C++-ify struct thread_fsm
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "common/gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70 #include "common/scope-exit.h"
71
72 /* Prototypes for local functions */
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static int follow_fork (void);
79
80 static int follow_fork_inferior (int follow_child, int detach_fork);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static int currently_stepping (struct thread_info *tp);
85
86 void nullify_last_target_wait_ptid (void);
87
88 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
89
90 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
92 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
94 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
96 static void resume (gdb_signal sig);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125 }
126
127 /* See infrun.h. */
128
129 void
130 mark_infrun_async_event_handler (void)
131 {
132 mark_async_event_handler (infrun_async_inferior_event_token);
133 }
134
135 /* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138 int step_stop_if_no_debug = 0;
139 static void
140 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144 }
145
146 /* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
149
150 static ptid_t previous_inferior_ptid;
151
152 /* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157 static int detach_fork = 1;
158
159 int debug_displaced = 0;
160 static void
161 show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165 }
166
167 unsigned int debug_infrun = 0;
168 static void
169 show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173 }
174
175
176 /* Support for disabling address space randomization. */
177
178 int disable_randomization = 1;
179
180 static void
181 show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193 }
194
195 static void
196 set_disable_randomization (const char *args, int from_tty,
197 struct cmd_list_element *c)
198 {
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203 }
204
205 /* User interface for non-stop mode. */
206
207 int non_stop = 0;
208 static int non_stop_1 = 0;
209
210 static void
211 set_non_stop (const char *args, int from_tty,
212 struct cmd_list_element *c)
213 {
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221 }
222
223 static void
224 show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230 }
231
232 /* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
236 int observer_mode = 0;
237 static int observer_mode_1 = 0;
238
239 static void
240 set_observer_mode (const char *args, int from_tty,
241 struct cmd_list_element *c)
242 {
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273 }
274
275 static void
276 show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280 }
281
282 /* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288 void
289 update_observer_mode (void)
290 {
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305 }
306
307 /* Tables of how to react to signals; the user sets them. */
308
309 static unsigned char signal_stop[GDB_SIGNAL_LAST];
310 static unsigned char signal_print[GDB_SIGNAL_LAST];
311 static unsigned char signal_program[GDB_SIGNAL_LAST];
312
313 /* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
315 signal" command. */
316 static unsigned char signal_catch[GDB_SIGNAL_LAST];
317
318 /* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321 static unsigned char signal_pass[GDB_SIGNAL_LAST];
322
323 #define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331 #define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
339 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342 void
343 update_signals_program_target (void)
344 {
345 target_program_signals (signal_program);
346 }
347
348 /* Value to pass to target_resume() to cause all threads to resume. */
349
350 #define RESUME_ALL minus_one_ptid
351
352 /* Command list pointer for the "stop" placeholder. */
353
354 static struct cmd_list_element *stop_command;
355
356 /* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
358 int stop_on_solib_events;
359
360 /* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363 static void
364 set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
366 {
367 update_solib_breakpoints ();
368 }
369
370 static void
371 show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373 {
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376 }
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420 int has_vforked;
421 ptid_t parent_ptid, child_ptid;
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
430 && current_ui->prompt_state == PROMPT_BLOCKED
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped. Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_inf (current_inferior ());
462 }
463
464 if (print_inferior_events)
465 {
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
468
469 target_terminal::ours_for_output ();
470 fprintf_filtered (gdb_stdlog,
471 _("[Detaching after %s from child %s]\n"),
472 has_vforked ? "vfork" : "fork",
473 target_pid_to_str (process_ptid));
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
479
480 /* Add process to GDB's tables. */
481 child_inf = add_inferior (child_ptid.pid ());
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
490
491 inferior_ptid = child_ptid;
492 add_thread_silent (inferior_ptid);
493 set_current_inferior (child_inf);
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
599 {
600 if (print_inferior_events)
601 {
602 /* Ensure that we have a process ptid. */
603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
604
605 target_terminal::ours_for_output ();
606 fprintf_filtered (gdb_stdlog,
607 _("[Detaching after fork from "
608 "parent %s]\n"),
609 target_pid_to_str (process_ptid));
610 }
611
612 target_detach (parent_inf, 0);
613 }
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
621 inferior_ptid = child_ptid;
622 add_thread_silent (inferior_ptid);
623 set_current_inferior (child_inf);
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
636 child_inf->pspace = new program_space (child_inf->aspace);
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652 }
653
654 /* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
658 static int
659 follow_fork (void)
660 {
661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
670 struct breakpoint *exception_resume_breakpoint = NULL;
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
674 struct thread_fsm *thread_fsm = NULL;
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
728 thread_fsm = tp->thread_fsm;
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
739 delete_exception_resume_breakpoint (tp);
740 tp->thread_fsm = NULL;
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
761 tp = find_thread_ptid (parent);
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
769 /* If we followed the child, switch to it... */
770 if (follow_child)
771 {
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
787 tp->thread_fsm = thread_fsm;
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
797 warning (_("Not resuming: switched threads "
798 "before following fork child."));
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
816
817 return should_resume;
818 }
819
820 static void
821 follow_inferior_reset_breakpoints (void)
822 {
823 struct thread_info *tp = inferior_thread ();
824
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
838 if (tp->control.step_resume_breakpoint)
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
843
844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
845 if (tp->control.exception_resume_breakpoint)
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
850
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
858 }
859
860 /* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863 static int
864 proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866 {
867 int pid = * (int *) arg;
868
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
872 && !thread->stop_requested
873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
880 switch_to_thread (thread);
881 clear_proceed_status (0);
882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
883 }
884
885 return 0;
886 }
887
888 /* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891 class scoped_restore_exited_inferior
892 {
893 public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898 private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902 };
903
904 /* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907 static void
908 handle_vfork_child_exec_or_exit (int exec)
909 {
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
926 /* follow-fork child, detach-on-fork on. */
927
928 inf->vfork_parent->pending_detach = 0;
929
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
937 if (!exec)
938 maybe_restore_inferior.emplace ();
939 else
940 maybe_restore_thread.emplace ();
941
942 /* We're letting loose of the parent. */
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
963 if (print_inferior_events)
964 {
965 const char *pidstr
966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
967
968 target_terminal::ours_for_output ();
969
970 if (exec)
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
975 }
976 else
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
981 }
982 }
983
984 target_detach (inf->vfork_parent, 0);
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = new program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = new program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
1031 inf->symfile_flags = SYMFILE_NO_READ;
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
1049 scoped_restore_current_thread restore_thread;
1050
1051 if (debug_infrun)
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *exec_file_target)
1084 {
1085 struct inferior *inf = current_inferior ();
1086 int pid = ptid.pid ();
1087 ptid_t process_ptid;
1088
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1108 we now have a new a.out, those shadow contents aren't valid. */
1109
1110 mark_breakpoints_out ();
1111
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
1131 for (thread_info *th : all_threads_safe ())
1132 if (th->ptid.pid () == pid && th->ptid != ptid)
1133 delete_thread (th);
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
1139 thread_info *th = inferior_thread ();
1140 th->control.step_resume_breakpoint = NULL;
1141 th->control.exception_resume_breakpoint = NULL;
1142 th->control.single_step_breakpoints = NULL;
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
1145
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
1149 th->stop_requested = 0;
1150
1151 update_breakpoints_after_exec ();
1152
1153 /* What is this a.out's name? */
1154 process_ptid = ptid_t (pid);
1155 printf_unfiltered (_("%s is executing new program: %s\n"),
1156 target_pid_to_str (process_ptid),
1157 exec_file_target);
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1160 inferior has essentially been killed & reborn. */
1161
1162 gdb_flush (gdb_stdout);
1163
1164 breakpoint_init_inferior (inf_execd);
1165
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
1168
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
1177
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
1197 exit_inferior_silent (current_inferior ());
1198
1199 inf->pid = pid;
1200 target_follow_exec (inf, exec_file_target);
1201
1202 set_current_inferior (inf);
1203 set_current_program_space (inf->pspace);
1204 add_thread (ptid);
1205 }
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1225
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
1234 solib_create_inferior_hook (0);
1235
1236 jit_inferior_created_hook ();
1237
1238 breakpoint_re_set ();
1239
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1242 to symbol_file_command...). */
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1248 matically get reset there in the new process.). */
1249 }
1250
1251 /* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258 struct thread_info *step_over_queue_head;
1259
1260 /* Bit flags indicating what the thread needs to step over. */
1261
1262 enum step_over_what_flag
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
1272 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1273
1274 /* Info about an instruction that is being stepped over. */
1275
1276 struct step_over_info
1277 {
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
1282 const address_space *aspace;
1283 CORE_ADDR address;
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
1288
1289 /* The thread's global number. */
1290 int thread;
1291 };
1292
1293 /* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317 static struct step_over_info step_over_info;
1318
1319 /* Record the address of the breakpoint/instruction we're currently
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
1323
1324 static void
1325 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1326 int nonsteppable_watchpoint_p,
1327 int thread)
1328 {
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1332 step_over_info.thread = thread;
1333 }
1334
1335 /* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338 static void
1339 clear_step_over_info (void)
1340 {
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
1346 step_over_info.nonsteppable_watchpoint_p = 0;
1347 step_over_info.thread = -1;
1348 }
1349
1350 /* See infrun.h. */
1351
1352 int
1353 stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355 {
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 thread_is_stepping_over_breakpoint (int thread)
1366 {
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 stepping_past_nonsteppable_watchpoint (void)
1375 {
1376 return step_over_info.nonsteppable_watchpoint_p;
1377 }
1378
1379 /* Returns true if step-over info is valid. */
1380
1381 static int
1382 step_over_info_valid_p (void)
1383 {
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
1386 }
1387
1388 \f
1389 /* Displaced stepping. */
1390
1391 /* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
1475 /* Default destructor for displaced_step_closure. */
1476
1477 displaced_step_closure::~displaced_step_closure () = default;
1478
1479 /* Get the displaced stepping state of process PID. */
1480
1481 static displaced_step_inferior_state *
1482 get_displaced_stepping_state (inferior *inf)
1483 {
1484 return &inf->displaced_step_state;
1485 }
1486
1487 /* Returns true if any inferior has a thread doing a displaced
1488 step. */
1489
1490 static bool
1491 displaced_step_in_progress_any_inferior ()
1492 {
1493 for (inferior *i : all_inferiors ())
1494 {
1495 if (i->displaced_step_state.step_thread != nullptr)
1496 return true;
1497 }
1498
1499 return false;
1500 }
1501
1502 /* Return true if thread represented by PTID is doing a displaced
1503 step. */
1504
1505 static int
1506 displaced_step_in_progress_thread (thread_info *thread)
1507 {
1508 gdb_assert (thread != NULL);
1509
1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1511 }
1512
1513 /* Return true if process PID has a thread doing a displaced step. */
1514
1515 static int
1516 displaced_step_in_progress (inferior *inf)
1517 {
1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1519 }
1520
1521 /* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525 struct displaced_step_closure*
1526 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527 {
1528 displaced_step_inferior_state *displaced
1529 = get_displaced_stepping_state (current_inferior ());
1530
1531 /* If checking the mode of displaced instruction in copy area. */
1532 if (displaced->step_thread != nullptr
1533 && displaced->step_copy == addr)
1534 return displaced->step_closure;
1535
1536 return NULL;
1537 }
1538
1539 static void
1540 infrun_inferior_exit (struct inferior *inf)
1541 {
1542 inf->displaced_step_state.reset ();
1543 }
1544
1545 /* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 which of all-stop or non-stop mode is active --- displaced stepping
1551 in non-stop mode; hold-and-step in all-stop mode. */
1552
1553 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1554
1555 static void
1556 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559 {
1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
1564 value, target_is_non_stop_p () ? "on" : "off");
1565 else
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
1569 }
1570
1571 /* Return non-zero if displaced stepping can/should be used to step
1572 over breakpoints of thread TP. */
1573
1574 static int
1575 use_displaced_stepping (struct thread_info *tp)
1576 {
1577 struct regcache *regcache = get_thread_regcache (tp);
1578 struct gdbarch *gdbarch = regcache->arch ();
1579 displaced_step_inferior_state *displaced_state
1580 = get_displaced_stepping_state (tp->inf);
1581
1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 && target_is_non_stop_p ())
1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1585 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1586 && find_record_target () == NULL
1587 && !displaced_state->failed_before);
1588 }
1589
1590 /* Clean out any stray displaced stepping state. */
1591 static void
1592 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1593 {
1594 /* Indicate that there is no cleanup pending. */
1595 displaced->step_thread = nullptr;
1596
1597 delete displaced->step_closure;
1598 displaced->step_closure = NULL;
1599 }
1600
1601 static void
1602 displaced_step_clear_cleanup (void *arg)
1603 {
1604 struct displaced_step_inferior_state *state
1605 = (struct displaced_step_inferior_state *) arg;
1606
1607 displaced_step_clear (state);
1608 }
1609
1610 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1611 void
1612 displaced_step_dump_bytes (struct ui_file *file,
1613 const gdb_byte *buf,
1614 size_t len)
1615 {
1616 int i;
1617
1618 for (i = 0; i < len; i++)
1619 fprintf_unfiltered (file, "%02x ", buf[i]);
1620 fputs_unfiltered ("\n", file);
1621 }
1622
1623 /* Prepare to single-step, using displaced stepping.
1624
1625 Note that we cannot use displaced stepping when we have a signal to
1626 deliver. If we have a signal to deliver and an instruction to step
1627 over, then after the step, there will be no indication from the
1628 target whether the thread entered a signal handler or ignored the
1629 signal and stepped over the instruction successfully --- both cases
1630 result in a simple SIGTRAP. In the first case we mustn't do a
1631 fixup, and in the second case we must --- but we can't tell which.
1632 Comments in the code for 'random signals' in handle_inferior_event
1633 explain how we handle this case instead.
1634
1635 Returns 1 if preparing was successful -- this thread is going to be
1636 stepped now; 0 if displaced stepping this thread got queued; or -1
1637 if this instruction can't be displaced stepped. */
1638
1639 static int
1640 displaced_step_prepare_throw (thread_info *tp)
1641 {
1642 regcache *regcache = get_thread_regcache (tp);
1643 struct gdbarch *gdbarch = regcache->arch ();
1644 const address_space *aspace = regcache->aspace ();
1645 CORE_ADDR original, copy;
1646 ULONGEST len;
1647 struct displaced_step_closure *closure;
1648 int status;
1649
1650 /* We should never reach this function if the architecture does not
1651 support displaced stepping. */
1652 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1653
1654 /* Nor if the thread isn't meant to step over a breakpoint. */
1655 gdb_assert (tp->control.trap_expected);
1656
1657 /* Disable range stepping while executing in the scratch pad. We
1658 want a single-step even if executing the displaced instruction in
1659 the scratch buffer lands within the stepping range (e.g., a
1660 jump/branch). */
1661 tp->control.may_range_step = 0;
1662
1663 /* We have to displaced step one thread at a time, as we only have
1664 access to a single scratch space per inferior. */
1665
1666 displaced_step_inferior_state *displaced
1667 = get_displaced_stepping_state (tp->inf);
1668
1669 if (displaced->step_thread != nullptr)
1670 {
1671 /* Already waiting for a displaced step to finish. Defer this
1672 request and place in queue. */
1673
1674 if (debug_displaced)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "displaced: deferring step of %s\n",
1677 target_pid_to_str (tp->ptid));
1678
1679 thread_step_over_chain_enqueue (tp);
1680 return 0;
1681 }
1682 else
1683 {
1684 if (debug_displaced)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "displaced: stepping %s now\n",
1687 target_pid_to_str (tp->ptid));
1688 }
1689
1690 displaced_step_clear (displaced);
1691
1692 scoped_restore_current_thread restore_thread;
1693
1694 switch_to_thread (tp);
1695
1696 original = regcache_read_pc (regcache);
1697
1698 copy = gdbarch_displaced_step_location (gdbarch);
1699 len = gdbarch_max_insn_length (gdbarch);
1700
1701 if (breakpoint_in_range_p (aspace, copy, len))
1702 {
1703 /* There's a breakpoint set in the scratch pad location range
1704 (which is usually around the entry point). We'd either
1705 install it before resuming, which would overwrite/corrupt the
1706 scratch pad, or if it was already inserted, this displaced
1707 step would overwrite it. The latter is OK in the sense that
1708 we already assume that no thread is going to execute the code
1709 in the scratch pad range (after initial startup) anyway, but
1710 the former is unacceptable. Simply punt and fallback to
1711 stepping over this breakpoint in-line. */
1712 if (debug_displaced)
1713 {
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: breakpoint set in scratch pad. "
1716 "Stepping over breakpoint in-line instead.\n");
1717 }
1718
1719 return -1;
1720 }
1721
1722 /* Save the original contents of the copy area. */
1723 displaced->step_saved_copy.resize (len);
1724 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1725 if (status != 0)
1726 throw_error (MEMORY_ERROR,
1727 _("Error accessing memory address %s (%s) for "
1728 "displaced-stepping scratch space."),
1729 paddress (gdbarch, copy), safe_strerror (status));
1730 if (debug_displaced)
1731 {
1732 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1733 paddress (gdbarch, copy));
1734 displaced_step_dump_bytes (gdb_stdlog,
1735 displaced->step_saved_copy.data (),
1736 len);
1737 };
1738
1739 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1740 original, copy, regcache);
1741 if (closure == NULL)
1742 {
1743 /* The architecture doesn't know how or want to displaced step
1744 this instruction or instruction sequence. Fallback to
1745 stepping over the breakpoint in-line. */
1746 return -1;
1747 }
1748
1749 /* Save the information we need to fix things up if the step
1750 succeeds. */
1751 displaced->step_thread = tp;
1752 displaced->step_gdbarch = gdbarch;
1753 displaced->step_closure = closure;
1754 displaced->step_original = original;
1755 displaced->step_copy = copy;
1756
1757 cleanup *ignore_cleanups
1758 = make_cleanup (displaced_step_clear_cleanup, displaced);
1759
1760 /* Resume execution at the copy. */
1761 regcache_write_pc (regcache, copy);
1762
1763 discard_cleanups (ignore_cleanups);
1764
1765 if (debug_displaced)
1766 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1767 paddress (gdbarch, copy));
1768
1769 return 1;
1770 }
1771
1772 /* Wrapper for displaced_step_prepare_throw that disabled further
1773 attempts at displaced stepping if we get a memory error. */
1774
1775 static int
1776 displaced_step_prepare (thread_info *thread)
1777 {
1778 int prepared = -1;
1779
1780 TRY
1781 {
1782 prepared = displaced_step_prepare_throw (thread);
1783 }
1784 CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 struct displaced_step_inferior_state *displaced_state;
1787
1788 if (ex.error != MEMORY_ERROR
1789 && ex.error != NOT_SUPPORTED_ERROR)
1790 throw_exception (ex);
1791
1792 if (debug_infrun)
1793 {
1794 fprintf_unfiltered (gdb_stdlog,
1795 "infrun: disabling displaced stepping: %s\n",
1796 ex.message);
1797 }
1798
1799 /* Be verbose if "set displaced-stepping" is "on", silent if
1800 "auto". */
1801 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1802 {
1803 warning (_("disabling displaced stepping: %s"),
1804 ex.message);
1805 }
1806
1807 /* Disable further displaced stepping attempts. */
1808 displaced_state
1809 = get_displaced_stepping_state (thread->inf);
1810 displaced_state->failed_before = 1;
1811 }
1812 END_CATCH
1813
1814 return prepared;
1815 }
1816
1817 static void
1818 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1819 const gdb_byte *myaddr, int len)
1820 {
1821 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1822
1823 inferior_ptid = ptid;
1824 write_memory (memaddr, myaddr, len);
1825 }
1826
1827 /* Restore the contents of the copy area for thread PTID. */
1828
1829 static void
1830 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1831 ptid_t ptid)
1832 {
1833 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1834
1835 write_memory_ptid (ptid, displaced->step_copy,
1836 displaced->step_saved_copy.data (), len);
1837 if (debug_displaced)
1838 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1839 target_pid_to_str (ptid),
1840 paddress (displaced->step_gdbarch,
1841 displaced->step_copy));
1842 }
1843
1844 /* If we displaced stepped an instruction successfully, adjust
1845 registers and memory to yield the same effect the instruction would
1846 have had if we had executed it at its original address, and return
1847 1. If the instruction didn't complete, relocate the PC and return
1848 -1. If the thread wasn't displaced stepping, return 0. */
1849
1850 static int
1851 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1852 {
1853 struct cleanup *old_cleanups;
1854 struct displaced_step_inferior_state *displaced
1855 = get_displaced_stepping_state (event_thread->inf);
1856 int ret;
1857
1858 /* Was this event for the thread we displaced? */
1859 if (displaced->step_thread != event_thread)
1860 return 0;
1861
1862 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1863
1864 displaced_step_restore (displaced, displaced->step_thread->ptid);
1865
1866 /* Fixup may need to read memory/registers. Switch to the thread
1867 that we're fixing up. Also, target_stopped_by_watchpoint checks
1868 the current thread. */
1869 switch_to_thread (event_thread);
1870
1871 /* Did the instruction complete successfully? */
1872 if (signal == GDB_SIGNAL_TRAP
1873 && !(target_stopped_by_watchpoint ()
1874 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1875 || target_have_steppable_watchpoint)))
1876 {
1877 /* Fix up the resulting state. */
1878 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1879 displaced->step_closure,
1880 displaced->step_original,
1881 displaced->step_copy,
1882 get_thread_regcache (displaced->step_thread));
1883 ret = 1;
1884 }
1885 else
1886 {
1887 /* Since the instruction didn't complete, all we can do is
1888 relocate the PC. */
1889 struct regcache *regcache = get_thread_regcache (event_thread);
1890 CORE_ADDR pc = regcache_read_pc (regcache);
1891
1892 pc = displaced->step_original + (pc - displaced->step_copy);
1893 regcache_write_pc (regcache, pc);
1894 ret = -1;
1895 }
1896
1897 do_cleanups (old_cleanups);
1898
1899 displaced->step_thread = nullptr;
1900
1901 return ret;
1902 }
1903
1904 /* Data to be passed around while handling an event. This data is
1905 discarded between events. */
1906 struct execution_control_state
1907 {
1908 ptid_t ptid;
1909 /* The thread that got the event, if this was a thread event; NULL
1910 otherwise. */
1911 struct thread_info *event_thread;
1912
1913 struct target_waitstatus ws;
1914 int stop_func_filled_in;
1915 CORE_ADDR stop_func_start;
1916 CORE_ADDR stop_func_end;
1917 const char *stop_func_name;
1918 int wait_some_more;
1919
1920 /* True if the event thread hit the single-step breakpoint of
1921 another thread. Thus the event doesn't cause a stop, the thread
1922 needs to be single-stepped past the single-step breakpoint before
1923 we can switch back to the original stepping thread. */
1924 int hit_singlestep_breakpoint;
1925 };
1926
1927 /* Clear ECS and set it to point at TP. */
1928
1929 static void
1930 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1931 {
1932 memset (ecs, 0, sizeof (*ecs));
1933 ecs->event_thread = tp;
1934 ecs->ptid = tp->ptid;
1935 }
1936
1937 static void keep_going_pass_signal (struct execution_control_state *ecs);
1938 static void prepare_to_wait (struct execution_control_state *ecs);
1939 static int keep_going_stepped_thread (struct thread_info *tp);
1940 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1941
1942 /* Are there any pending step-over requests? If so, run all we can
1943 now and return true. Otherwise, return false. */
1944
1945 static int
1946 start_step_over (void)
1947 {
1948 struct thread_info *tp, *next;
1949
1950 /* Don't start a new step-over if we already have an in-line
1951 step-over operation ongoing. */
1952 if (step_over_info_valid_p ())
1953 return 0;
1954
1955 for (tp = step_over_queue_head; tp != NULL; tp = next)
1956 {
1957 struct execution_control_state ecss;
1958 struct execution_control_state *ecs = &ecss;
1959 step_over_what step_what;
1960 int must_be_in_line;
1961
1962 gdb_assert (!tp->stop_requested);
1963
1964 next = thread_step_over_chain_next (tp);
1965
1966 /* If this inferior already has a displaced step in process,
1967 don't start a new one. */
1968 if (displaced_step_in_progress (tp->inf))
1969 continue;
1970
1971 step_what = thread_still_needs_step_over (tp);
1972 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1973 || ((step_what & STEP_OVER_BREAKPOINT)
1974 && !use_displaced_stepping (tp)));
1975
1976 /* We currently stop all threads of all processes to step-over
1977 in-line. If we need to start a new in-line step-over, let
1978 any pending displaced steps finish first. */
1979 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1980 return 0;
1981
1982 thread_step_over_chain_remove (tp);
1983
1984 if (step_over_queue_head == NULL)
1985 {
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: step-over queue now empty\n");
1989 }
1990
1991 if (tp->control.trap_expected
1992 || tp->resumed
1993 || tp->executing)
1994 {
1995 internal_error (__FILE__, __LINE__,
1996 "[%s] has inconsistent state: "
1997 "trap_expected=%d, resumed=%d, executing=%d\n",
1998 target_pid_to_str (tp->ptid),
1999 tp->control.trap_expected,
2000 tp->resumed,
2001 tp->executing);
2002 }
2003
2004 if (debug_infrun)
2005 fprintf_unfiltered (gdb_stdlog,
2006 "infrun: resuming [%s] for step-over\n",
2007 target_pid_to_str (tp->ptid));
2008
2009 /* keep_going_pass_signal skips the step-over if the breakpoint
2010 is no longer inserted. In all-stop, we want to keep looking
2011 for a thread that needs a step-over instead of resuming TP,
2012 because we wouldn't be able to resume anything else until the
2013 target stops again. In non-stop, the resume always resumes
2014 only TP, so it's OK to let the thread resume freely. */
2015 if (!target_is_non_stop_p () && !step_what)
2016 continue;
2017
2018 switch_to_thread (tp);
2019 reset_ecs (ecs, tp);
2020 keep_going_pass_signal (ecs);
2021
2022 if (!ecs->wait_some_more)
2023 error (_("Command aborted."));
2024
2025 gdb_assert (tp->resumed);
2026
2027 /* If we started a new in-line step-over, we're done. */
2028 if (step_over_info_valid_p ())
2029 {
2030 gdb_assert (tp->control.trap_expected);
2031 return 1;
2032 }
2033
2034 if (!target_is_non_stop_p ())
2035 {
2036 /* On all-stop, shouldn't have resumed unless we needed a
2037 step over. */
2038 gdb_assert (tp->control.trap_expected
2039 || tp->step_after_step_resume_breakpoint);
2040
2041 /* With remote targets (at least), in all-stop, we can't
2042 issue any further remote commands until the program stops
2043 again. */
2044 return 1;
2045 }
2046
2047 /* Either the thread no longer needed a step-over, or a new
2048 displaced stepping sequence started. Even in the latter
2049 case, continue looking. Maybe we can also start another
2050 displaced step on a thread of other process. */
2051 }
2052
2053 return 0;
2054 }
2055
2056 /* Update global variables holding ptids to hold NEW_PTID if they were
2057 holding OLD_PTID. */
2058 static void
2059 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2060 {
2061 if (inferior_ptid == old_ptid)
2062 inferior_ptid = new_ptid;
2063 }
2064
2065 \f
2066
2067 static const char schedlock_off[] = "off";
2068 static const char schedlock_on[] = "on";
2069 static const char schedlock_step[] = "step";
2070 static const char schedlock_replay[] = "replay";
2071 static const char *const scheduler_enums[] = {
2072 schedlock_off,
2073 schedlock_on,
2074 schedlock_step,
2075 schedlock_replay,
2076 NULL
2077 };
2078 static const char *scheduler_mode = schedlock_replay;
2079 static void
2080 show_scheduler_mode (struct ui_file *file, int from_tty,
2081 struct cmd_list_element *c, const char *value)
2082 {
2083 fprintf_filtered (file,
2084 _("Mode for locking scheduler "
2085 "during execution is \"%s\".\n"),
2086 value);
2087 }
2088
2089 static void
2090 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2091 {
2092 if (!target_can_lock_scheduler)
2093 {
2094 scheduler_mode = schedlock_off;
2095 error (_("Target '%s' cannot support this command."), target_shortname);
2096 }
2097 }
2098
2099 /* True if execution commands resume all threads of all processes by
2100 default; otherwise, resume only threads of the current inferior
2101 process. */
2102 int sched_multi = 0;
2103
2104 /* Try to setup for software single stepping over the specified location.
2105 Return 1 if target_resume() should use hardware single step.
2106
2107 GDBARCH the current gdbarch.
2108 PC the location to step over. */
2109
2110 static int
2111 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2112 {
2113 int hw_step = 1;
2114
2115 if (execution_direction == EXEC_FORWARD
2116 && gdbarch_software_single_step_p (gdbarch))
2117 hw_step = !insert_single_step_breakpoints (gdbarch);
2118
2119 return hw_step;
2120 }
2121
2122 /* See infrun.h. */
2123
2124 ptid_t
2125 user_visible_resume_ptid (int step)
2126 {
2127 ptid_t resume_ptid;
2128
2129 if (non_stop)
2130 {
2131 /* With non-stop mode on, threads are always handled
2132 individually. */
2133 resume_ptid = inferior_ptid;
2134 }
2135 else if ((scheduler_mode == schedlock_on)
2136 || (scheduler_mode == schedlock_step && step))
2137 {
2138 /* User-settable 'scheduler' mode requires solo thread
2139 resume. */
2140 resume_ptid = inferior_ptid;
2141 }
2142 else if ((scheduler_mode == schedlock_replay)
2143 && target_record_will_replay (minus_one_ptid, execution_direction))
2144 {
2145 /* User-settable 'scheduler' mode requires solo thread resume in replay
2146 mode. */
2147 resume_ptid = inferior_ptid;
2148 }
2149 else if (!sched_multi && target_supports_multi_process ())
2150 {
2151 /* Resume all threads of the current process (and none of other
2152 processes). */
2153 resume_ptid = ptid_t (inferior_ptid.pid ());
2154 }
2155 else
2156 {
2157 /* Resume all threads of all processes. */
2158 resume_ptid = RESUME_ALL;
2159 }
2160
2161 return resume_ptid;
2162 }
2163
2164 /* Return a ptid representing the set of threads that we will resume,
2165 in the perspective of the target, assuming run control handling
2166 does not require leaving some threads stopped (e.g., stepping past
2167 breakpoint). USER_STEP indicates whether we're about to start the
2168 target for a stepping command. */
2169
2170 static ptid_t
2171 internal_resume_ptid (int user_step)
2172 {
2173 /* In non-stop, we always control threads individually. Note that
2174 the target may always work in non-stop mode even with "set
2175 non-stop off", in which case user_visible_resume_ptid could
2176 return a wildcard ptid. */
2177 if (target_is_non_stop_p ())
2178 return inferior_ptid;
2179 else
2180 return user_visible_resume_ptid (user_step);
2181 }
2182
2183 /* Wrapper for target_resume, that handles infrun-specific
2184 bookkeeping. */
2185
2186 static void
2187 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2188 {
2189 struct thread_info *tp = inferior_thread ();
2190
2191 gdb_assert (!tp->stop_requested);
2192
2193 /* Install inferior's terminal modes. */
2194 target_terminal::inferior ();
2195
2196 /* Avoid confusing the next resume, if the next stop/resume
2197 happens to apply to another thread. */
2198 tp->suspend.stop_signal = GDB_SIGNAL_0;
2199
2200 /* Advise target which signals may be handled silently.
2201
2202 If we have removed breakpoints because we are stepping over one
2203 in-line (in any thread), we need to receive all signals to avoid
2204 accidentally skipping a breakpoint during execution of a signal
2205 handler.
2206
2207 Likewise if we're displaced stepping, otherwise a trap for a
2208 breakpoint in a signal handler might be confused with the
2209 displaced step finishing. We don't make the displaced_step_fixup
2210 step distinguish the cases instead, because:
2211
2212 - a backtrace while stopped in the signal handler would show the
2213 scratch pad as frame older than the signal handler, instead of
2214 the real mainline code.
2215
2216 - when the thread is later resumed, the signal handler would
2217 return to the scratch pad area, which would no longer be
2218 valid. */
2219 if (step_over_info_valid_p ()
2220 || displaced_step_in_progress (tp->inf))
2221 target_pass_signals ({});
2222 else
2223 target_pass_signals (signal_pass);
2224
2225 target_resume (resume_ptid, step, sig);
2226
2227 target_commit_resume ();
2228 }
2229
2230 /* Resume the inferior. SIG is the signal to give the inferior
2231 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2232 call 'resume', which handles exceptions. */
2233
2234 static void
2235 resume_1 (enum gdb_signal sig)
2236 {
2237 struct regcache *regcache = get_current_regcache ();
2238 struct gdbarch *gdbarch = regcache->arch ();
2239 struct thread_info *tp = inferior_thread ();
2240 CORE_ADDR pc = regcache_read_pc (regcache);
2241 const address_space *aspace = regcache->aspace ();
2242 ptid_t resume_ptid;
2243 /* This represents the user's step vs continue request. When
2244 deciding whether "set scheduler-locking step" applies, it's the
2245 user's intention that counts. */
2246 const int user_step = tp->control.stepping_command;
2247 /* This represents what we'll actually request the target to do.
2248 This can decay from a step to a continue, if e.g., we need to
2249 implement single-stepping with breakpoints (software
2250 single-step). */
2251 int step;
2252
2253 gdb_assert (!tp->stop_requested);
2254 gdb_assert (!thread_is_in_step_over_chain (tp));
2255
2256 if (tp->suspend.waitstatus_pending_p)
2257 {
2258 if (debug_infrun)
2259 {
2260 std::string statstr
2261 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2262
2263 fprintf_unfiltered (gdb_stdlog,
2264 "infrun: resume: thread %s has pending wait "
2265 "status %s (currently_stepping=%d).\n",
2266 target_pid_to_str (tp->ptid), statstr.c_str (),
2267 currently_stepping (tp));
2268 }
2269
2270 tp->resumed = 1;
2271
2272 /* FIXME: What should we do if we are supposed to resume this
2273 thread with a signal? Maybe we should maintain a queue of
2274 pending signals to deliver. */
2275 if (sig != GDB_SIGNAL_0)
2276 {
2277 warning (_("Couldn't deliver signal %s to %s."),
2278 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2279 }
2280
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 if (target_can_async_p ())
2284 {
2285 target_async (1);
2286 /* Tell the event loop we have an event to process. */
2287 mark_async_event_handler (infrun_async_inferior_event_token);
2288 }
2289 return;
2290 }
2291
2292 tp->stepped_breakpoint = 0;
2293
2294 /* Depends on stepped_breakpoint. */
2295 step = currently_stepping (tp);
2296
2297 if (current_inferior ()->waiting_for_vfork_done)
2298 {
2299 /* Don't try to single-step a vfork parent that is waiting for
2300 the child to get out of the shared memory region (by exec'ing
2301 or exiting). This is particularly important on software
2302 single-step archs, as the child process would trip on the
2303 software single step breakpoint inserted for the parent
2304 process. Since the parent will not actually execute any
2305 instruction until the child is out of the shared region (such
2306 are vfork's semantics), it is safe to simply continue it.
2307 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2308 the parent, and tell it to `keep_going', which automatically
2309 re-sets it stepping. */
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog,
2312 "infrun: resume : clear step\n");
2313 step = 0;
2314 }
2315
2316 if (debug_infrun)
2317 fprintf_unfiltered (gdb_stdlog,
2318 "infrun: resume (step=%d, signal=%s), "
2319 "trap_expected=%d, current thread [%s] at %s\n",
2320 step, gdb_signal_to_symbol_string (sig),
2321 tp->control.trap_expected,
2322 target_pid_to_str (inferior_ptid),
2323 paddress (gdbarch, pc));
2324
2325 /* Normally, by the time we reach `resume', the breakpoints are either
2326 removed or inserted, as appropriate. The exception is if we're sitting
2327 at a permanent breakpoint; we need to step over it, but permanent
2328 breakpoints can't be removed. So we have to test for it here. */
2329 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2330 {
2331 if (sig != GDB_SIGNAL_0)
2332 {
2333 /* We have a signal to pass to the inferior. The resume
2334 may, or may not take us to the signal handler. If this
2335 is a step, we'll need to stop in the signal handler, if
2336 there's one, (if the target supports stepping into
2337 handlers), or in the next mainline instruction, if
2338 there's no handler. If this is a continue, we need to be
2339 sure to run the handler with all breakpoints inserted.
2340 In all cases, set a breakpoint at the current address
2341 (where the handler returns to), and once that breakpoint
2342 is hit, resume skipping the permanent breakpoint. If
2343 that breakpoint isn't hit, then we've stepped into the
2344 signal handler (or hit some other event). We'll delete
2345 the step-resume breakpoint then. */
2346
2347 if (debug_infrun)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "infrun: resume: skipping permanent breakpoint, "
2350 "deliver signal first\n");
2351
2352 clear_step_over_info ();
2353 tp->control.trap_expected = 0;
2354
2355 if (tp->control.step_resume_breakpoint == NULL)
2356 {
2357 /* Set a "high-priority" step-resume, as we don't want
2358 user breakpoints at PC to trigger (again) when this
2359 hits. */
2360 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2361 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2362
2363 tp->step_after_step_resume_breakpoint = step;
2364 }
2365
2366 insert_breakpoints ();
2367 }
2368 else
2369 {
2370 /* There's no signal to pass, we can go ahead and skip the
2371 permanent breakpoint manually. */
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: resume: skipping permanent breakpoint\n");
2375 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2376 /* Update pc to reflect the new address from which we will
2377 execute instructions. */
2378 pc = regcache_read_pc (regcache);
2379
2380 if (step)
2381 {
2382 /* We've already advanced the PC, so the stepping part
2383 is done. Now we need to arrange for a trap to be
2384 reported to handle_inferior_event. Set a breakpoint
2385 at the current PC, and run to it. Don't update
2386 prev_pc, because if we end in
2387 switch_back_to_stepped_thread, we want the "expected
2388 thread advanced also" branch to be taken. IOW, we
2389 don't want this thread to step further from PC
2390 (overstep). */
2391 gdb_assert (!step_over_info_valid_p ());
2392 insert_single_step_breakpoint (gdbarch, aspace, pc);
2393 insert_breakpoints ();
2394
2395 resume_ptid = internal_resume_ptid (user_step);
2396 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2397 tp->resumed = 1;
2398 return;
2399 }
2400 }
2401 }
2402
2403 /* If we have a breakpoint to step over, make sure to do a single
2404 step only. Same if we have software watchpoints. */
2405 if (tp->control.trap_expected || bpstat_should_step ())
2406 tp->control.may_range_step = 0;
2407
2408 /* If enabled, step over breakpoints by executing a copy of the
2409 instruction at a different address.
2410
2411 We can't use displaced stepping when we have a signal to deliver;
2412 the comments for displaced_step_prepare explain why. The
2413 comments in the handle_inferior event for dealing with 'random
2414 signals' explain what we do instead.
2415
2416 We can't use displaced stepping when we are waiting for vfork_done
2417 event, displaced stepping breaks the vfork child similarly as single
2418 step software breakpoint. */
2419 if (tp->control.trap_expected
2420 && use_displaced_stepping (tp)
2421 && !step_over_info_valid_p ()
2422 && sig == GDB_SIGNAL_0
2423 && !current_inferior ()->waiting_for_vfork_done)
2424 {
2425 int prepared = displaced_step_prepare (tp);
2426
2427 if (prepared == 0)
2428 {
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "Got placed in step-over queue\n");
2432
2433 tp->control.trap_expected = 0;
2434 return;
2435 }
2436 else if (prepared < 0)
2437 {
2438 /* Fallback to stepping over the breakpoint in-line. */
2439
2440 if (target_is_non_stop_p ())
2441 stop_all_threads ();
2442
2443 set_step_over_info (regcache->aspace (),
2444 regcache_read_pc (regcache), 0, tp->global_num);
2445
2446 step = maybe_software_singlestep (gdbarch, pc);
2447
2448 insert_breakpoints ();
2449 }
2450 else if (prepared > 0)
2451 {
2452 struct displaced_step_inferior_state *displaced;
2453
2454 /* Update pc to reflect the new address from which we will
2455 execute instructions due to displaced stepping. */
2456 pc = regcache_read_pc (get_thread_regcache (tp));
2457
2458 displaced = get_displaced_stepping_state (tp->inf);
2459 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2460 displaced->step_closure);
2461 }
2462 }
2463
2464 /* Do we need to do it the hard way, w/temp breakpoints? */
2465 else if (step)
2466 step = maybe_software_singlestep (gdbarch, pc);
2467
2468 /* Currently, our software single-step implementation leads to different
2469 results than hardware single-stepping in one situation: when stepping
2470 into delivering a signal which has an associated signal handler,
2471 hardware single-step will stop at the first instruction of the handler,
2472 while software single-step will simply skip execution of the handler.
2473
2474 For now, this difference in behavior is accepted since there is no
2475 easy way to actually implement single-stepping into a signal handler
2476 without kernel support.
2477
2478 However, there is one scenario where this difference leads to follow-on
2479 problems: if we're stepping off a breakpoint by removing all breakpoints
2480 and then single-stepping. In this case, the software single-step
2481 behavior means that even if there is a *breakpoint* in the signal
2482 handler, GDB still would not stop.
2483
2484 Fortunately, we can at least fix this particular issue. We detect
2485 here the case where we are about to deliver a signal while software
2486 single-stepping with breakpoints removed. In this situation, we
2487 revert the decisions to remove all breakpoints and insert single-
2488 step breakpoints, and instead we install a step-resume breakpoint
2489 at the current address, deliver the signal without stepping, and
2490 once we arrive back at the step-resume breakpoint, actually step
2491 over the breakpoint we originally wanted to step over. */
2492 if (thread_has_single_step_breakpoints_set (tp)
2493 && sig != GDB_SIGNAL_0
2494 && step_over_info_valid_p ())
2495 {
2496 /* If we have nested signals or a pending signal is delivered
2497 immediately after a handler returns, might might already have
2498 a step-resume breakpoint set on the earlier handler. We cannot
2499 set another step-resume breakpoint; just continue on until the
2500 original breakpoint is hit. */
2501 if (tp->control.step_resume_breakpoint == NULL)
2502 {
2503 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2504 tp->step_after_step_resume_breakpoint = 1;
2505 }
2506
2507 delete_single_step_breakpoints (tp);
2508
2509 clear_step_over_info ();
2510 tp->control.trap_expected = 0;
2511
2512 insert_breakpoints ();
2513 }
2514
2515 /* If STEP is set, it's a request to use hardware stepping
2516 facilities. But in that case, we should never
2517 use singlestep breakpoint. */
2518 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2519
2520 /* Decide the set of threads to ask the target to resume. */
2521 if (tp->control.trap_expected)
2522 {
2523 /* We're allowing a thread to run past a breakpoint it has
2524 hit, either by single-stepping the thread with the breakpoint
2525 removed, or by displaced stepping, with the breakpoint inserted.
2526 In the former case, we need to single-step only this thread,
2527 and keep others stopped, as they can miss this breakpoint if
2528 allowed to run. That's not really a problem for displaced
2529 stepping, but, we still keep other threads stopped, in case
2530 another thread is also stopped for a breakpoint waiting for
2531 its turn in the displaced stepping queue. */
2532 resume_ptid = inferior_ptid;
2533 }
2534 else
2535 resume_ptid = internal_resume_ptid (user_step);
2536
2537 if (execution_direction != EXEC_REVERSE
2538 && step && breakpoint_inserted_here_p (aspace, pc))
2539 {
2540 /* There are two cases where we currently need to step a
2541 breakpoint instruction when we have a signal to deliver:
2542
2543 - See handle_signal_stop where we handle random signals that
2544 could take out us out of the stepping range. Normally, in
2545 that case we end up continuing (instead of stepping) over the
2546 signal handler with a breakpoint at PC, but there are cases
2547 where we should _always_ single-step, even if we have a
2548 step-resume breakpoint, like when a software watchpoint is
2549 set. Assuming single-stepping and delivering a signal at the
2550 same time would takes us to the signal handler, then we could
2551 have removed the breakpoint at PC to step over it. However,
2552 some hardware step targets (like e.g., Mac OS) can't step
2553 into signal handlers, and for those, we need to leave the
2554 breakpoint at PC inserted, as otherwise if the handler
2555 recurses and executes PC again, it'll miss the breakpoint.
2556 So we leave the breakpoint inserted anyway, but we need to
2557 record that we tried to step a breakpoint instruction, so
2558 that adjust_pc_after_break doesn't end up confused.
2559
2560 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2561 in one thread after another thread that was stepping had been
2562 momentarily paused for a step-over. When we re-resume the
2563 stepping thread, it may be resumed from that address with a
2564 breakpoint that hasn't trapped yet. Seen with
2565 gdb.threads/non-stop-fair-events.exp, on targets that don't
2566 do displaced stepping. */
2567
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "infrun: resume: [%s] stepped breakpoint\n",
2571 target_pid_to_str (tp->ptid));
2572
2573 tp->stepped_breakpoint = 1;
2574
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
2579 step = 0;
2580 }
2581
2582 if (debug_displaced
2583 && tp->control.trap_expected
2584 && use_displaced_stepping (tp)
2585 && !step_over_info_valid_p ())
2586 {
2587 struct regcache *resume_regcache = get_thread_regcache (tp);
2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
2597
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
2607
2608 do_target_resume (resume_ptid, step, sig);
2609 tp->resumed = 1;
2610 }
2611
2612 /* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
2616 static void
2617 resume (gdb_signal sig)
2618 {
2619 TRY
2620 {
2621 resume_1 (sig);
2622 }
2623 CATCH (ex, RETURN_MASK_ALL)
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
2632 throw_exception (ex);
2633 }
2634 END_CATCH
2635 }
2636
2637 \f
2638 /* Proceeding. */
2639
2640 /* See infrun.h. */
2641
2642 /* Counter that tracks number of user visible stops. This can be used
2643 to tell whether a command has proceeded the inferior past the
2644 current location. This allows e.g., inferior function calls in
2645 breakpoint commands to not interrupt the command list. When the
2646 call finishes successfully, the inferior is standing at the same
2647 breakpoint as if nothing happened (and so we don't call
2648 normal_stop). */
2649 static ULONGEST current_stop_id;
2650
2651 /* See infrun.h. */
2652
2653 ULONGEST
2654 get_stop_id (void)
2655 {
2656 return current_stop_id;
2657 }
2658
2659 /* Called when we report a user visible stop. */
2660
2661 static void
2662 new_stop_id (void)
2663 {
2664 current_stop_id++;
2665 }
2666
2667 /* Clear out all variables saying what to do when inferior is continued.
2668 First do this, then set the ones you want, then call `proceed'. */
2669
2670 static void
2671 clear_proceed_status_thread (struct thread_info *tp)
2672 {
2673 if (debug_infrun)
2674 fprintf_unfiltered (gdb_stdlog,
2675 "infrun: clear_proceed_status_thread (%s)\n",
2676 target_pid_to_str (tp->ptid));
2677
2678 /* If we're starting a new sequence, then the previous finished
2679 single-step is no longer relevant. */
2680 if (tp->suspend.waitstatus_pending_p)
2681 {
2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 {
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "infrun: clear_proceed_status: pending "
2687 "event of %s was a finished step. "
2688 "Discarding.\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->suspend.waitstatus_pending_p = 0;
2692 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2693 }
2694 else if (debug_infrun)
2695 {
2696 std::string statstr
2697 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2698
2699 fprintf_unfiltered (gdb_stdlog,
2700 "infrun: clear_proceed_status_thread: thread %s "
2701 "has pending wait status %s "
2702 "(currently_stepping=%d).\n",
2703 target_pid_to_str (tp->ptid), statstr.c_str (),
2704 currently_stepping (tp));
2705 }
2706 }
2707
2708 /* If this signal should not be seen by program, give it zero.
2709 Used for debugging signals. */
2710 if (!signal_pass_state (tp->suspend.stop_signal))
2711 tp->suspend.stop_signal = GDB_SIGNAL_0;
2712
2713 delete tp->thread_fsm;
2714 tp->thread_fsm = NULL;
2715
2716 tp->control.trap_expected = 0;
2717 tp->control.step_range_start = 0;
2718 tp->control.step_range_end = 0;
2719 tp->control.may_range_step = 0;
2720 tp->control.step_frame_id = null_frame_id;
2721 tp->control.step_stack_frame_id = null_frame_id;
2722 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2723 tp->control.step_start_function = NULL;
2724 tp->stop_requested = 0;
2725
2726 tp->control.stop_step = 0;
2727
2728 tp->control.proceed_to_finish = 0;
2729
2730 tp->control.stepping_command = 0;
2731
2732 /* Discard any remaining commands or status from previous stop. */
2733 bpstat_clear (&tp->control.stop_bpstat);
2734 }
2735
2736 void
2737 clear_proceed_status (int step)
2738 {
2739 /* With scheduler-locking replay, stop replaying other threads if we're
2740 not replaying the user-visible resume ptid.
2741
2742 This is a convenience feature to not require the user to explicitly
2743 stop replaying the other threads. We're assuming that the user's
2744 intent is to resume tracing the recorded process. */
2745 if (!non_stop && scheduler_mode == schedlock_replay
2746 && target_record_is_replaying (minus_one_ptid)
2747 && !target_record_will_replay (user_visible_resume_ptid (step),
2748 execution_direction))
2749 target_record_stop_replaying ();
2750
2751 if (!non_stop && inferior_ptid != null_ptid)
2752 {
2753 ptid_t resume_ptid = user_visible_resume_ptid (step);
2754
2755 /* In all-stop mode, delete the per-thread status of all threads
2756 we're about to resume, implicitly and explicitly. */
2757 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2758 clear_proceed_status_thread (tp);
2759 }
2760
2761 if (inferior_ptid != null_ptid)
2762 {
2763 struct inferior *inferior;
2764
2765 if (non_stop)
2766 {
2767 /* If in non-stop mode, only delete the per-thread status of
2768 the current thread. */
2769 clear_proceed_status_thread (inferior_thread ());
2770 }
2771
2772 inferior = current_inferior ();
2773 inferior->control.stop_soon = NO_STOP_QUIETLY;
2774 }
2775
2776 gdb::observers::about_to_proceed.notify ();
2777 }
2778
2779 /* Returns true if TP is still stopped at a breakpoint that needs
2780 stepping-over in order to make progress. If the breakpoint is gone
2781 meanwhile, we can skip the whole step-over dance. */
2782
2783 static int
2784 thread_still_needs_step_over_bp (struct thread_info *tp)
2785 {
2786 if (tp->stepping_over_breakpoint)
2787 {
2788 struct regcache *regcache = get_thread_regcache (tp);
2789
2790 if (breakpoint_here_p (regcache->aspace (),
2791 regcache_read_pc (regcache))
2792 == ordinary_breakpoint_here)
2793 return 1;
2794
2795 tp->stepping_over_breakpoint = 0;
2796 }
2797
2798 return 0;
2799 }
2800
2801 /* Check whether thread TP still needs to start a step-over in order
2802 to make progress when resumed. Returns an bitwise or of enum
2803 step_over_what bits, indicating what needs to be stepped over. */
2804
2805 static step_over_what
2806 thread_still_needs_step_over (struct thread_info *tp)
2807 {
2808 step_over_what what = 0;
2809
2810 if (thread_still_needs_step_over_bp (tp))
2811 what |= STEP_OVER_BREAKPOINT;
2812
2813 if (tp->stepping_over_watchpoint
2814 && !target_have_steppable_watchpoint)
2815 what |= STEP_OVER_WATCHPOINT;
2816
2817 return what;
2818 }
2819
2820 /* Returns true if scheduler locking applies. STEP indicates whether
2821 we're about to do a step/next-like command to a thread. */
2822
2823 static int
2824 schedlock_applies (struct thread_info *tp)
2825 {
2826 return (scheduler_mode == schedlock_on
2827 || (scheduler_mode == schedlock_step
2828 && tp->control.stepping_command)
2829 || (scheduler_mode == schedlock_replay
2830 && target_record_will_replay (minus_one_ptid,
2831 execution_direction)));
2832 }
2833
2834 /* Basic routine for continuing the program in various fashions.
2835
2836 ADDR is the address to resume at, or -1 for resume where stopped.
2837 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2838 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2839
2840 You should call clear_proceed_status before calling proceed. */
2841
2842 void
2843 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2844 {
2845 struct regcache *regcache;
2846 struct gdbarch *gdbarch;
2847 CORE_ADDR pc;
2848 ptid_t resume_ptid;
2849 struct execution_control_state ecss;
2850 struct execution_control_state *ecs = &ecss;
2851 int started;
2852
2853 /* If we're stopped at a fork/vfork, follow the branch set by the
2854 "set follow-fork-mode" command; otherwise, we'll just proceed
2855 resuming the current thread. */
2856 if (!follow_fork ())
2857 {
2858 /* The target for some reason decided not to resume. */
2859 normal_stop ();
2860 if (target_can_async_p ())
2861 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2862 return;
2863 }
2864
2865 /* We'll update this if & when we switch to a new thread. */
2866 previous_inferior_ptid = inferior_ptid;
2867
2868 regcache = get_current_regcache ();
2869 gdbarch = regcache->arch ();
2870 const address_space *aspace = regcache->aspace ();
2871
2872 pc = regcache_read_pc (regcache);
2873 thread_info *cur_thr = inferior_thread ();
2874
2875 /* Fill in with reasonable starting values. */
2876 init_thread_stepping_state (cur_thr);
2877
2878 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2879
2880 if (addr == (CORE_ADDR) -1)
2881 {
2882 if (pc == cur_thr->suspend.stop_pc
2883 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2884 && execution_direction != EXEC_REVERSE)
2885 /* There is a breakpoint at the address we will resume at,
2886 step one instruction before inserting breakpoints so that
2887 we do not stop right away (and report a second hit at this
2888 breakpoint).
2889
2890 Note, we don't do this in reverse, because we won't
2891 actually be executing the breakpoint insn anyway.
2892 We'll be (un-)executing the previous instruction. */
2893 cur_thr->stepping_over_breakpoint = 1;
2894 else if (gdbarch_single_step_through_delay_p (gdbarch)
2895 && gdbarch_single_step_through_delay (gdbarch,
2896 get_current_frame ()))
2897 /* We stepped onto an instruction that needs to be stepped
2898 again before re-inserting the breakpoint, do so. */
2899 cur_thr->stepping_over_breakpoint = 1;
2900 }
2901 else
2902 {
2903 regcache_write_pc (regcache, addr);
2904 }
2905
2906 if (siggnal != GDB_SIGNAL_DEFAULT)
2907 cur_thr->suspend.stop_signal = siggnal;
2908
2909 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2910
2911 /* If an exception is thrown from this point on, make sure to
2912 propagate GDB's knowledge of the executing state to the
2913 frontend/user running state. */
2914 scoped_finish_thread_state finish_state (resume_ptid);
2915
2916 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2917 threads (e.g., we might need to set threads stepping over
2918 breakpoints first), from the user/frontend's point of view, all
2919 threads in RESUME_PTID are now running. Unless we're calling an
2920 inferior function, as in that case we pretend the inferior
2921 doesn't run at all. */
2922 if (!cur_thr->control.in_infcall)
2923 set_running (resume_ptid, 1);
2924
2925 if (debug_infrun)
2926 fprintf_unfiltered (gdb_stdlog,
2927 "infrun: proceed (addr=%s, signal=%s)\n",
2928 paddress (gdbarch, addr),
2929 gdb_signal_to_symbol_string (siggnal));
2930
2931 annotate_starting ();
2932
2933 /* Make sure that output from GDB appears before output from the
2934 inferior. */
2935 gdb_flush (gdb_stdout);
2936
2937 /* Since we've marked the inferior running, give it the terminal. A
2938 QUIT/Ctrl-C from here on is forwarded to the target (which can
2939 still detect attempts to unblock a stuck connection with repeated
2940 Ctrl-C from within target_pass_ctrlc). */
2941 target_terminal::inferior ();
2942
2943 /* In a multi-threaded task we may select another thread and
2944 then continue or step.
2945
2946 But if a thread that we're resuming had stopped at a breakpoint,
2947 it will immediately cause another breakpoint stop without any
2948 execution (i.e. it will report a breakpoint hit incorrectly). So
2949 we must step over it first.
2950
2951 Look for threads other than the current (TP) that reported a
2952 breakpoint hit and haven't been resumed yet since. */
2953
2954 /* If scheduler locking applies, we can avoid iterating over all
2955 threads. */
2956 if (!non_stop && !schedlock_applies (cur_thr))
2957 {
2958 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2959 {
2960 /* Ignore the current thread here. It's handled
2961 afterwards. */
2962 if (tp == cur_thr)
2963 continue;
2964
2965 if (!thread_still_needs_step_over (tp))
2966 continue;
2967
2968 gdb_assert (!thread_is_in_step_over_chain (tp));
2969
2970 if (debug_infrun)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "infrun: need to step-over [%s] first\n",
2973 target_pid_to_str (tp->ptid));
2974
2975 thread_step_over_chain_enqueue (tp);
2976 }
2977 }
2978
2979 /* Enqueue the current thread last, so that we move all other
2980 threads over their breakpoints first. */
2981 if (cur_thr->stepping_over_breakpoint)
2982 thread_step_over_chain_enqueue (cur_thr);
2983
2984 /* If the thread isn't started, we'll still need to set its prev_pc,
2985 so that switch_back_to_stepped_thread knows the thread hasn't
2986 advanced. Must do this before resuming any thread, as in
2987 all-stop/remote, once we resume we can't send any other packet
2988 until the target stops again. */
2989 cur_thr->prev_pc = regcache_read_pc (regcache);
2990
2991 {
2992 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2993
2994 started = start_step_over ();
2995
2996 if (step_over_info_valid_p ())
2997 {
2998 /* Either this thread started a new in-line step over, or some
2999 other thread was already doing one. In either case, don't
3000 resume anything else until the step-over is finished. */
3001 }
3002 else if (started && !target_is_non_stop_p ())
3003 {
3004 /* A new displaced stepping sequence was started. In all-stop,
3005 we can't talk to the target anymore until it next stops. */
3006 }
3007 else if (!non_stop && target_is_non_stop_p ())
3008 {
3009 /* In all-stop, but the target is always in non-stop mode.
3010 Start all other threads that are implicitly resumed too. */
3011 for (thread_info *tp : all_non_exited_threads (resume_ptid))
3012 {
3013 if (tp->resumed)
3014 {
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: [%s] resumed\n",
3018 target_pid_to_str (tp->ptid));
3019 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3020 continue;
3021 }
3022
3023 if (thread_is_in_step_over_chain (tp))
3024 {
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: [%s] needs step-over\n",
3028 target_pid_to_str (tp->ptid));
3029 continue;
3030 }
3031
3032 if (debug_infrun)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "infrun: proceed: resuming %s\n",
3035 target_pid_to_str (tp->ptid));
3036
3037 reset_ecs (ecs, tp);
3038 switch_to_thread (tp);
3039 keep_going_pass_signal (ecs);
3040 if (!ecs->wait_some_more)
3041 error (_("Command aborted."));
3042 }
3043 }
3044 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3045 {
3046 /* The thread wasn't started, and isn't queued, run it now. */
3047 reset_ecs (ecs, cur_thr);
3048 switch_to_thread (cur_thr);
3049 keep_going_pass_signal (ecs);
3050 if (!ecs->wait_some_more)
3051 error (_("Command aborted."));
3052 }
3053 }
3054
3055 target_commit_resume ();
3056
3057 finish_state.release ();
3058
3059 /* Tell the event loop to wait for it to stop. If the target
3060 supports asynchronous execution, it'll do this from within
3061 target_resume. */
3062 if (!target_can_async_p ())
3063 mark_async_event_handler (infrun_async_inferior_event_token);
3064 }
3065 \f
3066
3067 /* Start remote-debugging of a machine over a serial link. */
3068
3069 void
3070 start_remote (int from_tty)
3071 {
3072 struct inferior *inferior;
3073
3074 inferior = current_inferior ();
3075 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3076
3077 /* Always go on waiting for the target, regardless of the mode. */
3078 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3079 indicate to wait_for_inferior that a target should timeout if
3080 nothing is returned (instead of just blocking). Because of this,
3081 targets expecting an immediate response need to, internally, set
3082 things up so that the target_wait() is forced to eventually
3083 timeout. */
3084 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3085 differentiate to its caller what the state of the target is after
3086 the initial open has been performed. Here we're assuming that
3087 the target has stopped. It should be possible to eventually have
3088 target_open() return to the caller an indication that the target
3089 is currently running and GDB state should be set to the same as
3090 for an async run. */
3091 wait_for_inferior ();
3092
3093 /* Now that the inferior has stopped, do any bookkeeping like
3094 loading shared libraries. We want to do this before normal_stop,
3095 so that the displayed frame is up to date. */
3096 post_create_inferior (current_top_target (), from_tty);
3097
3098 normal_stop ();
3099 }
3100
3101 /* Initialize static vars when a new inferior begins. */
3102
3103 void
3104 init_wait_for_inferior (void)
3105 {
3106 /* These are meaningless until the first time through wait_for_inferior. */
3107
3108 breakpoint_init_inferior (inf_starting);
3109
3110 clear_proceed_status (0);
3111
3112 target_last_wait_ptid = minus_one_ptid;
3113
3114 previous_inferior_ptid = inferior_ptid;
3115 }
3116
3117 \f
3118
3119 static void handle_inferior_event (struct execution_control_state *ecs);
3120
3121 static void handle_step_into_function (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs);
3123 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3124 struct execution_control_state *ecs);
3125 static void handle_signal_stop (struct execution_control_state *ecs);
3126 static void check_exception_resume (struct execution_control_state *,
3127 struct frame_info *);
3128
3129 static void end_stepping_range (struct execution_control_state *ecs);
3130 static void stop_waiting (struct execution_control_state *ecs);
3131 static void keep_going (struct execution_control_state *ecs);
3132 static void process_event_stop_test (struct execution_control_state *ecs);
3133 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3134
3135 /* This function is attached as a "thread_stop_requested" observer.
3136 Cleanup local state that assumed the PTID was to be resumed, and
3137 report the stop to the frontend. */
3138
3139 static void
3140 infrun_thread_stop_requested (ptid_t ptid)
3141 {
3142 /* PTID was requested to stop. If the thread was already stopped,
3143 but the user/frontend doesn't know about that yet (e.g., the
3144 thread had been temporarily paused for some step-over), set up
3145 for reporting the stop now. */
3146 for (thread_info *tp : all_threads (ptid))
3147 {
3148 if (tp->state != THREAD_RUNNING)
3149 continue;
3150 if (tp->executing)
3151 continue;
3152
3153 /* Remove matching threads from the step-over queue, so
3154 start_step_over doesn't try to resume them
3155 automatically. */
3156 if (thread_is_in_step_over_chain (tp))
3157 thread_step_over_chain_remove (tp);
3158
3159 /* If the thread is stopped, but the user/frontend doesn't
3160 know about that yet, queue a pending event, as if the
3161 thread had just stopped now. Unless the thread already had
3162 a pending event. */
3163 if (!tp->suspend.waitstatus_pending_p)
3164 {
3165 tp->suspend.waitstatus_pending_p = 1;
3166 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3167 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3168 }
3169
3170 /* Clear the inline-frame state, since we're re-processing the
3171 stop. */
3172 clear_inline_frame_state (tp->ptid);
3173
3174 /* If this thread was paused because some other thread was
3175 doing an inline-step over, let that finish first. Once
3176 that happens, we'll restart all threads and consume pending
3177 stop events then. */
3178 if (step_over_info_valid_p ())
3179 continue;
3180
3181 /* Otherwise we can process the (new) pending event now. Set
3182 it so this pending event is considered by
3183 do_target_wait. */
3184 tp->resumed = 1;
3185 }
3186 }
3187
3188 static void
3189 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3190 {
3191 if (target_last_wait_ptid == tp->ptid)
3192 nullify_last_target_wait_ptid ();
3193 }
3194
3195 /* Delete the step resume, single-step and longjmp/exception resume
3196 breakpoints of TP. */
3197
3198 static void
3199 delete_thread_infrun_breakpoints (struct thread_info *tp)
3200 {
3201 delete_step_resume_breakpoint (tp);
3202 delete_exception_resume_breakpoint (tp);
3203 delete_single_step_breakpoints (tp);
3204 }
3205
3206 /* If the target still has execution, call FUNC for each thread that
3207 just stopped. In all-stop, that's all the non-exited threads; in
3208 non-stop, that's the current thread, only. */
3209
3210 typedef void (*for_each_just_stopped_thread_callback_func)
3211 (struct thread_info *tp);
3212
3213 static void
3214 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3215 {
3216 if (!target_has_execution || inferior_ptid == null_ptid)
3217 return;
3218
3219 if (target_is_non_stop_p ())
3220 {
3221 /* If in non-stop mode, only the current thread stopped. */
3222 func (inferior_thread ());
3223 }
3224 else
3225 {
3226 /* In all-stop mode, all threads have stopped. */
3227 for (thread_info *tp : all_non_exited_threads ())
3228 func (tp);
3229 }
3230 }
3231
3232 /* Delete the step resume and longjmp/exception resume breakpoints of
3233 the threads that just stopped. */
3234
3235 static void
3236 delete_just_stopped_threads_infrun_breakpoints (void)
3237 {
3238 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3239 }
3240
3241 /* Delete the single-step breakpoints of the threads that just
3242 stopped. */
3243
3244 static void
3245 delete_just_stopped_threads_single_step_breakpoints (void)
3246 {
3247 for_each_just_stopped_thread (delete_single_step_breakpoints);
3248 }
3249
3250 /* See infrun.h. */
3251
3252 void
3253 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3254 const struct target_waitstatus *ws)
3255 {
3256 std::string status_string = target_waitstatus_to_string (ws);
3257 string_file stb;
3258
3259 /* The text is split over several lines because it was getting too long.
3260 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3261 output as a unit; we want only one timestamp printed if debug_timestamp
3262 is set. */
3263
3264 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3265 waiton_ptid.pid (),
3266 waiton_ptid.lwp (),
3267 waiton_ptid.tid ());
3268 if (waiton_ptid.pid () != -1)
3269 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3270 stb.printf (", status) =\n");
3271 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3272 result_ptid.pid (),
3273 result_ptid.lwp (),
3274 result_ptid.tid (),
3275 target_pid_to_str (result_ptid));
3276 stb.printf ("infrun: %s\n", status_string.c_str ());
3277
3278 /* This uses %s in part to handle %'s in the text, but also to avoid
3279 a gcc error: the format attribute requires a string literal. */
3280 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3281 }
3282
3283 /* Select a thread at random, out of those which are resumed and have
3284 had events. */
3285
3286 static struct thread_info *
3287 random_pending_event_thread (ptid_t waiton_ptid)
3288 {
3289 int num_events = 0;
3290
3291 auto has_event = [] (thread_info *tp)
3292 {
3293 return (tp->resumed
3294 && tp->suspend.waitstatus_pending_p);
3295 };
3296
3297 /* First see how many events we have. Count only resumed threads
3298 that have an event pending. */
3299 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3300 if (has_event (tp))
3301 num_events++;
3302
3303 if (num_events == 0)
3304 return NULL;
3305
3306 /* Now randomly pick a thread out of those that have had events. */
3307 int random_selector = (int) ((num_events * (double) rand ())
3308 / (RAND_MAX + 1.0));
3309
3310 if (debug_infrun && num_events > 1)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "infrun: Found %d events, selecting #%d\n",
3313 num_events, random_selector);
3314
3315 /* Select the Nth thread that has had an event. */
3316 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3317 if (has_event (tp))
3318 if (random_selector-- == 0)
3319 return tp;
3320
3321 gdb_assert_not_reached ("event thread not found");
3322 }
3323
3324 /* Wrapper for target_wait that first checks whether threads have
3325 pending statuses to report before actually asking the target for
3326 more events. */
3327
3328 static ptid_t
3329 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3330 {
3331 ptid_t event_ptid;
3332 struct thread_info *tp;
3333
3334 /* First check if there is a resumed thread with a wait status
3335 pending. */
3336 if (ptid == minus_one_ptid || ptid.is_pid ())
3337 {
3338 tp = random_pending_event_thread (ptid);
3339 }
3340 else
3341 {
3342 if (debug_infrun)
3343 fprintf_unfiltered (gdb_stdlog,
3344 "infrun: Waiting for specific thread %s.\n",
3345 target_pid_to_str (ptid));
3346
3347 /* We have a specific thread to check. */
3348 tp = find_thread_ptid (ptid);
3349 gdb_assert (tp != NULL);
3350 if (!tp->suspend.waitstatus_pending_p)
3351 tp = NULL;
3352 }
3353
3354 if (tp != NULL
3355 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3356 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3357 {
3358 struct regcache *regcache = get_thread_regcache (tp);
3359 struct gdbarch *gdbarch = regcache->arch ();
3360 CORE_ADDR pc;
3361 int discard = 0;
3362
3363 pc = regcache_read_pc (regcache);
3364
3365 if (pc != tp->suspend.stop_pc)
3366 {
3367 if (debug_infrun)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "infrun: PC of %s changed. was=%s, now=%s\n",
3370 target_pid_to_str (tp->ptid),
3371 paddress (gdbarch, tp->suspend.stop_pc),
3372 paddress (gdbarch, pc));
3373 discard = 1;
3374 }
3375 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3376 {
3377 if (debug_infrun)
3378 fprintf_unfiltered (gdb_stdlog,
3379 "infrun: previous breakpoint of %s, at %s gone\n",
3380 target_pid_to_str (tp->ptid),
3381 paddress (gdbarch, pc));
3382
3383 discard = 1;
3384 }
3385
3386 if (discard)
3387 {
3388 if (debug_infrun)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: pending event of %s cancelled.\n",
3391 target_pid_to_str (tp->ptid));
3392
3393 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3394 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3395 }
3396 }
3397
3398 if (tp != NULL)
3399 {
3400 if (debug_infrun)
3401 {
3402 std::string statstr
3403 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3404
3405 fprintf_unfiltered (gdb_stdlog,
3406 "infrun: Using pending wait status %s for %s.\n",
3407 statstr.c_str (),
3408 target_pid_to_str (tp->ptid));
3409 }
3410
3411 /* Now that we've selected our final event LWP, un-adjust its PC
3412 if it was a software breakpoint (and the target doesn't
3413 always adjust the PC itself). */
3414 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3415 && !target_supports_stopped_by_sw_breakpoint ())
3416 {
3417 struct regcache *regcache;
3418 struct gdbarch *gdbarch;
3419 int decr_pc;
3420
3421 regcache = get_thread_regcache (tp);
3422 gdbarch = regcache->arch ();
3423
3424 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3425 if (decr_pc != 0)
3426 {
3427 CORE_ADDR pc;
3428
3429 pc = regcache_read_pc (regcache);
3430 regcache_write_pc (regcache, pc + decr_pc);
3431 }
3432 }
3433
3434 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3435 *status = tp->suspend.waitstatus;
3436 tp->suspend.waitstatus_pending_p = 0;
3437
3438 /* Wake up the event loop again, until all pending events are
3439 processed. */
3440 if (target_is_async_p ())
3441 mark_async_event_handler (infrun_async_inferior_event_token);
3442 return tp->ptid;
3443 }
3444
3445 /* But if we don't find one, we'll have to wait. */
3446
3447 if (deprecated_target_wait_hook)
3448 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3449 else
3450 event_ptid = target_wait (ptid, status, options);
3451
3452 return event_ptid;
3453 }
3454
3455 /* Prepare and stabilize the inferior for detaching it. E.g.,
3456 detaching while a thread is displaced stepping is a recipe for
3457 crashing it, as nothing would readjust the PC out of the scratch
3458 pad. */
3459
3460 void
3461 prepare_for_detach (void)
3462 {
3463 struct inferior *inf = current_inferior ();
3464 ptid_t pid_ptid = ptid_t (inf->pid);
3465
3466 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3467
3468 /* Is any thread of this process displaced stepping? If not,
3469 there's nothing else to do. */
3470 if (displaced->step_thread == nullptr)
3471 return;
3472
3473 if (debug_infrun)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "displaced-stepping in-process while detaching");
3476
3477 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3478
3479 while (displaced->step_thread != nullptr)
3480 {
3481 struct execution_control_state ecss;
3482 struct execution_control_state *ecs;
3483
3484 ecs = &ecss;
3485 memset (ecs, 0, sizeof (*ecs));
3486
3487 overlay_cache_invalid = 1;
3488 /* Flush target cache before starting to handle each event.
3489 Target was running and cache could be stale. This is just a
3490 heuristic. Running threads may modify target memory, but we
3491 don't get any event. */
3492 target_dcache_invalidate ();
3493
3494 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3495
3496 if (debug_infrun)
3497 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3498
3499 /* If an error happens while handling the event, propagate GDB's
3500 knowledge of the executing state to the frontend/user running
3501 state. */
3502 scoped_finish_thread_state finish_state (minus_one_ptid);
3503
3504 /* Now figure out what to do with the result of the result. */
3505 handle_inferior_event (ecs);
3506
3507 /* No error, don't finish the state yet. */
3508 finish_state.release ();
3509
3510 /* Breakpoints and watchpoints are not installed on the target
3511 at this point, and signals are passed directly to the
3512 inferior, so this must mean the process is gone. */
3513 if (!ecs->wait_some_more)
3514 {
3515 restore_detaching.release ();
3516 error (_("Program exited while detaching"));
3517 }
3518 }
3519
3520 restore_detaching.release ();
3521 }
3522
3523 /* Wait for control to return from inferior to debugger.
3524
3525 If inferior gets a signal, we may decide to start it up again
3526 instead of returning. That is why there is a loop in this function.
3527 When this function actually returns it means the inferior
3528 should be left stopped and GDB should read more commands. */
3529
3530 void
3531 wait_for_inferior (void)
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered
3535 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3536
3537 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3538
3539 /* If an error happens while handling the event, propagate GDB's
3540 knowledge of the executing state to the frontend/user running
3541 state. */
3542 scoped_finish_thread_state finish_state (minus_one_ptid);
3543
3544 while (1)
3545 {
3546 struct execution_control_state ecss;
3547 struct execution_control_state *ecs = &ecss;
3548 ptid_t waiton_ptid = minus_one_ptid;
3549
3550 memset (ecs, 0, sizeof (*ecs));
3551
3552 overlay_cache_invalid = 1;
3553
3554 /* Flush target cache before starting to handle each event.
3555 Target was running and cache could be stale. This is just a
3556 heuristic. Running threads may modify target memory, but we
3557 don't get any event. */
3558 target_dcache_invalidate ();
3559
3560 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3561
3562 if (debug_infrun)
3563 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3564
3565 /* Now figure out what to do with the result of the result. */
3566 handle_inferior_event (ecs);
3567
3568 if (!ecs->wait_some_more)
3569 break;
3570 }
3571
3572 /* No error, don't finish the state yet. */
3573 finish_state.release ();
3574 }
3575
3576 /* Cleanup that reinstalls the readline callback handler, if the
3577 target is running in the background. If while handling the target
3578 event something triggered a secondary prompt, like e.g., a
3579 pagination prompt, we'll have removed the callback handler (see
3580 gdb_readline_wrapper_line). Need to do this as we go back to the
3581 event loop, ready to process further input. Note this has no
3582 effect if the handler hasn't actually been removed, because calling
3583 rl_callback_handler_install resets the line buffer, thus losing
3584 input. */
3585
3586 static void
3587 reinstall_readline_callback_handler_cleanup ()
3588 {
3589 struct ui *ui = current_ui;
3590
3591 if (!ui->async)
3592 {
3593 /* We're not going back to the top level event loop yet. Don't
3594 install the readline callback, as it'd prep the terminal,
3595 readline-style (raw, noecho) (e.g., --batch). We'll install
3596 it the next time the prompt is displayed, when we're ready
3597 for input. */
3598 return;
3599 }
3600
3601 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3602 gdb_rl_callback_handler_reinstall ();
3603 }
3604
3605 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3606 that's just the event thread. In all-stop, that's all threads. */
3607
3608 static void
3609 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3610 {
3611 if (ecs->event_thread != NULL
3612 && ecs->event_thread->thread_fsm != NULL)
3613 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3614
3615 if (!non_stop)
3616 {
3617 for (thread_info *thr : all_non_exited_threads ())
3618 {
3619 if (thr->thread_fsm == NULL)
3620 continue;
3621 if (thr == ecs->event_thread)
3622 continue;
3623
3624 switch_to_thread (thr);
3625 thr->thread_fsm->clean_up (thr);
3626 }
3627
3628 if (ecs->event_thread != NULL)
3629 switch_to_thread (ecs->event_thread);
3630 }
3631 }
3632
3633 /* Helper for all_uis_check_sync_execution_done that works on the
3634 current UI. */
3635
3636 static void
3637 check_curr_ui_sync_execution_done (void)
3638 {
3639 struct ui *ui = current_ui;
3640
3641 if (ui->prompt_state == PROMPT_NEEDED
3642 && ui->async
3643 && !gdb_in_secondary_prompt_p (ui))
3644 {
3645 target_terminal::ours ();
3646 gdb::observers::sync_execution_done.notify ();
3647 ui_register_input_event_handler (ui);
3648 }
3649 }
3650
3651 /* See infrun.h. */
3652
3653 void
3654 all_uis_check_sync_execution_done (void)
3655 {
3656 SWITCH_THRU_ALL_UIS ()
3657 {
3658 check_curr_ui_sync_execution_done ();
3659 }
3660 }
3661
3662 /* See infrun.h. */
3663
3664 void
3665 all_uis_on_sync_execution_starting (void)
3666 {
3667 SWITCH_THRU_ALL_UIS ()
3668 {
3669 if (current_ui->prompt_state == PROMPT_NEEDED)
3670 async_disable_stdin ();
3671 }
3672 }
3673
3674 /* Asynchronous version of wait_for_inferior. It is called by the
3675 event loop whenever a change of state is detected on the file
3676 descriptor corresponding to the target. It can be called more than
3677 once to complete a single execution command. In such cases we need
3678 to keep the state in a global variable ECSS. If it is the last time
3679 that this function is called for a single execution command, then
3680 report to the user that the inferior has stopped, and do the
3681 necessary cleanups. */
3682
3683 void
3684 fetch_inferior_event (void *client_data)
3685 {
3686 struct execution_control_state ecss;
3687 struct execution_control_state *ecs = &ecss;
3688 int cmd_done = 0;
3689 ptid_t waiton_ptid = minus_one_ptid;
3690
3691 memset (ecs, 0, sizeof (*ecs));
3692
3693 /* Events are always processed with the main UI as current UI. This
3694 way, warnings, debug output, etc. are always consistently sent to
3695 the main console. */
3696 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3697
3698 /* End up with readline processing input, if necessary. */
3699 {
3700 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3701
3702 /* We're handling a live event, so make sure we're doing live
3703 debugging. If we're looking at traceframes while the target is
3704 running, we're going to need to get back to that mode after
3705 handling the event. */
3706 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3707 if (non_stop)
3708 {
3709 maybe_restore_traceframe.emplace ();
3710 set_current_traceframe (-1);
3711 }
3712
3713 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3714
3715 if (non_stop)
3716 /* In non-stop mode, the user/frontend should not notice a thread
3717 switch due to internal events. Make sure we reverse to the
3718 user selected thread and frame after handling the event and
3719 running any breakpoint commands. */
3720 maybe_restore_thread.emplace ();
3721
3722 overlay_cache_invalid = 1;
3723 /* Flush target cache before starting to handle each event. Target
3724 was running and cache could be stale. This is just a heuristic.
3725 Running threads may modify target memory, but we don't get any
3726 event. */
3727 target_dcache_invalidate ();
3728
3729 scoped_restore save_exec_dir
3730 = make_scoped_restore (&execution_direction,
3731 target_execution_direction ());
3732
3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3734 target_can_async_p () ? TARGET_WNOHANG : 0);
3735
3736 if (debug_infrun)
3737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3738
3739 /* If an error happens while handling the event, propagate GDB's
3740 knowledge of the executing state to the frontend/user running
3741 state. */
3742 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3743 scoped_finish_thread_state finish_state (finish_ptid);
3744
3745 /* Get executed before scoped_restore_current_thread above to apply
3746 still for the thread which has thrown the exception. */
3747 auto defer_bpstat_clear
3748 = make_scope_exit (bpstat_clear_actions);
3749 auto defer_delete_threads
3750 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3751
3752 /* Now figure out what to do with the result of the result. */
3753 handle_inferior_event (ecs);
3754
3755 if (!ecs->wait_some_more)
3756 {
3757 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3758 int should_stop = 1;
3759 struct thread_info *thr = ecs->event_thread;
3760
3761 delete_just_stopped_threads_infrun_breakpoints ();
3762
3763 if (thr != NULL)
3764 {
3765 struct thread_fsm *thread_fsm = thr->thread_fsm;
3766
3767 if (thread_fsm != NULL)
3768 should_stop = thread_fsm->should_stop (thr);
3769 }
3770
3771 if (!should_stop)
3772 {
3773 keep_going (ecs);
3774 }
3775 else
3776 {
3777 bool should_notify_stop = true;
3778 int proceeded = 0;
3779
3780 clean_up_just_stopped_threads_fsms (ecs);
3781
3782 if (thr != NULL && thr->thread_fsm != NULL)
3783 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3784
3785 if (should_notify_stop)
3786 {
3787 /* We may not find an inferior if this was a process exit. */
3788 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3789 proceeded = normal_stop ();
3790 }
3791
3792 if (!proceeded)
3793 {
3794 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3795 cmd_done = 1;
3796 }
3797 }
3798 }
3799
3800 defer_delete_threads.release ();
3801 defer_bpstat_clear.release ();
3802
3803 /* No error, don't finish the thread states yet. */
3804 finish_state.release ();
3805
3806 /* This scope is used to ensure that readline callbacks are
3807 reinstalled here. */
3808 }
3809
3810 /* If a UI was in sync execution mode, and now isn't, restore its
3811 prompt (a synchronous execution command has finished, and we're
3812 ready for input). */
3813 all_uis_check_sync_execution_done ();
3814
3815 if (cmd_done
3816 && exec_done_display_p
3817 && (inferior_ptid == null_ptid
3818 || inferior_thread ()->state != THREAD_RUNNING))
3819 printf_unfiltered (_("completed.\n"));
3820 }
3821
3822 /* Record the frame and location we're currently stepping through. */
3823 void
3824 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3825 {
3826 struct thread_info *tp = inferior_thread ();
3827
3828 tp->control.step_frame_id = get_frame_id (frame);
3829 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3830
3831 tp->current_symtab = sal.symtab;
3832 tp->current_line = sal.line;
3833 }
3834
3835 /* Clear context switchable stepping state. */
3836
3837 void
3838 init_thread_stepping_state (struct thread_info *tss)
3839 {
3840 tss->stepped_breakpoint = 0;
3841 tss->stepping_over_breakpoint = 0;
3842 tss->stepping_over_watchpoint = 0;
3843 tss->step_after_step_resume_breakpoint = 0;
3844 }
3845
3846 /* Set the cached copy of the last ptid/waitstatus. */
3847
3848 void
3849 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3850 {
3851 target_last_wait_ptid = ptid;
3852 target_last_waitstatus = status;
3853 }
3854
3855 /* Return the cached copy of the last pid/waitstatus returned by
3856 target_wait()/deprecated_target_wait_hook(). The data is actually
3857 cached by handle_inferior_event(), which gets called immediately
3858 after target_wait()/deprecated_target_wait_hook(). */
3859
3860 void
3861 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3862 {
3863 *ptidp = target_last_wait_ptid;
3864 *status = target_last_waitstatus;
3865 }
3866
3867 void
3868 nullify_last_target_wait_ptid (void)
3869 {
3870 target_last_wait_ptid = minus_one_ptid;
3871 }
3872
3873 /* Switch thread contexts. */
3874
3875 static void
3876 context_switch (execution_control_state *ecs)
3877 {
3878 if (debug_infrun
3879 && ecs->ptid != inferior_ptid
3880 && ecs->event_thread != inferior_thread ())
3881 {
3882 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3883 target_pid_to_str (inferior_ptid));
3884 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3885 target_pid_to_str (ecs->ptid));
3886 }
3887
3888 switch_to_thread (ecs->event_thread);
3889 }
3890
3891 /* If the target can't tell whether we've hit breakpoints
3892 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3893 check whether that could have been caused by a breakpoint. If so,
3894 adjust the PC, per gdbarch_decr_pc_after_break. */
3895
3896 static void
3897 adjust_pc_after_break (struct thread_info *thread,
3898 struct target_waitstatus *ws)
3899 {
3900 struct regcache *regcache;
3901 struct gdbarch *gdbarch;
3902 CORE_ADDR breakpoint_pc, decr_pc;
3903
3904 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3905 we aren't, just return.
3906
3907 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3908 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3909 implemented by software breakpoints should be handled through the normal
3910 breakpoint layer.
3911
3912 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3913 different signals (SIGILL or SIGEMT for instance), but it is less
3914 clear where the PC is pointing afterwards. It may not match
3915 gdbarch_decr_pc_after_break. I don't know any specific target that
3916 generates these signals at breakpoints (the code has been in GDB since at
3917 least 1992) so I can not guess how to handle them here.
3918
3919 In earlier versions of GDB, a target with
3920 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3921 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3922 target with both of these set in GDB history, and it seems unlikely to be
3923 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3924
3925 if (ws->kind != TARGET_WAITKIND_STOPPED)
3926 return;
3927
3928 if (ws->value.sig != GDB_SIGNAL_TRAP)
3929 return;
3930
3931 /* In reverse execution, when a breakpoint is hit, the instruction
3932 under it has already been de-executed. The reported PC always
3933 points at the breakpoint address, so adjusting it further would
3934 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3935 architecture:
3936
3937 B1 0x08000000 : INSN1
3938 B2 0x08000001 : INSN2
3939 0x08000002 : INSN3
3940 PC -> 0x08000003 : INSN4
3941
3942 Say you're stopped at 0x08000003 as above. Reverse continuing
3943 from that point should hit B2 as below. Reading the PC when the
3944 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3945 been de-executed already.
3946
3947 B1 0x08000000 : INSN1
3948 B2 PC -> 0x08000001 : INSN2
3949 0x08000002 : INSN3
3950 0x08000003 : INSN4
3951
3952 We can't apply the same logic as for forward execution, because
3953 we would wrongly adjust the PC to 0x08000000, since there's a
3954 breakpoint at PC - 1. We'd then report a hit on B1, although
3955 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3956 behaviour. */
3957 if (execution_direction == EXEC_REVERSE)
3958 return;
3959
3960 /* If the target can tell whether the thread hit a SW breakpoint,
3961 trust it. Targets that can tell also adjust the PC
3962 themselves. */
3963 if (target_supports_stopped_by_sw_breakpoint ())
3964 return;
3965
3966 /* Note that relying on whether a breakpoint is planted in memory to
3967 determine this can fail. E.g,. the breakpoint could have been
3968 removed since. Or the thread could have been told to step an
3969 instruction the size of a breakpoint instruction, and only
3970 _after_ was a breakpoint inserted at its address. */
3971
3972 /* If this target does not decrement the PC after breakpoints, then
3973 we have nothing to do. */
3974 regcache = get_thread_regcache (thread);
3975 gdbarch = regcache->arch ();
3976
3977 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3978 if (decr_pc == 0)
3979 return;
3980
3981 const address_space *aspace = regcache->aspace ();
3982
3983 /* Find the location where (if we've hit a breakpoint) the
3984 breakpoint would be. */
3985 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3986
3987 /* If the target can't tell whether a software breakpoint triggered,
3988 fallback to figuring it out based on breakpoints we think were
3989 inserted in the target, and on whether the thread was stepped or
3990 continued. */
3991
3992 /* Check whether there actually is a software breakpoint inserted at
3993 that location.
3994
3995 If in non-stop mode, a race condition is possible where we've
3996 removed a breakpoint, but stop events for that breakpoint were
3997 already queued and arrive later. To suppress those spurious
3998 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3999 and retire them after a number of stop events are reported. Note
4000 this is an heuristic and can thus get confused. The real fix is
4001 to get the "stopped by SW BP and needs adjustment" info out of
4002 the target/kernel (and thus never reach here; see above). */
4003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4004 || (target_is_non_stop_p ()
4005 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4006 {
4007 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4008
4009 if (record_full_is_used ())
4010 restore_operation_disable.emplace
4011 (record_full_gdb_operation_disable_set ());
4012
4013 /* When using hardware single-step, a SIGTRAP is reported for both
4014 a completed single-step and a software breakpoint. Need to
4015 differentiate between the two, as the latter needs adjusting
4016 but the former does not.
4017
4018 The SIGTRAP can be due to a completed hardware single-step only if
4019 - we didn't insert software single-step breakpoints
4020 - this thread is currently being stepped
4021
4022 If any of these events did not occur, we must have stopped due
4023 to hitting a software breakpoint, and have to back up to the
4024 breakpoint address.
4025
4026 As a special case, we could have hardware single-stepped a
4027 software breakpoint. In this case (prev_pc == breakpoint_pc),
4028 we also need to back up to the breakpoint address. */
4029
4030 if (thread_has_single_step_breakpoints_set (thread)
4031 || !currently_stepping (thread)
4032 || (thread->stepped_breakpoint
4033 && thread->prev_pc == breakpoint_pc))
4034 regcache_write_pc (regcache, breakpoint_pc);
4035 }
4036 }
4037
4038 static int
4039 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4040 {
4041 for (frame = get_prev_frame (frame);
4042 frame != NULL;
4043 frame = get_prev_frame (frame))
4044 {
4045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4046 return 1;
4047 if (get_frame_type (frame) != INLINE_FRAME)
4048 break;
4049 }
4050
4051 return 0;
4052 }
4053
4054 /* If the event thread has the stop requested flag set, pretend it
4055 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4056 target_stop). */
4057
4058 static bool
4059 handle_stop_requested (struct execution_control_state *ecs)
4060 {
4061 if (ecs->event_thread->stop_requested)
4062 {
4063 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4064 ecs->ws.value.sig = GDB_SIGNAL_0;
4065 handle_signal_stop (ecs);
4066 return true;
4067 }
4068 return false;
4069 }
4070
4071 /* Auxiliary function that handles syscall entry/return events.
4072 It returns 1 if the inferior should keep going (and GDB
4073 should ignore the event), or 0 if the event deserves to be
4074 processed. */
4075
4076 static int
4077 handle_syscall_event (struct execution_control_state *ecs)
4078 {
4079 struct regcache *regcache;
4080 int syscall_number;
4081
4082 context_switch (ecs);
4083
4084 regcache = get_thread_regcache (ecs->event_thread);
4085 syscall_number = ecs->ws.value.syscall_number;
4086 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4087
4088 if (catch_syscall_enabled () > 0
4089 && catching_syscall_number (syscall_number) > 0)
4090 {
4091 if (debug_infrun)
4092 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4093 syscall_number);
4094
4095 ecs->event_thread->control.stop_bpstat
4096 = bpstat_stop_status (regcache->aspace (),
4097 ecs->event_thread->suspend.stop_pc,
4098 ecs->event_thread, &ecs->ws);
4099
4100 if (handle_stop_requested (ecs))
4101 return 0;
4102
4103 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4104 {
4105 /* Catchpoint hit. */
4106 return 0;
4107 }
4108 }
4109
4110 if (handle_stop_requested (ecs))
4111 return 0;
4112
4113 /* If no catchpoint triggered for this, then keep going. */
4114 keep_going (ecs);
4115 return 1;
4116 }
4117
4118 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4119
4120 static void
4121 fill_in_stop_func (struct gdbarch *gdbarch,
4122 struct execution_control_state *ecs)
4123 {
4124 if (!ecs->stop_func_filled_in)
4125 {
4126 /* Don't care about return value; stop_func_start and stop_func_name
4127 will both be 0 if it doesn't work. */
4128 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4129 &ecs->stop_func_name,
4130 &ecs->stop_func_start,
4131 &ecs->stop_func_end);
4132 ecs->stop_func_start
4133 += gdbarch_deprecated_function_start_offset (gdbarch);
4134
4135 if (gdbarch_skip_entrypoint_p (gdbarch))
4136 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4137 ecs->stop_func_start);
4138
4139 ecs->stop_func_filled_in = 1;
4140 }
4141 }
4142
4143
4144 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4145
4146 static enum stop_kind
4147 get_inferior_stop_soon (execution_control_state *ecs)
4148 {
4149 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4150
4151 gdb_assert (inf != NULL);
4152 return inf->control.stop_soon;
4153 }
4154
4155 /* Wait for one event. Store the resulting waitstatus in WS, and
4156 return the event ptid. */
4157
4158 static ptid_t
4159 wait_one (struct target_waitstatus *ws)
4160 {
4161 ptid_t event_ptid;
4162 ptid_t wait_ptid = minus_one_ptid;
4163
4164 overlay_cache_invalid = 1;
4165
4166 /* Flush target cache before starting to handle each event.
4167 Target was running and cache could be stale. This is just a
4168 heuristic. Running threads may modify target memory, but we
4169 don't get any event. */
4170 target_dcache_invalidate ();
4171
4172 if (deprecated_target_wait_hook)
4173 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4174 else
4175 event_ptid = target_wait (wait_ptid, ws, 0);
4176
4177 if (debug_infrun)
4178 print_target_wait_results (wait_ptid, event_ptid, ws);
4179
4180 return event_ptid;
4181 }
4182
4183 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4184 instead of the current thread. */
4185 #define THREAD_STOPPED_BY(REASON) \
4186 static int \
4187 thread_stopped_by_ ## REASON (ptid_t ptid) \
4188 { \
4189 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4190 inferior_ptid = ptid; \
4191 \
4192 return target_stopped_by_ ## REASON (); \
4193 }
4194
4195 /* Generate thread_stopped_by_watchpoint. */
4196 THREAD_STOPPED_BY (watchpoint)
4197 /* Generate thread_stopped_by_sw_breakpoint. */
4198 THREAD_STOPPED_BY (sw_breakpoint)
4199 /* Generate thread_stopped_by_hw_breakpoint. */
4200 THREAD_STOPPED_BY (hw_breakpoint)
4201
4202 /* Save the thread's event and stop reason to process it later. */
4203
4204 static void
4205 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4206 {
4207 if (debug_infrun)
4208 {
4209 std::string statstr = target_waitstatus_to_string (ws);
4210
4211 fprintf_unfiltered (gdb_stdlog,
4212 "infrun: saving status %s for %d.%ld.%ld\n",
4213 statstr.c_str (),
4214 tp->ptid.pid (),
4215 tp->ptid.lwp (),
4216 tp->ptid.tid ());
4217 }
4218
4219 /* Record for later. */
4220 tp->suspend.waitstatus = *ws;
4221 tp->suspend.waitstatus_pending_p = 1;
4222
4223 struct regcache *regcache = get_thread_regcache (tp);
4224 const address_space *aspace = regcache->aspace ();
4225
4226 if (ws->kind == TARGET_WAITKIND_STOPPED
4227 && ws->value.sig == GDB_SIGNAL_TRAP)
4228 {
4229 CORE_ADDR pc = regcache_read_pc (regcache);
4230
4231 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4232
4233 if (thread_stopped_by_watchpoint (tp->ptid))
4234 {
4235 tp->suspend.stop_reason
4236 = TARGET_STOPPED_BY_WATCHPOINT;
4237 }
4238 else if (target_supports_stopped_by_sw_breakpoint ()
4239 && thread_stopped_by_sw_breakpoint (tp->ptid))
4240 {
4241 tp->suspend.stop_reason
4242 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4243 }
4244 else if (target_supports_stopped_by_hw_breakpoint ()
4245 && thread_stopped_by_hw_breakpoint (tp->ptid))
4246 {
4247 tp->suspend.stop_reason
4248 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 }
4250 else if (!target_supports_stopped_by_hw_breakpoint ()
4251 && hardware_breakpoint_inserted_here_p (aspace,
4252 pc))
4253 {
4254 tp->suspend.stop_reason
4255 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4256 }
4257 else if (!target_supports_stopped_by_sw_breakpoint ()
4258 && software_breakpoint_inserted_here_p (aspace,
4259 pc))
4260 {
4261 tp->suspend.stop_reason
4262 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4263 }
4264 else if (!thread_has_single_step_breakpoints_set (tp)
4265 && currently_stepping (tp))
4266 {
4267 tp->suspend.stop_reason
4268 = TARGET_STOPPED_BY_SINGLE_STEP;
4269 }
4270 }
4271 }
4272
4273 /* See infrun.h. */
4274
4275 void
4276 stop_all_threads (void)
4277 {
4278 /* We may need multiple passes to discover all threads. */
4279 int pass;
4280 int iterations = 0;
4281
4282 gdb_assert (target_is_non_stop_p ());
4283
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4286
4287 scoped_restore_current_thread restore_thread;
4288
4289 target_thread_events (1);
4290 SCOPE_EXIT { target_thread_events (0); };
4291
4292 /* Request threads to stop, and then wait for the stops. Because
4293 threads we already know about can spawn more threads while we're
4294 trying to stop them, and we only learn about new threads when we
4295 update the thread list, do this in a loop, and keep iterating
4296 until two passes find no threads that need to be stopped. */
4297 for (pass = 0; pass < 2; pass++, iterations++)
4298 {
4299 if (debug_infrun)
4300 fprintf_unfiltered (gdb_stdlog,
4301 "infrun: stop_all_threads, pass=%d, "
4302 "iterations=%d\n", pass, iterations);
4303 while (1)
4304 {
4305 ptid_t event_ptid;
4306 struct target_waitstatus ws;
4307 int need_wait = 0;
4308
4309 update_thread_list ();
4310
4311 /* Go through all threads looking for threads that we need
4312 to tell the target to stop. */
4313 for (thread_info *t : all_non_exited_threads ())
4314 {
4315 if (t->executing)
4316 {
4317 /* If already stopping, don't request a stop again.
4318 We just haven't seen the notification yet. */
4319 if (!t->stop_requested)
4320 {
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: %s executing, "
4324 "need stop\n",
4325 target_pid_to_str (t->ptid));
4326 target_stop (t->ptid);
4327 t->stop_requested = 1;
4328 }
4329 else
4330 {
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: %s executing, "
4334 "already stopping\n",
4335 target_pid_to_str (t->ptid));
4336 }
4337
4338 if (t->stop_requested)
4339 need_wait = 1;
4340 }
4341 else
4342 {
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: %s not executing\n",
4346 target_pid_to_str (t->ptid));
4347
4348 /* The thread may be not executing, but still be
4349 resumed with a pending status to process. */
4350 t->resumed = 0;
4351 }
4352 }
4353
4354 if (!need_wait)
4355 break;
4356
4357 /* If we find new threads on the second iteration, restart
4358 over. We want to see two iterations in a row with all
4359 threads stopped. */
4360 if (pass > 0)
4361 pass = -1;
4362
4363 event_ptid = wait_one (&ws);
4364
4365 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4366 {
4367 /* All resumed threads exited. */
4368 }
4369 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4370 || ws.kind == TARGET_WAITKIND_EXITED
4371 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4372 {
4373 if (debug_infrun)
4374 {
4375 ptid_t ptid = ptid_t (ws.value.integer);
4376
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: %s exited while "
4379 "stopping threads\n",
4380 target_pid_to_str (ptid));
4381 }
4382 }
4383 else
4384 {
4385 thread_info *t = find_thread_ptid (event_ptid);
4386 if (t == NULL)
4387 t = add_thread (event_ptid);
4388
4389 t->stop_requested = 0;
4390 t->executing = 0;
4391 t->resumed = 0;
4392 t->control.may_range_step = 0;
4393
4394 /* This may be the first time we see the inferior report
4395 a stop. */
4396 inferior *inf = find_inferior_ptid (event_ptid);
4397 if (inf->needs_setup)
4398 {
4399 switch_to_thread_no_regs (t);
4400 setup_inferior (0);
4401 }
4402
4403 if (ws.kind == TARGET_WAITKIND_STOPPED
4404 && ws.value.sig == GDB_SIGNAL_0)
4405 {
4406 /* We caught the event that we intended to catch, so
4407 there's no event pending. */
4408 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4409 t->suspend.waitstatus_pending_p = 0;
4410
4411 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4412 {
4413 /* Add it back to the step-over queue. */
4414 if (debug_infrun)
4415 {
4416 fprintf_unfiltered (gdb_stdlog,
4417 "infrun: displaced-step of %s "
4418 "canceled: adding back to the "
4419 "step-over queue\n",
4420 target_pid_to_str (t->ptid));
4421 }
4422 t->control.trap_expected = 0;
4423 thread_step_over_chain_enqueue (t);
4424 }
4425 }
4426 else
4427 {
4428 enum gdb_signal sig;
4429 struct regcache *regcache;
4430
4431 if (debug_infrun)
4432 {
4433 std::string statstr = target_waitstatus_to_string (&ws);
4434
4435 fprintf_unfiltered (gdb_stdlog,
4436 "infrun: target_wait %s, saving "
4437 "status for %d.%ld.%ld\n",
4438 statstr.c_str (),
4439 t->ptid.pid (),
4440 t->ptid.lwp (),
4441 t->ptid.tid ());
4442 }
4443
4444 /* Record for later. */
4445 save_waitstatus (t, &ws);
4446
4447 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4448 ? ws.value.sig : GDB_SIGNAL_0);
4449
4450 if (displaced_step_fixup (t, sig) < 0)
4451 {
4452 /* Add it back to the step-over queue. */
4453 t->control.trap_expected = 0;
4454 thread_step_over_chain_enqueue (t);
4455 }
4456
4457 regcache = get_thread_regcache (t);
4458 t->suspend.stop_pc = regcache_read_pc (regcache);
4459
4460 if (debug_infrun)
4461 {
4462 fprintf_unfiltered (gdb_stdlog,
4463 "infrun: saved stop_pc=%s for %s "
4464 "(currently_stepping=%d)\n",
4465 paddress (target_gdbarch (),
4466 t->suspend.stop_pc),
4467 target_pid_to_str (t->ptid),
4468 currently_stepping (t));
4469 }
4470 }
4471 }
4472 }
4473 }
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4477 }
4478
4479 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4480
4481 static int
4482 handle_no_resumed (struct execution_control_state *ecs)
4483 {
4484 if (target_can_async_p ())
4485 {
4486 struct ui *ui;
4487 int any_sync = 0;
4488
4489 ALL_UIS (ui)
4490 {
4491 if (ui->prompt_state == PROMPT_BLOCKED)
4492 {
4493 any_sync = 1;
4494 break;
4495 }
4496 }
4497 if (!any_sync)
4498 {
4499 /* There were no unwaited-for children left in the target, but,
4500 we're not synchronously waiting for events either. Just
4501 ignore. */
4502
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "infrun: TARGET_WAITKIND_NO_RESUMED "
4506 "(ignoring: bg)\n");
4507 prepare_to_wait (ecs);
4508 return 1;
4509 }
4510 }
4511
4512 /* Otherwise, if we were running a synchronous execution command, we
4513 may need to cancel it and give the user back the terminal.
4514
4515 In non-stop mode, the target can't tell whether we've already
4516 consumed previous stop events, so it can end up sending us a
4517 no-resumed event like so:
4518
4519 #0 - thread 1 is left stopped
4520
4521 #1 - thread 2 is resumed and hits breakpoint
4522 -> TARGET_WAITKIND_STOPPED
4523
4524 #2 - thread 3 is resumed and exits
4525 this is the last resumed thread, so
4526 -> TARGET_WAITKIND_NO_RESUMED
4527
4528 #3 - gdb processes stop for thread 2 and decides to re-resume
4529 it.
4530
4531 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4532 thread 2 is now resumed, so the event should be ignored.
4533
4534 IOW, if the stop for thread 2 doesn't end a foreground command,
4535 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4536 event. But it could be that the event meant that thread 2 itself
4537 (or whatever other thread was the last resumed thread) exited.
4538
4539 To address this we refresh the thread list and check whether we
4540 have resumed threads _now_. In the example above, this removes
4541 thread 3 from the thread list. If thread 2 was re-resumed, we
4542 ignore this event. If we find no thread resumed, then we cancel
4543 the synchronous command show "no unwaited-for " to the user. */
4544 update_thread_list ();
4545
4546 for (thread_info *thread : all_non_exited_threads ())
4547 {
4548 if (thread->executing
4549 || thread->suspend.waitstatus_pending_p)
4550 {
4551 /* There were no unwaited-for children left in the target at
4552 some point, but there are now. Just ignore. */
4553 if (debug_infrun)
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: TARGET_WAITKIND_NO_RESUMED "
4556 "(ignoring: found resumed)\n");
4557 prepare_to_wait (ecs);
4558 return 1;
4559 }
4560 }
4561
4562 /* Note however that we may find no resumed thread because the whole
4563 process exited meanwhile (thus updating the thread list results
4564 in an empty thread list). In this case we know we'll be getting
4565 a process exit event shortly. */
4566 for (inferior *inf : all_inferiors ())
4567 {
4568 if (inf->pid == 0)
4569 continue;
4570
4571 thread_info *thread = any_live_thread_of_inferior (inf);
4572 if (thread == NULL)
4573 {
4574 if (debug_infrun)
4575 fprintf_unfiltered (gdb_stdlog,
4576 "infrun: TARGET_WAITKIND_NO_RESUMED "
4577 "(expect process exit)\n");
4578 prepare_to_wait (ecs);
4579 return 1;
4580 }
4581 }
4582
4583 /* Go ahead and report the event. */
4584 return 0;
4585 }
4586
4587 /* Given an execution control state that has been freshly filled in by
4588 an event from the inferior, figure out what it means and take
4589 appropriate action.
4590
4591 The alternatives are:
4592
4593 1) stop_waiting and return; to really stop and return to the
4594 debugger.
4595
4596 2) keep_going and return; to wait for the next event (set
4597 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4598 once). */
4599
4600 static void
4601 handle_inferior_event_1 (struct execution_control_state *ecs)
4602 {
4603 enum stop_kind stop_soon;
4604
4605 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4606 {
4607 /* We had an event in the inferior, but we are not interested in
4608 handling it at this level. The lower layers have already
4609 done what needs to be done, if anything.
4610
4611 One of the possible circumstances for this is when the
4612 inferior produces output for the console. The inferior has
4613 not stopped, and we are ignoring the event. Another possible
4614 circumstance is any event which the lower level knows will be
4615 reported multiple times without an intervening resume. */
4616 if (debug_infrun)
4617 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4618 prepare_to_wait (ecs);
4619 return;
4620 }
4621
4622 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4623 {
4624 if (debug_infrun)
4625 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4626 prepare_to_wait (ecs);
4627 return;
4628 }
4629
4630 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4631 && handle_no_resumed (ecs))
4632 return;
4633
4634 /* Cache the last pid/waitstatus. */
4635 set_last_target_status (ecs->ptid, ecs->ws);
4636
4637 /* Always clear state belonging to the previous time we stopped. */
4638 stop_stack_dummy = STOP_NONE;
4639
4640 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4641 {
4642 /* No unwaited-for children left. IOW, all resumed children
4643 have exited. */
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4646
4647 stop_print_frame = 0;
4648 stop_waiting (ecs);
4649 return;
4650 }
4651
4652 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4653 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4654 {
4655 ecs->event_thread = find_thread_ptid (ecs->ptid);
4656 /* If it's a new thread, add it to the thread database. */
4657 if (ecs->event_thread == NULL)
4658 ecs->event_thread = add_thread (ecs->ptid);
4659
4660 /* Disable range stepping. If the next step request could use a
4661 range, this will be end up re-enabled then. */
4662 ecs->event_thread->control.may_range_step = 0;
4663 }
4664
4665 /* Dependent on valid ECS->EVENT_THREAD. */
4666 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4667
4668 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4669 reinit_frame_cache ();
4670
4671 breakpoint_retire_moribund ();
4672
4673 /* First, distinguish signals caused by the debugger from signals
4674 that have to do with the program's own actions. Note that
4675 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4676 on the operating system version. Here we detect when a SIGILL or
4677 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4678 something similar for SIGSEGV, since a SIGSEGV will be generated
4679 when we're trying to execute a breakpoint instruction on a
4680 non-executable stack. This happens for call dummy breakpoints
4681 for architectures like SPARC that place call dummies on the
4682 stack. */
4683 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4684 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4685 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4686 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4687 {
4688 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4689
4690 if (breakpoint_inserted_here_p (regcache->aspace (),
4691 regcache_read_pc (regcache)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: Treating signal as SIGTRAP\n");
4696 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4697 }
4698 }
4699
4700 /* Mark the non-executing threads accordingly. In all-stop, all
4701 threads of all processes are stopped when we get any event
4702 reported. In non-stop mode, only the event thread stops. */
4703 {
4704 ptid_t mark_ptid;
4705
4706 if (!target_is_non_stop_p ())
4707 mark_ptid = minus_one_ptid;
4708 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4709 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4710 {
4711 /* If we're handling a process exit in non-stop mode, even
4712 though threads haven't been deleted yet, one would think
4713 that there is nothing to do, as threads of the dead process
4714 will be soon deleted, and threads of any other process were
4715 left running. However, on some targets, threads survive a
4716 process exit event. E.g., for the "checkpoint" command,
4717 when the current checkpoint/fork exits, linux-fork.c
4718 automatically switches to another fork from within
4719 target_mourn_inferior, by associating the same
4720 inferior/thread to another fork. We haven't mourned yet at
4721 this point, but we must mark any threads left in the
4722 process as not-executing so that finish_thread_state marks
4723 them stopped (in the user's perspective) if/when we present
4724 the stop to the user. */
4725 mark_ptid = ptid_t (ecs->ptid.pid ());
4726 }
4727 else
4728 mark_ptid = ecs->ptid;
4729
4730 set_executing (mark_ptid, 0);
4731
4732 /* Likewise the resumed flag. */
4733 set_resumed (mark_ptid, 0);
4734 }
4735
4736 switch (ecs->ws.kind)
4737 {
4738 case TARGET_WAITKIND_LOADED:
4739 if (debug_infrun)
4740 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4741 context_switch (ecs);
4742 /* Ignore gracefully during startup of the inferior, as it might
4743 be the shell which has just loaded some objects, otherwise
4744 add the symbols for the newly loaded objects. Also ignore at
4745 the beginning of an attach or remote session; we will query
4746 the full list of libraries once the connection is
4747 established. */
4748
4749 stop_soon = get_inferior_stop_soon (ecs);
4750 if (stop_soon == NO_STOP_QUIETLY)
4751 {
4752 struct regcache *regcache;
4753
4754 regcache = get_thread_regcache (ecs->event_thread);
4755
4756 handle_solib_event ();
4757
4758 ecs->event_thread->control.stop_bpstat
4759 = bpstat_stop_status (regcache->aspace (),
4760 ecs->event_thread->suspend.stop_pc,
4761 ecs->event_thread, &ecs->ws);
4762
4763 if (handle_stop_requested (ecs))
4764 return;
4765
4766 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4767 {
4768 /* A catchpoint triggered. */
4769 process_event_stop_test (ecs);
4770 return;
4771 }
4772
4773 /* If requested, stop when the dynamic linker notifies
4774 gdb of events. This allows the user to get control
4775 and place breakpoints in initializer routines for
4776 dynamically loaded objects (among other things). */
4777 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4778 if (stop_on_solib_events)
4779 {
4780 /* Make sure we print "Stopped due to solib-event" in
4781 normal_stop. */
4782 stop_print_frame = 1;
4783
4784 stop_waiting (ecs);
4785 return;
4786 }
4787 }
4788
4789 /* If we are skipping through a shell, or through shared library
4790 loading that we aren't interested in, resume the program. If
4791 we're running the program normally, also resume. */
4792 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4793 {
4794 /* Loading of shared libraries might have changed breakpoint
4795 addresses. Make sure new breakpoints are inserted. */
4796 if (stop_soon == NO_STOP_QUIETLY)
4797 insert_breakpoints ();
4798 resume (GDB_SIGNAL_0);
4799 prepare_to_wait (ecs);
4800 return;
4801 }
4802
4803 /* But stop if we're attaching or setting up a remote
4804 connection. */
4805 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4806 || stop_soon == STOP_QUIETLY_REMOTE)
4807 {
4808 if (debug_infrun)
4809 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4810 stop_waiting (ecs);
4811 return;
4812 }
4813
4814 internal_error (__FILE__, __LINE__,
4815 _("unhandled stop_soon: %d"), (int) stop_soon);
4816
4817 case TARGET_WAITKIND_SPURIOUS:
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4820 if (handle_stop_requested (ecs))
4821 return;
4822 context_switch (ecs);
4823 resume (GDB_SIGNAL_0);
4824 prepare_to_wait (ecs);
4825 return;
4826
4827 case TARGET_WAITKIND_THREAD_CREATED:
4828 if (debug_infrun)
4829 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
4830 if (handle_stop_requested (ecs))
4831 return;
4832 context_switch (ecs);
4833 if (!switch_back_to_stepped_thread (ecs))
4834 keep_going (ecs);
4835 return;
4836
4837 case TARGET_WAITKIND_EXITED:
4838 case TARGET_WAITKIND_SIGNALLED:
4839 if (debug_infrun)
4840 {
4841 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4842 fprintf_unfiltered (gdb_stdlog,
4843 "infrun: TARGET_WAITKIND_EXITED\n");
4844 else
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4847 }
4848
4849 inferior_ptid = ecs->ptid;
4850 set_current_inferior (find_inferior_ptid (ecs->ptid));
4851 set_current_program_space (current_inferior ()->pspace);
4852 handle_vfork_child_exec_or_exit (0);
4853 target_terminal::ours (); /* Must do this before mourn anyway. */
4854
4855 /* Clearing any previous state of convenience variables. */
4856 clear_exit_convenience_vars ();
4857
4858 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4859 {
4860 /* Record the exit code in the convenience variable $_exitcode, so
4861 that the user can inspect this again later. */
4862 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4863 (LONGEST) ecs->ws.value.integer);
4864
4865 /* Also record this in the inferior itself. */
4866 current_inferior ()->has_exit_code = 1;
4867 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4868
4869 /* Support the --return-child-result option. */
4870 return_child_result_value = ecs->ws.value.integer;
4871
4872 gdb::observers::exited.notify (ecs->ws.value.integer);
4873 }
4874 else
4875 {
4876 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4877
4878 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4879 {
4880 /* Set the value of the internal variable $_exitsignal,
4881 which holds the signal uncaught by the inferior. */
4882 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4883 gdbarch_gdb_signal_to_target (gdbarch,
4884 ecs->ws.value.sig));
4885 }
4886 else
4887 {
4888 /* We don't have access to the target's method used for
4889 converting between signal numbers (GDB's internal
4890 representation <-> target's representation).
4891 Therefore, we cannot do a good job at displaying this
4892 information to the user. It's better to just warn
4893 her about it (if infrun debugging is enabled), and
4894 give up. */
4895 if (debug_infrun)
4896 fprintf_filtered (gdb_stdlog, _("\
4897 Cannot fill $_exitsignal with the correct signal number.\n"));
4898 }
4899
4900 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4901 }
4902
4903 gdb_flush (gdb_stdout);
4904 target_mourn_inferior (inferior_ptid);
4905 stop_print_frame = 0;
4906 stop_waiting (ecs);
4907 return;
4908
4909 /* The following are the only cases in which we keep going;
4910 the above cases end in a continue or goto. */
4911 case TARGET_WAITKIND_FORKED:
4912 case TARGET_WAITKIND_VFORKED:
4913 if (debug_infrun)
4914 {
4915 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4916 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4917 else
4918 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4919 }
4920
4921 /* Check whether the inferior is displaced stepping. */
4922 {
4923 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4924 struct gdbarch *gdbarch = regcache->arch ();
4925
4926 /* If checking displaced stepping is supported, and thread
4927 ecs->ptid is displaced stepping. */
4928 if (displaced_step_in_progress_thread (ecs->event_thread))
4929 {
4930 struct inferior *parent_inf
4931 = find_inferior_ptid (ecs->ptid);
4932 struct regcache *child_regcache;
4933 CORE_ADDR parent_pc;
4934
4935 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4936 indicating that the displaced stepping of syscall instruction
4937 has been done. Perform cleanup for parent process here. Note
4938 that this operation also cleans up the child process for vfork,
4939 because their pages are shared. */
4940 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4941 /* Start a new step-over in another thread if there's one
4942 that needs it. */
4943 start_step_over ();
4944
4945 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4946 {
4947 struct displaced_step_inferior_state *displaced
4948 = get_displaced_stepping_state (parent_inf);
4949
4950 /* Restore scratch pad for child process. */
4951 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4952 }
4953
4954 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4955 the child's PC is also within the scratchpad. Set the child's PC
4956 to the parent's PC value, which has already been fixed up.
4957 FIXME: we use the parent's aspace here, although we're touching
4958 the child, because the child hasn't been added to the inferior
4959 list yet at this point. */
4960
4961 child_regcache
4962 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4963 gdbarch,
4964 parent_inf->aspace);
4965 /* Read PC value of parent process. */
4966 parent_pc = regcache_read_pc (regcache);
4967
4968 if (debug_displaced)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "displaced: write child pc from %s to %s\n",
4971 paddress (gdbarch,
4972 regcache_read_pc (child_regcache)),
4973 paddress (gdbarch, parent_pc));
4974
4975 regcache_write_pc (child_regcache, parent_pc);
4976 }
4977 }
4978
4979 context_switch (ecs);
4980
4981 /* Immediately detach breakpoints from the child before there's
4982 any chance of letting the user delete breakpoints from the
4983 breakpoint lists. If we don't do this early, it's easy to
4984 leave left over traps in the child, vis: "break foo; catch
4985 fork; c; <fork>; del; c; <child calls foo>". We only follow
4986 the fork on the last `continue', and by that time the
4987 breakpoint at "foo" is long gone from the breakpoint table.
4988 If we vforked, then we don't need to unpatch here, since both
4989 parent and child are sharing the same memory pages; we'll
4990 need to unpatch at follow/detach time instead to be certain
4991 that new breakpoints added between catchpoint hit time and
4992 vfork follow are detached. */
4993 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4994 {
4995 /* This won't actually modify the breakpoint list, but will
4996 physically remove the breakpoints from the child. */
4997 detach_breakpoints (ecs->ws.value.related_pid);
4998 }
4999
5000 delete_just_stopped_threads_single_step_breakpoints ();
5001
5002 /* In case the event is caught by a catchpoint, remember that
5003 the event is to be followed at the next resume of the thread,
5004 and not immediately. */
5005 ecs->event_thread->pending_follow = ecs->ws;
5006
5007 ecs->event_thread->suspend.stop_pc
5008 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5009
5010 ecs->event_thread->control.stop_bpstat
5011 = bpstat_stop_status (get_current_regcache ()->aspace (),
5012 ecs->event_thread->suspend.stop_pc,
5013 ecs->event_thread, &ecs->ws);
5014
5015 if (handle_stop_requested (ecs))
5016 return;
5017
5018 /* If no catchpoint triggered for this, then keep going. Note
5019 that we're interested in knowing the bpstat actually causes a
5020 stop, not just if it may explain the signal. Software
5021 watchpoints, for example, always appear in the bpstat. */
5022 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5023 {
5024 int should_resume;
5025 int follow_child
5026 = (follow_fork_mode_string == follow_fork_mode_child);
5027
5028 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5029
5030 should_resume = follow_fork ();
5031
5032 thread_info *parent = ecs->event_thread;
5033 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5034
5035 /* At this point, the parent is marked running, and the
5036 child is marked stopped. */
5037
5038 /* If not resuming the parent, mark it stopped. */
5039 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5040 parent->set_running (false);
5041
5042 /* If resuming the child, mark it running. */
5043 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5044 child->set_running (true);
5045
5046 /* In non-stop mode, also resume the other branch. */
5047 if (!detach_fork && (non_stop
5048 || (sched_multi && target_is_non_stop_p ())))
5049 {
5050 if (follow_child)
5051 switch_to_thread (parent);
5052 else
5053 switch_to_thread (child);
5054
5055 ecs->event_thread = inferior_thread ();
5056 ecs->ptid = inferior_ptid;
5057 keep_going (ecs);
5058 }
5059
5060 if (follow_child)
5061 switch_to_thread (child);
5062 else
5063 switch_to_thread (parent);
5064
5065 ecs->event_thread = inferior_thread ();
5066 ecs->ptid = inferior_ptid;
5067
5068 if (should_resume)
5069 keep_going (ecs);
5070 else
5071 stop_waiting (ecs);
5072 return;
5073 }
5074 process_event_stop_test (ecs);
5075 return;
5076
5077 case TARGET_WAITKIND_VFORK_DONE:
5078 /* Done with the shared memory region. Re-insert breakpoints in
5079 the parent, and keep going. */
5080
5081 if (debug_infrun)
5082 fprintf_unfiltered (gdb_stdlog,
5083 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5084
5085 context_switch (ecs);
5086
5087 current_inferior ()->waiting_for_vfork_done = 0;
5088 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5089
5090 if (handle_stop_requested (ecs))
5091 return;
5092
5093 /* This also takes care of reinserting breakpoints in the
5094 previously locked inferior. */
5095 keep_going (ecs);
5096 return;
5097
5098 case TARGET_WAITKIND_EXECD:
5099 if (debug_infrun)
5100 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5101
5102 /* Note we can't read registers yet (the stop_pc), because we
5103 don't yet know the inferior's post-exec architecture.
5104 'stop_pc' is explicitly read below instead. */
5105 switch_to_thread_no_regs (ecs->event_thread);
5106
5107 /* Do whatever is necessary to the parent branch of the vfork. */
5108 handle_vfork_child_exec_or_exit (1);
5109
5110 /* This causes the eventpoints and symbol table to be reset.
5111 Must do this now, before trying to determine whether to
5112 stop. */
5113 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5114
5115 /* In follow_exec we may have deleted the original thread and
5116 created a new one. Make sure that the event thread is the
5117 execd thread for that case (this is a nop otherwise). */
5118 ecs->event_thread = inferior_thread ();
5119
5120 ecs->event_thread->suspend.stop_pc
5121 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5122
5123 ecs->event_thread->control.stop_bpstat
5124 = bpstat_stop_status (get_current_regcache ()->aspace (),
5125 ecs->event_thread->suspend.stop_pc,
5126 ecs->event_thread, &ecs->ws);
5127
5128 /* Note that this may be referenced from inside
5129 bpstat_stop_status above, through inferior_has_execd. */
5130 xfree (ecs->ws.value.execd_pathname);
5131 ecs->ws.value.execd_pathname = NULL;
5132
5133 if (handle_stop_requested (ecs))
5134 return;
5135
5136 /* If no catchpoint triggered for this, then keep going. */
5137 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5138 {
5139 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5140 keep_going (ecs);
5141 return;
5142 }
5143 process_event_stop_test (ecs);
5144 return;
5145
5146 /* Be careful not to try to gather much state about a thread
5147 that's in a syscall. It's frequently a losing proposition. */
5148 case TARGET_WAITKIND_SYSCALL_ENTRY:
5149 if (debug_infrun)
5150 fprintf_unfiltered (gdb_stdlog,
5151 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5152 /* Getting the current syscall number. */
5153 if (handle_syscall_event (ecs) == 0)
5154 process_event_stop_test (ecs);
5155 return;
5156
5157 /* Before examining the threads further, step this thread to
5158 get it entirely out of the syscall. (We get notice of the
5159 event when the thread is just on the verge of exiting a
5160 syscall. Stepping one instruction seems to get it back
5161 into user code.) */
5162 case TARGET_WAITKIND_SYSCALL_RETURN:
5163 if (debug_infrun)
5164 fprintf_unfiltered (gdb_stdlog,
5165 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5166 if (handle_syscall_event (ecs) == 0)
5167 process_event_stop_test (ecs);
5168 return;
5169
5170 case TARGET_WAITKIND_STOPPED:
5171 if (debug_infrun)
5172 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5173 handle_signal_stop (ecs);
5174 return;
5175
5176 case TARGET_WAITKIND_NO_HISTORY:
5177 if (debug_infrun)
5178 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5179 /* Reverse execution: target ran out of history info. */
5180
5181 /* Switch to the stopped thread. */
5182 context_switch (ecs);
5183 if (debug_infrun)
5184 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5185
5186 delete_just_stopped_threads_single_step_breakpoints ();
5187 ecs->event_thread->suspend.stop_pc
5188 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5189
5190 if (handle_stop_requested (ecs))
5191 return;
5192
5193 gdb::observers::no_history.notify ();
5194 stop_waiting (ecs);
5195 return;
5196 }
5197 }
5198
5199 /* A wrapper around handle_inferior_event_1, which also makes sure
5200 that all temporary struct value objects that were created during
5201 the handling of the event get deleted at the end. */
5202
5203 static void
5204 handle_inferior_event (struct execution_control_state *ecs)
5205 {
5206 struct value *mark = value_mark ();
5207
5208 handle_inferior_event_1 (ecs);
5209 /* Purge all temporary values created during the event handling,
5210 as it could be a long time before we return to the command level
5211 where such values would otherwise be purged. */
5212 value_free_to_mark (mark);
5213 }
5214
5215 /* Restart threads back to what they were trying to do back when we
5216 paused them for an in-line step-over. The EVENT_THREAD thread is
5217 ignored. */
5218
5219 static void
5220 restart_threads (struct thread_info *event_thread)
5221 {
5222 /* In case the instruction just stepped spawned a new thread. */
5223 update_thread_list ();
5224
5225 for (thread_info *tp : all_non_exited_threads ())
5226 {
5227 if (tp == event_thread)
5228 {
5229 if (debug_infrun)
5230 fprintf_unfiltered (gdb_stdlog,
5231 "infrun: restart threads: "
5232 "[%s] is event thread\n",
5233 target_pid_to_str (tp->ptid));
5234 continue;
5235 }
5236
5237 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: "
5242 "[%s] not meant to be running\n",
5243 target_pid_to_str (tp->ptid));
5244 continue;
5245 }
5246
5247 if (tp->resumed)
5248 {
5249 if (debug_infrun)
5250 fprintf_unfiltered (gdb_stdlog,
5251 "infrun: restart threads: [%s] resumed\n",
5252 target_pid_to_str (tp->ptid));
5253 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5254 continue;
5255 }
5256
5257 if (thread_is_in_step_over_chain (tp))
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: restart threads: "
5262 "[%s] needs step-over\n",
5263 target_pid_to_str (tp->ptid));
5264 gdb_assert (!tp->resumed);
5265 continue;
5266 }
5267
5268
5269 if (tp->suspend.waitstatus_pending_p)
5270 {
5271 if (debug_infrun)
5272 fprintf_unfiltered (gdb_stdlog,
5273 "infrun: restart threads: "
5274 "[%s] has pending status\n",
5275 target_pid_to_str (tp->ptid));
5276 tp->resumed = 1;
5277 continue;
5278 }
5279
5280 gdb_assert (!tp->stop_requested);
5281
5282 /* If some thread needs to start a step-over at this point, it
5283 should still be in the step-over queue, and thus skipped
5284 above. */
5285 if (thread_still_needs_step_over (tp))
5286 {
5287 internal_error (__FILE__, __LINE__,
5288 "thread [%s] needs a step-over, but not in "
5289 "step-over queue\n",
5290 target_pid_to_str (tp->ptid));
5291 }
5292
5293 if (currently_stepping (tp))
5294 {
5295 if (debug_infrun)
5296 fprintf_unfiltered (gdb_stdlog,
5297 "infrun: restart threads: [%s] was stepping\n",
5298 target_pid_to_str (tp->ptid));
5299 keep_going_stepped_thread (tp);
5300 }
5301 else
5302 {
5303 struct execution_control_state ecss;
5304 struct execution_control_state *ecs = &ecss;
5305
5306 if (debug_infrun)
5307 fprintf_unfiltered (gdb_stdlog,
5308 "infrun: restart threads: [%s] continuing\n",
5309 target_pid_to_str (tp->ptid));
5310 reset_ecs (ecs, tp);
5311 switch_to_thread (tp);
5312 keep_going_pass_signal (ecs);
5313 }
5314 }
5315 }
5316
5317 /* Callback for iterate_over_threads. Find a resumed thread that has
5318 a pending waitstatus. */
5319
5320 static int
5321 resumed_thread_with_pending_status (struct thread_info *tp,
5322 void *arg)
5323 {
5324 return (tp->resumed
5325 && tp->suspend.waitstatus_pending_p);
5326 }
5327
5328 /* Called when we get an event that may finish an in-line or
5329 out-of-line (displaced stepping) step-over started previously.
5330 Return true if the event is processed and we should go back to the
5331 event loop; false if the caller should continue processing the
5332 event. */
5333
5334 static int
5335 finish_step_over (struct execution_control_state *ecs)
5336 {
5337 int had_step_over_info;
5338
5339 displaced_step_fixup (ecs->event_thread,
5340 ecs->event_thread->suspend.stop_signal);
5341
5342 had_step_over_info = step_over_info_valid_p ();
5343
5344 if (had_step_over_info)
5345 {
5346 /* If we're stepping over a breakpoint with all threads locked,
5347 then only the thread that was stepped should be reporting
5348 back an event. */
5349 gdb_assert (ecs->event_thread->control.trap_expected);
5350
5351 clear_step_over_info ();
5352 }
5353
5354 if (!target_is_non_stop_p ())
5355 return 0;
5356
5357 /* Start a new step-over in another thread if there's one that
5358 needs it. */
5359 start_step_over ();
5360
5361 /* If we were stepping over a breakpoint before, and haven't started
5362 a new in-line step-over sequence, then restart all other threads
5363 (except the event thread). We can't do this in all-stop, as then
5364 e.g., we wouldn't be able to issue any other remote packet until
5365 these other threads stop. */
5366 if (had_step_over_info && !step_over_info_valid_p ())
5367 {
5368 struct thread_info *pending;
5369
5370 /* If we only have threads with pending statuses, the restart
5371 below won't restart any thread and so nothing re-inserts the
5372 breakpoint we just stepped over. But we need it inserted
5373 when we later process the pending events, otherwise if
5374 another thread has a pending event for this breakpoint too,
5375 we'd discard its event (because the breakpoint that
5376 originally caused the event was no longer inserted). */
5377 context_switch (ecs);
5378 insert_breakpoints ();
5379
5380 restart_threads (ecs->event_thread);
5381
5382 /* If we have events pending, go through handle_inferior_event
5383 again, picking up a pending event at random. This avoids
5384 thread starvation. */
5385
5386 /* But not if we just stepped over a watchpoint in order to let
5387 the instruction execute so we can evaluate its expression.
5388 The set of watchpoints that triggered is recorded in the
5389 breakpoint objects themselves (see bp->watchpoint_triggered).
5390 If we processed another event first, that other event could
5391 clobber this info. */
5392 if (ecs->event_thread->stepping_over_watchpoint)
5393 return 0;
5394
5395 pending = iterate_over_threads (resumed_thread_with_pending_status,
5396 NULL);
5397 if (pending != NULL)
5398 {
5399 struct thread_info *tp = ecs->event_thread;
5400 struct regcache *regcache;
5401
5402 if (debug_infrun)
5403 {
5404 fprintf_unfiltered (gdb_stdlog,
5405 "infrun: found resumed threads with "
5406 "pending events, saving status\n");
5407 }
5408
5409 gdb_assert (pending != tp);
5410
5411 /* Record the event thread's event for later. */
5412 save_waitstatus (tp, &ecs->ws);
5413 /* This was cleared early, by handle_inferior_event. Set it
5414 so this pending event is considered by
5415 do_target_wait. */
5416 tp->resumed = 1;
5417
5418 gdb_assert (!tp->executing);
5419
5420 regcache = get_thread_regcache (tp);
5421 tp->suspend.stop_pc = regcache_read_pc (regcache);
5422
5423 if (debug_infrun)
5424 {
5425 fprintf_unfiltered (gdb_stdlog,
5426 "infrun: saved stop_pc=%s for %s "
5427 "(currently_stepping=%d)\n",
5428 paddress (target_gdbarch (),
5429 tp->suspend.stop_pc),
5430 target_pid_to_str (tp->ptid),
5431 currently_stepping (tp));
5432 }
5433
5434 /* This in-line step-over finished; clear this so we won't
5435 start a new one. This is what handle_signal_stop would
5436 do, if we returned false. */
5437 tp->stepping_over_breakpoint = 0;
5438
5439 /* Wake up the event loop again. */
5440 mark_async_event_handler (infrun_async_inferior_event_token);
5441
5442 prepare_to_wait (ecs);
5443 return 1;
5444 }
5445 }
5446
5447 return 0;
5448 }
5449
5450 /* Come here when the program has stopped with a signal. */
5451
5452 static void
5453 handle_signal_stop (struct execution_control_state *ecs)
5454 {
5455 struct frame_info *frame;
5456 struct gdbarch *gdbarch;
5457 int stopped_by_watchpoint;
5458 enum stop_kind stop_soon;
5459 int random_signal;
5460
5461 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5462
5463 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5464
5465 /* Do we need to clean up the state of a thread that has
5466 completed a displaced single-step? (Doing so usually affects
5467 the PC, so do it here, before we set stop_pc.) */
5468 if (finish_step_over (ecs))
5469 return;
5470
5471 /* If we either finished a single-step or hit a breakpoint, but
5472 the user wanted this thread to be stopped, pretend we got a
5473 SIG0 (generic unsignaled stop). */
5474 if (ecs->event_thread->stop_requested
5475 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5476 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5477
5478 ecs->event_thread->suspend.stop_pc
5479 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5480
5481 if (debug_infrun)
5482 {
5483 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5484 struct gdbarch *reg_gdbarch = regcache->arch ();
5485 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5486
5487 inferior_ptid = ecs->ptid;
5488
5489 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5490 paddress (reg_gdbarch,
5491 ecs->event_thread->suspend.stop_pc));
5492 if (target_stopped_by_watchpoint ())
5493 {
5494 CORE_ADDR addr;
5495
5496 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5497
5498 if (target_stopped_data_address (current_top_target (), &addr))
5499 fprintf_unfiltered (gdb_stdlog,
5500 "infrun: stopped data address = %s\n",
5501 paddress (reg_gdbarch, addr));
5502 else
5503 fprintf_unfiltered (gdb_stdlog,
5504 "infrun: (no data address available)\n");
5505 }
5506 }
5507
5508 /* This is originated from start_remote(), start_inferior() and
5509 shared libraries hook functions. */
5510 stop_soon = get_inferior_stop_soon (ecs);
5511 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5512 {
5513 context_switch (ecs);
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5516 stop_print_frame = 1;
5517 stop_waiting (ecs);
5518 return;
5519 }
5520
5521 /* This originates from attach_command(). We need to overwrite
5522 the stop_signal here, because some kernels don't ignore a
5523 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5524 See more comments in inferior.h. On the other hand, if we
5525 get a non-SIGSTOP, report it to the user - assume the backend
5526 will handle the SIGSTOP if it should show up later.
5527
5528 Also consider that the attach is complete when we see a
5529 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5530 target extended-remote report it instead of a SIGSTOP
5531 (e.g. gdbserver). We already rely on SIGTRAP being our
5532 signal, so this is no exception.
5533
5534 Also consider that the attach is complete when we see a
5535 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5536 the target to stop all threads of the inferior, in case the
5537 low level attach operation doesn't stop them implicitly. If
5538 they weren't stopped implicitly, then the stub will report a
5539 GDB_SIGNAL_0, meaning: stopped for no particular reason
5540 other than GDB's request. */
5541 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5542 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5543 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5544 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5545 {
5546 stop_print_frame = 1;
5547 stop_waiting (ecs);
5548 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5549 return;
5550 }
5551
5552 /* See if something interesting happened to the non-current thread. If
5553 so, then switch to that thread. */
5554 if (ecs->ptid != inferior_ptid)
5555 {
5556 if (debug_infrun)
5557 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5558
5559 context_switch (ecs);
5560
5561 if (deprecated_context_hook)
5562 deprecated_context_hook (ecs->event_thread->global_num);
5563 }
5564
5565 /* At this point, get hold of the now-current thread's frame. */
5566 frame = get_current_frame ();
5567 gdbarch = get_frame_arch (frame);
5568
5569 /* Pull the single step breakpoints out of the target. */
5570 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5571 {
5572 struct regcache *regcache;
5573 CORE_ADDR pc;
5574
5575 regcache = get_thread_regcache (ecs->event_thread);
5576 const address_space *aspace = regcache->aspace ();
5577
5578 pc = regcache_read_pc (regcache);
5579
5580 /* However, before doing so, if this single-step breakpoint was
5581 actually for another thread, set this thread up for moving
5582 past it. */
5583 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5584 aspace, pc))
5585 {
5586 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5587 {
5588 if (debug_infrun)
5589 {
5590 fprintf_unfiltered (gdb_stdlog,
5591 "infrun: [%s] hit another thread's "
5592 "single-step breakpoint\n",
5593 target_pid_to_str (ecs->ptid));
5594 }
5595 ecs->hit_singlestep_breakpoint = 1;
5596 }
5597 }
5598 else
5599 {
5600 if (debug_infrun)
5601 {
5602 fprintf_unfiltered (gdb_stdlog,
5603 "infrun: [%s] hit its "
5604 "single-step breakpoint\n",
5605 target_pid_to_str (ecs->ptid));
5606 }
5607 }
5608 }
5609 delete_just_stopped_threads_single_step_breakpoints ();
5610
5611 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5612 && ecs->event_thread->control.trap_expected
5613 && ecs->event_thread->stepping_over_watchpoint)
5614 stopped_by_watchpoint = 0;
5615 else
5616 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5617
5618 /* If necessary, step over this watchpoint. We'll be back to display
5619 it in a moment. */
5620 if (stopped_by_watchpoint
5621 && (target_have_steppable_watchpoint
5622 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5623 {
5624 /* At this point, we are stopped at an instruction which has
5625 attempted to write to a piece of memory under control of
5626 a watchpoint. The instruction hasn't actually executed
5627 yet. If we were to evaluate the watchpoint expression
5628 now, we would get the old value, and therefore no change
5629 would seem to have occurred.
5630
5631 In order to make watchpoints work `right', we really need
5632 to complete the memory write, and then evaluate the
5633 watchpoint expression. We do this by single-stepping the
5634 target.
5635
5636 It may not be necessary to disable the watchpoint to step over
5637 it. For example, the PA can (with some kernel cooperation)
5638 single step over a watchpoint without disabling the watchpoint.
5639
5640 It is far more common to need to disable a watchpoint to step
5641 the inferior over it. If we have non-steppable watchpoints,
5642 we must disable the current watchpoint; it's simplest to
5643 disable all watchpoints.
5644
5645 Any breakpoint at PC must also be stepped over -- if there's
5646 one, it will have already triggered before the watchpoint
5647 triggered, and we either already reported it to the user, or
5648 it didn't cause a stop and we called keep_going. In either
5649 case, if there was a breakpoint at PC, we must be trying to
5650 step past it. */
5651 ecs->event_thread->stepping_over_watchpoint = 1;
5652 keep_going (ecs);
5653 return;
5654 }
5655
5656 ecs->event_thread->stepping_over_breakpoint = 0;
5657 ecs->event_thread->stepping_over_watchpoint = 0;
5658 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5659 ecs->event_thread->control.stop_step = 0;
5660 stop_print_frame = 1;
5661 stopped_by_random_signal = 0;
5662 bpstat stop_chain = NULL;
5663
5664 /* Hide inlined functions starting here, unless we just performed stepi or
5665 nexti. After stepi and nexti, always show the innermost frame (not any
5666 inline function call sites). */
5667 if (ecs->event_thread->control.step_range_end != 1)
5668 {
5669 const address_space *aspace
5670 = get_thread_regcache (ecs->event_thread)->aspace ();
5671
5672 /* skip_inline_frames is expensive, so we avoid it if we can
5673 determine that the address is one where functions cannot have
5674 been inlined. This improves performance with inferiors that
5675 load a lot of shared libraries, because the solib event
5676 breakpoint is defined as the address of a function (i.e. not
5677 inline). Note that we have to check the previous PC as well
5678 as the current one to catch cases when we have just
5679 single-stepped off a breakpoint prior to reinstating it.
5680 Note that we're assuming that the code we single-step to is
5681 not inline, but that's not definitive: there's nothing
5682 preventing the event breakpoint function from containing
5683 inlined code, and the single-step ending up there. If the
5684 user had set a breakpoint on that inlined code, the missing
5685 skip_inline_frames call would break things. Fortunately
5686 that's an extremely unlikely scenario. */
5687 if (!pc_at_non_inline_function (aspace,
5688 ecs->event_thread->suspend.stop_pc,
5689 &ecs->ws)
5690 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5691 && ecs->event_thread->control.trap_expected
5692 && pc_at_non_inline_function (aspace,
5693 ecs->event_thread->prev_pc,
5694 &ecs->ws)))
5695 {
5696 stop_chain = build_bpstat_chain (aspace,
5697 ecs->event_thread->suspend.stop_pc,
5698 &ecs->ws);
5699 skip_inline_frames (ecs->event_thread, stop_chain);
5700
5701 /* Re-fetch current thread's frame in case that invalidated
5702 the frame cache. */
5703 frame = get_current_frame ();
5704 gdbarch = get_frame_arch (frame);
5705 }
5706 }
5707
5708 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5709 && ecs->event_thread->control.trap_expected
5710 && gdbarch_single_step_through_delay_p (gdbarch)
5711 && currently_stepping (ecs->event_thread))
5712 {
5713 /* We're trying to step off a breakpoint. Turns out that we're
5714 also on an instruction that needs to be stepped multiple
5715 times before it's been fully executing. E.g., architectures
5716 with a delay slot. It needs to be stepped twice, once for
5717 the instruction and once for the delay slot. */
5718 int step_through_delay
5719 = gdbarch_single_step_through_delay (gdbarch, frame);
5720
5721 if (debug_infrun && step_through_delay)
5722 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5723 if (ecs->event_thread->control.step_range_end == 0
5724 && step_through_delay)
5725 {
5726 /* The user issued a continue when stopped at a breakpoint.
5727 Set up for another trap and get out of here. */
5728 ecs->event_thread->stepping_over_breakpoint = 1;
5729 keep_going (ecs);
5730 return;
5731 }
5732 else if (step_through_delay)
5733 {
5734 /* The user issued a step when stopped at a breakpoint.
5735 Maybe we should stop, maybe we should not - the delay
5736 slot *might* correspond to a line of source. In any
5737 case, don't decide that here, just set
5738 ecs->stepping_over_breakpoint, making sure we
5739 single-step again before breakpoints are re-inserted. */
5740 ecs->event_thread->stepping_over_breakpoint = 1;
5741 }
5742 }
5743
5744 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5745 handles this event. */
5746 ecs->event_thread->control.stop_bpstat
5747 = bpstat_stop_status (get_current_regcache ()->aspace (),
5748 ecs->event_thread->suspend.stop_pc,
5749 ecs->event_thread, &ecs->ws, stop_chain);
5750
5751 /* Following in case break condition called a
5752 function. */
5753 stop_print_frame = 1;
5754
5755 /* This is where we handle "moribund" watchpoints. Unlike
5756 software breakpoints traps, hardware watchpoint traps are
5757 always distinguishable from random traps. If no high-level
5758 watchpoint is associated with the reported stop data address
5759 anymore, then the bpstat does not explain the signal ---
5760 simply make sure to ignore it if `stopped_by_watchpoint' is
5761 set. */
5762
5763 if (debug_infrun
5764 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5765 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5766 GDB_SIGNAL_TRAP)
5767 && stopped_by_watchpoint)
5768 fprintf_unfiltered (gdb_stdlog,
5769 "infrun: no user watchpoint explains "
5770 "watchpoint SIGTRAP, ignoring\n");
5771
5772 /* NOTE: cagney/2003-03-29: These checks for a random signal
5773 at one stage in the past included checks for an inferior
5774 function call's call dummy's return breakpoint. The original
5775 comment, that went with the test, read:
5776
5777 ``End of a stack dummy. Some systems (e.g. Sony news) give
5778 another signal besides SIGTRAP, so check here as well as
5779 above.''
5780
5781 If someone ever tries to get call dummys on a
5782 non-executable stack to work (where the target would stop
5783 with something like a SIGSEGV), then those tests might need
5784 to be re-instated. Given, however, that the tests were only
5785 enabled when momentary breakpoints were not being used, I
5786 suspect that it won't be the case.
5787
5788 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5789 be necessary for call dummies on a non-executable stack on
5790 SPARC. */
5791
5792 /* See if the breakpoints module can explain the signal. */
5793 random_signal
5794 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5795 ecs->event_thread->suspend.stop_signal);
5796
5797 /* Maybe this was a trap for a software breakpoint that has since
5798 been removed. */
5799 if (random_signal && target_stopped_by_sw_breakpoint ())
5800 {
5801 if (program_breakpoint_here_p (gdbarch,
5802 ecs->event_thread->suspend.stop_pc))
5803 {
5804 struct regcache *regcache;
5805 int decr_pc;
5806
5807 /* Re-adjust PC to what the program would see if GDB was not
5808 debugging it. */
5809 regcache = get_thread_regcache (ecs->event_thread);
5810 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5811 if (decr_pc != 0)
5812 {
5813 gdb::optional<scoped_restore_tmpl<int>>
5814 restore_operation_disable;
5815
5816 if (record_full_is_used ())
5817 restore_operation_disable.emplace
5818 (record_full_gdb_operation_disable_set ());
5819
5820 regcache_write_pc (regcache,
5821 ecs->event_thread->suspend.stop_pc + decr_pc);
5822 }
5823 }
5824 else
5825 {
5826 /* A delayed software breakpoint event. Ignore the trap. */
5827 if (debug_infrun)
5828 fprintf_unfiltered (gdb_stdlog,
5829 "infrun: delayed software breakpoint "
5830 "trap, ignoring\n");
5831 random_signal = 0;
5832 }
5833 }
5834
5835 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5836 has since been removed. */
5837 if (random_signal && target_stopped_by_hw_breakpoint ())
5838 {
5839 /* A delayed hardware breakpoint event. Ignore the trap. */
5840 if (debug_infrun)
5841 fprintf_unfiltered (gdb_stdlog,
5842 "infrun: delayed hardware breakpoint/watchpoint "
5843 "trap, ignoring\n");
5844 random_signal = 0;
5845 }
5846
5847 /* If not, perhaps stepping/nexting can. */
5848 if (random_signal)
5849 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5850 && currently_stepping (ecs->event_thread));
5851
5852 /* Perhaps the thread hit a single-step breakpoint of _another_
5853 thread. Single-step breakpoints are transparent to the
5854 breakpoints module. */
5855 if (random_signal)
5856 random_signal = !ecs->hit_singlestep_breakpoint;
5857
5858 /* No? Perhaps we got a moribund watchpoint. */
5859 if (random_signal)
5860 random_signal = !stopped_by_watchpoint;
5861
5862 /* Always stop if the user explicitly requested this thread to
5863 remain stopped. */
5864 if (ecs->event_thread->stop_requested)
5865 {
5866 random_signal = 1;
5867 if (debug_infrun)
5868 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5869 }
5870
5871 /* For the program's own signals, act according to
5872 the signal handling tables. */
5873
5874 if (random_signal)
5875 {
5876 /* Signal not for debugging purposes. */
5877 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5878 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5879
5880 if (debug_infrun)
5881 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5882 gdb_signal_to_symbol_string (stop_signal));
5883
5884 stopped_by_random_signal = 1;
5885
5886 /* Always stop on signals if we're either just gaining control
5887 of the program, or the user explicitly requested this thread
5888 to remain stopped. */
5889 if (stop_soon != NO_STOP_QUIETLY
5890 || ecs->event_thread->stop_requested
5891 || (!inf->detaching
5892 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5893 {
5894 stop_waiting (ecs);
5895 return;
5896 }
5897
5898 /* Notify observers the signal has "handle print" set. Note we
5899 returned early above if stopping; normal_stop handles the
5900 printing in that case. */
5901 if (signal_print[ecs->event_thread->suspend.stop_signal])
5902 {
5903 /* The signal table tells us to print about this signal. */
5904 target_terminal::ours_for_output ();
5905 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5906 target_terminal::inferior ();
5907 }
5908
5909 /* Clear the signal if it should not be passed. */
5910 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5911 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5912
5913 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5914 && ecs->event_thread->control.trap_expected
5915 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5916 {
5917 /* We were just starting a new sequence, attempting to
5918 single-step off of a breakpoint and expecting a SIGTRAP.
5919 Instead this signal arrives. This signal will take us out
5920 of the stepping range so GDB needs to remember to, when
5921 the signal handler returns, resume stepping off that
5922 breakpoint. */
5923 /* To simplify things, "continue" is forced to use the same
5924 code paths as single-step - set a breakpoint at the
5925 signal return address and then, once hit, step off that
5926 breakpoint. */
5927 if (debug_infrun)
5928 fprintf_unfiltered (gdb_stdlog,
5929 "infrun: signal arrived while stepping over "
5930 "breakpoint\n");
5931
5932 insert_hp_step_resume_breakpoint_at_frame (frame);
5933 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5934 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5935 ecs->event_thread->control.trap_expected = 0;
5936
5937 /* If we were nexting/stepping some other thread, switch to
5938 it, so that we don't continue it, losing control. */
5939 if (!switch_back_to_stepped_thread (ecs))
5940 keep_going (ecs);
5941 return;
5942 }
5943
5944 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5945 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5946 ecs->event_thread)
5947 || ecs->event_thread->control.step_range_end == 1)
5948 && frame_id_eq (get_stack_frame_id (frame),
5949 ecs->event_thread->control.step_stack_frame_id)
5950 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5951 {
5952 /* The inferior is about to take a signal that will take it
5953 out of the single step range. Set a breakpoint at the
5954 current PC (which is presumably where the signal handler
5955 will eventually return) and then allow the inferior to
5956 run free.
5957
5958 Note that this is only needed for a signal delivered
5959 while in the single-step range. Nested signals aren't a
5960 problem as they eventually all return. */
5961 if (debug_infrun)
5962 fprintf_unfiltered (gdb_stdlog,
5963 "infrun: signal may take us out of "
5964 "single-step range\n");
5965
5966 clear_step_over_info ();
5967 insert_hp_step_resume_breakpoint_at_frame (frame);
5968 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5969 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5970 ecs->event_thread->control.trap_expected = 0;
5971 keep_going (ecs);
5972 return;
5973 }
5974
5975 /* Note: step_resume_breakpoint may be non-NULL. This occures
5976 when either there's a nested signal, or when there's a
5977 pending signal enabled just as the signal handler returns
5978 (leaving the inferior at the step-resume-breakpoint without
5979 actually executing it). Either way continue until the
5980 breakpoint is really hit. */
5981
5982 if (!switch_back_to_stepped_thread (ecs))
5983 {
5984 if (debug_infrun)
5985 fprintf_unfiltered (gdb_stdlog,
5986 "infrun: random signal, keep going\n");
5987
5988 keep_going (ecs);
5989 }
5990 return;
5991 }
5992
5993 process_event_stop_test (ecs);
5994 }
5995
5996 /* Come here when we've got some debug event / signal we can explain
5997 (IOW, not a random signal), and test whether it should cause a
5998 stop, or whether we should resume the inferior (transparently).
5999 E.g., could be a breakpoint whose condition evaluates false; we
6000 could be still stepping within the line; etc. */
6001
6002 static void
6003 process_event_stop_test (struct execution_control_state *ecs)
6004 {
6005 struct symtab_and_line stop_pc_sal;
6006 struct frame_info *frame;
6007 struct gdbarch *gdbarch;
6008 CORE_ADDR jmp_buf_pc;
6009 struct bpstat_what what;
6010
6011 /* Handle cases caused by hitting a breakpoint. */
6012
6013 frame = get_current_frame ();
6014 gdbarch = get_frame_arch (frame);
6015
6016 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6017
6018 if (what.call_dummy)
6019 {
6020 stop_stack_dummy = what.call_dummy;
6021 }
6022
6023 /* A few breakpoint types have callbacks associated (e.g.,
6024 bp_jit_event). Run them now. */
6025 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6026
6027 /* If we hit an internal event that triggers symbol changes, the
6028 current frame will be invalidated within bpstat_what (e.g., if we
6029 hit an internal solib event). Re-fetch it. */
6030 frame = get_current_frame ();
6031 gdbarch = get_frame_arch (frame);
6032
6033 switch (what.main_action)
6034 {
6035 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6036 /* If we hit the breakpoint at longjmp while stepping, we
6037 install a momentary breakpoint at the target of the
6038 jmp_buf. */
6039
6040 if (debug_infrun)
6041 fprintf_unfiltered (gdb_stdlog,
6042 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6043
6044 ecs->event_thread->stepping_over_breakpoint = 1;
6045
6046 if (what.is_longjmp)
6047 {
6048 struct value *arg_value;
6049
6050 /* If we set the longjmp breakpoint via a SystemTap probe,
6051 then use it to extract the arguments. The destination PC
6052 is the third argument to the probe. */
6053 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6054 if (arg_value)
6055 {
6056 jmp_buf_pc = value_as_address (arg_value);
6057 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6058 }
6059 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6060 || !gdbarch_get_longjmp_target (gdbarch,
6061 frame, &jmp_buf_pc))
6062 {
6063 if (debug_infrun)
6064 fprintf_unfiltered (gdb_stdlog,
6065 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6066 "(!gdbarch_get_longjmp_target)\n");
6067 keep_going (ecs);
6068 return;
6069 }
6070
6071 /* Insert a breakpoint at resume address. */
6072 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6073 }
6074 else
6075 check_exception_resume (ecs, frame);
6076 keep_going (ecs);
6077 return;
6078
6079 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6080 {
6081 struct frame_info *init_frame;
6082
6083 /* There are several cases to consider.
6084
6085 1. The initiating frame no longer exists. In this case we
6086 must stop, because the exception or longjmp has gone too
6087 far.
6088
6089 2. The initiating frame exists, and is the same as the
6090 current frame. We stop, because the exception or longjmp
6091 has been caught.
6092
6093 3. The initiating frame exists and is different from the
6094 current frame. This means the exception or longjmp has
6095 been caught beneath the initiating frame, so keep going.
6096
6097 4. longjmp breakpoint has been placed just to protect
6098 against stale dummy frames and user is not interested in
6099 stopping around longjmps. */
6100
6101 if (debug_infrun)
6102 fprintf_unfiltered (gdb_stdlog,
6103 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6104
6105 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6106 != NULL);
6107 delete_exception_resume_breakpoint (ecs->event_thread);
6108
6109 if (what.is_longjmp)
6110 {
6111 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6112
6113 if (!frame_id_p (ecs->event_thread->initiating_frame))
6114 {
6115 /* Case 4. */
6116 keep_going (ecs);
6117 return;
6118 }
6119 }
6120
6121 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6122
6123 if (init_frame)
6124 {
6125 struct frame_id current_id
6126 = get_frame_id (get_current_frame ());
6127 if (frame_id_eq (current_id,
6128 ecs->event_thread->initiating_frame))
6129 {
6130 /* Case 2. Fall through. */
6131 }
6132 else
6133 {
6134 /* Case 3. */
6135 keep_going (ecs);
6136 return;
6137 }
6138 }
6139
6140 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6141 exists. */
6142 delete_step_resume_breakpoint (ecs->event_thread);
6143
6144 end_stepping_range (ecs);
6145 }
6146 return;
6147
6148 case BPSTAT_WHAT_SINGLE:
6149 if (debug_infrun)
6150 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6151 ecs->event_thread->stepping_over_breakpoint = 1;
6152 /* Still need to check other stuff, at least the case where we
6153 are stepping and step out of the right range. */
6154 break;
6155
6156 case BPSTAT_WHAT_STEP_RESUME:
6157 if (debug_infrun)
6158 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6159
6160 delete_step_resume_breakpoint (ecs->event_thread);
6161 if (ecs->event_thread->control.proceed_to_finish
6162 && execution_direction == EXEC_REVERSE)
6163 {
6164 struct thread_info *tp = ecs->event_thread;
6165
6166 /* We are finishing a function in reverse, and just hit the
6167 step-resume breakpoint at the start address of the
6168 function, and we're almost there -- just need to back up
6169 by one more single-step, which should take us back to the
6170 function call. */
6171 tp->control.step_range_start = tp->control.step_range_end = 1;
6172 keep_going (ecs);
6173 return;
6174 }
6175 fill_in_stop_func (gdbarch, ecs);
6176 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6177 && execution_direction == EXEC_REVERSE)
6178 {
6179 /* We are stepping over a function call in reverse, and just
6180 hit the step-resume breakpoint at the start address of
6181 the function. Go back to single-stepping, which should
6182 take us back to the function call. */
6183 ecs->event_thread->stepping_over_breakpoint = 1;
6184 keep_going (ecs);
6185 return;
6186 }
6187 break;
6188
6189 case BPSTAT_WHAT_STOP_NOISY:
6190 if (debug_infrun)
6191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6192 stop_print_frame = 1;
6193
6194 /* Assume the thread stopped for a breapoint. We'll still check
6195 whether a/the breakpoint is there when the thread is next
6196 resumed. */
6197 ecs->event_thread->stepping_over_breakpoint = 1;
6198
6199 stop_waiting (ecs);
6200 return;
6201
6202 case BPSTAT_WHAT_STOP_SILENT:
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6205 stop_print_frame = 0;
6206
6207 /* Assume the thread stopped for a breapoint. We'll still check
6208 whether a/the breakpoint is there when the thread is next
6209 resumed. */
6210 ecs->event_thread->stepping_over_breakpoint = 1;
6211 stop_waiting (ecs);
6212 return;
6213
6214 case BPSTAT_WHAT_HP_STEP_RESUME:
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6217
6218 delete_step_resume_breakpoint (ecs->event_thread);
6219 if (ecs->event_thread->step_after_step_resume_breakpoint)
6220 {
6221 /* Back when the step-resume breakpoint was inserted, we
6222 were trying to single-step off a breakpoint. Go back to
6223 doing that. */
6224 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6225 ecs->event_thread->stepping_over_breakpoint = 1;
6226 keep_going (ecs);
6227 return;
6228 }
6229 break;
6230
6231 case BPSTAT_WHAT_KEEP_CHECKING:
6232 break;
6233 }
6234
6235 /* If we stepped a permanent breakpoint and we had a high priority
6236 step-resume breakpoint for the address we stepped, but we didn't
6237 hit it, then we must have stepped into the signal handler. The
6238 step-resume was only necessary to catch the case of _not_
6239 stepping into the handler, so delete it, and fall through to
6240 checking whether the step finished. */
6241 if (ecs->event_thread->stepped_breakpoint)
6242 {
6243 struct breakpoint *sr_bp
6244 = ecs->event_thread->control.step_resume_breakpoint;
6245
6246 if (sr_bp != NULL
6247 && sr_bp->loc->permanent
6248 && sr_bp->type == bp_hp_step_resume
6249 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6250 {
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: stepped permanent breakpoint, stopped in "
6254 "handler\n");
6255 delete_step_resume_breakpoint (ecs->event_thread);
6256 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6257 }
6258 }
6259
6260 /* We come here if we hit a breakpoint but should not stop for it.
6261 Possibly we also were stepping and should stop for that. So fall
6262 through and test for stepping. But, if not stepping, do not
6263 stop. */
6264
6265 /* In all-stop mode, if we're currently stepping but have stopped in
6266 some other thread, we need to switch back to the stepped thread. */
6267 if (switch_back_to_stepped_thread (ecs))
6268 return;
6269
6270 if (ecs->event_thread->control.step_resume_breakpoint)
6271 {
6272 if (debug_infrun)
6273 fprintf_unfiltered (gdb_stdlog,
6274 "infrun: step-resume breakpoint is inserted\n");
6275
6276 /* Having a step-resume breakpoint overrides anything
6277 else having to do with stepping commands until
6278 that breakpoint is reached. */
6279 keep_going (ecs);
6280 return;
6281 }
6282
6283 if (ecs->event_thread->control.step_range_end == 0)
6284 {
6285 if (debug_infrun)
6286 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6287 /* Likewise if we aren't even stepping. */
6288 keep_going (ecs);
6289 return;
6290 }
6291
6292 /* Re-fetch current thread's frame in case the code above caused
6293 the frame cache to be re-initialized, making our FRAME variable
6294 a dangling pointer. */
6295 frame = get_current_frame ();
6296 gdbarch = get_frame_arch (frame);
6297 fill_in_stop_func (gdbarch, ecs);
6298
6299 /* If stepping through a line, keep going if still within it.
6300
6301 Note that step_range_end is the address of the first instruction
6302 beyond the step range, and NOT the address of the last instruction
6303 within it!
6304
6305 Note also that during reverse execution, we may be stepping
6306 through a function epilogue and therefore must detect when
6307 the current-frame changes in the middle of a line. */
6308
6309 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6310 ecs->event_thread)
6311 && (execution_direction != EXEC_REVERSE
6312 || frame_id_eq (get_frame_id (frame),
6313 ecs->event_thread->control.step_frame_id)))
6314 {
6315 if (debug_infrun)
6316 fprintf_unfiltered
6317 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6318 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6319 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6320
6321 /* Tentatively re-enable range stepping; `resume' disables it if
6322 necessary (e.g., if we're stepping over a breakpoint or we
6323 have software watchpoints). */
6324 ecs->event_thread->control.may_range_step = 1;
6325
6326 /* When stepping backward, stop at beginning of line range
6327 (unless it's the function entry point, in which case
6328 keep going back to the call point). */
6329 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6330 if (stop_pc == ecs->event_thread->control.step_range_start
6331 && stop_pc != ecs->stop_func_start
6332 && execution_direction == EXEC_REVERSE)
6333 end_stepping_range (ecs);
6334 else
6335 keep_going (ecs);
6336
6337 return;
6338 }
6339
6340 /* We stepped out of the stepping range. */
6341
6342 /* If we are stepping at the source level and entered the runtime
6343 loader dynamic symbol resolution code...
6344
6345 EXEC_FORWARD: we keep on single stepping until we exit the run
6346 time loader code and reach the callee's address.
6347
6348 EXEC_REVERSE: we've already executed the callee (backward), and
6349 the runtime loader code is handled just like any other
6350 undebuggable function call. Now we need only keep stepping
6351 backward through the trampoline code, and that's handled further
6352 down, so there is nothing for us to do here. */
6353
6354 if (execution_direction != EXEC_REVERSE
6355 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6356 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6357 {
6358 CORE_ADDR pc_after_resolver =
6359 gdbarch_skip_solib_resolver (gdbarch,
6360 ecs->event_thread->suspend.stop_pc);
6361
6362 if (debug_infrun)
6363 fprintf_unfiltered (gdb_stdlog,
6364 "infrun: stepped into dynsym resolve code\n");
6365
6366 if (pc_after_resolver)
6367 {
6368 /* Set up a step-resume breakpoint at the address
6369 indicated by SKIP_SOLIB_RESOLVER. */
6370 symtab_and_line sr_sal;
6371 sr_sal.pc = pc_after_resolver;
6372 sr_sal.pspace = get_frame_program_space (frame);
6373
6374 insert_step_resume_breakpoint_at_sal (gdbarch,
6375 sr_sal, null_frame_id);
6376 }
6377
6378 keep_going (ecs);
6379 return;
6380 }
6381
6382 /* Step through an indirect branch thunk. */
6383 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6384 && gdbarch_in_indirect_branch_thunk (gdbarch,
6385 ecs->event_thread->suspend.stop_pc))
6386 {
6387 if (debug_infrun)
6388 fprintf_unfiltered (gdb_stdlog,
6389 "infrun: stepped into indirect branch thunk\n");
6390 keep_going (ecs);
6391 return;
6392 }
6393
6394 if (ecs->event_thread->control.step_range_end != 1
6395 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6396 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6397 && get_frame_type (frame) == SIGTRAMP_FRAME)
6398 {
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog,
6401 "infrun: stepped into signal trampoline\n");
6402 /* The inferior, while doing a "step" or "next", has ended up in
6403 a signal trampoline (either by a signal being delivered or by
6404 the signal handler returning). Just single-step until the
6405 inferior leaves the trampoline (either by calling the handler
6406 or returning). */
6407 keep_going (ecs);
6408 return;
6409 }
6410
6411 /* If we're in the return path from a shared library trampoline,
6412 we want to proceed through the trampoline when stepping. */
6413 /* macro/2012-04-25: This needs to come before the subroutine
6414 call check below as on some targets return trampolines look
6415 like subroutine calls (MIPS16 return thunks). */
6416 if (gdbarch_in_solib_return_trampoline (gdbarch,
6417 ecs->event_thread->suspend.stop_pc,
6418 ecs->stop_func_name)
6419 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6420 {
6421 /* Determine where this trampoline returns. */
6422 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6423 CORE_ADDR real_stop_pc
6424 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6425
6426 if (debug_infrun)
6427 fprintf_unfiltered (gdb_stdlog,
6428 "infrun: stepped into solib return tramp\n");
6429
6430 /* Only proceed through if we know where it's going. */
6431 if (real_stop_pc)
6432 {
6433 /* And put the step-breakpoint there and go until there. */
6434 symtab_and_line sr_sal;
6435 sr_sal.pc = real_stop_pc;
6436 sr_sal.section = find_pc_overlay (sr_sal.pc);
6437 sr_sal.pspace = get_frame_program_space (frame);
6438
6439 /* Do not specify what the fp should be when we stop since
6440 on some machines the prologue is where the new fp value
6441 is established. */
6442 insert_step_resume_breakpoint_at_sal (gdbarch,
6443 sr_sal, null_frame_id);
6444
6445 /* Restart without fiddling with the step ranges or
6446 other state. */
6447 keep_going (ecs);
6448 return;
6449 }
6450 }
6451
6452 /* Check for subroutine calls. The check for the current frame
6453 equalling the step ID is not necessary - the check of the
6454 previous frame's ID is sufficient - but it is a common case and
6455 cheaper than checking the previous frame's ID.
6456
6457 NOTE: frame_id_eq will never report two invalid frame IDs as
6458 being equal, so to get into this block, both the current and
6459 previous frame must have valid frame IDs. */
6460 /* The outer_frame_id check is a heuristic to detect stepping
6461 through startup code. If we step over an instruction which
6462 sets the stack pointer from an invalid value to a valid value,
6463 we may detect that as a subroutine call from the mythical
6464 "outermost" function. This could be fixed by marking
6465 outermost frames as !stack_p,code_p,special_p. Then the
6466 initial outermost frame, before sp was valid, would
6467 have code_addr == &_start. See the comment in frame_id_eq
6468 for more. */
6469 if (!frame_id_eq (get_stack_frame_id (frame),
6470 ecs->event_thread->control.step_stack_frame_id)
6471 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6472 ecs->event_thread->control.step_stack_frame_id)
6473 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6474 outer_frame_id)
6475 || (ecs->event_thread->control.step_start_function
6476 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6477 {
6478 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6479 CORE_ADDR real_stop_pc;
6480
6481 if (debug_infrun)
6482 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6483
6484 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6485 {
6486 /* I presume that step_over_calls is only 0 when we're
6487 supposed to be stepping at the assembly language level
6488 ("stepi"). Just stop. */
6489 /* And this works the same backward as frontward. MVS */
6490 end_stepping_range (ecs);
6491 return;
6492 }
6493
6494 /* Reverse stepping through solib trampolines. */
6495
6496 if (execution_direction == EXEC_REVERSE
6497 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6498 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6499 || (ecs->stop_func_start == 0
6500 && in_solib_dynsym_resolve_code (stop_pc))))
6501 {
6502 /* Any solib trampoline code can be handled in reverse
6503 by simply continuing to single-step. We have already
6504 executed the solib function (backwards), and a few
6505 steps will take us back through the trampoline to the
6506 caller. */
6507 keep_going (ecs);
6508 return;
6509 }
6510
6511 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6512 {
6513 /* We're doing a "next".
6514
6515 Normal (forward) execution: set a breakpoint at the
6516 callee's return address (the address at which the caller
6517 will resume).
6518
6519 Reverse (backward) execution. set the step-resume
6520 breakpoint at the start of the function that we just
6521 stepped into (backwards), and continue to there. When we
6522 get there, we'll need to single-step back to the caller. */
6523
6524 if (execution_direction == EXEC_REVERSE)
6525 {
6526 /* If we're already at the start of the function, we've either
6527 just stepped backward into a single instruction function,
6528 or stepped back out of a signal handler to the first instruction
6529 of the function. Just keep going, which will single-step back
6530 to the caller. */
6531 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6532 {
6533 /* Normal function call return (static or dynamic). */
6534 symtab_and_line sr_sal;
6535 sr_sal.pc = ecs->stop_func_start;
6536 sr_sal.pspace = get_frame_program_space (frame);
6537 insert_step_resume_breakpoint_at_sal (gdbarch,
6538 sr_sal, null_frame_id);
6539 }
6540 }
6541 else
6542 insert_step_resume_breakpoint_at_caller (frame);
6543
6544 keep_going (ecs);
6545 return;
6546 }
6547
6548 /* If we are in a function call trampoline (a stub between the
6549 calling routine and the real function), locate the real
6550 function. That's what tells us (a) whether we want to step
6551 into it at all, and (b) what prologue we want to run to the
6552 end of, if we do step into it. */
6553 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6554 if (real_stop_pc == 0)
6555 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6556 if (real_stop_pc != 0)
6557 ecs->stop_func_start = real_stop_pc;
6558
6559 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6560 {
6561 symtab_and_line sr_sal;
6562 sr_sal.pc = ecs->stop_func_start;
6563 sr_sal.pspace = get_frame_program_space (frame);
6564
6565 insert_step_resume_breakpoint_at_sal (gdbarch,
6566 sr_sal, null_frame_id);
6567 keep_going (ecs);
6568 return;
6569 }
6570
6571 /* If we have line number information for the function we are
6572 thinking of stepping into and the function isn't on the skip
6573 list, step into it.
6574
6575 If there are several symtabs at that PC (e.g. with include
6576 files), just want to know whether *any* of them have line
6577 numbers. find_pc_line handles this. */
6578 {
6579 struct symtab_and_line tmp_sal;
6580
6581 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6582 if (tmp_sal.line != 0
6583 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6584 tmp_sal))
6585 {
6586 if (execution_direction == EXEC_REVERSE)
6587 handle_step_into_function_backward (gdbarch, ecs);
6588 else
6589 handle_step_into_function (gdbarch, ecs);
6590 return;
6591 }
6592 }
6593
6594 /* If we have no line number and the step-stop-if-no-debug is
6595 set, we stop the step so that the user has a chance to switch
6596 in assembly mode. */
6597 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6598 && step_stop_if_no_debug)
6599 {
6600 end_stepping_range (ecs);
6601 return;
6602 }
6603
6604 if (execution_direction == EXEC_REVERSE)
6605 {
6606 /* If we're already at the start of the function, we've either just
6607 stepped backward into a single instruction function without line
6608 number info, or stepped back out of a signal handler to the first
6609 instruction of the function without line number info. Just keep
6610 going, which will single-step back to the caller. */
6611 if (ecs->stop_func_start != stop_pc)
6612 {
6613 /* Set a breakpoint at callee's start address.
6614 From there we can step once and be back in the caller. */
6615 symtab_and_line sr_sal;
6616 sr_sal.pc = ecs->stop_func_start;
6617 sr_sal.pspace = get_frame_program_space (frame);
6618 insert_step_resume_breakpoint_at_sal (gdbarch,
6619 sr_sal, null_frame_id);
6620 }
6621 }
6622 else
6623 /* Set a breakpoint at callee's return address (the address
6624 at which the caller will resume). */
6625 insert_step_resume_breakpoint_at_caller (frame);
6626
6627 keep_going (ecs);
6628 return;
6629 }
6630
6631 /* Reverse stepping through solib trampolines. */
6632
6633 if (execution_direction == EXEC_REVERSE
6634 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6635 {
6636 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6637
6638 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6639 || (ecs->stop_func_start == 0
6640 && in_solib_dynsym_resolve_code (stop_pc)))
6641 {
6642 /* Any solib trampoline code can be handled in reverse
6643 by simply continuing to single-step. We have already
6644 executed the solib function (backwards), and a few
6645 steps will take us back through the trampoline to the
6646 caller. */
6647 keep_going (ecs);
6648 return;
6649 }
6650 else if (in_solib_dynsym_resolve_code (stop_pc))
6651 {
6652 /* Stepped backward into the solib dynsym resolver.
6653 Set a breakpoint at its start and continue, then
6654 one more step will take us out. */
6655 symtab_and_line sr_sal;
6656 sr_sal.pc = ecs->stop_func_start;
6657 sr_sal.pspace = get_frame_program_space (frame);
6658 insert_step_resume_breakpoint_at_sal (gdbarch,
6659 sr_sal, null_frame_id);
6660 keep_going (ecs);
6661 return;
6662 }
6663 }
6664
6665 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6666
6667 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6668 the trampoline processing logic, however, there are some trampolines
6669 that have no names, so we should do trampoline handling first. */
6670 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6671 && ecs->stop_func_name == NULL
6672 && stop_pc_sal.line == 0)
6673 {
6674 if (debug_infrun)
6675 fprintf_unfiltered (gdb_stdlog,
6676 "infrun: stepped into undebuggable function\n");
6677
6678 /* The inferior just stepped into, or returned to, an
6679 undebuggable function (where there is no debugging information
6680 and no line number corresponding to the address where the
6681 inferior stopped). Since we want to skip this kind of code,
6682 we keep going until the inferior returns from this
6683 function - unless the user has asked us not to (via
6684 set step-mode) or we no longer know how to get back
6685 to the call site. */
6686 if (step_stop_if_no_debug
6687 || !frame_id_p (frame_unwind_caller_id (frame)))
6688 {
6689 /* If we have no line number and the step-stop-if-no-debug
6690 is set, we stop the step so that the user has a chance to
6691 switch in assembly mode. */
6692 end_stepping_range (ecs);
6693 return;
6694 }
6695 else
6696 {
6697 /* Set a breakpoint at callee's return address (the address
6698 at which the caller will resume). */
6699 insert_step_resume_breakpoint_at_caller (frame);
6700 keep_going (ecs);
6701 return;
6702 }
6703 }
6704
6705 if (ecs->event_thread->control.step_range_end == 1)
6706 {
6707 /* It is stepi or nexti. We always want to stop stepping after
6708 one instruction. */
6709 if (debug_infrun)
6710 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6711 end_stepping_range (ecs);
6712 return;
6713 }
6714
6715 if (stop_pc_sal.line == 0)
6716 {
6717 /* We have no line number information. That means to stop
6718 stepping (does this always happen right after one instruction,
6719 when we do "s" in a function with no line numbers,
6720 or can this happen as a result of a return or longjmp?). */
6721 if (debug_infrun)
6722 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6723 end_stepping_range (ecs);
6724 return;
6725 }
6726
6727 /* Look for "calls" to inlined functions, part one. If the inline
6728 frame machinery detected some skipped call sites, we have entered
6729 a new inline function. */
6730
6731 if (frame_id_eq (get_frame_id (get_current_frame ()),
6732 ecs->event_thread->control.step_frame_id)
6733 && inline_skipped_frames (ecs->event_thread))
6734 {
6735 if (debug_infrun)
6736 fprintf_unfiltered (gdb_stdlog,
6737 "infrun: stepped into inlined function\n");
6738
6739 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6740
6741 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6742 {
6743 /* For "step", we're going to stop. But if the call site
6744 for this inlined function is on the same source line as
6745 we were previously stepping, go down into the function
6746 first. Otherwise stop at the call site. */
6747
6748 if (call_sal.line == ecs->event_thread->current_line
6749 && call_sal.symtab == ecs->event_thread->current_symtab)
6750 step_into_inline_frame (ecs->event_thread);
6751
6752 end_stepping_range (ecs);
6753 return;
6754 }
6755 else
6756 {
6757 /* For "next", we should stop at the call site if it is on a
6758 different source line. Otherwise continue through the
6759 inlined function. */
6760 if (call_sal.line == ecs->event_thread->current_line
6761 && call_sal.symtab == ecs->event_thread->current_symtab)
6762 keep_going (ecs);
6763 else
6764 end_stepping_range (ecs);
6765 return;
6766 }
6767 }
6768
6769 /* Look for "calls" to inlined functions, part two. If we are still
6770 in the same real function we were stepping through, but we have
6771 to go further up to find the exact frame ID, we are stepping
6772 through a more inlined call beyond its call site. */
6773
6774 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6775 && !frame_id_eq (get_frame_id (get_current_frame ()),
6776 ecs->event_thread->control.step_frame_id)
6777 && stepped_in_from (get_current_frame (),
6778 ecs->event_thread->control.step_frame_id))
6779 {
6780 if (debug_infrun)
6781 fprintf_unfiltered (gdb_stdlog,
6782 "infrun: stepping through inlined function\n");
6783
6784 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6785 keep_going (ecs);
6786 else
6787 end_stepping_range (ecs);
6788 return;
6789 }
6790
6791 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6792 && (ecs->event_thread->current_line != stop_pc_sal.line
6793 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6794 {
6795 /* We are at the start of a different line. So stop. Note that
6796 we don't stop if we step into the middle of a different line.
6797 That is said to make things like for (;;) statements work
6798 better. */
6799 if (debug_infrun)
6800 fprintf_unfiltered (gdb_stdlog,
6801 "infrun: stepped to a different line\n");
6802 end_stepping_range (ecs);
6803 return;
6804 }
6805
6806 /* We aren't done stepping.
6807
6808 Optimize by setting the stepping range to the line.
6809 (We might not be in the original line, but if we entered a
6810 new line in mid-statement, we continue stepping. This makes
6811 things like for(;;) statements work better.) */
6812
6813 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6814 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6815 ecs->event_thread->control.may_range_step = 1;
6816 set_step_info (frame, stop_pc_sal);
6817
6818 if (debug_infrun)
6819 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6820 keep_going (ecs);
6821 }
6822
6823 /* In all-stop mode, if we're currently stepping but have stopped in
6824 some other thread, we may need to switch back to the stepped
6825 thread. Returns true we set the inferior running, false if we left
6826 it stopped (and the event needs further processing). */
6827
6828 static int
6829 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6830 {
6831 if (!target_is_non_stop_p ())
6832 {
6833 struct thread_info *stepping_thread;
6834
6835 /* If any thread is blocked on some internal breakpoint, and we
6836 simply need to step over that breakpoint to get it going
6837 again, do that first. */
6838
6839 /* However, if we see an event for the stepping thread, then we
6840 know all other threads have been moved past their breakpoints
6841 already. Let the caller check whether the step is finished,
6842 etc., before deciding to move it past a breakpoint. */
6843 if (ecs->event_thread->control.step_range_end != 0)
6844 return 0;
6845
6846 /* Check if the current thread is blocked on an incomplete
6847 step-over, interrupted by a random signal. */
6848 if (ecs->event_thread->control.trap_expected
6849 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6850 {
6851 if (debug_infrun)
6852 {
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: need to finish step-over of [%s]\n",
6855 target_pid_to_str (ecs->event_thread->ptid));
6856 }
6857 keep_going (ecs);
6858 return 1;
6859 }
6860
6861 /* Check if the current thread is blocked by a single-step
6862 breakpoint of another thread. */
6863 if (ecs->hit_singlestep_breakpoint)
6864 {
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: need to step [%s] over single-step "
6869 "breakpoint\n",
6870 target_pid_to_str (ecs->ptid));
6871 }
6872 keep_going (ecs);
6873 return 1;
6874 }
6875
6876 /* If this thread needs yet another step-over (e.g., stepping
6877 through a delay slot), do it first before moving on to
6878 another thread. */
6879 if (thread_still_needs_step_over (ecs->event_thread))
6880 {
6881 if (debug_infrun)
6882 {
6883 fprintf_unfiltered (gdb_stdlog,
6884 "infrun: thread [%s] still needs step-over\n",
6885 target_pid_to_str (ecs->event_thread->ptid));
6886 }
6887 keep_going (ecs);
6888 return 1;
6889 }
6890
6891 /* If scheduler locking applies even if not stepping, there's no
6892 need to walk over threads. Above we've checked whether the
6893 current thread is stepping. If some other thread not the
6894 event thread is stepping, then it must be that scheduler
6895 locking is not in effect. */
6896 if (schedlock_applies (ecs->event_thread))
6897 return 0;
6898
6899 /* Otherwise, we no longer expect a trap in the current thread.
6900 Clear the trap_expected flag before switching back -- this is
6901 what keep_going does as well, if we call it. */
6902 ecs->event_thread->control.trap_expected = 0;
6903
6904 /* Likewise, clear the signal if it should not be passed. */
6905 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6906 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6907
6908 /* Do all pending step-overs before actually proceeding with
6909 step/next/etc. */
6910 if (start_step_over ())
6911 {
6912 prepare_to_wait (ecs);
6913 return 1;
6914 }
6915
6916 /* Look for the stepping/nexting thread. */
6917 stepping_thread = NULL;
6918
6919 for (thread_info *tp : all_non_exited_threads ())
6920 {
6921 /* Ignore threads of processes the caller is not
6922 resuming. */
6923 if (!sched_multi
6924 && tp->ptid.pid () != ecs->ptid.pid ())
6925 continue;
6926
6927 /* When stepping over a breakpoint, we lock all threads
6928 except the one that needs to move past the breakpoint.
6929 If a non-event thread has this set, the "incomplete
6930 step-over" check above should have caught it earlier. */
6931 if (tp->control.trap_expected)
6932 {
6933 internal_error (__FILE__, __LINE__,
6934 "[%s] has inconsistent state: "
6935 "trap_expected=%d\n",
6936 target_pid_to_str (tp->ptid),
6937 tp->control.trap_expected);
6938 }
6939
6940 /* Did we find the stepping thread? */
6941 if (tp->control.step_range_end)
6942 {
6943 /* Yep. There should only one though. */
6944 gdb_assert (stepping_thread == NULL);
6945
6946 /* The event thread is handled at the top, before we
6947 enter this loop. */
6948 gdb_assert (tp != ecs->event_thread);
6949
6950 /* If some thread other than the event thread is
6951 stepping, then scheduler locking can't be in effect,
6952 otherwise we wouldn't have resumed the current event
6953 thread in the first place. */
6954 gdb_assert (!schedlock_applies (tp));
6955
6956 stepping_thread = tp;
6957 }
6958 }
6959
6960 if (stepping_thread != NULL)
6961 {
6962 if (debug_infrun)
6963 fprintf_unfiltered (gdb_stdlog,
6964 "infrun: switching back to stepped thread\n");
6965
6966 if (keep_going_stepped_thread (stepping_thread))
6967 {
6968 prepare_to_wait (ecs);
6969 return 1;
6970 }
6971 }
6972 }
6973
6974 return 0;
6975 }
6976
6977 /* Set a previously stepped thread back to stepping. Returns true on
6978 success, false if the resume is not possible (e.g., the thread
6979 vanished). */
6980
6981 static int
6982 keep_going_stepped_thread (struct thread_info *tp)
6983 {
6984 struct frame_info *frame;
6985 struct execution_control_state ecss;
6986 struct execution_control_state *ecs = &ecss;
6987
6988 /* If the stepping thread exited, then don't try to switch back and
6989 resume it, which could fail in several different ways depending
6990 on the target. Instead, just keep going.
6991
6992 We can find a stepping dead thread in the thread list in two
6993 cases:
6994
6995 - The target supports thread exit events, and when the target
6996 tries to delete the thread from the thread list, inferior_ptid
6997 pointed at the exiting thread. In such case, calling
6998 delete_thread does not really remove the thread from the list;
6999 instead, the thread is left listed, with 'exited' state.
7000
7001 - The target's debug interface does not support thread exit
7002 events, and so we have no idea whatsoever if the previously
7003 stepping thread is still alive. For that reason, we need to
7004 synchronously query the target now. */
7005
7006 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7007 {
7008 if (debug_infrun)
7009 fprintf_unfiltered (gdb_stdlog,
7010 "infrun: not resuming previously "
7011 "stepped thread, it has vanished\n");
7012
7013 delete_thread (tp);
7014 return 0;
7015 }
7016
7017 if (debug_infrun)
7018 fprintf_unfiltered (gdb_stdlog,
7019 "infrun: resuming previously stepped thread\n");
7020
7021 reset_ecs (ecs, tp);
7022 switch_to_thread (tp);
7023
7024 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7025 frame = get_current_frame ();
7026
7027 /* If the PC of the thread we were trying to single-step has
7028 changed, then that thread has trapped or been signaled, but the
7029 event has not been reported to GDB yet. Re-poll the target
7030 looking for this particular thread's event (i.e. temporarily
7031 enable schedlock) by:
7032
7033 - setting a break at the current PC
7034 - resuming that particular thread, only (by setting trap
7035 expected)
7036
7037 This prevents us continuously moving the single-step breakpoint
7038 forward, one instruction at a time, overstepping. */
7039
7040 if (tp->suspend.stop_pc != tp->prev_pc)
7041 {
7042 ptid_t resume_ptid;
7043
7044 if (debug_infrun)
7045 fprintf_unfiltered (gdb_stdlog,
7046 "infrun: expected thread advanced also (%s -> %s)\n",
7047 paddress (target_gdbarch (), tp->prev_pc),
7048 paddress (target_gdbarch (), tp->suspend.stop_pc));
7049
7050 /* Clear the info of the previous step-over, as it's no longer
7051 valid (if the thread was trying to step over a breakpoint, it
7052 has already succeeded). It's what keep_going would do too,
7053 if we called it. Do this before trying to insert the sss
7054 breakpoint, otherwise if we were previously trying to step
7055 over this exact address in another thread, the breakpoint is
7056 skipped. */
7057 clear_step_over_info ();
7058 tp->control.trap_expected = 0;
7059
7060 insert_single_step_breakpoint (get_frame_arch (frame),
7061 get_frame_address_space (frame),
7062 tp->suspend.stop_pc);
7063
7064 tp->resumed = 1;
7065 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7066 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7067 }
7068 else
7069 {
7070 if (debug_infrun)
7071 fprintf_unfiltered (gdb_stdlog,
7072 "infrun: expected thread still hasn't advanced\n");
7073
7074 keep_going_pass_signal (ecs);
7075 }
7076 return 1;
7077 }
7078
7079 /* Is thread TP in the middle of (software or hardware)
7080 single-stepping? (Note the result of this function must never be
7081 passed directly as target_resume's STEP parameter.) */
7082
7083 static int
7084 currently_stepping (struct thread_info *tp)
7085 {
7086 return ((tp->control.step_range_end
7087 && tp->control.step_resume_breakpoint == NULL)
7088 || tp->control.trap_expected
7089 || tp->stepped_breakpoint
7090 || bpstat_should_step ());
7091 }
7092
7093 /* Inferior has stepped into a subroutine call with source code that
7094 we should not step over. Do step to the first line of code in
7095 it. */
7096
7097 static void
7098 handle_step_into_function (struct gdbarch *gdbarch,
7099 struct execution_control_state *ecs)
7100 {
7101 fill_in_stop_func (gdbarch, ecs);
7102
7103 compunit_symtab *cust
7104 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7105 if (cust != NULL && compunit_language (cust) != language_asm)
7106 ecs->stop_func_start
7107 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7108
7109 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7110 /* Use the step_resume_break to step until the end of the prologue,
7111 even if that involves jumps (as it seems to on the vax under
7112 4.2). */
7113 /* If the prologue ends in the middle of a source line, continue to
7114 the end of that source line (if it is still within the function).
7115 Otherwise, just go to end of prologue. */
7116 if (stop_func_sal.end
7117 && stop_func_sal.pc != ecs->stop_func_start
7118 && stop_func_sal.end < ecs->stop_func_end)
7119 ecs->stop_func_start = stop_func_sal.end;
7120
7121 /* Architectures which require breakpoint adjustment might not be able
7122 to place a breakpoint at the computed address. If so, the test
7123 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7124 ecs->stop_func_start to an address at which a breakpoint may be
7125 legitimately placed.
7126
7127 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7128 made, GDB will enter an infinite loop when stepping through
7129 optimized code consisting of VLIW instructions which contain
7130 subinstructions corresponding to different source lines. On
7131 FR-V, it's not permitted to place a breakpoint on any but the
7132 first subinstruction of a VLIW instruction. When a breakpoint is
7133 set, GDB will adjust the breakpoint address to the beginning of
7134 the VLIW instruction. Thus, we need to make the corresponding
7135 adjustment here when computing the stop address. */
7136
7137 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7138 {
7139 ecs->stop_func_start
7140 = gdbarch_adjust_breakpoint_address (gdbarch,
7141 ecs->stop_func_start);
7142 }
7143
7144 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7145 {
7146 /* We are already there: stop now. */
7147 end_stepping_range (ecs);
7148 return;
7149 }
7150 else
7151 {
7152 /* Put the step-breakpoint there and go until there. */
7153 symtab_and_line sr_sal;
7154 sr_sal.pc = ecs->stop_func_start;
7155 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7156 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7157
7158 /* Do not specify what the fp should be when we stop since on
7159 some machines the prologue is where the new fp value is
7160 established. */
7161 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7162
7163 /* And make sure stepping stops right away then. */
7164 ecs->event_thread->control.step_range_end
7165 = ecs->event_thread->control.step_range_start;
7166 }
7167 keep_going (ecs);
7168 }
7169
7170 /* Inferior has stepped backward into a subroutine call with source
7171 code that we should not step over. Do step to the beginning of the
7172 last line of code in it. */
7173
7174 static void
7175 handle_step_into_function_backward (struct gdbarch *gdbarch,
7176 struct execution_control_state *ecs)
7177 {
7178 struct compunit_symtab *cust;
7179 struct symtab_and_line stop_func_sal;
7180
7181 fill_in_stop_func (gdbarch, ecs);
7182
7183 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7184 if (cust != NULL && compunit_language (cust) != language_asm)
7185 ecs->stop_func_start
7186 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7187
7188 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7189
7190 /* OK, we're just going to keep stepping here. */
7191 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7192 {
7193 /* We're there already. Just stop stepping now. */
7194 end_stepping_range (ecs);
7195 }
7196 else
7197 {
7198 /* Else just reset the step range and keep going.
7199 No step-resume breakpoint, they don't work for
7200 epilogues, which can have multiple entry paths. */
7201 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7202 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7203 keep_going (ecs);
7204 }
7205 return;
7206 }
7207
7208 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7209 This is used to both functions and to skip over code. */
7210
7211 static void
7212 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7213 struct symtab_and_line sr_sal,
7214 struct frame_id sr_id,
7215 enum bptype sr_type)
7216 {
7217 /* There should never be more than one step-resume or longjmp-resume
7218 breakpoint per thread, so we should never be setting a new
7219 step_resume_breakpoint when one is already active. */
7220 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7221 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7222
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: inserting step-resume breakpoint at %s\n",
7226 paddress (gdbarch, sr_sal.pc));
7227
7228 inferior_thread ()->control.step_resume_breakpoint
7229 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7230 }
7231
7232 void
7233 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7234 struct symtab_and_line sr_sal,
7235 struct frame_id sr_id)
7236 {
7237 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7238 sr_sal, sr_id,
7239 bp_step_resume);
7240 }
7241
7242 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7243 This is used to skip a potential signal handler.
7244
7245 This is called with the interrupted function's frame. The signal
7246 handler, when it returns, will resume the interrupted function at
7247 RETURN_FRAME.pc. */
7248
7249 static void
7250 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7251 {
7252 gdb_assert (return_frame != NULL);
7253
7254 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7255
7256 symtab_and_line sr_sal;
7257 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7258 sr_sal.section = find_pc_overlay (sr_sal.pc);
7259 sr_sal.pspace = get_frame_program_space (return_frame);
7260
7261 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7262 get_stack_frame_id (return_frame),
7263 bp_hp_step_resume);
7264 }
7265
7266 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7267 is used to skip a function after stepping into it (for "next" or if
7268 the called function has no debugging information).
7269
7270 The current function has almost always been reached by single
7271 stepping a call or return instruction. NEXT_FRAME belongs to the
7272 current function, and the breakpoint will be set at the caller's
7273 resume address.
7274
7275 This is a separate function rather than reusing
7276 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7277 get_prev_frame, which may stop prematurely (see the implementation
7278 of frame_unwind_caller_id for an example). */
7279
7280 static void
7281 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7282 {
7283 /* We shouldn't have gotten here if we don't know where the call site
7284 is. */
7285 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7286
7287 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7288
7289 symtab_and_line sr_sal;
7290 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7291 frame_unwind_caller_pc (next_frame));
7292 sr_sal.section = find_pc_overlay (sr_sal.pc);
7293 sr_sal.pspace = frame_unwind_program_space (next_frame);
7294
7295 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7296 frame_unwind_caller_id (next_frame));
7297 }
7298
7299 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7300 new breakpoint at the target of a jmp_buf. The handling of
7301 longjmp-resume uses the same mechanisms used for handling
7302 "step-resume" breakpoints. */
7303
7304 static void
7305 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7306 {
7307 /* There should never be more than one longjmp-resume breakpoint per
7308 thread, so we should never be setting a new
7309 longjmp_resume_breakpoint when one is already active. */
7310 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7311
7312 if (debug_infrun)
7313 fprintf_unfiltered (gdb_stdlog,
7314 "infrun: inserting longjmp-resume breakpoint at %s\n",
7315 paddress (gdbarch, pc));
7316
7317 inferior_thread ()->control.exception_resume_breakpoint =
7318 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7319 }
7320
7321 /* Insert an exception resume breakpoint. TP is the thread throwing
7322 the exception. The block B is the block of the unwinder debug hook
7323 function. FRAME is the frame corresponding to the call to this
7324 function. SYM is the symbol of the function argument holding the
7325 target PC of the exception. */
7326
7327 static void
7328 insert_exception_resume_breakpoint (struct thread_info *tp,
7329 const struct block *b,
7330 struct frame_info *frame,
7331 struct symbol *sym)
7332 {
7333 TRY
7334 {
7335 struct block_symbol vsym;
7336 struct value *value;
7337 CORE_ADDR handler;
7338 struct breakpoint *bp;
7339
7340 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7341 b, VAR_DOMAIN);
7342 value = read_var_value (vsym.symbol, vsym.block, frame);
7343 /* If the value was optimized out, revert to the old behavior. */
7344 if (! value_optimized_out (value))
7345 {
7346 handler = value_as_address (value);
7347
7348 if (debug_infrun)
7349 fprintf_unfiltered (gdb_stdlog,
7350 "infrun: exception resume at %lx\n",
7351 (unsigned long) handler);
7352
7353 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7354 handler,
7355 bp_exception_resume).release ();
7356
7357 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7358 frame = NULL;
7359
7360 bp->thread = tp->global_num;
7361 inferior_thread ()->control.exception_resume_breakpoint = bp;
7362 }
7363 }
7364 CATCH (e, RETURN_MASK_ERROR)
7365 {
7366 /* We want to ignore errors here. */
7367 }
7368 END_CATCH
7369 }
7370
7371 /* A helper for check_exception_resume that sets an
7372 exception-breakpoint based on a SystemTap probe. */
7373
7374 static void
7375 insert_exception_resume_from_probe (struct thread_info *tp,
7376 const struct bound_probe *probe,
7377 struct frame_info *frame)
7378 {
7379 struct value *arg_value;
7380 CORE_ADDR handler;
7381 struct breakpoint *bp;
7382
7383 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7384 if (!arg_value)
7385 return;
7386
7387 handler = value_as_address (arg_value);
7388
7389 if (debug_infrun)
7390 fprintf_unfiltered (gdb_stdlog,
7391 "infrun: exception resume at %s\n",
7392 paddress (get_objfile_arch (probe->objfile),
7393 handler));
7394
7395 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7396 handler, bp_exception_resume).release ();
7397 bp->thread = tp->global_num;
7398 inferior_thread ()->control.exception_resume_breakpoint = bp;
7399 }
7400
7401 /* This is called when an exception has been intercepted. Check to
7402 see whether the exception's destination is of interest, and if so,
7403 set an exception resume breakpoint there. */
7404
7405 static void
7406 check_exception_resume (struct execution_control_state *ecs,
7407 struct frame_info *frame)
7408 {
7409 struct bound_probe probe;
7410 struct symbol *func;
7411
7412 /* First see if this exception unwinding breakpoint was set via a
7413 SystemTap probe point. If so, the probe has two arguments: the
7414 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7415 set a breakpoint there. */
7416 probe = find_probe_by_pc (get_frame_pc (frame));
7417 if (probe.prob)
7418 {
7419 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7420 return;
7421 }
7422
7423 func = get_frame_function (frame);
7424 if (!func)
7425 return;
7426
7427 TRY
7428 {
7429 const struct block *b;
7430 struct block_iterator iter;
7431 struct symbol *sym;
7432 int argno = 0;
7433
7434 /* The exception breakpoint is a thread-specific breakpoint on
7435 the unwinder's debug hook, declared as:
7436
7437 void _Unwind_DebugHook (void *cfa, void *handler);
7438
7439 The CFA argument indicates the frame to which control is
7440 about to be transferred. HANDLER is the destination PC.
7441
7442 We ignore the CFA and set a temporary breakpoint at HANDLER.
7443 This is not extremely efficient but it avoids issues in gdb
7444 with computing the DWARF CFA, and it also works even in weird
7445 cases such as throwing an exception from inside a signal
7446 handler. */
7447
7448 b = SYMBOL_BLOCK_VALUE (func);
7449 ALL_BLOCK_SYMBOLS (b, iter, sym)
7450 {
7451 if (!SYMBOL_IS_ARGUMENT (sym))
7452 continue;
7453
7454 if (argno == 0)
7455 ++argno;
7456 else
7457 {
7458 insert_exception_resume_breakpoint (ecs->event_thread,
7459 b, frame, sym);
7460 break;
7461 }
7462 }
7463 }
7464 CATCH (e, RETURN_MASK_ERROR)
7465 {
7466 }
7467 END_CATCH
7468 }
7469
7470 static void
7471 stop_waiting (struct execution_control_state *ecs)
7472 {
7473 if (debug_infrun)
7474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7475
7476 /* Let callers know we don't want to wait for the inferior anymore. */
7477 ecs->wait_some_more = 0;
7478
7479 /* If all-stop, but the target is always in non-stop mode, stop all
7480 threads now that we're presenting the stop to the user. */
7481 if (!non_stop && target_is_non_stop_p ())
7482 stop_all_threads ();
7483 }
7484
7485 /* Like keep_going, but passes the signal to the inferior, even if the
7486 signal is set to nopass. */
7487
7488 static void
7489 keep_going_pass_signal (struct execution_control_state *ecs)
7490 {
7491 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7492 gdb_assert (!ecs->event_thread->resumed);
7493
7494 /* Save the pc before execution, to compare with pc after stop. */
7495 ecs->event_thread->prev_pc
7496 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7497
7498 if (ecs->event_thread->control.trap_expected)
7499 {
7500 struct thread_info *tp = ecs->event_thread;
7501
7502 if (debug_infrun)
7503 fprintf_unfiltered (gdb_stdlog,
7504 "infrun: %s has trap_expected set, "
7505 "resuming to collect trap\n",
7506 target_pid_to_str (tp->ptid));
7507
7508 /* We haven't yet gotten our trap, and either: intercepted a
7509 non-signal event (e.g., a fork); or took a signal which we
7510 are supposed to pass through to the inferior. Simply
7511 continue. */
7512 resume (ecs->event_thread->suspend.stop_signal);
7513 }
7514 else if (step_over_info_valid_p ())
7515 {
7516 /* Another thread is stepping over a breakpoint in-line. If
7517 this thread needs a step-over too, queue the request. In
7518 either case, this resume must be deferred for later. */
7519 struct thread_info *tp = ecs->event_thread;
7520
7521 if (ecs->hit_singlestep_breakpoint
7522 || thread_still_needs_step_over (tp))
7523 {
7524 if (debug_infrun)
7525 fprintf_unfiltered (gdb_stdlog,
7526 "infrun: step-over already in progress: "
7527 "step-over for %s deferred\n",
7528 target_pid_to_str (tp->ptid));
7529 thread_step_over_chain_enqueue (tp);
7530 }
7531 else
7532 {
7533 if (debug_infrun)
7534 fprintf_unfiltered (gdb_stdlog,
7535 "infrun: step-over in progress: "
7536 "resume of %s deferred\n",
7537 target_pid_to_str (tp->ptid));
7538 }
7539 }
7540 else
7541 {
7542 struct regcache *regcache = get_current_regcache ();
7543 int remove_bp;
7544 int remove_wps;
7545 step_over_what step_what;
7546
7547 /* Either the trap was not expected, but we are continuing
7548 anyway (if we got a signal, the user asked it be passed to
7549 the child)
7550 -- or --
7551 We got our expected trap, but decided we should resume from
7552 it.
7553
7554 We're going to run this baby now!
7555
7556 Note that insert_breakpoints won't try to re-insert
7557 already inserted breakpoints. Therefore, we don't
7558 care if breakpoints were already inserted, or not. */
7559
7560 /* If we need to step over a breakpoint, and we're not using
7561 displaced stepping to do so, insert all breakpoints
7562 (watchpoints, etc.) but the one we're stepping over, step one
7563 instruction, and then re-insert the breakpoint when that step
7564 is finished. */
7565
7566 step_what = thread_still_needs_step_over (ecs->event_thread);
7567
7568 remove_bp = (ecs->hit_singlestep_breakpoint
7569 || (step_what & STEP_OVER_BREAKPOINT));
7570 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7571
7572 /* We can't use displaced stepping if we need to step past a
7573 watchpoint. The instruction copied to the scratch pad would
7574 still trigger the watchpoint. */
7575 if (remove_bp
7576 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7577 {
7578 set_step_over_info (regcache->aspace (),
7579 regcache_read_pc (regcache), remove_wps,
7580 ecs->event_thread->global_num);
7581 }
7582 else if (remove_wps)
7583 set_step_over_info (NULL, 0, remove_wps, -1);
7584
7585 /* If we now need to do an in-line step-over, we need to stop
7586 all other threads. Note this must be done before
7587 insert_breakpoints below, because that removes the breakpoint
7588 we're about to step over, otherwise other threads could miss
7589 it. */
7590 if (step_over_info_valid_p () && target_is_non_stop_p ())
7591 stop_all_threads ();
7592
7593 /* Stop stepping if inserting breakpoints fails. */
7594 TRY
7595 {
7596 insert_breakpoints ();
7597 }
7598 CATCH (e, RETURN_MASK_ERROR)
7599 {
7600 exception_print (gdb_stderr, e);
7601 stop_waiting (ecs);
7602 clear_step_over_info ();
7603 return;
7604 }
7605 END_CATCH
7606
7607 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7608
7609 resume (ecs->event_thread->suspend.stop_signal);
7610 }
7611
7612 prepare_to_wait (ecs);
7613 }
7614
7615 /* Called when we should continue running the inferior, because the
7616 current event doesn't cause a user visible stop. This does the
7617 resuming part; waiting for the next event is done elsewhere. */
7618
7619 static void
7620 keep_going (struct execution_control_state *ecs)
7621 {
7622 if (ecs->event_thread->control.trap_expected
7623 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7624 ecs->event_thread->control.trap_expected = 0;
7625
7626 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7627 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7628 keep_going_pass_signal (ecs);
7629 }
7630
7631 /* This function normally comes after a resume, before
7632 handle_inferior_event exits. It takes care of any last bits of
7633 housekeeping, and sets the all-important wait_some_more flag. */
7634
7635 static void
7636 prepare_to_wait (struct execution_control_state *ecs)
7637 {
7638 if (debug_infrun)
7639 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7640
7641 ecs->wait_some_more = 1;
7642
7643 if (!target_is_async_p ())
7644 mark_infrun_async_event_handler ();
7645 }
7646
7647 /* We are done with the step range of a step/next/si/ni command.
7648 Called once for each n of a "step n" operation. */
7649
7650 static void
7651 end_stepping_range (struct execution_control_state *ecs)
7652 {
7653 ecs->event_thread->control.stop_step = 1;
7654 stop_waiting (ecs);
7655 }
7656
7657 /* Several print_*_reason functions to print why the inferior has stopped.
7658 We always print something when the inferior exits, or receives a signal.
7659 The rest of the cases are dealt with later on in normal_stop and
7660 print_it_typical. Ideally there should be a call to one of these
7661 print_*_reason functions functions from handle_inferior_event each time
7662 stop_waiting is called.
7663
7664 Note that we don't call these directly, instead we delegate that to
7665 the interpreters, through observers. Interpreters then call these
7666 with whatever uiout is right. */
7667
7668 void
7669 print_end_stepping_range_reason (struct ui_out *uiout)
7670 {
7671 /* For CLI-like interpreters, print nothing. */
7672
7673 if (uiout->is_mi_like_p ())
7674 {
7675 uiout->field_string ("reason",
7676 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7677 }
7678 }
7679
7680 void
7681 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7682 {
7683 annotate_signalled ();
7684 if (uiout->is_mi_like_p ())
7685 uiout->field_string
7686 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7687 uiout->text ("\nProgram terminated with signal ");
7688 annotate_signal_name ();
7689 uiout->field_string ("signal-name",
7690 gdb_signal_to_name (siggnal));
7691 annotate_signal_name_end ();
7692 uiout->text (", ");
7693 annotate_signal_string ();
7694 uiout->field_string ("signal-meaning",
7695 gdb_signal_to_string (siggnal));
7696 annotate_signal_string_end ();
7697 uiout->text (".\n");
7698 uiout->text ("The program no longer exists.\n");
7699 }
7700
7701 void
7702 print_exited_reason (struct ui_out *uiout, int exitstatus)
7703 {
7704 struct inferior *inf = current_inferior ();
7705 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
7706
7707 annotate_exited (exitstatus);
7708 if (exitstatus)
7709 {
7710 if (uiout->is_mi_like_p ())
7711 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7712 uiout->text ("[Inferior ");
7713 uiout->text (plongest (inf->num));
7714 uiout->text (" (");
7715 uiout->text (pidstr);
7716 uiout->text (") exited with code ");
7717 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7718 uiout->text ("]\n");
7719 }
7720 else
7721 {
7722 if (uiout->is_mi_like_p ())
7723 uiout->field_string
7724 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7725 uiout->text ("[Inferior ");
7726 uiout->text (plongest (inf->num));
7727 uiout->text (" (");
7728 uiout->text (pidstr);
7729 uiout->text (") exited normally]\n");
7730 }
7731 }
7732
7733 /* Some targets/architectures can do extra processing/display of
7734 segmentation faults. E.g., Intel MPX boundary faults.
7735 Call the architecture dependent function to handle the fault. */
7736
7737 static void
7738 handle_segmentation_fault (struct ui_out *uiout)
7739 {
7740 struct regcache *regcache = get_current_regcache ();
7741 struct gdbarch *gdbarch = regcache->arch ();
7742
7743 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7744 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7745 }
7746
7747 void
7748 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7749 {
7750 struct thread_info *thr = inferior_thread ();
7751
7752 annotate_signal ();
7753
7754 if (uiout->is_mi_like_p ())
7755 ;
7756 else if (show_thread_that_caused_stop ())
7757 {
7758 const char *name;
7759
7760 uiout->text ("\nThread ");
7761 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7762
7763 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7764 if (name != NULL)
7765 {
7766 uiout->text (" \"");
7767 uiout->field_fmt ("name", "%s", name);
7768 uiout->text ("\"");
7769 }
7770 }
7771 else
7772 uiout->text ("\nProgram");
7773
7774 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7775 uiout->text (" stopped");
7776 else
7777 {
7778 uiout->text (" received signal ");
7779 annotate_signal_name ();
7780 if (uiout->is_mi_like_p ())
7781 uiout->field_string
7782 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7783 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7784 annotate_signal_name_end ();
7785 uiout->text (", ");
7786 annotate_signal_string ();
7787 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7788
7789 if (siggnal == GDB_SIGNAL_SEGV)
7790 handle_segmentation_fault (uiout);
7791
7792 annotate_signal_string_end ();
7793 }
7794 uiout->text (".\n");
7795 }
7796
7797 void
7798 print_no_history_reason (struct ui_out *uiout)
7799 {
7800 uiout->text ("\nNo more reverse-execution history.\n");
7801 }
7802
7803 /* Print current location without a level number, if we have changed
7804 functions or hit a breakpoint. Print source line if we have one.
7805 bpstat_print contains the logic deciding in detail what to print,
7806 based on the event(s) that just occurred. */
7807
7808 static void
7809 print_stop_location (struct target_waitstatus *ws)
7810 {
7811 int bpstat_ret;
7812 enum print_what source_flag;
7813 int do_frame_printing = 1;
7814 struct thread_info *tp = inferior_thread ();
7815
7816 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7817 switch (bpstat_ret)
7818 {
7819 case PRINT_UNKNOWN:
7820 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7821 should) carry around the function and does (or should) use
7822 that when doing a frame comparison. */
7823 if (tp->control.stop_step
7824 && frame_id_eq (tp->control.step_frame_id,
7825 get_frame_id (get_current_frame ()))
7826 && (tp->control.step_start_function
7827 == find_pc_function (tp->suspend.stop_pc)))
7828 {
7829 /* Finished step, just print source line. */
7830 source_flag = SRC_LINE;
7831 }
7832 else
7833 {
7834 /* Print location and source line. */
7835 source_flag = SRC_AND_LOC;
7836 }
7837 break;
7838 case PRINT_SRC_AND_LOC:
7839 /* Print location and source line. */
7840 source_flag = SRC_AND_LOC;
7841 break;
7842 case PRINT_SRC_ONLY:
7843 source_flag = SRC_LINE;
7844 break;
7845 case PRINT_NOTHING:
7846 /* Something bogus. */
7847 source_flag = SRC_LINE;
7848 do_frame_printing = 0;
7849 break;
7850 default:
7851 internal_error (__FILE__, __LINE__, _("Unknown value."));
7852 }
7853
7854 /* The behavior of this routine with respect to the source
7855 flag is:
7856 SRC_LINE: Print only source line
7857 LOCATION: Print only location
7858 SRC_AND_LOC: Print location and source line. */
7859 if (do_frame_printing)
7860 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7861 }
7862
7863 /* See infrun.h. */
7864
7865 void
7866 print_stop_event (struct ui_out *uiout)
7867 {
7868 struct target_waitstatus last;
7869 ptid_t last_ptid;
7870 struct thread_info *tp;
7871
7872 get_last_target_status (&last_ptid, &last);
7873
7874 {
7875 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7876
7877 print_stop_location (&last);
7878
7879 /* Display the auto-display expressions. */
7880 do_displays ();
7881 }
7882
7883 tp = inferior_thread ();
7884 if (tp->thread_fsm != NULL
7885 && tp->thread_fsm->finished_p ())
7886 {
7887 struct return_value_info *rv;
7888
7889 rv = tp->thread_fsm->return_value ();
7890 if (rv != NULL)
7891 print_return_value (uiout, rv);
7892 }
7893 }
7894
7895 /* See infrun.h. */
7896
7897 void
7898 maybe_remove_breakpoints (void)
7899 {
7900 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7901 {
7902 if (remove_breakpoints ())
7903 {
7904 target_terminal::ours_for_output ();
7905 printf_filtered (_("Cannot remove breakpoints because "
7906 "program is no longer writable.\nFurther "
7907 "execution is probably impossible.\n"));
7908 }
7909 }
7910 }
7911
7912 /* The execution context that just caused a normal stop. */
7913
7914 struct stop_context
7915 {
7916 stop_context ();
7917 ~stop_context ();
7918
7919 DISABLE_COPY_AND_ASSIGN (stop_context);
7920
7921 bool changed () const;
7922
7923 /* The stop ID. */
7924 ULONGEST stop_id;
7925
7926 /* The event PTID. */
7927
7928 ptid_t ptid;
7929
7930 /* If stopp for a thread event, this is the thread that caused the
7931 stop. */
7932 struct thread_info *thread;
7933
7934 /* The inferior that caused the stop. */
7935 int inf_num;
7936 };
7937
7938 /* Initializes a new stop context. If stopped for a thread event, this
7939 takes a strong reference to the thread. */
7940
7941 stop_context::stop_context ()
7942 {
7943 stop_id = get_stop_id ();
7944 ptid = inferior_ptid;
7945 inf_num = current_inferior ()->num;
7946
7947 if (inferior_ptid != null_ptid)
7948 {
7949 /* Take a strong reference so that the thread can't be deleted
7950 yet. */
7951 thread = inferior_thread ();
7952 thread->incref ();
7953 }
7954 else
7955 thread = NULL;
7956 }
7957
7958 /* Release a stop context previously created with save_stop_context.
7959 Releases the strong reference to the thread as well. */
7960
7961 stop_context::~stop_context ()
7962 {
7963 if (thread != NULL)
7964 thread->decref ();
7965 }
7966
7967 /* Return true if the current context no longer matches the saved stop
7968 context. */
7969
7970 bool
7971 stop_context::changed () const
7972 {
7973 if (ptid != inferior_ptid)
7974 return true;
7975 if (inf_num != current_inferior ()->num)
7976 return true;
7977 if (thread != NULL && thread->state != THREAD_STOPPED)
7978 return true;
7979 if (get_stop_id () != stop_id)
7980 return true;
7981 return false;
7982 }
7983
7984 /* See infrun.h. */
7985
7986 int
7987 normal_stop (void)
7988 {
7989 struct target_waitstatus last;
7990 ptid_t last_ptid;
7991
7992 get_last_target_status (&last_ptid, &last);
7993
7994 new_stop_id ();
7995
7996 /* If an exception is thrown from this point on, make sure to
7997 propagate GDB's knowledge of the executing state to the
7998 frontend/user running state. A QUIT is an easy exception to see
7999 here, so do this before any filtered output. */
8000
8001 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8002
8003 if (!non_stop)
8004 maybe_finish_thread_state.emplace (minus_one_ptid);
8005 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8006 || last.kind == TARGET_WAITKIND_EXITED)
8007 {
8008 /* On some targets, we may still have live threads in the
8009 inferior when we get a process exit event. E.g., for
8010 "checkpoint", when the current checkpoint/fork exits,
8011 linux-fork.c automatically switches to another fork from
8012 within target_mourn_inferior. */
8013 if (inferior_ptid != null_ptid)
8014 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8015 }
8016 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8017 maybe_finish_thread_state.emplace (inferior_ptid);
8018
8019 /* As we're presenting a stop, and potentially removing breakpoints,
8020 update the thread list so we can tell whether there are threads
8021 running on the target. With target remote, for example, we can
8022 only learn about new threads when we explicitly update the thread
8023 list. Do this before notifying the interpreters about signal
8024 stops, end of stepping ranges, etc., so that the "new thread"
8025 output is emitted before e.g., "Program received signal FOO",
8026 instead of after. */
8027 update_thread_list ();
8028
8029 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8030 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8031
8032 /* As with the notification of thread events, we want to delay
8033 notifying the user that we've switched thread context until
8034 the inferior actually stops.
8035
8036 There's no point in saying anything if the inferior has exited.
8037 Note that SIGNALLED here means "exited with a signal", not
8038 "received a signal".
8039
8040 Also skip saying anything in non-stop mode. In that mode, as we
8041 don't want GDB to switch threads behind the user's back, to avoid
8042 races where the user is typing a command to apply to thread x,
8043 but GDB switches to thread y before the user finishes entering
8044 the command, fetch_inferior_event installs a cleanup to restore
8045 the current thread back to the thread the user had selected right
8046 after this event is handled, so we're not really switching, only
8047 informing of a stop. */
8048 if (!non_stop
8049 && previous_inferior_ptid != inferior_ptid
8050 && target_has_execution
8051 && last.kind != TARGET_WAITKIND_SIGNALLED
8052 && last.kind != TARGET_WAITKIND_EXITED
8053 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8054 {
8055 SWITCH_THRU_ALL_UIS ()
8056 {
8057 target_terminal::ours_for_output ();
8058 printf_filtered (_("[Switching to %s]\n"),
8059 target_pid_to_str (inferior_ptid));
8060 annotate_thread_changed ();
8061 }
8062 previous_inferior_ptid = inferior_ptid;
8063 }
8064
8065 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8066 {
8067 SWITCH_THRU_ALL_UIS ()
8068 if (current_ui->prompt_state == PROMPT_BLOCKED)
8069 {
8070 target_terminal::ours_for_output ();
8071 printf_filtered (_("No unwaited-for children left.\n"));
8072 }
8073 }
8074
8075 /* Note: this depends on the update_thread_list call above. */
8076 maybe_remove_breakpoints ();
8077
8078 /* If an auto-display called a function and that got a signal,
8079 delete that auto-display to avoid an infinite recursion. */
8080
8081 if (stopped_by_random_signal)
8082 disable_current_display ();
8083
8084 SWITCH_THRU_ALL_UIS ()
8085 {
8086 async_enable_stdin ();
8087 }
8088
8089 /* Let the user/frontend see the threads as stopped. */
8090 maybe_finish_thread_state.reset ();
8091
8092 /* Select innermost stack frame - i.e., current frame is frame 0,
8093 and current location is based on that. Handle the case where the
8094 dummy call is returning after being stopped. E.g. the dummy call
8095 previously hit a breakpoint. (If the dummy call returns
8096 normally, we won't reach here.) Do this before the stop hook is
8097 run, so that it doesn't get to see the temporary dummy frame,
8098 which is not where we'll present the stop. */
8099 if (has_stack_frames ())
8100 {
8101 if (stop_stack_dummy == STOP_STACK_DUMMY)
8102 {
8103 /* Pop the empty frame that contains the stack dummy. This
8104 also restores inferior state prior to the call (struct
8105 infcall_suspend_state). */
8106 struct frame_info *frame = get_current_frame ();
8107
8108 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8109 frame_pop (frame);
8110 /* frame_pop calls reinit_frame_cache as the last thing it
8111 does which means there's now no selected frame. */
8112 }
8113
8114 select_frame (get_current_frame ());
8115
8116 /* Set the current source location. */
8117 set_current_sal_from_frame (get_current_frame ());
8118 }
8119
8120 /* Look up the hook_stop and run it (CLI internally handles problem
8121 of stop_command's pre-hook not existing). */
8122 if (stop_command != NULL)
8123 {
8124 stop_context saved_context;
8125
8126 TRY
8127 {
8128 execute_cmd_pre_hook (stop_command);
8129 }
8130 CATCH (ex, RETURN_MASK_ALL)
8131 {
8132 exception_fprintf (gdb_stderr, ex,
8133 "Error while running hook_stop:\n");
8134 }
8135 END_CATCH
8136
8137 /* If the stop hook resumes the target, then there's no point in
8138 trying to notify about the previous stop; its context is
8139 gone. Likewise if the command switches thread or inferior --
8140 the observers would print a stop for the wrong
8141 thread/inferior. */
8142 if (saved_context.changed ())
8143 return 1;
8144 }
8145
8146 /* Notify observers about the stop. This is where the interpreters
8147 print the stop event. */
8148 if (inferior_ptid != null_ptid)
8149 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8150 stop_print_frame);
8151 else
8152 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8153
8154 annotate_stopped ();
8155
8156 if (target_has_execution)
8157 {
8158 if (last.kind != TARGET_WAITKIND_SIGNALLED
8159 && last.kind != TARGET_WAITKIND_EXITED)
8160 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8161 Delete any breakpoint that is to be deleted at the next stop. */
8162 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8163 }
8164
8165 /* Try to get rid of automatically added inferiors that are no
8166 longer needed. Keeping those around slows down things linearly.
8167 Note that this never removes the current inferior. */
8168 prune_inferiors ();
8169
8170 return 0;
8171 }
8172 \f
8173 int
8174 signal_stop_state (int signo)
8175 {
8176 return signal_stop[signo];
8177 }
8178
8179 int
8180 signal_print_state (int signo)
8181 {
8182 return signal_print[signo];
8183 }
8184
8185 int
8186 signal_pass_state (int signo)
8187 {
8188 return signal_program[signo];
8189 }
8190
8191 static void
8192 signal_cache_update (int signo)
8193 {
8194 if (signo == -1)
8195 {
8196 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8197 signal_cache_update (signo);
8198
8199 return;
8200 }
8201
8202 signal_pass[signo] = (signal_stop[signo] == 0
8203 && signal_print[signo] == 0
8204 && signal_program[signo] == 1
8205 && signal_catch[signo] == 0);
8206 }
8207
8208 int
8209 signal_stop_update (int signo, int state)
8210 {
8211 int ret = signal_stop[signo];
8212
8213 signal_stop[signo] = state;
8214 signal_cache_update (signo);
8215 return ret;
8216 }
8217
8218 int
8219 signal_print_update (int signo, int state)
8220 {
8221 int ret = signal_print[signo];
8222
8223 signal_print[signo] = state;
8224 signal_cache_update (signo);
8225 return ret;
8226 }
8227
8228 int
8229 signal_pass_update (int signo, int state)
8230 {
8231 int ret = signal_program[signo];
8232
8233 signal_program[signo] = state;
8234 signal_cache_update (signo);
8235 return ret;
8236 }
8237
8238 /* Update the global 'signal_catch' from INFO and notify the
8239 target. */
8240
8241 void
8242 signal_catch_update (const unsigned int *info)
8243 {
8244 int i;
8245
8246 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8247 signal_catch[i] = info[i] > 0;
8248 signal_cache_update (-1);
8249 target_pass_signals (signal_pass);
8250 }
8251
8252 static void
8253 sig_print_header (void)
8254 {
8255 printf_filtered (_("Signal Stop\tPrint\tPass "
8256 "to program\tDescription\n"));
8257 }
8258
8259 static void
8260 sig_print_info (enum gdb_signal oursig)
8261 {
8262 const char *name = gdb_signal_to_name (oursig);
8263 int name_padding = 13 - strlen (name);
8264
8265 if (name_padding <= 0)
8266 name_padding = 0;
8267
8268 printf_filtered ("%s", name);
8269 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8270 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8271 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8272 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8273 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8274 }
8275
8276 /* Specify how various signals in the inferior should be handled. */
8277
8278 static void
8279 handle_command (const char *args, int from_tty)
8280 {
8281 int digits, wordlen;
8282 int sigfirst, siglast;
8283 enum gdb_signal oursig;
8284 int allsigs;
8285
8286 if (args == NULL)
8287 {
8288 error_no_arg (_("signal to handle"));
8289 }
8290
8291 /* Allocate and zero an array of flags for which signals to handle. */
8292
8293 const size_t nsigs = GDB_SIGNAL_LAST;
8294 unsigned char sigs[nsigs] {};
8295
8296 /* Break the command line up into args. */
8297
8298 gdb_argv built_argv (args);
8299
8300 /* Walk through the args, looking for signal oursigs, signal names, and
8301 actions. Signal numbers and signal names may be interspersed with
8302 actions, with the actions being performed for all signals cumulatively
8303 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8304
8305 for (char *arg : built_argv)
8306 {
8307 wordlen = strlen (arg);
8308 for (digits = 0; isdigit (arg[digits]); digits++)
8309 {;
8310 }
8311 allsigs = 0;
8312 sigfirst = siglast = -1;
8313
8314 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8315 {
8316 /* Apply action to all signals except those used by the
8317 debugger. Silently skip those. */
8318 allsigs = 1;
8319 sigfirst = 0;
8320 siglast = nsigs - 1;
8321 }
8322 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8323 {
8324 SET_SIGS (nsigs, sigs, signal_stop);
8325 SET_SIGS (nsigs, sigs, signal_print);
8326 }
8327 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8328 {
8329 UNSET_SIGS (nsigs, sigs, signal_program);
8330 }
8331 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8332 {
8333 SET_SIGS (nsigs, sigs, signal_print);
8334 }
8335 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8336 {
8337 SET_SIGS (nsigs, sigs, signal_program);
8338 }
8339 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8340 {
8341 UNSET_SIGS (nsigs, sigs, signal_stop);
8342 }
8343 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8344 {
8345 SET_SIGS (nsigs, sigs, signal_program);
8346 }
8347 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8348 {
8349 UNSET_SIGS (nsigs, sigs, signal_print);
8350 UNSET_SIGS (nsigs, sigs, signal_stop);
8351 }
8352 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8353 {
8354 UNSET_SIGS (nsigs, sigs, signal_program);
8355 }
8356 else if (digits > 0)
8357 {
8358 /* It is numeric. The numeric signal refers to our own
8359 internal signal numbering from target.h, not to host/target
8360 signal number. This is a feature; users really should be
8361 using symbolic names anyway, and the common ones like
8362 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8363
8364 sigfirst = siglast = (int)
8365 gdb_signal_from_command (atoi (arg));
8366 if (arg[digits] == '-')
8367 {
8368 siglast = (int)
8369 gdb_signal_from_command (atoi (arg + digits + 1));
8370 }
8371 if (sigfirst > siglast)
8372 {
8373 /* Bet he didn't figure we'd think of this case... */
8374 std::swap (sigfirst, siglast);
8375 }
8376 }
8377 else
8378 {
8379 oursig = gdb_signal_from_name (arg);
8380 if (oursig != GDB_SIGNAL_UNKNOWN)
8381 {
8382 sigfirst = siglast = (int) oursig;
8383 }
8384 else
8385 {
8386 /* Not a number and not a recognized flag word => complain. */
8387 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8388 }
8389 }
8390
8391 /* If any signal numbers or symbol names were found, set flags for
8392 which signals to apply actions to. */
8393
8394 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8395 {
8396 switch ((enum gdb_signal) signum)
8397 {
8398 case GDB_SIGNAL_TRAP:
8399 case GDB_SIGNAL_INT:
8400 if (!allsigs && !sigs[signum])
8401 {
8402 if (query (_("%s is used by the debugger.\n\
8403 Are you sure you want to change it? "),
8404 gdb_signal_to_name ((enum gdb_signal) signum)))
8405 {
8406 sigs[signum] = 1;
8407 }
8408 else
8409 {
8410 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8411 gdb_flush (gdb_stdout);
8412 }
8413 }
8414 break;
8415 case GDB_SIGNAL_0:
8416 case GDB_SIGNAL_DEFAULT:
8417 case GDB_SIGNAL_UNKNOWN:
8418 /* Make sure that "all" doesn't print these. */
8419 break;
8420 default:
8421 sigs[signum] = 1;
8422 break;
8423 }
8424 }
8425 }
8426
8427 for (int signum = 0; signum < nsigs; signum++)
8428 if (sigs[signum])
8429 {
8430 signal_cache_update (-1);
8431 target_pass_signals (signal_pass);
8432 target_program_signals (signal_program);
8433
8434 if (from_tty)
8435 {
8436 /* Show the results. */
8437 sig_print_header ();
8438 for (; signum < nsigs; signum++)
8439 if (sigs[signum])
8440 sig_print_info ((enum gdb_signal) signum);
8441 }
8442
8443 break;
8444 }
8445 }
8446
8447 /* Complete the "handle" command. */
8448
8449 static void
8450 handle_completer (struct cmd_list_element *ignore,
8451 completion_tracker &tracker,
8452 const char *text, const char *word)
8453 {
8454 static const char * const keywords[] =
8455 {
8456 "all",
8457 "stop",
8458 "ignore",
8459 "print",
8460 "pass",
8461 "nostop",
8462 "noignore",
8463 "noprint",
8464 "nopass",
8465 NULL,
8466 };
8467
8468 signal_completer (ignore, tracker, text, word);
8469 complete_on_enum (tracker, keywords, word, word);
8470 }
8471
8472 enum gdb_signal
8473 gdb_signal_from_command (int num)
8474 {
8475 if (num >= 1 && num <= 15)
8476 return (enum gdb_signal) num;
8477 error (_("Only signals 1-15 are valid as numeric signals.\n\
8478 Use \"info signals\" for a list of symbolic signals."));
8479 }
8480
8481 /* Print current contents of the tables set by the handle command.
8482 It is possible we should just be printing signals actually used
8483 by the current target (but for things to work right when switching
8484 targets, all signals should be in the signal tables). */
8485
8486 static void
8487 info_signals_command (const char *signum_exp, int from_tty)
8488 {
8489 enum gdb_signal oursig;
8490
8491 sig_print_header ();
8492
8493 if (signum_exp)
8494 {
8495 /* First see if this is a symbol name. */
8496 oursig = gdb_signal_from_name (signum_exp);
8497 if (oursig == GDB_SIGNAL_UNKNOWN)
8498 {
8499 /* No, try numeric. */
8500 oursig =
8501 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8502 }
8503 sig_print_info (oursig);
8504 return;
8505 }
8506
8507 printf_filtered ("\n");
8508 /* These ugly casts brought to you by the native VAX compiler. */
8509 for (oursig = GDB_SIGNAL_FIRST;
8510 (int) oursig < (int) GDB_SIGNAL_LAST;
8511 oursig = (enum gdb_signal) ((int) oursig + 1))
8512 {
8513 QUIT;
8514
8515 if (oursig != GDB_SIGNAL_UNKNOWN
8516 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8517 sig_print_info (oursig);
8518 }
8519
8520 printf_filtered (_("\nUse the \"handle\" command "
8521 "to change these tables.\n"));
8522 }
8523
8524 /* The $_siginfo convenience variable is a bit special. We don't know
8525 for sure the type of the value until we actually have a chance to
8526 fetch the data. The type can change depending on gdbarch, so it is
8527 also dependent on which thread you have selected.
8528
8529 1. making $_siginfo be an internalvar that creates a new value on
8530 access.
8531
8532 2. making the value of $_siginfo be an lval_computed value. */
8533
8534 /* This function implements the lval_computed support for reading a
8535 $_siginfo value. */
8536
8537 static void
8538 siginfo_value_read (struct value *v)
8539 {
8540 LONGEST transferred;
8541
8542 /* If we can access registers, so can we access $_siginfo. Likewise
8543 vice versa. */
8544 validate_registers_access ();
8545
8546 transferred =
8547 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8548 NULL,
8549 value_contents_all_raw (v),
8550 value_offset (v),
8551 TYPE_LENGTH (value_type (v)));
8552
8553 if (transferred != TYPE_LENGTH (value_type (v)))
8554 error (_("Unable to read siginfo"));
8555 }
8556
8557 /* This function implements the lval_computed support for writing a
8558 $_siginfo value. */
8559
8560 static void
8561 siginfo_value_write (struct value *v, struct value *fromval)
8562 {
8563 LONGEST transferred;
8564
8565 /* If we can access registers, so can we access $_siginfo. Likewise
8566 vice versa. */
8567 validate_registers_access ();
8568
8569 transferred = target_write (current_top_target (),
8570 TARGET_OBJECT_SIGNAL_INFO,
8571 NULL,
8572 value_contents_all_raw (fromval),
8573 value_offset (v),
8574 TYPE_LENGTH (value_type (fromval)));
8575
8576 if (transferred != TYPE_LENGTH (value_type (fromval)))
8577 error (_("Unable to write siginfo"));
8578 }
8579
8580 static const struct lval_funcs siginfo_value_funcs =
8581 {
8582 siginfo_value_read,
8583 siginfo_value_write
8584 };
8585
8586 /* Return a new value with the correct type for the siginfo object of
8587 the current thread using architecture GDBARCH. Return a void value
8588 if there's no object available. */
8589
8590 static struct value *
8591 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8592 void *ignore)
8593 {
8594 if (target_has_stack
8595 && inferior_ptid != null_ptid
8596 && gdbarch_get_siginfo_type_p (gdbarch))
8597 {
8598 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8599
8600 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8601 }
8602
8603 return allocate_value (builtin_type (gdbarch)->builtin_void);
8604 }
8605
8606 \f
8607 /* infcall_suspend_state contains state about the program itself like its
8608 registers and any signal it received when it last stopped.
8609 This state must be restored regardless of how the inferior function call
8610 ends (either successfully, or after it hits a breakpoint or signal)
8611 if the program is to properly continue where it left off. */
8612
8613 class infcall_suspend_state
8614 {
8615 public:
8616 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8617 once the inferior function call has finished. */
8618 infcall_suspend_state (struct gdbarch *gdbarch,
8619 const struct thread_info *tp,
8620 struct regcache *regcache)
8621 : m_thread_suspend (tp->suspend),
8622 m_registers (new readonly_detached_regcache (*regcache))
8623 {
8624 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8625
8626 if (gdbarch_get_siginfo_type_p (gdbarch))
8627 {
8628 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8629 size_t len = TYPE_LENGTH (type);
8630
8631 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8632
8633 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8634 siginfo_data.get (), 0, len) != len)
8635 {
8636 /* Errors ignored. */
8637 siginfo_data.reset (nullptr);
8638 }
8639 }
8640
8641 if (siginfo_data)
8642 {
8643 m_siginfo_gdbarch = gdbarch;
8644 m_siginfo_data = std::move (siginfo_data);
8645 }
8646 }
8647
8648 /* Return a pointer to the stored register state. */
8649
8650 readonly_detached_regcache *registers () const
8651 {
8652 return m_registers.get ();
8653 }
8654
8655 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8656
8657 void restore (struct gdbarch *gdbarch,
8658 struct thread_info *tp,
8659 struct regcache *regcache) const
8660 {
8661 tp->suspend = m_thread_suspend;
8662
8663 if (m_siginfo_gdbarch == gdbarch)
8664 {
8665 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8666
8667 /* Errors ignored. */
8668 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8669 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8670 }
8671
8672 /* The inferior can be gone if the user types "print exit(0)"
8673 (and perhaps other times). */
8674 if (target_has_execution)
8675 /* NB: The register write goes through to the target. */
8676 regcache->restore (registers ());
8677 }
8678
8679 private:
8680 /* How the current thread stopped before the inferior function call was
8681 executed. */
8682 struct thread_suspend_state m_thread_suspend;
8683
8684 /* The registers before the inferior function call was executed. */
8685 std::unique_ptr<readonly_detached_regcache> m_registers;
8686
8687 /* Format of SIGINFO_DATA or NULL if it is not present. */
8688 struct gdbarch *m_siginfo_gdbarch = nullptr;
8689
8690 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8691 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8692 content would be invalid. */
8693 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8694 };
8695
8696 infcall_suspend_state_up
8697 save_infcall_suspend_state ()
8698 {
8699 struct thread_info *tp = inferior_thread ();
8700 struct regcache *regcache = get_current_regcache ();
8701 struct gdbarch *gdbarch = regcache->arch ();
8702
8703 infcall_suspend_state_up inf_state
8704 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8705
8706 /* Having saved the current state, adjust the thread state, discarding
8707 any stop signal information. The stop signal is not useful when
8708 starting an inferior function call, and run_inferior_call will not use
8709 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8710 tp->suspend.stop_signal = GDB_SIGNAL_0;
8711
8712 return inf_state;
8713 }
8714
8715 /* Restore inferior session state to INF_STATE. */
8716
8717 void
8718 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8719 {
8720 struct thread_info *tp = inferior_thread ();
8721 struct regcache *regcache = get_current_regcache ();
8722 struct gdbarch *gdbarch = regcache->arch ();
8723
8724 inf_state->restore (gdbarch, tp, regcache);
8725 discard_infcall_suspend_state (inf_state);
8726 }
8727
8728 void
8729 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8730 {
8731 delete inf_state;
8732 }
8733
8734 readonly_detached_regcache *
8735 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8736 {
8737 return inf_state->registers ();
8738 }
8739
8740 /* infcall_control_state contains state regarding gdb's control of the
8741 inferior itself like stepping control. It also contains session state like
8742 the user's currently selected frame. */
8743
8744 struct infcall_control_state
8745 {
8746 struct thread_control_state thread_control;
8747 struct inferior_control_state inferior_control;
8748
8749 /* Other fields: */
8750 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8751 int stopped_by_random_signal = 0;
8752
8753 /* ID if the selected frame when the inferior function call was made. */
8754 struct frame_id selected_frame_id {};
8755 };
8756
8757 /* Save all of the information associated with the inferior<==>gdb
8758 connection. */
8759
8760 infcall_control_state_up
8761 save_infcall_control_state ()
8762 {
8763 infcall_control_state_up inf_status (new struct infcall_control_state);
8764 struct thread_info *tp = inferior_thread ();
8765 struct inferior *inf = current_inferior ();
8766
8767 inf_status->thread_control = tp->control;
8768 inf_status->inferior_control = inf->control;
8769
8770 tp->control.step_resume_breakpoint = NULL;
8771 tp->control.exception_resume_breakpoint = NULL;
8772
8773 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8774 chain. If caller's caller is walking the chain, they'll be happier if we
8775 hand them back the original chain when restore_infcall_control_state is
8776 called. */
8777 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8778
8779 /* Other fields: */
8780 inf_status->stop_stack_dummy = stop_stack_dummy;
8781 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8782
8783 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8784
8785 return inf_status;
8786 }
8787
8788 static void
8789 restore_selected_frame (const frame_id &fid)
8790 {
8791 frame_info *frame = frame_find_by_id (fid);
8792
8793 /* If inf_status->selected_frame_id is NULL, there was no previously
8794 selected frame. */
8795 if (frame == NULL)
8796 {
8797 warning (_("Unable to restore previously selected frame."));
8798 return;
8799 }
8800
8801 select_frame (frame);
8802 }
8803
8804 /* Restore inferior session state to INF_STATUS. */
8805
8806 void
8807 restore_infcall_control_state (struct infcall_control_state *inf_status)
8808 {
8809 struct thread_info *tp = inferior_thread ();
8810 struct inferior *inf = current_inferior ();
8811
8812 if (tp->control.step_resume_breakpoint)
8813 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8814
8815 if (tp->control.exception_resume_breakpoint)
8816 tp->control.exception_resume_breakpoint->disposition
8817 = disp_del_at_next_stop;
8818
8819 /* Handle the bpstat_copy of the chain. */
8820 bpstat_clear (&tp->control.stop_bpstat);
8821
8822 tp->control = inf_status->thread_control;
8823 inf->control = inf_status->inferior_control;
8824
8825 /* Other fields: */
8826 stop_stack_dummy = inf_status->stop_stack_dummy;
8827 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8828
8829 if (target_has_stack)
8830 {
8831 /* The point of the try/catch is that if the stack is clobbered,
8832 walking the stack might encounter a garbage pointer and
8833 error() trying to dereference it. */
8834 TRY
8835 {
8836 restore_selected_frame (inf_status->selected_frame_id);
8837 }
8838 CATCH (ex, RETURN_MASK_ERROR)
8839 {
8840 exception_fprintf (gdb_stderr, ex,
8841 "Unable to restore previously selected frame:\n");
8842 /* Error in restoring the selected frame. Select the
8843 innermost frame. */
8844 select_frame (get_current_frame ());
8845 }
8846 END_CATCH
8847 }
8848
8849 delete inf_status;
8850 }
8851
8852 void
8853 discard_infcall_control_state (struct infcall_control_state *inf_status)
8854 {
8855 if (inf_status->thread_control.step_resume_breakpoint)
8856 inf_status->thread_control.step_resume_breakpoint->disposition
8857 = disp_del_at_next_stop;
8858
8859 if (inf_status->thread_control.exception_resume_breakpoint)
8860 inf_status->thread_control.exception_resume_breakpoint->disposition
8861 = disp_del_at_next_stop;
8862
8863 /* See save_infcall_control_state for info on stop_bpstat. */
8864 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8865
8866 delete inf_status;
8867 }
8868 \f
8869 /* See infrun.h. */
8870
8871 void
8872 clear_exit_convenience_vars (void)
8873 {
8874 clear_internalvar (lookup_internalvar ("_exitsignal"));
8875 clear_internalvar (lookup_internalvar ("_exitcode"));
8876 }
8877 \f
8878
8879 /* User interface for reverse debugging:
8880 Set exec-direction / show exec-direction commands
8881 (returns error unless target implements to_set_exec_direction method). */
8882
8883 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8884 static const char exec_forward[] = "forward";
8885 static const char exec_reverse[] = "reverse";
8886 static const char *exec_direction = exec_forward;
8887 static const char *const exec_direction_names[] = {
8888 exec_forward,
8889 exec_reverse,
8890 NULL
8891 };
8892
8893 static void
8894 set_exec_direction_func (const char *args, int from_tty,
8895 struct cmd_list_element *cmd)
8896 {
8897 if (target_can_execute_reverse)
8898 {
8899 if (!strcmp (exec_direction, exec_forward))
8900 execution_direction = EXEC_FORWARD;
8901 else if (!strcmp (exec_direction, exec_reverse))
8902 execution_direction = EXEC_REVERSE;
8903 }
8904 else
8905 {
8906 exec_direction = exec_forward;
8907 error (_("Target does not support this operation."));
8908 }
8909 }
8910
8911 static void
8912 show_exec_direction_func (struct ui_file *out, int from_tty,
8913 struct cmd_list_element *cmd, const char *value)
8914 {
8915 switch (execution_direction) {
8916 case EXEC_FORWARD:
8917 fprintf_filtered (out, _("Forward.\n"));
8918 break;
8919 case EXEC_REVERSE:
8920 fprintf_filtered (out, _("Reverse.\n"));
8921 break;
8922 default:
8923 internal_error (__FILE__, __LINE__,
8924 _("bogus execution_direction value: %d"),
8925 (int) execution_direction);
8926 }
8927 }
8928
8929 static void
8930 show_schedule_multiple (struct ui_file *file, int from_tty,
8931 struct cmd_list_element *c, const char *value)
8932 {
8933 fprintf_filtered (file, _("Resuming the execution of threads "
8934 "of all processes is %s.\n"), value);
8935 }
8936
8937 /* Implementation of `siginfo' variable. */
8938
8939 static const struct internalvar_funcs siginfo_funcs =
8940 {
8941 siginfo_make_value,
8942 NULL,
8943 NULL
8944 };
8945
8946 /* Callback for infrun's target events source. This is marked when a
8947 thread has a pending status to process. */
8948
8949 static void
8950 infrun_async_inferior_event_handler (gdb_client_data data)
8951 {
8952 inferior_event_handler (INF_REG_EVENT, NULL);
8953 }
8954
8955 void
8956 _initialize_infrun (void)
8957 {
8958 struct cmd_list_element *c;
8959
8960 /* Register extra event sources in the event loop. */
8961 infrun_async_inferior_event_token
8962 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8963
8964 add_info ("signals", info_signals_command, _("\
8965 What debugger does when program gets various signals.\n\
8966 Specify a signal as argument to print info on that signal only."));
8967 add_info_alias ("handle", "signals", 0);
8968
8969 c = add_com ("handle", class_run, handle_command, _("\
8970 Specify how to handle signals.\n\
8971 Usage: handle SIGNAL [ACTIONS]\n\
8972 Args are signals and actions to apply to those signals.\n\
8973 If no actions are specified, the current settings for the specified signals\n\
8974 will be displayed instead.\n\
8975 \n\
8976 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8977 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8978 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8979 The special arg \"all\" is recognized to mean all signals except those\n\
8980 used by the debugger, typically SIGTRAP and SIGINT.\n\
8981 \n\
8982 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8983 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8984 Stop means reenter debugger if this signal happens (implies print).\n\
8985 Print means print a message if this signal happens.\n\
8986 Pass means let program see this signal; otherwise program doesn't know.\n\
8987 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8988 Pass and Stop may be combined.\n\
8989 \n\
8990 Multiple signals may be specified. Signal numbers and signal names\n\
8991 may be interspersed with actions, with the actions being performed for\n\
8992 all signals cumulatively specified."));
8993 set_cmd_completer (c, handle_completer);
8994
8995 if (!dbx_commands)
8996 stop_command = add_cmd ("stop", class_obscure,
8997 not_just_help_class_command, _("\
8998 There is no `stop' command, but you can set a hook on `stop'.\n\
8999 This allows you to set a list of commands to be run each time execution\n\
9000 of the program stops."), &cmdlist);
9001
9002 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9003 Set inferior debugging."), _("\
9004 Show inferior debugging."), _("\
9005 When non-zero, inferior specific debugging is enabled."),
9006 NULL,
9007 show_debug_infrun,
9008 &setdebuglist, &showdebuglist);
9009
9010 add_setshow_boolean_cmd ("displaced", class_maintenance,
9011 &debug_displaced, _("\
9012 Set displaced stepping debugging."), _("\
9013 Show displaced stepping debugging."), _("\
9014 When non-zero, displaced stepping specific debugging is enabled."),
9015 NULL,
9016 show_debug_displaced,
9017 &setdebuglist, &showdebuglist);
9018
9019 add_setshow_boolean_cmd ("non-stop", no_class,
9020 &non_stop_1, _("\
9021 Set whether gdb controls the inferior in non-stop mode."), _("\
9022 Show whether gdb controls the inferior in non-stop mode."), _("\
9023 When debugging a multi-threaded program and this setting is\n\
9024 off (the default, also called all-stop mode), when one thread stops\n\
9025 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9026 all other threads in the program while you interact with the thread of\n\
9027 interest. When you continue or step a thread, you can allow the other\n\
9028 threads to run, or have them remain stopped, but while you inspect any\n\
9029 thread's state, all threads stop.\n\
9030 \n\
9031 In non-stop mode, when one thread stops, other threads can continue\n\
9032 to run freely. You'll be able to step each thread independently,\n\
9033 leave it stopped or free to run as needed."),
9034 set_non_stop,
9035 show_non_stop,
9036 &setlist,
9037 &showlist);
9038
9039 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9040 {
9041 signal_stop[i] = 1;
9042 signal_print[i] = 1;
9043 signal_program[i] = 1;
9044 signal_catch[i] = 0;
9045 }
9046
9047 /* Signals caused by debugger's own actions should not be given to
9048 the program afterwards.
9049
9050 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9051 explicitly specifies that it should be delivered to the target
9052 program. Typically, that would occur when a user is debugging a
9053 target monitor on a simulator: the target monitor sets a
9054 breakpoint; the simulator encounters this breakpoint and halts
9055 the simulation handing control to GDB; GDB, noting that the stop
9056 address doesn't map to any known breakpoint, returns control back
9057 to the simulator; the simulator then delivers the hardware
9058 equivalent of a GDB_SIGNAL_TRAP to the program being
9059 debugged. */
9060 signal_program[GDB_SIGNAL_TRAP] = 0;
9061 signal_program[GDB_SIGNAL_INT] = 0;
9062
9063 /* Signals that are not errors should not normally enter the debugger. */
9064 signal_stop[GDB_SIGNAL_ALRM] = 0;
9065 signal_print[GDB_SIGNAL_ALRM] = 0;
9066 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9067 signal_print[GDB_SIGNAL_VTALRM] = 0;
9068 signal_stop[GDB_SIGNAL_PROF] = 0;
9069 signal_print[GDB_SIGNAL_PROF] = 0;
9070 signal_stop[GDB_SIGNAL_CHLD] = 0;
9071 signal_print[GDB_SIGNAL_CHLD] = 0;
9072 signal_stop[GDB_SIGNAL_IO] = 0;
9073 signal_print[GDB_SIGNAL_IO] = 0;
9074 signal_stop[GDB_SIGNAL_POLL] = 0;
9075 signal_print[GDB_SIGNAL_POLL] = 0;
9076 signal_stop[GDB_SIGNAL_URG] = 0;
9077 signal_print[GDB_SIGNAL_URG] = 0;
9078 signal_stop[GDB_SIGNAL_WINCH] = 0;
9079 signal_print[GDB_SIGNAL_WINCH] = 0;
9080 signal_stop[GDB_SIGNAL_PRIO] = 0;
9081 signal_print[GDB_SIGNAL_PRIO] = 0;
9082
9083 /* These signals are used internally by user-level thread
9084 implementations. (See signal(5) on Solaris.) Like the above
9085 signals, a healthy program receives and handles them as part of
9086 its normal operation. */
9087 signal_stop[GDB_SIGNAL_LWP] = 0;
9088 signal_print[GDB_SIGNAL_LWP] = 0;
9089 signal_stop[GDB_SIGNAL_WAITING] = 0;
9090 signal_print[GDB_SIGNAL_WAITING] = 0;
9091 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9092 signal_print[GDB_SIGNAL_CANCEL] = 0;
9093 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9094 signal_print[GDB_SIGNAL_LIBRT] = 0;
9095
9096 /* Update cached state. */
9097 signal_cache_update (-1);
9098
9099 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9100 &stop_on_solib_events, _("\
9101 Set stopping for shared library events."), _("\
9102 Show stopping for shared library events."), _("\
9103 If nonzero, gdb will give control to the user when the dynamic linker\n\
9104 notifies gdb of shared library events. The most common event of interest\n\
9105 to the user would be loading/unloading of a new library."),
9106 set_stop_on_solib_events,
9107 show_stop_on_solib_events,
9108 &setlist, &showlist);
9109
9110 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9111 follow_fork_mode_kind_names,
9112 &follow_fork_mode_string, _("\
9113 Set debugger response to a program call of fork or vfork."), _("\
9114 Show debugger response to a program call of fork or vfork."), _("\
9115 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9116 parent - the original process is debugged after a fork\n\
9117 child - the new process is debugged after a fork\n\
9118 The unfollowed process will continue to run.\n\
9119 By default, the debugger will follow the parent process."),
9120 NULL,
9121 show_follow_fork_mode_string,
9122 &setlist, &showlist);
9123
9124 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9125 follow_exec_mode_names,
9126 &follow_exec_mode_string, _("\
9127 Set debugger response to a program call of exec."), _("\
9128 Show debugger response to a program call of exec."), _("\
9129 An exec call replaces the program image of a process.\n\
9130 \n\
9131 follow-exec-mode can be:\n\
9132 \n\
9133 new - the debugger creates a new inferior and rebinds the process\n\
9134 to this new inferior. The program the process was running before\n\
9135 the exec call can be restarted afterwards by restarting the original\n\
9136 inferior.\n\
9137 \n\
9138 same - the debugger keeps the process bound to the same inferior.\n\
9139 The new executable image replaces the previous executable loaded in\n\
9140 the inferior. Restarting the inferior after the exec call restarts\n\
9141 the executable the process was running after the exec call.\n\
9142 \n\
9143 By default, the debugger will use the same inferior."),
9144 NULL,
9145 show_follow_exec_mode_string,
9146 &setlist, &showlist);
9147
9148 add_setshow_enum_cmd ("scheduler-locking", class_run,
9149 scheduler_enums, &scheduler_mode, _("\
9150 Set mode for locking scheduler during execution."), _("\
9151 Show mode for locking scheduler during execution."), _("\
9152 off == no locking (threads may preempt at any time)\n\
9153 on == full locking (no thread except the current thread may run)\n\
9154 This applies to both normal execution and replay mode.\n\
9155 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9156 In this mode, other threads may run during other commands.\n\
9157 This applies to both normal execution and replay mode.\n\
9158 replay == scheduler locked in replay mode and unlocked during normal execution."),
9159 set_schedlock_func, /* traps on target vector */
9160 show_scheduler_mode,
9161 &setlist, &showlist);
9162
9163 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9164 Set mode for resuming threads of all processes."), _("\
9165 Show mode for resuming threads of all processes."), _("\
9166 When on, execution commands (such as 'continue' or 'next') resume all\n\
9167 threads of all processes. When off (which is the default), execution\n\
9168 commands only resume the threads of the current process. The set of\n\
9169 threads that are resumed is further refined by the scheduler-locking\n\
9170 mode (see help set scheduler-locking)."),
9171 NULL,
9172 show_schedule_multiple,
9173 &setlist, &showlist);
9174
9175 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9176 Set mode of the step operation."), _("\
9177 Show mode of the step operation."), _("\
9178 When set, doing a step over a function without debug line information\n\
9179 will stop at the first instruction of that function. Otherwise, the\n\
9180 function is skipped and the step command stops at a different source line."),
9181 NULL,
9182 show_step_stop_if_no_debug,
9183 &setlist, &showlist);
9184
9185 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9186 &can_use_displaced_stepping, _("\
9187 Set debugger's willingness to use displaced stepping."), _("\
9188 Show debugger's willingness to use displaced stepping."), _("\
9189 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9190 supported by the target architecture. If off, gdb will not use displaced\n\
9191 stepping to step over breakpoints, even if such is supported by the target\n\
9192 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9193 if the target architecture supports it and non-stop mode is active, but will not\n\
9194 use it in all-stop mode (see help set non-stop)."),
9195 NULL,
9196 show_can_use_displaced_stepping,
9197 &setlist, &showlist);
9198
9199 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9200 &exec_direction, _("Set direction of execution.\n\
9201 Options are 'forward' or 'reverse'."),
9202 _("Show direction of execution (forward/reverse)."),
9203 _("Tells gdb whether to execute forward or backward."),
9204 set_exec_direction_func, show_exec_direction_func,
9205 &setlist, &showlist);
9206
9207 /* Set/show detach-on-fork: user-settable mode. */
9208
9209 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9210 Set whether gdb will detach the child of a fork."), _("\
9211 Show whether gdb will detach the child of a fork."), _("\
9212 Tells gdb whether to detach the child of a fork."),
9213 NULL, NULL, &setlist, &showlist);
9214
9215 /* Set/show disable address space randomization mode. */
9216
9217 add_setshow_boolean_cmd ("disable-randomization", class_support,
9218 &disable_randomization, _("\
9219 Set disabling of debuggee's virtual address space randomization."), _("\
9220 Show disabling of debuggee's virtual address space randomization."), _("\
9221 When this mode is on (which is the default), randomization of the virtual\n\
9222 address space is disabled. Standalone programs run with the randomization\n\
9223 enabled by default on some platforms."),
9224 &set_disable_randomization,
9225 &show_disable_randomization,
9226 &setlist, &showlist);
9227
9228 /* ptid initializations */
9229 inferior_ptid = null_ptid;
9230 target_last_wait_ptid = minus_one_ptid;
9231
9232 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9233 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9234 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9235 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9236
9237 /* Explicitly create without lookup, since that tries to create a
9238 value with a void typed value, and when we get here, gdbarch
9239 isn't initialized yet. At this point, we're quite sure there
9240 isn't another convenience variable of the same name. */
9241 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9242
9243 add_setshow_boolean_cmd ("observer", no_class,
9244 &observer_mode_1, _("\
9245 Set whether gdb controls the inferior in observer mode."), _("\
9246 Show whether gdb controls the inferior in observer mode."), _("\
9247 In observer mode, GDB can get data from the inferior, but not\n\
9248 affect its execution. Registers and memory may not be changed,\n\
9249 breakpoints may not be set, and the program cannot be interrupted\n\
9250 or signalled."),
9251 set_observer_mode,
9252 show_observer_mode,
9253 &setlist,
9254 &showlist);
9255 }
This page took 0.202416 seconds and 5 git commands to generate.