* lib/gdbserver-support.exp (gdb_target_cmd): Anchor the ends
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293 static int breakpoints_failed;
294
295 /* Nonzero after stop if current stack frame should be printed. */
296
297 static int stop_print_frame;
298
299 static struct breakpoint *step_resume_breakpoint = NULL;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 static void
335 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("\
339 Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341 }
342 \f
343
344 static int
345 follow_fork (void)
346 {
347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
348
349 return target_follow_fork (follow_child);
350 }
351
352 void
353 follow_inferior_reset_breakpoints (void)
354 {
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
376 }
377
378 /* EXECD_PATHNAME is assumed to be non-NULL. */
379
380 static void
381 follow_exec (int pid, char *execd_pathname)
382 {
383 int saved_pid = pid;
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
388
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
417 /* What is this a.out's name? */
418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
427 error (_("Could find run target to save before following exec"));
428
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
431 inferior_ptid = pid_to_ptid (saved_pid);
432 /* Because mourn_inferior resets inferior_ptid. */
433 push_target (tgt);
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
439 symbol_file_add_main (execd_pathname, 0);
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
444 #if defined(SOLIB_RESTART)
445 SOLIB_RESTART ();
446 #endif
447 #ifdef SOLIB_CREATE_INFERIOR_HOOK
448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
449 #else
450 solib_create_inferior_hook ();
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474 static ptid_t saved_singlestep_ptid;
475 static int stepping_past_singlestep_breakpoint;
476 \f
477
478 /* Things to clean up if we QUIT out of resume (). */
479 static void
480 resume_cleanups (void *ignore)
481 {
482 normal_stop ();
483 }
484
485 static const char schedlock_off[] = "off";
486 static const char schedlock_on[] = "on";
487 static const char schedlock_step[] = "step";
488 static const char *scheduler_enums[] = {
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493 };
494 static const char *scheduler_mode = schedlock_off;
495 static void
496 show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498 {
499 fprintf_filtered (file, _("\
500 Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502 }
503
504 static void
505 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
506 {
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
512 }
513
514
515 /* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523 void
524 resume (int step, enum target_signal sig)
525 {
526 int should_resume = 1;
527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
528 QUIT;
529
530 if (debug_infrun)
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
533
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
536
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
547
548
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
556 if (SOFTWARE_SINGLE_STEP_P () && step)
557 {
558 /* Do it the hard way, w/temp breakpoints */
559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
565 singlestep_ptid = inferior_ptid;
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
696 }
697
698 return 0;
699
700 }
701
702 /* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705 static CORE_ADDR prev_pc;
706
707 /* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
711 or -1 for act according to how it stopped.
712 STEP is nonzero if should trap after one instruction.
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
716
717 You should call clear_proceed_status before calling proceed. */
718
719 void
720 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
721 {
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
729 if (addr == (CORE_ADDR) -1)
730 {
731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
736 oneproc = 1;
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
747 }
748
749 if (debug_infrun)
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
753
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
762 prepare_to_proceed checks the current thread against the thread
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
767
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
776 insert breakpoints -- so they were inserted. */
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
814 updated correctly when the inferior is stopped. */
815 prev_pc = read_pc ();
816
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
824 if (!target_can_async_p ())
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
829 }
830 \f
831
832 /* Start remote-debugging of a machine over a serial link. */
833
834 void
835 start_remote (void)
836 {
837 init_thread_list ();
838 init_wait_for_inferior ();
839 stop_soon = STOP_QUIETLY;
840 trap_expected = 0;
841
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
844 indicate to wait_for_inferior that a target should timeout if
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909 };
910
911 /* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
915 struct execution_control_state
916 {
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
930 int step_after_step_resume_breakpoint;
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938 };
939
940 void init_execution_control_state (struct execution_control_state *ecs);
941
942 void handle_inferior_event (struct execution_control_state *ecs);
943
944 static void step_into_function (struct execution_control_state *ecs);
945 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
946 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
947 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
948 struct frame_id sr_id);
949 static void stop_stepping (struct execution_control_state *ecs);
950 static void prepare_to_wait (struct execution_control_state *ecs);
951 static void keep_going (struct execution_control_state *ecs);
952 static void print_stop_reason (enum inferior_stop_reason stop_reason,
953 int stop_info);
954
955 /* Wait for control to return from inferior to debugger.
956 If inferior gets a signal, we may decide to start it up again
957 instead of returning. That is why there is a loop in this function.
958 When this function actually returns it means the inferior
959 should be left stopped and GDB should read more commands. */
960
961 void
962 wait_for_inferior (void)
963 {
964 struct cleanup *old_cleanups;
965 struct execution_control_state ecss;
966 struct execution_control_state *ecs;
967
968 if (debug_infrun)
969 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
970
971 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
972 &step_resume_breakpoint);
973
974 /* wfi still stays in a loop, so it's OK just to take the address of
975 a local to get the ecs pointer. */
976 ecs = &ecss;
977
978 /* Fill in with reasonable starting values. */
979 init_execution_control_state (ecs);
980
981 /* We'll update this if & when we switch to a new thread. */
982 previous_inferior_ptid = inferior_ptid;
983
984 overlay_cache_invalid = 1;
985
986 /* We have to invalidate the registers BEFORE calling target_wait
987 because they can be loaded from the target while in target_wait.
988 This makes remote debugging a bit more efficient for those
989 targets that provide critical registers as part of their normal
990 status mechanism. */
991
992 registers_changed ();
993
994 while (1)
995 {
996 if (deprecated_target_wait_hook)
997 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
998 else
999 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1000
1001 /* Now figure out what to do with the result of the result. */
1002 handle_inferior_event (ecs);
1003
1004 if (!ecs->wait_some_more)
1005 break;
1006 }
1007 do_cleanups (old_cleanups);
1008 }
1009
1010 /* Asynchronous version of wait_for_inferior. It is called by the
1011 event loop whenever a change of state is detected on the file
1012 descriptor corresponding to the target. It can be called more than
1013 once to complete a single execution command. In such cases we need
1014 to keep the state in a global variable ASYNC_ECSS. If it is the
1015 last time that this function is called for a single execution
1016 command, then report to the user that the inferior has stopped, and
1017 do the necessary cleanups. */
1018
1019 struct execution_control_state async_ecss;
1020 struct execution_control_state *async_ecs;
1021
1022 void
1023 fetch_inferior_event (void *client_data)
1024 {
1025 static struct cleanup *old_cleanups;
1026
1027 async_ecs = &async_ecss;
1028
1029 if (!async_ecs->wait_some_more)
1030 {
1031 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1032 &step_resume_breakpoint);
1033
1034 /* Fill in with reasonable starting values. */
1035 init_execution_control_state (async_ecs);
1036
1037 /* We'll update this if & when we switch to a new thread. */
1038 previous_inferior_ptid = inferior_ptid;
1039
1040 overlay_cache_invalid = 1;
1041
1042 /* We have to invalidate the registers BEFORE calling target_wait
1043 because they can be loaded from the target while in target_wait.
1044 This makes remote debugging a bit more efficient for those
1045 targets that provide critical registers as part of their normal
1046 status mechanism. */
1047
1048 registers_changed ();
1049 }
1050
1051 if (deprecated_target_wait_hook)
1052 async_ecs->ptid =
1053 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1054 else
1055 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1056
1057 /* Now figure out what to do with the result of the result. */
1058 handle_inferior_event (async_ecs);
1059
1060 if (!async_ecs->wait_some_more)
1061 {
1062 /* Do only the cleanups that have been added by this
1063 function. Let the continuations for the commands do the rest,
1064 if there are any. */
1065 do_exec_cleanups (old_cleanups);
1066 normal_stop ();
1067 if (step_multi && stop_step)
1068 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1069 else
1070 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1071 }
1072 }
1073
1074 /* Prepare an execution control state for looping through a
1075 wait_for_inferior-type loop. */
1076
1077 void
1078 init_execution_control_state (struct execution_control_state *ecs)
1079 {
1080 ecs->another_trap = 0;
1081 ecs->random_signal = 0;
1082 ecs->step_after_step_resume_breakpoint = 0;
1083 ecs->handling_longjmp = 0; /* FIXME */
1084 ecs->stepping_through_solib_after_catch = 0;
1085 ecs->stepping_through_solib_catchpoints = NULL;
1086 ecs->sal = find_pc_line (prev_pc, 0);
1087 ecs->current_line = ecs->sal.line;
1088 ecs->current_symtab = ecs->sal.symtab;
1089 ecs->infwait_state = infwait_normal_state;
1090 ecs->waiton_ptid = pid_to_ptid (-1);
1091 ecs->wp = &(ecs->ws);
1092 }
1093
1094 /* Return the cached copy of the last pid/waitstatus returned by
1095 target_wait()/deprecated_target_wait_hook(). The data is actually
1096 cached by handle_inferior_event(), which gets called immediately
1097 after target_wait()/deprecated_target_wait_hook(). */
1098
1099 void
1100 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1101 {
1102 *ptidp = target_last_wait_ptid;
1103 *status = target_last_waitstatus;
1104 }
1105
1106 void
1107 nullify_last_target_wait_ptid (void)
1108 {
1109 target_last_wait_ptid = minus_one_ptid;
1110 }
1111
1112 /* Switch thread contexts, maintaining "infrun state". */
1113
1114 static void
1115 context_switch (struct execution_control_state *ecs)
1116 {
1117 /* Caution: it may happen that the new thread (or the old one!)
1118 is not in the thread list. In this case we must not attempt
1119 to "switch context", or we run the risk that our context may
1120 be lost. This may happen as a result of the target module
1121 mishandling thread creation. */
1122
1123 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1124 { /* Perform infrun state context switch: */
1125 /* Save infrun state for the old thread. */
1126 save_infrun_state (inferior_ptid, prev_pc,
1127 trap_expected, step_resume_breakpoint,
1128 step_range_start,
1129 step_range_end, &step_frame_id,
1130 ecs->handling_longjmp, ecs->another_trap,
1131 ecs->stepping_through_solib_after_catch,
1132 ecs->stepping_through_solib_catchpoints,
1133 ecs->current_line, ecs->current_symtab);
1134
1135 /* Load infrun state for the new thread. */
1136 load_infrun_state (ecs->ptid, &prev_pc,
1137 &trap_expected, &step_resume_breakpoint,
1138 &step_range_start,
1139 &step_range_end, &step_frame_id,
1140 &ecs->handling_longjmp, &ecs->another_trap,
1141 &ecs->stepping_through_solib_after_catch,
1142 &ecs->stepping_through_solib_catchpoints,
1143 &ecs->current_line, &ecs->current_symtab);
1144 }
1145 inferior_ptid = ecs->ptid;
1146 }
1147
1148 static void
1149 adjust_pc_after_break (struct execution_control_state *ecs)
1150 {
1151 CORE_ADDR breakpoint_pc;
1152
1153 /* If this target does not decrement the PC after breakpoints, then
1154 we have nothing to do. */
1155 if (DECR_PC_AFTER_BREAK == 0)
1156 return;
1157
1158 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1159 we aren't, just return.
1160
1161 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1162 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1163 by software breakpoints should be handled through the normal breakpoint
1164 layer.
1165
1166 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1167 different signals (SIGILL or SIGEMT for instance), but it is less
1168 clear where the PC is pointing afterwards. It may not match
1169 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1170 these signals at breakpoints (the code has been in GDB since at least
1171 1992) so I can not guess how to handle them here.
1172
1173 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1174 would have the PC after hitting a watchpoint affected by
1175 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1176 in GDB history, and it seems unlikely to be correct, so
1177 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1178
1179 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1180 return;
1181
1182 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1183 return;
1184
1185 /* Find the location where (if we've hit a breakpoint) the
1186 breakpoint would be. */
1187 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1188
1189 if (SOFTWARE_SINGLE_STEP_P ())
1190 {
1191 /* When using software single-step, a SIGTRAP can only indicate
1192 an inserted breakpoint. This actually makes things
1193 easier. */
1194 if (singlestep_breakpoints_inserted_p)
1195 /* When software single stepping, the instruction at [prev_pc]
1196 is never a breakpoint, but the instruction following
1197 [prev_pc] (in program execution order) always is. Assume
1198 that following instruction was reached and hence a software
1199 breakpoint was hit. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1202 /* The inferior was free running (i.e., no single-step
1203 breakpoints inserted) and it hit a software breakpoint. */
1204 write_pc_pid (breakpoint_pc, ecs->ptid);
1205 }
1206 else
1207 {
1208 /* When using hardware single-step, a SIGTRAP is reported for
1209 both a completed single-step and a software breakpoint. Need
1210 to differentiate between the two as the latter needs
1211 adjusting but the former does not.
1212
1213 When the thread to be examined does not match the current thread
1214 context we can't use currently_stepping, so assume no
1215 single-stepping in this case. */
1216 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1217 {
1218 if (prev_pc == breakpoint_pc
1219 && software_breakpoint_inserted_here_p (breakpoint_pc))
1220 /* Hardware single-stepped a software breakpoint (as
1221 occures when the inferior is resumed with PC pointing
1222 at not-yet-hit software breakpoint). Since the
1223 breakpoint really is executed, the inferior needs to be
1224 backed up to the breakpoint address. */
1225 write_pc_pid (breakpoint_pc, ecs->ptid);
1226 }
1227 else
1228 {
1229 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1230 /* The inferior was free running (i.e., no hardware
1231 single-step and no possibility of a false SIGTRAP) and
1232 hit a software breakpoint. */
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
1235 }
1236 }
1237
1238 /* Given an execution control state that has been freshly filled in
1239 by an event from the inferior, figure out what it means and take
1240 appropriate action. */
1241
1242 int stepped_after_stopped_by_watchpoint;
1243
1244 void
1245 handle_inferior_event (struct execution_control_state *ecs)
1246 {
1247 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1248 that the variable stepped_after_stopped_by_watchpoint isn't used,
1249 then you're wrong! See remote.c:remote_stopped_data_address. */
1250
1251 int sw_single_step_trap_p = 0;
1252 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1253
1254 /* Cache the last pid/waitstatus. */
1255 target_last_wait_ptid = ecs->ptid;
1256 target_last_waitstatus = *ecs->wp;
1257
1258 adjust_pc_after_break (ecs);
1259
1260 switch (ecs->infwait_state)
1261 {
1262 case infwait_thread_hop_state:
1263 if (debug_infrun)
1264 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1265 /* Cancel the waiton_ptid. */
1266 ecs->waiton_ptid = pid_to_ptid (-1);
1267 break;
1268
1269 case infwait_normal_state:
1270 if (debug_infrun)
1271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1272 stepped_after_stopped_by_watchpoint = 0;
1273 break;
1274
1275 case infwait_nonstep_watch_state:
1276 if (debug_infrun)
1277 fprintf_unfiltered (gdb_stdlog,
1278 "infrun: infwait_nonstep_watch_state\n");
1279 insert_breakpoints ();
1280
1281 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1282 handle things like signals arriving and other things happening
1283 in combination correctly? */
1284 stepped_after_stopped_by_watchpoint = 1;
1285 break;
1286
1287 default:
1288 internal_error (__FILE__, __LINE__, _("bad switch"));
1289 }
1290 ecs->infwait_state = infwait_normal_state;
1291
1292 flush_cached_frames ();
1293
1294 /* If it's a new process, add it to the thread database */
1295
1296 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1297 && !ptid_equal (ecs->ptid, minus_one_ptid)
1298 && !in_thread_list (ecs->ptid));
1299
1300 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1301 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1302 {
1303 add_thread (ecs->ptid);
1304
1305 ui_out_text (uiout, "[New ");
1306 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1307 ui_out_text (uiout, "]\n");
1308 }
1309
1310 switch (ecs->ws.kind)
1311 {
1312 case TARGET_WAITKIND_LOADED:
1313 if (debug_infrun)
1314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1315 /* Ignore gracefully during startup of the inferior, as it
1316 might be the shell which has just loaded some objects,
1317 otherwise add the symbols for the newly loaded objects. */
1318 #ifdef SOLIB_ADD
1319 if (stop_soon == NO_STOP_QUIETLY)
1320 {
1321 /* Remove breakpoints, SOLIB_ADD might adjust
1322 breakpoint addresses via breakpoint_re_set. */
1323 if (breakpoints_inserted)
1324 remove_breakpoints ();
1325
1326 /* Check for any newly added shared libraries if we're
1327 supposed to be adding them automatically. Switch
1328 terminal for any messages produced by
1329 breakpoint_re_set. */
1330 target_terminal_ours_for_output ();
1331 /* NOTE: cagney/2003-11-25: Make certain that the target
1332 stack's section table is kept up-to-date. Architectures,
1333 (e.g., PPC64), use the section table to perform
1334 operations such as address => section name and hence
1335 require the table to contain all sections (including
1336 those found in shared libraries). */
1337 /* NOTE: cagney/2003-11-25: Pass current_target and not
1338 exec_ops to SOLIB_ADD. This is because current GDB is
1339 only tooled to propagate section_table changes out from
1340 the "current_target" (see target_resize_to_sections), and
1341 not up from the exec stratum. This, of course, isn't
1342 right. "infrun.c" should only interact with the
1343 exec/process stratum, instead relying on the target stack
1344 to propagate relevant changes (stop, section table
1345 changed, ...) up to other layers. */
1346 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1347 target_terminal_inferior ();
1348
1349 /* Reinsert breakpoints and continue. */
1350 if (breakpoints_inserted)
1351 insert_breakpoints ();
1352 }
1353 #endif
1354 resume (0, TARGET_SIGNAL_0);
1355 prepare_to_wait (ecs);
1356 return;
1357
1358 case TARGET_WAITKIND_SPURIOUS:
1359 if (debug_infrun)
1360 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1361 resume (0, TARGET_SIGNAL_0);
1362 prepare_to_wait (ecs);
1363 return;
1364
1365 case TARGET_WAITKIND_EXITED:
1366 if (debug_infrun)
1367 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1368 target_terminal_ours (); /* Must do this before mourn anyway */
1369 print_stop_reason (EXITED, ecs->ws.value.integer);
1370
1371 /* Record the exit code in the convenience variable $_exitcode, so
1372 that the user can inspect this again later. */
1373 set_internalvar (lookup_internalvar ("_exitcode"),
1374 value_from_longest (builtin_type_int,
1375 (LONGEST) ecs->ws.value.integer));
1376 gdb_flush (gdb_stdout);
1377 target_mourn_inferior ();
1378 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1379 stop_print_frame = 0;
1380 stop_stepping (ecs);
1381 return;
1382
1383 case TARGET_WAITKIND_SIGNALLED:
1384 if (debug_infrun)
1385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1386 stop_print_frame = 0;
1387 stop_signal = ecs->ws.value.sig;
1388 target_terminal_ours (); /* Must do this before mourn anyway */
1389
1390 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1391 reach here unless the inferior is dead. However, for years
1392 target_kill() was called here, which hints that fatal signals aren't
1393 really fatal on some systems. If that's true, then some changes
1394 may be needed. */
1395 target_mourn_inferior ();
1396
1397 print_stop_reason (SIGNAL_EXITED, stop_signal);
1398 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1399 stop_stepping (ecs);
1400 return;
1401
1402 /* The following are the only cases in which we keep going;
1403 the above cases end in a continue or goto. */
1404 case TARGET_WAITKIND_FORKED:
1405 case TARGET_WAITKIND_VFORKED:
1406 if (debug_infrun)
1407 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1408 stop_signal = TARGET_SIGNAL_TRAP;
1409 pending_follow.kind = ecs->ws.kind;
1410
1411 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1412 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1413
1414 if (!ptid_equal (ecs->ptid, inferior_ptid))
1415 {
1416 context_switch (ecs);
1417 flush_cached_frames ();
1418 }
1419
1420 stop_pc = read_pc ();
1421
1422 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1423
1424 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1425
1426 /* If no catchpoint triggered for this, then keep going. */
1427 if (ecs->random_signal)
1428 {
1429 stop_signal = TARGET_SIGNAL_0;
1430 keep_going (ecs);
1431 return;
1432 }
1433 goto process_event_stop_test;
1434
1435 case TARGET_WAITKIND_EXECD:
1436 if (debug_infrun)
1437 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1438 stop_signal = TARGET_SIGNAL_TRAP;
1439
1440 /* NOTE drow/2002-12-05: This code should be pushed down into the
1441 target_wait function. Until then following vfork on HP/UX 10.20
1442 is probably broken by this. Of course, it's broken anyway. */
1443 /* Is this a target which reports multiple exec events per actual
1444 call to exec()? (HP-UX using ptrace does, for example.) If so,
1445 ignore all but the last one. Just resume the exec'r, and wait
1446 for the next exec event. */
1447 if (inferior_ignoring_leading_exec_events)
1448 {
1449 inferior_ignoring_leading_exec_events--;
1450 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1451 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1452 parent_pid);
1453 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1454 prepare_to_wait (ecs);
1455 return;
1456 }
1457 inferior_ignoring_leading_exec_events =
1458 target_reported_exec_events_per_exec_call () - 1;
1459
1460 pending_follow.execd_pathname =
1461 savestring (ecs->ws.value.execd_pathname,
1462 strlen (ecs->ws.value.execd_pathname));
1463
1464 /* This causes the eventpoints and symbol table to be reset. Must
1465 do this now, before trying to determine whether to stop. */
1466 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1467 xfree (pending_follow.execd_pathname);
1468
1469 stop_pc = read_pc_pid (ecs->ptid);
1470 ecs->saved_inferior_ptid = inferior_ptid;
1471 inferior_ptid = ecs->ptid;
1472
1473 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1474
1475 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1476 inferior_ptid = ecs->saved_inferior_ptid;
1477
1478 if (!ptid_equal (ecs->ptid, inferior_ptid))
1479 {
1480 context_switch (ecs);
1481 flush_cached_frames ();
1482 }
1483
1484 /* If no catchpoint triggered for this, then keep going. */
1485 if (ecs->random_signal)
1486 {
1487 stop_signal = TARGET_SIGNAL_0;
1488 keep_going (ecs);
1489 return;
1490 }
1491 goto process_event_stop_test;
1492
1493 /* Be careful not to try to gather much state about a thread
1494 that's in a syscall. It's frequently a losing proposition. */
1495 case TARGET_WAITKIND_SYSCALL_ENTRY:
1496 if (debug_infrun)
1497 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1498 resume (0, TARGET_SIGNAL_0);
1499 prepare_to_wait (ecs);
1500 return;
1501
1502 /* Before examining the threads further, step this thread to
1503 get it entirely out of the syscall. (We get notice of the
1504 event when the thread is just on the verge of exiting a
1505 syscall. Stepping one instruction seems to get it back
1506 into user code.) */
1507 case TARGET_WAITKIND_SYSCALL_RETURN:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1510 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1511 prepare_to_wait (ecs);
1512 return;
1513
1514 case TARGET_WAITKIND_STOPPED:
1515 if (debug_infrun)
1516 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1517 stop_signal = ecs->ws.value.sig;
1518 break;
1519
1520 /* We had an event in the inferior, but we are not interested
1521 in handling it at this level. The lower layers have already
1522 done what needs to be done, if anything.
1523
1524 One of the possible circumstances for this is when the
1525 inferior produces output for the console. The inferior has
1526 not stopped, and we are ignoring the event. Another possible
1527 circumstance is any event which the lower level knows will be
1528 reported multiple times without an intervening resume. */
1529 case TARGET_WAITKIND_IGNORE:
1530 if (debug_infrun)
1531 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1532 prepare_to_wait (ecs);
1533 return;
1534 }
1535
1536 /* We may want to consider not doing a resume here in order to give
1537 the user a chance to play with the new thread. It might be good
1538 to make that a user-settable option. */
1539
1540 /* At this point, all threads are stopped (happens automatically in
1541 either the OS or the native code). Therefore we need to continue
1542 all threads in order to make progress. */
1543 if (ecs->new_thread_event)
1544 {
1545 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1546 prepare_to_wait (ecs);
1547 return;
1548 }
1549
1550 stop_pc = read_pc_pid (ecs->ptid);
1551
1552 if (debug_infrun)
1553 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1554
1555 if (stepping_past_singlestep_breakpoint)
1556 {
1557 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1558 && singlestep_breakpoints_inserted_p);
1559 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1560 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1561
1562 stepping_past_singlestep_breakpoint = 0;
1563
1564 /* We've either finished single-stepping past the single-step
1565 breakpoint, or stopped for some other reason. It would be nice if
1566 we could tell, but we can't reliably. */
1567 if (stop_signal == TARGET_SIGNAL_TRAP)
1568 {
1569 if (debug_infrun)
1570 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1571 /* Pull the single step breakpoints out of the target. */
1572 SOFTWARE_SINGLE_STEP (0, 0);
1573 singlestep_breakpoints_inserted_p = 0;
1574
1575 ecs->random_signal = 0;
1576
1577 ecs->ptid = saved_singlestep_ptid;
1578 context_switch (ecs);
1579 if (deprecated_context_hook)
1580 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1581
1582 resume (1, TARGET_SIGNAL_0);
1583 prepare_to_wait (ecs);
1584 return;
1585 }
1586 }
1587
1588 stepping_past_singlestep_breakpoint = 0;
1589
1590 /* See if a thread hit a thread-specific breakpoint that was meant for
1591 another thread. If so, then step that thread past the breakpoint,
1592 and continue it. */
1593
1594 if (stop_signal == TARGET_SIGNAL_TRAP)
1595 {
1596 int thread_hop_needed = 0;
1597
1598 /* Check if a regular breakpoint has been hit before checking
1599 for a potential single step breakpoint. Otherwise, GDB will
1600 not see this breakpoint hit when stepping onto breakpoints. */
1601 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1602 {
1603 ecs->random_signal = 0;
1604 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1605 thread_hop_needed = 1;
1606 }
1607 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1608 {
1609 ecs->random_signal = 0;
1610 /* The call to in_thread_list is necessary because PTIDs sometimes
1611 change when we go from single-threaded to multi-threaded. If
1612 the singlestep_ptid is still in the list, assume that it is
1613 really different from ecs->ptid. */
1614 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1615 && in_thread_list (singlestep_ptid))
1616 {
1617 thread_hop_needed = 1;
1618 stepping_past_singlestep_breakpoint = 1;
1619 saved_singlestep_ptid = singlestep_ptid;
1620 }
1621 }
1622
1623 if (thread_hop_needed)
1624 {
1625 int remove_status;
1626
1627 if (debug_infrun)
1628 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1629
1630 /* Saw a breakpoint, but it was hit by the wrong thread.
1631 Just continue. */
1632
1633 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1634 {
1635 /* Pull the single step breakpoints out of the target. */
1636 SOFTWARE_SINGLE_STEP (0, 0);
1637 singlestep_breakpoints_inserted_p = 0;
1638 }
1639
1640 remove_status = remove_breakpoints ();
1641 /* Did we fail to remove breakpoints? If so, try
1642 to set the PC past the bp. (There's at least
1643 one situation in which we can fail to remove
1644 the bp's: On HP-UX's that use ttrace, we can't
1645 change the address space of a vforking child
1646 process until the child exits (well, okay, not
1647 then either :-) or execs. */
1648 if (remove_status != 0)
1649 {
1650 /* FIXME! This is obviously non-portable! */
1651 write_pc_pid (stop_pc + 4, ecs->ptid);
1652 /* We need to restart all the threads now,
1653 * unles we're running in scheduler-locked mode.
1654 * Use currently_stepping to determine whether to
1655 * step or continue.
1656 */
1657 /* FIXME MVS: is there any reason not to call resume()? */
1658 if (scheduler_mode == schedlock_on)
1659 target_resume (ecs->ptid,
1660 currently_stepping (ecs), TARGET_SIGNAL_0);
1661 else
1662 target_resume (RESUME_ALL,
1663 currently_stepping (ecs), TARGET_SIGNAL_0);
1664 prepare_to_wait (ecs);
1665 return;
1666 }
1667 else
1668 { /* Single step */
1669 breakpoints_inserted = 0;
1670 if (!ptid_equal (inferior_ptid, ecs->ptid))
1671 context_switch (ecs);
1672 ecs->waiton_ptid = ecs->ptid;
1673 ecs->wp = &(ecs->ws);
1674 ecs->another_trap = 1;
1675
1676 ecs->infwait_state = infwait_thread_hop_state;
1677 keep_going (ecs);
1678 registers_changed ();
1679 return;
1680 }
1681 }
1682 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1683 {
1684 sw_single_step_trap_p = 1;
1685 ecs->random_signal = 0;
1686 }
1687 }
1688 else
1689 ecs->random_signal = 1;
1690
1691 /* See if something interesting happened to the non-current thread. If
1692 so, then switch to that thread. */
1693 if (!ptid_equal (ecs->ptid, inferior_ptid))
1694 {
1695 if (debug_infrun)
1696 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1697
1698 context_switch (ecs);
1699
1700 if (deprecated_context_hook)
1701 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1702
1703 flush_cached_frames ();
1704 }
1705
1706 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1707 {
1708 /* Pull the single step breakpoints out of the target. */
1709 SOFTWARE_SINGLE_STEP (0, 0);
1710 singlestep_breakpoints_inserted_p = 0;
1711 }
1712
1713 /* It may not be necessary to disable the watchpoint to stop over
1714 it. For example, the PA can (with some kernel cooperation)
1715 single step over a watchpoint without disabling the watchpoint. */
1716 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1717 {
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1720 resume (1, 0);
1721 prepare_to_wait (ecs);
1722 return;
1723 }
1724
1725 /* It is far more common to need to disable a watchpoint to step
1726 the inferior over it. FIXME. What else might a debug
1727 register or page protection watchpoint scheme need here? */
1728 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1729 {
1730 /* At this point, we are stopped at an instruction which has
1731 attempted to write to a piece of memory under control of
1732 a watchpoint. The instruction hasn't actually executed
1733 yet. If we were to evaluate the watchpoint expression
1734 now, we would get the old value, and therefore no change
1735 would seem to have occurred.
1736
1737 In order to make watchpoints work `right', we really need
1738 to complete the memory write, and then evaluate the
1739 watchpoint expression. The following code does that by
1740 removing the watchpoint (actually, all watchpoints and
1741 breakpoints), single-stepping the target, re-inserting
1742 watchpoints, and then falling through to let normal
1743 single-step processing handle proceed. Since this
1744 includes evaluating watchpoints, things will come to a
1745 stop in the correct manner. */
1746
1747 if (debug_infrun)
1748 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1749 remove_breakpoints ();
1750 registers_changed ();
1751 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1752
1753 ecs->waiton_ptid = ecs->ptid;
1754 ecs->wp = &(ecs->ws);
1755 ecs->infwait_state = infwait_nonstep_watch_state;
1756 prepare_to_wait (ecs);
1757 return;
1758 }
1759
1760 /* It may be possible to simply continue after a watchpoint. */
1761 if (HAVE_CONTINUABLE_WATCHPOINT)
1762 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1763
1764 ecs->stop_func_start = 0;
1765 ecs->stop_func_end = 0;
1766 ecs->stop_func_name = 0;
1767 /* Don't care about return value; stop_func_start and stop_func_name
1768 will both be 0 if it doesn't work. */
1769 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1770 &ecs->stop_func_start, &ecs->stop_func_end);
1771 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1772 ecs->another_trap = 0;
1773 bpstat_clear (&stop_bpstat);
1774 stop_step = 0;
1775 stop_stack_dummy = 0;
1776 stop_print_frame = 1;
1777 ecs->random_signal = 0;
1778 stopped_by_random_signal = 0;
1779 breakpoints_failed = 0;
1780
1781 if (stop_signal == TARGET_SIGNAL_TRAP
1782 && trap_expected
1783 && gdbarch_single_step_through_delay_p (current_gdbarch)
1784 && currently_stepping (ecs))
1785 {
1786 /* We're trying to step of a breakpoint. Turns out that we're
1787 also on an instruction that needs to be stepped multiple
1788 times before it's been fully executing. E.g., architectures
1789 with a delay slot. It needs to be stepped twice, once for
1790 the instruction and once for the delay slot. */
1791 int step_through_delay
1792 = gdbarch_single_step_through_delay (current_gdbarch,
1793 get_current_frame ());
1794 if (debug_infrun && step_through_delay)
1795 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1796 if (step_range_end == 0 && step_through_delay)
1797 {
1798 /* The user issued a continue when stopped at a breakpoint.
1799 Set up for another trap and get out of here. */
1800 ecs->another_trap = 1;
1801 keep_going (ecs);
1802 return;
1803 }
1804 else if (step_through_delay)
1805 {
1806 /* The user issued a step when stopped at a breakpoint.
1807 Maybe we should stop, maybe we should not - the delay
1808 slot *might* correspond to a line of source. In any
1809 case, don't decide that here, just set ecs->another_trap,
1810 making sure we single-step again before breakpoints are
1811 re-inserted. */
1812 ecs->another_trap = 1;
1813 }
1814 }
1815
1816 /* Look at the cause of the stop, and decide what to do.
1817 The alternatives are:
1818 1) break; to really stop and return to the debugger,
1819 2) drop through to start up again
1820 (set ecs->another_trap to 1 to single step once)
1821 3) set ecs->random_signal to 1, and the decision between 1 and 2
1822 will be made according to the signal handling tables. */
1823
1824 /* First, distinguish signals caused by the debugger from signals
1825 that have to do with the program's own actions. Note that
1826 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1827 on the operating system version. Here we detect when a SIGILL or
1828 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1829 something similar for SIGSEGV, since a SIGSEGV will be generated
1830 when we're trying to execute a breakpoint instruction on a
1831 non-executable stack. This happens for call dummy breakpoints
1832 for architectures like SPARC that place call dummies on the
1833 stack. */
1834
1835 if (stop_signal == TARGET_SIGNAL_TRAP
1836 || (breakpoints_inserted
1837 && (stop_signal == TARGET_SIGNAL_ILL
1838 || stop_signal == TARGET_SIGNAL_SEGV
1839 || stop_signal == TARGET_SIGNAL_EMT))
1840 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1841 {
1842 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1843 {
1844 if (debug_infrun)
1845 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1846 stop_print_frame = 0;
1847 stop_stepping (ecs);
1848 return;
1849 }
1850
1851 /* This is originated from start_remote(), start_inferior() and
1852 shared libraries hook functions. */
1853 if (stop_soon == STOP_QUIETLY)
1854 {
1855 if (debug_infrun)
1856 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1857 stop_stepping (ecs);
1858 return;
1859 }
1860
1861 /* This originates from attach_command(). We need to overwrite
1862 the stop_signal here, because some kernels don't ignore a
1863 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1864 See more comments in inferior.h. */
1865 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1866 {
1867 stop_stepping (ecs);
1868 if (stop_signal == TARGET_SIGNAL_STOP)
1869 stop_signal = TARGET_SIGNAL_0;
1870 return;
1871 }
1872
1873 /* Don't even think about breakpoints if just proceeded over a
1874 breakpoint. */
1875 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1876 {
1877 if (debug_infrun)
1878 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1879 bpstat_clear (&stop_bpstat);
1880 }
1881 else
1882 {
1883 /* See if there is a breakpoint at the current PC. */
1884 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1885 stopped_by_watchpoint);
1886
1887 /* Following in case break condition called a
1888 function. */
1889 stop_print_frame = 1;
1890 }
1891
1892 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1893 at one stage in the past included checks for an inferior
1894 function call's call dummy's return breakpoint. The original
1895 comment, that went with the test, read:
1896
1897 ``End of a stack dummy. Some systems (e.g. Sony news) give
1898 another signal besides SIGTRAP, so check here as well as
1899 above.''
1900
1901 If someone ever tries to get get call dummys on a
1902 non-executable stack to work (where the target would stop
1903 with something like a SIGSEGV), then those tests might need
1904 to be re-instated. Given, however, that the tests were only
1905 enabled when momentary breakpoints were not being used, I
1906 suspect that it won't be the case.
1907
1908 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1909 be necessary for call dummies on a non-executable stack on
1910 SPARC. */
1911
1912 if (stop_signal == TARGET_SIGNAL_TRAP)
1913 ecs->random_signal
1914 = !(bpstat_explains_signal (stop_bpstat)
1915 || trap_expected
1916 || (step_range_end && step_resume_breakpoint == NULL));
1917 else
1918 {
1919 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1920 if (!ecs->random_signal)
1921 stop_signal = TARGET_SIGNAL_TRAP;
1922 }
1923 }
1924
1925 /* When we reach this point, we've pretty much decided
1926 that the reason for stopping must've been a random
1927 (unexpected) signal. */
1928
1929 else
1930 ecs->random_signal = 1;
1931
1932 process_event_stop_test:
1933 /* For the program's own signals, act according to
1934 the signal handling tables. */
1935
1936 if (ecs->random_signal)
1937 {
1938 /* Signal not for debugging purposes. */
1939 int printed = 0;
1940
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1943
1944 stopped_by_random_signal = 1;
1945
1946 if (signal_print[stop_signal])
1947 {
1948 printed = 1;
1949 target_terminal_ours_for_output ();
1950 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1951 }
1952 if (signal_stop[stop_signal])
1953 {
1954 stop_stepping (ecs);
1955 return;
1956 }
1957 /* If not going to stop, give terminal back
1958 if we took it away. */
1959 else if (printed)
1960 target_terminal_inferior ();
1961
1962 /* Clear the signal if it should not be passed. */
1963 if (signal_program[stop_signal] == 0)
1964 stop_signal = TARGET_SIGNAL_0;
1965
1966 if (prev_pc == read_pc ()
1967 && !breakpoints_inserted
1968 && breakpoint_here_p (read_pc ())
1969 && step_resume_breakpoint == NULL)
1970 {
1971 /* We were just starting a new sequence, attempting to
1972 single-step off of a breakpoint and expecting a SIGTRAP.
1973 Intead this signal arrives. This signal will take us out
1974 of the stepping range so GDB needs to remember to, when
1975 the signal handler returns, resume stepping off that
1976 breakpoint. */
1977 /* To simplify things, "continue" is forced to use the same
1978 code paths as single-step - set a breakpoint at the
1979 signal return address and then, once hit, step off that
1980 breakpoint. */
1981 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1982 ecs->step_after_step_resume_breakpoint = 1;
1983 keep_going (ecs);
1984 return;
1985 }
1986
1987 if (step_range_end != 0
1988 && stop_signal != TARGET_SIGNAL_0
1989 && stop_pc >= step_range_start && stop_pc < step_range_end
1990 && frame_id_eq (get_frame_id (get_current_frame ()),
1991 step_frame_id)
1992 && step_resume_breakpoint == NULL)
1993 {
1994 /* The inferior is about to take a signal that will take it
1995 out of the single step range. Set a breakpoint at the
1996 current PC (which is presumably where the signal handler
1997 will eventually return) and then allow the inferior to
1998 run free.
1999
2000 Note that this is only needed for a signal delivered
2001 while in the single-step range. Nested signals aren't a
2002 problem as they eventually all return. */
2003 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2004 keep_going (ecs);
2005 return;
2006 }
2007
2008 /* Note: step_resume_breakpoint may be non-NULL. This occures
2009 when either there's a nested signal, or when there's a
2010 pending signal enabled just as the signal handler returns
2011 (leaving the inferior at the step-resume-breakpoint without
2012 actually executing it). Either way continue until the
2013 breakpoint is really hit. */
2014 keep_going (ecs);
2015 return;
2016 }
2017
2018 /* Handle cases caused by hitting a breakpoint. */
2019 {
2020 CORE_ADDR jmp_buf_pc;
2021 struct bpstat_what what;
2022
2023 what = bpstat_what (stop_bpstat);
2024
2025 if (what.call_dummy)
2026 {
2027 stop_stack_dummy = 1;
2028 }
2029
2030 switch (what.main_action)
2031 {
2032 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2033 /* If we hit the breakpoint at longjmp, disable it for the
2034 duration of this command. Then, install a temporary
2035 breakpoint at the target of the jmp_buf. */
2036 if (debug_infrun)
2037 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2038 disable_longjmp_breakpoint ();
2039 remove_breakpoints ();
2040 breakpoints_inserted = 0;
2041 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2042 {
2043 keep_going (ecs);
2044 return;
2045 }
2046
2047 /* Need to blow away step-resume breakpoint, as it
2048 interferes with us */
2049 if (step_resume_breakpoint != NULL)
2050 {
2051 delete_step_resume_breakpoint (&step_resume_breakpoint);
2052 }
2053
2054 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2055 ecs->handling_longjmp = 1; /* FIXME */
2056 keep_going (ecs);
2057 return;
2058
2059 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2061 if (debug_infrun)
2062 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2063 remove_breakpoints ();
2064 breakpoints_inserted = 0;
2065 disable_longjmp_breakpoint ();
2066 ecs->handling_longjmp = 0; /* FIXME */
2067 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2068 break;
2069 /* else fallthrough */
2070
2071 case BPSTAT_WHAT_SINGLE:
2072 if (debug_infrun)
2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2074 if (breakpoints_inserted)
2075 {
2076 remove_breakpoints ();
2077 }
2078 breakpoints_inserted = 0;
2079 ecs->another_trap = 1;
2080 /* Still need to check other stuff, at least the case
2081 where we are stepping and step out of the right range. */
2082 break;
2083
2084 case BPSTAT_WHAT_STOP_NOISY:
2085 if (debug_infrun)
2086 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2087 stop_print_frame = 1;
2088
2089 /* We are about to nuke the step_resume_breakpointt via the
2090 cleanup chain, so no need to worry about it here. */
2091
2092 stop_stepping (ecs);
2093 return;
2094
2095 case BPSTAT_WHAT_STOP_SILENT:
2096 if (debug_infrun)
2097 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2098 stop_print_frame = 0;
2099
2100 /* We are about to nuke the step_resume_breakpoin via the
2101 cleanup chain, so no need to worry about it here. */
2102
2103 stop_stepping (ecs);
2104 return;
2105
2106 case BPSTAT_WHAT_STEP_RESUME:
2107 /* This proably demands a more elegant solution, but, yeah
2108 right...
2109
2110 This function's use of the simple variable
2111 step_resume_breakpoint doesn't seem to accomodate
2112 simultaneously active step-resume bp's, although the
2113 breakpoint list certainly can.
2114
2115 If we reach here and step_resume_breakpoint is already
2116 NULL, then apparently we have multiple active
2117 step-resume bp's. We'll just delete the breakpoint we
2118 stopped at, and carry on.
2119
2120 Correction: what the code currently does is delete a
2121 step-resume bp, but it makes no effort to ensure that
2122 the one deleted is the one currently stopped at. MVS */
2123
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2126
2127 if (step_resume_breakpoint == NULL)
2128 {
2129 step_resume_breakpoint =
2130 bpstat_find_step_resume_breakpoint (stop_bpstat);
2131 }
2132 delete_step_resume_breakpoint (&step_resume_breakpoint);
2133 if (ecs->step_after_step_resume_breakpoint)
2134 {
2135 /* Back when the step-resume breakpoint was inserted, we
2136 were trying to single-step off a breakpoint. Go back
2137 to doing that. */
2138 ecs->step_after_step_resume_breakpoint = 0;
2139 remove_breakpoints ();
2140 breakpoints_inserted = 0;
2141 ecs->another_trap = 1;
2142 keep_going (ecs);
2143 return;
2144 }
2145 break;
2146
2147 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2148 if (debug_infrun)
2149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2150 /* If were waiting for a trap, hitting the step_resume_break
2151 doesn't count as getting it. */
2152 if (trap_expected)
2153 ecs->another_trap = 1;
2154 break;
2155
2156 case BPSTAT_WHAT_CHECK_SHLIBS:
2157 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2158 {
2159 if (debug_infrun)
2160 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2161 /* Remove breakpoints, we eventually want to step over the
2162 shlib event breakpoint, and SOLIB_ADD might adjust
2163 breakpoint addresses via breakpoint_re_set. */
2164 if (breakpoints_inserted)
2165 remove_breakpoints ();
2166 breakpoints_inserted = 0;
2167
2168 /* Check for any newly added shared libraries if we're
2169 supposed to be adding them automatically. Switch
2170 terminal for any messages produced by
2171 breakpoint_re_set. */
2172 target_terminal_ours_for_output ();
2173 /* NOTE: cagney/2003-11-25: Make certain that the target
2174 stack's section table is kept up-to-date. Architectures,
2175 (e.g., PPC64), use the section table to perform
2176 operations such as address => section name and hence
2177 require the table to contain all sections (including
2178 those found in shared libraries). */
2179 /* NOTE: cagney/2003-11-25: Pass current_target and not
2180 exec_ops to SOLIB_ADD. This is because current GDB is
2181 only tooled to propagate section_table changes out from
2182 the "current_target" (see target_resize_to_sections), and
2183 not up from the exec stratum. This, of course, isn't
2184 right. "infrun.c" should only interact with the
2185 exec/process stratum, instead relying on the target stack
2186 to propagate relevant changes (stop, section table
2187 changed, ...) up to other layers. */
2188 #ifdef SOLIB_ADD
2189 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2190 #else
2191 solib_add (NULL, 0, &current_target, auto_solib_add);
2192 #endif
2193 target_terminal_inferior ();
2194
2195 /* Try to reenable shared library breakpoints, additional
2196 code segments in shared libraries might be mapped in now. */
2197 re_enable_breakpoints_in_shlibs ();
2198
2199 /* If requested, stop when the dynamic linker notifies
2200 gdb of events. This allows the user to get control
2201 and place breakpoints in initializer routines for
2202 dynamically loaded objects (among other things). */
2203 if (stop_on_solib_events || stop_stack_dummy)
2204 {
2205 stop_stepping (ecs);
2206 return;
2207 }
2208
2209 /* If we stopped due to an explicit catchpoint, then the
2210 (see above) call to SOLIB_ADD pulled in any symbols
2211 from a newly-loaded library, if appropriate.
2212
2213 We do want the inferior to stop, but not where it is
2214 now, which is in the dynamic linker callback. Rather,
2215 we would like it stop in the user's program, just after
2216 the call that caused this catchpoint to trigger. That
2217 gives the user a more useful vantage from which to
2218 examine their program's state. */
2219 else if (what.main_action
2220 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2221 {
2222 /* ??rehrauer: If I could figure out how to get the
2223 right return PC from here, we could just set a temp
2224 breakpoint and resume. I'm not sure we can without
2225 cracking open the dld's shared libraries and sniffing
2226 their unwind tables and text/data ranges, and that's
2227 not a terribly portable notion.
2228
2229 Until that time, we must step the inferior out of the
2230 dld callback, and also out of the dld itself (and any
2231 code or stubs in libdld.sl, such as "shl_load" and
2232 friends) until we reach non-dld code. At that point,
2233 we can stop stepping. */
2234 bpstat_get_triggered_catchpoints (stop_bpstat,
2235 &ecs->
2236 stepping_through_solib_catchpoints);
2237 ecs->stepping_through_solib_after_catch = 1;
2238
2239 /* Be sure to lift all breakpoints, so the inferior does
2240 actually step past this point... */
2241 ecs->another_trap = 1;
2242 break;
2243 }
2244 else
2245 {
2246 /* We want to step over this breakpoint, then keep going. */
2247 ecs->another_trap = 1;
2248 break;
2249 }
2250 }
2251 break;
2252
2253 case BPSTAT_WHAT_LAST:
2254 /* Not a real code, but listed here to shut up gcc -Wall. */
2255
2256 case BPSTAT_WHAT_KEEP_CHECKING:
2257 break;
2258 }
2259 }
2260
2261 /* We come here if we hit a breakpoint but should not
2262 stop for it. Possibly we also were stepping
2263 and should stop for that. So fall through and
2264 test for stepping. But, if not stepping,
2265 do not stop. */
2266
2267 /* Are we stepping to get the inferior out of the dynamic linker's
2268 hook (and possibly the dld itself) after catching a shlib
2269 event? */
2270 if (ecs->stepping_through_solib_after_catch)
2271 {
2272 #if defined(SOLIB_ADD)
2273 /* Have we reached our destination? If not, keep going. */
2274 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2275 {
2276 if (debug_infrun)
2277 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2278 ecs->another_trap = 1;
2279 keep_going (ecs);
2280 return;
2281 }
2282 #endif
2283 if (debug_infrun)
2284 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2285 /* Else, stop and report the catchpoint(s) whose triggering
2286 caused us to begin stepping. */
2287 ecs->stepping_through_solib_after_catch = 0;
2288 bpstat_clear (&stop_bpstat);
2289 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2290 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2291 stop_print_frame = 1;
2292 stop_stepping (ecs);
2293 return;
2294 }
2295
2296 if (step_resume_breakpoint)
2297 {
2298 if (debug_infrun)
2299 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2300
2301 /* Having a step-resume breakpoint overrides anything
2302 else having to do with stepping commands until
2303 that breakpoint is reached. */
2304 keep_going (ecs);
2305 return;
2306 }
2307
2308 if (step_range_end == 0)
2309 {
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2312 /* Likewise if we aren't even stepping. */
2313 keep_going (ecs);
2314 return;
2315 }
2316
2317 /* If stepping through a line, keep going if still within it.
2318
2319 Note that step_range_end is the address of the first instruction
2320 beyond the step range, and NOT the address of the last instruction
2321 within it! */
2322 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2323 {
2324 if (debug_infrun)
2325 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2326 paddr_nz (step_range_start),
2327 paddr_nz (step_range_end));
2328 keep_going (ecs);
2329 return;
2330 }
2331
2332 /* We stepped out of the stepping range. */
2333
2334 /* If we are stepping at the source level and entered the runtime
2335 loader dynamic symbol resolution code, we keep on single stepping
2336 until we exit the run time loader code and reach the callee's
2337 address. */
2338 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2339 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2340 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2341 #else
2342 && in_solib_dynsym_resolve_code (stop_pc)
2343 #endif
2344 )
2345 {
2346 CORE_ADDR pc_after_resolver =
2347 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2348
2349 if (debug_infrun)
2350 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2351
2352 if (pc_after_resolver)
2353 {
2354 /* Set up a step-resume breakpoint at the address
2355 indicated by SKIP_SOLIB_RESOLVER. */
2356 struct symtab_and_line sr_sal;
2357 init_sal (&sr_sal);
2358 sr_sal.pc = pc_after_resolver;
2359
2360 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2361 }
2362
2363 keep_going (ecs);
2364 return;
2365 }
2366
2367 if (step_range_end != 1
2368 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2369 || step_over_calls == STEP_OVER_ALL)
2370 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2371 {
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2374 /* The inferior, while doing a "step" or "next", has ended up in
2375 a signal trampoline (either by a signal being delivered or by
2376 the signal handler returning). Just single-step until the
2377 inferior leaves the trampoline (either by calling the handler
2378 or returning). */
2379 keep_going (ecs);
2380 return;
2381 }
2382
2383 /* Check for subroutine calls. The check for the current frame
2384 equalling the step ID is not necessary - the check of the
2385 previous frame's ID is sufficient - but it is a common case and
2386 cheaper than checking the previous frame's ID.
2387
2388 NOTE: frame_id_eq will never report two invalid frame IDs as
2389 being equal, so to get into this block, both the current and
2390 previous frame must have valid frame IDs. */
2391 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2392 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2393 {
2394 CORE_ADDR real_stop_pc;
2395
2396 if (debug_infrun)
2397 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2398
2399 if ((step_over_calls == STEP_OVER_NONE)
2400 || ((step_range_end == 1)
2401 && in_prologue (prev_pc, ecs->stop_func_start)))
2402 {
2403 /* I presume that step_over_calls is only 0 when we're
2404 supposed to be stepping at the assembly language level
2405 ("stepi"). Just stop. */
2406 /* Also, maybe we just did a "nexti" inside a prolog, so we
2407 thought it was a subroutine call but it was not. Stop as
2408 well. FENN */
2409 stop_step = 1;
2410 print_stop_reason (END_STEPPING_RANGE, 0);
2411 stop_stepping (ecs);
2412 return;
2413 }
2414
2415 if (step_over_calls == STEP_OVER_ALL)
2416 {
2417 /* We're doing a "next", set a breakpoint at callee's return
2418 address (the address at which the caller will
2419 resume). */
2420 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2421 keep_going (ecs);
2422 return;
2423 }
2424
2425 /* If we are in a function call trampoline (a stub between the
2426 calling routine and the real function), locate the real
2427 function. That's what tells us (a) whether we want to step
2428 into it at all, and (b) what prologue we want to run to the
2429 end of, if we do step into it. */
2430 real_stop_pc = skip_language_trampoline (stop_pc);
2431 if (real_stop_pc == 0)
2432 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2433 if (real_stop_pc != 0)
2434 ecs->stop_func_start = real_stop_pc;
2435
2436 if (
2437 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2438 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2439 #else
2440 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2441 #endif
2442 )
2443 {
2444 struct symtab_and_line sr_sal;
2445 init_sal (&sr_sal);
2446 sr_sal.pc = ecs->stop_func_start;
2447
2448 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2449 keep_going (ecs);
2450 return;
2451 }
2452
2453 /* If we have line number information for the function we are
2454 thinking of stepping into, step into it.
2455
2456 If there are several symtabs at that PC (e.g. with include
2457 files), just want to know whether *any* of them have line
2458 numbers. find_pc_line handles this. */
2459 {
2460 struct symtab_and_line tmp_sal;
2461
2462 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2463 if (tmp_sal.line != 0)
2464 {
2465 step_into_function (ecs);
2466 return;
2467 }
2468 }
2469
2470 /* If we have no line number and the step-stop-if-no-debug is
2471 set, we stop the step so that the user has a chance to switch
2472 in assembly mode. */
2473 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2474 {
2475 stop_step = 1;
2476 print_stop_reason (END_STEPPING_RANGE, 0);
2477 stop_stepping (ecs);
2478 return;
2479 }
2480
2481 /* Set a breakpoint at callee's return address (the address at
2482 which the caller will resume). */
2483 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2484 keep_going (ecs);
2485 return;
2486 }
2487
2488 /* If we're in the return path from a shared library trampoline,
2489 we want to proceed through the trampoline when stepping. */
2490 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2491 {
2492 /* Determine where this trampoline returns. */
2493 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2494
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2497
2498 /* Only proceed through if we know where it's going. */
2499 if (real_stop_pc)
2500 {
2501 /* And put the step-breakpoint there and go until there. */
2502 struct symtab_and_line sr_sal;
2503
2504 init_sal (&sr_sal); /* initialize to zeroes */
2505 sr_sal.pc = real_stop_pc;
2506 sr_sal.section = find_pc_overlay (sr_sal.pc);
2507
2508 /* Do not specify what the fp should be when we stop since
2509 on some machines the prologue is where the new fp value
2510 is established. */
2511 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2512
2513 /* Restart without fiddling with the step ranges or
2514 other state. */
2515 keep_going (ecs);
2516 return;
2517 }
2518 }
2519
2520 ecs->sal = find_pc_line (stop_pc, 0);
2521
2522 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2523 the trampoline processing logic, however, there are some trampolines
2524 that have no names, so we should do trampoline handling first. */
2525 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2526 && ecs->stop_func_name == NULL
2527 && ecs->sal.line == 0)
2528 {
2529 if (debug_infrun)
2530 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2531
2532 /* The inferior just stepped into, or returned to, an
2533 undebuggable function (where there is no debugging information
2534 and no line number corresponding to the address where the
2535 inferior stopped). Since we want to skip this kind of code,
2536 we keep going until the inferior returns from this
2537 function - unless the user has asked us not to (via
2538 set step-mode) or we no longer know how to get back
2539 to the call site. */
2540 if (step_stop_if_no_debug
2541 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2542 {
2543 /* If we have no line number and the step-stop-if-no-debug
2544 is set, we stop the step so that the user has a chance to
2545 switch in assembly mode. */
2546 stop_step = 1;
2547 print_stop_reason (END_STEPPING_RANGE, 0);
2548 stop_stepping (ecs);
2549 return;
2550 }
2551 else
2552 {
2553 /* Set a breakpoint at callee's return address (the address
2554 at which the caller will resume). */
2555 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2556 keep_going (ecs);
2557 return;
2558 }
2559 }
2560
2561 if (step_range_end == 1)
2562 {
2563 /* It is stepi or nexti. We always want to stop stepping after
2564 one instruction. */
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2567 stop_step = 1;
2568 print_stop_reason (END_STEPPING_RANGE, 0);
2569 stop_stepping (ecs);
2570 return;
2571 }
2572
2573 if (ecs->sal.line == 0)
2574 {
2575 /* We have no line number information. That means to stop
2576 stepping (does this always happen right after one instruction,
2577 when we do "s" in a function with no line numbers,
2578 or can this happen as a result of a return or longjmp?). */
2579 if (debug_infrun)
2580 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2581 stop_step = 1;
2582 print_stop_reason (END_STEPPING_RANGE, 0);
2583 stop_stepping (ecs);
2584 return;
2585 }
2586
2587 if ((stop_pc == ecs->sal.pc)
2588 && (ecs->current_line != ecs->sal.line
2589 || ecs->current_symtab != ecs->sal.symtab))
2590 {
2591 /* We are at the start of a different line. So stop. Note that
2592 we don't stop if we step into the middle of a different line.
2593 That is said to make things like for (;;) statements work
2594 better. */
2595 if (debug_infrun)
2596 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2597 stop_step = 1;
2598 print_stop_reason (END_STEPPING_RANGE, 0);
2599 stop_stepping (ecs);
2600 return;
2601 }
2602
2603 /* We aren't done stepping.
2604
2605 Optimize by setting the stepping range to the line.
2606 (We might not be in the original line, but if we entered a
2607 new line in mid-statement, we continue stepping. This makes
2608 things like for(;;) statements work better.) */
2609
2610 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2611 {
2612 /* If this is the last line of the function, don't keep stepping
2613 (it would probably step us out of the function).
2614 This is particularly necessary for a one-line function,
2615 in which after skipping the prologue we better stop even though
2616 we will be in mid-line. */
2617 if (debug_infrun)
2618 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2619 stop_step = 1;
2620 print_stop_reason (END_STEPPING_RANGE, 0);
2621 stop_stepping (ecs);
2622 return;
2623 }
2624 step_range_start = ecs->sal.pc;
2625 step_range_end = ecs->sal.end;
2626 step_frame_id = get_frame_id (get_current_frame ());
2627 ecs->current_line = ecs->sal.line;
2628 ecs->current_symtab = ecs->sal.symtab;
2629
2630 /* In the case where we just stepped out of a function into the
2631 middle of a line of the caller, continue stepping, but
2632 step_frame_id must be modified to current frame */
2633 #if 0
2634 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2635 generous. It will trigger on things like a step into a frameless
2636 stackless leaf function. I think the logic should instead look
2637 at the unwound frame ID has that should give a more robust
2638 indication of what happened. */
2639 if (step - ID == current - ID)
2640 still stepping in same function;
2641 else if (step - ID == unwind (current - ID))
2642 stepped into a function;
2643 else
2644 stepped out of a function;
2645 /* Of course this assumes that the frame ID unwind code is robust
2646 and we're willing to introduce frame unwind logic into this
2647 function. Fortunately, those days are nearly upon us. */
2648 #endif
2649 {
2650 struct frame_id current_frame = get_frame_id (get_current_frame ());
2651 if (!(frame_id_inner (current_frame, step_frame_id)))
2652 step_frame_id = current_frame;
2653 }
2654
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2657 keep_going (ecs);
2658 }
2659
2660 /* Are we in the middle of stepping? */
2661
2662 static int
2663 currently_stepping (struct execution_control_state *ecs)
2664 {
2665 return ((!ecs->handling_longjmp
2666 && ((step_range_end && step_resume_breakpoint == NULL)
2667 || trap_expected))
2668 || ecs->stepping_through_solib_after_catch
2669 || bpstat_should_step ());
2670 }
2671
2672 /* Subroutine call with source code we should not step over. Do step
2673 to the first line of code in it. */
2674
2675 static void
2676 step_into_function (struct execution_control_state *ecs)
2677 {
2678 struct symtab *s;
2679 struct symtab_and_line sr_sal;
2680
2681 s = find_pc_symtab (stop_pc);
2682 if (s && s->language != language_asm)
2683 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2684
2685 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2686 /* Use the step_resume_break to step until the end of the prologue,
2687 even if that involves jumps (as it seems to on the vax under
2688 4.2). */
2689 /* If the prologue ends in the middle of a source line, continue to
2690 the end of that source line (if it is still within the function).
2691 Otherwise, just go to end of prologue. */
2692 if (ecs->sal.end
2693 && ecs->sal.pc != ecs->stop_func_start
2694 && ecs->sal.end < ecs->stop_func_end)
2695 ecs->stop_func_start = ecs->sal.end;
2696
2697 /* Architectures which require breakpoint adjustment might not be able
2698 to place a breakpoint at the computed address. If so, the test
2699 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2700 ecs->stop_func_start to an address at which a breakpoint may be
2701 legitimately placed.
2702
2703 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2704 made, GDB will enter an infinite loop when stepping through
2705 optimized code consisting of VLIW instructions which contain
2706 subinstructions corresponding to different source lines. On
2707 FR-V, it's not permitted to place a breakpoint on any but the
2708 first subinstruction of a VLIW instruction. When a breakpoint is
2709 set, GDB will adjust the breakpoint address to the beginning of
2710 the VLIW instruction. Thus, we need to make the corresponding
2711 adjustment here when computing the stop address. */
2712
2713 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2714 {
2715 ecs->stop_func_start
2716 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2717 ecs->stop_func_start);
2718 }
2719
2720 if (ecs->stop_func_start == stop_pc)
2721 {
2722 /* We are already there: stop now. */
2723 stop_step = 1;
2724 print_stop_reason (END_STEPPING_RANGE, 0);
2725 stop_stepping (ecs);
2726 return;
2727 }
2728 else
2729 {
2730 /* Put the step-breakpoint there and go until there. */
2731 init_sal (&sr_sal); /* initialize to zeroes */
2732 sr_sal.pc = ecs->stop_func_start;
2733 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2734
2735 /* Do not specify what the fp should be when we stop since on
2736 some machines the prologue is where the new fp value is
2737 established. */
2738 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2739
2740 /* And make sure stepping stops right away then. */
2741 step_range_end = step_range_start;
2742 }
2743 keep_going (ecs);
2744 }
2745
2746 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2747 This is used to both functions and to skip over code. */
2748
2749 static void
2750 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2751 struct frame_id sr_id)
2752 {
2753 /* There should never be more than one step-resume breakpoint per
2754 thread, so we should never be setting a new
2755 step_resume_breakpoint when one is already active. */
2756 gdb_assert (step_resume_breakpoint == NULL);
2757 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2758 bp_step_resume);
2759 if (breakpoints_inserted)
2760 insert_breakpoints ();
2761 }
2762
2763 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2764 to skip a potential signal handler.
2765
2766 This is called with the interrupted function's frame. The signal
2767 handler, when it returns, will resume the interrupted function at
2768 RETURN_FRAME.pc. */
2769
2770 static void
2771 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2772 {
2773 struct symtab_and_line sr_sal;
2774
2775 init_sal (&sr_sal); /* initialize to zeros */
2776
2777 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2778 sr_sal.section = find_pc_overlay (sr_sal.pc);
2779
2780 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2781 }
2782
2783 /* Similar to insert_step_resume_breakpoint_at_frame, except
2784 but a breakpoint at the previous frame's PC. This is used to
2785 skip a function after stepping into it (for "next" or if the called
2786 function has no debugging information).
2787
2788 The current function has almost always been reached by single
2789 stepping a call or return instruction. NEXT_FRAME belongs to the
2790 current function, and the breakpoint will be set at the caller's
2791 resume address.
2792
2793 This is a separate function rather than reusing
2794 insert_step_resume_breakpoint_at_frame in order to avoid
2795 get_prev_frame, which may stop prematurely (see the implementation
2796 of frame_unwind_id for an example). */
2797
2798 static void
2799 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2800 {
2801 struct symtab_and_line sr_sal;
2802
2803 /* We shouldn't have gotten here if we don't know where the call site
2804 is. */
2805 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2806
2807 init_sal (&sr_sal); /* initialize to zeros */
2808
2809 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2810 sr_sal.section = find_pc_overlay (sr_sal.pc);
2811
2812 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2813 }
2814
2815 static void
2816 stop_stepping (struct execution_control_state *ecs)
2817 {
2818 if (debug_infrun)
2819 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2820
2821 /* Let callers know we don't want to wait for the inferior anymore. */
2822 ecs->wait_some_more = 0;
2823 }
2824
2825 /* This function handles various cases where we need to continue
2826 waiting for the inferior. */
2827 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2828
2829 static void
2830 keep_going (struct execution_control_state *ecs)
2831 {
2832 /* Save the pc before execution, to compare with pc after stop. */
2833 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2834
2835 /* If we did not do break;, it means we should keep running the
2836 inferior and not return to debugger. */
2837
2838 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2839 {
2840 /* We took a signal (which we are supposed to pass through to
2841 the inferior, else we'd have done a break above) and we
2842 haven't yet gotten our trap. Simply continue. */
2843 resume (currently_stepping (ecs), stop_signal);
2844 }
2845 else
2846 {
2847 /* Either the trap was not expected, but we are continuing
2848 anyway (the user asked that this signal be passed to the
2849 child)
2850 -- or --
2851 The signal was SIGTRAP, e.g. it was our signal, but we
2852 decided we should resume from it.
2853
2854 We're going to run this baby now! */
2855
2856 if (!breakpoints_inserted && !ecs->another_trap)
2857 {
2858 breakpoints_failed = insert_breakpoints ();
2859 if (breakpoints_failed)
2860 {
2861 stop_stepping (ecs);
2862 return;
2863 }
2864 breakpoints_inserted = 1;
2865 }
2866
2867 trap_expected = ecs->another_trap;
2868
2869 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2870 specifies that such a signal should be delivered to the
2871 target program).
2872
2873 Typically, this would occure when a user is debugging a
2874 target monitor on a simulator: the target monitor sets a
2875 breakpoint; the simulator encounters this break-point and
2876 halts the simulation handing control to GDB; GDB, noteing
2877 that the break-point isn't valid, returns control back to the
2878 simulator; the simulator then delivers the hardware
2879 equivalent of a SIGNAL_TRAP to the program being debugged. */
2880
2881 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2882 stop_signal = TARGET_SIGNAL_0;
2883
2884
2885 resume (currently_stepping (ecs), stop_signal);
2886 }
2887
2888 prepare_to_wait (ecs);
2889 }
2890
2891 /* This function normally comes after a resume, before
2892 handle_inferior_event exits. It takes care of any last bits of
2893 housekeeping, and sets the all-important wait_some_more flag. */
2894
2895 static void
2896 prepare_to_wait (struct execution_control_state *ecs)
2897 {
2898 if (debug_infrun)
2899 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2900 if (ecs->infwait_state == infwait_normal_state)
2901 {
2902 overlay_cache_invalid = 1;
2903
2904 /* We have to invalidate the registers BEFORE calling
2905 target_wait because they can be loaded from the target while
2906 in target_wait. This makes remote debugging a bit more
2907 efficient for those targets that provide critical registers
2908 as part of their normal status mechanism. */
2909
2910 registers_changed ();
2911 ecs->waiton_ptid = pid_to_ptid (-1);
2912 ecs->wp = &(ecs->ws);
2913 }
2914 /* This is the old end of the while loop. Let everybody know we
2915 want to wait for the inferior some more and get called again
2916 soon. */
2917 ecs->wait_some_more = 1;
2918 }
2919
2920 /* Print why the inferior has stopped. We always print something when
2921 the inferior exits, or receives a signal. The rest of the cases are
2922 dealt with later on in normal_stop() and print_it_typical(). Ideally
2923 there should be a call to this function from handle_inferior_event()
2924 each time stop_stepping() is called.*/
2925 static void
2926 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2927 {
2928 switch (stop_reason)
2929 {
2930 case STOP_UNKNOWN:
2931 /* We don't deal with these cases from handle_inferior_event()
2932 yet. */
2933 break;
2934 case END_STEPPING_RANGE:
2935 /* We are done with a step/next/si/ni command. */
2936 /* For now print nothing. */
2937 /* Print a message only if not in the middle of doing a "step n"
2938 operation for n > 1 */
2939 if (!step_multi || !stop_step)
2940 if (ui_out_is_mi_like_p (uiout))
2941 ui_out_field_string
2942 (uiout, "reason",
2943 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2944 break;
2945 case BREAKPOINT_HIT:
2946 /* We found a breakpoint. */
2947 /* For now print nothing. */
2948 break;
2949 case SIGNAL_EXITED:
2950 /* The inferior was terminated by a signal. */
2951 annotate_signalled ();
2952 if (ui_out_is_mi_like_p (uiout))
2953 ui_out_field_string
2954 (uiout, "reason",
2955 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2956 ui_out_text (uiout, "\nProgram terminated with signal ");
2957 annotate_signal_name ();
2958 ui_out_field_string (uiout, "signal-name",
2959 target_signal_to_name (stop_info));
2960 annotate_signal_name_end ();
2961 ui_out_text (uiout, ", ");
2962 annotate_signal_string ();
2963 ui_out_field_string (uiout, "signal-meaning",
2964 target_signal_to_string (stop_info));
2965 annotate_signal_string_end ();
2966 ui_out_text (uiout, ".\n");
2967 ui_out_text (uiout, "The program no longer exists.\n");
2968 break;
2969 case EXITED:
2970 /* The inferior program is finished. */
2971 annotate_exited (stop_info);
2972 if (stop_info)
2973 {
2974 if (ui_out_is_mi_like_p (uiout))
2975 ui_out_field_string (uiout, "reason",
2976 async_reason_lookup (EXEC_ASYNC_EXITED));
2977 ui_out_text (uiout, "\nProgram exited with code ");
2978 ui_out_field_fmt (uiout, "exit-code", "0%o",
2979 (unsigned int) stop_info);
2980 ui_out_text (uiout, ".\n");
2981 }
2982 else
2983 {
2984 if (ui_out_is_mi_like_p (uiout))
2985 ui_out_field_string
2986 (uiout, "reason",
2987 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2988 ui_out_text (uiout, "\nProgram exited normally.\n");
2989 }
2990 /* Support the --return-child-result option. */
2991 return_child_result_value = stop_info;
2992 break;
2993 case SIGNAL_RECEIVED:
2994 /* Signal received. The signal table tells us to print about
2995 it. */
2996 annotate_signal ();
2997 ui_out_text (uiout, "\nProgram received signal ");
2998 annotate_signal_name ();
2999 if (ui_out_is_mi_like_p (uiout))
3000 ui_out_field_string
3001 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3002 ui_out_field_string (uiout, "signal-name",
3003 target_signal_to_name (stop_info));
3004 annotate_signal_name_end ();
3005 ui_out_text (uiout, ", ");
3006 annotate_signal_string ();
3007 ui_out_field_string (uiout, "signal-meaning",
3008 target_signal_to_string (stop_info));
3009 annotate_signal_string_end ();
3010 ui_out_text (uiout, ".\n");
3011 break;
3012 default:
3013 internal_error (__FILE__, __LINE__,
3014 _("print_stop_reason: unrecognized enum value"));
3015 break;
3016 }
3017 }
3018 \f
3019
3020 /* Here to return control to GDB when the inferior stops for real.
3021 Print appropriate messages, remove breakpoints, give terminal our modes.
3022
3023 STOP_PRINT_FRAME nonzero means print the executing frame
3024 (pc, function, args, file, line number and line text).
3025 BREAKPOINTS_FAILED nonzero means stop was due to error
3026 attempting to insert breakpoints. */
3027
3028 void
3029 normal_stop (void)
3030 {
3031 struct target_waitstatus last;
3032 ptid_t last_ptid;
3033
3034 get_last_target_status (&last_ptid, &last);
3035
3036 /* As with the notification of thread events, we want to delay
3037 notifying the user that we've switched thread context until
3038 the inferior actually stops.
3039
3040 There's no point in saying anything if the inferior has exited.
3041 Note that SIGNALLED here means "exited with a signal", not
3042 "received a signal". */
3043 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3044 && target_has_execution
3045 && last.kind != TARGET_WAITKIND_SIGNALLED
3046 && last.kind != TARGET_WAITKIND_EXITED)
3047 {
3048 target_terminal_ours_for_output ();
3049 printf_filtered (_("[Switching to %s]\n"),
3050 target_pid_or_tid_to_str (inferior_ptid));
3051 previous_inferior_ptid = inferior_ptid;
3052 }
3053
3054 /* NOTE drow/2004-01-17: Is this still necessary? */
3055 /* Make sure that the current_frame's pc is correct. This
3056 is a correction for setting up the frame info before doing
3057 DECR_PC_AFTER_BREAK */
3058 if (target_has_execution)
3059 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3060 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3061 frame code to check for this and sort out any resultant mess.
3062 DECR_PC_AFTER_BREAK needs to just go away. */
3063 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3064
3065 if (target_has_execution && breakpoints_inserted)
3066 {
3067 if (remove_breakpoints ())
3068 {
3069 target_terminal_ours_for_output ();
3070 printf_filtered (_("\
3071 Cannot remove breakpoints because program is no longer writable.\n\
3072 It might be running in another process.\n\
3073 Further execution is probably impossible.\n"));
3074 }
3075 }
3076 breakpoints_inserted = 0;
3077
3078 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3079 Delete any breakpoint that is to be deleted at the next stop. */
3080
3081 breakpoint_auto_delete (stop_bpstat);
3082
3083 /* If an auto-display called a function and that got a signal,
3084 delete that auto-display to avoid an infinite recursion. */
3085
3086 if (stopped_by_random_signal)
3087 disable_current_display ();
3088
3089 /* Don't print a message if in the middle of doing a "step n"
3090 operation for n > 1 */
3091 if (step_multi && stop_step)
3092 goto done;
3093
3094 target_terminal_ours ();
3095
3096 /* Set the current source location. This will also happen if we
3097 display the frame below, but the current SAL will be incorrect
3098 during a user hook-stop function. */
3099 if (target_has_stack && !stop_stack_dummy)
3100 set_current_sal_from_frame (get_current_frame (), 1);
3101
3102 /* Look up the hook_stop and run it (CLI internally handles problem
3103 of stop_command's pre-hook not existing). */
3104 if (stop_command)
3105 catch_errors (hook_stop_stub, stop_command,
3106 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3107
3108 if (!target_has_stack)
3109 {
3110
3111 goto done;
3112 }
3113
3114 /* Select innermost stack frame - i.e., current frame is frame 0,
3115 and current location is based on that.
3116 Don't do this on return from a stack dummy routine,
3117 or if the program has exited. */
3118
3119 if (!stop_stack_dummy)
3120 {
3121 select_frame (get_current_frame ());
3122
3123 /* Print current location without a level number, if
3124 we have changed functions or hit a breakpoint.
3125 Print source line if we have one.
3126 bpstat_print() contains the logic deciding in detail
3127 what to print, based on the event(s) that just occurred. */
3128
3129 if (stop_print_frame && deprecated_selected_frame)
3130 {
3131 int bpstat_ret;
3132 int source_flag;
3133 int do_frame_printing = 1;
3134
3135 bpstat_ret = bpstat_print (stop_bpstat);
3136 switch (bpstat_ret)
3137 {
3138 case PRINT_UNKNOWN:
3139 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3140 (or should) carry around the function and does (or
3141 should) use that when doing a frame comparison. */
3142 if (stop_step
3143 && frame_id_eq (step_frame_id,
3144 get_frame_id (get_current_frame ()))
3145 && step_start_function == find_pc_function (stop_pc))
3146 source_flag = SRC_LINE; /* finished step, just print source line */
3147 else
3148 source_flag = SRC_AND_LOC; /* print location and source line */
3149 break;
3150 case PRINT_SRC_AND_LOC:
3151 source_flag = SRC_AND_LOC; /* print location and source line */
3152 break;
3153 case PRINT_SRC_ONLY:
3154 source_flag = SRC_LINE;
3155 break;
3156 case PRINT_NOTHING:
3157 source_flag = SRC_LINE; /* something bogus */
3158 do_frame_printing = 0;
3159 break;
3160 default:
3161 internal_error (__FILE__, __LINE__, _("Unknown value."));
3162 }
3163 /* For mi, have the same behavior every time we stop:
3164 print everything but the source line. */
3165 if (ui_out_is_mi_like_p (uiout))
3166 source_flag = LOC_AND_ADDRESS;
3167
3168 if (ui_out_is_mi_like_p (uiout))
3169 ui_out_field_int (uiout, "thread-id",
3170 pid_to_thread_id (inferior_ptid));
3171 /* The behavior of this routine with respect to the source
3172 flag is:
3173 SRC_LINE: Print only source line
3174 LOCATION: Print only location
3175 SRC_AND_LOC: Print location and source line */
3176 if (do_frame_printing)
3177 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3178
3179 /* Display the auto-display expressions. */
3180 do_displays ();
3181 }
3182 }
3183
3184 /* Save the function value return registers, if we care.
3185 We might be about to restore their previous contents. */
3186 if (proceed_to_finish)
3187 /* NB: The copy goes through to the target picking up the value of
3188 all the registers. */
3189 regcache_cpy (stop_registers, current_regcache);
3190
3191 if (stop_stack_dummy)
3192 {
3193 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3194 ends with a setting of the current frame, so we can use that
3195 next. */
3196 frame_pop (get_current_frame ());
3197 /* Set stop_pc to what it was before we called the function.
3198 Can't rely on restore_inferior_status because that only gets
3199 called if we don't stop in the called function. */
3200 stop_pc = read_pc ();
3201 select_frame (get_current_frame ());
3202 }
3203
3204 done:
3205 annotate_stopped ();
3206 observer_notify_normal_stop (stop_bpstat);
3207 }
3208
3209 static int
3210 hook_stop_stub (void *cmd)
3211 {
3212 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3213 return (0);
3214 }
3215 \f
3216 int
3217 signal_stop_state (int signo)
3218 {
3219 return signal_stop[signo];
3220 }
3221
3222 int
3223 signal_print_state (int signo)
3224 {
3225 return signal_print[signo];
3226 }
3227
3228 int
3229 signal_pass_state (int signo)
3230 {
3231 return signal_program[signo];
3232 }
3233
3234 int
3235 signal_stop_update (int signo, int state)
3236 {
3237 int ret = signal_stop[signo];
3238 signal_stop[signo] = state;
3239 return ret;
3240 }
3241
3242 int
3243 signal_print_update (int signo, int state)
3244 {
3245 int ret = signal_print[signo];
3246 signal_print[signo] = state;
3247 return ret;
3248 }
3249
3250 int
3251 signal_pass_update (int signo, int state)
3252 {
3253 int ret = signal_program[signo];
3254 signal_program[signo] = state;
3255 return ret;
3256 }
3257
3258 static void
3259 sig_print_header (void)
3260 {
3261 printf_filtered (_("\
3262 Signal Stop\tPrint\tPass to program\tDescription\n"));
3263 }
3264
3265 static void
3266 sig_print_info (enum target_signal oursig)
3267 {
3268 char *name = target_signal_to_name (oursig);
3269 int name_padding = 13 - strlen (name);
3270
3271 if (name_padding <= 0)
3272 name_padding = 0;
3273
3274 printf_filtered ("%s", name);
3275 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3276 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3277 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3278 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3279 printf_filtered ("%s\n", target_signal_to_string (oursig));
3280 }
3281
3282 /* Specify how various signals in the inferior should be handled. */
3283
3284 static void
3285 handle_command (char *args, int from_tty)
3286 {
3287 char **argv;
3288 int digits, wordlen;
3289 int sigfirst, signum, siglast;
3290 enum target_signal oursig;
3291 int allsigs;
3292 int nsigs;
3293 unsigned char *sigs;
3294 struct cleanup *old_chain;
3295
3296 if (args == NULL)
3297 {
3298 error_no_arg (_("signal to handle"));
3299 }
3300
3301 /* Allocate and zero an array of flags for which signals to handle. */
3302
3303 nsigs = (int) TARGET_SIGNAL_LAST;
3304 sigs = (unsigned char *) alloca (nsigs);
3305 memset (sigs, 0, nsigs);
3306
3307 /* Break the command line up into args. */
3308
3309 argv = buildargv (args);
3310 if (argv == NULL)
3311 {
3312 nomem (0);
3313 }
3314 old_chain = make_cleanup_freeargv (argv);
3315
3316 /* Walk through the args, looking for signal oursigs, signal names, and
3317 actions. Signal numbers and signal names may be interspersed with
3318 actions, with the actions being performed for all signals cumulatively
3319 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3320
3321 while (*argv != NULL)
3322 {
3323 wordlen = strlen (*argv);
3324 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3325 {;
3326 }
3327 allsigs = 0;
3328 sigfirst = siglast = -1;
3329
3330 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3331 {
3332 /* Apply action to all signals except those used by the
3333 debugger. Silently skip those. */
3334 allsigs = 1;
3335 sigfirst = 0;
3336 siglast = nsigs - 1;
3337 }
3338 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3339 {
3340 SET_SIGS (nsigs, sigs, signal_stop);
3341 SET_SIGS (nsigs, sigs, signal_print);
3342 }
3343 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3344 {
3345 UNSET_SIGS (nsigs, sigs, signal_program);
3346 }
3347 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3348 {
3349 SET_SIGS (nsigs, sigs, signal_print);
3350 }
3351 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3352 {
3353 SET_SIGS (nsigs, sigs, signal_program);
3354 }
3355 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3356 {
3357 UNSET_SIGS (nsigs, sigs, signal_stop);
3358 }
3359 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3360 {
3361 SET_SIGS (nsigs, sigs, signal_program);
3362 }
3363 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3364 {
3365 UNSET_SIGS (nsigs, sigs, signal_print);
3366 UNSET_SIGS (nsigs, sigs, signal_stop);
3367 }
3368 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3369 {
3370 UNSET_SIGS (nsigs, sigs, signal_program);
3371 }
3372 else if (digits > 0)
3373 {
3374 /* It is numeric. The numeric signal refers to our own
3375 internal signal numbering from target.h, not to host/target
3376 signal number. This is a feature; users really should be
3377 using symbolic names anyway, and the common ones like
3378 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3379
3380 sigfirst = siglast = (int)
3381 target_signal_from_command (atoi (*argv));
3382 if ((*argv)[digits] == '-')
3383 {
3384 siglast = (int)
3385 target_signal_from_command (atoi ((*argv) + digits + 1));
3386 }
3387 if (sigfirst > siglast)
3388 {
3389 /* Bet he didn't figure we'd think of this case... */
3390 signum = sigfirst;
3391 sigfirst = siglast;
3392 siglast = signum;
3393 }
3394 }
3395 else
3396 {
3397 oursig = target_signal_from_name (*argv);
3398 if (oursig != TARGET_SIGNAL_UNKNOWN)
3399 {
3400 sigfirst = siglast = (int) oursig;
3401 }
3402 else
3403 {
3404 /* Not a number and not a recognized flag word => complain. */
3405 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3406 }
3407 }
3408
3409 /* If any signal numbers or symbol names were found, set flags for
3410 which signals to apply actions to. */
3411
3412 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3413 {
3414 switch ((enum target_signal) signum)
3415 {
3416 case TARGET_SIGNAL_TRAP:
3417 case TARGET_SIGNAL_INT:
3418 if (!allsigs && !sigs[signum])
3419 {
3420 if (query ("%s is used by the debugger.\n\
3421 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3422 {
3423 sigs[signum] = 1;
3424 }
3425 else
3426 {
3427 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3428 gdb_flush (gdb_stdout);
3429 }
3430 }
3431 break;
3432 case TARGET_SIGNAL_0:
3433 case TARGET_SIGNAL_DEFAULT:
3434 case TARGET_SIGNAL_UNKNOWN:
3435 /* Make sure that "all" doesn't print these. */
3436 break;
3437 default:
3438 sigs[signum] = 1;
3439 break;
3440 }
3441 }
3442
3443 argv++;
3444 }
3445
3446 target_notice_signals (inferior_ptid);
3447
3448 if (from_tty)
3449 {
3450 /* Show the results. */
3451 sig_print_header ();
3452 for (signum = 0; signum < nsigs; signum++)
3453 {
3454 if (sigs[signum])
3455 {
3456 sig_print_info (signum);
3457 }
3458 }
3459 }
3460
3461 do_cleanups (old_chain);
3462 }
3463
3464 static void
3465 xdb_handle_command (char *args, int from_tty)
3466 {
3467 char **argv;
3468 struct cleanup *old_chain;
3469
3470 /* Break the command line up into args. */
3471
3472 argv = buildargv (args);
3473 if (argv == NULL)
3474 {
3475 nomem (0);
3476 }
3477 old_chain = make_cleanup_freeargv (argv);
3478 if (argv[1] != (char *) NULL)
3479 {
3480 char *argBuf;
3481 int bufLen;
3482
3483 bufLen = strlen (argv[0]) + 20;
3484 argBuf = (char *) xmalloc (bufLen);
3485 if (argBuf)
3486 {
3487 int validFlag = 1;
3488 enum target_signal oursig;
3489
3490 oursig = target_signal_from_name (argv[0]);
3491 memset (argBuf, 0, bufLen);
3492 if (strcmp (argv[1], "Q") == 0)
3493 sprintf (argBuf, "%s %s", argv[0], "noprint");
3494 else
3495 {
3496 if (strcmp (argv[1], "s") == 0)
3497 {
3498 if (!signal_stop[oursig])
3499 sprintf (argBuf, "%s %s", argv[0], "stop");
3500 else
3501 sprintf (argBuf, "%s %s", argv[0], "nostop");
3502 }
3503 else if (strcmp (argv[1], "i") == 0)
3504 {
3505 if (!signal_program[oursig])
3506 sprintf (argBuf, "%s %s", argv[0], "pass");
3507 else
3508 sprintf (argBuf, "%s %s", argv[0], "nopass");
3509 }
3510 else if (strcmp (argv[1], "r") == 0)
3511 {
3512 if (!signal_print[oursig])
3513 sprintf (argBuf, "%s %s", argv[0], "print");
3514 else
3515 sprintf (argBuf, "%s %s", argv[0], "noprint");
3516 }
3517 else
3518 validFlag = 0;
3519 }
3520 if (validFlag)
3521 handle_command (argBuf, from_tty);
3522 else
3523 printf_filtered (_("Invalid signal handling flag.\n"));
3524 if (argBuf)
3525 xfree (argBuf);
3526 }
3527 }
3528 do_cleanups (old_chain);
3529 }
3530
3531 /* Print current contents of the tables set by the handle command.
3532 It is possible we should just be printing signals actually used
3533 by the current target (but for things to work right when switching
3534 targets, all signals should be in the signal tables). */
3535
3536 static void
3537 signals_info (char *signum_exp, int from_tty)
3538 {
3539 enum target_signal oursig;
3540 sig_print_header ();
3541
3542 if (signum_exp)
3543 {
3544 /* First see if this is a symbol name. */
3545 oursig = target_signal_from_name (signum_exp);
3546 if (oursig == TARGET_SIGNAL_UNKNOWN)
3547 {
3548 /* No, try numeric. */
3549 oursig =
3550 target_signal_from_command (parse_and_eval_long (signum_exp));
3551 }
3552 sig_print_info (oursig);
3553 return;
3554 }
3555
3556 printf_filtered ("\n");
3557 /* These ugly casts brought to you by the native VAX compiler. */
3558 for (oursig = TARGET_SIGNAL_FIRST;
3559 (int) oursig < (int) TARGET_SIGNAL_LAST;
3560 oursig = (enum target_signal) ((int) oursig + 1))
3561 {
3562 QUIT;
3563
3564 if (oursig != TARGET_SIGNAL_UNKNOWN
3565 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3566 sig_print_info (oursig);
3567 }
3568
3569 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3570 }
3571 \f
3572 struct inferior_status
3573 {
3574 enum target_signal stop_signal;
3575 CORE_ADDR stop_pc;
3576 bpstat stop_bpstat;
3577 int stop_step;
3578 int stop_stack_dummy;
3579 int stopped_by_random_signal;
3580 int trap_expected;
3581 CORE_ADDR step_range_start;
3582 CORE_ADDR step_range_end;
3583 struct frame_id step_frame_id;
3584 enum step_over_calls_kind step_over_calls;
3585 CORE_ADDR step_resume_break_address;
3586 int stop_after_trap;
3587 int stop_soon;
3588 struct regcache *stop_registers;
3589
3590 /* These are here because if call_function_by_hand has written some
3591 registers and then decides to call error(), we better not have changed
3592 any registers. */
3593 struct regcache *registers;
3594
3595 /* A frame unique identifier. */
3596 struct frame_id selected_frame_id;
3597
3598 int breakpoint_proceeded;
3599 int restore_stack_info;
3600 int proceed_to_finish;
3601 };
3602
3603 void
3604 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3605 LONGEST val)
3606 {
3607 int size = register_size (current_gdbarch, regno);
3608 void *buf = alloca (size);
3609 store_signed_integer (buf, size, val);
3610 regcache_raw_write (inf_status->registers, regno, buf);
3611 }
3612
3613 /* Save all of the information associated with the inferior<==>gdb
3614 connection. INF_STATUS is a pointer to a "struct inferior_status"
3615 (defined in inferior.h). */
3616
3617 struct inferior_status *
3618 save_inferior_status (int restore_stack_info)
3619 {
3620 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3621
3622 inf_status->stop_signal = stop_signal;
3623 inf_status->stop_pc = stop_pc;
3624 inf_status->stop_step = stop_step;
3625 inf_status->stop_stack_dummy = stop_stack_dummy;
3626 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3627 inf_status->trap_expected = trap_expected;
3628 inf_status->step_range_start = step_range_start;
3629 inf_status->step_range_end = step_range_end;
3630 inf_status->step_frame_id = step_frame_id;
3631 inf_status->step_over_calls = step_over_calls;
3632 inf_status->stop_after_trap = stop_after_trap;
3633 inf_status->stop_soon = stop_soon;
3634 /* Save original bpstat chain here; replace it with copy of chain.
3635 If caller's caller is walking the chain, they'll be happier if we
3636 hand them back the original chain when restore_inferior_status is
3637 called. */
3638 inf_status->stop_bpstat = stop_bpstat;
3639 stop_bpstat = bpstat_copy (stop_bpstat);
3640 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3641 inf_status->restore_stack_info = restore_stack_info;
3642 inf_status->proceed_to_finish = proceed_to_finish;
3643
3644 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3645
3646 inf_status->registers = regcache_dup (current_regcache);
3647
3648 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3649 return inf_status;
3650 }
3651
3652 static int
3653 restore_selected_frame (void *args)
3654 {
3655 struct frame_id *fid = (struct frame_id *) args;
3656 struct frame_info *frame;
3657
3658 frame = frame_find_by_id (*fid);
3659
3660 /* If inf_status->selected_frame_id is NULL, there was no previously
3661 selected frame. */
3662 if (frame == NULL)
3663 {
3664 warning (_("Unable to restore previously selected frame."));
3665 return 0;
3666 }
3667
3668 select_frame (frame);
3669
3670 return (1);
3671 }
3672
3673 void
3674 restore_inferior_status (struct inferior_status *inf_status)
3675 {
3676 stop_signal = inf_status->stop_signal;
3677 stop_pc = inf_status->stop_pc;
3678 stop_step = inf_status->stop_step;
3679 stop_stack_dummy = inf_status->stop_stack_dummy;
3680 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3681 trap_expected = inf_status->trap_expected;
3682 step_range_start = inf_status->step_range_start;
3683 step_range_end = inf_status->step_range_end;
3684 step_frame_id = inf_status->step_frame_id;
3685 step_over_calls = inf_status->step_over_calls;
3686 stop_after_trap = inf_status->stop_after_trap;
3687 stop_soon = inf_status->stop_soon;
3688 bpstat_clear (&stop_bpstat);
3689 stop_bpstat = inf_status->stop_bpstat;
3690 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3691 proceed_to_finish = inf_status->proceed_to_finish;
3692
3693 /* FIXME: Is the restore of stop_registers always needed. */
3694 regcache_xfree (stop_registers);
3695 stop_registers = inf_status->stop_registers;
3696
3697 /* The inferior can be gone if the user types "print exit(0)"
3698 (and perhaps other times). */
3699 if (target_has_execution)
3700 /* NB: The register write goes through to the target. */
3701 regcache_cpy (current_regcache, inf_status->registers);
3702 regcache_xfree (inf_status->registers);
3703
3704 /* FIXME: If we are being called after stopping in a function which
3705 is called from gdb, we should not be trying to restore the
3706 selected frame; it just prints a spurious error message (The
3707 message is useful, however, in detecting bugs in gdb (like if gdb
3708 clobbers the stack)). In fact, should we be restoring the
3709 inferior status at all in that case? . */
3710
3711 if (target_has_stack && inf_status->restore_stack_info)
3712 {
3713 /* The point of catch_errors is that if the stack is clobbered,
3714 walking the stack might encounter a garbage pointer and
3715 error() trying to dereference it. */
3716 if (catch_errors
3717 (restore_selected_frame, &inf_status->selected_frame_id,
3718 "Unable to restore previously selected frame:\n",
3719 RETURN_MASK_ERROR) == 0)
3720 /* Error in restoring the selected frame. Select the innermost
3721 frame. */
3722 select_frame (get_current_frame ());
3723
3724 }
3725
3726 xfree (inf_status);
3727 }
3728
3729 static void
3730 do_restore_inferior_status_cleanup (void *sts)
3731 {
3732 restore_inferior_status (sts);
3733 }
3734
3735 struct cleanup *
3736 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3737 {
3738 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3739 }
3740
3741 void
3742 discard_inferior_status (struct inferior_status *inf_status)
3743 {
3744 /* See save_inferior_status for info on stop_bpstat. */
3745 bpstat_clear (&inf_status->stop_bpstat);
3746 regcache_xfree (inf_status->registers);
3747 regcache_xfree (inf_status->stop_registers);
3748 xfree (inf_status);
3749 }
3750
3751 int
3752 inferior_has_forked (int pid, int *child_pid)
3753 {
3754 struct target_waitstatus last;
3755 ptid_t last_ptid;
3756
3757 get_last_target_status (&last_ptid, &last);
3758
3759 if (last.kind != TARGET_WAITKIND_FORKED)
3760 return 0;
3761
3762 if (ptid_get_pid (last_ptid) != pid)
3763 return 0;
3764
3765 *child_pid = last.value.related_pid;
3766 return 1;
3767 }
3768
3769 int
3770 inferior_has_vforked (int pid, int *child_pid)
3771 {
3772 struct target_waitstatus last;
3773 ptid_t last_ptid;
3774
3775 get_last_target_status (&last_ptid, &last);
3776
3777 if (last.kind != TARGET_WAITKIND_VFORKED)
3778 return 0;
3779
3780 if (ptid_get_pid (last_ptid) != pid)
3781 return 0;
3782
3783 *child_pid = last.value.related_pid;
3784 return 1;
3785 }
3786
3787 int
3788 inferior_has_execd (int pid, char **execd_pathname)
3789 {
3790 struct target_waitstatus last;
3791 ptid_t last_ptid;
3792
3793 get_last_target_status (&last_ptid, &last);
3794
3795 if (last.kind != TARGET_WAITKIND_EXECD)
3796 return 0;
3797
3798 if (ptid_get_pid (last_ptid) != pid)
3799 return 0;
3800
3801 *execd_pathname = xstrdup (last.value.execd_pathname);
3802 return 1;
3803 }
3804
3805 /* Oft used ptids */
3806 ptid_t null_ptid;
3807 ptid_t minus_one_ptid;
3808
3809 /* Create a ptid given the necessary PID, LWP, and TID components. */
3810
3811 ptid_t
3812 ptid_build (int pid, long lwp, long tid)
3813 {
3814 ptid_t ptid;
3815
3816 ptid.pid = pid;
3817 ptid.lwp = lwp;
3818 ptid.tid = tid;
3819 return ptid;
3820 }
3821
3822 /* Create a ptid from just a pid. */
3823
3824 ptid_t
3825 pid_to_ptid (int pid)
3826 {
3827 return ptid_build (pid, 0, 0);
3828 }
3829
3830 /* Fetch the pid (process id) component from a ptid. */
3831
3832 int
3833 ptid_get_pid (ptid_t ptid)
3834 {
3835 return ptid.pid;
3836 }
3837
3838 /* Fetch the lwp (lightweight process) component from a ptid. */
3839
3840 long
3841 ptid_get_lwp (ptid_t ptid)
3842 {
3843 return ptid.lwp;
3844 }
3845
3846 /* Fetch the tid (thread id) component from a ptid. */
3847
3848 long
3849 ptid_get_tid (ptid_t ptid)
3850 {
3851 return ptid.tid;
3852 }
3853
3854 /* ptid_equal() is used to test equality of two ptids. */
3855
3856 int
3857 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3858 {
3859 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3860 && ptid1.tid == ptid2.tid);
3861 }
3862
3863 /* restore_inferior_ptid() will be used by the cleanup machinery
3864 to restore the inferior_ptid value saved in a call to
3865 save_inferior_ptid(). */
3866
3867 static void
3868 restore_inferior_ptid (void *arg)
3869 {
3870 ptid_t *saved_ptid_ptr = arg;
3871 inferior_ptid = *saved_ptid_ptr;
3872 xfree (arg);
3873 }
3874
3875 /* Save the value of inferior_ptid so that it may be restored by a
3876 later call to do_cleanups(). Returns the struct cleanup pointer
3877 needed for later doing the cleanup. */
3878
3879 struct cleanup *
3880 save_inferior_ptid (void)
3881 {
3882 ptid_t *saved_ptid_ptr;
3883
3884 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3885 *saved_ptid_ptr = inferior_ptid;
3886 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3887 }
3888 \f
3889
3890 static void
3891 build_infrun (void)
3892 {
3893 stop_registers = regcache_xmalloc (current_gdbarch);
3894 }
3895
3896 void
3897 _initialize_infrun (void)
3898 {
3899 int i;
3900 int numsigs;
3901 struct cmd_list_element *c;
3902
3903 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3904 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3905
3906 add_info ("signals", signals_info, _("\
3907 What debugger does when program gets various signals.\n\
3908 Specify a signal as argument to print info on that signal only."));
3909 add_info_alias ("handle", "signals", 0);
3910
3911 add_com ("handle", class_run, handle_command, _("\
3912 Specify how to handle a signal.\n\
3913 Args are signals and actions to apply to those signals.\n\
3914 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3915 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3916 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3917 The special arg \"all\" is recognized to mean all signals except those\n\
3918 used by the debugger, typically SIGTRAP and SIGINT.\n\
3919 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3920 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3921 Stop means reenter debugger if this signal happens (implies print).\n\
3922 Print means print a message if this signal happens.\n\
3923 Pass means let program see this signal; otherwise program doesn't know.\n\
3924 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3925 Pass and Stop may be combined."));
3926 if (xdb_commands)
3927 {
3928 add_com ("lz", class_info, signals_info, _("\
3929 What debugger does when program gets various signals.\n\
3930 Specify a signal as argument to print info on that signal only."));
3931 add_com ("z", class_run, xdb_handle_command, _("\
3932 Specify how to handle a signal.\n\
3933 Args are signals and actions to apply to those signals.\n\
3934 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3935 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3936 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3937 The special arg \"all\" is recognized to mean all signals except those\n\
3938 used by the debugger, typically SIGTRAP and SIGINT.\n\
3939 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3940 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3941 nopass), \"Q\" (noprint)\n\
3942 Stop means reenter debugger if this signal happens (implies print).\n\
3943 Print means print a message if this signal happens.\n\
3944 Pass means let program see this signal; otherwise program doesn't know.\n\
3945 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3946 Pass and Stop may be combined."));
3947 }
3948
3949 if (!dbx_commands)
3950 stop_command = add_cmd ("stop", class_obscure,
3951 not_just_help_class_command, _("\
3952 There is no `stop' command, but you can set a hook on `stop'.\n\
3953 This allows you to set a list of commands to be run each time execution\n\
3954 of the program stops."), &cmdlist);
3955
3956 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3957 Set inferior debugging."), _("\
3958 Show inferior debugging."), _("\
3959 When non-zero, inferior specific debugging is enabled."),
3960 NULL,
3961 show_debug_infrun,
3962 &setdebuglist, &showdebuglist);
3963
3964 numsigs = (int) TARGET_SIGNAL_LAST;
3965 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3966 signal_print = (unsigned char *)
3967 xmalloc (sizeof (signal_print[0]) * numsigs);
3968 signal_program = (unsigned char *)
3969 xmalloc (sizeof (signal_program[0]) * numsigs);
3970 for (i = 0; i < numsigs; i++)
3971 {
3972 signal_stop[i] = 1;
3973 signal_print[i] = 1;
3974 signal_program[i] = 1;
3975 }
3976
3977 /* Signals caused by debugger's own actions
3978 should not be given to the program afterwards. */
3979 signal_program[TARGET_SIGNAL_TRAP] = 0;
3980 signal_program[TARGET_SIGNAL_INT] = 0;
3981
3982 /* Signals that are not errors should not normally enter the debugger. */
3983 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3984 signal_print[TARGET_SIGNAL_ALRM] = 0;
3985 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3986 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3987 signal_stop[TARGET_SIGNAL_PROF] = 0;
3988 signal_print[TARGET_SIGNAL_PROF] = 0;
3989 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3990 signal_print[TARGET_SIGNAL_CHLD] = 0;
3991 signal_stop[TARGET_SIGNAL_IO] = 0;
3992 signal_print[TARGET_SIGNAL_IO] = 0;
3993 signal_stop[TARGET_SIGNAL_POLL] = 0;
3994 signal_print[TARGET_SIGNAL_POLL] = 0;
3995 signal_stop[TARGET_SIGNAL_URG] = 0;
3996 signal_print[TARGET_SIGNAL_URG] = 0;
3997 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3998 signal_print[TARGET_SIGNAL_WINCH] = 0;
3999
4000 /* These signals are used internally by user-level thread
4001 implementations. (See signal(5) on Solaris.) Like the above
4002 signals, a healthy program receives and handles them as part of
4003 its normal operation. */
4004 signal_stop[TARGET_SIGNAL_LWP] = 0;
4005 signal_print[TARGET_SIGNAL_LWP] = 0;
4006 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4007 signal_print[TARGET_SIGNAL_WAITING] = 0;
4008 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4009 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4010
4011 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4012 &stop_on_solib_events, _("\
4013 Set stopping for shared library events."), _("\
4014 Show stopping for shared library events."), _("\
4015 If nonzero, gdb will give control to the user when the dynamic linker\n\
4016 notifies gdb of shared library events. The most common event of interest\n\
4017 to the user would be loading/unloading of a new library."),
4018 NULL,
4019 show_stop_on_solib_events,
4020 &setlist, &showlist);
4021
4022 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4023 follow_fork_mode_kind_names,
4024 &follow_fork_mode_string, _("\
4025 Set debugger response to a program call of fork or vfork."), _("\
4026 Show debugger response to a program call of fork or vfork."), _("\
4027 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4028 parent - the original process is debugged after a fork\n\
4029 child - the new process is debugged after a fork\n\
4030 The unfollowed process will continue to run.\n\
4031 By default, the debugger will follow the parent process."),
4032 NULL,
4033 show_follow_fork_mode_string,
4034 &setlist, &showlist);
4035
4036 add_setshow_enum_cmd ("scheduler-locking", class_run,
4037 scheduler_enums, &scheduler_mode, _("\
4038 Set mode for locking scheduler during execution."), _("\
4039 Show mode for locking scheduler during execution."), _("\
4040 off == no locking (threads may preempt at any time)\n\
4041 on == full locking (no thread except the current thread may run)\n\
4042 step == scheduler locked during every single-step operation.\n\
4043 In this mode, no other thread may run during a step command.\n\
4044 Other threads may run while stepping over a function call ('next')."),
4045 set_schedlock_func, /* traps on target vector */
4046 show_scheduler_mode,
4047 &setlist, &showlist);
4048
4049 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4050 Set mode of the step operation."), _("\
4051 Show mode of the step operation."), _("\
4052 When set, doing a step over a function without debug line information\n\
4053 will stop at the first instruction of that function. Otherwise, the\n\
4054 function is skipped and the step command stops at a different source line."),
4055 NULL,
4056 show_step_stop_if_no_debug,
4057 &setlist, &showlist);
4058
4059 /* ptid initializations */
4060 null_ptid = ptid_build (0, 0, 0);
4061 minus_one_ptid = ptid_build (-1, 0, 0);
4062 inferior_ptid = null_ptid;
4063 target_last_wait_ptid = minus_one_ptid;
4064 }
This page took 0.129258 seconds and 5 git commands to generate.