_names,
9098 &follow_fork_mode_string, _("\
9099 Set debugger response to a program call of fork or vfork."), _("\
9100 Show debugger response to a program call of fork or vfork."), _("\
9101 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9102 parent - the original process is debugged after a fork\n\
9103 child - the new process is debugged after a fork\n\
9104 The unfollowed process will continue to run.\n\
9105 By default, the debugger will follow the parent process."),
9106 NULL,
9107 show_follow_fork_mode_string,
9108 &setlist, &showlist);
9109
9110 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9111 follow_exec_mode_names,
9112 &follow_exec_mode_string, _("\
9113 Set debugger response to a program call of exec."), _("\
9114 Show debugger response to a program call of exec."), _("\
9115 An exec call replaces the program image of a process.\n\
9116 \n\
9117 follow-exec-mode can be:\n\
9118 \n\
9119 new - the debugger creates a new inferior and rebinds the process\n\
9120 to this new inferior. The program the process was running before\n\
9121 the exec call can be restarted afterwards by restarting the original\n\
9122 inferior.\n\
9123 \n\
9124 same - the debugger keeps the process bound to the same inferior.\n\
9125 The new executable image replaces the previous executable loaded in\n\
9126 the inferior. Restarting the inferior after the exec call restarts\n\
9127 the executable the process was running after the exec call.\n\
9128 \n\
9129 By default, the debugger will use the same inferior."),
9130 NULL,
9131 show_follow_exec_mode_string,
9132 &setlist, &showlist);
9133
9134 add_setshow_enum_cmd ("scheduler-locking", class_run,
9135 scheduler_enums, &scheduler_mode, _("\
9136 Set mode for locking scheduler during execution."), _("\
9137 Show mode for locking scheduler during execution."), _("\
9138 off == no locking (threads may preempt at any time)\n\
9139 on == full locking (no thread except the current thread may run)\n\
9140 This applies to both normal execution and replay mode.\n\
9141 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9142 In this mode, other threads may run during other commands.\n\
9143 This applies to both normal execution and replay mode.\n\
9144 replay == scheduler locked in replay mode and unlocked during normal execution."),
9145 set_schedlock_func, /* traps on target vector */
9146 show_scheduler_mode,
9147 &setlist, &showlist);
9148
9149 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9150 Set mode for resuming threads of all processes."), _("\
9151 Show mode for resuming threads of all processes."), _("\
9152 When on, execution commands (such as 'continue' or 'next') resume all\n\
9153 threads of all processes. When off (which is the default), execution\n\
9154 commands only resume the threads of the current process. The set of\n\
9155 threads that are resumed is further refined by the scheduler-locking\n\
9156 mode (see help set scheduler-locking)."),
9157 NULL,
9158 show_schedule_multiple,
9159 &setlist, &showlist);
9160
9161 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9162 Set mode of the step operation."), _("\
9163 Show mode of the step operation."), _("\
9164 When set, doing a step over a function without debug line information\n\
9165 will stop at the first instruction of that function. Otherwise, the\n\
9166 function is skipped and the step command stops at a different source line."),
9167 NULL,
9168 show_step_stop_if_no_debug,
9169 &setlist, &showlist);
9170
9171 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9172 &can_use_displaced_stepping, _("\
9173 Set debugger's willingness to use displaced stepping."), _("\
9174 Show debugger's willingness to use displaced stepping."), _("\
9175 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9176 supported by the target architecture. If off, gdb will not use displaced\n\
9177 stepping to step over breakpoints, even if such is supported by the target\n\
9178 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9179 if the target architecture supports it and non-stop mode is active, but will not\n\
9180 use it in all-stop mode (see help set non-stop)."),
9181 NULL,
9182 show_can_use_displaced_stepping,
9183 &setlist, &showlist);
9184
9185 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9186 &exec_direction, _("Set direction of execution.\n\
9187 Options are 'forward' or 'reverse'."),
9188 _("Show direction of execution (forward/reverse)."),
9189 _("Tells gdb whether to execute forward or backward."),
9190 set_exec_direction_func, show_exec_direction_func,
9191 &setlist, &showlist);
9192
9193 /* Set/show detach-on-fork: user-settable mode. */
9194
9195 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9196 Set whether gdb will detach the child of a fork."), _("\
9197 Show whether gdb will detach the child of a fork."), _("\
9198 Tells gdb whether to detach the child of a fork."),
9199 NULL, NULL, &setlist, &showlist);
9200
9201 /* Set/show disable address space randomization mode. */
9202
9203 add_setshow_boolean_cmd ("disable-randomization", class_support,
9204 &disable_randomization, _("\
9205 Set disabling of debuggee's virtual address space randomization."), _("\
9206 Show disabling of debuggee's virtual address space randomization."), _("\
9207 When this mode is on (which is the default), randomization of the virtual\n\
9208 address space is disabled. Standalone programs run with the randomization\n\
9209 enabled by default on some platforms."),
9210 &set_disable_randomization,
9211 &show_disable_randomization,
9212 &setlist, &showlist);
9213
9214 /* ptid initializations */
9215 inferior_ptid = null_ptid;
9216 target_last_wait_ptid = minus_one_ptid;
9217
9218 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9219 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9220 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9221 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9222
9223 /* Explicitly create without lookup, since that tries to create a
9224 value with a void typed value, and when we get here, gdbarch
9225 isn't initialized yet. At this point, we're quite sure there
9226 isn't another convenience variable of the same name. */
9227 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9228
9229 add_setshow_boolean_cmd ("observer", no_class,
9230 &observer_mode_1, _("\
9231 Set whether gdb controls the inferior in observer mode."), _("\
9232 Show whether gdb controls the inferior in observer mode."), _("\
9233 In observer mode, GDB can get data from the inferior, but not\n\
9234 affect its execution. Registers and memory may not be changed,\n\
9235 breakpoints may not be set, and the program cannot be interrupted\n\
9236 or signalled."),
9237 set_observer_mode,
9238 show_observer_mode,
9239 &setlist,
9240 &showlist);
9241 }
This page took 0.21903 seconds and 5 git commands to generate.