2005-01-24 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "gdb_assert.h"
49
50 /* Prototypes for local functions */
51
52 static void signals_info (char *, int);
53
54 static void handle_command (char *, int);
55
56 static void sig_print_info (enum target_signal);
57
58 static void sig_print_header (void);
59
60 static void resume_cleanups (void *);
61
62 static int hook_stop_stub (void *);
63
64 static int restore_selected_frame (void *);
65
66 static void build_infrun (void);
67
68 static int follow_fork (void);
69
70 static void set_schedlock_func (char *args, int from_tty,
71 struct cmd_list_element *c);
72
73 struct execution_control_state;
74
75 static int currently_stepping (struct execution_control_state *ecs);
76
77 static void xdb_handle_command (char *args, int from_tty);
78
79 static int prepare_to_proceed (void);
80
81 void _initialize_infrun (void);
82
83 int inferior_ignoring_startup_exec_events = 0;
84 int inferior_ignoring_leading_exec_events = 0;
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90
91 /* In asynchronous mode, but simulating synchronous execution. */
92
93 int sync_execution = 0;
94
95 /* wait_for_inferior and normal_stop use this to notify the user
96 when the inferior stopped in a different thread than it had been
97 running in. */
98
99 static ptid_t previous_inferior_ptid;
100
101 /* This is true for configurations that may follow through execl() and
102 similar functions. At present this is only true for HP-UX native. */
103
104 #ifndef MAY_FOLLOW_EXEC
105 #define MAY_FOLLOW_EXEC (0)
106 #endif
107
108 static int may_follow_exec = MAY_FOLLOW_EXEC;
109
110 static int debug_infrun = 0;
111
112 /* If the program uses ELF-style shared libraries, then calls to
113 functions in shared libraries go through stubs, which live in a
114 table called the PLT (Procedure Linkage Table). The first time the
115 function is called, the stub sends control to the dynamic linker,
116 which looks up the function's real address, patches the stub so
117 that future calls will go directly to the function, and then passes
118 control to the function.
119
120 If we are stepping at the source level, we don't want to see any of
121 this --- we just want to skip over the stub and the dynamic linker.
122 The simple approach is to single-step until control leaves the
123 dynamic linker.
124
125 However, on some systems (e.g., Red Hat's 5.2 distribution) the
126 dynamic linker calls functions in the shared C library, so you
127 can't tell from the PC alone whether the dynamic linker is still
128 running. In this case, we use a step-resume breakpoint to get us
129 past the dynamic linker, as if we were using "next" to step over a
130 function call.
131
132 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
133 linker code or not. Normally, this means we single-step. However,
134 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
135 address where we can place a step-resume breakpoint to get past the
136 linker's symbol resolution function.
137
138 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
139 pretty portable way, by comparing the PC against the address ranges
140 of the dynamic linker's sections.
141
142 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
143 it depends on internal details of the dynamic linker. It's usually
144 not too hard to figure out where to put a breakpoint, but it
145 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
146 sanity checking. If it can't figure things out, returning zero and
147 getting the (possibly confusing) stepping behavior is better than
148 signalling an error, which will obscure the change in the
149 inferior's state. */
150
151 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
152 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
153 #endif
154
155 /* This function returns TRUE if pc is the address of an instruction
156 that lies within the dynamic linker (such as the event hook, or the
157 dld itself).
158
159 This function must be used only when a dynamic linker event has
160 been caught, and the inferior is being stepped out of the hook, or
161 undefined results are guaranteed. */
162
163 #ifndef SOLIB_IN_DYNAMIC_LINKER
164 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
165 #endif
166
167 /* We can't step off a permanent breakpoint in the ordinary way, because we
168 can't remove it. Instead, we have to advance the PC to the next
169 instruction. This macro should expand to a pointer to a function that
170 does that, or zero if we have no such function. If we don't have a
171 definition for it, we have to report an error. */
172 #ifndef SKIP_PERMANENT_BREAKPOINT
173 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
174 static void
175 default_skip_permanent_breakpoint (void)
176 {
177 error ("\
178 The program is stopped at a permanent breakpoint, but GDB does not know\n\
179 how to step past a permanent breakpoint on this architecture. Try using\n\
180 a command like `return' or `jump' to continue execution.");
181 }
182 #endif
183
184
185 /* Convert the #defines into values. This is temporary until wfi control
186 flow is completely sorted out. */
187
188 #ifndef HAVE_STEPPABLE_WATCHPOINT
189 #define HAVE_STEPPABLE_WATCHPOINT 0
190 #else
191 #undef HAVE_STEPPABLE_WATCHPOINT
192 #define HAVE_STEPPABLE_WATCHPOINT 1
193 #endif
194
195 #ifndef CANNOT_STEP_HW_WATCHPOINTS
196 #define CANNOT_STEP_HW_WATCHPOINTS 0
197 #else
198 #undef CANNOT_STEP_HW_WATCHPOINTS
199 #define CANNOT_STEP_HW_WATCHPOINTS 1
200 #endif
201
202 /* Tables of how to react to signals; the user sets them. */
203
204 static unsigned char *signal_stop;
205 static unsigned char *signal_print;
206 static unsigned char *signal_program;
207
208 #define SET_SIGS(nsigs,sigs,flags) \
209 do { \
210 int signum = (nsigs); \
211 while (signum-- > 0) \
212 if ((sigs)[signum]) \
213 (flags)[signum] = 1; \
214 } while (0)
215
216 #define UNSET_SIGS(nsigs,sigs,flags) \
217 do { \
218 int signum = (nsigs); \
219 while (signum-- > 0) \
220 if ((sigs)[signum]) \
221 (flags)[signum] = 0; \
222 } while (0)
223
224 /* Value to pass to target_resume() to cause all threads to resume */
225
226 #define RESUME_ALL (pid_to_ptid (-1))
227
228 /* Command list pointer for the "stop" placeholder. */
229
230 static struct cmd_list_element *stop_command;
231
232 /* Nonzero if breakpoints are now inserted in the inferior. */
233
234 static int breakpoints_inserted;
235
236 /* Function inferior was in as of last step command. */
237
238 static struct symbol *step_start_function;
239
240 /* Nonzero if we are expecting a trace trap and should proceed from it. */
241
242 static int trap_expected;
243
244 #ifdef SOLIB_ADD
245 /* Nonzero if we want to give control to the user when we're notified
246 of shared library events by the dynamic linker. */
247 static int stop_on_solib_events;
248 #endif
249
250 /* Nonzero means expecting a trace trap
251 and should stop the inferior and return silently when it happens. */
252
253 int stop_after_trap;
254
255 /* Nonzero means expecting a trap and caller will handle it themselves.
256 It is used after attach, due to attaching to a process;
257 when running in the shell before the child program has been exec'd;
258 and when running some kinds of remote stuff (FIXME?). */
259
260 enum stop_kind stop_soon;
261
262 /* Nonzero if proceed is being used for a "finish" command or a similar
263 situation when stop_registers should be saved. */
264
265 int proceed_to_finish;
266
267 /* Save register contents here when about to pop a stack dummy frame,
268 if-and-only-if proceed_to_finish is set.
269 Thus this contains the return value from the called function (assuming
270 values are returned in a register). */
271
272 struct regcache *stop_registers;
273
274 /* Nonzero if program stopped due to error trying to insert breakpoints. */
275
276 static int breakpoints_failed;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 static struct breakpoint *step_resume_breakpoint = NULL;
283
284 /* This is a cached copy of the pid/waitstatus of the last event
285 returned by target_wait()/deprecated_target_wait_hook(). This
286 information is returned by get_last_target_status(). */
287 static ptid_t target_last_wait_ptid;
288 static struct target_waitstatus target_last_waitstatus;
289
290 /* This is used to remember when a fork, vfork or exec event
291 was caught by a catchpoint, and thus the event is to be
292 followed at the next resume of the inferior, and not
293 immediately. */
294 static struct
295 {
296 enum target_waitkind kind;
297 struct
298 {
299 int parent_pid;
300 int child_pid;
301 }
302 fork_event;
303 char *execd_pathname;
304 }
305 pending_follow;
306
307 static const char follow_fork_mode_child[] = "child";
308 static const char follow_fork_mode_parent[] = "parent";
309
310 static const char *follow_fork_mode_kind_names[] = {
311 follow_fork_mode_child,
312 follow_fork_mode_parent,
313 NULL
314 };
315
316 static const char *follow_fork_mode_string = follow_fork_mode_parent;
317 \f
318
319 static int
320 follow_fork (void)
321 {
322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
323
324 return target_follow_fork (follow_child);
325 }
326
327 void
328 follow_inferior_reset_breakpoints (void)
329 {
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
351 }
352
353 /* EXECD_PATHNAME is assumed to be non-NULL. */
354
355 static void
356 follow_exec (int pid, char *execd_pathname)
357 {
358 int saved_pid = pid;
359 struct target_ops *tgt;
360
361 if (!may_follow_exec)
362 return;
363
364 /* This is an exec event that we actually wish to pay attention to.
365 Refresh our symbol table to the newly exec'd program, remove any
366 momentary bp's, etc.
367
368 If there are breakpoints, they aren't really inserted now,
369 since the exec() transformed our inferior into a fresh set
370 of instructions.
371
372 We want to preserve symbolic breakpoints on the list, since
373 we have hopes that they can be reset after the new a.out's
374 symbol table is read.
375
376 However, any "raw" breakpoints must be removed from the list
377 (e.g., the solib bp's), since their address is probably invalid
378 now.
379
380 And, we DON'T want to call delete_breakpoints() here, since
381 that may write the bp's "shadow contents" (the instruction
382 value that was overwritten witha TRAP instruction). Since
383 we now have a new a.out, those shadow contents aren't valid. */
384 update_breakpoints_after_exec ();
385
386 /* If there was one, it's gone now. We cannot truly step-to-next
387 statement through an exec(). */
388 step_resume_breakpoint = NULL;
389 step_range_start = 0;
390 step_range_end = 0;
391
392 /* What is this a.out's name? */
393 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
394
395 /* We've followed the inferior through an exec. Therefore, the
396 inferior has essentially been killed & reborn. */
397
398 /* First collect the run target in effect. */
399 tgt = find_run_target ();
400 /* If we can't find one, things are in a very strange state... */
401 if (tgt == NULL)
402 error ("Could find run target to save before following exec");
403
404 gdb_flush (gdb_stdout);
405 target_mourn_inferior ();
406 inferior_ptid = pid_to_ptid (saved_pid);
407 /* Because mourn_inferior resets inferior_ptid. */
408 push_target (tgt);
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
414 symbol_file_add_main (execd_pathname, 0);
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
419 #if defined(SOLIB_RESTART)
420 SOLIB_RESTART ();
421 #endif
422 #ifdef SOLIB_CREATE_INFERIOR_HOOK
423 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
424 #endif
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
435 }
436
437 /* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440 static int singlestep_breakpoints_inserted_p = 0;
441
442 /* The thread we inserted single-step breakpoints for. */
443 static ptid_t singlestep_ptid;
444
445 /* If another thread hit the singlestep breakpoint, we save the original
446 thread here so that we can resume single-stepping it later. */
447 static ptid_t saved_singlestep_ptid;
448 static int stepping_past_singlestep_breakpoint;
449 \f
450
451 /* Things to clean up if we QUIT out of resume (). */
452 static void
453 resume_cleanups (void *ignore)
454 {
455 normal_stop ();
456 }
457
458 static const char schedlock_off[] = "off";
459 static const char schedlock_on[] = "on";
460 static const char schedlock_step[] = "step";
461 static const char *scheduler_mode = schedlock_off;
462 static const char *scheduler_enums[] = {
463 schedlock_off,
464 schedlock_on,
465 schedlock_step,
466 NULL
467 };
468
469 static void
470 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
471 {
472 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
473 function clones the set command passed as a parameter. The clone
474 operation will include (BUG?) any ``set'' command callback, if
475 present. Commands like ``info set'' call all the ``show''
476 command callbacks. Unfortunately, for ``show'' commands cloned
477 from ``set'', this includes callbacks belonging to ``set''
478 commands. Making this worse, this only occures if
479 deprecated_add_show_from_set() is called after add_cmd_sfunc()
480 (BUG?). */
481 if (cmd_type (c) == set_cmd)
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error ("Target '%s' cannot support this command.", target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 SKIP_PERMANENT_BREAKPOINT ();
530
531 if (SOFTWARE_SINGLE_STEP_P () && step)
532 {
533 /* Do it the hard way, w/temp breakpoints */
534 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
535 /* ...and don't ask hardware to do it. */
536 step = 0;
537 /* and do not pull these breakpoints until after a `wait' in
538 `wait_for_inferior' */
539 singlestep_breakpoints_inserted_p = 1;
540 singlestep_ptid = inferior_ptid;
541 }
542
543 /* If there were any forks/vforks/execs that were caught and are
544 now to be followed, then do so. */
545 switch (pending_follow.kind)
546 {
547 case TARGET_WAITKIND_FORKED:
548 case TARGET_WAITKIND_VFORKED:
549 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
550 if (follow_fork ())
551 should_resume = 0;
552 break;
553
554 case TARGET_WAITKIND_EXECD:
555 /* follow_exec is called as soon as the exec event is seen. */
556 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
557 break;
558
559 default:
560 break;
561 }
562
563 /* Install inferior's terminal modes. */
564 target_terminal_inferior ();
565
566 if (should_resume)
567 {
568 ptid_t resume_ptid;
569
570 resume_ptid = RESUME_ALL; /* Default */
571
572 if ((step || singlestep_breakpoints_inserted_p)
573 && (stepping_past_singlestep_breakpoint
574 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
575 {
576 /* Stepping past a breakpoint without inserting breakpoints.
577 Make sure only the current thread gets to step, so that
578 other threads don't sneak past breakpoints while they are
579 not inserted. */
580
581 resume_ptid = inferior_ptid;
582 }
583
584 if ((scheduler_mode == schedlock_on)
585 || (scheduler_mode == schedlock_step
586 && (step || singlestep_breakpoints_inserted_p)))
587 {
588 /* User-settable 'scheduler' mode requires solo thread resume. */
589 resume_ptid = inferior_ptid;
590 }
591
592 if (CANNOT_STEP_BREAKPOINT)
593 {
594 /* Most targets can step a breakpoint instruction, thus
595 executing it normally. But if this one cannot, just
596 continue and we will hit it anyway. */
597 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
598 step = 0;
599 }
600 target_resume (resume_ptid, step, sig);
601 }
602
603 discard_cleanups (old_cleanups);
604 }
605 \f
606
607 /* Clear out all variables saying what to do when inferior is continued.
608 First do this, then set the ones you want, then call `proceed'. */
609
610 void
611 clear_proceed_status (void)
612 {
613 trap_expected = 0;
614 step_range_start = 0;
615 step_range_end = 0;
616 step_frame_id = null_frame_id;
617 step_over_calls = STEP_OVER_UNDEBUGGABLE;
618 stop_after_trap = 0;
619 stop_soon = NO_STOP_QUIETLY;
620 proceed_to_finish = 0;
621 breakpoint_proceeded = 1; /* We're about to proceed... */
622
623 /* Discard any remaining commands or status from previous stop. */
624 bpstat_clear (&stop_bpstat);
625 }
626
627 /* This should be suitable for any targets that support threads. */
628
629 static int
630 prepare_to_proceed (void)
631 {
632 ptid_t wait_ptid;
633 struct target_waitstatus wait_status;
634
635 /* Get the last target status returned by target_wait(). */
636 get_last_target_status (&wait_ptid, &wait_status);
637
638 /* Make sure we were stopped either at a breakpoint, or because
639 of a Ctrl-C. */
640 if (wait_status.kind != TARGET_WAITKIND_STOPPED
641 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
642 && wait_status.value.sig != TARGET_SIGNAL_INT))
643 {
644 return 0;
645 }
646
647 if (!ptid_equal (wait_ptid, minus_one_ptid)
648 && !ptid_equal (inferior_ptid, wait_ptid))
649 {
650 /* Switched over from WAIT_PID. */
651 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
652
653 if (wait_pc != read_pc ())
654 {
655 /* Switch back to WAIT_PID thread. */
656 inferior_ptid = wait_ptid;
657
658 /* FIXME: This stuff came from switch_to_thread() in
659 thread.c (which should probably be a public function). */
660 flush_cached_frames ();
661 registers_changed ();
662 stop_pc = wait_pc;
663 select_frame (get_current_frame ());
664 }
665
666 /* We return 1 to indicate that there is a breakpoint here,
667 so we need to step over it before continuing to avoid
668 hitting it straight away. */
669 if (breakpoint_here_p (wait_pc))
670 return 1;
671 }
672
673 return 0;
674
675 }
676
677 /* Record the pc of the program the last time it stopped. This is
678 just used internally by wait_for_inferior, but need to be preserved
679 over calls to it and cleared when the inferior is started. */
680 static CORE_ADDR prev_pc;
681
682 /* Basic routine for continuing the program in various fashions.
683
684 ADDR is the address to resume at, or -1 for resume where stopped.
685 SIGGNAL is the signal to give it, or 0 for none,
686 or -1 for act according to how it stopped.
687 STEP is nonzero if should trap after one instruction.
688 -1 means return after that and print nothing.
689 You should probably set various step_... variables
690 before calling here, if you are stepping.
691
692 You should call clear_proceed_status before calling proceed. */
693
694 void
695 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
696 {
697 int oneproc = 0;
698
699 if (step > 0)
700 step_start_function = find_pc_function (read_pc ());
701 if (step < 0)
702 stop_after_trap = 1;
703
704 if (addr == (CORE_ADDR) -1)
705 {
706 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
707 /* There is a breakpoint at the address we will resume at,
708 step one instruction before inserting breakpoints so that
709 we do not stop right away (and report a second hit at this
710 breakpoint). */
711 oneproc = 1;
712 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
713 && gdbarch_single_step_through_delay (current_gdbarch,
714 get_current_frame ()))
715 /* We stepped onto an instruction that needs to be stepped
716 again before re-inserting the breakpoint, do so. */
717 oneproc = 1;
718 }
719 else
720 {
721 write_pc (addr);
722 }
723
724 if (debug_infrun)
725 fprintf_unfiltered (gdb_stdlog,
726 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
727 paddr_nz (addr), siggnal, step);
728
729 /* In a multi-threaded task we may select another thread
730 and then continue or step.
731
732 But if the old thread was stopped at a breakpoint, it
733 will immediately cause another breakpoint stop without
734 any execution (i.e. it will report a breakpoint hit
735 incorrectly). So we must step over it first.
736
737 prepare_to_proceed checks the current thread against the thread
738 that reported the most recent event. If a step-over is required
739 it returns TRUE and sets the current thread to the old thread. */
740 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
741 oneproc = 1;
742
743 if (oneproc)
744 /* We will get a trace trap after one instruction.
745 Continue it automatically and insert breakpoints then. */
746 trap_expected = 1;
747 else
748 {
749 insert_breakpoints ();
750 /* If we get here there was no call to error() in
751 insert breakpoints -- so they were inserted. */
752 breakpoints_inserted = 1;
753 }
754
755 if (siggnal != TARGET_SIGNAL_DEFAULT)
756 stop_signal = siggnal;
757 /* If this signal should not be seen by program,
758 give it zero. Used for debugging signals. */
759 else if (!signal_program[stop_signal])
760 stop_signal = TARGET_SIGNAL_0;
761
762 annotate_starting ();
763
764 /* Make sure that output from GDB appears before output from the
765 inferior. */
766 gdb_flush (gdb_stdout);
767
768 /* Refresh prev_pc value just prior to resuming. This used to be
769 done in stop_stepping, however, setting prev_pc there did not handle
770 scenarios such as inferior function calls or returning from
771 a function via the return command. In those cases, the prev_pc
772 value was not set properly for subsequent commands. The prev_pc value
773 is used to initialize the starting line number in the ecs. With an
774 invalid value, the gdb next command ends up stopping at the position
775 represented by the next line table entry past our start position.
776 On platforms that generate one line table entry per line, this
777 is not a problem. However, on the ia64, the compiler generates
778 extraneous line table entries that do not increase the line number.
779 When we issue the gdb next command on the ia64 after an inferior call
780 or a return command, we often end up a few instructions forward, still
781 within the original line we started.
782
783 An attempt was made to have init_execution_control_state () refresh
784 the prev_pc value before calculating the line number. This approach
785 did not work because on platforms that use ptrace, the pc register
786 cannot be read unless the inferior is stopped. At that point, we
787 are not guaranteed the inferior is stopped and so the read_pc ()
788 call can fail. Setting the prev_pc value here ensures the value is
789 updated correctly when the inferior is stopped. */
790 prev_pc = read_pc ();
791
792 /* Resume inferior. */
793 resume (oneproc || step || bpstat_should_step (), stop_signal);
794
795 /* Wait for it to stop (if not standalone)
796 and in any case decode why it stopped, and act accordingly. */
797 /* Do this only if we are not using the event loop, or if the target
798 does not support asynchronous execution. */
799 if (!target_can_async_p ())
800 {
801 wait_for_inferior ();
802 normal_stop ();
803 }
804 }
805 \f
806
807 /* Start remote-debugging of a machine over a serial link. */
808
809 void
810 start_remote (void)
811 {
812 init_thread_list ();
813 init_wait_for_inferior ();
814 stop_soon = STOP_QUIETLY;
815 trap_expected = 0;
816
817 /* Always go on waiting for the target, regardless of the mode. */
818 /* FIXME: cagney/1999-09-23: At present it isn't possible to
819 indicate to wait_for_inferior that a target should timeout if
820 nothing is returned (instead of just blocking). Because of this,
821 targets expecting an immediate response need to, internally, set
822 things up so that the target_wait() is forced to eventually
823 timeout. */
824 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
825 differentiate to its caller what the state of the target is after
826 the initial open has been performed. Here we're assuming that
827 the target has stopped. It should be possible to eventually have
828 target_open() return to the caller an indication that the target
829 is currently running and GDB state should be set to the same as
830 for an async run. */
831 wait_for_inferior ();
832 normal_stop ();
833 }
834
835 /* Initialize static vars when a new inferior begins. */
836
837 void
838 init_wait_for_inferior (void)
839 {
840 /* These are meaningless until the first time through wait_for_inferior. */
841 prev_pc = 0;
842
843 breakpoints_inserted = 0;
844 breakpoint_init_inferior (inf_starting);
845
846 /* Don't confuse first call to proceed(). */
847 stop_signal = TARGET_SIGNAL_0;
848
849 /* The first resume is not following a fork/vfork/exec. */
850 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
851
852 clear_proceed_status ();
853
854 stepping_past_singlestep_breakpoint = 0;
855 }
856 \f
857 /* This enum encodes possible reasons for doing a target_wait, so that
858 wfi can call target_wait in one place. (Ultimately the call will be
859 moved out of the infinite loop entirely.) */
860
861 enum infwait_states
862 {
863 infwait_normal_state,
864 infwait_thread_hop_state,
865 infwait_nonstep_watch_state
866 };
867
868 /* Why did the inferior stop? Used to print the appropriate messages
869 to the interface from within handle_inferior_event(). */
870 enum inferior_stop_reason
871 {
872 /* We don't know why. */
873 STOP_UNKNOWN,
874 /* Step, next, nexti, stepi finished. */
875 END_STEPPING_RANGE,
876 /* Found breakpoint. */
877 BREAKPOINT_HIT,
878 /* Inferior terminated by signal. */
879 SIGNAL_EXITED,
880 /* Inferior exited. */
881 EXITED,
882 /* Inferior received signal, and user asked to be notified. */
883 SIGNAL_RECEIVED
884 };
885
886 /* This structure contains what used to be local variables in
887 wait_for_inferior. Probably many of them can return to being
888 locals in handle_inferior_event. */
889
890 struct execution_control_state
891 {
892 struct target_waitstatus ws;
893 struct target_waitstatus *wp;
894 int another_trap;
895 int random_signal;
896 CORE_ADDR stop_func_start;
897 CORE_ADDR stop_func_end;
898 char *stop_func_name;
899 struct symtab_and_line sal;
900 int current_line;
901 struct symtab *current_symtab;
902 int handling_longjmp; /* FIXME */
903 ptid_t ptid;
904 ptid_t saved_inferior_ptid;
905 int step_after_step_resume_breakpoint;
906 int stepping_through_solib_after_catch;
907 bpstat stepping_through_solib_catchpoints;
908 int new_thread_event;
909 struct target_waitstatus tmpstatus;
910 enum infwait_states infwait_state;
911 ptid_t waiton_ptid;
912 int wait_some_more;
913 };
914
915 void init_execution_control_state (struct execution_control_state *ecs);
916
917 void handle_inferior_event (struct execution_control_state *ecs);
918
919 static void step_into_function (struct execution_control_state *ecs);
920 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
921 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
922 struct frame_id sr_id);
923 static void stop_stepping (struct execution_control_state *ecs);
924 static void prepare_to_wait (struct execution_control_state *ecs);
925 static void keep_going (struct execution_control_state *ecs);
926 static void print_stop_reason (enum inferior_stop_reason stop_reason,
927 int stop_info);
928
929 /* Wait for control to return from inferior to debugger.
930 If inferior gets a signal, we may decide to start it up again
931 instead of returning. That is why there is a loop in this function.
932 When this function actually returns it means the inferior
933 should be left stopped and GDB should read more commands. */
934
935 void
936 wait_for_inferior (void)
937 {
938 struct cleanup *old_cleanups;
939 struct execution_control_state ecss;
940 struct execution_control_state *ecs;
941
942 if (debug_infrun)
943 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
944
945 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
946 &step_resume_breakpoint);
947
948 /* wfi still stays in a loop, so it's OK just to take the address of
949 a local to get the ecs pointer. */
950 ecs = &ecss;
951
952 /* Fill in with reasonable starting values. */
953 init_execution_control_state (ecs);
954
955 /* We'll update this if & when we switch to a new thread. */
956 previous_inferior_ptid = inferior_ptid;
957
958 overlay_cache_invalid = 1;
959
960 /* We have to invalidate the registers BEFORE calling target_wait
961 because they can be loaded from the target while in target_wait.
962 This makes remote debugging a bit more efficient for those
963 targets that provide critical registers as part of their normal
964 status mechanism. */
965
966 registers_changed ();
967
968 while (1)
969 {
970 if (deprecated_target_wait_hook)
971 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
972 else
973 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
974
975 /* Now figure out what to do with the result of the result. */
976 handle_inferior_event (ecs);
977
978 if (!ecs->wait_some_more)
979 break;
980 }
981 do_cleanups (old_cleanups);
982 }
983
984 /* Asynchronous version of wait_for_inferior. It is called by the
985 event loop whenever a change of state is detected on the file
986 descriptor corresponding to the target. It can be called more than
987 once to complete a single execution command. In such cases we need
988 to keep the state in a global variable ASYNC_ECSS. If it is the
989 last time that this function is called for a single execution
990 command, then report to the user that the inferior has stopped, and
991 do the necessary cleanups. */
992
993 struct execution_control_state async_ecss;
994 struct execution_control_state *async_ecs;
995
996 void
997 fetch_inferior_event (void *client_data)
998 {
999 static struct cleanup *old_cleanups;
1000
1001 async_ecs = &async_ecss;
1002
1003 if (!async_ecs->wait_some_more)
1004 {
1005 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1006 &step_resume_breakpoint);
1007
1008 /* Fill in with reasonable starting values. */
1009 init_execution_control_state (async_ecs);
1010
1011 /* We'll update this if & when we switch to a new thread. */
1012 previous_inferior_ptid = inferior_ptid;
1013
1014 overlay_cache_invalid = 1;
1015
1016 /* We have to invalidate the registers BEFORE calling target_wait
1017 because they can be loaded from the target while in target_wait.
1018 This makes remote debugging a bit more efficient for those
1019 targets that provide critical registers as part of their normal
1020 status mechanism. */
1021
1022 registers_changed ();
1023 }
1024
1025 if (deprecated_target_wait_hook)
1026 async_ecs->ptid =
1027 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1028 else
1029 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1030
1031 /* Now figure out what to do with the result of the result. */
1032 handle_inferior_event (async_ecs);
1033
1034 if (!async_ecs->wait_some_more)
1035 {
1036 /* Do only the cleanups that have been added by this
1037 function. Let the continuations for the commands do the rest,
1038 if there are any. */
1039 do_exec_cleanups (old_cleanups);
1040 normal_stop ();
1041 if (step_multi && stop_step)
1042 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1043 else
1044 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1045 }
1046 }
1047
1048 /* Prepare an execution control state for looping through a
1049 wait_for_inferior-type loop. */
1050
1051 void
1052 init_execution_control_state (struct execution_control_state *ecs)
1053 {
1054 /* ecs->another_trap? */
1055 ecs->random_signal = 0;
1056 ecs->step_after_step_resume_breakpoint = 0;
1057 ecs->handling_longjmp = 0; /* FIXME */
1058 ecs->stepping_through_solib_after_catch = 0;
1059 ecs->stepping_through_solib_catchpoints = NULL;
1060 ecs->sal = find_pc_line (prev_pc, 0);
1061 ecs->current_line = ecs->sal.line;
1062 ecs->current_symtab = ecs->sal.symtab;
1063 ecs->infwait_state = infwait_normal_state;
1064 ecs->waiton_ptid = pid_to_ptid (-1);
1065 ecs->wp = &(ecs->ws);
1066 }
1067
1068 /* Return the cached copy of the last pid/waitstatus returned by
1069 target_wait()/deprecated_target_wait_hook(). The data is actually
1070 cached by handle_inferior_event(), which gets called immediately
1071 after target_wait()/deprecated_target_wait_hook(). */
1072
1073 void
1074 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1075 {
1076 *ptidp = target_last_wait_ptid;
1077 *status = target_last_waitstatus;
1078 }
1079
1080 /* Switch thread contexts, maintaining "infrun state". */
1081
1082 static void
1083 context_switch (struct execution_control_state *ecs)
1084 {
1085 /* Caution: it may happen that the new thread (or the old one!)
1086 is not in the thread list. In this case we must not attempt
1087 to "switch context", or we run the risk that our context may
1088 be lost. This may happen as a result of the target module
1089 mishandling thread creation. */
1090
1091 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1092 { /* Perform infrun state context switch: */
1093 /* Save infrun state for the old thread. */
1094 save_infrun_state (inferior_ptid, prev_pc,
1095 trap_expected, step_resume_breakpoint,
1096 step_range_start,
1097 step_range_end, &step_frame_id,
1098 ecs->handling_longjmp, ecs->another_trap,
1099 ecs->stepping_through_solib_after_catch,
1100 ecs->stepping_through_solib_catchpoints,
1101 ecs->current_line, ecs->current_symtab);
1102
1103 /* Load infrun state for the new thread. */
1104 load_infrun_state (ecs->ptid, &prev_pc,
1105 &trap_expected, &step_resume_breakpoint,
1106 &step_range_start,
1107 &step_range_end, &step_frame_id,
1108 &ecs->handling_longjmp, &ecs->another_trap,
1109 &ecs->stepping_through_solib_after_catch,
1110 &ecs->stepping_through_solib_catchpoints,
1111 &ecs->current_line, &ecs->current_symtab);
1112 }
1113 inferior_ptid = ecs->ptid;
1114 }
1115
1116 static void
1117 adjust_pc_after_break (struct execution_control_state *ecs)
1118 {
1119 CORE_ADDR breakpoint_pc;
1120
1121 /* If this target does not decrement the PC after breakpoints, then
1122 we have nothing to do. */
1123 if (DECR_PC_AFTER_BREAK == 0)
1124 return;
1125
1126 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1127 we aren't, just return.
1128
1129 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1130 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1131 by software breakpoints should be handled through the normal breakpoint
1132 layer.
1133
1134 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1135 different signals (SIGILL or SIGEMT for instance), but it is less
1136 clear where the PC is pointing afterwards. It may not match
1137 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1138 these signals at breakpoints (the code has been in GDB since at least
1139 1992) so I can not guess how to handle them here.
1140
1141 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1142 would have the PC after hitting a watchpoint affected by
1143 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1144 in GDB history, and it seems unlikely to be correct, so
1145 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1146
1147 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1148 return;
1149
1150 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1151 return;
1152
1153 /* Find the location where (if we've hit a breakpoint) the
1154 breakpoint would be. */
1155 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1156
1157 if (SOFTWARE_SINGLE_STEP_P ())
1158 {
1159 /* When using software single-step, a SIGTRAP can only indicate
1160 an inserted breakpoint. This actually makes things
1161 easier. */
1162 if (singlestep_breakpoints_inserted_p)
1163 /* When software single stepping, the instruction at [prev_pc]
1164 is never a breakpoint, but the instruction following
1165 [prev_pc] (in program execution order) always is. Assume
1166 that following instruction was reached and hence a software
1167 breakpoint was hit. */
1168 write_pc_pid (breakpoint_pc, ecs->ptid);
1169 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1170 /* The inferior was free running (i.e., no single-step
1171 breakpoints inserted) and it hit a software breakpoint. */
1172 write_pc_pid (breakpoint_pc, ecs->ptid);
1173 }
1174 else
1175 {
1176 /* When using hardware single-step, a SIGTRAP is reported for
1177 both a completed single-step and a software breakpoint. Need
1178 to differentiate between the two as the latter needs
1179 adjusting but the former does not. */
1180 if (currently_stepping (ecs))
1181 {
1182 if (prev_pc == breakpoint_pc
1183 && software_breakpoint_inserted_here_p (breakpoint_pc))
1184 /* Hardware single-stepped a software breakpoint (as
1185 occures when the inferior is resumed with PC pointing
1186 at not-yet-hit software breakpoint). Since the
1187 breakpoint really is executed, the inferior needs to be
1188 backed up to the breakpoint address. */
1189 write_pc_pid (breakpoint_pc, ecs->ptid);
1190 }
1191 else
1192 {
1193 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1194 /* The inferior was free running (i.e., no hardware
1195 single-step and no possibility of a false SIGTRAP) and
1196 hit a software breakpoint. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 }
1199 }
1200 }
1201
1202 /* Given an execution control state that has been freshly filled in
1203 by an event from the inferior, figure out what it means and take
1204 appropriate action. */
1205
1206 int stepped_after_stopped_by_watchpoint;
1207
1208 void
1209 handle_inferior_event (struct execution_control_state *ecs)
1210 {
1211 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1212 thinking that the variable stepped_after_stopped_by_watchpoint
1213 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1214 defined in the file "config/pa/nm-hppah.h", accesses the variable
1215 indirectly. Mutter something rude about the HP merge. */
1216 int sw_single_step_trap_p = 0;
1217 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1218
1219 /* Cache the last pid/waitstatus. */
1220 target_last_wait_ptid = ecs->ptid;
1221 target_last_waitstatus = *ecs->wp;
1222
1223 adjust_pc_after_break (ecs);
1224
1225 switch (ecs->infwait_state)
1226 {
1227 case infwait_thread_hop_state:
1228 if (debug_infrun)
1229 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1230 /* Cancel the waiton_ptid. */
1231 ecs->waiton_ptid = pid_to_ptid (-1);
1232 break;
1233
1234 case infwait_normal_state:
1235 if (debug_infrun)
1236 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1237 stepped_after_stopped_by_watchpoint = 0;
1238 break;
1239
1240 case infwait_nonstep_watch_state:
1241 if (debug_infrun)
1242 fprintf_unfiltered (gdb_stdlog,
1243 "infrun: infwait_nonstep_watch_state\n");
1244 insert_breakpoints ();
1245
1246 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1247 handle things like signals arriving and other things happening
1248 in combination correctly? */
1249 stepped_after_stopped_by_watchpoint = 1;
1250 break;
1251
1252 default:
1253 internal_error (__FILE__, __LINE__, "bad switch");
1254 }
1255 ecs->infwait_state = infwait_normal_state;
1256
1257 flush_cached_frames ();
1258
1259 /* If it's a new process, add it to the thread database */
1260
1261 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1262 && !ptid_equal (ecs->ptid, minus_one_ptid)
1263 && !in_thread_list (ecs->ptid));
1264
1265 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1266 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1267 {
1268 add_thread (ecs->ptid);
1269
1270 ui_out_text (uiout, "[New ");
1271 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1272 ui_out_text (uiout, "]\n");
1273 }
1274
1275 switch (ecs->ws.kind)
1276 {
1277 case TARGET_WAITKIND_LOADED:
1278 if (debug_infrun)
1279 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1280 /* Ignore gracefully during startup of the inferior, as it
1281 might be the shell which has just loaded some objects,
1282 otherwise add the symbols for the newly loaded objects. */
1283 #ifdef SOLIB_ADD
1284 if (stop_soon == NO_STOP_QUIETLY)
1285 {
1286 /* Remove breakpoints, SOLIB_ADD might adjust
1287 breakpoint addresses via breakpoint_re_set. */
1288 if (breakpoints_inserted)
1289 remove_breakpoints ();
1290
1291 /* Check for any newly added shared libraries if we're
1292 supposed to be adding them automatically. Switch
1293 terminal for any messages produced by
1294 breakpoint_re_set. */
1295 target_terminal_ours_for_output ();
1296 /* NOTE: cagney/2003-11-25: Make certain that the target
1297 stack's section table is kept up-to-date. Architectures,
1298 (e.g., PPC64), use the section table to perform
1299 operations such as address => section name and hence
1300 require the table to contain all sections (including
1301 those found in shared libraries). */
1302 /* NOTE: cagney/2003-11-25: Pass current_target and not
1303 exec_ops to SOLIB_ADD. This is because current GDB is
1304 only tooled to propagate section_table changes out from
1305 the "current_target" (see target_resize_to_sections), and
1306 not up from the exec stratum. This, of course, isn't
1307 right. "infrun.c" should only interact with the
1308 exec/process stratum, instead relying on the target stack
1309 to propagate relevant changes (stop, section table
1310 changed, ...) up to other layers. */
1311 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1312 target_terminal_inferior ();
1313
1314 /* Reinsert breakpoints and continue. */
1315 if (breakpoints_inserted)
1316 insert_breakpoints ();
1317 }
1318 #endif
1319 resume (0, TARGET_SIGNAL_0);
1320 prepare_to_wait (ecs);
1321 return;
1322
1323 case TARGET_WAITKIND_SPURIOUS:
1324 if (debug_infrun)
1325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1326 resume (0, TARGET_SIGNAL_0);
1327 prepare_to_wait (ecs);
1328 return;
1329
1330 case TARGET_WAITKIND_EXITED:
1331 if (debug_infrun)
1332 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1333 target_terminal_ours (); /* Must do this before mourn anyway */
1334 print_stop_reason (EXITED, ecs->ws.value.integer);
1335
1336 /* Record the exit code in the convenience variable $_exitcode, so
1337 that the user can inspect this again later. */
1338 set_internalvar (lookup_internalvar ("_exitcode"),
1339 value_from_longest (builtin_type_int,
1340 (LONGEST) ecs->ws.value.integer));
1341 gdb_flush (gdb_stdout);
1342 target_mourn_inferior ();
1343 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1344 stop_print_frame = 0;
1345 stop_stepping (ecs);
1346 return;
1347
1348 case TARGET_WAITKIND_SIGNALLED:
1349 if (debug_infrun)
1350 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1351 stop_print_frame = 0;
1352 stop_signal = ecs->ws.value.sig;
1353 target_terminal_ours (); /* Must do this before mourn anyway */
1354
1355 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1356 reach here unless the inferior is dead. However, for years
1357 target_kill() was called here, which hints that fatal signals aren't
1358 really fatal on some systems. If that's true, then some changes
1359 may be needed. */
1360 target_mourn_inferior ();
1361
1362 print_stop_reason (SIGNAL_EXITED, stop_signal);
1363 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1364 stop_stepping (ecs);
1365 return;
1366
1367 /* The following are the only cases in which we keep going;
1368 the above cases end in a continue or goto. */
1369 case TARGET_WAITKIND_FORKED:
1370 case TARGET_WAITKIND_VFORKED:
1371 if (debug_infrun)
1372 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1373 stop_signal = TARGET_SIGNAL_TRAP;
1374 pending_follow.kind = ecs->ws.kind;
1375
1376 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1377 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1378
1379 stop_pc = read_pc ();
1380
1381 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1382
1383 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1384
1385 /* If no catchpoint triggered for this, then keep going. */
1386 if (ecs->random_signal)
1387 {
1388 stop_signal = TARGET_SIGNAL_0;
1389 keep_going (ecs);
1390 return;
1391 }
1392 goto process_event_stop_test;
1393
1394 case TARGET_WAITKIND_EXECD:
1395 if (debug_infrun)
1396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1397 stop_signal = TARGET_SIGNAL_TRAP;
1398
1399 /* NOTE drow/2002-12-05: This code should be pushed down into the
1400 target_wait function. Until then following vfork on HP/UX 10.20
1401 is probably broken by this. Of course, it's broken anyway. */
1402 /* Is this a target which reports multiple exec events per actual
1403 call to exec()? (HP-UX using ptrace does, for example.) If so,
1404 ignore all but the last one. Just resume the exec'r, and wait
1405 for the next exec event. */
1406 if (inferior_ignoring_leading_exec_events)
1407 {
1408 inferior_ignoring_leading_exec_events--;
1409 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1410 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1411 parent_pid);
1412 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1413 prepare_to_wait (ecs);
1414 return;
1415 }
1416 inferior_ignoring_leading_exec_events =
1417 target_reported_exec_events_per_exec_call () - 1;
1418
1419 pending_follow.execd_pathname =
1420 savestring (ecs->ws.value.execd_pathname,
1421 strlen (ecs->ws.value.execd_pathname));
1422
1423 /* This causes the eventpoints and symbol table to be reset. Must
1424 do this now, before trying to determine whether to stop. */
1425 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1426 xfree (pending_follow.execd_pathname);
1427
1428 stop_pc = read_pc_pid (ecs->ptid);
1429 ecs->saved_inferior_ptid = inferior_ptid;
1430 inferior_ptid = ecs->ptid;
1431
1432 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1433
1434 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1435 inferior_ptid = ecs->saved_inferior_ptid;
1436
1437 /* If no catchpoint triggered for this, then keep going. */
1438 if (ecs->random_signal)
1439 {
1440 stop_signal = TARGET_SIGNAL_0;
1441 keep_going (ecs);
1442 return;
1443 }
1444 goto process_event_stop_test;
1445
1446 /* Be careful not to try to gather much state about a thread
1447 that's in a syscall. It's frequently a losing proposition. */
1448 case TARGET_WAITKIND_SYSCALL_ENTRY:
1449 if (debug_infrun)
1450 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1451 resume (0, TARGET_SIGNAL_0);
1452 prepare_to_wait (ecs);
1453 return;
1454
1455 /* Before examining the threads further, step this thread to
1456 get it entirely out of the syscall. (We get notice of the
1457 event when the thread is just on the verge of exiting a
1458 syscall. Stepping one instruction seems to get it back
1459 into user code.) */
1460 case TARGET_WAITKIND_SYSCALL_RETURN:
1461 if (debug_infrun)
1462 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1463 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1464 prepare_to_wait (ecs);
1465 return;
1466
1467 case TARGET_WAITKIND_STOPPED:
1468 if (debug_infrun)
1469 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1470 stop_signal = ecs->ws.value.sig;
1471 break;
1472
1473 /* We had an event in the inferior, but we are not interested
1474 in handling it at this level. The lower layers have already
1475 done what needs to be done, if anything.
1476
1477 One of the possible circumstances for this is when the
1478 inferior produces output for the console. The inferior has
1479 not stopped, and we are ignoring the event. Another possible
1480 circumstance is any event which the lower level knows will be
1481 reported multiple times without an intervening resume. */
1482 case TARGET_WAITKIND_IGNORE:
1483 if (debug_infrun)
1484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1485 prepare_to_wait (ecs);
1486 return;
1487 }
1488
1489 /* We may want to consider not doing a resume here in order to give
1490 the user a chance to play with the new thread. It might be good
1491 to make that a user-settable option. */
1492
1493 /* At this point, all threads are stopped (happens automatically in
1494 either the OS or the native code). Therefore we need to continue
1495 all threads in order to make progress. */
1496 if (ecs->new_thread_event)
1497 {
1498 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1499 prepare_to_wait (ecs);
1500 return;
1501 }
1502
1503 stop_pc = read_pc_pid (ecs->ptid);
1504
1505 if (debug_infrun)
1506 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1507
1508 if (stepping_past_singlestep_breakpoint)
1509 {
1510 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1511 && singlestep_breakpoints_inserted_p);
1512 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1513 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1514
1515 stepping_past_singlestep_breakpoint = 0;
1516
1517 /* We've either finished single-stepping past the single-step
1518 breakpoint, or stopped for some other reason. It would be nice if
1519 we could tell, but we can't reliably. */
1520 if (stop_signal == TARGET_SIGNAL_TRAP)
1521 {
1522 if (debug_infrun)
1523 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1524 /* Pull the single step breakpoints out of the target. */
1525 SOFTWARE_SINGLE_STEP (0, 0);
1526 singlestep_breakpoints_inserted_p = 0;
1527
1528 ecs->random_signal = 0;
1529
1530 ecs->ptid = saved_singlestep_ptid;
1531 context_switch (ecs);
1532 if (deprecated_context_hook)
1533 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1534
1535 resume (1, TARGET_SIGNAL_0);
1536 prepare_to_wait (ecs);
1537 return;
1538 }
1539 }
1540
1541 stepping_past_singlestep_breakpoint = 0;
1542
1543 /* See if a thread hit a thread-specific breakpoint that was meant for
1544 another thread. If so, then step that thread past the breakpoint,
1545 and continue it. */
1546
1547 if (stop_signal == TARGET_SIGNAL_TRAP)
1548 {
1549 int thread_hop_needed = 0;
1550
1551 /* Check if a regular breakpoint has been hit before checking
1552 for a potential single step breakpoint. Otherwise, GDB will
1553 not see this breakpoint hit when stepping onto breakpoints. */
1554 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1555 {
1556 ecs->random_signal = 0;
1557 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1558 thread_hop_needed = 1;
1559 }
1560 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1561 {
1562 ecs->random_signal = 0;
1563 /* The call to in_thread_list is necessary because PTIDs sometimes
1564 change when we go from single-threaded to multi-threaded. If
1565 the singlestep_ptid is still in the list, assume that it is
1566 really different from ecs->ptid. */
1567 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1568 && in_thread_list (singlestep_ptid))
1569 {
1570 thread_hop_needed = 1;
1571 stepping_past_singlestep_breakpoint = 1;
1572 saved_singlestep_ptid = singlestep_ptid;
1573 }
1574 }
1575
1576 if (thread_hop_needed)
1577 {
1578 int remove_status;
1579
1580 if (debug_infrun)
1581 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1582
1583 /* Saw a breakpoint, but it was hit by the wrong thread.
1584 Just continue. */
1585
1586 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1587 {
1588 /* Pull the single step breakpoints out of the target. */
1589 SOFTWARE_SINGLE_STEP (0, 0);
1590 singlestep_breakpoints_inserted_p = 0;
1591 }
1592
1593 remove_status = remove_breakpoints ();
1594 /* Did we fail to remove breakpoints? If so, try
1595 to set the PC past the bp. (There's at least
1596 one situation in which we can fail to remove
1597 the bp's: On HP-UX's that use ttrace, we can't
1598 change the address space of a vforking child
1599 process until the child exits (well, okay, not
1600 then either :-) or execs. */
1601 if (remove_status != 0)
1602 {
1603 /* FIXME! This is obviously non-portable! */
1604 write_pc_pid (stop_pc + 4, ecs->ptid);
1605 /* We need to restart all the threads now,
1606 * unles we're running in scheduler-locked mode.
1607 * Use currently_stepping to determine whether to
1608 * step or continue.
1609 */
1610 /* FIXME MVS: is there any reason not to call resume()? */
1611 if (scheduler_mode == schedlock_on)
1612 target_resume (ecs->ptid,
1613 currently_stepping (ecs), TARGET_SIGNAL_0);
1614 else
1615 target_resume (RESUME_ALL,
1616 currently_stepping (ecs), TARGET_SIGNAL_0);
1617 prepare_to_wait (ecs);
1618 return;
1619 }
1620 else
1621 { /* Single step */
1622 breakpoints_inserted = 0;
1623 if (!ptid_equal (inferior_ptid, ecs->ptid))
1624 context_switch (ecs);
1625 ecs->waiton_ptid = ecs->ptid;
1626 ecs->wp = &(ecs->ws);
1627 ecs->another_trap = 1;
1628
1629 ecs->infwait_state = infwait_thread_hop_state;
1630 keep_going (ecs);
1631 registers_changed ();
1632 return;
1633 }
1634 }
1635 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1636 {
1637 sw_single_step_trap_p = 1;
1638 ecs->random_signal = 0;
1639 }
1640 }
1641 else
1642 ecs->random_signal = 1;
1643
1644 /* See if something interesting happened to the non-current thread. If
1645 so, then switch to that thread. */
1646 if (!ptid_equal (ecs->ptid, inferior_ptid))
1647 {
1648 if (debug_infrun)
1649 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1650
1651 context_switch (ecs);
1652
1653 if (deprecated_context_hook)
1654 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1655
1656 flush_cached_frames ();
1657 }
1658
1659 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1660 {
1661 /* Pull the single step breakpoints out of the target. */
1662 SOFTWARE_SINGLE_STEP (0, 0);
1663 singlestep_breakpoints_inserted_p = 0;
1664 }
1665
1666 /* It may not be necessary to disable the watchpoint to stop over
1667 it. For example, the PA can (with some kernel cooperation)
1668 single step over a watchpoint without disabling the watchpoint. */
1669 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1670 {
1671 if (debug_infrun)
1672 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1673 resume (1, 0);
1674 prepare_to_wait (ecs);
1675 return;
1676 }
1677
1678 /* It is far more common to need to disable a watchpoint to step
1679 the inferior over it. FIXME. What else might a debug
1680 register or page protection watchpoint scheme need here? */
1681 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1682 {
1683 /* At this point, we are stopped at an instruction which has
1684 attempted to write to a piece of memory under control of
1685 a watchpoint. The instruction hasn't actually executed
1686 yet. If we were to evaluate the watchpoint expression
1687 now, we would get the old value, and therefore no change
1688 would seem to have occurred.
1689
1690 In order to make watchpoints work `right', we really need
1691 to complete the memory write, and then evaluate the
1692 watchpoint expression. The following code does that by
1693 removing the watchpoint (actually, all watchpoints and
1694 breakpoints), single-stepping the target, re-inserting
1695 watchpoints, and then falling through to let normal
1696 single-step processing handle proceed. Since this
1697 includes evaluating watchpoints, things will come to a
1698 stop in the correct manner. */
1699
1700 if (debug_infrun)
1701 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1702 remove_breakpoints ();
1703 registers_changed ();
1704 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1705
1706 ecs->waiton_ptid = ecs->ptid;
1707 ecs->wp = &(ecs->ws);
1708 ecs->infwait_state = infwait_nonstep_watch_state;
1709 prepare_to_wait (ecs);
1710 return;
1711 }
1712
1713 /* It may be possible to simply continue after a watchpoint. */
1714 if (HAVE_CONTINUABLE_WATCHPOINT)
1715 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1716
1717 ecs->stop_func_start = 0;
1718 ecs->stop_func_end = 0;
1719 ecs->stop_func_name = 0;
1720 /* Don't care about return value; stop_func_start and stop_func_name
1721 will both be 0 if it doesn't work. */
1722 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1723 &ecs->stop_func_start, &ecs->stop_func_end);
1724 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1725 ecs->another_trap = 0;
1726 bpstat_clear (&stop_bpstat);
1727 stop_step = 0;
1728 stop_stack_dummy = 0;
1729 stop_print_frame = 1;
1730 ecs->random_signal = 0;
1731 stopped_by_random_signal = 0;
1732 breakpoints_failed = 0;
1733
1734 if (stop_signal == TARGET_SIGNAL_TRAP
1735 && trap_expected
1736 && gdbarch_single_step_through_delay_p (current_gdbarch)
1737 && currently_stepping (ecs))
1738 {
1739 /* We're trying to step of a breakpoint. Turns out that we're
1740 also on an instruction that needs to be stepped multiple
1741 times before it's been fully executing. E.g., architectures
1742 with a delay slot. It needs to be stepped twice, once for
1743 the instruction and once for the delay slot. */
1744 int step_through_delay
1745 = gdbarch_single_step_through_delay (current_gdbarch,
1746 get_current_frame ());
1747 if (debug_infrun && step_through_delay)
1748 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1749 if (step_range_end == 0 && step_through_delay)
1750 {
1751 /* The user issued a continue when stopped at a breakpoint.
1752 Set up for another trap and get out of here. */
1753 ecs->another_trap = 1;
1754 keep_going (ecs);
1755 return;
1756 }
1757 else if (step_through_delay)
1758 {
1759 /* The user issued a step when stopped at a breakpoint.
1760 Maybe we should stop, maybe we should not - the delay
1761 slot *might* correspond to a line of source. In any
1762 case, don't decide that here, just set ecs->another_trap,
1763 making sure we single-step again before breakpoints are
1764 re-inserted. */
1765 ecs->another_trap = 1;
1766 }
1767 }
1768
1769 /* Look at the cause of the stop, and decide what to do.
1770 The alternatives are:
1771 1) break; to really stop and return to the debugger,
1772 2) drop through to start up again
1773 (set ecs->another_trap to 1 to single step once)
1774 3) set ecs->random_signal to 1, and the decision between 1 and 2
1775 will be made according to the signal handling tables. */
1776
1777 /* First, distinguish signals caused by the debugger from signals
1778 that have to do with the program's own actions. Note that
1779 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1780 on the operating system version. Here we detect when a SIGILL or
1781 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1782 something similar for SIGSEGV, since a SIGSEGV will be generated
1783 when we're trying to execute a breakpoint instruction on a
1784 non-executable stack. This happens for call dummy breakpoints
1785 for architectures like SPARC that place call dummies on the
1786 stack. */
1787
1788 if (stop_signal == TARGET_SIGNAL_TRAP
1789 || (breakpoints_inserted
1790 && (stop_signal == TARGET_SIGNAL_ILL
1791 || stop_signal == TARGET_SIGNAL_SEGV
1792 || stop_signal == TARGET_SIGNAL_EMT))
1793 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1794 {
1795 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1796 {
1797 if (debug_infrun)
1798 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1799 stop_print_frame = 0;
1800 stop_stepping (ecs);
1801 return;
1802 }
1803
1804 /* This is originated from start_remote(), start_inferior() and
1805 shared libraries hook functions. */
1806 if (stop_soon == STOP_QUIETLY)
1807 {
1808 if (debug_infrun)
1809 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1810 stop_stepping (ecs);
1811 return;
1812 }
1813
1814 /* This originates from attach_command(). We need to overwrite
1815 the stop_signal here, because some kernels don't ignore a
1816 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1817 See more comments in inferior.h. */
1818 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1819 {
1820 stop_stepping (ecs);
1821 if (stop_signal == TARGET_SIGNAL_STOP)
1822 stop_signal = TARGET_SIGNAL_0;
1823 return;
1824 }
1825
1826 /* Don't even think about breakpoints if just proceeded over a
1827 breakpoint. */
1828 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1829 {
1830 if (debug_infrun)
1831 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1832 bpstat_clear (&stop_bpstat);
1833 }
1834 else
1835 {
1836 /* See if there is a breakpoint at the current PC. */
1837 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1838 stopped_by_watchpoint);
1839
1840 /* Following in case break condition called a
1841 function. */
1842 stop_print_frame = 1;
1843 }
1844
1845 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1846 at one stage in the past included checks for an inferior
1847 function call's call dummy's return breakpoint. The original
1848 comment, that went with the test, read:
1849
1850 ``End of a stack dummy. Some systems (e.g. Sony news) give
1851 another signal besides SIGTRAP, so check here as well as
1852 above.''
1853
1854 If someone ever tries to get get call dummys on a
1855 non-executable stack to work (where the target would stop
1856 with something like a SIGSEGV), then those tests might need
1857 to be re-instated. Given, however, that the tests were only
1858 enabled when momentary breakpoints were not being used, I
1859 suspect that it won't be the case.
1860
1861 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1862 be necessary for call dummies on a non-executable stack on
1863 SPARC. */
1864
1865 if (stop_signal == TARGET_SIGNAL_TRAP)
1866 ecs->random_signal
1867 = !(bpstat_explains_signal (stop_bpstat)
1868 || trap_expected
1869 || (step_range_end && step_resume_breakpoint == NULL));
1870 else
1871 {
1872 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1873 if (!ecs->random_signal)
1874 stop_signal = TARGET_SIGNAL_TRAP;
1875 }
1876 }
1877
1878 /* When we reach this point, we've pretty much decided
1879 that the reason for stopping must've been a random
1880 (unexpected) signal. */
1881
1882 else
1883 ecs->random_signal = 1;
1884
1885 process_event_stop_test:
1886 /* For the program's own signals, act according to
1887 the signal handling tables. */
1888
1889 if (ecs->random_signal)
1890 {
1891 /* Signal not for debugging purposes. */
1892 int printed = 0;
1893
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1896
1897 stopped_by_random_signal = 1;
1898
1899 if (signal_print[stop_signal])
1900 {
1901 printed = 1;
1902 target_terminal_ours_for_output ();
1903 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1904 }
1905 if (signal_stop[stop_signal])
1906 {
1907 stop_stepping (ecs);
1908 return;
1909 }
1910 /* If not going to stop, give terminal back
1911 if we took it away. */
1912 else if (printed)
1913 target_terminal_inferior ();
1914
1915 /* Clear the signal if it should not be passed. */
1916 if (signal_program[stop_signal] == 0)
1917 stop_signal = TARGET_SIGNAL_0;
1918
1919 if (prev_pc == read_pc ()
1920 && !breakpoints_inserted
1921 && breakpoint_here_p (read_pc ())
1922 && step_resume_breakpoint == NULL)
1923 {
1924 /* We were just starting a new sequence, attempting to
1925 single-step off of a breakpoint and expecting a SIGTRAP.
1926 Intead this signal arrives. This signal will take us out
1927 of the stepping range so GDB needs to remember to, when
1928 the signal handler returns, resume stepping off that
1929 breakpoint. */
1930 /* To simplify things, "continue" is forced to use the same
1931 code paths as single-step - set a breakpoint at the
1932 signal return address and then, once hit, step off that
1933 breakpoint. */
1934 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1935 ecs->step_after_step_resume_breakpoint = 1;
1936 }
1937 else if (step_range_end != 0
1938 && stop_signal != TARGET_SIGNAL_0
1939 && stop_pc >= step_range_start && stop_pc < step_range_end
1940 && frame_id_eq (get_frame_id (get_current_frame ()),
1941 step_frame_id))
1942 {
1943 /* The inferior is about to take a signal that will take it
1944 out of the single step range. Set a breakpoint at the
1945 current PC (which is presumably where the signal handler
1946 will eventually return) and then allow the inferior to
1947 run free.
1948
1949 Note that this is only needed for a signal delivered
1950 while in the single-step range. Nested signals aren't a
1951 problem as they eventually all return. */
1952 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1953 }
1954 keep_going (ecs);
1955 return;
1956 }
1957
1958 /* Handle cases caused by hitting a breakpoint. */
1959 {
1960 CORE_ADDR jmp_buf_pc;
1961 struct bpstat_what what;
1962
1963 what = bpstat_what (stop_bpstat);
1964
1965 if (what.call_dummy)
1966 {
1967 stop_stack_dummy = 1;
1968 }
1969
1970 switch (what.main_action)
1971 {
1972 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1973 /* If we hit the breakpoint at longjmp, disable it for the
1974 duration of this command. Then, install a temporary
1975 breakpoint at the target of the jmp_buf. */
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
1978 disable_longjmp_breakpoint ();
1979 remove_breakpoints ();
1980 breakpoints_inserted = 0;
1981 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1982 {
1983 keep_going (ecs);
1984 return;
1985 }
1986
1987 /* Need to blow away step-resume breakpoint, as it
1988 interferes with us */
1989 if (step_resume_breakpoint != NULL)
1990 {
1991 delete_step_resume_breakpoint (&step_resume_breakpoint);
1992 }
1993
1994 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1995 ecs->handling_longjmp = 1; /* FIXME */
1996 keep_going (ecs);
1997 return;
1998
1999 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2000 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2001 if (debug_infrun)
2002 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2003 remove_breakpoints ();
2004 breakpoints_inserted = 0;
2005 disable_longjmp_breakpoint ();
2006 ecs->handling_longjmp = 0; /* FIXME */
2007 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2008 break;
2009 /* else fallthrough */
2010
2011 case BPSTAT_WHAT_SINGLE:
2012 if (debug_infrun)
2013 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2014 if (breakpoints_inserted)
2015 {
2016 remove_breakpoints ();
2017 }
2018 breakpoints_inserted = 0;
2019 ecs->another_trap = 1;
2020 /* Still need to check other stuff, at least the case
2021 where we are stepping and step out of the right range. */
2022 break;
2023
2024 case BPSTAT_WHAT_STOP_NOISY:
2025 if (debug_infrun)
2026 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2027 stop_print_frame = 1;
2028
2029 /* We are about to nuke the step_resume_breakpointt via the
2030 cleanup chain, so no need to worry about it here. */
2031
2032 stop_stepping (ecs);
2033 return;
2034
2035 case BPSTAT_WHAT_STOP_SILENT:
2036 if (debug_infrun)
2037 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2038 stop_print_frame = 0;
2039
2040 /* We are about to nuke the step_resume_breakpoin via the
2041 cleanup chain, so no need to worry about it here. */
2042
2043 stop_stepping (ecs);
2044 return;
2045
2046 case BPSTAT_WHAT_STEP_RESUME:
2047 /* This proably demands a more elegant solution, but, yeah
2048 right...
2049
2050 This function's use of the simple variable
2051 step_resume_breakpoint doesn't seem to accomodate
2052 simultaneously active step-resume bp's, although the
2053 breakpoint list certainly can.
2054
2055 If we reach here and step_resume_breakpoint is already
2056 NULL, then apparently we have multiple active
2057 step-resume bp's. We'll just delete the breakpoint we
2058 stopped at, and carry on.
2059
2060 Correction: what the code currently does is delete a
2061 step-resume bp, but it makes no effort to ensure that
2062 the one deleted is the one currently stopped at. MVS */
2063
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2066
2067 if (step_resume_breakpoint == NULL)
2068 {
2069 step_resume_breakpoint =
2070 bpstat_find_step_resume_breakpoint (stop_bpstat);
2071 }
2072 delete_step_resume_breakpoint (&step_resume_breakpoint);
2073 if (ecs->step_after_step_resume_breakpoint)
2074 {
2075 /* Back when the step-resume breakpoint was inserted, we
2076 were trying to single-step off a breakpoint. Go back
2077 to doing that. */
2078 ecs->step_after_step_resume_breakpoint = 0;
2079 remove_breakpoints ();
2080 breakpoints_inserted = 0;
2081 ecs->another_trap = 1;
2082 keep_going (ecs);
2083 return;
2084 }
2085 break;
2086
2087 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2088 if (debug_infrun)
2089 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2090 /* If were waiting for a trap, hitting the step_resume_break
2091 doesn't count as getting it. */
2092 if (trap_expected)
2093 ecs->another_trap = 1;
2094 break;
2095
2096 case BPSTAT_WHAT_CHECK_SHLIBS:
2097 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2098 #ifdef SOLIB_ADD
2099 {
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2102 /* Remove breakpoints, we eventually want to step over the
2103 shlib event breakpoint, and SOLIB_ADD might adjust
2104 breakpoint addresses via breakpoint_re_set. */
2105 if (breakpoints_inserted)
2106 remove_breakpoints ();
2107 breakpoints_inserted = 0;
2108
2109 /* Check for any newly added shared libraries if we're
2110 supposed to be adding them automatically. Switch
2111 terminal for any messages produced by
2112 breakpoint_re_set. */
2113 target_terminal_ours_for_output ();
2114 /* NOTE: cagney/2003-11-25: Make certain that the target
2115 stack's section table is kept up-to-date. Architectures,
2116 (e.g., PPC64), use the section table to perform
2117 operations such as address => section name and hence
2118 require the table to contain all sections (including
2119 those found in shared libraries). */
2120 /* NOTE: cagney/2003-11-25: Pass current_target and not
2121 exec_ops to SOLIB_ADD. This is because current GDB is
2122 only tooled to propagate section_table changes out from
2123 the "current_target" (see target_resize_to_sections), and
2124 not up from the exec stratum. This, of course, isn't
2125 right. "infrun.c" should only interact with the
2126 exec/process stratum, instead relying on the target stack
2127 to propagate relevant changes (stop, section table
2128 changed, ...) up to other layers. */
2129 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2130 target_terminal_inferior ();
2131
2132 /* Try to reenable shared library breakpoints, additional
2133 code segments in shared libraries might be mapped in now. */
2134 re_enable_breakpoints_in_shlibs ();
2135
2136 /* If requested, stop when the dynamic linker notifies
2137 gdb of events. This allows the user to get control
2138 and place breakpoints in initializer routines for
2139 dynamically loaded objects (among other things). */
2140 if (stop_on_solib_events || stop_stack_dummy)
2141 {
2142 stop_stepping (ecs);
2143 return;
2144 }
2145
2146 /* If we stopped due to an explicit catchpoint, then the
2147 (see above) call to SOLIB_ADD pulled in any symbols
2148 from a newly-loaded library, if appropriate.
2149
2150 We do want the inferior to stop, but not where it is
2151 now, which is in the dynamic linker callback. Rather,
2152 we would like it stop in the user's program, just after
2153 the call that caused this catchpoint to trigger. That
2154 gives the user a more useful vantage from which to
2155 examine their program's state. */
2156 else if (what.main_action
2157 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2158 {
2159 /* ??rehrauer: If I could figure out how to get the
2160 right return PC from here, we could just set a temp
2161 breakpoint and resume. I'm not sure we can without
2162 cracking open the dld's shared libraries and sniffing
2163 their unwind tables and text/data ranges, and that's
2164 not a terribly portable notion.
2165
2166 Until that time, we must step the inferior out of the
2167 dld callback, and also out of the dld itself (and any
2168 code or stubs in libdld.sl, such as "shl_load" and
2169 friends) until we reach non-dld code. At that point,
2170 we can stop stepping. */
2171 bpstat_get_triggered_catchpoints (stop_bpstat,
2172 &ecs->
2173 stepping_through_solib_catchpoints);
2174 ecs->stepping_through_solib_after_catch = 1;
2175
2176 /* Be sure to lift all breakpoints, so the inferior does
2177 actually step past this point... */
2178 ecs->another_trap = 1;
2179 break;
2180 }
2181 else
2182 {
2183 /* We want to step over this breakpoint, then keep going. */
2184 ecs->another_trap = 1;
2185 break;
2186 }
2187 }
2188 #endif
2189 break;
2190
2191 case BPSTAT_WHAT_LAST:
2192 /* Not a real code, but listed here to shut up gcc -Wall. */
2193
2194 case BPSTAT_WHAT_KEEP_CHECKING:
2195 break;
2196 }
2197 }
2198
2199 /* We come here if we hit a breakpoint but should not
2200 stop for it. Possibly we also were stepping
2201 and should stop for that. So fall through and
2202 test for stepping. But, if not stepping,
2203 do not stop. */
2204
2205 /* Are we stepping to get the inferior out of the dynamic linker's
2206 hook (and possibly the dld itself) after catching a shlib
2207 event? */
2208 if (ecs->stepping_through_solib_after_catch)
2209 {
2210 #if defined(SOLIB_ADD)
2211 /* Have we reached our destination? If not, keep going. */
2212 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2213 {
2214 if (debug_infrun)
2215 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2216 ecs->another_trap = 1;
2217 keep_going (ecs);
2218 return;
2219 }
2220 #endif
2221 if (debug_infrun)
2222 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2223 /* Else, stop and report the catchpoint(s) whose triggering
2224 caused us to begin stepping. */
2225 ecs->stepping_through_solib_after_catch = 0;
2226 bpstat_clear (&stop_bpstat);
2227 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2228 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2229 stop_print_frame = 1;
2230 stop_stepping (ecs);
2231 return;
2232 }
2233
2234 if (step_resume_breakpoint)
2235 {
2236 if (debug_infrun)
2237 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2238
2239 /* Having a step-resume breakpoint overrides anything
2240 else having to do with stepping commands until
2241 that breakpoint is reached. */
2242 keep_going (ecs);
2243 return;
2244 }
2245
2246 if (step_range_end == 0)
2247 {
2248 if (debug_infrun)
2249 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2250 /* Likewise if we aren't even stepping. */
2251 keep_going (ecs);
2252 return;
2253 }
2254
2255 /* If stepping through a line, keep going if still within it.
2256
2257 Note that step_range_end is the address of the first instruction
2258 beyond the step range, and NOT the address of the last instruction
2259 within it! */
2260 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2261 {
2262 if (debug_infrun)
2263 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2264 paddr_nz (step_range_start),
2265 paddr_nz (step_range_end));
2266 keep_going (ecs);
2267 return;
2268 }
2269
2270 /* We stepped out of the stepping range. */
2271
2272 /* If we are stepping at the source level and entered the runtime
2273 loader dynamic symbol resolution code, we keep on single stepping
2274 until we exit the run time loader code and reach the callee's
2275 address. */
2276 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2277 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2278 {
2279 CORE_ADDR pc_after_resolver =
2280 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2281
2282 if (debug_infrun)
2283 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2284
2285 if (pc_after_resolver)
2286 {
2287 /* Set up a step-resume breakpoint at the address
2288 indicated by SKIP_SOLIB_RESOLVER. */
2289 struct symtab_and_line sr_sal;
2290 init_sal (&sr_sal);
2291 sr_sal.pc = pc_after_resolver;
2292
2293 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2294 }
2295
2296 keep_going (ecs);
2297 return;
2298 }
2299
2300 if (step_range_end != 1
2301 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2302 || step_over_calls == STEP_OVER_ALL)
2303 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2304 {
2305 if (debug_infrun)
2306 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2307 /* The inferior, while doing a "step" or "next", has ended up in
2308 a signal trampoline (either by a signal being delivered or by
2309 the signal handler returning). Just single-step until the
2310 inferior leaves the trampoline (either by calling the handler
2311 or returning). */
2312 keep_going (ecs);
2313 return;
2314 }
2315
2316 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2317 {
2318 /* It's a subroutine call. */
2319 CORE_ADDR real_stop_pc;
2320
2321 if (debug_infrun)
2322 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2323
2324 if ((step_over_calls == STEP_OVER_NONE)
2325 || ((step_range_end == 1)
2326 && in_prologue (prev_pc, ecs->stop_func_start)))
2327 {
2328 /* I presume that step_over_calls is only 0 when we're
2329 supposed to be stepping at the assembly language level
2330 ("stepi"). Just stop. */
2331 /* Also, maybe we just did a "nexti" inside a prolog, so we
2332 thought it was a subroutine call but it was not. Stop as
2333 well. FENN */
2334 stop_step = 1;
2335 print_stop_reason (END_STEPPING_RANGE, 0);
2336 stop_stepping (ecs);
2337 return;
2338 }
2339
2340 if (step_over_calls == STEP_OVER_ALL)
2341 {
2342 /* We're doing a "next", set a breakpoint at callee's return
2343 address (the address at which the caller will
2344 resume). */
2345 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2346 keep_going (ecs);
2347 return;
2348 }
2349
2350 /* If we are in a function call trampoline (a stub between the
2351 calling routine and the real function), locate the real
2352 function. That's what tells us (a) whether we want to step
2353 into it at all, and (b) what prologue we want to run to the
2354 end of, if we do step into it. */
2355 real_stop_pc = skip_language_trampoline (stop_pc);
2356 if (real_stop_pc == 0)
2357 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2358 if (real_stop_pc != 0)
2359 ecs->stop_func_start = real_stop_pc;
2360
2361 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2362 {
2363 struct symtab_and_line sr_sal;
2364 init_sal (&sr_sal);
2365 sr_sal.pc = ecs->stop_func_start;
2366
2367 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2368 keep_going (ecs);
2369 return;
2370 }
2371
2372 /* If we have line number information for the function we are
2373 thinking of stepping into, step into it.
2374
2375 If there are several symtabs at that PC (e.g. with include
2376 files), just want to know whether *any* of them have line
2377 numbers. find_pc_line handles this. */
2378 {
2379 struct symtab_and_line tmp_sal;
2380
2381 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2382 if (tmp_sal.line != 0)
2383 {
2384 step_into_function (ecs);
2385 return;
2386 }
2387 }
2388
2389 /* If we have no line number and the step-stop-if-no-debug is
2390 set, we stop the step so that the user has a chance to switch
2391 in assembly mode. */
2392 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2393 {
2394 stop_step = 1;
2395 print_stop_reason (END_STEPPING_RANGE, 0);
2396 stop_stepping (ecs);
2397 return;
2398 }
2399
2400 /* Set a breakpoint at callee's return address (the address at
2401 which the caller will resume). */
2402 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2403 keep_going (ecs);
2404 return;
2405 }
2406
2407 /* If we're in the return path from a shared library trampoline,
2408 we want to proceed through the trampoline when stepping. */
2409 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2410 {
2411 /* Determine where this trampoline returns. */
2412 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2413
2414 if (debug_infrun)
2415 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2416
2417 /* Only proceed through if we know where it's going. */
2418 if (real_stop_pc)
2419 {
2420 /* And put the step-breakpoint there and go until there. */
2421 struct symtab_and_line sr_sal;
2422
2423 init_sal (&sr_sal); /* initialize to zeroes */
2424 sr_sal.pc = real_stop_pc;
2425 sr_sal.section = find_pc_overlay (sr_sal.pc);
2426
2427 /* Do not specify what the fp should be when we stop since
2428 on some machines the prologue is where the new fp value
2429 is established. */
2430 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2431
2432 /* Restart without fiddling with the step ranges or
2433 other state. */
2434 keep_going (ecs);
2435 return;
2436 }
2437 }
2438
2439 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2440 the trampoline processing logic, however, there are some trampolines
2441 that have no names, so we should do trampoline handling first. */
2442 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2443 && ecs->stop_func_name == NULL)
2444 {
2445 if (debug_infrun)
2446 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2447
2448 /* The inferior just stepped into, or returned to, an
2449 undebuggable function (where there is no symbol, not even a
2450 minimal symbol, corresponding to the address where the
2451 inferior stopped). Since we want to skip this kind of code,
2452 we keep going until the inferior returns from this
2453 function. */
2454 if (step_stop_if_no_debug)
2455 {
2456 /* If we have no line number and the step-stop-if-no-debug
2457 is set, we stop the step so that the user has a chance to
2458 switch in assembly mode. */
2459 stop_step = 1;
2460 print_stop_reason (END_STEPPING_RANGE, 0);
2461 stop_stepping (ecs);
2462 return;
2463 }
2464 else
2465 {
2466 /* Set a breakpoint at callee's return address (the address
2467 at which the caller will resume). */
2468 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2469 keep_going (ecs);
2470 return;
2471 }
2472 }
2473
2474 if (step_range_end == 1)
2475 {
2476 /* It is stepi or nexti. We always want to stop stepping after
2477 one instruction. */
2478 if (debug_infrun)
2479 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2480 stop_step = 1;
2481 print_stop_reason (END_STEPPING_RANGE, 0);
2482 stop_stepping (ecs);
2483 return;
2484 }
2485
2486 ecs->sal = find_pc_line (stop_pc, 0);
2487
2488 if (ecs->sal.line == 0)
2489 {
2490 /* We have no line number information. That means to stop
2491 stepping (does this always happen right after one instruction,
2492 when we do "s" in a function with no line numbers,
2493 or can this happen as a result of a return or longjmp?). */
2494 if (debug_infrun)
2495 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2496 stop_step = 1;
2497 print_stop_reason (END_STEPPING_RANGE, 0);
2498 stop_stepping (ecs);
2499 return;
2500 }
2501
2502 if ((stop_pc == ecs->sal.pc)
2503 && (ecs->current_line != ecs->sal.line
2504 || ecs->current_symtab != ecs->sal.symtab))
2505 {
2506 /* We are at the start of a different line. So stop. Note that
2507 we don't stop if we step into the middle of a different line.
2508 That is said to make things like for (;;) statements work
2509 better. */
2510 if (debug_infrun)
2511 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2512 stop_step = 1;
2513 print_stop_reason (END_STEPPING_RANGE, 0);
2514 stop_stepping (ecs);
2515 return;
2516 }
2517
2518 /* We aren't done stepping.
2519
2520 Optimize by setting the stepping range to the line.
2521 (We might not be in the original line, but if we entered a
2522 new line in mid-statement, we continue stepping. This makes
2523 things like for(;;) statements work better.) */
2524
2525 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2526 {
2527 /* If this is the last line of the function, don't keep stepping
2528 (it would probably step us out of the function).
2529 This is particularly necessary for a one-line function,
2530 in which after skipping the prologue we better stop even though
2531 we will be in mid-line. */
2532 if (debug_infrun)
2533 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2534 stop_step = 1;
2535 print_stop_reason (END_STEPPING_RANGE, 0);
2536 stop_stepping (ecs);
2537 return;
2538 }
2539 step_range_start = ecs->sal.pc;
2540 step_range_end = ecs->sal.end;
2541 step_frame_id = get_frame_id (get_current_frame ());
2542 ecs->current_line = ecs->sal.line;
2543 ecs->current_symtab = ecs->sal.symtab;
2544
2545 /* In the case where we just stepped out of a function into the
2546 middle of a line of the caller, continue stepping, but
2547 step_frame_id must be modified to current frame */
2548 #if 0
2549 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2550 generous. It will trigger on things like a step into a frameless
2551 stackless leaf function. I think the logic should instead look
2552 at the unwound frame ID has that should give a more robust
2553 indication of what happened. */
2554 if (step - ID == current - ID)
2555 still stepping in same function;
2556 else if (step - ID == unwind (current - ID))
2557 stepped into a function;
2558 else
2559 stepped out of a function;
2560 /* Of course this assumes that the frame ID unwind code is robust
2561 and we're willing to introduce frame unwind logic into this
2562 function. Fortunately, those days are nearly upon us. */
2563 #endif
2564 {
2565 struct frame_id current_frame = get_frame_id (get_current_frame ());
2566 if (!(frame_id_inner (current_frame, step_frame_id)))
2567 step_frame_id = current_frame;
2568 }
2569
2570 if (debug_infrun)
2571 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2572 keep_going (ecs);
2573 }
2574
2575 /* Are we in the middle of stepping? */
2576
2577 static int
2578 currently_stepping (struct execution_control_state *ecs)
2579 {
2580 return ((!ecs->handling_longjmp
2581 && ((step_range_end && step_resume_breakpoint == NULL)
2582 || trap_expected))
2583 || ecs->stepping_through_solib_after_catch
2584 || bpstat_should_step ());
2585 }
2586
2587 /* Subroutine call with source code we should not step over. Do step
2588 to the first line of code in it. */
2589
2590 static void
2591 step_into_function (struct execution_control_state *ecs)
2592 {
2593 struct symtab *s;
2594 struct symtab_and_line sr_sal;
2595
2596 s = find_pc_symtab (stop_pc);
2597 if (s && s->language != language_asm)
2598 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2599
2600 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2601 /* Use the step_resume_break to step until the end of the prologue,
2602 even if that involves jumps (as it seems to on the vax under
2603 4.2). */
2604 /* If the prologue ends in the middle of a source line, continue to
2605 the end of that source line (if it is still within the function).
2606 Otherwise, just go to end of prologue. */
2607 if (ecs->sal.end
2608 && ecs->sal.pc != ecs->stop_func_start
2609 && ecs->sal.end < ecs->stop_func_end)
2610 ecs->stop_func_start = ecs->sal.end;
2611
2612 /* Architectures which require breakpoint adjustment might not be able
2613 to place a breakpoint at the computed address. If so, the test
2614 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2615 ecs->stop_func_start to an address at which a breakpoint may be
2616 legitimately placed.
2617
2618 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2619 made, GDB will enter an infinite loop when stepping through
2620 optimized code consisting of VLIW instructions which contain
2621 subinstructions corresponding to different source lines. On
2622 FR-V, it's not permitted to place a breakpoint on any but the
2623 first subinstruction of a VLIW instruction. When a breakpoint is
2624 set, GDB will adjust the breakpoint address to the beginning of
2625 the VLIW instruction. Thus, we need to make the corresponding
2626 adjustment here when computing the stop address. */
2627
2628 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2629 {
2630 ecs->stop_func_start
2631 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2632 ecs->stop_func_start);
2633 }
2634
2635 if (ecs->stop_func_start == stop_pc)
2636 {
2637 /* We are already there: stop now. */
2638 stop_step = 1;
2639 print_stop_reason (END_STEPPING_RANGE, 0);
2640 stop_stepping (ecs);
2641 return;
2642 }
2643 else
2644 {
2645 /* Put the step-breakpoint there and go until there. */
2646 init_sal (&sr_sal); /* initialize to zeroes */
2647 sr_sal.pc = ecs->stop_func_start;
2648 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2649
2650 /* Do not specify what the fp should be when we stop since on
2651 some machines the prologue is where the new fp value is
2652 established. */
2653 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2654
2655 /* And make sure stepping stops right away then. */
2656 step_range_end = step_range_start;
2657 }
2658 keep_going (ecs);
2659 }
2660
2661 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2662 This is used to both functions and to skip over code. */
2663
2664 static void
2665 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2666 struct frame_id sr_id)
2667 {
2668 /* There should never be more than one step-resume breakpoint per
2669 thread, so we should never be setting a new
2670 step_resume_breakpoint when one is already active. */
2671 gdb_assert (step_resume_breakpoint == NULL);
2672 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2673 bp_step_resume);
2674 if (breakpoints_inserted)
2675 insert_breakpoints ();
2676 }
2677
2678 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2679 to skip a function (next, skip-no-debug) or signal. It's assumed
2680 that the function/signal handler being skipped eventually returns
2681 to the breakpoint inserted at RETURN_FRAME.pc.
2682
2683 For the skip-function case, the function may have been reached by
2684 either single stepping a call / return / signal-return instruction,
2685 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2686 to the skip-function's caller.
2687
2688 For the signals case, this is called with the interrupted
2689 function's frame. The signal handler, when it returns, will resume
2690 the interrupted function at RETURN_FRAME.pc. */
2691
2692 static void
2693 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2694 {
2695 struct symtab_and_line sr_sal;
2696
2697 init_sal (&sr_sal); /* initialize to zeros */
2698
2699 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2700 sr_sal.section = find_pc_overlay (sr_sal.pc);
2701
2702 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2703 }
2704
2705 static void
2706 stop_stepping (struct execution_control_state *ecs)
2707 {
2708 if (debug_infrun)
2709 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2710
2711 /* Let callers know we don't want to wait for the inferior anymore. */
2712 ecs->wait_some_more = 0;
2713 }
2714
2715 /* This function handles various cases where we need to continue
2716 waiting for the inferior. */
2717 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2718
2719 static void
2720 keep_going (struct execution_control_state *ecs)
2721 {
2722 /* Save the pc before execution, to compare with pc after stop. */
2723 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2724
2725 /* If we did not do break;, it means we should keep running the
2726 inferior and not return to debugger. */
2727
2728 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2729 {
2730 /* We took a signal (which we are supposed to pass through to
2731 the inferior, else we'd have done a break above) and we
2732 haven't yet gotten our trap. Simply continue. */
2733 resume (currently_stepping (ecs), stop_signal);
2734 }
2735 else
2736 {
2737 /* Either the trap was not expected, but we are continuing
2738 anyway (the user asked that this signal be passed to the
2739 child)
2740 -- or --
2741 The signal was SIGTRAP, e.g. it was our signal, but we
2742 decided we should resume from it.
2743
2744 We're going to run this baby now! */
2745
2746 if (!breakpoints_inserted && !ecs->another_trap)
2747 {
2748 breakpoints_failed = insert_breakpoints ();
2749 if (breakpoints_failed)
2750 {
2751 stop_stepping (ecs);
2752 return;
2753 }
2754 breakpoints_inserted = 1;
2755 }
2756
2757 trap_expected = ecs->another_trap;
2758
2759 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2760 specifies that such a signal should be delivered to the
2761 target program).
2762
2763 Typically, this would occure when a user is debugging a
2764 target monitor on a simulator: the target monitor sets a
2765 breakpoint; the simulator encounters this break-point and
2766 halts the simulation handing control to GDB; GDB, noteing
2767 that the break-point isn't valid, returns control back to the
2768 simulator; the simulator then delivers the hardware
2769 equivalent of a SIGNAL_TRAP to the program being debugged. */
2770
2771 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2772 stop_signal = TARGET_SIGNAL_0;
2773
2774
2775 resume (currently_stepping (ecs), stop_signal);
2776 }
2777
2778 prepare_to_wait (ecs);
2779 }
2780
2781 /* This function normally comes after a resume, before
2782 handle_inferior_event exits. It takes care of any last bits of
2783 housekeeping, and sets the all-important wait_some_more flag. */
2784
2785 static void
2786 prepare_to_wait (struct execution_control_state *ecs)
2787 {
2788 if (debug_infrun)
2789 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2790 if (ecs->infwait_state == infwait_normal_state)
2791 {
2792 overlay_cache_invalid = 1;
2793
2794 /* We have to invalidate the registers BEFORE calling
2795 target_wait because they can be loaded from the target while
2796 in target_wait. This makes remote debugging a bit more
2797 efficient for those targets that provide critical registers
2798 as part of their normal status mechanism. */
2799
2800 registers_changed ();
2801 ecs->waiton_ptid = pid_to_ptid (-1);
2802 ecs->wp = &(ecs->ws);
2803 }
2804 /* This is the old end of the while loop. Let everybody know we
2805 want to wait for the inferior some more and get called again
2806 soon. */
2807 ecs->wait_some_more = 1;
2808 }
2809
2810 /* Print why the inferior has stopped. We always print something when
2811 the inferior exits, or receives a signal. The rest of the cases are
2812 dealt with later on in normal_stop() and print_it_typical(). Ideally
2813 there should be a call to this function from handle_inferior_event()
2814 each time stop_stepping() is called.*/
2815 static void
2816 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2817 {
2818 switch (stop_reason)
2819 {
2820 case STOP_UNKNOWN:
2821 /* We don't deal with these cases from handle_inferior_event()
2822 yet. */
2823 break;
2824 case END_STEPPING_RANGE:
2825 /* We are done with a step/next/si/ni command. */
2826 /* For now print nothing. */
2827 /* Print a message only if not in the middle of doing a "step n"
2828 operation for n > 1 */
2829 if (!step_multi || !stop_step)
2830 if (ui_out_is_mi_like_p (uiout))
2831 ui_out_field_string (uiout, "reason", "end-stepping-range");
2832 break;
2833 case BREAKPOINT_HIT:
2834 /* We found a breakpoint. */
2835 /* For now print nothing. */
2836 break;
2837 case SIGNAL_EXITED:
2838 /* The inferior was terminated by a signal. */
2839 annotate_signalled ();
2840 if (ui_out_is_mi_like_p (uiout))
2841 ui_out_field_string (uiout, "reason", "exited-signalled");
2842 ui_out_text (uiout, "\nProgram terminated with signal ");
2843 annotate_signal_name ();
2844 ui_out_field_string (uiout, "signal-name",
2845 target_signal_to_name (stop_info));
2846 annotate_signal_name_end ();
2847 ui_out_text (uiout, ", ");
2848 annotate_signal_string ();
2849 ui_out_field_string (uiout, "signal-meaning",
2850 target_signal_to_string (stop_info));
2851 annotate_signal_string_end ();
2852 ui_out_text (uiout, ".\n");
2853 ui_out_text (uiout, "The program no longer exists.\n");
2854 break;
2855 case EXITED:
2856 /* The inferior program is finished. */
2857 annotate_exited (stop_info);
2858 if (stop_info)
2859 {
2860 if (ui_out_is_mi_like_p (uiout))
2861 ui_out_field_string (uiout, "reason", "exited");
2862 ui_out_text (uiout, "\nProgram exited with code ");
2863 ui_out_field_fmt (uiout, "exit-code", "0%o",
2864 (unsigned int) stop_info);
2865 ui_out_text (uiout, ".\n");
2866 }
2867 else
2868 {
2869 if (ui_out_is_mi_like_p (uiout))
2870 ui_out_field_string (uiout, "reason", "exited-normally");
2871 ui_out_text (uiout, "\nProgram exited normally.\n");
2872 }
2873 break;
2874 case SIGNAL_RECEIVED:
2875 /* Signal received. The signal table tells us to print about
2876 it. */
2877 annotate_signal ();
2878 ui_out_text (uiout, "\nProgram received signal ");
2879 annotate_signal_name ();
2880 if (ui_out_is_mi_like_p (uiout))
2881 ui_out_field_string (uiout, "reason", "signal-received");
2882 ui_out_field_string (uiout, "signal-name",
2883 target_signal_to_name (stop_info));
2884 annotate_signal_name_end ();
2885 ui_out_text (uiout, ", ");
2886 annotate_signal_string ();
2887 ui_out_field_string (uiout, "signal-meaning",
2888 target_signal_to_string (stop_info));
2889 annotate_signal_string_end ();
2890 ui_out_text (uiout, ".\n");
2891 break;
2892 default:
2893 internal_error (__FILE__, __LINE__,
2894 "print_stop_reason: unrecognized enum value");
2895 break;
2896 }
2897 }
2898 \f
2899
2900 /* Here to return control to GDB when the inferior stops for real.
2901 Print appropriate messages, remove breakpoints, give terminal our modes.
2902
2903 STOP_PRINT_FRAME nonzero means print the executing frame
2904 (pc, function, args, file, line number and line text).
2905 BREAKPOINTS_FAILED nonzero means stop was due to error
2906 attempting to insert breakpoints. */
2907
2908 void
2909 normal_stop (void)
2910 {
2911 struct target_waitstatus last;
2912 ptid_t last_ptid;
2913
2914 get_last_target_status (&last_ptid, &last);
2915
2916 /* As with the notification of thread events, we want to delay
2917 notifying the user that we've switched thread context until
2918 the inferior actually stops.
2919
2920 There's no point in saying anything if the inferior has exited.
2921 Note that SIGNALLED here means "exited with a signal", not
2922 "received a signal". */
2923 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2924 && target_has_execution
2925 && last.kind != TARGET_WAITKIND_SIGNALLED
2926 && last.kind != TARGET_WAITKIND_EXITED)
2927 {
2928 target_terminal_ours_for_output ();
2929 printf_filtered ("[Switching to %s]\n",
2930 target_pid_or_tid_to_str (inferior_ptid));
2931 previous_inferior_ptid = inferior_ptid;
2932 }
2933
2934 /* NOTE drow/2004-01-17: Is this still necessary? */
2935 /* Make sure that the current_frame's pc is correct. This
2936 is a correction for setting up the frame info before doing
2937 DECR_PC_AFTER_BREAK */
2938 if (target_has_execution)
2939 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2940 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2941 frame code to check for this and sort out any resultant mess.
2942 DECR_PC_AFTER_BREAK needs to just go away. */
2943 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2944
2945 if (target_has_execution && breakpoints_inserted)
2946 {
2947 if (remove_breakpoints ())
2948 {
2949 target_terminal_ours_for_output ();
2950 printf_filtered ("Cannot remove breakpoints because ");
2951 printf_filtered ("program is no longer writable.\n");
2952 printf_filtered ("It might be running in another process.\n");
2953 printf_filtered ("Further execution is probably impossible.\n");
2954 }
2955 }
2956 breakpoints_inserted = 0;
2957
2958 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2959 Delete any breakpoint that is to be deleted at the next stop. */
2960
2961 breakpoint_auto_delete (stop_bpstat);
2962
2963 /* If an auto-display called a function and that got a signal,
2964 delete that auto-display to avoid an infinite recursion. */
2965
2966 if (stopped_by_random_signal)
2967 disable_current_display ();
2968
2969 /* Don't print a message if in the middle of doing a "step n"
2970 operation for n > 1 */
2971 if (step_multi && stop_step)
2972 goto done;
2973
2974 target_terminal_ours ();
2975
2976 /* Look up the hook_stop and run it (CLI internally handles problem
2977 of stop_command's pre-hook not existing). */
2978 if (stop_command)
2979 catch_errors (hook_stop_stub, stop_command,
2980 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2981
2982 if (!target_has_stack)
2983 {
2984
2985 goto done;
2986 }
2987
2988 /* Select innermost stack frame - i.e., current frame is frame 0,
2989 and current location is based on that.
2990 Don't do this on return from a stack dummy routine,
2991 or if the program has exited. */
2992
2993 if (!stop_stack_dummy)
2994 {
2995 select_frame (get_current_frame ());
2996
2997 /* Print current location without a level number, if
2998 we have changed functions or hit a breakpoint.
2999 Print source line if we have one.
3000 bpstat_print() contains the logic deciding in detail
3001 what to print, based on the event(s) that just occurred. */
3002
3003 if (stop_print_frame && deprecated_selected_frame)
3004 {
3005 int bpstat_ret;
3006 int source_flag;
3007 int do_frame_printing = 1;
3008
3009 bpstat_ret = bpstat_print (stop_bpstat);
3010 switch (bpstat_ret)
3011 {
3012 case PRINT_UNKNOWN:
3013 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3014 (or should) carry around the function and does (or
3015 should) use that when doing a frame comparison. */
3016 if (stop_step
3017 && frame_id_eq (step_frame_id,
3018 get_frame_id (get_current_frame ()))
3019 && step_start_function == find_pc_function (stop_pc))
3020 source_flag = SRC_LINE; /* finished step, just print source line */
3021 else
3022 source_flag = SRC_AND_LOC; /* print location and source line */
3023 break;
3024 case PRINT_SRC_AND_LOC:
3025 source_flag = SRC_AND_LOC; /* print location and source line */
3026 break;
3027 case PRINT_SRC_ONLY:
3028 source_flag = SRC_LINE;
3029 break;
3030 case PRINT_NOTHING:
3031 source_flag = SRC_LINE; /* something bogus */
3032 do_frame_printing = 0;
3033 break;
3034 default:
3035 internal_error (__FILE__, __LINE__, "Unknown value.");
3036 }
3037 /* For mi, have the same behavior every time we stop:
3038 print everything but the source line. */
3039 if (ui_out_is_mi_like_p (uiout))
3040 source_flag = LOC_AND_ADDRESS;
3041
3042 if (ui_out_is_mi_like_p (uiout))
3043 ui_out_field_int (uiout, "thread-id",
3044 pid_to_thread_id (inferior_ptid));
3045 /* The behavior of this routine with respect to the source
3046 flag is:
3047 SRC_LINE: Print only source line
3048 LOCATION: Print only location
3049 SRC_AND_LOC: Print location and source line */
3050 if (do_frame_printing)
3051 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3052
3053 /* Display the auto-display expressions. */
3054 do_displays ();
3055 }
3056 }
3057
3058 /* Save the function value return registers, if we care.
3059 We might be about to restore their previous contents. */
3060 if (proceed_to_finish)
3061 /* NB: The copy goes through to the target picking up the value of
3062 all the registers. */
3063 regcache_cpy (stop_registers, current_regcache);
3064
3065 if (stop_stack_dummy)
3066 {
3067 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3068 ends with a setting of the current frame, so we can use that
3069 next. */
3070 frame_pop (get_current_frame ());
3071 /* Set stop_pc to what it was before we called the function.
3072 Can't rely on restore_inferior_status because that only gets
3073 called if we don't stop in the called function. */
3074 stop_pc = read_pc ();
3075 select_frame (get_current_frame ());
3076 }
3077
3078 done:
3079 annotate_stopped ();
3080 observer_notify_normal_stop (stop_bpstat);
3081 }
3082
3083 static int
3084 hook_stop_stub (void *cmd)
3085 {
3086 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3087 return (0);
3088 }
3089 \f
3090 int
3091 signal_stop_state (int signo)
3092 {
3093 return signal_stop[signo];
3094 }
3095
3096 int
3097 signal_print_state (int signo)
3098 {
3099 return signal_print[signo];
3100 }
3101
3102 int
3103 signal_pass_state (int signo)
3104 {
3105 return signal_program[signo];
3106 }
3107
3108 int
3109 signal_stop_update (int signo, int state)
3110 {
3111 int ret = signal_stop[signo];
3112 signal_stop[signo] = state;
3113 return ret;
3114 }
3115
3116 int
3117 signal_print_update (int signo, int state)
3118 {
3119 int ret = signal_print[signo];
3120 signal_print[signo] = state;
3121 return ret;
3122 }
3123
3124 int
3125 signal_pass_update (int signo, int state)
3126 {
3127 int ret = signal_program[signo];
3128 signal_program[signo] = state;
3129 return ret;
3130 }
3131
3132 static void
3133 sig_print_header (void)
3134 {
3135 printf_filtered ("\
3136 Signal Stop\tPrint\tPass to program\tDescription\n");
3137 }
3138
3139 static void
3140 sig_print_info (enum target_signal oursig)
3141 {
3142 char *name = target_signal_to_name (oursig);
3143 int name_padding = 13 - strlen (name);
3144
3145 if (name_padding <= 0)
3146 name_padding = 0;
3147
3148 printf_filtered ("%s", name);
3149 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3150 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3151 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3152 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3153 printf_filtered ("%s\n", target_signal_to_string (oursig));
3154 }
3155
3156 /* Specify how various signals in the inferior should be handled. */
3157
3158 static void
3159 handle_command (char *args, int from_tty)
3160 {
3161 char **argv;
3162 int digits, wordlen;
3163 int sigfirst, signum, siglast;
3164 enum target_signal oursig;
3165 int allsigs;
3166 int nsigs;
3167 unsigned char *sigs;
3168 struct cleanup *old_chain;
3169
3170 if (args == NULL)
3171 {
3172 error_no_arg ("signal to handle");
3173 }
3174
3175 /* Allocate and zero an array of flags for which signals to handle. */
3176
3177 nsigs = (int) TARGET_SIGNAL_LAST;
3178 sigs = (unsigned char *) alloca (nsigs);
3179 memset (sigs, 0, nsigs);
3180
3181 /* Break the command line up into args. */
3182
3183 argv = buildargv (args);
3184 if (argv == NULL)
3185 {
3186 nomem (0);
3187 }
3188 old_chain = make_cleanup_freeargv (argv);
3189
3190 /* Walk through the args, looking for signal oursigs, signal names, and
3191 actions. Signal numbers and signal names may be interspersed with
3192 actions, with the actions being performed for all signals cumulatively
3193 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3194
3195 while (*argv != NULL)
3196 {
3197 wordlen = strlen (*argv);
3198 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3199 {;
3200 }
3201 allsigs = 0;
3202 sigfirst = siglast = -1;
3203
3204 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3205 {
3206 /* Apply action to all signals except those used by the
3207 debugger. Silently skip those. */
3208 allsigs = 1;
3209 sigfirst = 0;
3210 siglast = nsigs - 1;
3211 }
3212 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3213 {
3214 SET_SIGS (nsigs, sigs, signal_stop);
3215 SET_SIGS (nsigs, sigs, signal_print);
3216 }
3217 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3218 {
3219 UNSET_SIGS (nsigs, sigs, signal_program);
3220 }
3221 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3222 {
3223 SET_SIGS (nsigs, sigs, signal_print);
3224 }
3225 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3226 {
3227 SET_SIGS (nsigs, sigs, signal_program);
3228 }
3229 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3230 {
3231 UNSET_SIGS (nsigs, sigs, signal_stop);
3232 }
3233 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3234 {
3235 SET_SIGS (nsigs, sigs, signal_program);
3236 }
3237 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3238 {
3239 UNSET_SIGS (nsigs, sigs, signal_print);
3240 UNSET_SIGS (nsigs, sigs, signal_stop);
3241 }
3242 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3243 {
3244 UNSET_SIGS (nsigs, sigs, signal_program);
3245 }
3246 else if (digits > 0)
3247 {
3248 /* It is numeric. The numeric signal refers to our own
3249 internal signal numbering from target.h, not to host/target
3250 signal number. This is a feature; users really should be
3251 using symbolic names anyway, and the common ones like
3252 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3253
3254 sigfirst = siglast = (int)
3255 target_signal_from_command (atoi (*argv));
3256 if ((*argv)[digits] == '-')
3257 {
3258 siglast = (int)
3259 target_signal_from_command (atoi ((*argv) + digits + 1));
3260 }
3261 if (sigfirst > siglast)
3262 {
3263 /* Bet he didn't figure we'd think of this case... */
3264 signum = sigfirst;
3265 sigfirst = siglast;
3266 siglast = signum;
3267 }
3268 }
3269 else
3270 {
3271 oursig = target_signal_from_name (*argv);
3272 if (oursig != TARGET_SIGNAL_UNKNOWN)
3273 {
3274 sigfirst = siglast = (int) oursig;
3275 }
3276 else
3277 {
3278 /* Not a number and not a recognized flag word => complain. */
3279 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3280 }
3281 }
3282
3283 /* If any signal numbers or symbol names were found, set flags for
3284 which signals to apply actions to. */
3285
3286 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3287 {
3288 switch ((enum target_signal) signum)
3289 {
3290 case TARGET_SIGNAL_TRAP:
3291 case TARGET_SIGNAL_INT:
3292 if (!allsigs && !sigs[signum])
3293 {
3294 if (query ("%s is used by the debugger.\n\
3295 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3296 {
3297 sigs[signum] = 1;
3298 }
3299 else
3300 {
3301 printf_unfiltered ("Not confirmed, unchanged.\n");
3302 gdb_flush (gdb_stdout);
3303 }
3304 }
3305 break;
3306 case TARGET_SIGNAL_0:
3307 case TARGET_SIGNAL_DEFAULT:
3308 case TARGET_SIGNAL_UNKNOWN:
3309 /* Make sure that "all" doesn't print these. */
3310 break;
3311 default:
3312 sigs[signum] = 1;
3313 break;
3314 }
3315 }
3316
3317 argv++;
3318 }
3319
3320 target_notice_signals (inferior_ptid);
3321
3322 if (from_tty)
3323 {
3324 /* Show the results. */
3325 sig_print_header ();
3326 for (signum = 0; signum < nsigs; signum++)
3327 {
3328 if (sigs[signum])
3329 {
3330 sig_print_info (signum);
3331 }
3332 }
3333 }
3334
3335 do_cleanups (old_chain);
3336 }
3337
3338 static void
3339 xdb_handle_command (char *args, int from_tty)
3340 {
3341 char **argv;
3342 struct cleanup *old_chain;
3343
3344 /* Break the command line up into args. */
3345
3346 argv = buildargv (args);
3347 if (argv == NULL)
3348 {
3349 nomem (0);
3350 }
3351 old_chain = make_cleanup_freeargv (argv);
3352 if (argv[1] != (char *) NULL)
3353 {
3354 char *argBuf;
3355 int bufLen;
3356
3357 bufLen = strlen (argv[0]) + 20;
3358 argBuf = (char *) xmalloc (bufLen);
3359 if (argBuf)
3360 {
3361 int validFlag = 1;
3362 enum target_signal oursig;
3363
3364 oursig = target_signal_from_name (argv[0]);
3365 memset (argBuf, 0, bufLen);
3366 if (strcmp (argv[1], "Q") == 0)
3367 sprintf (argBuf, "%s %s", argv[0], "noprint");
3368 else
3369 {
3370 if (strcmp (argv[1], "s") == 0)
3371 {
3372 if (!signal_stop[oursig])
3373 sprintf (argBuf, "%s %s", argv[0], "stop");
3374 else
3375 sprintf (argBuf, "%s %s", argv[0], "nostop");
3376 }
3377 else if (strcmp (argv[1], "i") == 0)
3378 {
3379 if (!signal_program[oursig])
3380 sprintf (argBuf, "%s %s", argv[0], "pass");
3381 else
3382 sprintf (argBuf, "%s %s", argv[0], "nopass");
3383 }
3384 else if (strcmp (argv[1], "r") == 0)
3385 {
3386 if (!signal_print[oursig])
3387 sprintf (argBuf, "%s %s", argv[0], "print");
3388 else
3389 sprintf (argBuf, "%s %s", argv[0], "noprint");
3390 }
3391 else
3392 validFlag = 0;
3393 }
3394 if (validFlag)
3395 handle_command (argBuf, from_tty);
3396 else
3397 printf_filtered ("Invalid signal handling flag.\n");
3398 if (argBuf)
3399 xfree (argBuf);
3400 }
3401 }
3402 do_cleanups (old_chain);
3403 }
3404
3405 /* Print current contents of the tables set by the handle command.
3406 It is possible we should just be printing signals actually used
3407 by the current target (but for things to work right when switching
3408 targets, all signals should be in the signal tables). */
3409
3410 static void
3411 signals_info (char *signum_exp, int from_tty)
3412 {
3413 enum target_signal oursig;
3414 sig_print_header ();
3415
3416 if (signum_exp)
3417 {
3418 /* First see if this is a symbol name. */
3419 oursig = target_signal_from_name (signum_exp);
3420 if (oursig == TARGET_SIGNAL_UNKNOWN)
3421 {
3422 /* No, try numeric. */
3423 oursig =
3424 target_signal_from_command (parse_and_eval_long (signum_exp));
3425 }
3426 sig_print_info (oursig);
3427 return;
3428 }
3429
3430 printf_filtered ("\n");
3431 /* These ugly casts brought to you by the native VAX compiler. */
3432 for (oursig = TARGET_SIGNAL_FIRST;
3433 (int) oursig < (int) TARGET_SIGNAL_LAST;
3434 oursig = (enum target_signal) ((int) oursig + 1))
3435 {
3436 QUIT;
3437
3438 if (oursig != TARGET_SIGNAL_UNKNOWN
3439 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3440 sig_print_info (oursig);
3441 }
3442
3443 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3444 }
3445 \f
3446 struct inferior_status
3447 {
3448 enum target_signal stop_signal;
3449 CORE_ADDR stop_pc;
3450 bpstat stop_bpstat;
3451 int stop_step;
3452 int stop_stack_dummy;
3453 int stopped_by_random_signal;
3454 int trap_expected;
3455 CORE_ADDR step_range_start;
3456 CORE_ADDR step_range_end;
3457 struct frame_id step_frame_id;
3458 enum step_over_calls_kind step_over_calls;
3459 CORE_ADDR step_resume_break_address;
3460 int stop_after_trap;
3461 int stop_soon;
3462 struct regcache *stop_registers;
3463
3464 /* These are here because if call_function_by_hand has written some
3465 registers and then decides to call error(), we better not have changed
3466 any registers. */
3467 struct regcache *registers;
3468
3469 /* A frame unique identifier. */
3470 struct frame_id selected_frame_id;
3471
3472 int breakpoint_proceeded;
3473 int restore_stack_info;
3474 int proceed_to_finish;
3475 };
3476
3477 void
3478 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3479 LONGEST val)
3480 {
3481 int size = register_size (current_gdbarch, regno);
3482 void *buf = alloca (size);
3483 store_signed_integer (buf, size, val);
3484 regcache_raw_write (inf_status->registers, regno, buf);
3485 }
3486
3487 /* Save all of the information associated with the inferior<==>gdb
3488 connection. INF_STATUS is a pointer to a "struct inferior_status"
3489 (defined in inferior.h). */
3490
3491 struct inferior_status *
3492 save_inferior_status (int restore_stack_info)
3493 {
3494 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3495
3496 inf_status->stop_signal = stop_signal;
3497 inf_status->stop_pc = stop_pc;
3498 inf_status->stop_step = stop_step;
3499 inf_status->stop_stack_dummy = stop_stack_dummy;
3500 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3501 inf_status->trap_expected = trap_expected;
3502 inf_status->step_range_start = step_range_start;
3503 inf_status->step_range_end = step_range_end;
3504 inf_status->step_frame_id = step_frame_id;
3505 inf_status->step_over_calls = step_over_calls;
3506 inf_status->stop_after_trap = stop_after_trap;
3507 inf_status->stop_soon = stop_soon;
3508 /* Save original bpstat chain here; replace it with copy of chain.
3509 If caller's caller is walking the chain, they'll be happier if we
3510 hand them back the original chain when restore_inferior_status is
3511 called. */
3512 inf_status->stop_bpstat = stop_bpstat;
3513 stop_bpstat = bpstat_copy (stop_bpstat);
3514 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3515 inf_status->restore_stack_info = restore_stack_info;
3516 inf_status->proceed_to_finish = proceed_to_finish;
3517
3518 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3519
3520 inf_status->registers = regcache_dup (current_regcache);
3521
3522 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3523 return inf_status;
3524 }
3525
3526 static int
3527 restore_selected_frame (void *args)
3528 {
3529 struct frame_id *fid = (struct frame_id *) args;
3530 struct frame_info *frame;
3531
3532 frame = frame_find_by_id (*fid);
3533
3534 /* If inf_status->selected_frame_id is NULL, there was no previously
3535 selected frame. */
3536 if (frame == NULL)
3537 {
3538 warning ("Unable to restore previously selected frame.\n");
3539 return 0;
3540 }
3541
3542 select_frame (frame);
3543
3544 return (1);
3545 }
3546
3547 void
3548 restore_inferior_status (struct inferior_status *inf_status)
3549 {
3550 stop_signal = inf_status->stop_signal;
3551 stop_pc = inf_status->stop_pc;
3552 stop_step = inf_status->stop_step;
3553 stop_stack_dummy = inf_status->stop_stack_dummy;
3554 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3555 trap_expected = inf_status->trap_expected;
3556 step_range_start = inf_status->step_range_start;
3557 step_range_end = inf_status->step_range_end;
3558 step_frame_id = inf_status->step_frame_id;
3559 step_over_calls = inf_status->step_over_calls;
3560 stop_after_trap = inf_status->stop_after_trap;
3561 stop_soon = inf_status->stop_soon;
3562 bpstat_clear (&stop_bpstat);
3563 stop_bpstat = inf_status->stop_bpstat;
3564 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3565 proceed_to_finish = inf_status->proceed_to_finish;
3566
3567 /* FIXME: Is the restore of stop_registers always needed. */
3568 regcache_xfree (stop_registers);
3569 stop_registers = inf_status->stop_registers;
3570
3571 /* The inferior can be gone if the user types "print exit(0)"
3572 (and perhaps other times). */
3573 if (target_has_execution)
3574 /* NB: The register write goes through to the target. */
3575 regcache_cpy (current_regcache, inf_status->registers);
3576 regcache_xfree (inf_status->registers);
3577
3578 /* FIXME: If we are being called after stopping in a function which
3579 is called from gdb, we should not be trying to restore the
3580 selected frame; it just prints a spurious error message (The
3581 message is useful, however, in detecting bugs in gdb (like if gdb
3582 clobbers the stack)). In fact, should we be restoring the
3583 inferior status at all in that case? . */
3584
3585 if (target_has_stack && inf_status->restore_stack_info)
3586 {
3587 /* The point of catch_errors is that if the stack is clobbered,
3588 walking the stack might encounter a garbage pointer and
3589 error() trying to dereference it. */
3590 if (catch_errors
3591 (restore_selected_frame, &inf_status->selected_frame_id,
3592 "Unable to restore previously selected frame:\n",
3593 RETURN_MASK_ERROR) == 0)
3594 /* Error in restoring the selected frame. Select the innermost
3595 frame. */
3596 select_frame (get_current_frame ());
3597
3598 }
3599
3600 xfree (inf_status);
3601 }
3602
3603 static void
3604 do_restore_inferior_status_cleanup (void *sts)
3605 {
3606 restore_inferior_status (sts);
3607 }
3608
3609 struct cleanup *
3610 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3611 {
3612 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3613 }
3614
3615 void
3616 discard_inferior_status (struct inferior_status *inf_status)
3617 {
3618 /* See save_inferior_status for info on stop_bpstat. */
3619 bpstat_clear (&inf_status->stop_bpstat);
3620 regcache_xfree (inf_status->registers);
3621 regcache_xfree (inf_status->stop_registers);
3622 xfree (inf_status);
3623 }
3624
3625 int
3626 inferior_has_forked (int pid, int *child_pid)
3627 {
3628 struct target_waitstatus last;
3629 ptid_t last_ptid;
3630
3631 get_last_target_status (&last_ptid, &last);
3632
3633 if (last.kind != TARGET_WAITKIND_FORKED)
3634 return 0;
3635
3636 if (ptid_get_pid (last_ptid) != pid)
3637 return 0;
3638
3639 *child_pid = last.value.related_pid;
3640 return 1;
3641 }
3642
3643 int
3644 inferior_has_vforked (int pid, int *child_pid)
3645 {
3646 struct target_waitstatus last;
3647 ptid_t last_ptid;
3648
3649 get_last_target_status (&last_ptid, &last);
3650
3651 if (last.kind != TARGET_WAITKIND_VFORKED)
3652 return 0;
3653
3654 if (ptid_get_pid (last_ptid) != pid)
3655 return 0;
3656
3657 *child_pid = last.value.related_pid;
3658 return 1;
3659 }
3660
3661 int
3662 inferior_has_execd (int pid, char **execd_pathname)
3663 {
3664 struct target_waitstatus last;
3665 ptid_t last_ptid;
3666
3667 get_last_target_status (&last_ptid, &last);
3668
3669 if (last.kind != TARGET_WAITKIND_EXECD)
3670 return 0;
3671
3672 if (ptid_get_pid (last_ptid) != pid)
3673 return 0;
3674
3675 *execd_pathname = xstrdup (last.value.execd_pathname);
3676 return 1;
3677 }
3678
3679 /* Oft used ptids */
3680 ptid_t null_ptid;
3681 ptid_t minus_one_ptid;
3682
3683 /* Create a ptid given the necessary PID, LWP, and TID components. */
3684
3685 ptid_t
3686 ptid_build (int pid, long lwp, long tid)
3687 {
3688 ptid_t ptid;
3689
3690 ptid.pid = pid;
3691 ptid.lwp = lwp;
3692 ptid.tid = tid;
3693 return ptid;
3694 }
3695
3696 /* Create a ptid from just a pid. */
3697
3698 ptid_t
3699 pid_to_ptid (int pid)
3700 {
3701 return ptid_build (pid, 0, 0);
3702 }
3703
3704 /* Fetch the pid (process id) component from a ptid. */
3705
3706 int
3707 ptid_get_pid (ptid_t ptid)
3708 {
3709 return ptid.pid;
3710 }
3711
3712 /* Fetch the lwp (lightweight process) component from a ptid. */
3713
3714 long
3715 ptid_get_lwp (ptid_t ptid)
3716 {
3717 return ptid.lwp;
3718 }
3719
3720 /* Fetch the tid (thread id) component from a ptid. */
3721
3722 long
3723 ptid_get_tid (ptid_t ptid)
3724 {
3725 return ptid.tid;
3726 }
3727
3728 /* ptid_equal() is used to test equality of two ptids. */
3729
3730 int
3731 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3732 {
3733 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3734 && ptid1.tid == ptid2.tid);
3735 }
3736
3737 /* restore_inferior_ptid() will be used by the cleanup machinery
3738 to restore the inferior_ptid value saved in a call to
3739 save_inferior_ptid(). */
3740
3741 static void
3742 restore_inferior_ptid (void *arg)
3743 {
3744 ptid_t *saved_ptid_ptr = arg;
3745 inferior_ptid = *saved_ptid_ptr;
3746 xfree (arg);
3747 }
3748
3749 /* Save the value of inferior_ptid so that it may be restored by a
3750 later call to do_cleanups(). Returns the struct cleanup pointer
3751 needed for later doing the cleanup. */
3752
3753 struct cleanup *
3754 save_inferior_ptid (void)
3755 {
3756 ptid_t *saved_ptid_ptr;
3757
3758 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3759 *saved_ptid_ptr = inferior_ptid;
3760 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3761 }
3762 \f
3763
3764 static void
3765 build_infrun (void)
3766 {
3767 stop_registers = regcache_xmalloc (current_gdbarch);
3768 }
3769
3770 void
3771 _initialize_infrun (void)
3772 {
3773 int i;
3774 int numsigs;
3775 struct cmd_list_element *c;
3776
3777 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3778 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3779
3780 add_info ("signals", signals_info,
3781 "What debugger does when program gets various signals.\n\
3782 Specify a signal as argument to print info on that signal only.");
3783 add_info_alias ("handle", "signals", 0);
3784
3785 add_com ("handle", class_run, handle_command,
3786 concat ("Specify how to handle a signal.\n\
3787 Args are signals and actions to apply to those signals.\n\
3788 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3789 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3790 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3791 The special arg \"all\" is recognized to mean all signals except those\n\
3792 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3793 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3794 Stop means reenter debugger if this signal happens (implies print).\n\
3795 Print means print a message if this signal happens.\n\
3796 Pass means let program see this signal; otherwise program doesn't know.\n\
3797 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3798 Pass and Stop may be combined.", NULL));
3799 if (xdb_commands)
3800 {
3801 add_com ("lz", class_info, signals_info,
3802 "What debugger does when program gets various signals.\n\
3803 Specify a signal as argument to print info on that signal only.");
3804 add_com ("z", class_run, xdb_handle_command,
3805 concat ("Specify how to handle a signal.\n\
3806 Args are signals and actions to apply to those signals.\n\
3807 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3808 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3809 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3810 The special arg \"all\" is recognized to mean all signals except those\n\
3811 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3812 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3813 nopass), \"Q\" (noprint)\n\
3814 Stop means reenter debugger if this signal happens (implies print).\n\
3815 Print means print a message if this signal happens.\n\
3816 Pass means let program see this signal; otherwise program doesn't know.\n\
3817 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3818 Pass and Stop may be combined.", NULL));
3819 }
3820
3821 if (!dbx_commands)
3822 stop_command =
3823 add_cmd ("stop", class_obscure, not_just_help_class_command,
3824 "There is no `stop' command, but you can set a hook on `stop'.\n\
3825 This allows you to set a list of commands to be run each time execution\n\
3826 of the program stops.", &cmdlist);
3827
3828 add_set_cmd ("infrun", class_maintenance, var_zinteger,
3829 &debug_infrun, "Set inferior debugging.\n\
3830 When non-zero, inferior specific debugging is enabled.", &setdebuglist);
3831
3832 numsigs = (int) TARGET_SIGNAL_LAST;
3833 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3834 signal_print = (unsigned char *)
3835 xmalloc (sizeof (signal_print[0]) * numsigs);
3836 signal_program = (unsigned char *)
3837 xmalloc (sizeof (signal_program[0]) * numsigs);
3838 for (i = 0; i < numsigs; i++)
3839 {
3840 signal_stop[i] = 1;
3841 signal_print[i] = 1;
3842 signal_program[i] = 1;
3843 }
3844
3845 /* Signals caused by debugger's own actions
3846 should not be given to the program afterwards. */
3847 signal_program[TARGET_SIGNAL_TRAP] = 0;
3848 signal_program[TARGET_SIGNAL_INT] = 0;
3849
3850 /* Signals that are not errors should not normally enter the debugger. */
3851 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3852 signal_print[TARGET_SIGNAL_ALRM] = 0;
3853 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3854 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3855 signal_stop[TARGET_SIGNAL_PROF] = 0;
3856 signal_print[TARGET_SIGNAL_PROF] = 0;
3857 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3858 signal_print[TARGET_SIGNAL_CHLD] = 0;
3859 signal_stop[TARGET_SIGNAL_IO] = 0;
3860 signal_print[TARGET_SIGNAL_IO] = 0;
3861 signal_stop[TARGET_SIGNAL_POLL] = 0;
3862 signal_print[TARGET_SIGNAL_POLL] = 0;
3863 signal_stop[TARGET_SIGNAL_URG] = 0;
3864 signal_print[TARGET_SIGNAL_URG] = 0;
3865 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3866 signal_print[TARGET_SIGNAL_WINCH] = 0;
3867
3868 /* These signals are used internally by user-level thread
3869 implementations. (See signal(5) on Solaris.) Like the above
3870 signals, a healthy program receives and handles them as part of
3871 its normal operation. */
3872 signal_stop[TARGET_SIGNAL_LWP] = 0;
3873 signal_print[TARGET_SIGNAL_LWP] = 0;
3874 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3875 signal_print[TARGET_SIGNAL_WAITING] = 0;
3876 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3877 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3878
3879 #ifdef SOLIB_ADD
3880 deprecated_add_show_from_set
3881 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3882 (char *) &stop_on_solib_events,
3883 "Set stopping for shared library events.\n\
3884 If nonzero, gdb will give control to the user when the dynamic linker\n\
3885 notifies gdb of shared library events. The most common event of interest\n\
3886 to the user would be loading/unloading of a new library.\n",
3887 &setlist),
3888 &showlist);
3889 #endif
3890
3891 c = add_set_enum_cmd ("follow-fork-mode",
3892 class_run,
3893 follow_fork_mode_kind_names, &follow_fork_mode_string,
3894 "Set debugger response to a program call of fork \
3895 or vfork.\n\
3896 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3897 parent - the original process is debugged after a fork\n\
3898 child - the new process is debugged after a fork\n\
3899 The unfollowed process will continue to run.\n\
3900 By default, the debugger will follow the parent process.", &setlist);
3901 deprecated_add_show_from_set (c, &showlist);
3902
3903 c = add_set_enum_cmd ("scheduler-locking", class_run,
3904 scheduler_enums, /* array of string names */
3905 &scheduler_mode, /* current mode */
3906 "Set mode for locking scheduler during execution.\n\
3907 off == no locking (threads may preempt at any time)\n\
3908 on == full locking (no thread except the current thread may run)\n\
3909 step == scheduler locked during every single-step operation.\n\
3910 In this mode, no other thread may run during a step command.\n\
3911 Other threads may run while stepping over a function call ('next').",
3912 &setlist);
3913
3914 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3915 deprecated_add_show_from_set (c, &showlist);
3916
3917 c = add_set_cmd ("step-mode", class_run,
3918 var_boolean, (char *) &step_stop_if_no_debug,
3919 "Set mode of the step operation. When set, doing a step over a\n\
3920 function without debug line information will stop at the first\n\
3921 instruction of that function. Otherwise, the function is skipped and\n\
3922 the step command stops at a different source line.", &setlist);
3923 deprecated_add_show_from_set (c, &showlist);
3924
3925 /* ptid initializations */
3926 null_ptid = ptid_build (0, 0, 0);
3927 minus_one_ptid = ptid_build (-1, 0, 0);
3928 inferior_ptid = null_ptid;
3929 target_last_wait_ptid = minus_one_ptid;
3930 }
This page took 0.111651 seconds and 5 git commands to generate.