Small clean up of use_displaced_stepping
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdb_select.h"
68 #include <unordered_map>
69
70 /* Prototypes for local functions */
71
72 static void sig_print_info (enum gdb_signal);
73
74 static void sig_print_header (void);
75
76 static int follow_fork (void);
77
78 static int follow_fork_inferior (int follow_child, int detach_fork);
79
80 static void follow_inferior_reset_breakpoints (void);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 static void wait_for_inferior (inferior *inf);
95
96 /* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98 static struct async_event_handler *infrun_async_inferior_event_token;
99
100 /* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102 static int infrun_is_async = -1;
103
104 /* See infrun.h. */
105
106 void
107 infrun_async (int enable)
108 {
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123 }
124
125 /* See infrun.h. */
126
127 void
128 mark_infrun_async_event_handler (void)
129 {
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 }
132
133 /* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
136 bool step_stop_if_no_debug = false;
137 static void
138 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142 }
143
144 /* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
147
148 static ptid_t previous_inferior_ptid;
149
150 /* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
155 static bool detach_fork = true;
156
157 bool debug_displaced = false;
158 static void
159 show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163 }
164
165 unsigned int debug_infrun = 0;
166 static void
167 show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171 }
172
173
174 /* Support for disabling address space randomization. */
175
176 bool disable_randomization = true;
177
178 static void
179 show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191 }
192
193 static void
194 set_disable_randomization (const char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201 }
202
203 /* User interface for non-stop mode. */
204
205 bool non_stop = false;
206 static bool non_stop_1 = false;
207
208 static void
209 set_non_stop (const char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219 }
220
221 static void
222 show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228 }
229
230 /* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
234 bool observer_mode = false;
235 static bool observer_mode_1 = false;
236
237 static void
238 set_observer_mode (const char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
256 may_insert_fast_tracepoints = true;
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
264 pagination_enabled = 0;
265 non_stop = non_stop_1 = true;
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271 }
272
273 static void
274 show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276 {
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278 }
279
280 /* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286 void
287 update_observer_mode (void)
288 {
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301 }
302
303 /* Tables of how to react to signals; the user sets them. */
304
305 static unsigned char signal_stop[GDB_SIGNAL_LAST];
306 static unsigned char signal_print[GDB_SIGNAL_LAST];
307 static unsigned char signal_program[GDB_SIGNAL_LAST];
308
309 /* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
311 signal" command. */
312 static unsigned char signal_catch[GDB_SIGNAL_LAST];
313
314 /* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
317 static unsigned char signal_pass[GDB_SIGNAL_LAST];
318
319 #define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327 #define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
335 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338 void
339 update_signals_program_target (void)
340 {
341 target_program_signals (signal_program);
342 }
343
344 /* Value to pass to target_resume() to cause all threads to resume. */
345
346 #define RESUME_ALL minus_one_ptid
347
348 /* Command list pointer for the "stop" placeholder. */
349
350 static struct cmd_list_element *stop_command;
351
352 /* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
354 int stop_on_solib_events;
355
356 /* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359 static void
360 set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
362 {
363 update_solib_breakpoints ();
364 }
365
366 static void
367 show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372 }
373
374 /* Nonzero after stop if current stack frame should be printed. */
375
376 static int stop_print_frame;
377
378 /* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381 static process_stratum_target *target_last_proc_target;
382 static ptid_t target_last_wait_ptid;
383 static struct target_waitstatus target_last_waitstatus;
384
385 void init_thread_stepping_state (struct thread_info *tss);
386
387 static const char follow_fork_mode_child[] = "child";
388 static const char follow_fork_mode_parent[] = "parent";
389
390 static const char *const follow_fork_mode_kind_names[] = {
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
394 };
395
396 static const char *follow_fork_mode_string = follow_fork_mode_parent;
397 static void
398 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400 {
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
404 value);
405 }
406 \f
407
408 /* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414 static int
415 follow_fork_inferior (int follow_child, int detach_fork)
416 {
417 int has_vforked;
418 ptid_t parent_ptid, child_ptid;
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
427 && current_ui->prompt_state == PROMPT_BLOCKED
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436 Can not resume the parent process over vfork in the foreground while\n\
437 holding the child stopped. Try \"set detach-on-fork\" or \
438 \"set schedule-multiple\".\n"));
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
457 remove_breakpoints_inf (current_inferior ());
458 }
459
460 if (print_inferior_events)
461 {
462 /* Ensure that we have a process ptid. */
463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
464
465 target_terminal::ours_for_output ();
466 fprintf_filtered (gdb_stdlog,
467 _("[Detaching after %s from child %s]\n"),
468 has_vforked ? "vfork" : "fork",
469 target_pid_to_str (process_ptid).c_str ());
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
475
476 /* Add process to GDB's tables. */
477 child_inf = add_inferior (child_ptid.pid ());
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
486
487 set_current_inferior (child_inf);
488 switch_to_no_thread ();
489 child_inf->symfile_flags = SYMFILE_NO_READ;
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 exec_on_vfork ();
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 process_stratum_target *target = parent_inf->process_target ();
579
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
619
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
633
634 add_thread_silent (target, child_ptid);
635 inferior_ptid = child_ptid;
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
644
645 exec_on_vfork ();
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
650 child_inf->pspace = new program_space (child_inf->aspace);
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static int
673 follow_fork (void)
674 {
675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
688 struct thread_fsm *thread_fsm = NULL;
689
690 if (!non_stop)
691 {
692 process_stratum_target *wait_target;
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (wait_ptid != minus_one_ptid
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
716 switch_to_thread (wait_thread);
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
743 thread_fsm = tp->thread_fsm;
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
754 delete_exception_resume_breakpoint (tp);
755 tp->thread_fsm = NULL;
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
761 process_stratum_target *parent_targ = tp->inf->process_target ();
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
777 tp = find_thread_ptid (parent_targ, parent);
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
785 /* If we followed the child, switch to it... */
786 if (follow_child)
787 {
788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
789 switch_to_thread (child_thr);
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->thread_fsm = thread_fsm;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
832
833 return should_resume;
834 }
835
836 static void
837 follow_inferior_reset_breakpoints (void)
838 {
839 struct thread_info *tp = inferior_thread ();
840
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
854 if (tp->control.step_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
861 if (tp->control.exception_resume_breakpoint)
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
866
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
874 }
875
876 /* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879 static int
880 proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882 {
883 int pid = * (int *) arg;
884
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
888 && !thread->stop_requested
889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
894 target_pid_to_str (thread->ptid).c_str ());
895
896 switch_to_thread (thread);
897 clear_proceed_status (0);
898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
899 }
900
901 return 0;
902 }
903
904 /* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907 class scoped_restore_exited_inferior
908 {
909 public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914 private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918 };
919
920 /* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923 static void
924 handle_vfork_child_exec_or_exit (int exec)
925 {
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
937
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
941 {
942 struct thread_info *tp;
943 struct program_space *pspace;
944 struct address_space *aspace;
945
946 /* follow-fork child, detach-on-fork on. */
947
948 vfork_parent->pending_detach = 0;
949
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
957 if (!exec)
958 maybe_restore_inferior.emplace ();
959 else
960 maybe_restore_thread.emplace ();
961
962 /* We're letting loose of the parent. */
963 tp = any_live_thread_of_inferior (vfork_parent);
964 switch_to_thread (tp);
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
983 if (print_inferior_events)
984 {
985 std::string pidstr
986 = target_pid_to_str (ptid_t (vfork_parent->pid));
987
988 target_terminal::ours_for_output ();
989
990 if (exec)
991 {
992 fprintf_filtered (gdb_stdlog,
993 _("[Detaching vfork parent %s "
994 "after child exec]\n"), pidstr.c_str ());
995 }
996 else
997 {
998 fprintf_filtered (gdb_stdlog,
999 _("[Detaching vfork parent %s "
1000 "after child exit]\n"), pidstr.c_str ());
1001 }
1002 }
1003
1004 target_detach (vfork_parent, 0);
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
1014 inf->pspace = new program_space (maybe_new_address_space ());
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
1019 resume_parent = vfork_parent->pid;
1020 }
1021 else
1022 {
1023 /* If this is a vfork child exiting, then the pspace and
1024 aspaces were shared with the parent. Since we're
1025 reporting the process exit, we'll be mourning all that is
1026 found in the address space, and switching to null_ptid,
1027 preparing to start a new inferior. But, since we don't
1028 want to clobber the parent's address/program spaces, we
1029 go ahead and create a new one for this exiting
1030 inferior. */
1031
1032 /* Switch to null_ptid while running clone_program_space, so
1033 that clone_program_space doesn't want to read the
1034 selected frame of a dead process. */
1035 scoped_restore restore_ptid
1036 = make_scoped_restore (&inferior_ptid, null_ptid);
1037
1038 inf->pspace = new program_space (maybe_new_address_space ());
1039 inf->aspace = inf->pspace->aspace;
1040 set_current_program_space (inf->pspace);
1041 inf->removable = 1;
1042 inf->symfile_flags = SYMFILE_NO_READ;
1043 clone_program_space (inf->pspace, vfork_parent->pspace);
1044
1045 resume_parent = vfork_parent->pid;
1046 }
1047
1048 gdb_assert (current_program_space == inf->pspace);
1049
1050 if (non_stop && resume_parent != -1)
1051 {
1052 /* If the user wanted the parent to be running, let it go
1053 free now. */
1054 scoped_restore_current_thread restore_thread;
1055
1056 if (debug_infrun)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "infrun: resuming vfork parent process %d\n",
1059 resume_parent);
1060
1061 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1062 }
1063 }
1064 }
1065
1066 /* Enum strings for "set|show follow-exec-mode". */
1067
1068 static const char follow_exec_mode_new[] = "new";
1069 static const char follow_exec_mode_same[] = "same";
1070 static const char *const follow_exec_mode_names[] =
1071 {
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075 };
1076
1077 static const char *follow_exec_mode_string = follow_exec_mode_same;
1078 static void
1079 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081 {
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083 }
1084
1085 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1086
1087 static void
1088 follow_exec (ptid_t ptid, const char *exec_file_target)
1089 {
1090 struct inferior *inf = current_inferior ();
1091 int pid = ptid.pid ();
1092 ptid_t process_ptid;
1093
1094 /* Switch terminal for any messages produced e.g. by
1095 breakpoint_re_set. */
1096 target_terminal::ours_for_output ();
1097
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
1116 value that was overwritten with a TRAP instruction). Since
1117 we now have a new a.out, those shadow contents aren't valid. */
1118
1119 mark_breakpoints_out ();
1120
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
1140 for (thread_info *th : all_threads_safe ())
1141 if (th->ptid.pid () == pid && th->ptid != ptid)
1142 delete_thread (th);
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
1148 thread_info *th = inferior_thread ();
1149 th->control.step_resume_breakpoint = NULL;
1150 th->control.exception_resume_breakpoint = NULL;
1151 th->control.single_step_breakpoints = NULL;
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
1154
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
1158 th->stop_requested = 0;
1159
1160 update_breakpoints_after_exec ();
1161
1162 /* What is this a.out's name? */
1163 process_ptid = ptid_t (pid);
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (process_ptid).c_str (),
1166 exec_file_target);
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1169 inferior has essentially been killed & reborn. */
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 gdb::unique_xmalloc_ptr<char> exec_file_host
1174 = exec_file_find (exec_file_target, NULL);
1175
1176 /* If we were unable to map the executable target pathname onto a host
1177 pathname, tell the user that. Otherwise GDB's subsequent behavior
1178 is confusing. Maybe it would even be better to stop at this point
1179 so that the user can specify a file manually before continuing. */
1180 if (exec_file_host == NULL)
1181 warning (_("Could not load symbols for executable %s.\n"
1182 "Do you need \"set sysroot\"?"),
1183 exec_file_target);
1184
1185 /* Reset the shared library package. This ensures that we get a
1186 shlib event when the child reaches "_start", at which point the
1187 dld will have had a chance to initialize the child. */
1188 /* Also, loading a symbol file below may trigger symbol lookups, and
1189 we don't want those to be satisfied by the libraries of the
1190 previous incarnation of this process. */
1191 no_shared_libraries (NULL, 0);
1192
1193 if (follow_exec_mode_string == follow_exec_mode_new)
1194 {
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
1198 /* Do exit processing for the original inferior before setting the new
1199 inferior's pid. Having two inferiors with the same pid would confuse
1200 find_inferior_p(t)id. Transfer the terminal state and info from the
1201 old to the new inferior. */
1202 inf = add_inferior_with_spaces ();
1203 swap_terminal_info (inf, current_inferior ());
1204 exit_inferior_silent (current_inferior ());
1205
1206 inf->pid = pid;
1207 target_follow_exec (inf, exec_file_target);
1208
1209 inferior *org_inferior = current_inferior ();
1210 switch_to_inferior_no_thread (inf);
1211 push_target (org_inferior->process_target ());
1212 thread_info *thr = add_thread (inf->process_target (), ptid);
1213 switch_to_thread (thr);
1214 }
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
1233 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 solib_create_inferior_hook (0);
1244
1245 jit_inferior_created_hook ();
1246
1247 breakpoint_re_set ();
1248
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1251 to symbol_file_command...). */
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1257 matically get reset there in the new process.). */
1258 }
1259
1260 /* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267 struct thread_info *step_over_queue_head;
1268
1269 /* Bit flags indicating what the thread needs to step over. */
1270
1271 enum step_over_what_flag
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
1281 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 const address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297
1298 /* The thread's global number. */
1299 int thread;
1300 };
1301
1302 /* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326 static struct step_over_info step_over_info;
1327
1328 /* Record the address of the breakpoint/instruction we're currently
1329 stepping over.
1330 N.B. We record the aspace and address now, instead of say just the thread,
1331 because when we need the info later the thread may be running. */
1332
1333 static void
1334 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p,
1336 int thread)
1337 {
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341 step_over_info.thread = thread;
1342 }
1343
1344 /* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347 static void
1348 clear_step_over_info (void)
1349 {
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
1355 step_over_info.nonsteppable_watchpoint_p = 0;
1356 step_over_info.thread = -1;
1357 }
1358
1359 /* See infrun.h. */
1360
1361 int
1362 stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364 {
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 thread_is_stepping_over_breakpoint (int thread)
1375 {
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378 }
1379
1380 /* See infrun.h. */
1381
1382 int
1383 stepping_past_nonsteppable_watchpoint (void)
1384 {
1385 return step_over_info.nonsteppable_watchpoint_p;
1386 }
1387
1388 /* Returns true if step-over info is valid. */
1389
1390 static int
1391 step_over_info_valid_p (void)
1392 {
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
1395 }
1396
1397 \f
1398 /* Displaced stepping. */
1399
1400 /* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
1443 we have successfully single-stepped the instruction, to yield the
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
1484 /* Default destructor for displaced_step_closure. */
1485
1486 displaced_step_closure::~displaced_step_closure () = default;
1487
1488 /* Get the displaced stepping state of process PID. */
1489
1490 static displaced_step_inferior_state *
1491 get_displaced_stepping_state (inferior *inf)
1492 {
1493 return &inf->displaced_step_state;
1494 }
1495
1496 /* Returns true if any inferior has a thread doing a displaced
1497 step. */
1498
1499 static bool
1500 displaced_step_in_progress_any_inferior ()
1501 {
1502 for (inferior *i : all_inferiors ())
1503 {
1504 if (i->displaced_step_state.step_thread != nullptr)
1505 return true;
1506 }
1507
1508 return false;
1509 }
1510
1511 /* Return true if thread represented by PTID is doing a displaced
1512 step. */
1513
1514 static int
1515 displaced_step_in_progress_thread (thread_info *thread)
1516 {
1517 gdb_assert (thread != NULL);
1518
1519 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1520 }
1521
1522 /* Return true if process PID has a thread doing a displaced step. */
1523
1524 static int
1525 displaced_step_in_progress (inferior *inf)
1526 {
1527 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1528 }
1529
1530 /* If inferior is in displaced stepping, and ADDR equals to starting address
1531 of copy area, return corresponding displaced_step_closure. Otherwise,
1532 return NULL. */
1533
1534 struct displaced_step_closure*
1535 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1536 {
1537 displaced_step_inferior_state *displaced
1538 = get_displaced_stepping_state (current_inferior ());
1539
1540 /* If checking the mode of displaced instruction in copy area. */
1541 if (displaced->step_thread != nullptr
1542 && displaced->step_copy == addr)
1543 return displaced->step_closure.get ();
1544
1545 return NULL;
1546 }
1547
1548 static void
1549 infrun_inferior_exit (struct inferior *inf)
1550 {
1551 inf->displaced_step_state.reset ();
1552 }
1553
1554 /* If ON, and the architecture supports it, GDB will use displaced
1555 stepping to step over breakpoints. If OFF, or if the architecture
1556 doesn't support it, GDB will instead use the traditional
1557 hold-and-step approach. If AUTO (which is the default), GDB will
1558 decide which technique to use to step over breakpoints depending on
1559 whether the target works in a non-stop way (see use_displaced_stepping). */
1560
1561 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1562
1563 static void
1564 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1569 fprintf_filtered (file,
1570 _("Debugger's willingness to use displaced stepping "
1571 "to step over breakpoints is %s (currently %s).\n"),
1572 value, target_is_non_stop_p () ? "on" : "off");
1573 else
1574 fprintf_filtered (file,
1575 _("Debugger's willingness to use displaced stepping "
1576 "to step over breakpoints is %s.\n"), value);
1577 }
1578
1579 /* Return true if the gdbarch implements the required methods to use
1580 displaced stepping. */
1581
1582 static bool
1583 gdbarch_supports_displaced_stepping (gdbarch *arch)
1584 {
1585 /* Only check for the presence of step_copy_insn. Other required methods
1586 are checked by the gdbarch validation. */
1587 return gdbarch_displaced_step_copy_insn_p (arch);
1588 }
1589
1590 /* Return non-zero if displaced stepping can/should be used to step
1591 over breakpoints of thread TP. */
1592
1593 static bool
1594 use_displaced_stepping (thread_info *tp)
1595 {
1596 /* If the user disabled it explicitly, don't use displaced stepping. */
1597 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1598 return false;
1599
1600 /* If "auto", only use displaced stepping if the target operates in a non-stop
1601 way. */
1602 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1603 && !target_is_non_stop_p ())
1604 return false;
1605
1606 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1607
1608 /* If the architecture doesn't implement displaced stepping, don't use
1609 it. */
1610 if (!gdbarch_supports_displaced_stepping (gdbarch))
1611 return false;
1612
1613 /* If recording, don't use displaced stepping. */
1614 if (find_record_target () != nullptr)
1615 return false;
1616
1617 displaced_step_inferior_state *displaced_state
1618 = get_displaced_stepping_state (tp->inf);
1619
1620 /* If displaced stepping failed before for this inferior, don't bother trying
1621 again. */
1622 if (displaced_state->failed_before)
1623 return false;
1624
1625 return true;
1626 }
1627
1628 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1629
1630 static void
1631 displaced_step_reset (displaced_step_inferior_state *displaced)
1632 {
1633 displaced->reset ();
1634 }
1635
1636 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1637 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1638
1639 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1640
1641 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1642 void
1643 displaced_step_dump_bytes (struct ui_file *file,
1644 const gdb_byte *buf,
1645 size_t len)
1646 {
1647 int i;
1648
1649 for (i = 0; i < len; i++)
1650 fprintf_unfiltered (file, "%02x ", buf[i]);
1651 fputs_unfiltered ("\n", file);
1652 }
1653
1654 /* Prepare to single-step, using displaced stepping.
1655
1656 Note that we cannot use displaced stepping when we have a signal to
1657 deliver. If we have a signal to deliver and an instruction to step
1658 over, then after the step, there will be no indication from the
1659 target whether the thread entered a signal handler or ignored the
1660 signal and stepped over the instruction successfully --- both cases
1661 result in a simple SIGTRAP. In the first case we mustn't do a
1662 fixup, and in the second case we must --- but we can't tell which.
1663 Comments in the code for 'random signals' in handle_inferior_event
1664 explain how we handle this case instead.
1665
1666 Returns 1 if preparing was successful -- this thread is going to be
1667 stepped now; 0 if displaced stepping this thread got queued; or -1
1668 if this instruction can't be displaced stepped. */
1669
1670 static int
1671 displaced_step_prepare_throw (thread_info *tp)
1672 {
1673 regcache *regcache = get_thread_regcache (tp);
1674 struct gdbarch *gdbarch = regcache->arch ();
1675 const address_space *aspace = regcache->aspace ();
1676 CORE_ADDR original, copy;
1677 ULONGEST len;
1678 int status;
1679
1680 /* We should never reach this function if the architecture does not
1681 support displaced stepping. */
1682 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1683
1684 /* Nor if the thread isn't meant to step over a breakpoint. */
1685 gdb_assert (tp->control.trap_expected);
1686
1687 /* Disable range stepping while executing in the scratch pad. We
1688 want a single-step even if executing the displaced instruction in
1689 the scratch buffer lands within the stepping range (e.g., a
1690 jump/branch). */
1691 tp->control.may_range_step = 0;
1692
1693 /* We have to displaced step one thread at a time, as we only have
1694 access to a single scratch space per inferior. */
1695
1696 displaced_step_inferior_state *displaced
1697 = get_displaced_stepping_state (tp->inf);
1698
1699 if (displaced->step_thread != nullptr)
1700 {
1701 /* Already waiting for a displaced step to finish. Defer this
1702 request and place in queue. */
1703
1704 if (debug_displaced)
1705 fprintf_unfiltered (gdb_stdlog,
1706 "displaced: deferring step of %s\n",
1707 target_pid_to_str (tp->ptid).c_str ());
1708
1709 thread_step_over_chain_enqueue (tp);
1710 return 0;
1711 }
1712 else
1713 {
1714 if (debug_displaced)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: stepping %s now\n",
1717 target_pid_to_str (tp->ptid).c_str ());
1718 }
1719
1720 displaced_step_reset (displaced);
1721
1722 scoped_restore_current_thread restore_thread;
1723
1724 switch_to_thread (tp);
1725
1726 original = regcache_read_pc (regcache);
1727
1728 copy = gdbarch_displaced_step_location (gdbarch);
1729 len = gdbarch_max_insn_length (gdbarch);
1730
1731 if (breakpoint_in_range_p (aspace, copy, len))
1732 {
1733 /* There's a breakpoint set in the scratch pad location range
1734 (which is usually around the entry point). We'd either
1735 install it before resuming, which would overwrite/corrupt the
1736 scratch pad, or if it was already inserted, this displaced
1737 step would overwrite it. The latter is OK in the sense that
1738 we already assume that no thread is going to execute the code
1739 in the scratch pad range (after initial startup) anyway, but
1740 the former is unacceptable. Simply punt and fallback to
1741 stepping over this breakpoint in-line. */
1742 if (debug_displaced)
1743 {
1744 fprintf_unfiltered (gdb_stdlog,
1745 "displaced: breakpoint set in scratch pad. "
1746 "Stepping over breakpoint in-line instead.\n");
1747 }
1748
1749 return -1;
1750 }
1751
1752 /* Save the original contents of the copy area. */
1753 displaced->step_saved_copy.resize (len);
1754 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1755 if (status != 0)
1756 throw_error (MEMORY_ERROR,
1757 _("Error accessing memory address %s (%s) for "
1758 "displaced-stepping scratch space."),
1759 paddress (gdbarch, copy), safe_strerror (status));
1760 if (debug_displaced)
1761 {
1762 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1763 paddress (gdbarch, copy));
1764 displaced_step_dump_bytes (gdb_stdlog,
1765 displaced->step_saved_copy.data (),
1766 len);
1767 };
1768
1769 displaced->step_closure
1770 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1771 if (displaced->step_closure == NULL)
1772 {
1773 /* The architecture doesn't know how or want to displaced step
1774 this instruction or instruction sequence. Fallback to
1775 stepping over the breakpoint in-line. */
1776 return -1;
1777 }
1778
1779 /* Save the information we need to fix things up if the step
1780 succeeds. */
1781 displaced->step_thread = tp;
1782 displaced->step_gdbarch = gdbarch;
1783 displaced->step_original = original;
1784 displaced->step_copy = copy;
1785
1786 {
1787 displaced_step_reset_cleanup cleanup (displaced);
1788
1789 /* Resume execution at the copy. */
1790 regcache_write_pc (regcache, copy);
1791
1792 cleanup.release ();
1793 }
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1797 paddress (gdbarch, copy));
1798
1799 return 1;
1800 }
1801
1802 /* Wrapper for displaced_step_prepare_throw that disabled further
1803 attempts at displaced stepping if we get a memory error. */
1804
1805 static int
1806 displaced_step_prepare (thread_info *thread)
1807 {
1808 int prepared = -1;
1809
1810 try
1811 {
1812 prepared = displaced_step_prepare_throw (thread);
1813 }
1814 catch (const gdb_exception_error &ex)
1815 {
1816 struct displaced_step_inferior_state *displaced_state;
1817
1818 if (ex.error != MEMORY_ERROR
1819 && ex.error != NOT_SUPPORTED_ERROR)
1820 throw;
1821
1822 if (debug_infrun)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "infrun: disabling displaced stepping: %s\n",
1826 ex.what ());
1827 }
1828
1829 /* Be verbose if "set displaced-stepping" is "on", silent if
1830 "auto". */
1831 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1832 {
1833 warning (_("disabling displaced stepping: %s"),
1834 ex.what ());
1835 }
1836
1837 /* Disable further displaced stepping attempts. */
1838 displaced_state
1839 = get_displaced_stepping_state (thread->inf);
1840 displaced_state->failed_before = 1;
1841 }
1842
1843 return prepared;
1844 }
1845
1846 static void
1847 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1848 const gdb_byte *myaddr, int len)
1849 {
1850 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1851
1852 inferior_ptid = ptid;
1853 write_memory (memaddr, myaddr, len);
1854 }
1855
1856 /* Restore the contents of the copy area for thread PTID. */
1857
1858 static void
1859 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1860 ptid_t ptid)
1861 {
1862 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1863
1864 write_memory_ptid (ptid, displaced->step_copy,
1865 displaced->step_saved_copy.data (), len);
1866 if (debug_displaced)
1867 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1868 target_pid_to_str (ptid).c_str (),
1869 paddress (displaced->step_gdbarch,
1870 displaced->step_copy));
1871 }
1872
1873 /* If we displaced stepped an instruction successfully, adjust
1874 registers and memory to yield the same effect the instruction would
1875 have had if we had executed it at its original address, and return
1876 1. If the instruction didn't complete, relocate the PC and return
1877 -1. If the thread wasn't displaced stepping, return 0. */
1878
1879 static int
1880 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1881 {
1882 struct displaced_step_inferior_state *displaced
1883 = get_displaced_stepping_state (event_thread->inf);
1884 int ret;
1885
1886 /* Was this event for the thread we displaced? */
1887 if (displaced->step_thread != event_thread)
1888 return 0;
1889
1890 displaced_step_reset_cleanup cleanup (displaced);
1891
1892 displaced_step_restore (displaced, displaced->step_thread->ptid);
1893
1894 /* Fixup may need to read memory/registers. Switch to the thread
1895 that we're fixing up. Also, target_stopped_by_watchpoint checks
1896 the current thread. */
1897 switch_to_thread (event_thread);
1898
1899 /* Did the instruction complete successfully? */
1900 if (signal == GDB_SIGNAL_TRAP
1901 && !(target_stopped_by_watchpoint ()
1902 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1903 || target_have_steppable_watchpoint)))
1904 {
1905 /* Fix up the resulting state. */
1906 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1907 displaced->step_closure.get (),
1908 displaced->step_original,
1909 displaced->step_copy,
1910 get_thread_regcache (displaced->step_thread));
1911 ret = 1;
1912 }
1913 else
1914 {
1915 /* Since the instruction didn't complete, all we can do is
1916 relocate the PC. */
1917 struct regcache *regcache = get_thread_regcache (event_thread);
1918 CORE_ADDR pc = regcache_read_pc (regcache);
1919
1920 pc = displaced->step_original + (pc - displaced->step_copy);
1921 regcache_write_pc (regcache, pc);
1922 ret = -1;
1923 }
1924
1925 return ret;
1926 }
1927
1928 /* Data to be passed around while handling an event. This data is
1929 discarded between events. */
1930 struct execution_control_state
1931 {
1932 process_stratum_target *target;
1933 ptid_t ptid;
1934 /* The thread that got the event, if this was a thread event; NULL
1935 otherwise. */
1936 struct thread_info *event_thread;
1937
1938 struct target_waitstatus ws;
1939 int stop_func_filled_in;
1940 CORE_ADDR stop_func_start;
1941 CORE_ADDR stop_func_end;
1942 const char *stop_func_name;
1943 int wait_some_more;
1944
1945 /* True if the event thread hit the single-step breakpoint of
1946 another thread. Thus the event doesn't cause a stop, the thread
1947 needs to be single-stepped past the single-step breakpoint before
1948 we can switch back to the original stepping thread. */
1949 int hit_singlestep_breakpoint;
1950 };
1951
1952 /* Clear ECS and set it to point at TP. */
1953
1954 static void
1955 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1956 {
1957 memset (ecs, 0, sizeof (*ecs));
1958 ecs->event_thread = tp;
1959 ecs->ptid = tp->ptid;
1960 }
1961
1962 static void keep_going_pass_signal (struct execution_control_state *ecs);
1963 static void prepare_to_wait (struct execution_control_state *ecs);
1964 static int keep_going_stepped_thread (struct thread_info *tp);
1965 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1966
1967 /* Are there any pending step-over requests? If so, run all we can
1968 now and return true. Otherwise, return false. */
1969
1970 static int
1971 start_step_over (void)
1972 {
1973 struct thread_info *tp, *next;
1974
1975 /* Don't start a new step-over if we already have an in-line
1976 step-over operation ongoing. */
1977 if (step_over_info_valid_p ())
1978 return 0;
1979
1980 for (tp = step_over_queue_head; tp != NULL; tp = next)
1981 {
1982 struct execution_control_state ecss;
1983 struct execution_control_state *ecs = &ecss;
1984 step_over_what step_what;
1985 int must_be_in_line;
1986
1987 gdb_assert (!tp->stop_requested);
1988
1989 next = thread_step_over_chain_next (tp);
1990
1991 /* If this inferior already has a displaced step in process,
1992 don't start a new one. */
1993 if (displaced_step_in_progress (tp->inf))
1994 continue;
1995
1996 step_what = thread_still_needs_step_over (tp);
1997 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1998 || ((step_what & STEP_OVER_BREAKPOINT)
1999 && !use_displaced_stepping (tp)));
2000
2001 /* We currently stop all threads of all processes to step-over
2002 in-line. If we need to start a new in-line step-over, let
2003 any pending displaced steps finish first. */
2004 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2005 return 0;
2006
2007 thread_step_over_chain_remove (tp);
2008
2009 if (step_over_queue_head == NULL)
2010 {
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: step-over queue now empty\n");
2014 }
2015
2016 if (tp->control.trap_expected
2017 || tp->resumed
2018 || tp->executing)
2019 {
2020 internal_error (__FILE__, __LINE__,
2021 "[%s] has inconsistent state: "
2022 "trap_expected=%d, resumed=%d, executing=%d\n",
2023 target_pid_to_str (tp->ptid).c_str (),
2024 tp->control.trap_expected,
2025 tp->resumed,
2026 tp->executing);
2027 }
2028
2029 if (debug_infrun)
2030 fprintf_unfiltered (gdb_stdlog,
2031 "infrun: resuming [%s] for step-over\n",
2032 target_pid_to_str (tp->ptid).c_str ());
2033
2034 /* keep_going_pass_signal skips the step-over if the breakpoint
2035 is no longer inserted. In all-stop, we want to keep looking
2036 for a thread that needs a step-over instead of resuming TP,
2037 because we wouldn't be able to resume anything else until the
2038 target stops again. In non-stop, the resume always resumes
2039 only TP, so it's OK to let the thread resume freely. */
2040 if (!target_is_non_stop_p () && !step_what)
2041 continue;
2042
2043 switch_to_thread (tp);
2044 reset_ecs (ecs, tp);
2045 keep_going_pass_signal (ecs);
2046
2047 if (!ecs->wait_some_more)
2048 error (_("Command aborted."));
2049
2050 gdb_assert (tp->resumed);
2051
2052 /* If we started a new in-line step-over, we're done. */
2053 if (step_over_info_valid_p ())
2054 {
2055 gdb_assert (tp->control.trap_expected);
2056 return 1;
2057 }
2058
2059 if (!target_is_non_stop_p ())
2060 {
2061 /* On all-stop, shouldn't have resumed unless we needed a
2062 step over. */
2063 gdb_assert (tp->control.trap_expected
2064 || tp->step_after_step_resume_breakpoint);
2065
2066 /* With remote targets (at least), in all-stop, we can't
2067 issue any further remote commands until the program stops
2068 again. */
2069 return 1;
2070 }
2071
2072 /* Either the thread no longer needed a step-over, or a new
2073 displaced stepping sequence started. Even in the latter
2074 case, continue looking. Maybe we can also start another
2075 displaced step on a thread of other process. */
2076 }
2077
2078 return 0;
2079 }
2080
2081 /* Update global variables holding ptids to hold NEW_PTID if they were
2082 holding OLD_PTID. */
2083 static void
2084 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2085 {
2086 if (inferior_ptid == old_ptid)
2087 inferior_ptid = new_ptid;
2088 }
2089
2090 \f
2091
2092 static const char schedlock_off[] = "off";
2093 static const char schedlock_on[] = "on";
2094 static const char schedlock_step[] = "step";
2095 static const char schedlock_replay[] = "replay";
2096 static const char *const scheduler_enums[] = {
2097 schedlock_off,
2098 schedlock_on,
2099 schedlock_step,
2100 schedlock_replay,
2101 NULL
2102 };
2103 static const char *scheduler_mode = schedlock_replay;
2104 static void
2105 show_scheduler_mode (struct ui_file *file, int from_tty,
2106 struct cmd_list_element *c, const char *value)
2107 {
2108 fprintf_filtered (file,
2109 _("Mode for locking scheduler "
2110 "during execution is \"%s\".\n"),
2111 value);
2112 }
2113
2114 static void
2115 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2116 {
2117 if (!target_can_lock_scheduler)
2118 {
2119 scheduler_mode = schedlock_off;
2120 error (_("Target '%s' cannot support this command."), target_shortname);
2121 }
2122 }
2123
2124 /* True if execution commands resume all threads of all processes by
2125 default; otherwise, resume only threads of the current inferior
2126 process. */
2127 bool sched_multi = false;
2128
2129 /* Try to setup for software single stepping over the specified location.
2130 Return 1 if target_resume() should use hardware single step.
2131
2132 GDBARCH the current gdbarch.
2133 PC the location to step over. */
2134
2135 static int
2136 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2137 {
2138 int hw_step = 1;
2139
2140 if (execution_direction == EXEC_FORWARD
2141 && gdbarch_software_single_step_p (gdbarch))
2142 hw_step = !insert_single_step_breakpoints (gdbarch);
2143
2144 return hw_step;
2145 }
2146
2147 /* See infrun.h. */
2148
2149 ptid_t
2150 user_visible_resume_ptid (int step)
2151 {
2152 ptid_t resume_ptid;
2153
2154 if (non_stop)
2155 {
2156 /* With non-stop mode on, threads are always handled
2157 individually. */
2158 resume_ptid = inferior_ptid;
2159 }
2160 else if ((scheduler_mode == schedlock_on)
2161 || (scheduler_mode == schedlock_step && step))
2162 {
2163 /* User-settable 'scheduler' mode requires solo thread
2164 resume. */
2165 resume_ptid = inferior_ptid;
2166 }
2167 else if ((scheduler_mode == schedlock_replay)
2168 && target_record_will_replay (minus_one_ptid, execution_direction))
2169 {
2170 /* User-settable 'scheduler' mode requires solo thread resume in replay
2171 mode. */
2172 resume_ptid = inferior_ptid;
2173 }
2174 else if (!sched_multi && target_supports_multi_process ())
2175 {
2176 /* Resume all threads of the current process (and none of other
2177 processes). */
2178 resume_ptid = ptid_t (inferior_ptid.pid ());
2179 }
2180 else
2181 {
2182 /* Resume all threads of all processes. */
2183 resume_ptid = RESUME_ALL;
2184 }
2185
2186 return resume_ptid;
2187 }
2188
2189 /* See infrun.h. */
2190
2191 process_stratum_target *
2192 user_visible_resume_target (ptid_t resume_ptid)
2193 {
2194 return (resume_ptid == minus_one_ptid && sched_multi
2195 ? NULL
2196 : current_inferior ()->process_target ());
2197 }
2198
2199 /* Return a ptid representing the set of threads that we will resume,
2200 in the perspective of the target, assuming run control handling
2201 does not require leaving some threads stopped (e.g., stepping past
2202 breakpoint). USER_STEP indicates whether we're about to start the
2203 target for a stepping command. */
2204
2205 static ptid_t
2206 internal_resume_ptid (int user_step)
2207 {
2208 /* In non-stop, we always control threads individually. Note that
2209 the target may always work in non-stop mode even with "set
2210 non-stop off", in which case user_visible_resume_ptid could
2211 return a wildcard ptid. */
2212 if (target_is_non_stop_p ())
2213 return inferior_ptid;
2214 else
2215 return user_visible_resume_ptid (user_step);
2216 }
2217
2218 /* Wrapper for target_resume, that handles infrun-specific
2219 bookkeeping. */
2220
2221 static void
2222 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2223 {
2224 struct thread_info *tp = inferior_thread ();
2225
2226 gdb_assert (!tp->stop_requested);
2227
2228 /* Install inferior's terminal modes. */
2229 target_terminal::inferior ();
2230
2231 /* Avoid confusing the next resume, if the next stop/resume
2232 happens to apply to another thread. */
2233 tp->suspend.stop_signal = GDB_SIGNAL_0;
2234
2235 /* Advise target which signals may be handled silently.
2236
2237 If we have removed breakpoints because we are stepping over one
2238 in-line (in any thread), we need to receive all signals to avoid
2239 accidentally skipping a breakpoint during execution of a signal
2240 handler.
2241
2242 Likewise if we're displaced stepping, otherwise a trap for a
2243 breakpoint in a signal handler might be confused with the
2244 displaced step finishing. We don't make the displaced_step_fixup
2245 step distinguish the cases instead, because:
2246
2247 - a backtrace while stopped in the signal handler would show the
2248 scratch pad as frame older than the signal handler, instead of
2249 the real mainline code.
2250
2251 - when the thread is later resumed, the signal handler would
2252 return to the scratch pad area, which would no longer be
2253 valid. */
2254 if (step_over_info_valid_p ()
2255 || displaced_step_in_progress (tp->inf))
2256 target_pass_signals ({});
2257 else
2258 target_pass_signals (signal_pass);
2259
2260 target_resume (resume_ptid, step, sig);
2261
2262 target_commit_resume ();
2263
2264 if (target_can_async_p ())
2265 target_async (1);
2266 }
2267
2268 /* Resume the inferior. SIG is the signal to give the inferior
2269 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2270 call 'resume', which handles exceptions. */
2271
2272 static void
2273 resume_1 (enum gdb_signal sig)
2274 {
2275 struct regcache *regcache = get_current_regcache ();
2276 struct gdbarch *gdbarch = regcache->arch ();
2277 struct thread_info *tp = inferior_thread ();
2278 CORE_ADDR pc = regcache_read_pc (regcache);
2279 const address_space *aspace = regcache->aspace ();
2280 ptid_t resume_ptid;
2281 /* This represents the user's step vs continue request. When
2282 deciding whether "set scheduler-locking step" applies, it's the
2283 user's intention that counts. */
2284 const int user_step = tp->control.stepping_command;
2285 /* This represents what we'll actually request the target to do.
2286 This can decay from a step to a continue, if e.g., we need to
2287 implement single-stepping with breakpoints (software
2288 single-step). */
2289 int step;
2290
2291 gdb_assert (!tp->stop_requested);
2292 gdb_assert (!thread_is_in_step_over_chain (tp));
2293
2294 if (tp->suspend.waitstatus_pending_p)
2295 {
2296 if (debug_infrun)
2297 {
2298 std::string statstr
2299 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2300
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume: thread %s has pending wait "
2303 "status %s (currently_stepping=%d).\n",
2304 target_pid_to_str (tp->ptid).c_str (),
2305 statstr.c_str (),
2306 currently_stepping (tp));
2307 }
2308
2309 tp->inf->process_target ()->threads_executing = true;
2310 tp->resumed = true;
2311
2312 /* FIXME: What should we do if we are supposed to resume this
2313 thread with a signal? Maybe we should maintain a queue of
2314 pending signals to deliver. */
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 warning (_("Couldn't deliver signal %s to %s."),
2318 gdb_signal_to_name (sig),
2319 target_pid_to_str (tp->ptid).c_str ());
2320 }
2321
2322 tp->suspend.stop_signal = GDB_SIGNAL_0;
2323
2324 if (target_can_async_p ())
2325 {
2326 target_async (1);
2327 /* Tell the event loop we have an event to process. */
2328 mark_async_event_handler (infrun_async_inferior_event_token);
2329 }
2330 return;
2331 }
2332
2333 tp->stepped_breakpoint = 0;
2334
2335 /* Depends on stepped_breakpoint. */
2336 step = currently_stepping (tp);
2337
2338 if (current_inferior ()->waiting_for_vfork_done)
2339 {
2340 /* Don't try to single-step a vfork parent that is waiting for
2341 the child to get out of the shared memory region (by exec'ing
2342 or exiting). This is particularly important on software
2343 single-step archs, as the child process would trip on the
2344 software single step breakpoint inserted for the parent
2345 process. Since the parent will not actually execute any
2346 instruction until the child is out of the shared region (such
2347 are vfork's semantics), it is safe to simply continue it.
2348 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2349 the parent, and tell it to `keep_going', which automatically
2350 re-sets it stepping. */
2351 if (debug_infrun)
2352 fprintf_unfiltered (gdb_stdlog,
2353 "infrun: resume : clear step\n");
2354 step = 0;
2355 }
2356
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog,
2359 "infrun: resume (step=%d, signal=%s), "
2360 "trap_expected=%d, current thread [%s] at %s\n",
2361 step, gdb_signal_to_symbol_string (sig),
2362 tp->control.trap_expected,
2363 target_pid_to_str (inferior_ptid).c_str (),
2364 paddress (gdbarch, pc));
2365
2366 /* Normally, by the time we reach `resume', the breakpoints are either
2367 removed or inserted, as appropriate. The exception is if we're sitting
2368 at a permanent breakpoint; we need to step over it, but permanent
2369 breakpoints can't be removed. So we have to test for it here. */
2370 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2371 {
2372 if (sig != GDB_SIGNAL_0)
2373 {
2374 /* We have a signal to pass to the inferior. The resume
2375 may, or may not take us to the signal handler. If this
2376 is a step, we'll need to stop in the signal handler, if
2377 there's one, (if the target supports stepping into
2378 handlers), or in the next mainline instruction, if
2379 there's no handler. If this is a continue, we need to be
2380 sure to run the handler with all breakpoints inserted.
2381 In all cases, set a breakpoint at the current address
2382 (where the handler returns to), and once that breakpoint
2383 is hit, resume skipping the permanent breakpoint. If
2384 that breakpoint isn't hit, then we've stepped into the
2385 signal handler (or hit some other event). We'll delete
2386 the step-resume breakpoint then. */
2387
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume: skipping permanent breakpoint, "
2391 "deliver signal first\n");
2392
2393 clear_step_over_info ();
2394 tp->control.trap_expected = 0;
2395
2396 if (tp->control.step_resume_breakpoint == NULL)
2397 {
2398 /* Set a "high-priority" step-resume, as we don't want
2399 user breakpoints at PC to trigger (again) when this
2400 hits. */
2401 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2402 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2403
2404 tp->step_after_step_resume_breakpoint = step;
2405 }
2406
2407 insert_breakpoints ();
2408 }
2409 else
2410 {
2411 /* There's no signal to pass, we can go ahead and skip the
2412 permanent breakpoint manually. */
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "infrun: resume: skipping permanent breakpoint\n");
2416 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2417 /* Update pc to reflect the new address from which we will
2418 execute instructions. */
2419 pc = regcache_read_pc (regcache);
2420
2421 if (step)
2422 {
2423 /* We've already advanced the PC, so the stepping part
2424 is done. Now we need to arrange for a trap to be
2425 reported to handle_inferior_event. Set a breakpoint
2426 at the current PC, and run to it. Don't update
2427 prev_pc, because if we end in
2428 switch_back_to_stepped_thread, we want the "expected
2429 thread advanced also" branch to be taken. IOW, we
2430 don't want this thread to step further from PC
2431 (overstep). */
2432 gdb_assert (!step_over_info_valid_p ());
2433 insert_single_step_breakpoint (gdbarch, aspace, pc);
2434 insert_breakpoints ();
2435
2436 resume_ptid = internal_resume_ptid (user_step);
2437 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2438 tp->resumed = true;
2439 return;
2440 }
2441 }
2442 }
2443
2444 /* If we have a breakpoint to step over, make sure to do a single
2445 step only. Same if we have software watchpoints. */
2446 if (tp->control.trap_expected || bpstat_should_step ())
2447 tp->control.may_range_step = 0;
2448
2449 /* If displaced stepping is enabled, step over breakpoints by executing a
2450 copy of the instruction at a different address.
2451
2452 We can't use displaced stepping when we have a signal to deliver;
2453 the comments for displaced_step_prepare explain why. The
2454 comments in the handle_inferior event for dealing with 'random
2455 signals' explain what we do instead.
2456
2457 We can't use displaced stepping when we are waiting for vfork_done
2458 event, displaced stepping breaks the vfork child similarly as single
2459 step software breakpoint. */
2460 if (tp->control.trap_expected
2461 && use_displaced_stepping (tp)
2462 && !step_over_info_valid_p ()
2463 && sig == GDB_SIGNAL_0
2464 && !current_inferior ()->waiting_for_vfork_done)
2465 {
2466 int prepared = displaced_step_prepare (tp);
2467
2468 if (prepared == 0)
2469 {
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "Got placed in step-over queue\n");
2473
2474 tp->control.trap_expected = 0;
2475 return;
2476 }
2477 else if (prepared < 0)
2478 {
2479 /* Fallback to stepping over the breakpoint in-line. */
2480
2481 if (target_is_non_stop_p ())
2482 stop_all_threads ();
2483
2484 set_step_over_info (regcache->aspace (),
2485 regcache_read_pc (regcache), 0, tp->global_num);
2486
2487 step = maybe_software_singlestep (gdbarch, pc);
2488
2489 insert_breakpoints ();
2490 }
2491 else if (prepared > 0)
2492 {
2493 struct displaced_step_inferior_state *displaced;
2494
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions due to displaced stepping. */
2497 pc = regcache_read_pc (get_thread_regcache (tp));
2498
2499 displaced = get_displaced_stepping_state (tp->inf);
2500 step = gdbarch_displaced_step_hw_singlestep
2501 (gdbarch, displaced->step_closure.get ());
2502 }
2503 }
2504
2505 /* Do we need to do it the hard way, w/temp breakpoints? */
2506 else if (step)
2507 step = maybe_software_singlestep (gdbarch, pc);
2508
2509 /* Currently, our software single-step implementation leads to different
2510 results than hardware single-stepping in one situation: when stepping
2511 into delivering a signal which has an associated signal handler,
2512 hardware single-step will stop at the first instruction of the handler,
2513 while software single-step will simply skip execution of the handler.
2514
2515 For now, this difference in behavior is accepted since there is no
2516 easy way to actually implement single-stepping into a signal handler
2517 without kernel support.
2518
2519 However, there is one scenario where this difference leads to follow-on
2520 problems: if we're stepping off a breakpoint by removing all breakpoints
2521 and then single-stepping. In this case, the software single-step
2522 behavior means that even if there is a *breakpoint* in the signal
2523 handler, GDB still would not stop.
2524
2525 Fortunately, we can at least fix this particular issue. We detect
2526 here the case where we are about to deliver a signal while software
2527 single-stepping with breakpoints removed. In this situation, we
2528 revert the decisions to remove all breakpoints and insert single-
2529 step breakpoints, and instead we install a step-resume breakpoint
2530 at the current address, deliver the signal without stepping, and
2531 once we arrive back at the step-resume breakpoint, actually step
2532 over the breakpoint we originally wanted to step over. */
2533 if (thread_has_single_step_breakpoints_set (tp)
2534 && sig != GDB_SIGNAL_0
2535 && step_over_info_valid_p ())
2536 {
2537 /* If we have nested signals or a pending signal is delivered
2538 immediately after a handler returns, might already have
2539 a step-resume breakpoint set on the earlier handler. We cannot
2540 set another step-resume breakpoint; just continue on until the
2541 original breakpoint is hit. */
2542 if (tp->control.step_resume_breakpoint == NULL)
2543 {
2544 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2545 tp->step_after_step_resume_breakpoint = 1;
2546 }
2547
2548 delete_single_step_breakpoints (tp);
2549
2550 clear_step_over_info ();
2551 tp->control.trap_expected = 0;
2552
2553 insert_breakpoints ();
2554 }
2555
2556 /* If STEP is set, it's a request to use hardware stepping
2557 facilities. But in that case, we should never
2558 use singlestep breakpoint. */
2559 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2560
2561 /* Decide the set of threads to ask the target to resume. */
2562 if (tp->control.trap_expected)
2563 {
2564 /* We're allowing a thread to run past a breakpoint it has
2565 hit, either by single-stepping the thread with the breakpoint
2566 removed, or by displaced stepping, with the breakpoint inserted.
2567 In the former case, we need to single-step only this thread,
2568 and keep others stopped, as they can miss this breakpoint if
2569 allowed to run. That's not really a problem for displaced
2570 stepping, but, we still keep other threads stopped, in case
2571 another thread is also stopped for a breakpoint waiting for
2572 its turn in the displaced stepping queue. */
2573 resume_ptid = inferior_ptid;
2574 }
2575 else
2576 resume_ptid = internal_resume_ptid (user_step);
2577
2578 if (execution_direction != EXEC_REVERSE
2579 && step && breakpoint_inserted_here_p (aspace, pc))
2580 {
2581 /* There are two cases where we currently need to step a
2582 breakpoint instruction when we have a signal to deliver:
2583
2584 - See handle_signal_stop where we handle random signals that
2585 could take out us out of the stepping range. Normally, in
2586 that case we end up continuing (instead of stepping) over the
2587 signal handler with a breakpoint at PC, but there are cases
2588 where we should _always_ single-step, even if we have a
2589 step-resume breakpoint, like when a software watchpoint is
2590 set. Assuming single-stepping and delivering a signal at the
2591 same time would takes us to the signal handler, then we could
2592 have removed the breakpoint at PC to step over it. However,
2593 some hardware step targets (like e.g., Mac OS) can't step
2594 into signal handlers, and for those, we need to leave the
2595 breakpoint at PC inserted, as otherwise if the handler
2596 recurses and executes PC again, it'll miss the breakpoint.
2597 So we leave the breakpoint inserted anyway, but we need to
2598 record that we tried to step a breakpoint instruction, so
2599 that adjust_pc_after_break doesn't end up confused.
2600
2601 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2602 in one thread after another thread that was stepping had been
2603 momentarily paused for a step-over. When we re-resume the
2604 stepping thread, it may be resumed from that address with a
2605 breakpoint that hasn't trapped yet. Seen with
2606 gdb.threads/non-stop-fair-events.exp, on targets that don't
2607 do displaced stepping. */
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "infrun: resume: [%s] stepped breakpoint\n",
2612 target_pid_to_str (tp->ptid).c_str ());
2613
2614 tp->stepped_breakpoint = 1;
2615
2616 /* Most targets can step a breakpoint instruction, thus
2617 executing it normally. But if this one cannot, just
2618 continue and we will hit it anyway. */
2619 if (gdbarch_cannot_step_breakpoint (gdbarch))
2620 step = 0;
2621 }
2622
2623 if (debug_displaced
2624 && tp->control.trap_expected
2625 && use_displaced_stepping (tp)
2626 && !step_over_info_valid_p ())
2627 {
2628 struct regcache *resume_regcache = get_thread_regcache (tp);
2629 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2630 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2631 gdb_byte buf[4];
2632
2633 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2634 paddress (resume_gdbarch, actual_pc));
2635 read_memory (actual_pc, buf, sizeof (buf));
2636 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2637 }
2638
2639 if (tp->control.may_range_step)
2640 {
2641 /* If we're resuming a thread with the PC out of the step
2642 range, then we're doing some nested/finer run control
2643 operation, like stepping the thread out of the dynamic
2644 linker or the displaced stepping scratch pad. We
2645 shouldn't have allowed a range step then. */
2646 gdb_assert (pc_in_thread_step_range (pc, tp));
2647 }
2648
2649 do_target_resume (resume_ptid, step, sig);
2650 tp->resumed = true;
2651 }
2652
2653 /* Resume the inferior. SIG is the signal to give the inferior
2654 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2655 rolls back state on error. */
2656
2657 static void
2658 resume (gdb_signal sig)
2659 {
2660 try
2661 {
2662 resume_1 (sig);
2663 }
2664 catch (const gdb_exception &ex)
2665 {
2666 /* If resuming is being aborted for any reason, delete any
2667 single-step breakpoint resume_1 may have created, to avoid
2668 confusing the following resumption, and to avoid leaving
2669 single-step breakpoints perturbing other threads, in case
2670 we're running in non-stop mode. */
2671 if (inferior_ptid != null_ptid)
2672 delete_single_step_breakpoints (inferior_thread ());
2673 throw;
2674 }
2675 }
2676
2677 \f
2678 /* Proceeding. */
2679
2680 /* See infrun.h. */
2681
2682 /* Counter that tracks number of user visible stops. This can be used
2683 to tell whether a command has proceeded the inferior past the
2684 current location. This allows e.g., inferior function calls in
2685 breakpoint commands to not interrupt the command list. When the
2686 call finishes successfully, the inferior is standing at the same
2687 breakpoint as if nothing happened (and so we don't call
2688 normal_stop). */
2689 static ULONGEST current_stop_id;
2690
2691 /* See infrun.h. */
2692
2693 ULONGEST
2694 get_stop_id (void)
2695 {
2696 return current_stop_id;
2697 }
2698
2699 /* Called when we report a user visible stop. */
2700
2701 static void
2702 new_stop_id (void)
2703 {
2704 current_stop_id++;
2705 }
2706
2707 /* Clear out all variables saying what to do when inferior is continued.
2708 First do this, then set the ones you want, then call `proceed'. */
2709
2710 static void
2711 clear_proceed_status_thread (struct thread_info *tp)
2712 {
2713 if (debug_infrun)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "infrun: clear_proceed_status_thread (%s)\n",
2716 target_pid_to_str (tp->ptid).c_str ());
2717
2718 /* If we're starting a new sequence, then the previous finished
2719 single-step is no longer relevant. */
2720 if (tp->suspend.waitstatus_pending_p)
2721 {
2722 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2723 {
2724 if (debug_infrun)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: clear_proceed_status: pending "
2727 "event of %s was a finished step. "
2728 "Discarding.\n",
2729 target_pid_to_str (tp->ptid).c_str ());
2730
2731 tp->suspend.waitstatus_pending_p = 0;
2732 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2733 }
2734 else if (debug_infrun)
2735 {
2736 std::string statstr
2737 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2738
2739 fprintf_unfiltered (gdb_stdlog,
2740 "infrun: clear_proceed_status_thread: thread %s "
2741 "has pending wait status %s "
2742 "(currently_stepping=%d).\n",
2743 target_pid_to_str (tp->ptid).c_str (),
2744 statstr.c_str (),
2745 currently_stepping (tp));
2746 }
2747 }
2748
2749 /* If this signal should not be seen by program, give it zero.
2750 Used for debugging signals. */
2751 if (!signal_pass_state (tp->suspend.stop_signal))
2752 tp->suspend.stop_signal = GDB_SIGNAL_0;
2753
2754 delete tp->thread_fsm;
2755 tp->thread_fsm = NULL;
2756
2757 tp->control.trap_expected = 0;
2758 tp->control.step_range_start = 0;
2759 tp->control.step_range_end = 0;
2760 tp->control.may_range_step = 0;
2761 tp->control.step_frame_id = null_frame_id;
2762 tp->control.step_stack_frame_id = null_frame_id;
2763 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2764 tp->control.step_start_function = NULL;
2765 tp->stop_requested = 0;
2766
2767 tp->control.stop_step = 0;
2768
2769 tp->control.proceed_to_finish = 0;
2770
2771 tp->control.stepping_command = 0;
2772
2773 /* Discard any remaining commands or status from previous stop. */
2774 bpstat_clear (&tp->control.stop_bpstat);
2775 }
2776
2777 void
2778 clear_proceed_status (int step)
2779 {
2780 /* With scheduler-locking replay, stop replaying other threads if we're
2781 not replaying the user-visible resume ptid.
2782
2783 This is a convenience feature to not require the user to explicitly
2784 stop replaying the other threads. We're assuming that the user's
2785 intent is to resume tracing the recorded process. */
2786 if (!non_stop && scheduler_mode == schedlock_replay
2787 && target_record_is_replaying (minus_one_ptid)
2788 && !target_record_will_replay (user_visible_resume_ptid (step),
2789 execution_direction))
2790 target_record_stop_replaying ();
2791
2792 if (!non_stop && inferior_ptid != null_ptid)
2793 {
2794 ptid_t resume_ptid = user_visible_resume_ptid (step);
2795 process_stratum_target *resume_target
2796 = user_visible_resume_target (resume_ptid);
2797
2798 /* In all-stop mode, delete the per-thread status of all threads
2799 we're about to resume, implicitly and explicitly. */
2800 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2801 clear_proceed_status_thread (tp);
2802 }
2803
2804 if (inferior_ptid != null_ptid)
2805 {
2806 struct inferior *inferior;
2807
2808 if (non_stop)
2809 {
2810 /* If in non-stop mode, only delete the per-thread status of
2811 the current thread. */
2812 clear_proceed_status_thread (inferior_thread ());
2813 }
2814
2815 inferior = current_inferior ();
2816 inferior->control.stop_soon = NO_STOP_QUIETLY;
2817 }
2818
2819 gdb::observers::about_to_proceed.notify ();
2820 }
2821
2822 /* Returns true if TP is still stopped at a breakpoint that needs
2823 stepping-over in order to make progress. If the breakpoint is gone
2824 meanwhile, we can skip the whole step-over dance. */
2825
2826 static int
2827 thread_still_needs_step_over_bp (struct thread_info *tp)
2828 {
2829 if (tp->stepping_over_breakpoint)
2830 {
2831 struct regcache *regcache = get_thread_regcache (tp);
2832
2833 if (breakpoint_here_p (regcache->aspace (),
2834 regcache_read_pc (regcache))
2835 == ordinary_breakpoint_here)
2836 return 1;
2837
2838 tp->stepping_over_breakpoint = 0;
2839 }
2840
2841 return 0;
2842 }
2843
2844 /* Check whether thread TP still needs to start a step-over in order
2845 to make progress when resumed. Returns an bitwise or of enum
2846 step_over_what bits, indicating what needs to be stepped over. */
2847
2848 static step_over_what
2849 thread_still_needs_step_over (struct thread_info *tp)
2850 {
2851 step_over_what what = 0;
2852
2853 if (thread_still_needs_step_over_bp (tp))
2854 what |= STEP_OVER_BREAKPOINT;
2855
2856 if (tp->stepping_over_watchpoint
2857 && !target_have_steppable_watchpoint)
2858 what |= STEP_OVER_WATCHPOINT;
2859
2860 return what;
2861 }
2862
2863 /* Returns true if scheduler locking applies. STEP indicates whether
2864 we're about to do a step/next-like command to a thread. */
2865
2866 static int
2867 schedlock_applies (struct thread_info *tp)
2868 {
2869 return (scheduler_mode == schedlock_on
2870 || (scheduler_mode == schedlock_step
2871 && tp->control.stepping_command)
2872 || (scheduler_mode == schedlock_replay
2873 && target_record_will_replay (minus_one_ptid,
2874 execution_direction)));
2875 }
2876
2877 /* Calls target_commit_resume on all targets. */
2878
2879 static void
2880 commit_resume_all_targets ()
2881 {
2882 scoped_restore_current_thread restore_thread;
2883
2884 /* Map between process_target and a representative inferior. This
2885 is to avoid committing a resume in the same target more than
2886 once. Resumptions must be idempotent, so this is an
2887 optimization. */
2888 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2889
2890 for (inferior *inf : all_non_exited_inferiors ())
2891 if (inf->has_execution ())
2892 conn_inf[inf->process_target ()] = inf;
2893
2894 for (const auto &ci : conn_inf)
2895 {
2896 inferior *inf = ci.second;
2897 switch_to_inferior_no_thread (inf);
2898 target_commit_resume ();
2899 }
2900 }
2901
2902 /* Check that all the targets we're about to resume are in non-stop
2903 mode. Ideally, we'd only care whether all targets support
2904 target-async, but we're not there yet. E.g., stop_all_threads
2905 doesn't know how to handle all-stop targets. Also, the remote
2906 protocol in all-stop mode is synchronous, irrespective of
2907 target-async, which means that things like a breakpoint re-set
2908 triggered by one target would try to read memory from all targets
2909 and fail. */
2910
2911 static void
2912 check_multi_target_resumption (process_stratum_target *resume_target)
2913 {
2914 if (!non_stop && resume_target == nullptr)
2915 {
2916 scoped_restore_current_thread restore_thread;
2917
2918 /* This is used to track whether we're resuming more than one
2919 target. */
2920 process_stratum_target *first_connection = nullptr;
2921
2922 /* The first inferior we see with a target that does not work in
2923 always-non-stop mode. */
2924 inferior *first_not_non_stop = nullptr;
2925
2926 for (inferior *inf : all_non_exited_inferiors (resume_target))
2927 {
2928 switch_to_inferior_no_thread (inf);
2929
2930 if (!target_has_execution)
2931 continue;
2932
2933 process_stratum_target *proc_target
2934 = current_inferior ()->process_target();
2935
2936 if (!target_is_non_stop_p ())
2937 first_not_non_stop = inf;
2938
2939 if (first_connection == nullptr)
2940 first_connection = proc_target;
2941 else if (first_connection != proc_target
2942 && first_not_non_stop != nullptr)
2943 {
2944 switch_to_inferior_no_thread (first_not_non_stop);
2945
2946 proc_target = current_inferior ()->process_target();
2947
2948 error (_("Connection %d (%s) does not support "
2949 "multi-target resumption."),
2950 proc_target->connection_number,
2951 make_target_connection_string (proc_target).c_str ());
2952 }
2953 }
2954 }
2955 }
2956
2957 /* Basic routine for continuing the program in various fashions.
2958
2959 ADDR is the address to resume at, or -1 for resume where stopped.
2960 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2961 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2962
2963 You should call clear_proceed_status before calling proceed. */
2964
2965 void
2966 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2967 {
2968 struct regcache *regcache;
2969 struct gdbarch *gdbarch;
2970 CORE_ADDR pc;
2971 struct execution_control_state ecss;
2972 struct execution_control_state *ecs = &ecss;
2973 int started;
2974
2975 /* If we're stopped at a fork/vfork, follow the branch set by the
2976 "set follow-fork-mode" command; otherwise, we'll just proceed
2977 resuming the current thread. */
2978 if (!follow_fork ())
2979 {
2980 /* The target for some reason decided not to resume. */
2981 normal_stop ();
2982 if (target_can_async_p ())
2983 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2984 return;
2985 }
2986
2987 /* We'll update this if & when we switch to a new thread. */
2988 previous_inferior_ptid = inferior_ptid;
2989
2990 regcache = get_current_regcache ();
2991 gdbarch = regcache->arch ();
2992 const address_space *aspace = regcache->aspace ();
2993
2994 pc = regcache_read_pc (regcache);
2995 thread_info *cur_thr = inferior_thread ();
2996
2997 /* Fill in with reasonable starting values. */
2998 init_thread_stepping_state (cur_thr);
2999
3000 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3001
3002 ptid_t resume_ptid
3003 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3004 process_stratum_target *resume_target
3005 = user_visible_resume_target (resume_ptid);
3006
3007 check_multi_target_resumption (resume_target);
3008
3009 if (addr == (CORE_ADDR) -1)
3010 {
3011 if (pc == cur_thr->suspend.stop_pc
3012 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3013 && execution_direction != EXEC_REVERSE)
3014 /* There is a breakpoint at the address we will resume at,
3015 step one instruction before inserting breakpoints so that
3016 we do not stop right away (and report a second hit at this
3017 breakpoint).
3018
3019 Note, we don't do this in reverse, because we won't
3020 actually be executing the breakpoint insn anyway.
3021 We'll be (un-)executing the previous instruction. */
3022 cur_thr->stepping_over_breakpoint = 1;
3023 else if (gdbarch_single_step_through_delay_p (gdbarch)
3024 && gdbarch_single_step_through_delay (gdbarch,
3025 get_current_frame ()))
3026 /* We stepped onto an instruction that needs to be stepped
3027 again before re-inserting the breakpoint, do so. */
3028 cur_thr->stepping_over_breakpoint = 1;
3029 }
3030 else
3031 {
3032 regcache_write_pc (regcache, addr);
3033 }
3034
3035 if (siggnal != GDB_SIGNAL_DEFAULT)
3036 cur_thr->suspend.stop_signal = siggnal;
3037
3038 /* If an exception is thrown from this point on, make sure to
3039 propagate GDB's knowledge of the executing state to the
3040 frontend/user running state. */
3041 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3042
3043 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3044 threads (e.g., we might need to set threads stepping over
3045 breakpoints first), from the user/frontend's point of view, all
3046 threads in RESUME_PTID are now running. Unless we're calling an
3047 inferior function, as in that case we pretend the inferior
3048 doesn't run at all. */
3049 if (!cur_thr->control.in_infcall)
3050 set_running (resume_target, resume_ptid, true);
3051
3052 if (debug_infrun)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "infrun: proceed (addr=%s, signal=%s)\n",
3055 paddress (gdbarch, addr),
3056 gdb_signal_to_symbol_string (siggnal));
3057
3058 annotate_starting ();
3059
3060 /* Make sure that output from GDB appears before output from the
3061 inferior. */
3062 gdb_flush (gdb_stdout);
3063
3064 /* Since we've marked the inferior running, give it the terminal. A
3065 QUIT/Ctrl-C from here on is forwarded to the target (which can
3066 still detect attempts to unblock a stuck connection with repeated
3067 Ctrl-C from within target_pass_ctrlc). */
3068 target_terminal::inferior ();
3069
3070 /* In a multi-threaded task we may select another thread and
3071 then continue or step.
3072
3073 But if a thread that we're resuming had stopped at a breakpoint,
3074 it will immediately cause another breakpoint stop without any
3075 execution (i.e. it will report a breakpoint hit incorrectly). So
3076 we must step over it first.
3077
3078 Look for threads other than the current (TP) that reported a
3079 breakpoint hit and haven't been resumed yet since. */
3080
3081 /* If scheduler locking applies, we can avoid iterating over all
3082 threads. */
3083 if (!non_stop && !schedlock_applies (cur_thr))
3084 {
3085 for (thread_info *tp : all_non_exited_threads (resume_target,
3086 resume_ptid))
3087 {
3088 switch_to_thread_no_regs (tp);
3089
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
3092 if (tp == cur_thr)
3093 continue;
3094
3095 if (!thread_still_needs_step_over (tp))
3096 continue;
3097
3098 gdb_assert (!thread_is_in_step_over_chain (tp));
3099
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog,
3102 "infrun: need to step-over [%s] first\n",
3103 target_pid_to_str (tp->ptid).c_str ());
3104
3105 thread_step_over_chain_enqueue (tp);
3106 }
3107
3108 switch_to_thread (cur_thr);
3109 }
3110
3111 /* Enqueue the current thread last, so that we move all other
3112 threads over their breakpoints first. */
3113 if (cur_thr->stepping_over_breakpoint)
3114 thread_step_over_chain_enqueue (cur_thr);
3115
3116 /* If the thread isn't started, we'll still need to set its prev_pc,
3117 so that switch_back_to_stepped_thread knows the thread hasn't
3118 advanced. Must do this before resuming any thread, as in
3119 all-stop/remote, once we resume we can't send any other packet
3120 until the target stops again. */
3121 cur_thr->prev_pc = regcache_read_pc (regcache);
3122
3123 {
3124 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3125
3126 started = start_step_over ();
3127
3128 if (step_over_info_valid_p ())
3129 {
3130 /* Either this thread started a new in-line step over, or some
3131 other thread was already doing one. In either case, don't
3132 resume anything else until the step-over is finished. */
3133 }
3134 else if (started && !target_is_non_stop_p ())
3135 {
3136 /* A new displaced stepping sequence was started. In all-stop,
3137 we can't talk to the target anymore until it next stops. */
3138 }
3139 else if (!non_stop && target_is_non_stop_p ())
3140 {
3141 /* In all-stop, but the target is always in non-stop mode.
3142 Start all other threads that are implicitly resumed too. */
3143 for (thread_info *tp : all_non_exited_threads (resume_target,
3144 resume_ptid))
3145 {
3146 switch_to_thread_no_regs (tp);
3147
3148 if (!tp->inf->has_execution ())
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: proceed: [%s] target has "
3153 "no execution\n",
3154 target_pid_to_str (tp->ptid).c_str ());
3155 continue;
3156 }
3157
3158 if (tp->resumed)
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: [%s] resumed\n",
3163 target_pid_to_str (tp->ptid).c_str ());
3164 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3165 continue;
3166 }
3167
3168 if (thread_is_in_step_over_chain (tp))
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: [%s] needs step-over\n",
3173 target_pid_to_str (tp->ptid).c_str ());
3174 continue;
3175 }
3176
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: proceed: resuming %s\n",
3180 target_pid_to_str (tp->ptid).c_str ());
3181
3182 reset_ecs (ecs, tp);
3183 switch_to_thread (tp);
3184 keep_going_pass_signal (ecs);
3185 if (!ecs->wait_some_more)
3186 error (_("Command aborted."));
3187 }
3188 }
3189 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3190 {
3191 /* The thread wasn't started, and isn't queued, run it now. */
3192 reset_ecs (ecs, cur_thr);
3193 switch_to_thread (cur_thr);
3194 keep_going_pass_signal (ecs);
3195 if (!ecs->wait_some_more)
3196 error (_("Command aborted."));
3197 }
3198 }
3199
3200 commit_resume_all_targets ();
3201
3202 finish_state.release ();
3203
3204 /* If we've switched threads above, switch back to the previously
3205 current thread. We don't want the user to see a different
3206 selected thread. */
3207 switch_to_thread (cur_thr);
3208
3209 /* Tell the event loop to wait for it to stop. If the target
3210 supports asynchronous execution, it'll do this from within
3211 target_resume. */
3212 if (!target_can_async_p ())
3213 mark_async_event_handler (infrun_async_inferior_event_token);
3214 }
3215 \f
3216
3217 /* Start remote-debugging of a machine over a serial link. */
3218
3219 void
3220 start_remote (int from_tty)
3221 {
3222 inferior *inf = current_inferior ();
3223 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3224
3225 /* Always go on waiting for the target, regardless of the mode. */
3226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3227 indicate to wait_for_inferior that a target should timeout if
3228 nothing is returned (instead of just blocking). Because of this,
3229 targets expecting an immediate response need to, internally, set
3230 things up so that the target_wait() is forced to eventually
3231 timeout. */
3232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3233 differentiate to its caller what the state of the target is after
3234 the initial open has been performed. Here we're assuming that
3235 the target has stopped. It should be possible to eventually have
3236 target_open() return to the caller an indication that the target
3237 is currently running and GDB state should be set to the same as
3238 for an async run. */
3239 wait_for_inferior (inf);
3240
3241 /* Now that the inferior has stopped, do any bookkeeping like
3242 loading shared libraries. We want to do this before normal_stop,
3243 so that the displayed frame is up to date. */
3244 post_create_inferior (current_top_target (), from_tty);
3245
3246 normal_stop ();
3247 }
3248
3249 /* Initialize static vars when a new inferior begins. */
3250
3251 void
3252 init_wait_for_inferior (void)
3253 {
3254 /* These are meaningless until the first time through wait_for_inferior. */
3255
3256 breakpoint_init_inferior (inf_starting);
3257
3258 clear_proceed_status (0);
3259
3260 nullify_last_target_wait_ptid ();
3261
3262 previous_inferior_ptid = inferior_ptid;
3263 }
3264
3265 \f
3266
3267 static void handle_inferior_event (struct execution_control_state *ecs);
3268
3269 static void handle_step_into_function (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_signal_stop (struct execution_control_state *ecs);
3274 static void check_exception_resume (struct execution_control_state *,
3275 struct frame_info *);
3276
3277 static void end_stepping_range (struct execution_control_state *ecs);
3278 static void stop_waiting (struct execution_control_state *ecs);
3279 static void keep_going (struct execution_control_state *ecs);
3280 static void process_event_stop_test (struct execution_control_state *ecs);
3281 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3282
3283 /* This function is attached as a "thread_stop_requested" observer.
3284 Cleanup local state that assumed the PTID was to be resumed, and
3285 report the stop to the frontend. */
3286
3287 static void
3288 infrun_thread_stop_requested (ptid_t ptid)
3289 {
3290 process_stratum_target *curr_target = current_inferior ()->process_target ();
3291
3292 /* PTID was requested to stop. If the thread was already stopped,
3293 but the user/frontend doesn't know about that yet (e.g., the
3294 thread had been temporarily paused for some step-over), set up
3295 for reporting the stop now. */
3296 for (thread_info *tp : all_threads (curr_target, ptid))
3297 {
3298 if (tp->state != THREAD_RUNNING)
3299 continue;
3300 if (tp->executing)
3301 continue;
3302
3303 /* Remove matching threads from the step-over queue, so
3304 start_step_over doesn't try to resume them
3305 automatically. */
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
3308
3309 /* If the thread is stopped, but the user/frontend doesn't
3310 know about that yet, queue a pending event, as if the
3311 thread had just stopped now. Unless the thread already had
3312 a pending event. */
3313 if (!tp->suspend.waitstatus_pending_p)
3314 {
3315 tp->suspend.waitstatus_pending_p = 1;
3316 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3317 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3318 }
3319
3320 /* Clear the inline-frame state, since we're re-processing the
3321 stop. */
3322 clear_inline_frame_state (tp);
3323
3324 /* If this thread was paused because some other thread was
3325 doing an inline-step over, let that finish first. Once
3326 that happens, we'll restart all threads and consume pending
3327 stop events then. */
3328 if (step_over_info_valid_p ())
3329 continue;
3330
3331 /* Otherwise we can process the (new) pending event now. Set
3332 it so this pending event is considered by
3333 do_target_wait. */
3334 tp->resumed = true;
3335 }
3336 }
3337
3338 static void
3339 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3340 {
3341 if (target_last_proc_target == tp->inf->process_target ()
3342 && target_last_wait_ptid == tp->ptid)
3343 nullify_last_target_wait_ptid ();
3344 }
3345
3346 /* Delete the step resume, single-step and longjmp/exception resume
3347 breakpoints of TP. */
3348
3349 static void
3350 delete_thread_infrun_breakpoints (struct thread_info *tp)
3351 {
3352 delete_step_resume_breakpoint (tp);
3353 delete_exception_resume_breakpoint (tp);
3354 delete_single_step_breakpoints (tp);
3355 }
3356
3357 /* If the target still has execution, call FUNC for each thread that
3358 just stopped. In all-stop, that's all the non-exited threads; in
3359 non-stop, that's the current thread, only. */
3360
3361 typedef void (*for_each_just_stopped_thread_callback_func)
3362 (struct thread_info *tp);
3363
3364 static void
3365 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3366 {
3367 if (!target_has_execution || inferior_ptid == null_ptid)
3368 return;
3369
3370 if (target_is_non_stop_p ())
3371 {
3372 /* If in non-stop mode, only the current thread stopped. */
3373 func (inferior_thread ());
3374 }
3375 else
3376 {
3377 /* In all-stop mode, all threads have stopped. */
3378 for (thread_info *tp : all_non_exited_threads ())
3379 func (tp);
3380 }
3381 }
3382
3383 /* Delete the step resume and longjmp/exception resume breakpoints of
3384 the threads that just stopped. */
3385
3386 static void
3387 delete_just_stopped_threads_infrun_breakpoints (void)
3388 {
3389 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3390 }
3391
3392 /* Delete the single-step breakpoints of the threads that just
3393 stopped. */
3394
3395 static void
3396 delete_just_stopped_threads_single_step_breakpoints (void)
3397 {
3398 for_each_just_stopped_thread (delete_single_step_breakpoints);
3399 }
3400
3401 /* See infrun.h. */
3402
3403 void
3404 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3405 const struct target_waitstatus *ws)
3406 {
3407 std::string status_string = target_waitstatus_to_string (ws);
3408 string_file stb;
3409
3410 /* The text is split over several lines because it was getting too long.
3411 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3412 output as a unit; we want only one timestamp printed if debug_timestamp
3413 is set. */
3414
3415 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3416 waiton_ptid.pid (),
3417 waiton_ptid.lwp (),
3418 waiton_ptid.tid ());
3419 if (waiton_ptid.pid () != -1)
3420 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3421 stb.printf (", status) =\n");
3422 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3423 result_ptid.pid (),
3424 result_ptid.lwp (),
3425 result_ptid.tid (),
3426 target_pid_to_str (result_ptid).c_str ());
3427 stb.printf ("infrun: %s\n", status_string.c_str ());
3428
3429 /* This uses %s in part to handle %'s in the text, but also to avoid
3430 a gcc error: the format attribute requires a string literal. */
3431 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3432 }
3433
3434 /* Select a thread at random, out of those which are resumed and have
3435 had events. */
3436
3437 static struct thread_info *
3438 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3439 {
3440 int num_events = 0;
3441
3442 auto has_event = [&] (thread_info *tp)
3443 {
3444 return (tp->ptid.matches (waiton_ptid)
3445 && tp->resumed
3446 && tp->suspend.waitstatus_pending_p);
3447 };
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 for (thread_info *tp : inf->non_exited_threads ())
3452 if (has_event (tp))
3453 num_events++;
3454
3455 if (num_events == 0)
3456 return NULL;
3457
3458 /* Now randomly pick a thread out of those that have had events. */
3459 int random_selector = (int) ((num_events * (double) rand ())
3460 / (RAND_MAX + 1.0));
3461
3462 if (debug_infrun && num_events > 1)
3463 fprintf_unfiltered (gdb_stdlog,
3464 "infrun: Found %d events, selecting #%d\n",
3465 num_events, random_selector);
3466
3467 /* Select the Nth thread that has had an event. */
3468 for (thread_info *tp : inf->non_exited_threads ())
3469 if (has_event (tp))
3470 if (random_selector-- == 0)
3471 return tp;
3472
3473 gdb_assert_not_reached ("event thread not found");
3474 }
3475
3476 /* Wrapper for target_wait that first checks whether threads have
3477 pending statuses to report before actually asking the target for
3478 more events. INF is the inferior we're using to call target_wait
3479 on. */
3480
3481 static ptid_t
3482 do_target_wait_1 (inferior *inf, ptid_t ptid,
3483 target_waitstatus *status, int options)
3484 {
3485 ptid_t event_ptid;
3486 struct thread_info *tp;
3487
3488 /* We know that we are looking for an event in the target of inferior
3489 INF, but we don't know which thread the event might come from. As
3490 such we want to make sure that INFERIOR_PTID is reset so that none of
3491 the wait code relies on it - doing so is always a mistake. */
3492 switch_to_inferior_no_thread (inf);
3493
3494 /* First check if there is a resumed thread with a wait status
3495 pending. */
3496 if (ptid == minus_one_ptid || ptid.is_pid ())
3497 {
3498 tp = random_pending_event_thread (inf, ptid);
3499 }
3500 else
3501 {
3502 if (debug_infrun)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Waiting for specific thread %s.\n",
3505 target_pid_to_str (ptid).c_str ());
3506
3507 /* We have a specific thread to check. */
3508 tp = find_thread_ptid (inf, ptid);
3509 gdb_assert (tp != NULL);
3510 if (!tp->suspend.waitstatus_pending_p)
3511 tp = NULL;
3512 }
3513
3514 if (tp != NULL
3515 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3517 {
3518 struct regcache *regcache = get_thread_regcache (tp);
3519 struct gdbarch *gdbarch = regcache->arch ();
3520 CORE_ADDR pc;
3521 int discard = 0;
3522
3523 pc = regcache_read_pc (regcache);
3524
3525 if (pc != tp->suspend.stop_pc)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: PC of %s changed. was=%s, now=%s\n",
3530 target_pid_to_str (tp->ptid).c_str (),
3531 paddress (gdbarch, tp->suspend.stop_pc),
3532 paddress (gdbarch, pc));
3533 discard = 1;
3534 }
3535 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: previous breakpoint of %s, at %s gone\n",
3540 target_pid_to_str (tp->ptid).c_str (),
3541 paddress (gdbarch, pc));
3542
3543 discard = 1;
3544 }
3545
3546 if (discard)
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: pending event of %s cancelled.\n",
3551 target_pid_to_str (tp->ptid).c_str ());
3552
3553 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3554 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3555 }
3556 }
3557
3558 if (tp != NULL)
3559 {
3560 if (debug_infrun)
3561 {
3562 std::string statstr
3563 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3564
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: Using pending wait status %s for %s.\n",
3567 statstr.c_str (),
3568 target_pid_to_str (tp->ptid).c_str ());
3569 }
3570
3571 /* Now that we've selected our final event LWP, un-adjust its PC
3572 if it was a software breakpoint (and the target doesn't
3573 always adjust the PC itself). */
3574 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3575 && !target_supports_stopped_by_sw_breakpoint ())
3576 {
3577 struct regcache *regcache;
3578 struct gdbarch *gdbarch;
3579 int decr_pc;
3580
3581 regcache = get_thread_regcache (tp);
3582 gdbarch = regcache->arch ();
3583
3584 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3595 *status = tp->suspend.waitstatus;
3596 tp->suspend.waitstatus_pending_p = 0;
3597
3598 /* Wake up the event loop again, until all pending events are
3599 processed. */
3600 if (target_is_async_p ())
3601 mark_async_event_handler (infrun_async_inferior_event_token);
3602 return tp->ptid;
3603 }
3604
3605 /* But if we don't find one, we'll have to wait. */
3606
3607 if (deprecated_target_wait_hook)
3608 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3609 else
3610 event_ptid = target_wait (ptid, status, options);
3611
3612 return event_ptid;
3613 }
3614
3615 /* Returns true if INF has any resumed thread with a status
3616 pending. */
3617
3618 static bool
3619 threads_are_resumed_pending_p (inferior *inf)
3620 {
3621 for (thread_info *tp : inf->non_exited_threads ())
3622 if (tp->resumed
3623 && tp->suspend.waitstatus_pending_p)
3624 return true;
3625
3626 return false;
3627 }
3628
3629 /* Wrapper for target_wait that first checks whether threads have
3630 pending statuses to report before actually asking the target for
3631 more events. Polls for events from all inferiors/targets. */
3632
3633 static bool
3634 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3635 {
3636 int num_inferiors = 0;
3637 int random_selector;
3638
3639 /* For fairness, we pick the first inferior/target to poll at
3640 random, and then continue polling the rest of the inferior list
3641 starting from that one in a circular fashion until the whole list
3642 is polled once. */
3643
3644 auto inferior_matches = [&wait_ptid] (inferior *inf)
3645 {
3646 return (inf->process_target () != NULL
3647 && (threads_are_executing (inf->process_target ())
3648 || threads_are_resumed_pending_p (inf))
3649 && ptid_t (inf->pid).matches (wait_ptid));
3650 };
3651
3652 /* First see how many resumed inferiors we have. */
3653 for (inferior *inf : all_inferiors ())
3654 if (inferior_matches (inf))
3655 num_inferiors++;
3656
3657 if (num_inferiors == 0)
3658 {
3659 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3660 return false;
3661 }
3662
3663 /* Now randomly pick an inferior out of those that were resumed. */
3664 random_selector = (int)
3665 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3666
3667 if (debug_infrun && num_inferiors > 1)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "infrun: Found %d inferiors, starting at #%d\n",
3670 num_inferiors, random_selector);
3671
3672 /* Select the Nth inferior that was resumed. */
3673
3674 inferior *selected = nullptr;
3675
3676 for (inferior *inf : all_inferiors ())
3677 if (inferior_matches (inf))
3678 if (random_selector-- == 0)
3679 {
3680 selected = inf;
3681 break;
3682 }
3683
3684 /* Now poll for events out of each of the resumed inferior's
3685 targets, starting from the selected one. */
3686
3687 auto do_wait = [&] (inferior *inf)
3688 {
3689 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3690 ecs->target = inf->process_target ();
3691 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3692 };
3693
3694 /* Needed in all-stop+target-non-stop mode, because we end up here
3695 spuriously after the target is all stopped and we've already
3696 reported the stop to the user, polling for events. */
3697 scoped_restore_current_thread restore_thread;
3698
3699 int inf_num = selected->num;
3700 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3701 if (inferior_matches (inf))
3702 if (do_wait (inf))
3703 return true;
3704
3705 for (inferior *inf = inferior_list;
3706 inf != NULL && inf->num < inf_num;
3707 inf = inf->next)
3708 if (inferior_matches (inf))
3709 if (do_wait (inf))
3710 return true;
3711
3712 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3713 return false;
3714 }
3715
3716 /* Prepare and stabilize the inferior for detaching it. E.g.,
3717 detaching while a thread is displaced stepping is a recipe for
3718 crashing it, as nothing would readjust the PC out of the scratch
3719 pad. */
3720
3721 void
3722 prepare_for_detach (void)
3723 {
3724 struct inferior *inf = current_inferior ();
3725 ptid_t pid_ptid = ptid_t (inf->pid);
3726
3727 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3728
3729 /* Is any thread of this process displaced stepping? If not,
3730 there's nothing else to do. */
3731 if (displaced->step_thread == nullptr)
3732 return;
3733
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "displaced-stepping in-process while detaching");
3737
3738 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3739
3740 while (displaced->step_thread != nullptr)
3741 {
3742 struct execution_control_state ecss;
3743 struct execution_control_state *ecs;
3744
3745 ecs = &ecss;
3746 memset (ecs, 0, sizeof (*ecs));
3747
3748 overlay_cache_invalid = 1;
3749 /* Flush target cache before starting to handle each event.
3750 Target was running and cache could be stale. This is just a
3751 heuristic. Running threads may modify target memory, but we
3752 don't get any event. */
3753 target_dcache_invalidate ();
3754
3755 do_target_wait (pid_ptid, ecs, 0);
3756
3757 if (debug_infrun)
3758 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3759
3760 /* If an error happens while handling the event, propagate GDB's
3761 knowledge of the executing state to the frontend/user running
3762 state. */
3763 scoped_finish_thread_state finish_state (inf->process_target (),
3764 minus_one_ptid);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 /* No error, don't finish the state yet. */
3770 finish_state.release ();
3771
3772 /* Breakpoints and watchpoints are not installed on the target
3773 at this point, and signals are passed directly to the
3774 inferior, so this must mean the process is gone. */
3775 if (!ecs->wait_some_more)
3776 {
3777 restore_detaching.release ();
3778 error (_("Program exited while detaching"));
3779 }
3780 }
3781
3782 restore_detaching.release ();
3783 }
3784
3785 /* Wait for control to return from inferior to debugger.
3786
3787 If inferior gets a signal, we may decide to start it up again
3788 instead of returning. That is why there is a loop in this function.
3789 When this function actually returns it means the inferior
3790 should be left stopped and GDB should read more commands. */
3791
3792 static void
3793 wait_for_inferior (inferior *inf)
3794 {
3795 if (debug_infrun)
3796 fprintf_unfiltered
3797 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3798
3799 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3800
3801 /* If an error happens while handling the event, propagate GDB's
3802 knowledge of the executing state to the frontend/user running
3803 state. */
3804 scoped_finish_thread_state finish_state
3805 (inf->process_target (), minus_one_ptid);
3806
3807 while (1)
3808 {
3809 struct execution_control_state ecss;
3810 struct execution_control_state *ecs = &ecss;
3811
3812 memset (ecs, 0, sizeof (*ecs));
3813
3814 overlay_cache_invalid = 1;
3815
3816 /* Flush target cache before starting to handle each event.
3817 Target was running and cache could be stale. This is just a
3818 heuristic. Running threads may modify target memory, but we
3819 don't get any event. */
3820 target_dcache_invalidate ();
3821
3822 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3823 ecs->target = inf->process_target ();
3824
3825 if (debug_infrun)
3826 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3827
3828 /* Now figure out what to do with the result of the result. */
3829 handle_inferior_event (ecs);
3830
3831 if (!ecs->wait_some_more)
3832 break;
3833 }
3834
3835 /* No error, don't finish the state yet. */
3836 finish_state.release ();
3837 }
3838
3839 /* Cleanup that reinstalls the readline callback handler, if the
3840 target is running in the background. If while handling the target
3841 event something triggered a secondary prompt, like e.g., a
3842 pagination prompt, we'll have removed the callback handler (see
3843 gdb_readline_wrapper_line). Need to do this as we go back to the
3844 event loop, ready to process further input. Note this has no
3845 effect if the handler hasn't actually been removed, because calling
3846 rl_callback_handler_install resets the line buffer, thus losing
3847 input. */
3848
3849 static void
3850 reinstall_readline_callback_handler_cleanup ()
3851 {
3852 struct ui *ui = current_ui;
3853
3854 if (!ui->async)
3855 {
3856 /* We're not going back to the top level event loop yet. Don't
3857 install the readline callback, as it'd prep the terminal,
3858 readline-style (raw, noecho) (e.g., --batch). We'll install
3859 it the next time the prompt is displayed, when we're ready
3860 for input. */
3861 return;
3862 }
3863
3864 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3865 gdb_rl_callback_handler_reinstall ();
3866 }
3867
3868 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3869 that's just the event thread. In all-stop, that's all threads. */
3870
3871 static void
3872 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3873 {
3874 if (ecs->event_thread != NULL
3875 && ecs->event_thread->thread_fsm != NULL)
3876 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3877
3878 if (!non_stop)
3879 {
3880 for (thread_info *thr : all_non_exited_threads ())
3881 {
3882 if (thr->thread_fsm == NULL)
3883 continue;
3884 if (thr == ecs->event_thread)
3885 continue;
3886
3887 switch_to_thread (thr);
3888 thr->thread_fsm->clean_up (thr);
3889 }
3890
3891 if (ecs->event_thread != NULL)
3892 switch_to_thread (ecs->event_thread);
3893 }
3894 }
3895
3896 /* Helper for all_uis_check_sync_execution_done that works on the
3897 current UI. */
3898
3899 static void
3900 check_curr_ui_sync_execution_done (void)
3901 {
3902 struct ui *ui = current_ui;
3903
3904 if (ui->prompt_state == PROMPT_NEEDED
3905 && ui->async
3906 && !gdb_in_secondary_prompt_p (ui))
3907 {
3908 target_terminal::ours ();
3909 gdb::observers::sync_execution_done.notify ();
3910 ui_register_input_event_handler (ui);
3911 }
3912 }
3913
3914 /* See infrun.h. */
3915
3916 void
3917 all_uis_check_sync_execution_done (void)
3918 {
3919 SWITCH_THRU_ALL_UIS ()
3920 {
3921 check_curr_ui_sync_execution_done ();
3922 }
3923 }
3924
3925 /* See infrun.h. */
3926
3927 void
3928 all_uis_on_sync_execution_starting (void)
3929 {
3930 SWITCH_THRU_ALL_UIS ()
3931 {
3932 if (current_ui->prompt_state == PROMPT_NEEDED)
3933 async_disable_stdin ();
3934 }
3935 }
3936
3937 /* Asynchronous version of wait_for_inferior. It is called by the
3938 event loop whenever a change of state is detected on the file
3939 descriptor corresponding to the target. It can be called more than
3940 once to complete a single execution command. In such cases we need
3941 to keep the state in a global variable ECSS. If it is the last time
3942 that this function is called for a single execution command, then
3943 report to the user that the inferior has stopped, and do the
3944 necessary cleanups. */
3945
3946 void
3947 fetch_inferior_event (void *client_data)
3948 {
3949 struct execution_control_state ecss;
3950 struct execution_control_state *ecs = &ecss;
3951 int cmd_done = 0;
3952
3953 memset (ecs, 0, sizeof (*ecs));
3954
3955 /* Events are always processed with the main UI as current UI. This
3956 way, warnings, debug output, etc. are always consistently sent to
3957 the main console. */
3958 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3959
3960 /* End up with readline processing input, if necessary. */
3961 {
3962 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3963
3964 /* We're handling a live event, so make sure we're doing live
3965 debugging. If we're looking at traceframes while the target is
3966 running, we're going to need to get back to that mode after
3967 handling the event. */
3968 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3969 if (non_stop)
3970 {
3971 maybe_restore_traceframe.emplace ();
3972 set_current_traceframe (-1);
3973 }
3974
3975 /* The user/frontend should not notice a thread switch due to
3976 internal events. Make sure we revert to the user selected
3977 thread and frame after handling the event and running any
3978 breakpoint commands. */
3979 scoped_restore_current_thread restore_thread;
3980
3981 overlay_cache_invalid = 1;
3982 /* Flush target cache before starting to handle each event. Target
3983 was running and cache could be stale. This is just a heuristic.
3984 Running threads may modify target memory, but we don't get any
3985 event. */
3986 target_dcache_invalidate ();
3987
3988 scoped_restore save_exec_dir
3989 = make_scoped_restore (&execution_direction,
3990 target_execution_direction ());
3991
3992 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3993 return;
3994
3995 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3996
3997 /* Switch to the target that generated the event, so we can do
3998 target calls. Any inferior bound to the target will do, so we
3999 just switch to the first we find. */
4000 for (inferior *inf : all_inferiors (ecs->target))
4001 {
4002 switch_to_inferior_no_thread (inf);
4003 break;
4004 }
4005
4006 if (debug_infrun)
4007 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4008
4009 /* If an error happens while handling the event, propagate GDB's
4010 knowledge of the executing state to the frontend/user running
4011 state. */
4012 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4013 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4014
4015 /* Get executed before scoped_restore_current_thread above to apply
4016 still for the thread which has thrown the exception. */
4017 auto defer_bpstat_clear
4018 = make_scope_exit (bpstat_clear_actions);
4019 auto defer_delete_threads
4020 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4021
4022 /* Now figure out what to do with the result of the result. */
4023 handle_inferior_event (ecs);
4024
4025 if (!ecs->wait_some_more)
4026 {
4027 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4028 int should_stop = 1;
4029 struct thread_info *thr = ecs->event_thread;
4030
4031 delete_just_stopped_threads_infrun_breakpoints ();
4032
4033 if (thr != NULL)
4034 {
4035 struct thread_fsm *thread_fsm = thr->thread_fsm;
4036
4037 if (thread_fsm != NULL)
4038 should_stop = thread_fsm->should_stop (thr);
4039 }
4040
4041 if (!should_stop)
4042 {
4043 keep_going (ecs);
4044 }
4045 else
4046 {
4047 bool should_notify_stop = true;
4048 int proceeded = 0;
4049
4050 clean_up_just_stopped_threads_fsms (ecs);
4051
4052 if (thr != NULL && thr->thread_fsm != NULL)
4053 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4054
4055 if (should_notify_stop)
4056 {
4057 /* We may not find an inferior if this was a process exit. */
4058 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4059 proceeded = normal_stop ();
4060 }
4061
4062 if (!proceeded)
4063 {
4064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4065 cmd_done = 1;
4066 }
4067
4068 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4069 previously selected thread is gone. We have two
4070 choices - switch to no thread selected, or restore the
4071 previously selected thread (now exited). We chose the
4072 later, just because that's what GDB used to do. After
4073 this, "info threads" says "The current thread <Thread
4074 ID 2> has terminated." instead of "No thread
4075 selected.". */
4076 if (!non_stop
4077 && cmd_done
4078 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4079 restore_thread.dont_restore ();
4080 }
4081 }
4082
4083 defer_delete_threads.release ();
4084 defer_bpstat_clear.release ();
4085
4086 /* No error, don't finish the thread states yet. */
4087 finish_state.release ();
4088
4089 /* This scope is used to ensure that readline callbacks are
4090 reinstalled here. */
4091 }
4092
4093 /* If a UI was in sync execution mode, and now isn't, restore its
4094 prompt (a synchronous execution command has finished, and we're
4095 ready for input). */
4096 all_uis_check_sync_execution_done ();
4097
4098 if (cmd_done
4099 && exec_done_display_p
4100 && (inferior_ptid == null_ptid
4101 || inferior_thread ()->state != THREAD_RUNNING))
4102 printf_unfiltered (_("completed.\n"));
4103 }
4104
4105 /* Record the frame and location we're currently stepping through. */
4106 void
4107 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4108 {
4109 struct thread_info *tp = inferior_thread ();
4110
4111 tp->control.step_frame_id = get_frame_id (frame);
4112 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4113
4114 tp->current_symtab = sal.symtab;
4115 tp->current_line = sal.line;
4116 }
4117
4118 /* Clear context switchable stepping state. */
4119
4120 void
4121 init_thread_stepping_state (struct thread_info *tss)
4122 {
4123 tss->stepped_breakpoint = 0;
4124 tss->stepping_over_breakpoint = 0;
4125 tss->stepping_over_watchpoint = 0;
4126 tss->step_after_step_resume_breakpoint = 0;
4127 }
4128
4129 /* See infrun.h. */
4130
4131 void
4132 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4133 target_waitstatus status)
4134 {
4135 target_last_proc_target = target;
4136 target_last_wait_ptid = ptid;
4137 target_last_waitstatus = status;
4138 }
4139
4140 /* See infrun.h. */
4141
4142 void
4143 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4144 target_waitstatus *status)
4145 {
4146 if (target != nullptr)
4147 *target = target_last_proc_target;
4148 if (ptid != nullptr)
4149 *ptid = target_last_wait_ptid;
4150 if (status != nullptr)
4151 *status = target_last_waitstatus;
4152 }
4153
4154 /* See infrun.h. */
4155
4156 void
4157 nullify_last_target_wait_ptid (void)
4158 {
4159 target_last_proc_target = nullptr;
4160 target_last_wait_ptid = minus_one_ptid;
4161 target_last_waitstatus = {};
4162 }
4163
4164 /* Switch thread contexts. */
4165
4166 static void
4167 context_switch (execution_control_state *ecs)
4168 {
4169 if (debug_infrun
4170 && ecs->ptid != inferior_ptid
4171 && (inferior_ptid == null_ptid
4172 || ecs->event_thread != inferior_thread ()))
4173 {
4174 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4175 target_pid_to_str (inferior_ptid).c_str ());
4176 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4177 target_pid_to_str (ecs->ptid).c_str ());
4178 }
4179
4180 switch_to_thread (ecs->event_thread);
4181 }
4182
4183 /* If the target can't tell whether we've hit breakpoints
4184 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4185 check whether that could have been caused by a breakpoint. If so,
4186 adjust the PC, per gdbarch_decr_pc_after_break. */
4187
4188 static void
4189 adjust_pc_after_break (struct thread_info *thread,
4190 struct target_waitstatus *ws)
4191 {
4192 struct regcache *regcache;
4193 struct gdbarch *gdbarch;
4194 CORE_ADDR breakpoint_pc, decr_pc;
4195
4196 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4197 we aren't, just return.
4198
4199 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4200 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4201 implemented by software breakpoints should be handled through the normal
4202 breakpoint layer.
4203
4204 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4205 different signals (SIGILL or SIGEMT for instance), but it is less
4206 clear where the PC is pointing afterwards. It may not match
4207 gdbarch_decr_pc_after_break. I don't know any specific target that
4208 generates these signals at breakpoints (the code has been in GDB since at
4209 least 1992) so I can not guess how to handle them here.
4210
4211 In earlier versions of GDB, a target with
4212 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4213 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4214 target with both of these set in GDB history, and it seems unlikely to be
4215 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4216
4217 if (ws->kind != TARGET_WAITKIND_STOPPED)
4218 return;
4219
4220 if (ws->value.sig != GDB_SIGNAL_TRAP)
4221 return;
4222
4223 /* In reverse execution, when a breakpoint is hit, the instruction
4224 under it has already been de-executed. The reported PC always
4225 points at the breakpoint address, so adjusting it further would
4226 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4227 architecture:
4228
4229 B1 0x08000000 : INSN1
4230 B2 0x08000001 : INSN2
4231 0x08000002 : INSN3
4232 PC -> 0x08000003 : INSN4
4233
4234 Say you're stopped at 0x08000003 as above. Reverse continuing
4235 from that point should hit B2 as below. Reading the PC when the
4236 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4237 been de-executed already.
4238
4239 B1 0x08000000 : INSN1
4240 B2 PC -> 0x08000001 : INSN2
4241 0x08000002 : INSN3
4242 0x08000003 : INSN4
4243
4244 We can't apply the same logic as for forward execution, because
4245 we would wrongly adjust the PC to 0x08000000, since there's a
4246 breakpoint at PC - 1. We'd then report a hit on B1, although
4247 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4248 behaviour. */
4249 if (execution_direction == EXEC_REVERSE)
4250 return;
4251
4252 /* If the target can tell whether the thread hit a SW breakpoint,
4253 trust it. Targets that can tell also adjust the PC
4254 themselves. */
4255 if (target_supports_stopped_by_sw_breakpoint ())
4256 return;
4257
4258 /* Note that relying on whether a breakpoint is planted in memory to
4259 determine this can fail. E.g,. the breakpoint could have been
4260 removed since. Or the thread could have been told to step an
4261 instruction the size of a breakpoint instruction, and only
4262 _after_ was a breakpoint inserted at its address. */
4263
4264 /* If this target does not decrement the PC after breakpoints, then
4265 we have nothing to do. */
4266 regcache = get_thread_regcache (thread);
4267 gdbarch = regcache->arch ();
4268
4269 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4270 if (decr_pc == 0)
4271 return;
4272
4273 const address_space *aspace = regcache->aspace ();
4274
4275 /* Find the location where (if we've hit a breakpoint) the
4276 breakpoint would be. */
4277 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4278
4279 /* If the target can't tell whether a software breakpoint triggered,
4280 fallback to figuring it out based on breakpoints we think were
4281 inserted in the target, and on whether the thread was stepped or
4282 continued. */
4283
4284 /* Check whether there actually is a software breakpoint inserted at
4285 that location.
4286
4287 If in non-stop mode, a race condition is possible where we've
4288 removed a breakpoint, but stop events for that breakpoint were
4289 already queued and arrive later. To suppress those spurious
4290 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4291 and retire them after a number of stop events are reported. Note
4292 this is an heuristic and can thus get confused. The real fix is
4293 to get the "stopped by SW BP and needs adjustment" info out of
4294 the target/kernel (and thus never reach here; see above). */
4295 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4296 || (target_is_non_stop_p ()
4297 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4298 {
4299 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4300
4301 if (record_full_is_used ())
4302 restore_operation_disable.emplace
4303 (record_full_gdb_operation_disable_set ());
4304
4305 /* When using hardware single-step, a SIGTRAP is reported for both
4306 a completed single-step and a software breakpoint. Need to
4307 differentiate between the two, as the latter needs adjusting
4308 but the former does not.
4309
4310 The SIGTRAP can be due to a completed hardware single-step only if
4311 - we didn't insert software single-step breakpoints
4312 - this thread is currently being stepped
4313
4314 If any of these events did not occur, we must have stopped due
4315 to hitting a software breakpoint, and have to back up to the
4316 breakpoint address.
4317
4318 As a special case, we could have hardware single-stepped a
4319 software breakpoint. In this case (prev_pc == breakpoint_pc),
4320 we also need to back up to the breakpoint address. */
4321
4322 if (thread_has_single_step_breakpoints_set (thread)
4323 || !currently_stepping (thread)
4324 || (thread->stepped_breakpoint
4325 && thread->prev_pc == breakpoint_pc))
4326 regcache_write_pc (regcache, breakpoint_pc);
4327 }
4328 }
4329
4330 static int
4331 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4332 {
4333 for (frame = get_prev_frame (frame);
4334 frame != NULL;
4335 frame = get_prev_frame (frame))
4336 {
4337 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4338 return 1;
4339 if (get_frame_type (frame) != INLINE_FRAME)
4340 break;
4341 }
4342
4343 return 0;
4344 }
4345
4346 /* Look for an inline frame that is marked for skip.
4347 If PREV_FRAME is TRUE start at the previous frame,
4348 otherwise start at the current frame. Stop at the
4349 first non-inline frame, or at the frame where the
4350 step started. */
4351
4352 static bool
4353 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4354 {
4355 struct frame_info *frame = get_current_frame ();
4356
4357 if (prev_frame)
4358 frame = get_prev_frame (frame);
4359
4360 for (; frame != NULL; frame = get_prev_frame (frame))
4361 {
4362 const char *fn = NULL;
4363 symtab_and_line sal;
4364 struct symbol *sym;
4365
4366 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4367 break;
4368 if (get_frame_type (frame) != INLINE_FRAME)
4369 break;
4370
4371 sal = find_frame_sal (frame);
4372 sym = get_frame_function (frame);
4373
4374 if (sym != NULL)
4375 fn = sym->print_name ();
4376
4377 if (sal.line != 0
4378 && function_name_is_marked_for_skip (fn, sal))
4379 return true;
4380 }
4381
4382 return false;
4383 }
4384
4385 /* If the event thread has the stop requested flag set, pretend it
4386 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4387 target_stop). */
4388
4389 static bool
4390 handle_stop_requested (struct execution_control_state *ecs)
4391 {
4392 if (ecs->event_thread->stop_requested)
4393 {
4394 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4395 ecs->ws.value.sig = GDB_SIGNAL_0;
4396 handle_signal_stop (ecs);
4397 return true;
4398 }
4399 return false;
4400 }
4401
4402 /* Auxiliary function that handles syscall entry/return events.
4403 It returns 1 if the inferior should keep going (and GDB
4404 should ignore the event), or 0 if the event deserves to be
4405 processed. */
4406
4407 static int
4408 handle_syscall_event (struct execution_control_state *ecs)
4409 {
4410 struct regcache *regcache;
4411 int syscall_number;
4412
4413 context_switch (ecs);
4414
4415 regcache = get_thread_regcache (ecs->event_thread);
4416 syscall_number = ecs->ws.value.syscall_number;
4417 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4418
4419 if (catch_syscall_enabled () > 0
4420 && catching_syscall_number (syscall_number) > 0)
4421 {
4422 if (debug_infrun)
4423 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4424 syscall_number);
4425
4426 ecs->event_thread->control.stop_bpstat
4427 = bpstat_stop_status (regcache->aspace (),
4428 ecs->event_thread->suspend.stop_pc,
4429 ecs->event_thread, &ecs->ws);
4430
4431 if (handle_stop_requested (ecs))
4432 return 0;
4433
4434 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4435 {
4436 /* Catchpoint hit. */
4437 return 0;
4438 }
4439 }
4440
4441 if (handle_stop_requested (ecs))
4442 return 0;
4443
4444 /* If no catchpoint triggered for this, then keep going. */
4445 keep_going (ecs);
4446 return 1;
4447 }
4448
4449 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4450
4451 static void
4452 fill_in_stop_func (struct gdbarch *gdbarch,
4453 struct execution_control_state *ecs)
4454 {
4455 if (!ecs->stop_func_filled_in)
4456 {
4457 const block *block;
4458
4459 /* Don't care about return value; stop_func_start and stop_func_name
4460 will both be 0 if it doesn't work. */
4461 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4462 &ecs->stop_func_name,
4463 &ecs->stop_func_start,
4464 &ecs->stop_func_end,
4465 &block);
4466
4467 /* The call to find_pc_partial_function, above, will set
4468 stop_func_start and stop_func_end to the start and end
4469 of the range containing the stop pc. If this range
4470 contains the entry pc for the block (which is always the
4471 case for contiguous blocks), advance stop_func_start past
4472 the function's start offset and entrypoint. Note that
4473 stop_func_start is NOT advanced when in a range of a
4474 non-contiguous block that does not contain the entry pc. */
4475 if (block != nullptr
4476 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4477 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4478 {
4479 ecs->stop_func_start
4480 += gdbarch_deprecated_function_start_offset (gdbarch);
4481
4482 if (gdbarch_skip_entrypoint_p (gdbarch))
4483 ecs->stop_func_start
4484 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4485 }
4486
4487 ecs->stop_func_filled_in = 1;
4488 }
4489 }
4490
4491
4492 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4493
4494 static enum stop_kind
4495 get_inferior_stop_soon (execution_control_state *ecs)
4496 {
4497 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4498
4499 gdb_assert (inf != NULL);
4500 return inf->control.stop_soon;
4501 }
4502
4503 /* Poll for one event out of the current target. Store the resulting
4504 waitstatus in WS, and return the event ptid. Does not block. */
4505
4506 static ptid_t
4507 poll_one_curr_target (struct target_waitstatus *ws)
4508 {
4509 ptid_t event_ptid;
4510
4511 overlay_cache_invalid = 1;
4512
4513 /* Flush target cache before starting to handle each event.
4514 Target was running and cache could be stale. This is just a
4515 heuristic. Running threads may modify target memory, but we
4516 don't get any event. */
4517 target_dcache_invalidate ();
4518
4519 if (deprecated_target_wait_hook)
4520 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4521 else
4522 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4523
4524 if (debug_infrun)
4525 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4526
4527 return event_ptid;
4528 }
4529
4530 /* An event reported by wait_one. */
4531
4532 struct wait_one_event
4533 {
4534 /* The target the event came out of. */
4535 process_stratum_target *target;
4536
4537 /* The PTID the event was for. */
4538 ptid_t ptid;
4539
4540 /* The waitstatus. */
4541 target_waitstatus ws;
4542 };
4543
4544 /* Wait for one event out of any target. */
4545
4546 static wait_one_event
4547 wait_one ()
4548 {
4549 while (1)
4550 {
4551 for (inferior *inf : all_inferiors ())
4552 {
4553 process_stratum_target *target = inf->process_target ();
4554 if (target == NULL
4555 || !target->is_async_p ()
4556 || !target->threads_executing)
4557 continue;
4558
4559 switch_to_inferior_no_thread (inf);
4560
4561 wait_one_event event;
4562 event.target = target;
4563 event.ptid = poll_one_curr_target (&event.ws);
4564
4565 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4566 {
4567 /* If nothing is resumed, remove the target from the
4568 event loop. */
4569 target_async (0);
4570 }
4571 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4572 return event;
4573 }
4574
4575 /* Block waiting for some event. */
4576
4577 fd_set readfds;
4578 int nfds = 0;
4579
4580 FD_ZERO (&readfds);
4581
4582 for (inferior *inf : all_inferiors ())
4583 {
4584 process_stratum_target *target = inf->process_target ();
4585 if (target == NULL
4586 || !target->is_async_p ()
4587 || !target->threads_executing)
4588 continue;
4589
4590 int fd = target->async_wait_fd ();
4591 FD_SET (fd, &readfds);
4592 if (nfds <= fd)
4593 nfds = fd + 1;
4594 }
4595
4596 if (nfds == 0)
4597 {
4598 /* No waitable targets left. All must be stopped. */
4599 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4600 }
4601
4602 QUIT;
4603
4604 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4605 if (numfds < 0)
4606 {
4607 if (errno == EINTR)
4608 continue;
4609 else
4610 perror_with_name ("interruptible_select");
4611 }
4612 }
4613 }
4614
4615 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4616 instead of the current thread. */
4617 #define THREAD_STOPPED_BY(REASON) \
4618 static int \
4619 thread_stopped_by_ ## REASON (ptid_t ptid) \
4620 { \
4621 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4622 inferior_ptid = ptid; \
4623 \
4624 return target_stopped_by_ ## REASON (); \
4625 }
4626
4627 /* Generate thread_stopped_by_watchpoint. */
4628 THREAD_STOPPED_BY (watchpoint)
4629 /* Generate thread_stopped_by_sw_breakpoint. */
4630 THREAD_STOPPED_BY (sw_breakpoint)
4631 /* Generate thread_stopped_by_hw_breakpoint. */
4632 THREAD_STOPPED_BY (hw_breakpoint)
4633
4634 /* Save the thread's event and stop reason to process it later. */
4635
4636 static void
4637 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4638 {
4639 if (debug_infrun)
4640 {
4641 std::string statstr = target_waitstatus_to_string (ws);
4642
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: saving status %s for %d.%ld.%ld\n",
4645 statstr.c_str (),
4646 tp->ptid.pid (),
4647 tp->ptid.lwp (),
4648 tp->ptid.tid ());
4649 }
4650
4651 /* Record for later. */
4652 tp->suspend.waitstatus = *ws;
4653 tp->suspend.waitstatus_pending_p = 1;
4654
4655 struct regcache *regcache = get_thread_regcache (tp);
4656 const address_space *aspace = regcache->aspace ();
4657
4658 if (ws->kind == TARGET_WAITKIND_STOPPED
4659 && ws->value.sig == GDB_SIGNAL_TRAP)
4660 {
4661 CORE_ADDR pc = regcache_read_pc (regcache);
4662
4663 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4664
4665 if (thread_stopped_by_watchpoint (tp->ptid))
4666 {
4667 tp->suspend.stop_reason
4668 = TARGET_STOPPED_BY_WATCHPOINT;
4669 }
4670 else if (target_supports_stopped_by_sw_breakpoint ()
4671 && thread_stopped_by_sw_breakpoint (tp->ptid))
4672 {
4673 tp->suspend.stop_reason
4674 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4675 }
4676 else if (target_supports_stopped_by_hw_breakpoint ()
4677 && thread_stopped_by_hw_breakpoint (tp->ptid))
4678 {
4679 tp->suspend.stop_reason
4680 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4681 }
4682 else if (!target_supports_stopped_by_hw_breakpoint ()
4683 && hardware_breakpoint_inserted_here_p (aspace,
4684 pc))
4685 {
4686 tp->suspend.stop_reason
4687 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4688 }
4689 else if (!target_supports_stopped_by_sw_breakpoint ()
4690 && software_breakpoint_inserted_here_p (aspace,
4691 pc))
4692 {
4693 tp->suspend.stop_reason
4694 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4695 }
4696 else if (!thread_has_single_step_breakpoints_set (tp)
4697 && currently_stepping (tp))
4698 {
4699 tp->suspend.stop_reason
4700 = TARGET_STOPPED_BY_SINGLE_STEP;
4701 }
4702 }
4703 }
4704
4705 /* See infrun.h. */
4706
4707 void
4708 stop_all_threads (void)
4709 {
4710 /* We may need multiple passes to discover all threads. */
4711 int pass;
4712 int iterations = 0;
4713
4714 gdb_assert (target_is_non_stop_p ());
4715
4716 if (debug_infrun)
4717 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4718
4719 scoped_restore_current_thread restore_thread;
4720
4721 target_thread_events (1);
4722 SCOPE_EXIT { target_thread_events (0); };
4723
4724 /* Request threads to stop, and then wait for the stops. Because
4725 threads we already know about can spawn more threads while we're
4726 trying to stop them, and we only learn about new threads when we
4727 update the thread list, do this in a loop, and keep iterating
4728 until two passes find no threads that need to be stopped. */
4729 for (pass = 0; pass < 2; pass++, iterations++)
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: stop_all_threads, pass=%d, "
4734 "iterations=%d\n", pass, iterations);
4735 while (1)
4736 {
4737 int need_wait = 0;
4738
4739 update_thread_list ();
4740
4741 /* Go through all threads looking for threads that we need
4742 to tell the target to stop. */
4743 for (thread_info *t : all_non_exited_threads ())
4744 {
4745 if (t->executing)
4746 {
4747 /* If already stopping, don't request a stop again.
4748 We just haven't seen the notification yet. */
4749 if (!t->stop_requested)
4750 {
4751 if (debug_infrun)
4752 fprintf_unfiltered (gdb_stdlog,
4753 "infrun: %s executing, "
4754 "need stop\n",
4755 target_pid_to_str (t->ptid).c_str ());
4756 switch_to_thread_no_regs (t);
4757 target_stop (t->ptid);
4758 t->stop_requested = 1;
4759 }
4760 else
4761 {
4762 if (debug_infrun)
4763 fprintf_unfiltered (gdb_stdlog,
4764 "infrun: %s executing, "
4765 "already stopping\n",
4766 target_pid_to_str (t->ptid).c_str ());
4767 }
4768
4769 if (t->stop_requested)
4770 need_wait = 1;
4771 }
4772 else
4773 {
4774 if (debug_infrun)
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: %s not executing\n",
4777 target_pid_to_str (t->ptid).c_str ());
4778
4779 /* The thread may be not executing, but still be
4780 resumed with a pending status to process. */
4781 t->resumed = false;
4782 }
4783 }
4784
4785 if (!need_wait)
4786 break;
4787
4788 /* If we find new threads on the second iteration, restart
4789 over. We want to see two iterations in a row with all
4790 threads stopped. */
4791 if (pass > 0)
4792 pass = -1;
4793
4794 wait_one_event event = wait_one ();
4795
4796 if (debug_infrun)
4797 {
4798 fprintf_unfiltered (gdb_stdlog,
4799 "infrun: stop_all_threads %s %s\n",
4800 target_waitstatus_to_string (&event.ws).c_str (),
4801 target_pid_to_str (event.ptid).c_str ());
4802 }
4803
4804 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4805 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4806 || event.ws.kind == TARGET_WAITKIND_EXITED
4807 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4808 {
4809 /* All resumed threads exited
4810 or one thread/process exited/signalled. */
4811 }
4812 else
4813 {
4814 thread_info *t = find_thread_ptid (event.target, event.ptid);
4815 if (t == NULL)
4816 t = add_thread (event.target, event.ptid);
4817
4818 t->stop_requested = 0;
4819 t->executing = 0;
4820 t->resumed = false;
4821 t->control.may_range_step = 0;
4822
4823 /* This may be the first time we see the inferior report
4824 a stop. */
4825 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4826 if (inf->needs_setup)
4827 {
4828 switch_to_thread_no_regs (t);
4829 setup_inferior (0);
4830 }
4831
4832 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4833 && event.ws.value.sig == GDB_SIGNAL_0)
4834 {
4835 /* We caught the event that we intended to catch, so
4836 there's no event pending. */
4837 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4838 t->suspend.waitstatus_pending_p = 0;
4839
4840 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4841 {
4842 /* Add it back to the step-over queue. */
4843 if (debug_infrun)
4844 {
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: displaced-step of %s "
4847 "canceled: adding back to the "
4848 "step-over queue\n",
4849 target_pid_to_str (t->ptid).c_str ());
4850 }
4851 t->control.trap_expected = 0;
4852 thread_step_over_chain_enqueue (t);
4853 }
4854 }
4855 else
4856 {
4857 enum gdb_signal sig;
4858 struct regcache *regcache;
4859
4860 if (debug_infrun)
4861 {
4862 std::string statstr = target_waitstatus_to_string (&event.ws);
4863
4864 fprintf_unfiltered (gdb_stdlog,
4865 "infrun: target_wait %s, saving "
4866 "status for %d.%ld.%ld\n",
4867 statstr.c_str (),
4868 t->ptid.pid (),
4869 t->ptid.lwp (),
4870 t->ptid.tid ());
4871 }
4872
4873 /* Record for later. */
4874 save_waitstatus (t, &event.ws);
4875
4876 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4877 ? event.ws.value.sig : GDB_SIGNAL_0);
4878
4879 if (displaced_step_fixup (t, sig) < 0)
4880 {
4881 /* Add it back to the step-over queue. */
4882 t->control.trap_expected = 0;
4883 thread_step_over_chain_enqueue (t);
4884 }
4885
4886 regcache = get_thread_regcache (t);
4887 t->suspend.stop_pc = regcache_read_pc (regcache);
4888
4889 if (debug_infrun)
4890 {
4891 fprintf_unfiltered (gdb_stdlog,
4892 "infrun: saved stop_pc=%s for %s "
4893 "(currently_stepping=%d)\n",
4894 paddress (target_gdbarch (),
4895 t->suspend.stop_pc),
4896 target_pid_to_str (t->ptid).c_str (),
4897 currently_stepping (t));
4898 }
4899 }
4900 }
4901 }
4902 }
4903
4904 if (debug_infrun)
4905 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4906 }
4907
4908 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4909
4910 static int
4911 handle_no_resumed (struct execution_control_state *ecs)
4912 {
4913 if (target_can_async_p ())
4914 {
4915 struct ui *ui;
4916 int any_sync = 0;
4917
4918 ALL_UIS (ui)
4919 {
4920 if (ui->prompt_state == PROMPT_BLOCKED)
4921 {
4922 any_sync = 1;
4923 break;
4924 }
4925 }
4926 if (!any_sync)
4927 {
4928 /* There were no unwaited-for children left in the target, but,
4929 we're not synchronously waiting for events either. Just
4930 ignore. */
4931
4932 if (debug_infrun)
4933 fprintf_unfiltered (gdb_stdlog,
4934 "infrun: TARGET_WAITKIND_NO_RESUMED "
4935 "(ignoring: bg)\n");
4936 prepare_to_wait (ecs);
4937 return 1;
4938 }
4939 }
4940
4941 /* Otherwise, if we were running a synchronous execution command, we
4942 may need to cancel it and give the user back the terminal.
4943
4944 In non-stop mode, the target can't tell whether we've already
4945 consumed previous stop events, so it can end up sending us a
4946 no-resumed event like so:
4947
4948 #0 - thread 1 is left stopped
4949
4950 #1 - thread 2 is resumed and hits breakpoint
4951 -> TARGET_WAITKIND_STOPPED
4952
4953 #2 - thread 3 is resumed and exits
4954 this is the last resumed thread, so
4955 -> TARGET_WAITKIND_NO_RESUMED
4956
4957 #3 - gdb processes stop for thread 2 and decides to re-resume
4958 it.
4959
4960 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4961 thread 2 is now resumed, so the event should be ignored.
4962
4963 IOW, if the stop for thread 2 doesn't end a foreground command,
4964 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4965 event. But it could be that the event meant that thread 2 itself
4966 (or whatever other thread was the last resumed thread) exited.
4967
4968 To address this we refresh the thread list and check whether we
4969 have resumed threads _now_. In the example above, this removes
4970 thread 3 from the thread list. If thread 2 was re-resumed, we
4971 ignore this event. If we find no thread resumed, then we cancel
4972 the synchronous command show "no unwaited-for " to the user. */
4973 update_thread_list ();
4974
4975 for (thread_info *thread : all_non_exited_threads (ecs->target))
4976 {
4977 if (thread->executing
4978 || thread->suspend.waitstatus_pending_p)
4979 {
4980 /* There were no unwaited-for children left in the target at
4981 some point, but there are now. Just ignore. */
4982 if (debug_infrun)
4983 fprintf_unfiltered (gdb_stdlog,
4984 "infrun: TARGET_WAITKIND_NO_RESUMED "
4985 "(ignoring: found resumed)\n");
4986 prepare_to_wait (ecs);
4987 return 1;
4988 }
4989 }
4990
4991 /* Note however that we may find no resumed thread because the whole
4992 process exited meanwhile (thus updating the thread list results
4993 in an empty thread list). In this case we know we'll be getting
4994 a process exit event shortly. */
4995 for (inferior *inf : all_non_exited_inferiors (ecs->target))
4996 {
4997 thread_info *thread = any_live_thread_of_inferior (inf);
4998 if (thread == NULL)
4999 {
5000 if (debug_infrun)
5001 fprintf_unfiltered (gdb_stdlog,
5002 "infrun: TARGET_WAITKIND_NO_RESUMED "
5003 "(expect process exit)\n");
5004 prepare_to_wait (ecs);
5005 return 1;
5006 }
5007 }
5008
5009 /* Go ahead and report the event. */
5010 return 0;
5011 }
5012
5013 /* Given an execution control state that has been freshly filled in by
5014 an event from the inferior, figure out what it means and take
5015 appropriate action.
5016
5017 The alternatives are:
5018
5019 1) stop_waiting and return; to really stop and return to the
5020 debugger.
5021
5022 2) keep_going and return; to wait for the next event (set
5023 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5024 once). */
5025
5026 static void
5027 handle_inferior_event (struct execution_control_state *ecs)
5028 {
5029 /* Make sure that all temporary struct value objects that were
5030 created during the handling of the event get deleted at the
5031 end. */
5032 scoped_value_mark free_values;
5033
5034 enum stop_kind stop_soon;
5035
5036 if (debug_infrun)
5037 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5038 target_waitstatus_to_string (&ecs->ws).c_str ());
5039
5040 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5041 {
5042 /* We had an event in the inferior, but we are not interested in
5043 handling it at this level. The lower layers have already
5044 done what needs to be done, if anything.
5045
5046 One of the possible circumstances for this is when the
5047 inferior produces output for the console. The inferior has
5048 not stopped, and we are ignoring the event. Another possible
5049 circumstance is any event which the lower level knows will be
5050 reported multiple times without an intervening resume. */
5051 prepare_to_wait (ecs);
5052 return;
5053 }
5054
5055 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5056 {
5057 prepare_to_wait (ecs);
5058 return;
5059 }
5060
5061 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5062 && handle_no_resumed (ecs))
5063 return;
5064
5065 /* Cache the last target/ptid/waitstatus. */
5066 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5067
5068 /* Always clear state belonging to the previous time we stopped. */
5069 stop_stack_dummy = STOP_NONE;
5070
5071 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5072 {
5073 /* No unwaited-for children left. IOW, all resumed children
5074 have exited. */
5075 stop_print_frame = 0;
5076 stop_waiting (ecs);
5077 return;
5078 }
5079
5080 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5081 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5082 {
5083 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5084 /* If it's a new thread, add it to the thread database. */
5085 if (ecs->event_thread == NULL)
5086 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5087
5088 /* Disable range stepping. If the next step request could use a
5089 range, this will be end up re-enabled then. */
5090 ecs->event_thread->control.may_range_step = 0;
5091 }
5092
5093 /* Dependent on valid ECS->EVENT_THREAD. */
5094 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5095
5096 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5097 reinit_frame_cache ();
5098
5099 breakpoint_retire_moribund ();
5100
5101 /* First, distinguish signals caused by the debugger from signals
5102 that have to do with the program's own actions. Note that
5103 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5104 on the operating system version. Here we detect when a SIGILL or
5105 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5106 something similar for SIGSEGV, since a SIGSEGV will be generated
5107 when we're trying to execute a breakpoint instruction on a
5108 non-executable stack. This happens for call dummy breakpoints
5109 for architectures like SPARC that place call dummies on the
5110 stack. */
5111 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5112 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5113 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5114 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5115 {
5116 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5117
5118 if (breakpoint_inserted_here_p (regcache->aspace (),
5119 regcache_read_pc (regcache)))
5120 {
5121 if (debug_infrun)
5122 fprintf_unfiltered (gdb_stdlog,
5123 "infrun: Treating signal as SIGTRAP\n");
5124 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5125 }
5126 }
5127
5128 /* Mark the non-executing threads accordingly. In all-stop, all
5129 threads of all processes are stopped when we get any event
5130 reported. In non-stop mode, only the event thread stops. */
5131 {
5132 ptid_t mark_ptid;
5133
5134 if (!target_is_non_stop_p ())
5135 mark_ptid = minus_one_ptid;
5136 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5137 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5138 {
5139 /* If we're handling a process exit in non-stop mode, even
5140 though threads haven't been deleted yet, one would think
5141 that there is nothing to do, as threads of the dead process
5142 will be soon deleted, and threads of any other process were
5143 left running. However, on some targets, threads survive a
5144 process exit event. E.g., for the "checkpoint" command,
5145 when the current checkpoint/fork exits, linux-fork.c
5146 automatically switches to another fork from within
5147 target_mourn_inferior, by associating the same
5148 inferior/thread to another fork. We haven't mourned yet at
5149 this point, but we must mark any threads left in the
5150 process as not-executing so that finish_thread_state marks
5151 them stopped (in the user's perspective) if/when we present
5152 the stop to the user. */
5153 mark_ptid = ptid_t (ecs->ptid.pid ());
5154 }
5155 else
5156 mark_ptid = ecs->ptid;
5157
5158 set_executing (ecs->target, mark_ptid, false);
5159
5160 /* Likewise the resumed flag. */
5161 set_resumed (ecs->target, mark_ptid, false);
5162 }
5163
5164 switch (ecs->ws.kind)
5165 {
5166 case TARGET_WAITKIND_LOADED:
5167 context_switch (ecs);
5168 /* Ignore gracefully during startup of the inferior, as it might
5169 be the shell which has just loaded some objects, otherwise
5170 add the symbols for the newly loaded objects. Also ignore at
5171 the beginning of an attach or remote session; we will query
5172 the full list of libraries once the connection is
5173 established. */
5174
5175 stop_soon = get_inferior_stop_soon (ecs);
5176 if (stop_soon == NO_STOP_QUIETLY)
5177 {
5178 struct regcache *regcache;
5179
5180 regcache = get_thread_regcache (ecs->event_thread);
5181
5182 handle_solib_event ();
5183
5184 ecs->event_thread->control.stop_bpstat
5185 = bpstat_stop_status (regcache->aspace (),
5186 ecs->event_thread->suspend.stop_pc,
5187 ecs->event_thread, &ecs->ws);
5188
5189 if (handle_stop_requested (ecs))
5190 return;
5191
5192 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5193 {
5194 /* A catchpoint triggered. */
5195 process_event_stop_test (ecs);
5196 return;
5197 }
5198
5199 /* If requested, stop when the dynamic linker notifies
5200 gdb of events. This allows the user to get control
5201 and place breakpoints in initializer routines for
5202 dynamically loaded objects (among other things). */
5203 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5204 if (stop_on_solib_events)
5205 {
5206 /* Make sure we print "Stopped due to solib-event" in
5207 normal_stop. */
5208 stop_print_frame = 1;
5209
5210 stop_waiting (ecs);
5211 return;
5212 }
5213 }
5214
5215 /* If we are skipping through a shell, or through shared library
5216 loading that we aren't interested in, resume the program. If
5217 we're running the program normally, also resume. */
5218 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5219 {
5220 /* Loading of shared libraries might have changed breakpoint
5221 addresses. Make sure new breakpoints are inserted. */
5222 if (stop_soon == NO_STOP_QUIETLY)
5223 insert_breakpoints ();
5224 resume (GDB_SIGNAL_0);
5225 prepare_to_wait (ecs);
5226 return;
5227 }
5228
5229 /* But stop if we're attaching or setting up a remote
5230 connection. */
5231 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5232 || stop_soon == STOP_QUIETLY_REMOTE)
5233 {
5234 if (debug_infrun)
5235 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5236 stop_waiting (ecs);
5237 return;
5238 }
5239
5240 internal_error (__FILE__, __LINE__,
5241 _("unhandled stop_soon: %d"), (int) stop_soon);
5242
5243 case TARGET_WAITKIND_SPURIOUS:
5244 if (handle_stop_requested (ecs))
5245 return;
5246 context_switch (ecs);
5247 resume (GDB_SIGNAL_0);
5248 prepare_to_wait (ecs);
5249 return;
5250
5251 case TARGET_WAITKIND_THREAD_CREATED:
5252 if (handle_stop_requested (ecs))
5253 return;
5254 context_switch (ecs);
5255 if (!switch_back_to_stepped_thread (ecs))
5256 keep_going (ecs);
5257 return;
5258
5259 case TARGET_WAITKIND_EXITED:
5260 case TARGET_WAITKIND_SIGNALLED:
5261 inferior_ptid = ecs->ptid;
5262 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5263 set_current_program_space (current_inferior ()->pspace);
5264 handle_vfork_child_exec_or_exit (0);
5265 target_terminal::ours (); /* Must do this before mourn anyway. */
5266
5267 /* Clearing any previous state of convenience variables. */
5268 clear_exit_convenience_vars ();
5269
5270 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5271 {
5272 /* Record the exit code in the convenience variable $_exitcode, so
5273 that the user can inspect this again later. */
5274 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5275 (LONGEST) ecs->ws.value.integer);
5276
5277 /* Also record this in the inferior itself. */
5278 current_inferior ()->has_exit_code = 1;
5279 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5280
5281 /* Support the --return-child-result option. */
5282 return_child_result_value = ecs->ws.value.integer;
5283
5284 gdb::observers::exited.notify (ecs->ws.value.integer);
5285 }
5286 else
5287 {
5288 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5289
5290 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5291 {
5292 /* Set the value of the internal variable $_exitsignal,
5293 which holds the signal uncaught by the inferior. */
5294 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5295 gdbarch_gdb_signal_to_target (gdbarch,
5296 ecs->ws.value.sig));
5297 }
5298 else
5299 {
5300 /* We don't have access to the target's method used for
5301 converting between signal numbers (GDB's internal
5302 representation <-> target's representation).
5303 Therefore, we cannot do a good job at displaying this
5304 information to the user. It's better to just warn
5305 her about it (if infrun debugging is enabled), and
5306 give up. */
5307 if (debug_infrun)
5308 fprintf_filtered (gdb_stdlog, _("\
5309 Cannot fill $_exitsignal with the correct signal number.\n"));
5310 }
5311
5312 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5313 }
5314
5315 gdb_flush (gdb_stdout);
5316 target_mourn_inferior (inferior_ptid);
5317 stop_print_frame = 0;
5318 stop_waiting (ecs);
5319 return;
5320
5321 case TARGET_WAITKIND_FORKED:
5322 case TARGET_WAITKIND_VFORKED:
5323 /* Check whether the inferior is displaced stepping. */
5324 {
5325 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5326 struct gdbarch *gdbarch = regcache->arch ();
5327
5328 /* If checking displaced stepping is supported, and thread
5329 ecs->ptid is displaced stepping. */
5330 if (displaced_step_in_progress_thread (ecs->event_thread))
5331 {
5332 struct inferior *parent_inf
5333 = find_inferior_ptid (ecs->target, ecs->ptid);
5334 struct regcache *child_regcache;
5335 CORE_ADDR parent_pc;
5336
5337 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5338 {
5339 struct displaced_step_inferior_state *displaced
5340 = get_displaced_stepping_state (parent_inf);
5341
5342 /* Restore scratch pad for child process. */
5343 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5344 }
5345
5346 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5347 indicating that the displaced stepping of syscall instruction
5348 has been done. Perform cleanup for parent process here. Note
5349 that this operation also cleans up the child process for vfork,
5350 because their pages are shared. */
5351 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5352 /* Start a new step-over in another thread if there's one
5353 that needs it. */
5354 start_step_over ();
5355
5356 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5357 the child's PC is also within the scratchpad. Set the child's PC
5358 to the parent's PC value, which has already been fixed up.
5359 FIXME: we use the parent's aspace here, although we're touching
5360 the child, because the child hasn't been added to the inferior
5361 list yet at this point. */
5362
5363 child_regcache
5364 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5365 ecs->ws.value.related_pid,
5366 gdbarch,
5367 parent_inf->aspace);
5368 /* Read PC value of parent process. */
5369 parent_pc = regcache_read_pc (regcache);
5370
5371 if (debug_displaced)
5372 fprintf_unfiltered (gdb_stdlog,
5373 "displaced: write child pc from %s to %s\n",
5374 paddress (gdbarch,
5375 regcache_read_pc (child_regcache)),
5376 paddress (gdbarch, parent_pc));
5377
5378 regcache_write_pc (child_regcache, parent_pc);
5379 }
5380 }
5381
5382 context_switch (ecs);
5383
5384 /* Immediately detach breakpoints from the child before there's
5385 any chance of letting the user delete breakpoints from the
5386 breakpoint lists. If we don't do this early, it's easy to
5387 leave left over traps in the child, vis: "break foo; catch
5388 fork; c; <fork>; del; c; <child calls foo>". We only follow
5389 the fork on the last `continue', and by that time the
5390 breakpoint at "foo" is long gone from the breakpoint table.
5391 If we vforked, then we don't need to unpatch here, since both
5392 parent and child are sharing the same memory pages; we'll
5393 need to unpatch at follow/detach time instead to be certain
5394 that new breakpoints added between catchpoint hit time and
5395 vfork follow are detached. */
5396 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5397 {
5398 /* This won't actually modify the breakpoint list, but will
5399 physically remove the breakpoints from the child. */
5400 detach_breakpoints (ecs->ws.value.related_pid);
5401 }
5402
5403 delete_just_stopped_threads_single_step_breakpoints ();
5404
5405 /* In case the event is caught by a catchpoint, remember that
5406 the event is to be followed at the next resume of the thread,
5407 and not immediately. */
5408 ecs->event_thread->pending_follow = ecs->ws;
5409
5410 ecs->event_thread->suspend.stop_pc
5411 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5412
5413 ecs->event_thread->control.stop_bpstat
5414 = bpstat_stop_status (get_current_regcache ()->aspace (),
5415 ecs->event_thread->suspend.stop_pc,
5416 ecs->event_thread, &ecs->ws);
5417
5418 if (handle_stop_requested (ecs))
5419 return;
5420
5421 /* If no catchpoint triggered for this, then keep going. Note
5422 that we're interested in knowing the bpstat actually causes a
5423 stop, not just if it may explain the signal. Software
5424 watchpoints, for example, always appear in the bpstat. */
5425 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5426 {
5427 int should_resume;
5428 int follow_child
5429 = (follow_fork_mode_string == follow_fork_mode_child);
5430
5431 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5432
5433 process_stratum_target *targ
5434 = ecs->event_thread->inf->process_target ();
5435
5436 should_resume = follow_fork ();
5437
5438 /* Note that one of these may be an invalid pointer,
5439 depending on detach_fork. */
5440 thread_info *parent = ecs->event_thread;
5441 thread_info *child
5442 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5443
5444 /* At this point, the parent is marked running, and the
5445 child is marked stopped. */
5446
5447 /* If not resuming the parent, mark it stopped. */
5448 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5449 parent->set_running (false);
5450
5451 /* If resuming the child, mark it running. */
5452 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5453 child->set_running (true);
5454
5455 /* In non-stop mode, also resume the other branch. */
5456 if (!detach_fork && (non_stop
5457 || (sched_multi && target_is_non_stop_p ())))
5458 {
5459 if (follow_child)
5460 switch_to_thread (parent);
5461 else
5462 switch_to_thread (child);
5463
5464 ecs->event_thread = inferior_thread ();
5465 ecs->ptid = inferior_ptid;
5466 keep_going (ecs);
5467 }
5468
5469 if (follow_child)
5470 switch_to_thread (child);
5471 else
5472 switch_to_thread (parent);
5473
5474 ecs->event_thread = inferior_thread ();
5475 ecs->ptid = inferior_ptid;
5476
5477 if (should_resume)
5478 keep_going (ecs);
5479 else
5480 stop_waiting (ecs);
5481 return;
5482 }
5483 process_event_stop_test (ecs);
5484 return;
5485
5486 case TARGET_WAITKIND_VFORK_DONE:
5487 /* Done with the shared memory region. Re-insert breakpoints in
5488 the parent, and keep going. */
5489
5490 context_switch (ecs);
5491
5492 current_inferior ()->waiting_for_vfork_done = 0;
5493 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5494
5495 if (handle_stop_requested (ecs))
5496 return;
5497
5498 /* This also takes care of reinserting breakpoints in the
5499 previously locked inferior. */
5500 keep_going (ecs);
5501 return;
5502
5503 case TARGET_WAITKIND_EXECD:
5504
5505 /* Note we can't read registers yet (the stop_pc), because we
5506 don't yet know the inferior's post-exec architecture.
5507 'stop_pc' is explicitly read below instead. */
5508 switch_to_thread_no_regs (ecs->event_thread);
5509
5510 /* Do whatever is necessary to the parent branch of the vfork. */
5511 handle_vfork_child_exec_or_exit (1);
5512
5513 /* This causes the eventpoints and symbol table to be reset.
5514 Must do this now, before trying to determine whether to
5515 stop. */
5516 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5517
5518 /* In follow_exec we may have deleted the original thread and
5519 created a new one. Make sure that the event thread is the
5520 execd thread for that case (this is a nop otherwise). */
5521 ecs->event_thread = inferior_thread ();
5522
5523 ecs->event_thread->suspend.stop_pc
5524 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5525
5526 ecs->event_thread->control.stop_bpstat
5527 = bpstat_stop_status (get_current_regcache ()->aspace (),
5528 ecs->event_thread->suspend.stop_pc,
5529 ecs->event_thread, &ecs->ws);
5530
5531 /* Note that this may be referenced from inside
5532 bpstat_stop_status above, through inferior_has_execd. */
5533 xfree (ecs->ws.value.execd_pathname);
5534 ecs->ws.value.execd_pathname = NULL;
5535
5536 if (handle_stop_requested (ecs))
5537 return;
5538
5539 /* If no catchpoint triggered for this, then keep going. */
5540 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5541 {
5542 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5543 keep_going (ecs);
5544 return;
5545 }
5546 process_event_stop_test (ecs);
5547 return;
5548
5549 /* Be careful not to try to gather much state about a thread
5550 that's in a syscall. It's frequently a losing proposition. */
5551 case TARGET_WAITKIND_SYSCALL_ENTRY:
5552 /* Getting the current syscall number. */
5553 if (handle_syscall_event (ecs) == 0)
5554 process_event_stop_test (ecs);
5555 return;
5556
5557 /* Before examining the threads further, step this thread to
5558 get it entirely out of the syscall. (We get notice of the
5559 event when the thread is just on the verge of exiting a
5560 syscall. Stepping one instruction seems to get it back
5561 into user code.) */
5562 case TARGET_WAITKIND_SYSCALL_RETURN:
5563 if (handle_syscall_event (ecs) == 0)
5564 process_event_stop_test (ecs);
5565 return;
5566
5567 case TARGET_WAITKIND_STOPPED:
5568 handle_signal_stop (ecs);
5569 return;
5570
5571 case TARGET_WAITKIND_NO_HISTORY:
5572 /* Reverse execution: target ran out of history info. */
5573
5574 /* Switch to the stopped thread. */
5575 context_switch (ecs);
5576 if (debug_infrun)
5577 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5578
5579 delete_just_stopped_threads_single_step_breakpoints ();
5580 ecs->event_thread->suspend.stop_pc
5581 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5582
5583 if (handle_stop_requested (ecs))
5584 return;
5585
5586 gdb::observers::no_history.notify ();
5587 stop_waiting (ecs);
5588 return;
5589 }
5590 }
5591
5592 /* Restart threads back to what they were trying to do back when we
5593 paused them for an in-line step-over. The EVENT_THREAD thread is
5594 ignored. */
5595
5596 static void
5597 restart_threads (struct thread_info *event_thread)
5598 {
5599 /* In case the instruction just stepped spawned a new thread. */
5600 update_thread_list ();
5601
5602 for (thread_info *tp : all_non_exited_threads ())
5603 {
5604 switch_to_thread_no_regs (tp);
5605
5606 if (tp == event_thread)
5607 {
5608 if (debug_infrun)
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: restart threads: "
5611 "[%s] is event thread\n",
5612 target_pid_to_str (tp->ptid).c_str ());
5613 continue;
5614 }
5615
5616 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5617 {
5618 if (debug_infrun)
5619 fprintf_unfiltered (gdb_stdlog,
5620 "infrun: restart threads: "
5621 "[%s] not meant to be running\n",
5622 target_pid_to_str (tp->ptid).c_str ());
5623 continue;
5624 }
5625
5626 if (tp->resumed)
5627 {
5628 if (debug_infrun)
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: restart threads: [%s] resumed\n",
5631 target_pid_to_str (tp->ptid).c_str ());
5632 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5633 continue;
5634 }
5635
5636 if (thread_is_in_step_over_chain (tp))
5637 {
5638 if (debug_infrun)
5639 fprintf_unfiltered (gdb_stdlog,
5640 "infrun: restart threads: "
5641 "[%s] needs step-over\n",
5642 target_pid_to_str (tp->ptid).c_str ());
5643 gdb_assert (!tp->resumed);
5644 continue;
5645 }
5646
5647
5648 if (tp->suspend.waitstatus_pending_p)
5649 {
5650 if (debug_infrun)
5651 fprintf_unfiltered (gdb_stdlog,
5652 "infrun: restart threads: "
5653 "[%s] has pending status\n",
5654 target_pid_to_str (tp->ptid).c_str ());
5655 tp->resumed = true;
5656 continue;
5657 }
5658
5659 gdb_assert (!tp->stop_requested);
5660
5661 /* If some thread needs to start a step-over at this point, it
5662 should still be in the step-over queue, and thus skipped
5663 above. */
5664 if (thread_still_needs_step_over (tp))
5665 {
5666 internal_error (__FILE__, __LINE__,
5667 "thread [%s] needs a step-over, but not in "
5668 "step-over queue\n",
5669 target_pid_to_str (tp->ptid).c_str ());
5670 }
5671
5672 if (currently_stepping (tp))
5673 {
5674 if (debug_infrun)
5675 fprintf_unfiltered (gdb_stdlog,
5676 "infrun: restart threads: [%s] was stepping\n",
5677 target_pid_to_str (tp->ptid).c_str ());
5678 keep_going_stepped_thread (tp);
5679 }
5680 else
5681 {
5682 struct execution_control_state ecss;
5683 struct execution_control_state *ecs = &ecss;
5684
5685 if (debug_infrun)
5686 fprintf_unfiltered (gdb_stdlog,
5687 "infrun: restart threads: [%s] continuing\n",
5688 target_pid_to_str (tp->ptid).c_str ());
5689 reset_ecs (ecs, tp);
5690 switch_to_thread (tp);
5691 keep_going_pass_signal (ecs);
5692 }
5693 }
5694 }
5695
5696 /* Callback for iterate_over_threads. Find a resumed thread that has
5697 a pending waitstatus. */
5698
5699 static int
5700 resumed_thread_with_pending_status (struct thread_info *tp,
5701 void *arg)
5702 {
5703 return (tp->resumed
5704 && tp->suspend.waitstatus_pending_p);
5705 }
5706
5707 /* Called when we get an event that may finish an in-line or
5708 out-of-line (displaced stepping) step-over started previously.
5709 Return true if the event is processed and we should go back to the
5710 event loop; false if the caller should continue processing the
5711 event. */
5712
5713 static int
5714 finish_step_over (struct execution_control_state *ecs)
5715 {
5716 int had_step_over_info;
5717
5718 displaced_step_fixup (ecs->event_thread,
5719 ecs->event_thread->suspend.stop_signal);
5720
5721 had_step_over_info = step_over_info_valid_p ();
5722
5723 if (had_step_over_info)
5724 {
5725 /* If we're stepping over a breakpoint with all threads locked,
5726 then only the thread that was stepped should be reporting
5727 back an event. */
5728 gdb_assert (ecs->event_thread->control.trap_expected);
5729
5730 clear_step_over_info ();
5731 }
5732
5733 if (!target_is_non_stop_p ())
5734 return 0;
5735
5736 /* Start a new step-over in another thread if there's one that
5737 needs it. */
5738 start_step_over ();
5739
5740 /* If we were stepping over a breakpoint before, and haven't started
5741 a new in-line step-over sequence, then restart all other threads
5742 (except the event thread). We can't do this in all-stop, as then
5743 e.g., we wouldn't be able to issue any other remote packet until
5744 these other threads stop. */
5745 if (had_step_over_info && !step_over_info_valid_p ())
5746 {
5747 struct thread_info *pending;
5748
5749 /* If we only have threads with pending statuses, the restart
5750 below won't restart any thread and so nothing re-inserts the
5751 breakpoint we just stepped over. But we need it inserted
5752 when we later process the pending events, otherwise if
5753 another thread has a pending event for this breakpoint too,
5754 we'd discard its event (because the breakpoint that
5755 originally caused the event was no longer inserted). */
5756 context_switch (ecs);
5757 insert_breakpoints ();
5758
5759 restart_threads (ecs->event_thread);
5760
5761 /* If we have events pending, go through handle_inferior_event
5762 again, picking up a pending event at random. This avoids
5763 thread starvation. */
5764
5765 /* But not if we just stepped over a watchpoint in order to let
5766 the instruction execute so we can evaluate its expression.
5767 The set of watchpoints that triggered is recorded in the
5768 breakpoint objects themselves (see bp->watchpoint_triggered).
5769 If we processed another event first, that other event could
5770 clobber this info. */
5771 if (ecs->event_thread->stepping_over_watchpoint)
5772 return 0;
5773
5774 pending = iterate_over_threads (resumed_thread_with_pending_status,
5775 NULL);
5776 if (pending != NULL)
5777 {
5778 struct thread_info *tp = ecs->event_thread;
5779 struct regcache *regcache;
5780
5781 if (debug_infrun)
5782 {
5783 fprintf_unfiltered (gdb_stdlog,
5784 "infrun: found resumed threads with "
5785 "pending events, saving status\n");
5786 }
5787
5788 gdb_assert (pending != tp);
5789
5790 /* Record the event thread's event for later. */
5791 save_waitstatus (tp, &ecs->ws);
5792 /* This was cleared early, by handle_inferior_event. Set it
5793 so this pending event is considered by
5794 do_target_wait. */
5795 tp->resumed = true;
5796
5797 gdb_assert (!tp->executing);
5798
5799 regcache = get_thread_regcache (tp);
5800 tp->suspend.stop_pc = regcache_read_pc (regcache);
5801
5802 if (debug_infrun)
5803 {
5804 fprintf_unfiltered (gdb_stdlog,
5805 "infrun: saved stop_pc=%s for %s "
5806 "(currently_stepping=%d)\n",
5807 paddress (target_gdbarch (),
5808 tp->suspend.stop_pc),
5809 target_pid_to_str (tp->ptid).c_str (),
5810 currently_stepping (tp));
5811 }
5812
5813 /* This in-line step-over finished; clear this so we won't
5814 start a new one. This is what handle_signal_stop would
5815 do, if we returned false. */
5816 tp->stepping_over_breakpoint = 0;
5817
5818 /* Wake up the event loop again. */
5819 mark_async_event_handler (infrun_async_inferior_event_token);
5820
5821 prepare_to_wait (ecs);
5822 return 1;
5823 }
5824 }
5825
5826 return 0;
5827 }
5828
5829 /* Come here when the program has stopped with a signal. */
5830
5831 static void
5832 handle_signal_stop (struct execution_control_state *ecs)
5833 {
5834 struct frame_info *frame;
5835 struct gdbarch *gdbarch;
5836 int stopped_by_watchpoint;
5837 enum stop_kind stop_soon;
5838 int random_signal;
5839
5840 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5841
5842 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5843
5844 /* Do we need to clean up the state of a thread that has
5845 completed a displaced single-step? (Doing so usually affects
5846 the PC, so do it here, before we set stop_pc.) */
5847 if (finish_step_over (ecs))
5848 return;
5849
5850 /* If we either finished a single-step or hit a breakpoint, but
5851 the user wanted this thread to be stopped, pretend we got a
5852 SIG0 (generic unsignaled stop). */
5853 if (ecs->event_thread->stop_requested
5854 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5856
5857 ecs->event_thread->suspend.stop_pc
5858 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5859
5860 if (debug_infrun)
5861 {
5862 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5863 struct gdbarch *reg_gdbarch = regcache->arch ();
5864
5865 switch_to_thread (ecs->event_thread);
5866
5867 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5868 paddress (reg_gdbarch,
5869 ecs->event_thread->suspend.stop_pc));
5870 if (target_stopped_by_watchpoint ())
5871 {
5872 CORE_ADDR addr;
5873
5874 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5875
5876 if (target_stopped_data_address (current_top_target (), &addr))
5877 fprintf_unfiltered (gdb_stdlog,
5878 "infrun: stopped data address = %s\n",
5879 paddress (reg_gdbarch, addr));
5880 else
5881 fprintf_unfiltered (gdb_stdlog,
5882 "infrun: (no data address available)\n");
5883 }
5884 }
5885
5886 /* This is originated from start_remote(), start_inferior() and
5887 shared libraries hook functions. */
5888 stop_soon = get_inferior_stop_soon (ecs);
5889 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5890 {
5891 context_switch (ecs);
5892 if (debug_infrun)
5893 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5894 stop_print_frame = 1;
5895 stop_waiting (ecs);
5896 return;
5897 }
5898
5899 /* This originates from attach_command(). We need to overwrite
5900 the stop_signal here, because some kernels don't ignore a
5901 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5902 See more comments in inferior.h. On the other hand, if we
5903 get a non-SIGSTOP, report it to the user - assume the backend
5904 will handle the SIGSTOP if it should show up later.
5905
5906 Also consider that the attach is complete when we see a
5907 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5908 target extended-remote report it instead of a SIGSTOP
5909 (e.g. gdbserver). We already rely on SIGTRAP being our
5910 signal, so this is no exception.
5911
5912 Also consider that the attach is complete when we see a
5913 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5914 the target to stop all threads of the inferior, in case the
5915 low level attach operation doesn't stop them implicitly. If
5916 they weren't stopped implicitly, then the stub will report a
5917 GDB_SIGNAL_0, meaning: stopped for no particular reason
5918 other than GDB's request. */
5919 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5920 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5921 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5922 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5923 {
5924 stop_print_frame = 1;
5925 stop_waiting (ecs);
5926 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5927 return;
5928 }
5929
5930 /* See if something interesting happened to the non-current thread. If
5931 so, then switch to that thread. */
5932 if (ecs->ptid != inferior_ptid)
5933 {
5934 if (debug_infrun)
5935 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5936
5937 context_switch (ecs);
5938
5939 if (deprecated_context_hook)
5940 deprecated_context_hook (ecs->event_thread->global_num);
5941 }
5942
5943 /* At this point, get hold of the now-current thread's frame. */
5944 frame = get_current_frame ();
5945 gdbarch = get_frame_arch (frame);
5946
5947 /* Pull the single step breakpoints out of the target. */
5948 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5949 {
5950 struct regcache *regcache;
5951 CORE_ADDR pc;
5952
5953 regcache = get_thread_regcache (ecs->event_thread);
5954 const address_space *aspace = regcache->aspace ();
5955
5956 pc = regcache_read_pc (regcache);
5957
5958 /* However, before doing so, if this single-step breakpoint was
5959 actually for another thread, set this thread up for moving
5960 past it. */
5961 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5962 aspace, pc))
5963 {
5964 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5965 {
5966 if (debug_infrun)
5967 {
5968 fprintf_unfiltered (gdb_stdlog,
5969 "infrun: [%s] hit another thread's "
5970 "single-step breakpoint\n",
5971 target_pid_to_str (ecs->ptid).c_str ());
5972 }
5973 ecs->hit_singlestep_breakpoint = 1;
5974 }
5975 }
5976 else
5977 {
5978 if (debug_infrun)
5979 {
5980 fprintf_unfiltered (gdb_stdlog,
5981 "infrun: [%s] hit its "
5982 "single-step breakpoint\n",
5983 target_pid_to_str (ecs->ptid).c_str ());
5984 }
5985 }
5986 }
5987 delete_just_stopped_threads_single_step_breakpoints ();
5988
5989 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5990 && ecs->event_thread->control.trap_expected
5991 && ecs->event_thread->stepping_over_watchpoint)
5992 stopped_by_watchpoint = 0;
5993 else
5994 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5995
5996 /* If necessary, step over this watchpoint. We'll be back to display
5997 it in a moment. */
5998 if (stopped_by_watchpoint
5999 && (target_have_steppable_watchpoint
6000 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6001 {
6002 /* At this point, we are stopped at an instruction which has
6003 attempted to write to a piece of memory under control of
6004 a watchpoint. The instruction hasn't actually executed
6005 yet. If we were to evaluate the watchpoint expression
6006 now, we would get the old value, and therefore no change
6007 would seem to have occurred.
6008
6009 In order to make watchpoints work `right', we really need
6010 to complete the memory write, and then evaluate the
6011 watchpoint expression. We do this by single-stepping the
6012 target.
6013
6014 It may not be necessary to disable the watchpoint to step over
6015 it. For example, the PA can (with some kernel cooperation)
6016 single step over a watchpoint without disabling the watchpoint.
6017
6018 It is far more common to need to disable a watchpoint to step
6019 the inferior over it. If we have non-steppable watchpoints,
6020 we must disable the current watchpoint; it's simplest to
6021 disable all watchpoints.
6022
6023 Any breakpoint at PC must also be stepped over -- if there's
6024 one, it will have already triggered before the watchpoint
6025 triggered, and we either already reported it to the user, or
6026 it didn't cause a stop and we called keep_going. In either
6027 case, if there was a breakpoint at PC, we must be trying to
6028 step past it. */
6029 ecs->event_thread->stepping_over_watchpoint = 1;
6030 keep_going (ecs);
6031 return;
6032 }
6033
6034 ecs->event_thread->stepping_over_breakpoint = 0;
6035 ecs->event_thread->stepping_over_watchpoint = 0;
6036 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6037 ecs->event_thread->control.stop_step = 0;
6038 stop_print_frame = 1;
6039 stopped_by_random_signal = 0;
6040 bpstat stop_chain = NULL;
6041
6042 /* Hide inlined functions starting here, unless we just performed stepi or
6043 nexti. After stepi and nexti, always show the innermost frame (not any
6044 inline function call sites). */
6045 if (ecs->event_thread->control.step_range_end != 1)
6046 {
6047 const address_space *aspace
6048 = get_thread_regcache (ecs->event_thread)->aspace ();
6049
6050 /* skip_inline_frames is expensive, so we avoid it if we can
6051 determine that the address is one where functions cannot have
6052 been inlined. This improves performance with inferiors that
6053 load a lot of shared libraries, because the solib event
6054 breakpoint is defined as the address of a function (i.e. not
6055 inline). Note that we have to check the previous PC as well
6056 as the current one to catch cases when we have just
6057 single-stepped off a breakpoint prior to reinstating it.
6058 Note that we're assuming that the code we single-step to is
6059 not inline, but that's not definitive: there's nothing
6060 preventing the event breakpoint function from containing
6061 inlined code, and the single-step ending up there. If the
6062 user had set a breakpoint on that inlined code, the missing
6063 skip_inline_frames call would break things. Fortunately
6064 that's an extremely unlikely scenario. */
6065 if (!pc_at_non_inline_function (aspace,
6066 ecs->event_thread->suspend.stop_pc,
6067 &ecs->ws)
6068 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6069 && ecs->event_thread->control.trap_expected
6070 && pc_at_non_inline_function (aspace,
6071 ecs->event_thread->prev_pc,
6072 &ecs->ws)))
6073 {
6074 stop_chain = build_bpstat_chain (aspace,
6075 ecs->event_thread->suspend.stop_pc,
6076 &ecs->ws);
6077 skip_inline_frames (ecs->event_thread, stop_chain);
6078
6079 /* Re-fetch current thread's frame in case that invalidated
6080 the frame cache. */
6081 frame = get_current_frame ();
6082 gdbarch = get_frame_arch (frame);
6083 }
6084 }
6085
6086 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6087 && ecs->event_thread->control.trap_expected
6088 && gdbarch_single_step_through_delay_p (gdbarch)
6089 && currently_stepping (ecs->event_thread))
6090 {
6091 /* We're trying to step off a breakpoint. Turns out that we're
6092 also on an instruction that needs to be stepped multiple
6093 times before it's been fully executing. E.g., architectures
6094 with a delay slot. It needs to be stepped twice, once for
6095 the instruction and once for the delay slot. */
6096 int step_through_delay
6097 = gdbarch_single_step_through_delay (gdbarch, frame);
6098
6099 if (debug_infrun && step_through_delay)
6100 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6101 if (ecs->event_thread->control.step_range_end == 0
6102 && step_through_delay)
6103 {
6104 /* The user issued a continue when stopped at a breakpoint.
6105 Set up for another trap and get out of here. */
6106 ecs->event_thread->stepping_over_breakpoint = 1;
6107 keep_going (ecs);
6108 return;
6109 }
6110 else if (step_through_delay)
6111 {
6112 /* The user issued a step when stopped at a breakpoint.
6113 Maybe we should stop, maybe we should not - the delay
6114 slot *might* correspond to a line of source. In any
6115 case, don't decide that here, just set
6116 ecs->stepping_over_breakpoint, making sure we
6117 single-step again before breakpoints are re-inserted. */
6118 ecs->event_thread->stepping_over_breakpoint = 1;
6119 }
6120 }
6121
6122 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6123 handles this event. */
6124 ecs->event_thread->control.stop_bpstat
6125 = bpstat_stop_status (get_current_regcache ()->aspace (),
6126 ecs->event_thread->suspend.stop_pc,
6127 ecs->event_thread, &ecs->ws, stop_chain);
6128
6129 /* Following in case break condition called a
6130 function. */
6131 stop_print_frame = 1;
6132
6133 /* This is where we handle "moribund" watchpoints. Unlike
6134 software breakpoints traps, hardware watchpoint traps are
6135 always distinguishable from random traps. If no high-level
6136 watchpoint is associated with the reported stop data address
6137 anymore, then the bpstat does not explain the signal ---
6138 simply make sure to ignore it if `stopped_by_watchpoint' is
6139 set. */
6140
6141 if (debug_infrun
6142 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6143 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6144 GDB_SIGNAL_TRAP)
6145 && stopped_by_watchpoint)
6146 fprintf_unfiltered (gdb_stdlog,
6147 "infrun: no user watchpoint explains "
6148 "watchpoint SIGTRAP, ignoring\n");
6149
6150 /* NOTE: cagney/2003-03-29: These checks for a random signal
6151 at one stage in the past included checks for an inferior
6152 function call's call dummy's return breakpoint. The original
6153 comment, that went with the test, read:
6154
6155 ``End of a stack dummy. Some systems (e.g. Sony news) give
6156 another signal besides SIGTRAP, so check here as well as
6157 above.''
6158
6159 If someone ever tries to get call dummys on a
6160 non-executable stack to work (where the target would stop
6161 with something like a SIGSEGV), then those tests might need
6162 to be re-instated. Given, however, that the tests were only
6163 enabled when momentary breakpoints were not being used, I
6164 suspect that it won't be the case.
6165
6166 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6167 be necessary for call dummies on a non-executable stack on
6168 SPARC. */
6169
6170 /* See if the breakpoints module can explain the signal. */
6171 random_signal
6172 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6173 ecs->event_thread->suspend.stop_signal);
6174
6175 /* Maybe this was a trap for a software breakpoint that has since
6176 been removed. */
6177 if (random_signal && target_stopped_by_sw_breakpoint ())
6178 {
6179 if (gdbarch_program_breakpoint_here_p (gdbarch,
6180 ecs->event_thread->suspend.stop_pc))
6181 {
6182 struct regcache *regcache;
6183 int decr_pc;
6184
6185 /* Re-adjust PC to what the program would see if GDB was not
6186 debugging it. */
6187 regcache = get_thread_regcache (ecs->event_thread);
6188 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6189 if (decr_pc != 0)
6190 {
6191 gdb::optional<scoped_restore_tmpl<int>>
6192 restore_operation_disable;
6193
6194 if (record_full_is_used ())
6195 restore_operation_disable.emplace
6196 (record_full_gdb_operation_disable_set ());
6197
6198 regcache_write_pc (regcache,
6199 ecs->event_thread->suspend.stop_pc + decr_pc);
6200 }
6201 }
6202 else
6203 {
6204 /* A delayed software breakpoint event. Ignore the trap. */
6205 if (debug_infrun)
6206 fprintf_unfiltered (gdb_stdlog,
6207 "infrun: delayed software breakpoint "
6208 "trap, ignoring\n");
6209 random_signal = 0;
6210 }
6211 }
6212
6213 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6214 has since been removed. */
6215 if (random_signal && target_stopped_by_hw_breakpoint ())
6216 {
6217 /* A delayed hardware breakpoint event. Ignore the trap. */
6218 if (debug_infrun)
6219 fprintf_unfiltered (gdb_stdlog,
6220 "infrun: delayed hardware breakpoint/watchpoint "
6221 "trap, ignoring\n");
6222 random_signal = 0;
6223 }
6224
6225 /* If not, perhaps stepping/nexting can. */
6226 if (random_signal)
6227 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6228 && currently_stepping (ecs->event_thread));
6229
6230 /* Perhaps the thread hit a single-step breakpoint of _another_
6231 thread. Single-step breakpoints are transparent to the
6232 breakpoints module. */
6233 if (random_signal)
6234 random_signal = !ecs->hit_singlestep_breakpoint;
6235
6236 /* No? Perhaps we got a moribund watchpoint. */
6237 if (random_signal)
6238 random_signal = !stopped_by_watchpoint;
6239
6240 /* Always stop if the user explicitly requested this thread to
6241 remain stopped. */
6242 if (ecs->event_thread->stop_requested)
6243 {
6244 random_signal = 1;
6245 if (debug_infrun)
6246 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6247 }
6248
6249 /* For the program's own signals, act according to
6250 the signal handling tables. */
6251
6252 if (random_signal)
6253 {
6254 /* Signal not for debugging purposes. */
6255 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6256 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6257
6258 if (debug_infrun)
6259 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6260 gdb_signal_to_symbol_string (stop_signal));
6261
6262 stopped_by_random_signal = 1;
6263
6264 /* Always stop on signals if we're either just gaining control
6265 of the program, or the user explicitly requested this thread
6266 to remain stopped. */
6267 if (stop_soon != NO_STOP_QUIETLY
6268 || ecs->event_thread->stop_requested
6269 || (!inf->detaching
6270 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6271 {
6272 stop_waiting (ecs);
6273 return;
6274 }
6275
6276 /* Notify observers the signal has "handle print" set. Note we
6277 returned early above if stopping; normal_stop handles the
6278 printing in that case. */
6279 if (signal_print[ecs->event_thread->suspend.stop_signal])
6280 {
6281 /* The signal table tells us to print about this signal. */
6282 target_terminal::ours_for_output ();
6283 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6284 target_terminal::inferior ();
6285 }
6286
6287 /* Clear the signal if it should not be passed. */
6288 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6289 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6290
6291 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6292 && ecs->event_thread->control.trap_expected
6293 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6294 {
6295 /* We were just starting a new sequence, attempting to
6296 single-step off of a breakpoint and expecting a SIGTRAP.
6297 Instead this signal arrives. This signal will take us out
6298 of the stepping range so GDB needs to remember to, when
6299 the signal handler returns, resume stepping off that
6300 breakpoint. */
6301 /* To simplify things, "continue" is forced to use the same
6302 code paths as single-step - set a breakpoint at the
6303 signal return address and then, once hit, step off that
6304 breakpoint. */
6305 if (debug_infrun)
6306 fprintf_unfiltered (gdb_stdlog,
6307 "infrun: signal arrived while stepping over "
6308 "breakpoint\n");
6309
6310 insert_hp_step_resume_breakpoint_at_frame (frame);
6311 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6312 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6313 ecs->event_thread->control.trap_expected = 0;
6314
6315 /* If we were nexting/stepping some other thread, switch to
6316 it, so that we don't continue it, losing control. */
6317 if (!switch_back_to_stepped_thread (ecs))
6318 keep_going (ecs);
6319 return;
6320 }
6321
6322 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6323 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6324 ecs->event_thread)
6325 || ecs->event_thread->control.step_range_end == 1)
6326 && frame_id_eq (get_stack_frame_id (frame),
6327 ecs->event_thread->control.step_stack_frame_id)
6328 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6329 {
6330 /* The inferior is about to take a signal that will take it
6331 out of the single step range. Set a breakpoint at the
6332 current PC (which is presumably where the signal handler
6333 will eventually return) and then allow the inferior to
6334 run free.
6335
6336 Note that this is only needed for a signal delivered
6337 while in the single-step range. Nested signals aren't a
6338 problem as they eventually all return. */
6339 if (debug_infrun)
6340 fprintf_unfiltered (gdb_stdlog,
6341 "infrun: signal may take us out of "
6342 "single-step range\n");
6343
6344 clear_step_over_info ();
6345 insert_hp_step_resume_breakpoint_at_frame (frame);
6346 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6347 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6348 ecs->event_thread->control.trap_expected = 0;
6349 keep_going (ecs);
6350 return;
6351 }
6352
6353 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6354 when either there's a nested signal, or when there's a
6355 pending signal enabled just as the signal handler returns
6356 (leaving the inferior at the step-resume-breakpoint without
6357 actually executing it). Either way continue until the
6358 breakpoint is really hit. */
6359
6360 if (!switch_back_to_stepped_thread (ecs))
6361 {
6362 if (debug_infrun)
6363 fprintf_unfiltered (gdb_stdlog,
6364 "infrun: random signal, keep going\n");
6365
6366 keep_going (ecs);
6367 }
6368 return;
6369 }
6370
6371 process_event_stop_test (ecs);
6372 }
6373
6374 /* Come here when we've got some debug event / signal we can explain
6375 (IOW, not a random signal), and test whether it should cause a
6376 stop, or whether we should resume the inferior (transparently).
6377 E.g., could be a breakpoint whose condition evaluates false; we
6378 could be still stepping within the line; etc. */
6379
6380 static void
6381 process_event_stop_test (struct execution_control_state *ecs)
6382 {
6383 struct symtab_and_line stop_pc_sal;
6384 struct frame_info *frame;
6385 struct gdbarch *gdbarch;
6386 CORE_ADDR jmp_buf_pc;
6387 struct bpstat_what what;
6388
6389 /* Handle cases caused by hitting a breakpoint. */
6390
6391 frame = get_current_frame ();
6392 gdbarch = get_frame_arch (frame);
6393
6394 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6395
6396 if (what.call_dummy)
6397 {
6398 stop_stack_dummy = what.call_dummy;
6399 }
6400
6401 /* A few breakpoint types have callbacks associated (e.g.,
6402 bp_jit_event). Run them now. */
6403 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6404
6405 /* If we hit an internal event that triggers symbol changes, the
6406 current frame will be invalidated within bpstat_what (e.g., if we
6407 hit an internal solib event). Re-fetch it. */
6408 frame = get_current_frame ();
6409 gdbarch = get_frame_arch (frame);
6410
6411 switch (what.main_action)
6412 {
6413 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6414 /* If we hit the breakpoint at longjmp while stepping, we
6415 install a momentary breakpoint at the target of the
6416 jmp_buf. */
6417
6418 if (debug_infrun)
6419 fprintf_unfiltered (gdb_stdlog,
6420 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6421
6422 ecs->event_thread->stepping_over_breakpoint = 1;
6423
6424 if (what.is_longjmp)
6425 {
6426 struct value *arg_value;
6427
6428 /* If we set the longjmp breakpoint via a SystemTap probe,
6429 then use it to extract the arguments. The destination PC
6430 is the third argument to the probe. */
6431 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6432 if (arg_value)
6433 {
6434 jmp_buf_pc = value_as_address (arg_value);
6435 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6436 }
6437 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6438 || !gdbarch_get_longjmp_target (gdbarch,
6439 frame, &jmp_buf_pc))
6440 {
6441 if (debug_infrun)
6442 fprintf_unfiltered (gdb_stdlog,
6443 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6444 "(!gdbarch_get_longjmp_target)\n");
6445 keep_going (ecs);
6446 return;
6447 }
6448
6449 /* Insert a breakpoint at resume address. */
6450 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6451 }
6452 else
6453 check_exception_resume (ecs, frame);
6454 keep_going (ecs);
6455 return;
6456
6457 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6458 {
6459 struct frame_info *init_frame;
6460
6461 /* There are several cases to consider.
6462
6463 1. The initiating frame no longer exists. In this case we
6464 must stop, because the exception or longjmp has gone too
6465 far.
6466
6467 2. The initiating frame exists, and is the same as the
6468 current frame. We stop, because the exception or longjmp
6469 has been caught.
6470
6471 3. The initiating frame exists and is different from the
6472 current frame. This means the exception or longjmp has
6473 been caught beneath the initiating frame, so keep going.
6474
6475 4. longjmp breakpoint has been placed just to protect
6476 against stale dummy frames and user is not interested in
6477 stopping around longjmps. */
6478
6479 if (debug_infrun)
6480 fprintf_unfiltered (gdb_stdlog,
6481 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6482
6483 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6484 != NULL);
6485 delete_exception_resume_breakpoint (ecs->event_thread);
6486
6487 if (what.is_longjmp)
6488 {
6489 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6490
6491 if (!frame_id_p (ecs->event_thread->initiating_frame))
6492 {
6493 /* Case 4. */
6494 keep_going (ecs);
6495 return;
6496 }
6497 }
6498
6499 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6500
6501 if (init_frame)
6502 {
6503 struct frame_id current_id
6504 = get_frame_id (get_current_frame ());
6505 if (frame_id_eq (current_id,
6506 ecs->event_thread->initiating_frame))
6507 {
6508 /* Case 2. Fall through. */
6509 }
6510 else
6511 {
6512 /* Case 3. */
6513 keep_going (ecs);
6514 return;
6515 }
6516 }
6517
6518 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6519 exists. */
6520 delete_step_resume_breakpoint (ecs->event_thread);
6521
6522 end_stepping_range (ecs);
6523 }
6524 return;
6525
6526 case BPSTAT_WHAT_SINGLE:
6527 if (debug_infrun)
6528 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6529 ecs->event_thread->stepping_over_breakpoint = 1;
6530 /* Still need to check other stuff, at least the case where we
6531 are stepping and step out of the right range. */
6532 break;
6533
6534 case BPSTAT_WHAT_STEP_RESUME:
6535 if (debug_infrun)
6536 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6537
6538 delete_step_resume_breakpoint (ecs->event_thread);
6539 if (ecs->event_thread->control.proceed_to_finish
6540 && execution_direction == EXEC_REVERSE)
6541 {
6542 struct thread_info *tp = ecs->event_thread;
6543
6544 /* We are finishing a function in reverse, and just hit the
6545 step-resume breakpoint at the start address of the
6546 function, and we're almost there -- just need to back up
6547 by one more single-step, which should take us back to the
6548 function call. */
6549 tp->control.step_range_start = tp->control.step_range_end = 1;
6550 keep_going (ecs);
6551 return;
6552 }
6553 fill_in_stop_func (gdbarch, ecs);
6554 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6555 && execution_direction == EXEC_REVERSE)
6556 {
6557 /* We are stepping over a function call in reverse, and just
6558 hit the step-resume breakpoint at the start address of
6559 the function. Go back to single-stepping, which should
6560 take us back to the function call. */
6561 ecs->event_thread->stepping_over_breakpoint = 1;
6562 keep_going (ecs);
6563 return;
6564 }
6565 break;
6566
6567 case BPSTAT_WHAT_STOP_NOISY:
6568 if (debug_infrun)
6569 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6570 stop_print_frame = 1;
6571
6572 /* Assume the thread stopped for a breapoint. We'll still check
6573 whether a/the breakpoint is there when the thread is next
6574 resumed. */
6575 ecs->event_thread->stepping_over_breakpoint = 1;
6576
6577 stop_waiting (ecs);
6578 return;
6579
6580 case BPSTAT_WHAT_STOP_SILENT:
6581 if (debug_infrun)
6582 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6583 stop_print_frame = 0;
6584
6585 /* Assume the thread stopped for a breapoint. We'll still check
6586 whether a/the breakpoint is there when the thread is next
6587 resumed. */
6588 ecs->event_thread->stepping_over_breakpoint = 1;
6589 stop_waiting (ecs);
6590 return;
6591
6592 case BPSTAT_WHAT_HP_STEP_RESUME:
6593 if (debug_infrun)
6594 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6595
6596 delete_step_resume_breakpoint (ecs->event_thread);
6597 if (ecs->event_thread->step_after_step_resume_breakpoint)
6598 {
6599 /* Back when the step-resume breakpoint was inserted, we
6600 were trying to single-step off a breakpoint. Go back to
6601 doing that. */
6602 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6603 ecs->event_thread->stepping_over_breakpoint = 1;
6604 keep_going (ecs);
6605 return;
6606 }
6607 break;
6608
6609 case BPSTAT_WHAT_KEEP_CHECKING:
6610 break;
6611 }
6612
6613 /* If we stepped a permanent breakpoint and we had a high priority
6614 step-resume breakpoint for the address we stepped, but we didn't
6615 hit it, then we must have stepped into the signal handler. The
6616 step-resume was only necessary to catch the case of _not_
6617 stepping into the handler, so delete it, and fall through to
6618 checking whether the step finished. */
6619 if (ecs->event_thread->stepped_breakpoint)
6620 {
6621 struct breakpoint *sr_bp
6622 = ecs->event_thread->control.step_resume_breakpoint;
6623
6624 if (sr_bp != NULL
6625 && sr_bp->loc->permanent
6626 && sr_bp->type == bp_hp_step_resume
6627 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6628 {
6629 if (debug_infrun)
6630 fprintf_unfiltered (gdb_stdlog,
6631 "infrun: stepped permanent breakpoint, stopped in "
6632 "handler\n");
6633 delete_step_resume_breakpoint (ecs->event_thread);
6634 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6635 }
6636 }
6637
6638 /* We come here if we hit a breakpoint but should not stop for it.
6639 Possibly we also were stepping and should stop for that. So fall
6640 through and test for stepping. But, if not stepping, do not
6641 stop. */
6642
6643 /* In all-stop mode, if we're currently stepping but have stopped in
6644 some other thread, we need to switch back to the stepped thread. */
6645 if (switch_back_to_stepped_thread (ecs))
6646 return;
6647
6648 if (ecs->event_thread->control.step_resume_breakpoint)
6649 {
6650 if (debug_infrun)
6651 fprintf_unfiltered (gdb_stdlog,
6652 "infrun: step-resume breakpoint is inserted\n");
6653
6654 /* Having a step-resume breakpoint overrides anything
6655 else having to do with stepping commands until
6656 that breakpoint is reached. */
6657 keep_going (ecs);
6658 return;
6659 }
6660
6661 if (ecs->event_thread->control.step_range_end == 0)
6662 {
6663 if (debug_infrun)
6664 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6665 /* Likewise if we aren't even stepping. */
6666 keep_going (ecs);
6667 return;
6668 }
6669
6670 /* Re-fetch current thread's frame in case the code above caused
6671 the frame cache to be re-initialized, making our FRAME variable
6672 a dangling pointer. */
6673 frame = get_current_frame ();
6674 gdbarch = get_frame_arch (frame);
6675 fill_in_stop_func (gdbarch, ecs);
6676
6677 /* If stepping through a line, keep going if still within it.
6678
6679 Note that step_range_end is the address of the first instruction
6680 beyond the step range, and NOT the address of the last instruction
6681 within it!
6682
6683 Note also that during reverse execution, we may be stepping
6684 through a function epilogue and therefore must detect when
6685 the current-frame changes in the middle of a line. */
6686
6687 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6688 ecs->event_thread)
6689 && (execution_direction != EXEC_REVERSE
6690 || frame_id_eq (get_frame_id (frame),
6691 ecs->event_thread->control.step_frame_id)))
6692 {
6693 if (debug_infrun)
6694 fprintf_unfiltered
6695 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6696 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6697 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6698
6699 /* Tentatively re-enable range stepping; `resume' disables it if
6700 necessary (e.g., if we're stepping over a breakpoint or we
6701 have software watchpoints). */
6702 ecs->event_thread->control.may_range_step = 1;
6703
6704 /* When stepping backward, stop at beginning of line range
6705 (unless it's the function entry point, in which case
6706 keep going back to the call point). */
6707 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6708 if (stop_pc == ecs->event_thread->control.step_range_start
6709 && stop_pc != ecs->stop_func_start
6710 && execution_direction == EXEC_REVERSE)
6711 end_stepping_range (ecs);
6712 else
6713 keep_going (ecs);
6714
6715 return;
6716 }
6717
6718 /* We stepped out of the stepping range. */
6719
6720 /* If we are stepping at the source level and entered the runtime
6721 loader dynamic symbol resolution code...
6722
6723 EXEC_FORWARD: we keep on single stepping until we exit the run
6724 time loader code and reach the callee's address.
6725
6726 EXEC_REVERSE: we've already executed the callee (backward), and
6727 the runtime loader code is handled just like any other
6728 undebuggable function call. Now we need only keep stepping
6729 backward through the trampoline code, and that's handled further
6730 down, so there is nothing for us to do here. */
6731
6732 if (execution_direction != EXEC_REVERSE
6733 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6734 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6735 {
6736 CORE_ADDR pc_after_resolver =
6737 gdbarch_skip_solib_resolver (gdbarch,
6738 ecs->event_thread->suspend.stop_pc);
6739
6740 if (debug_infrun)
6741 fprintf_unfiltered (gdb_stdlog,
6742 "infrun: stepped into dynsym resolve code\n");
6743
6744 if (pc_after_resolver)
6745 {
6746 /* Set up a step-resume breakpoint at the address
6747 indicated by SKIP_SOLIB_RESOLVER. */
6748 symtab_and_line sr_sal;
6749 sr_sal.pc = pc_after_resolver;
6750 sr_sal.pspace = get_frame_program_space (frame);
6751
6752 insert_step_resume_breakpoint_at_sal (gdbarch,
6753 sr_sal, null_frame_id);
6754 }
6755
6756 keep_going (ecs);
6757 return;
6758 }
6759
6760 /* Step through an indirect branch thunk. */
6761 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6762 && gdbarch_in_indirect_branch_thunk (gdbarch,
6763 ecs->event_thread->suspend.stop_pc))
6764 {
6765 if (debug_infrun)
6766 fprintf_unfiltered (gdb_stdlog,
6767 "infrun: stepped into indirect branch thunk\n");
6768 keep_going (ecs);
6769 return;
6770 }
6771
6772 if (ecs->event_thread->control.step_range_end != 1
6773 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6774 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6775 && get_frame_type (frame) == SIGTRAMP_FRAME)
6776 {
6777 if (debug_infrun)
6778 fprintf_unfiltered (gdb_stdlog,
6779 "infrun: stepped into signal trampoline\n");
6780 /* The inferior, while doing a "step" or "next", has ended up in
6781 a signal trampoline (either by a signal being delivered or by
6782 the signal handler returning). Just single-step until the
6783 inferior leaves the trampoline (either by calling the handler
6784 or returning). */
6785 keep_going (ecs);
6786 return;
6787 }
6788
6789 /* If we're in the return path from a shared library trampoline,
6790 we want to proceed through the trampoline when stepping. */
6791 /* macro/2012-04-25: This needs to come before the subroutine
6792 call check below as on some targets return trampolines look
6793 like subroutine calls (MIPS16 return thunks). */
6794 if (gdbarch_in_solib_return_trampoline (gdbarch,
6795 ecs->event_thread->suspend.stop_pc,
6796 ecs->stop_func_name)
6797 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6798 {
6799 /* Determine where this trampoline returns. */
6800 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6801 CORE_ADDR real_stop_pc
6802 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6803
6804 if (debug_infrun)
6805 fprintf_unfiltered (gdb_stdlog,
6806 "infrun: stepped into solib return tramp\n");
6807
6808 /* Only proceed through if we know where it's going. */
6809 if (real_stop_pc)
6810 {
6811 /* And put the step-breakpoint there and go until there. */
6812 symtab_and_line sr_sal;
6813 sr_sal.pc = real_stop_pc;
6814 sr_sal.section = find_pc_overlay (sr_sal.pc);
6815 sr_sal.pspace = get_frame_program_space (frame);
6816
6817 /* Do not specify what the fp should be when we stop since
6818 on some machines the prologue is where the new fp value
6819 is established. */
6820 insert_step_resume_breakpoint_at_sal (gdbarch,
6821 sr_sal, null_frame_id);
6822
6823 /* Restart without fiddling with the step ranges or
6824 other state. */
6825 keep_going (ecs);
6826 return;
6827 }
6828 }
6829
6830 /* Check for subroutine calls. The check for the current frame
6831 equalling the step ID is not necessary - the check of the
6832 previous frame's ID is sufficient - but it is a common case and
6833 cheaper than checking the previous frame's ID.
6834
6835 NOTE: frame_id_eq will never report two invalid frame IDs as
6836 being equal, so to get into this block, both the current and
6837 previous frame must have valid frame IDs. */
6838 /* The outer_frame_id check is a heuristic to detect stepping
6839 through startup code. If we step over an instruction which
6840 sets the stack pointer from an invalid value to a valid value,
6841 we may detect that as a subroutine call from the mythical
6842 "outermost" function. This could be fixed by marking
6843 outermost frames as !stack_p,code_p,special_p. Then the
6844 initial outermost frame, before sp was valid, would
6845 have code_addr == &_start. See the comment in frame_id_eq
6846 for more. */
6847 if (!frame_id_eq (get_stack_frame_id (frame),
6848 ecs->event_thread->control.step_stack_frame_id)
6849 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6850 ecs->event_thread->control.step_stack_frame_id)
6851 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6852 outer_frame_id)
6853 || (ecs->event_thread->control.step_start_function
6854 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6855 {
6856 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6857 CORE_ADDR real_stop_pc;
6858
6859 if (debug_infrun)
6860 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6861
6862 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6863 {
6864 /* I presume that step_over_calls is only 0 when we're
6865 supposed to be stepping at the assembly language level
6866 ("stepi"). Just stop. */
6867 /* And this works the same backward as frontward. MVS */
6868 end_stepping_range (ecs);
6869 return;
6870 }
6871
6872 /* Reverse stepping through solib trampolines. */
6873
6874 if (execution_direction == EXEC_REVERSE
6875 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6876 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6877 || (ecs->stop_func_start == 0
6878 && in_solib_dynsym_resolve_code (stop_pc))))
6879 {
6880 /* Any solib trampoline code can be handled in reverse
6881 by simply continuing to single-step. We have already
6882 executed the solib function (backwards), and a few
6883 steps will take us back through the trampoline to the
6884 caller. */
6885 keep_going (ecs);
6886 return;
6887 }
6888
6889 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6890 {
6891 /* We're doing a "next".
6892
6893 Normal (forward) execution: set a breakpoint at the
6894 callee's return address (the address at which the caller
6895 will resume).
6896
6897 Reverse (backward) execution. set the step-resume
6898 breakpoint at the start of the function that we just
6899 stepped into (backwards), and continue to there. When we
6900 get there, we'll need to single-step back to the caller. */
6901
6902 if (execution_direction == EXEC_REVERSE)
6903 {
6904 /* If we're already at the start of the function, we've either
6905 just stepped backward into a single instruction function,
6906 or stepped back out of a signal handler to the first instruction
6907 of the function. Just keep going, which will single-step back
6908 to the caller. */
6909 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6910 {
6911 /* Normal function call return (static or dynamic). */
6912 symtab_and_line sr_sal;
6913 sr_sal.pc = ecs->stop_func_start;
6914 sr_sal.pspace = get_frame_program_space (frame);
6915 insert_step_resume_breakpoint_at_sal (gdbarch,
6916 sr_sal, null_frame_id);
6917 }
6918 }
6919 else
6920 insert_step_resume_breakpoint_at_caller (frame);
6921
6922 keep_going (ecs);
6923 return;
6924 }
6925
6926 /* If we are in a function call trampoline (a stub between the
6927 calling routine and the real function), locate the real
6928 function. That's what tells us (a) whether we want to step
6929 into it at all, and (b) what prologue we want to run to the
6930 end of, if we do step into it. */
6931 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6932 if (real_stop_pc == 0)
6933 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6934 if (real_stop_pc != 0)
6935 ecs->stop_func_start = real_stop_pc;
6936
6937 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6938 {
6939 symtab_and_line sr_sal;
6940 sr_sal.pc = ecs->stop_func_start;
6941 sr_sal.pspace = get_frame_program_space (frame);
6942
6943 insert_step_resume_breakpoint_at_sal (gdbarch,
6944 sr_sal, null_frame_id);
6945 keep_going (ecs);
6946 return;
6947 }
6948
6949 /* If we have line number information for the function we are
6950 thinking of stepping into and the function isn't on the skip
6951 list, step into it.
6952
6953 If there are several symtabs at that PC (e.g. with include
6954 files), just want to know whether *any* of them have line
6955 numbers. find_pc_line handles this. */
6956 {
6957 struct symtab_and_line tmp_sal;
6958
6959 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6960 if (tmp_sal.line != 0
6961 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6962 tmp_sal)
6963 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6964 {
6965 if (execution_direction == EXEC_REVERSE)
6966 handle_step_into_function_backward (gdbarch, ecs);
6967 else
6968 handle_step_into_function (gdbarch, ecs);
6969 return;
6970 }
6971 }
6972
6973 /* If we have no line number and the step-stop-if-no-debug is
6974 set, we stop the step so that the user has a chance to switch
6975 in assembly mode. */
6976 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6977 && step_stop_if_no_debug)
6978 {
6979 end_stepping_range (ecs);
6980 return;
6981 }
6982
6983 if (execution_direction == EXEC_REVERSE)
6984 {
6985 /* If we're already at the start of the function, we've either just
6986 stepped backward into a single instruction function without line
6987 number info, or stepped back out of a signal handler to the first
6988 instruction of the function without line number info. Just keep
6989 going, which will single-step back to the caller. */
6990 if (ecs->stop_func_start != stop_pc)
6991 {
6992 /* Set a breakpoint at callee's start address.
6993 From there we can step once and be back in the caller. */
6994 symtab_and_line sr_sal;
6995 sr_sal.pc = ecs->stop_func_start;
6996 sr_sal.pspace = get_frame_program_space (frame);
6997 insert_step_resume_breakpoint_at_sal (gdbarch,
6998 sr_sal, null_frame_id);
6999 }
7000 }
7001 else
7002 /* Set a breakpoint at callee's return address (the address
7003 at which the caller will resume). */
7004 insert_step_resume_breakpoint_at_caller (frame);
7005
7006 keep_going (ecs);
7007 return;
7008 }
7009
7010 /* Reverse stepping through solib trampolines. */
7011
7012 if (execution_direction == EXEC_REVERSE
7013 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7014 {
7015 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7016
7017 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7018 || (ecs->stop_func_start == 0
7019 && in_solib_dynsym_resolve_code (stop_pc)))
7020 {
7021 /* Any solib trampoline code can be handled in reverse
7022 by simply continuing to single-step. We have already
7023 executed the solib function (backwards), and a few
7024 steps will take us back through the trampoline to the
7025 caller. */
7026 keep_going (ecs);
7027 return;
7028 }
7029 else if (in_solib_dynsym_resolve_code (stop_pc))
7030 {
7031 /* Stepped backward into the solib dynsym resolver.
7032 Set a breakpoint at its start and continue, then
7033 one more step will take us out. */
7034 symtab_and_line sr_sal;
7035 sr_sal.pc = ecs->stop_func_start;
7036 sr_sal.pspace = get_frame_program_space (frame);
7037 insert_step_resume_breakpoint_at_sal (gdbarch,
7038 sr_sal, null_frame_id);
7039 keep_going (ecs);
7040 return;
7041 }
7042 }
7043
7044 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7045
7046 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7047 the trampoline processing logic, however, there are some trampolines
7048 that have no names, so we should do trampoline handling first. */
7049 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7050 && ecs->stop_func_name == NULL
7051 && stop_pc_sal.line == 0)
7052 {
7053 if (debug_infrun)
7054 fprintf_unfiltered (gdb_stdlog,
7055 "infrun: stepped into undebuggable function\n");
7056
7057 /* The inferior just stepped into, or returned to, an
7058 undebuggable function (where there is no debugging information
7059 and no line number corresponding to the address where the
7060 inferior stopped). Since we want to skip this kind of code,
7061 we keep going until the inferior returns from this
7062 function - unless the user has asked us not to (via
7063 set step-mode) or we no longer know how to get back
7064 to the call site. */
7065 if (step_stop_if_no_debug
7066 || !frame_id_p (frame_unwind_caller_id (frame)))
7067 {
7068 /* If we have no line number and the step-stop-if-no-debug
7069 is set, we stop the step so that the user has a chance to
7070 switch in assembly mode. */
7071 end_stepping_range (ecs);
7072 return;
7073 }
7074 else
7075 {
7076 /* Set a breakpoint at callee's return address (the address
7077 at which the caller will resume). */
7078 insert_step_resume_breakpoint_at_caller (frame);
7079 keep_going (ecs);
7080 return;
7081 }
7082 }
7083
7084 if (ecs->event_thread->control.step_range_end == 1)
7085 {
7086 /* It is stepi or nexti. We always want to stop stepping after
7087 one instruction. */
7088 if (debug_infrun)
7089 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7090 end_stepping_range (ecs);
7091 return;
7092 }
7093
7094 if (stop_pc_sal.line == 0)
7095 {
7096 /* We have no line number information. That means to stop
7097 stepping (does this always happen right after one instruction,
7098 when we do "s" in a function with no line numbers,
7099 or can this happen as a result of a return or longjmp?). */
7100 if (debug_infrun)
7101 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7102 end_stepping_range (ecs);
7103 return;
7104 }
7105
7106 /* Look for "calls" to inlined functions, part one. If the inline
7107 frame machinery detected some skipped call sites, we have entered
7108 a new inline function. */
7109
7110 if (frame_id_eq (get_frame_id (get_current_frame ()),
7111 ecs->event_thread->control.step_frame_id)
7112 && inline_skipped_frames (ecs->event_thread))
7113 {
7114 if (debug_infrun)
7115 fprintf_unfiltered (gdb_stdlog,
7116 "infrun: stepped into inlined function\n");
7117
7118 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7119
7120 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7121 {
7122 /* For "step", we're going to stop. But if the call site
7123 for this inlined function is on the same source line as
7124 we were previously stepping, go down into the function
7125 first. Otherwise stop at the call site. */
7126
7127 if (call_sal.line == ecs->event_thread->current_line
7128 && call_sal.symtab == ecs->event_thread->current_symtab)
7129 {
7130 step_into_inline_frame (ecs->event_thread);
7131 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7132 {
7133 keep_going (ecs);
7134 return;
7135 }
7136 }
7137
7138 end_stepping_range (ecs);
7139 return;
7140 }
7141 else
7142 {
7143 /* For "next", we should stop at the call site if it is on a
7144 different source line. Otherwise continue through the
7145 inlined function. */
7146 if (call_sal.line == ecs->event_thread->current_line
7147 && call_sal.symtab == ecs->event_thread->current_symtab)
7148 keep_going (ecs);
7149 else
7150 end_stepping_range (ecs);
7151 return;
7152 }
7153 }
7154
7155 /* Look for "calls" to inlined functions, part two. If we are still
7156 in the same real function we were stepping through, but we have
7157 to go further up to find the exact frame ID, we are stepping
7158 through a more inlined call beyond its call site. */
7159
7160 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7161 && !frame_id_eq (get_frame_id (get_current_frame ()),
7162 ecs->event_thread->control.step_frame_id)
7163 && stepped_in_from (get_current_frame (),
7164 ecs->event_thread->control.step_frame_id))
7165 {
7166 if (debug_infrun)
7167 fprintf_unfiltered (gdb_stdlog,
7168 "infrun: stepping through inlined function\n");
7169
7170 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7171 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7172 keep_going (ecs);
7173 else
7174 end_stepping_range (ecs);
7175 return;
7176 }
7177
7178 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7179 && (ecs->event_thread->current_line != stop_pc_sal.line
7180 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7181 {
7182 /* We are at the start of a different line. So stop. Note that
7183 we don't stop if we step into the middle of a different line.
7184 That is said to make things like for (;;) statements work
7185 better. */
7186 if (debug_infrun)
7187 fprintf_unfiltered (gdb_stdlog,
7188 "infrun: stepped to a different line\n");
7189 end_stepping_range (ecs);
7190 return;
7191 }
7192
7193 /* We aren't done stepping.
7194
7195 Optimize by setting the stepping range to the line.
7196 (We might not be in the original line, but if we entered a
7197 new line in mid-statement, we continue stepping. This makes
7198 things like for(;;) statements work better.) */
7199
7200 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7201 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7202 ecs->event_thread->control.may_range_step = 1;
7203 set_step_info (frame, stop_pc_sal);
7204
7205 if (debug_infrun)
7206 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7207 keep_going (ecs);
7208 }
7209
7210 /* In all-stop mode, if we're currently stepping but have stopped in
7211 some other thread, we may need to switch back to the stepped
7212 thread. Returns true we set the inferior running, false if we left
7213 it stopped (and the event needs further processing). */
7214
7215 static int
7216 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7217 {
7218 if (!target_is_non_stop_p ())
7219 {
7220 struct thread_info *stepping_thread;
7221
7222 /* If any thread is blocked on some internal breakpoint, and we
7223 simply need to step over that breakpoint to get it going
7224 again, do that first. */
7225
7226 /* However, if we see an event for the stepping thread, then we
7227 know all other threads have been moved past their breakpoints
7228 already. Let the caller check whether the step is finished,
7229 etc., before deciding to move it past a breakpoint. */
7230 if (ecs->event_thread->control.step_range_end != 0)
7231 return 0;
7232
7233 /* Check if the current thread is blocked on an incomplete
7234 step-over, interrupted by a random signal. */
7235 if (ecs->event_thread->control.trap_expected
7236 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7237 {
7238 if (debug_infrun)
7239 {
7240 fprintf_unfiltered (gdb_stdlog,
7241 "infrun: need to finish step-over of [%s]\n",
7242 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7243 }
7244 keep_going (ecs);
7245 return 1;
7246 }
7247
7248 /* Check if the current thread is blocked by a single-step
7249 breakpoint of another thread. */
7250 if (ecs->hit_singlestep_breakpoint)
7251 {
7252 if (debug_infrun)
7253 {
7254 fprintf_unfiltered (gdb_stdlog,
7255 "infrun: need to step [%s] over single-step "
7256 "breakpoint\n",
7257 target_pid_to_str (ecs->ptid).c_str ());
7258 }
7259 keep_going (ecs);
7260 return 1;
7261 }
7262
7263 /* If this thread needs yet another step-over (e.g., stepping
7264 through a delay slot), do it first before moving on to
7265 another thread. */
7266 if (thread_still_needs_step_over (ecs->event_thread))
7267 {
7268 if (debug_infrun)
7269 {
7270 fprintf_unfiltered (gdb_stdlog,
7271 "infrun: thread [%s] still needs step-over\n",
7272 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7273 }
7274 keep_going (ecs);
7275 return 1;
7276 }
7277
7278 /* If scheduler locking applies even if not stepping, there's no
7279 need to walk over threads. Above we've checked whether the
7280 current thread is stepping. If some other thread not the
7281 event thread is stepping, then it must be that scheduler
7282 locking is not in effect. */
7283 if (schedlock_applies (ecs->event_thread))
7284 return 0;
7285
7286 /* Otherwise, we no longer expect a trap in the current thread.
7287 Clear the trap_expected flag before switching back -- this is
7288 what keep_going does as well, if we call it. */
7289 ecs->event_thread->control.trap_expected = 0;
7290
7291 /* Likewise, clear the signal if it should not be passed. */
7292 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7294
7295 /* Do all pending step-overs before actually proceeding with
7296 step/next/etc. */
7297 if (start_step_over ())
7298 {
7299 prepare_to_wait (ecs);
7300 return 1;
7301 }
7302
7303 /* Look for the stepping/nexting thread. */
7304 stepping_thread = NULL;
7305
7306 for (thread_info *tp : all_non_exited_threads ())
7307 {
7308 switch_to_thread_no_regs (tp);
7309
7310 /* Ignore threads of processes the caller is not
7311 resuming. */
7312 if (!sched_multi
7313 && (tp->inf->process_target () != ecs->target
7314 || tp->inf->pid != ecs->ptid.pid ()))
7315 continue;
7316
7317 /* When stepping over a breakpoint, we lock all threads
7318 except the one that needs to move past the breakpoint.
7319 If a non-event thread has this set, the "incomplete
7320 step-over" check above should have caught it earlier. */
7321 if (tp->control.trap_expected)
7322 {
7323 internal_error (__FILE__, __LINE__,
7324 "[%s] has inconsistent state: "
7325 "trap_expected=%d\n",
7326 target_pid_to_str (tp->ptid).c_str (),
7327 tp->control.trap_expected);
7328 }
7329
7330 /* Did we find the stepping thread? */
7331 if (tp->control.step_range_end)
7332 {
7333 /* Yep. There should only one though. */
7334 gdb_assert (stepping_thread == NULL);
7335
7336 /* The event thread is handled at the top, before we
7337 enter this loop. */
7338 gdb_assert (tp != ecs->event_thread);
7339
7340 /* If some thread other than the event thread is
7341 stepping, then scheduler locking can't be in effect,
7342 otherwise we wouldn't have resumed the current event
7343 thread in the first place. */
7344 gdb_assert (!schedlock_applies (tp));
7345
7346 stepping_thread = tp;
7347 }
7348 }
7349
7350 if (stepping_thread != NULL)
7351 {
7352 if (debug_infrun)
7353 fprintf_unfiltered (gdb_stdlog,
7354 "infrun: switching back to stepped thread\n");
7355
7356 if (keep_going_stepped_thread (stepping_thread))
7357 {
7358 prepare_to_wait (ecs);
7359 return 1;
7360 }
7361 }
7362
7363 switch_to_thread (ecs->event_thread);
7364 }
7365
7366 return 0;
7367 }
7368
7369 /* Set a previously stepped thread back to stepping. Returns true on
7370 success, false if the resume is not possible (e.g., the thread
7371 vanished). */
7372
7373 static int
7374 keep_going_stepped_thread (struct thread_info *tp)
7375 {
7376 struct frame_info *frame;
7377 struct execution_control_state ecss;
7378 struct execution_control_state *ecs = &ecss;
7379
7380 /* If the stepping thread exited, then don't try to switch back and
7381 resume it, which could fail in several different ways depending
7382 on the target. Instead, just keep going.
7383
7384 We can find a stepping dead thread in the thread list in two
7385 cases:
7386
7387 - The target supports thread exit events, and when the target
7388 tries to delete the thread from the thread list, inferior_ptid
7389 pointed at the exiting thread. In such case, calling
7390 delete_thread does not really remove the thread from the list;
7391 instead, the thread is left listed, with 'exited' state.
7392
7393 - The target's debug interface does not support thread exit
7394 events, and so we have no idea whatsoever if the previously
7395 stepping thread is still alive. For that reason, we need to
7396 synchronously query the target now. */
7397
7398 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7399 {
7400 if (debug_infrun)
7401 fprintf_unfiltered (gdb_stdlog,
7402 "infrun: not resuming previously "
7403 "stepped thread, it has vanished\n");
7404
7405 delete_thread (tp);
7406 return 0;
7407 }
7408
7409 if (debug_infrun)
7410 fprintf_unfiltered (gdb_stdlog,
7411 "infrun: resuming previously stepped thread\n");
7412
7413 reset_ecs (ecs, tp);
7414 switch_to_thread (tp);
7415
7416 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7417 frame = get_current_frame ();
7418
7419 /* If the PC of the thread we were trying to single-step has
7420 changed, then that thread has trapped or been signaled, but the
7421 event has not been reported to GDB yet. Re-poll the target
7422 looking for this particular thread's event (i.e. temporarily
7423 enable schedlock) by:
7424
7425 - setting a break at the current PC
7426 - resuming that particular thread, only (by setting trap
7427 expected)
7428
7429 This prevents us continuously moving the single-step breakpoint
7430 forward, one instruction at a time, overstepping. */
7431
7432 if (tp->suspend.stop_pc != tp->prev_pc)
7433 {
7434 ptid_t resume_ptid;
7435
7436 if (debug_infrun)
7437 fprintf_unfiltered (gdb_stdlog,
7438 "infrun: expected thread advanced also (%s -> %s)\n",
7439 paddress (target_gdbarch (), tp->prev_pc),
7440 paddress (target_gdbarch (), tp->suspend.stop_pc));
7441
7442 /* Clear the info of the previous step-over, as it's no longer
7443 valid (if the thread was trying to step over a breakpoint, it
7444 has already succeeded). It's what keep_going would do too,
7445 if we called it. Do this before trying to insert the sss
7446 breakpoint, otherwise if we were previously trying to step
7447 over this exact address in another thread, the breakpoint is
7448 skipped. */
7449 clear_step_over_info ();
7450 tp->control.trap_expected = 0;
7451
7452 insert_single_step_breakpoint (get_frame_arch (frame),
7453 get_frame_address_space (frame),
7454 tp->suspend.stop_pc);
7455
7456 tp->resumed = true;
7457 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7458 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7459 }
7460 else
7461 {
7462 if (debug_infrun)
7463 fprintf_unfiltered (gdb_stdlog,
7464 "infrun: expected thread still hasn't advanced\n");
7465
7466 keep_going_pass_signal (ecs);
7467 }
7468 return 1;
7469 }
7470
7471 /* Is thread TP in the middle of (software or hardware)
7472 single-stepping? (Note the result of this function must never be
7473 passed directly as target_resume's STEP parameter.) */
7474
7475 static int
7476 currently_stepping (struct thread_info *tp)
7477 {
7478 return ((tp->control.step_range_end
7479 && tp->control.step_resume_breakpoint == NULL)
7480 || tp->control.trap_expected
7481 || tp->stepped_breakpoint
7482 || bpstat_should_step ());
7483 }
7484
7485 /* Inferior has stepped into a subroutine call with source code that
7486 we should not step over. Do step to the first line of code in
7487 it. */
7488
7489 static void
7490 handle_step_into_function (struct gdbarch *gdbarch,
7491 struct execution_control_state *ecs)
7492 {
7493 fill_in_stop_func (gdbarch, ecs);
7494
7495 compunit_symtab *cust
7496 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7497 if (cust != NULL && compunit_language (cust) != language_asm)
7498 ecs->stop_func_start
7499 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7500
7501 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7502 /* Use the step_resume_break to step until the end of the prologue,
7503 even if that involves jumps (as it seems to on the vax under
7504 4.2). */
7505 /* If the prologue ends in the middle of a source line, continue to
7506 the end of that source line (if it is still within the function).
7507 Otherwise, just go to end of prologue. */
7508 if (stop_func_sal.end
7509 && stop_func_sal.pc != ecs->stop_func_start
7510 && stop_func_sal.end < ecs->stop_func_end)
7511 ecs->stop_func_start = stop_func_sal.end;
7512
7513 /* Architectures which require breakpoint adjustment might not be able
7514 to place a breakpoint at the computed address. If so, the test
7515 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7516 ecs->stop_func_start to an address at which a breakpoint may be
7517 legitimately placed.
7518
7519 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7520 made, GDB will enter an infinite loop when stepping through
7521 optimized code consisting of VLIW instructions which contain
7522 subinstructions corresponding to different source lines. On
7523 FR-V, it's not permitted to place a breakpoint on any but the
7524 first subinstruction of a VLIW instruction. When a breakpoint is
7525 set, GDB will adjust the breakpoint address to the beginning of
7526 the VLIW instruction. Thus, we need to make the corresponding
7527 adjustment here when computing the stop address. */
7528
7529 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7530 {
7531 ecs->stop_func_start
7532 = gdbarch_adjust_breakpoint_address (gdbarch,
7533 ecs->stop_func_start);
7534 }
7535
7536 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7537 {
7538 /* We are already there: stop now. */
7539 end_stepping_range (ecs);
7540 return;
7541 }
7542 else
7543 {
7544 /* Put the step-breakpoint there and go until there. */
7545 symtab_and_line sr_sal;
7546 sr_sal.pc = ecs->stop_func_start;
7547 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7548 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7549
7550 /* Do not specify what the fp should be when we stop since on
7551 some machines the prologue is where the new fp value is
7552 established. */
7553 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7554
7555 /* And make sure stepping stops right away then. */
7556 ecs->event_thread->control.step_range_end
7557 = ecs->event_thread->control.step_range_start;
7558 }
7559 keep_going (ecs);
7560 }
7561
7562 /* Inferior has stepped backward into a subroutine call with source
7563 code that we should not step over. Do step to the beginning of the
7564 last line of code in it. */
7565
7566 static void
7567 handle_step_into_function_backward (struct gdbarch *gdbarch,
7568 struct execution_control_state *ecs)
7569 {
7570 struct compunit_symtab *cust;
7571 struct symtab_and_line stop_func_sal;
7572
7573 fill_in_stop_func (gdbarch, ecs);
7574
7575 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7576 if (cust != NULL && compunit_language (cust) != language_asm)
7577 ecs->stop_func_start
7578 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7579
7580 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7581
7582 /* OK, we're just going to keep stepping here. */
7583 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7584 {
7585 /* We're there already. Just stop stepping now. */
7586 end_stepping_range (ecs);
7587 }
7588 else
7589 {
7590 /* Else just reset the step range and keep going.
7591 No step-resume breakpoint, they don't work for
7592 epilogues, which can have multiple entry paths. */
7593 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7594 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7595 keep_going (ecs);
7596 }
7597 return;
7598 }
7599
7600 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7601 This is used to both functions and to skip over code. */
7602
7603 static void
7604 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7605 struct symtab_and_line sr_sal,
7606 struct frame_id sr_id,
7607 enum bptype sr_type)
7608 {
7609 /* There should never be more than one step-resume or longjmp-resume
7610 breakpoint per thread, so we should never be setting a new
7611 step_resume_breakpoint when one is already active. */
7612 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7613 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7614
7615 if (debug_infrun)
7616 fprintf_unfiltered (gdb_stdlog,
7617 "infrun: inserting step-resume breakpoint at %s\n",
7618 paddress (gdbarch, sr_sal.pc));
7619
7620 inferior_thread ()->control.step_resume_breakpoint
7621 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7622 }
7623
7624 void
7625 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7626 struct symtab_and_line sr_sal,
7627 struct frame_id sr_id)
7628 {
7629 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7630 sr_sal, sr_id,
7631 bp_step_resume);
7632 }
7633
7634 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7635 This is used to skip a potential signal handler.
7636
7637 This is called with the interrupted function's frame. The signal
7638 handler, when it returns, will resume the interrupted function at
7639 RETURN_FRAME.pc. */
7640
7641 static void
7642 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7643 {
7644 gdb_assert (return_frame != NULL);
7645
7646 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7647
7648 symtab_and_line sr_sal;
7649 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7650 sr_sal.section = find_pc_overlay (sr_sal.pc);
7651 sr_sal.pspace = get_frame_program_space (return_frame);
7652
7653 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7654 get_stack_frame_id (return_frame),
7655 bp_hp_step_resume);
7656 }
7657
7658 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7659 is used to skip a function after stepping into it (for "next" or if
7660 the called function has no debugging information).
7661
7662 The current function has almost always been reached by single
7663 stepping a call or return instruction. NEXT_FRAME belongs to the
7664 current function, and the breakpoint will be set at the caller's
7665 resume address.
7666
7667 This is a separate function rather than reusing
7668 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7669 get_prev_frame, which may stop prematurely (see the implementation
7670 of frame_unwind_caller_id for an example). */
7671
7672 static void
7673 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7674 {
7675 /* We shouldn't have gotten here if we don't know where the call site
7676 is. */
7677 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7678
7679 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7680
7681 symtab_and_line sr_sal;
7682 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7683 frame_unwind_caller_pc (next_frame));
7684 sr_sal.section = find_pc_overlay (sr_sal.pc);
7685 sr_sal.pspace = frame_unwind_program_space (next_frame);
7686
7687 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7688 frame_unwind_caller_id (next_frame));
7689 }
7690
7691 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7692 new breakpoint at the target of a jmp_buf. The handling of
7693 longjmp-resume uses the same mechanisms used for handling
7694 "step-resume" breakpoints. */
7695
7696 static void
7697 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7698 {
7699 /* There should never be more than one longjmp-resume breakpoint per
7700 thread, so we should never be setting a new
7701 longjmp_resume_breakpoint when one is already active. */
7702 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7703
7704 if (debug_infrun)
7705 fprintf_unfiltered (gdb_stdlog,
7706 "infrun: inserting longjmp-resume breakpoint at %s\n",
7707 paddress (gdbarch, pc));
7708
7709 inferior_thread ()->control.exception_resume_breakpoint =
7710 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7711 }
7712
7713 /* Insert an exception resume breakpoint. TP is the thread throwing
7714 the exception. The block B is the block of the unwinder debug hook
7715 function. FRAME is the frame corresponding to the call to this
7716 function. SYM is the symbol of the function argument holding the
7717 target PC of the exception. */
7718
7719 static void
7720 insert_exception_resume_breakpoint (struct thread_info *tp,
7721 const struct block *b,
7722 struct frame_info *frame,
7723 struct symbol *sym)
7724 {
7725 try
7726 {
7727 struct block_symbol vsym;
7728 struct value *value;
7729 CORE_ADDR handler;
7730 struct breakpoint *bp;
7731
7732 vsym = lookup_symbol_search_name (sym->search_name (),
7733 b, VAR_DOMAIN);
7734 value = read_var_value (vsym.symbol, vsym.block, frame);
7735 /* If the value was optimized out, revert to the old behavior. */
7736 if (! value_optimized_out (value))
7737 {
7738 handler = value_as_address (value);
7739
7740 if (debug_infrun)
7741 fprintf_unfiltered (gdb_stdlog,
7742 "infrun: exception resume at %lx\n",
7743 (unsigned long) handler);
7744
7745 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7746 handler,
7747 bp_exception_resume).release ();
7748
7749 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7750 frame = NULL;
7751
7752 bp->thread = tp->global_num;
7753 inferior_thread ()->control.exception_resume_breakpoint = bp;
7754 }
7755 }
7756 catch (const gdb_exception_error &e)
7757 {
7758 /* We want to ignore errors here. */
7759 }
7760 }
7761
7762 /* A helper for check_exception_resume that sets an
7763 exception-breakpoint based on a SystemTap probe. */
7764
7765 static void
7766 insert_exception_resume_from_probe (struct thread_info *tp,
7767 const struct bound_probe *probe,
7768 struct frame_info *frame)
7769 {
7770 struct value *arg_value;
7771 CORE_ADDR handler;
7772 struct breakpoint *bp;
7773
7774 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7775 if (!arg_value)
7776 return;
7777
7778 handler = value_as_address (arg_value);
7779
7780 if (debug_infrun)
7781 fprintf_unfiltered (gdb_stdlog,
7782 "infrun: exception resume at %s\n",
7783 paddress (get_objfile_arch (probe->objfile),
7784 handler));
7785
7786 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7787 handler, bp_exception_resume).release ();
7788 bp->thread = tp->global_num;
7789 inferior_thread ()->control.exception_resume_breakpoint = bp;
7790 }
7791
7792 /* This is called when an exception has been intercepted. Check to
7793 see whether the exception's destination is of interest, and if so,
7794 set an exception resume breakpoint there. */
7795
7796 static void
7797 check_exception_resume (struct execution_control_state *ecs,
7798 struct frame_info *frame)
7799 {
7800 struct bound_probe probe;
7801 struct symbol *func;
7802
7803 /* First see if this exception unwinding breakpoint was set via a
7804 SystemTap probe point. If so, the probe has two arguments: the
7805 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7806 set a breakpoint there. */
7807 probe = find_probe_by_pc (get_frame_pc (frame));
7808 if (probe.prob)
7809 {
7810 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7811 return;
7812 }
7813
7814 func = get_frame_function (frame);
7815 if (!func)
7816 return;
7817
7818 try
7819 {
7820 const struct block *b;
7821 struct block_iterator iter;
7822 struct symbol *sym;
7823 int argno = 0;
7824
7825 /* The exception breakpoint is a thread-specific breakpoint on
7826 the unwinder's debug hook, declared as:
7827
7828 void _Unwind_DebugHook (void *cfa, void *handler);
7829
7830 The CFA argument indicates the frame to which control is
7831 about to be transferred. HANDLER is the destination PC.
7832
7833 We ignore the CFA and set a temporary breakpoint at HANDLER.
7834 This is not extremely efficient but it avoids issues in gdb
7835 with computing the DWARF CFA, and it also works even in weird
7836 cases such as throwing an exception from inside a signal
7837 handler. */
7838
7839 b = SYMBOL_BLOCK_VALUE (func);
7840 ALL_BLOCK_SYMBOLS (b, iter, sym)
7841 {
7842 if (!SYMBOL_IS_ARGUMENT (sym))
7843 continue;
7844
7845 if (argno == 0)
7846 ++argno;
7847 else
7848 {
7849 insert_exception_resume_breakpoint (ecs->event_thread,
7850 b, frame, sym);
7851 break;
7852 }
7853 }
7854 }
7855 catch (const gdb_exception_error &e)
7856 {
7857 }
7858 }
7859
7860 static void
7861 stop_waiting (struct execution_control_state *ecs)
7862 {
7863 if (debug_infrun)
7864 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7865
7866 /* Let callers know we don't want to wait for the inferior anymore. */
7867 ecs->wait_some_more = 0;
7868
7869 /* If all-stop, but the target is always in non-stop mode, stop all
7870 threads now that we're presenting the stop to the user. */
7871 if (!non_stop && target_is_non_stop_p ())
7872 stop_all_threads ();
7873 }
7874
7875 /* Like keep_going, but passes the signal to the inferior, even if the
7876 signal is set to nopass. */
7877
7878 static void
7879 keep_going_pass_signal (struct execution_control_state *ecs)
7880 {
7881 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7882 gdb_assert (!ecs->event_thread->resumed);
7883
7884 /* Save the pc before execution, to compare with pc after stop. */
7885 ecs->event_thread->prev_pc
7886 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7887
7888 if (ecs->event_thread->control.trap_expected)
7889 {
7890 struct thread_info *tp = ecs->event_thread;
7891
7892 if (debug_infrun)
7893 fprintf_unfiltered (gdb_stdlog,
7894 "infrun: %s has trap_expected set, "
7895 "resuming to collect trap\n",
7896 target_pid_to_str (tp->ptid).c_str ());
7897
7898 /* We haven't yet gotten our trap, and either: intercepted a
7899 non-signal event (e.g., a fork); or took a signal which we
7900 are supposed to pass through to the inferior. Simply
7901 continue. */
7902 resume (ecs->event_thread->suspend.stop_signal);
7903 }
7904 else if (step_over_info_valid_p ())
7905 {
7906 /* Another thread is stepping over a breakpoint in-line. If
7907 this thread needs a step-over too, queue the request. In
7908 either case, this resume must be deferred for later. */
7909 struct thread_info *tp = ecs->event_thread;
7910
7911 if (ecs->hit_singlestep_breakpoint
7912 || thread_still_needs_step_over (tp))
7913 {
7914 if (debug_infrun)
7915 fprintf_unfiltered (gdb_stdlog,
7916 "infrun: step-over already in progress: "
7917 "step-over for %s deferred\n",
7918 target_pid_to_str (tp->ptid).c_str ());
7919 thread_step_over_chain_enqueue (tp);
7920 }
7921 else
7922 {
7923 if (debug_infrun)
7924 fprintf_unfiltered (gdb_stdlog,
7925 "infrun: step-over in progress: "
7926 "resume of %s deferred\n",
7927 target_pid_to_str (tp->ptid).c_str ());
7928 }
7929 }
7930 else
7931 {
7932 struct regcache *regcache = get_current_regcache ();
7933 int remove_bp;
7934 int remove_wps;
7935 step_over_what step_what;
7936
7937 /* Either the trap was not expected, but we are continuing
7938 anyway (if we got a signal, the user asked it be passed to
7939 the child)
7940 -- or --
7941 We got our expected trap, but decided we should resume from
7942 it.
7943
7944 We're going to run this baby now!
7945
7946 Note that insert_breakpoints won't try to re-insert
7947 already inserted breakpoints. Therefore, we don't
7948 care if breakpoints were already inserted, or not. */
7949
7950 /* If we need to step over a breakpoint, and we're not using
7951 displaced stepping to do so, insert all breakpoints
7952 (watchpoints, etc.) but the one we're stepping over, step one
7953 instruction, and then re-insert the breakpoint when that step
7954 is finished. */
7955
7956 step_what = thread_still_needs_step_over (ecs->event_thread);
7957
7958 remove_bp = (ecs->hit_singlestep_breakpoint
7959 || (step_what & STEP_OVER_BREAKPOINT));
7960 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7961
7962 /* We can't use displaced stepping if we need to step past a
7963 watchpoint. The instruction copied to the scratch pad would
7964 still trigger the watchpoint. */
7965 if (remove_bp
7966 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7967 {
7968 set_step_over_info (regcache->aspace (),
7969 regcache_read_pc (regcache), remove_wps,
7970 ecs->event_thread->global_num);
7971 }
7972 else if (remove_wps)
7973 set_step_over_info (NULL, 0, remove_wps, -1);
7974
7975 /* If we now need to do an in-line step-over, we need to stop
7976 all other threads. Note this must be done before
7977 insert_breakpoints below, because that removes the breakpoint
7978 we're about to step over, otherwise other threads could miss
7979 it. */
7980 if (step_over_info_valid_p () && target_is_non_stop_p ())
7981 stop_all_threads ();
7982
7983 /* Stop stepping if inserting breakpoints fails. */
7984 try
7985 {
7986 insert_breakpoints ();
7987 }
7988 catch (const gdb_exception_error &e)
7989 {
7990 exception_print (gdb_stderr, e);
7991 stop_waiting (ecs);
7992 clear_step_over_info ();
7993 return;
7994 }
7995
7996 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7997
7998 resume (ecs->event_thread->suspend.stop_signal);
7999 }
8000
8001 prepare_to_wait (ecs);
8002 }
8003
8004 /* Called when we should continue running the inferior, because the
8005 current event doesn't cause a user visible stop. This does the
8006 resuming part; waiting for the next event is done elsewhere. */
8007
8008 static void
8009 keep_going (struct execution_control_state *ecs)
8010 {
8011 if (ecs->event_thread->control.trap_expected
8012 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8013 ecs->event_thread->control.trap_expected = 0;
8014
8015 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8016 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8017 keep_going_pass_signal (ecs);
8018 }
8019
8020 /* This function normally comes after a resume, before
8021 handle_inferior_event exits. It takes care of any last bits of
8022 housekeeping, and sets the all-important wait_some_more flag. */
8023
8024 static void
8025 prepare_to_wait (struct execution_control_state *ecs)
8026 {
8027 if (debug_infrun)
8028 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8029
8030 ecs->wait_some_more = 1;
8031
8032 if (!target_is_async_p ())
8033 mark_infrun_async_event_handler ();
8034 }
8035
8036 /* We are done with the step range of a step/next/si/ni command.
8037 Called once for each n of a "step n" operation. */
8038
8039 static void
8040 end_stepping_range (struct execution_control_state *ecs)
8041 {
8042 ecs->event_thread->control.stop_step = 1;
8043 stop_waiting (ecs);
8044 }
8045
8046 /* Several print_*_reason functions to print why the inferior has stopped.
8047 We always print something when the inferior exits, or receives a signal.
8048 The rest of the cases are dealt with later on in normal_stop and
8049 print_it_typical. Ideally there should be a call to one of these
8050 print_*_reason functions functions from handle_inferior_event each time
8051 stop_waiting is called.
8052
8053 Note that we don't call these directly, instead we delegate that to
8054 the interpreters, through observers. Interpreters then call these
8055 with whatever uiout is right. */
8056
8057 void
8058 print_end_stepping_range_reason (struct ui_out *uiout)
8059 {
8060 /* For CLI-like interpreters, print nothing. */
8061
8062 if (uiout->is_mi_like_p ())
8063 {
8064 uiout->field_string ("reason",
8065 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8066 }
8067 }
8068
8069 void
8070 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8071 {
8072 annotate_signalled ();
8073 if (uiout->is_mi_like_p ())
8074 uiout->field_string
8075 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8076 uiout->text ("\nProgram terminated with signal ");
8077 annotate_signal_name ();
8078 uiout->field_string ("signal-name",
8079 gdb_signal_to_name (siggnal));
8080 annotate_signal_name_end ();
8081 uiout->text (", ");
8082 annotate_signal_string ();
8083 uiout->field_string ("signal-meaning",
8084 gdb_signal_to_string (siggnal));
8085 annotate_signal_string_end ();
8086 uiout->text (".\n");
8087 uiout->text ("The program no longer exists.\n");
8088 }
8089
8090 void
8091 print_exited_reason (struct ui_out *uiout, int exitstatus)
8092 {
8093 struct inferior *inf = current_inferior ();
8094 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8095
8096 annotate_exited (exitstatus);
8097 if (exitstatus)
8098 {
8099 if (uiout->is_mi_like_p ())
8100 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8101 std::string exit_code_str
8102 = string_printf ("0%o", (unsigned int) exitstatus);
8103 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8104 plongest (inf->num), pidstr.c_str (),
8105 string_field ("exit-code", exit_code_str.c_str ()));
8106 }
8107 else
8108 {
8109 if (uiout->is_mi_like_p ())
8110 uiout->field_string
8111 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8112 uiout->message ("[Inferior %s (%s) exited normally]\n",
8113 plongest (inf->num), pidstr.c_str ());
8114 }
8115 }
8116
8117 /* Some targets/architectures can do extra processing/display of
8118 segmentation faults. E.g., Intel MPX boundary faults.
8119 Call the architecture dependent function to handle the fault. */
8120
8121 static void
8122 handle_segmentation_fault (struct ui_out *uiout)
8123 {
8124 struct regcache *regcache = get_current_regcache ();
8125 struct gdbarch *gdbarch = regcache->arch ();
8126
8127 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8128 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8129 }
8130
8131 void
8132 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8133 {
8134 struct thread_info *thr = inferior_thread ();
8135
8136 annotate_signal ();
8137
8138 if (uiout->is_mi_like_p ())
8139 ;
8140 else if (show_thread_that_caused_stop ())
8141 {
8142 const char *name;
8143
8144 uiout->text ("\nThread ");
8145 uiout->field_string ("thread-id", print_thread_id (thr));
8146
8147 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8148 if (name != NULL)
8149 {
8150 uiout->text (" \"");
8151 uiout->field_string ("name", name);
8152 uiout->text ("\"");
8153 }
8154 }
8155 else
8156 uiout->text ("\nProgram");
8157
8158 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8159 uiout->text (" stopped");
8160 else
8161 {
8162 uiout->text (" received signal ");
8163 annotate_signal_name ();
8164 if (uiout->is_mi_like_p ())
8165 uiout->field_string
8166 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8167 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8168 annotate_signal_name_end ();
8169 uiout->text (", ");
8170 annotate_signal_string ();
8171 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8172
8173 if (siggnal == GDB_SIGNAL_SEGV)
8174 handle_segmentation_fault (uiout);
8175
8176 annotate_signal_string_end ();
8177 }
8178 uiout->text (".\n");
8179 }
8180
8181 void
8182 print_no_history_reason (struct ui_out *uiout)
8183 {
8184 uiout->text ("\nNo more reverse-execution history.\n");
8185 }
8186
8187 /* Print current location without a level number, if we have changed
8188 functions or hit a breakpoint. Print source line if we have one.
8189 bpstat_print contains the logic deciding in detail what to print,
8190 based on the event(s) that just occurred. */
8191
8192 static void
8193 print_stop_location (struct target_waitstatus *ws)
8194 {
8195 int bpstat_ret;
8196 enum print_what source_flag;
8197 int do_frame_printing = 1;
8198 struct thread_info *tp = inferior_thread ();
8199
8200 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8201 switch (bpstat_ret)
8202 {
8203 case PRINT_UNKNOWN:
8204 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8205 should) carry around the function and does (or should) use
8206 that when doing a frame comparison. */
8207 if (tp->control.stop_step
8208 && frame_id_eq (tp->control.step_frame_id,
8209 get_frame_id (get_current_frame ()))
8210 && (tp->control.step_start_function
8211 == find_pc_function (tp->suspend.stop_pc)))
8212 {
8213 /* Finished step, just print source line. */
8214 source_flag = SRC_LINE;
8215 }
8216 else
8217 {
8218 /* Print location and source line. */
8219 source_flag = SRC_AND_LOC;
8220 }
8221 break;
8222 case PRINT_SRC_AND_LOC:
8223 /* Print location and source line. */
8224 source_flag = SRC_AND_LOC;
8225 break;
8226 case PRINT_SRC_ONLY:
8227 source_flag = SRC_LINE;
8228 break;
8229 case PRINT_NOTHING:
8230 /* Something bogus. */
8231 source_flag = SRC_LINE;
8232 do_frame_printing = 0;
8233 break;
8234 default:
8235 internal_error (__FILE__, __LINE__, _("Unknown value."));
8236 }
8237
8238 /* The behavior of this routine with respect to the source
8239 flag is:
8240 SRC_LINE: Print only source line
8241 LOCATION: Print only location
8242 SRC_AND_LOC: Print location and source line. */
8243 if (do_frame_printing)
8244 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8245 }
8246
8247 /* See infrun.h. */
8248
8249 void
8250 print_stop_event (struct ui_out *uiout, bool displays)
8251 {
8252 struct target_waitstatus last;
8253 struct thread_info *tp;
8254
8255 get_last_target_status (nullptr, nullptr, &last);
8256
8257 {
8258 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8259
8260 print_stop_location (&last);
8261
8262 /* Display the auto-display expressions. */
8263 if (displays)
8264 do_displays ();
8265 }
8266
8267 tp = inferior_thread ();
8268 if (tp->thread_fsm != NULL
8269 && tp->thread_fsm->finished_p ())
8270 {
8271 struct return_value_info *rv;
8272
8273 rv = tp->thread_fsm->return_value ();
8274 if (rv != NULL)
8275 print_return_value (uiout, rv);
8276 }
8277 }
8278
8279 /* See infrun.h. */
8280
8281 void
8282 maybe_remove_breakpoints (void)
8283 {
8284 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8285 {
8286 if (remove_breakpoints ())
8287 {
8288 target_terminal::ours_for_output ();
8289 printf_filtered (_("Cannot remove breakpoints because "
8290 "program is no longer writable.\nFurther "
8291 "execution is probably impossible.\n"));
8292 }
8293 }
8294 }
8295
8296 /* The execution context that just caused a normal stop. */
8297
8298 struct stop_context
8299 {
8300 stop_context ();
8301 ~stop_context ();
8302
8303 DISABLE_COPY_AND_ASSIGN (stop_context);
8304
8305 bool changed () const;
8306
8307 /* The stop ID. */
8308 ULONGEST stop_id;
8309
8310 /* The event PTID. */
8311
8312 ptid_t ptid;
8313
8314 /* If stopp for a thread event, this is the thread that caused the
8315 stop. */
8316 struct thread_info *thread;
8317
8318 /* The inferior that caused the stop. */
8319 int inf_num;
8320 };
8321
8322 /* Initializes a new stop context. If stopped for a thread event, this
8323 takes a strong reference to the thread. */
8324
8325 stop_context::stop_context ()
8326 {
8327 stop_id = get_stop_id ();
8328 ptid = inferior_ptid;
8329 inf_num = current_inferior ()->num;
8330
8331 if (inferior_ptid != null_ptid)
8332 {
8333 /* Take a strong reference so that the thread can't be deleted
8334 yet. */
8335 thread = inferior_thread ();
8336 thread->incref ();
8337 }
8338 else
8339 thread = NULL;
8340 }
8341
8342 /* Release a stop context previously created with save_stop_context.
8343 Releases the strong reference to the thread as well. */
8344
8345 stop_context::~stop_context ()
8346 {
8347 if (thread != NULL)
8348 thread->decref ();
8349 }
8350
8351 /* Return true if the current context no longer matches the saved stop
8352 context. */
8353
8354 bool
8355 stop_context::changed () const
8356 {
8357 if (ptid != inferior_ptid)
8358 return true;
8359 if (inf_num != current_inferior ()->num)
8360 return true;
8361 if (thread != NULL && thread->state != THREAD_STOPPED)
8362 return true;
8363 if (get_stop_id () != stop_id)
8364 return true;
8365 return false;
8366 }
8367
8368 /* See infrun.h. */
8369
8370 int
8371 normal_stop (void)
8372 {
8373 struct target_waitstatus last;
8374
8375 get_last_target_status (nullptr, nullptr, &last);
8376
8377 new_stop_id ();
8378
8379 /* If an exception is thrown from this point on, make sure to
8380 propagate GDB's knowledge of the executing state to the
8381 frontend/user running state. A QUIT is an easy exception to see
8382 here, so do this before any filtered output. */
8383
8384 ptid_t finish_ptid = null_ptid;
8385
8386 if (!non_stop)
8387 finish_ptid = minus_one_ptid;
8388 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8389 || last.kind == TARGET_WAITKIND_EXITED)
8390 {
8391 /* On some targets, we may still have live threads in the
8392 inferior when we get a process exit event. E.g., for
8393 "checkpoint", when the current checkpoint/fork exits,
8394 linux-fork.c automatically switches to another fork from
8395 within target_mourn_inferior. */
8396 if (inferior_ptid != null_ptid)
8397 finish_ptid = ptid_t (inferior_ptid.pid ());
8398 }
8399 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8400 finish_ptid = inferior_ptid;
8401
8402 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8403 if (finish_ptid != null_ptid)
8404 {
8405 maybe_finish_thread_state.emplace
8406 (user_visible_resume_target (finish_ptid), finish_ptid);
8407 }
8408
8409 /* As we're presenting a stop, and potentially removing breakpoints,
8410 update the thread list so we can tell whether there are threads
8411 running on the target. With target remote, for example, we can
8412 only learn about new threads when we explicitly update the thread
8413 list. Do this before notifying the interpreters about signal
8414 stops, end of stepping ranges, etc., so that the "new thread"
8415 output is emitted before e.g., "Program received signal FOO",
8416 instead of after. */
8417 update_thread_list ();
8418
8419 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8420 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8421
8422 /* As with the notification of thread events, we want to delay
8423 notifying the user that we've switched thread context until
8424 the inferior actually stops.
8425
8426 There's no point in saying anything if the inferior has exited.
8427 Note that SIGNALLED here means "exited with a signal", not
8428 "received a signal".
8429
8430 Also skip saying anything in non-stop mode. In that mode, as we
8431 don't want GDB to switch threads behind the user's back, to avoid
8432 races where the user is typing a command to apply to thread x,
8433 but GDB switches to thread y before the user finishes entering
8434 the command, fetch_inferior_event installs a cleanup to restore
8435 the current thread back to the thread the user had selected right
8436 after this event is handled, so we're not really switching, only
8437 informing of a stop. */
8438 if (!non_stop
8439 && previous_inferior_ptid != inferior_ptid
8440 && target_has_execution
8441 && last.kind != TARGET_WAITKIND_SIGNALLED
8442 && last.kind != TARGET_WAITKIND_EXITED
8443 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8444 {
8445 SWITCH_THRU_ALL_UIS ()
8446 {
8447 target_terminal::ours_for_output ();
8448 printf_filtered (_("[Switching to %s]\n"),
8449 target_pid_to_str (inferior_ptid).c_str ());
8450 annotate_thread_changed ();
8451 }
8452 previous_inferior_ptid = inferior_ptid;
8453 }
8454
8455 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8456 {
8457 SWITCH_THRU_ALL_UIS ()
8458 if (current_ui->prompt_state == PROMPT_BLOCKED)
8459 {
8460 target_terminal::ours_for_output ();
8461 printf_filtered (_("No unwaited-for children left.\n"));
8462 }
8463 }
8464
8465 /* Note: this depends on the update_thread_list call above. */
8466 maybe_remove_breakpoints ();
8467
8468 /* If an auto-display called a function and that got a signal,
8469 delete that auto-display to avoid an infinite recursion. */
8470
8471 if (stopped_by_random_signal)
8472 disable_current_display ();
8473
8474 SWITCH_THRU_ALL_UIS ()
8475 {
8476 async_enable_stdin ();
8477 }
8478
8479 /* Let the user/frontend see the threads as stopped. */
8480 maybe_finish_thread_state.reset ();
8481
8482 /* Select innermost stack frame - i.e., current frame is frame 0,
8483 and current location is based on that. Handle the case where the
8484 dummy call is returning after being stopped. E.g. the dummy call
8485 previously hit a breakpoint. (If the dummy call returns
8486 normally, we won't reach here.) Do this before the stop hook is
8487 run, so that it doesn't get to see the temporary dummy frame,
8488 which is not where we'll present the stop. */
8489 if (has_stack_frames ())
8490 {
8491 if (stop_stack_dummy == STOP_STACK_DUMMY)
8492 {
8493 /* Pop the empty frame that contains the stack dummy. This
8494 also restores inferior state prior to the call (struct
8495 infcall_suspend_state). */
8496 struct frame_info *frame = get_current_frame ();
8497
8498 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8499 frame_pop (frame);
8500 /* frame_pop calls reinit_frame_cache as the last thing it
8501 does which means there's now no selected frame. */
8502 }
8503
8504 select_frame (get_current_frame ());
8505
8506 /* Set the current source location. */
8507 set_current_sal_from_frame (get_current_frame ());
8508 }
8509
8510 /* Look up the hook_stop and run it (CLI internally handles problem
8511 of stop_command's pre-hook not existing). */
8512 if (stop_command != NULL)
8513 {
8514 stop_context saved_context;
8515
8516 try
8517 {
8518 execute_cmd_pre_hook (stop_command);
8519 }
8520 catch (const gdb_exception &ex)
8521 {
8522 exception_fprintf (gdb_stderr, ex,
8523 "Error while running hook_stop:\n");
8524 }
8525
8526 /* If the stop hook resumes the target, then there's no point in
8527 trying to notify about the previous stop; its context is
8528 gone. Likewise if the command switches thread or inferior --
8529 the observers would print a stop for the wrong
8530 thread/inferior. */
8531 if (saved_context.changed ())
8532 return 1;
8533 }
8534
8535 /* Notify observers about the stop. This is where the interpreters
8536 print the stop event. */
8537 if (inferior_ptid != null_ptid)
8538 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8539 stop_print_frame);
8540 else
8541 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8542
8543 annotate_stopped ();
8544
8545 if (target_has_execution)
8546 {
8547 if (last.kind != TARGET_WAITKIND_SIGNALLED
8548 && last.kind != TARGET_WAITKIND_EXITED
8549 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8550 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8551 Delete any breakpoint that is to be deleted at the next stop. */
8552 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8553 }
8554
8555 /* Try to get rid of automatically added inferiors that are no
8556 longer needed. Keeping those around slows down things linearly.
8557 Note that this never removes the current inferior. */
8558 prune_inferiors ();
8559
8560 return 0;
8561 }
8562 \f
8563 int
8564 signal_stop_state (int signo)
8565 {
8566 return signal_stop[signo];
8567 }
8568
8569 int
8570 signal_print_state (int signo)
8571 {
8572 return signal_print[signo];
8573 }
8574
8575 int
8576 signal_pass_state (int signo)
8577 {
8578 return signal_program[signo];
8579 }
8580
8581 static void
8582 signal_cache_update (int signo)
8583 {
8584 if (signo == -1)
8585 {
8586 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8587 signal_cache_update (signo);
8588
8589 return;
8590 }
8591
8592 signal_pass[signo] = (signal_stop[signo] == 0
8593 && signal_print[signo] == 0
8594 && signal_program[signo] == 1
8595 && signal_catch[signo] == 0);
8596 }
8597
8598 int
8599 signal_stop_update (int signo, int state)
8600 {
8601 int ret = signal_stop[signo];
8602
8603 signal_stop[signo] = state;
8604 signal_cache_update (signo);
8605 return ret;
8606 }
8607
8608 int
8609 signal_print_update (int signo, int state)
8610 {
8611 int ret = signal_print[signo];
8612
8613 signal_print[signo] = state;
8614 signal_cache_update (signo);
8615 return ret;
8616 }
8617
8618 int
8619 signal_pass_update (int signo, int state)
8620 {
8621 int ret = signal_program[signo];
8622
8623 signal_program[signo] = state;
8624 signal_cache_update (signo);
8625 return ret;
8626 }
8627
8628 /* Update the global 'signal_catch' from INFO and notify the
8629 target. */
8630
8631 void
8632 signal_catch_update (const unsigned int *info)
8633 {
8634 int i;
8635
8636 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8637 signal_catch[i] = info[i] > 0;
8638 signal_cache_update (-1);
8639 target_pass_signals (signal_pass);
8640 }
8641
8642 static void
8643 sig_print_header (void)
8644 {
8645 printf_filtered (_("Signal Stop\tPrint\tPass "
8646 "to program\tDescription\n"));
8647 }
8648
8649 static void
8650 sig_print_info (enum gdb_signal oursig)
8651 {
8652 const char *name = gdb_signal_to_name (oursig);
8653 int name_padding = 13 - strlen (name);
8654
8655 if (name_padding <= 0)
8656 name_padding = 0;
8657
8658 printf_filtered ("%s", name);
8659 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8660 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8661 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8662 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8663 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8664 }
8665
8666 /* Specify how various signals in the inferior should be handled. */
8667
8668 static void
8669 handle_command (const char *args, int from_tty)
8670 {
8671 int digits, wordlen;
8672 int sigfirst, siglast;
8673 enum gdb_signal oursig;
8674 int allsigs;
8675
8676 if (args == NULL)
8677 {
8678 error_no_arg (_("signal to handle"));
8679 }
8680
8681 /* Allocate and zero an array of flags for which signals to handle. */
8682
8683 const size_t nsigs = GDB_SIGNAL_LAST;
8684 unsigned char sigs[nsigs] {};
8685
8686 /* Break the command line up into args. */
8687
8688 gdb_argv built_argv (args);
8689
8690 /* Walk through the args, looking for signal oursigs, signal names, and
8691 actions. Signal numbers and signal names may be interspersed with
8692 actions, with the actions being performed for all signals cumulatively
8693 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8694
8695 for (char *arg : built_argv)
8696 {
8697 wordlen = strlen (arg);
8698 for (digits = 0; isdigit (arg[digits]); digits++)
8699 {;
8700 }
8701 allsigs = 0;
8702 sigfirst = siglast = -1;
8703
8704 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8705 {
8706 /* Apply action to all signals except those used by the
8707 debugger. Silently skip those. */
8708 allsigs = 1;
8709 sigfirst = 0;
8710 siglast = nsigs - 1;
8711 }
8712 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8713 {
8714 SET_SIGS (nsigs, sigs, signal_stop);
8715 SET_SIGS (nsigs, sigs, signal_print);
8716 }
8717 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8718 {
8719 UNSET_SIGS (nsigs, sigs, signal_program);
8720 }
8721 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8722 {
8723 SET_SIGS (nsigs, sigs, signal_print);
8724 }
8725 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8726 {
8727 SET_SIGS (nsigs, sigs, signal_program);
8728 }
8729 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8730 {
8731 UNSET_SIGS (nsigs, sigs, signal_stop);
8732 }
8733 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8734 {
8735 SET_SIGS (nsigs, sigs, signal_program);
8736 }
8737 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8738 {
8739 UNSET_SIGS (nsigs, sigs, signal_print);
8740 UNSET_SIGS (nsigs, sigs, signal_stop);
8741 }
8742 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8743 {
8744 UNSET_SIGS (nsigs, sigs, signal_program);
8745 }
8746 else if (digits > 0)
8747 {
8748 /* It is numeric. The numeric signal refers to our own
8749 internal signal numbering from target.h, not to host/target
8750 signal number. This is a feature; users really should be
8751 using symbolic names anyway, and the common ones like
8752 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8753
8754 sigfirst = siglast = (int)
8755 gdb_signal_from_command (atoi (arg));
8756 if (arg[digits] == '-')
8757 {
8758 siglast = (int)
8759 gdb_signal_from_command (atoi (arg + digits + 1));
8760 }
8761 if (sigfirst > siglast)
8762 {
8763 /* Bet he didn't figure we'd think of this case... */
8764 std::swap (sigfirst, siglast);
8765 }
8766 }
8767 else
8768 {
8769 oursig = gdb_signal_from_name (arg);
8770 if (oursig != GDB_SIGNAL_UNKNOWN)
8771 {
8772 sigfirst = siglast = (int) oursig;
8773 }
8774 else
8775 {
8776 /* Not a number and not a recognized flag word => complain. */
8777 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8778 }
8779 }
8780
8781 /* If any signal numbers or symbol names were found, set flags for
8782 which signals to apply actions to. */
8783
8784 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8785 {
8786 switch ((enum gdb_signal) signum)
8787 {
8788 case GDB_SIGNAL_TRAP:
8789 case GDB_SIGNAL_INT:
8790 if (!allsigs && !sigs[signum])
8791 {
8792 if (query (_("%s is used by the debugger.\n\
8793 Are you sure you want to change it? "),
8794 gdb_signal_to_name ((enum gdb_signal) signum)))
8795 {
8796 sigs[signum] = 1;
8797 }
8798 else
8799 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8800 }
8801 break;
8802 case GDB_SIGNAL_0:
8803 case GDB_SIGNAL_DEFAULT:
8804 case GDB_SIGNAL_UNKNOWN:
8805 /* Make sure that "all" doesn't print these. */
8806 break;
8807 default:
8808 sigs[signum] = 1;
8809 break;
8810 }
8811 }
8812 }
8813
8814 for (int signum = 0; signum < nsigs; signum++)
8815 if (sigs[signum])
8816 {
8817 signal_cache_update (-1);
8818 target_pass_signals (signal_pass);
8819 target_program_signals (signal_program);
8820
8821 if (from_tty)
8822 {
8823 /* Show the results. */
8824 sig_print_header ();
8825 for (; signum < nsigs; signum++)
8826 if (sigs[signum])
8827 sig_print_info ((enum gdb_signal) signum);
8828 }
8829
8830 break;
8831 }
8832 }
8833
8834 /* Complete the "handle" command. */
8835
8836 static void
8837 handle_completer (struct cmd_list_element *ignore,
8838 completion_tracker &tracker,
8839 const char *text, const char *word)
8840 {
8841 static const char * const keywords[] =
8842 {
8843 "all",
8844 "stop",
8845 "ignore",
8846 "print",
8847 "pass",
8848 "nostop",
8849 "noignore",
8850 "noprint",
8851 "nopass",
8852 NULL,
8853 };
8854
8855 signal_completer (ignore, tracker, text, word);
8856 complete_on_enum (tracker, keywords, word, word);
8857 }
8858
8859 enum gdb_signal
8860 gdb_signal_from_command (int num)
8861 {
8862 if (num >= 1 && num <= 15)
8863 return (enum gdb_signal) num;
8864 error (_("Only signals 1-15 are valid as numeric signals.\n\
8865 Use \"info signals\" for a list of symbolic signals."));
8866 }
8867
8868 /* Print current contents of the tables set by the handle command.
8869 It is possible we should just be printing signals actually used
8870 by the current target (but for things to work right when switching
8871 targets, all signals should be in the signal tables). */
8872
8873 static void
8874 info_signals_command (const char *signum_exp, int from_tty)
8875 {
8876 enum gdb_signal oursig;
8877
8878 sig_print_header ();
8879
8880 if (signum_exp)
8881 {
8882 /* First see if this is a symbol name. */
8883 oursig = gdb_signal_from_name (signum_exp);
8884 if (oursig == GDB_SIGNAL_UNKNOWN)
8885 {
8886 /* No, try numeric. */
8887 oursig =
8888 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8889 }
8890 sig_print_info (oursig);
8891 return;
8892 }
8893
8894 printf_filtered ("\n");
8895 /* These ugly casts brought to you by the native VAX compiler. */
8896 for (oursig = GDB_SIGNAL_FIRST;
8897 (int) oursig < (int) GDB_SIGNAL_LAST;
8898 oursig = (enum gdb_signal) ((int) oursig + 1))
8899 {
8900 QUIT;
8901
8902 if (oursig != GDB_SIGNAL_UNKNOWN
8903 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8904 sig_print_info (oursig);
8905 }
8906
8907 printf_filtered (_("\nUse the \"handle\" command "
8908 "to change these tables.\n"));
8909 }
8910
8911 /* The $_siginfo convenience variable is a bit special. We don't know
8912 for sure the type of the value until we actually have a chance to
8913 fetch the data. The type can change depending on gdbarch, so it is
8914 also dependent on which thread you have selected.
8915
8916 1. making $_siginfo be an internalvar that creates a new value on
8917 access.
8918
8919 2. making the value of $_siginfo be an lval_computed value. */
8920
8921 /* This function implements the lval_computed support for reading a
8922 $_siginfo value. */
8923
8924 static void
8925 siginfo_value_read (struct value *v)
8926 {
8927 LONGEST transferred;
8928
8929 /* If we can access registers, so can we access $_siginfo. Likewise
8930 vice versa. */
8931 validate_registers_access ();
8932
8933 transferred =
8934 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8935 NULL,
8936 value_contents_all_raw (v),
8937 value_offset (v),
8938 TYPE_LENGTH (value_type (v)));
8939
8940 if (transferred != TYPE_LENGTH (value_type (v)))
8941 error (_("Unable to read siginfo"));
8942 }
8943
8944 /* This function implements the lval_computed support for writing a
8945 $_siginfo value. */
8946
8947 static void
8948 siginfo_value_write (struct value *v, struct value *fromval)
8949 {
8950 LONGEST transferred;
8951
8952 /* If we can access registers, so can we access $_siginfo. Likewise
8953 vice versa. */
8954 validate_registers_access ();
8955
8956 transferred = target_write (current_top_target (),
8957 TARGET_OBJECT_SIGNAL_INFO,
8958 NULL,
8959 value_contents_all_raw (fromval),
8960 value_offset (v),
8961 TYPE_LENGTH (value_type (fromval)));
8962
8963 if (transferred != TYPE_LENGTH (value_type (fromval)))
8964 error (_("Unable to write siginfo"));
8965 }
8966
8967 static const struct lval_funcs siginfo_value_funcs =
8968 {
8969 siginfo_value_read,
8970 siginfo_value_write
8971 };
8972
8973 /* Return a new value with the correct type for the siginfo object of
8974 the current thread using architecture GDBARCH. Return a void value
8975 if there's no object available. */
8976
8977 static struct value *
8978 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8979 void *ignore)
8980 {
8981 if (target_has_stack
8982 && inferior_ptid != null_ptid
8983 && gdbarch_get_siginfo_type_p (gdbarch))
8984 {
8985 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8986
8987 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8988 }
8989
8990 return allocate_value (builtin_type (gdbarch)->builtin_void);
8991 }
8992
8993 \f
8994 /* infcall_suspend_state contains state about the program itself like its
8995 registers and any signal it received when it last stopped.
8996 This state must be restored regardless of how the inferior function call
8997 ends (either successfully, or after it hits a breakpoint or signal)
8998 if the program is to properly continue where it left off. */
8999
9000 class infcall_suspend_state
9001 {
9002 public:
9003 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9004 once the inferior function call has finished. */
9005 infcall_suspend_state (struct gdbarch *gdbarch,
9006 const struct thread_info *tp,
9007 struct regcache *regcache)
9008 : m_thread_suspend (tp->suspend),
9009 m_registers (new readonly_detached_regcache (*regcache))
9010 {
9011 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9012
9013 if (gdbarch_get_siginfo_type_p (gdbarch))
9014 {
9015 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9016 size_t len = TYPE_LENGTH (type);
9017
9018 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9019
9020 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9021 siginfo_data.get (), 0, len) != len)
9022 {
9023 /* Errors ignored. */
9024 siginfo_data.reset (nullptr);
9025 }
9026 }
9027
9028 if (siginfo_data)
9029 {
9030 m_siginfo_gdbarch = gdbarch;
9031 m_siginfo_data = std::move (siginfo_data);
9032 }
9033 }
9034
9035 /* Return a pointer to the stored register state. */
9036
9037 readonly_detached_regcache *registers () const
9038 {
9039 return m_registers.get ();
9040 }
9041
9042 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9043
9044 void restore (struct gdbarch *gdbarch,
9045 struct thread_info *tp,
9046 struct regcache *regcache) const
9047 {
9048 tp->suspend = m_thread_suspend;
9049
9050 if (m_siginfo_gdbarch == gdbarch)
9051 {
9052 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9053
9054 /* Errors ignored. */
9055 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9056 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9057 }
9058
9059 /* The inferior can be gone if the user types "print exit(0)"
9060 (and perhaps other times). */
9061 if (target_has_execution)
9062 /* NB: The register write goes through to the target. */
9063 regcache->restore (registers ());
9064 }
9065
9066 private:
9067 /* How the current thread stopped before the inferior function call was
9068 executed. */
9069 struct thread_suspend_state m_thread_suspend;
9070
9071 /* The registers before the inferior function call was executed. */
9072 std::unique_ptr<readonly_detached_regcache> m_registers;
9073
9074 /* Format of SIGINFO_DATA or NULL if it is not present. */
9075 struct gdbarch *m_siginfo_gdbarch = nullptr;
9076
9077 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9078 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9079 content would be invalid. */
9080 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9081 };
9082
9083 infcall_suspend_state_up
9084 save_infcall_suspend_state ()
9085 {
9086 struct thread_info *tp = inferior_thread ();
9087 struct regcache *regcache = get_current_regcache ();
9088 struct gdbarch *gdbarch = regcache->arch ();
9089
9090 infcall_suspend_state_up inf_state
9091 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9092
9093 /* Having saved the current state, adjust the thread state, discarding
9094 any stop signal information. The stop signal is not useful when
9095 starting an inferior function call, and run_inferior_call will not use
9096 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9097 tp->suspend.stop_signal = GDB_SIGNAL_0;
9098
9099 return inf_state;
9100 }
9101
9102 /* Restore inferior session state to INF_STATE. */
9103
9104 void
9105 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9106 {
9107 struct thread_info *tp = inferior_thread ();
9108 struct regcache *regcache = get_current_regcache ();
9109 struct gdbarch *gdbarch = regcache->arch ();
9110
9111 inf_state->restore (gdbarch, tp, regcache);
9112 discard_infcall_suspend_state (inf_state);
9113 }
9114
9115 void
9116 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9117 {
9118 delete inf_state;
9119 }
9120
9121 readonly_detached_regcache *
9122 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9123 {
9124 return inf_state->registers ();
9125 }
9126
9127 /* infcall_control_state contains state regarding gdb's control of the
9128 inferior itself like stepping control. It also contains session state like
9129 the user's currently selected frame. */
9130
9131 struct infcall_control_state
9132 {
9133 struct thread_control_state thread_control;
9134 struct inferior_control_state inferior_control;
9135
9136 /* Other fields: */
9137 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9138 int stopped_by_random_signal = 0;
9139
9140 /* ID if the selected frame when the inferior function call was made. */
9141 struct frame_id selected_frame_id {};
9142 };
9143
9144 /* Save all of the information associated with the inferior<==>gdb
9145 connection. */
9146
9147 infcall_control_state_up
9148 save_infcall_control_state ()
9149 {
9150 infcall_control_state_up inf_status (new struct infcall_control_state);
9151 struct thread_info *tp = inferior_thread ();
9152 struct inferior *inf = current_inferior ();
9153
9154 inf_status->thread_control = tp->control;
9155 inf_status->inferior_control = inf->control;
9156
9157 tp->control.step_resume_breakpoint = NULL;
9158 tp->control.exception_resume_breakpoint = NULL;
9159
9160 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9161 chain. If caller's caller is walking the chain, they'll be happier if we
9162 hand them back the original chain when restore_infcall_control_state is
9163 called. */
9164 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9165
9166 /* Other fields: */
9167 inf_status->stop_stack_dummy = stop_stack_dummy;
9168 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9169
9170 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9171
9172 return inf_status;
9173 }
9174
9175 static void
9176 restore_selected_frame (const frame_id &fid)
9177 {
9178 frame_info *frame = frame_find_by_id (fid);
9179
9180 /* If inf_status->selected_frame_id is NULL, there was no previously
9181 selected frame. */
9182 if (frame == NULL)
9183 {
9184 warning (_("Unable to restore previously selected frame."));
9185 return;
9186 }
9187
9188 select_frame (frame);
9189 }
9190
9191 /* Restore inferior session state to INF_STATUS. */
9192
9193 void
9194 restore_infcall_control_state (struct infcall_control_state *inf_status)
9195 {
9196 struct thread_info *tp = inferior_thread ();
9197 struct inferior *inf = current_inferior ();
9198
9199 if (tp->control.step_resume_breakpoint)
9200 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9201
9202 if (tp->control.exception_resume_breakpoint)
9203 tp->control.exception_resume_breakpoint->disposition
9204 = disp_del_at_next_stop;
9205
9206 /* Handle the bpstat_copy of the chain. */
9207 bpstat_clear (&tp->control.stop_bpstat);
9208
9209 tp->control = inf_status->thread_control;
9210 inf->control = inf_status->inferior_control;
9211
9212 /* Other fields: */
9213 stop_stack_dummy = inf_status->stop_stack_dummy;
9214 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9215
9216 if (target_has_stack)
9217 {
9218 /* The point of the try/catch is that if the stack is clobbered,
9219 walking the stack might encounter a garbage pointer and
9220 error() trying to dereference it. */
9221 try
9222 {
9223 restore_selected_frame (inf_status->selected_frame_id);
9224 }
9225 catch (const gdb_exception_error &ex)
9226 {
9227 exception_fprintf (gdb_stderr, ex,
9228 "Unable to restore previously selected frame:\n");
9229 /* Error in restoring the selected frame. Select the
9230 innermost frame. */
9231 select_frame (get_current_frame ());
9232 }
9233 }
9234
9235 delete inf_status;
9236 }
9237
9238 void
9239 discard_infcall_control_state (struct infcall_control_state *inf_status)
9240 {
9241 if (inf_status->thread_control.step_resume_breakpoint)
9242 inf_status->thread_control.step_resume_breakpoint->disposition
9243 = disp_del_at_next_stop;
9244
9245 if (inf_status->thread_control.exception_resume_breakpoint)
9246 inf_status->thread_control.exception_resume_breakpoint->disposition
9247 = disp_del_at_next_stop;
9248
9249 /* See save_infcall_control_state for info on stop_bpstat. */
9250 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9251
9252 delete inf_status;
9253 }
9254 \f
9255 /* See infrun.h. */
9256
9257 void
9258 clear_exit_convenience_vars (void)
9259 {
9260 clear_internalvar (lookup_internalvar ("_exitsignal"));
9261 clear_internalvar (lookup_internalvar ("_exitcode"));
9262 }
9263 \f
9264
9265 /* User interface for reverse debugging:
9266 Set exec-direction / show exec-direction commands
9267 (returns error unless target implements to_set_exec_direction method). */
9268
9269 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9270 static const char exec_forward[] = "forward";
9271 static const char exec_reverse[] = "reverse";
9272 static const char *exec_direction = exec_forward;
9273 static const char *const exec_direction_names[] = {
9274 exec_forward,
9275 exec_reverse,
9276 NULL
9277 };
9278
9279 static void
9280 set_exec_direction_func (const char *args, int from_tty,
9281 struct cmd_list_element *cmd)
9282 {
9283 if (target_can_execute_reverse)
9284 {
9285 if (!strcmp (exec_direction, exec_forward))
9286 execution_direction = EXEC_FORWARD;
9287 else if (!strcmp (exec_direction, exec_reverse))
9288 execution_direction = EXEC_REVERSE;
9289 }
9290 else
9291 {
9292 exec_direction = exec_forward;
9293 error (_("Target does not support this operation."));
9294 }
9295 }
9296
9297 static void
9298 show_exec_direction_func (struct ui_file *out, int from_tty,
9299 struct cmd_list_element *cmd, const char *value)
9300 {
9301 switch (execution_direction) {
9302 case EXEC_FORWARD:
9303 fprintf_filtered (out, _("Forward.\n"));
9304 break;
9305 case EXEC_REVERSE:
9306 fprintf_filtered (out, _("Reverse.\n"));
9307 break;
9308 default:
9309 internal_error (__FILE__, __LINE__,
9310 _("bogus execution_direction value: %d"),
9311 (int) execution_direction);
9312 }
9313 }
9314
9315 static void
9316 show_schedule_multiple (struct ui_file *file, int from_tty,
9317 struct cmd_list_element *c, const char *value)
9318 {
9319 fprintf_filtered (file, _("Resuming the execution of threads "
9320 "of all processes is %s.\n"), value);
9321 }
9322
9323 /* Implementation of `siginfo' variable. */
9324
9325 static const struct internalvar_funcs siginfo_funcs =
9326 {
9327 siginfo_make_value,
9328 NULL,
9329 NULL
9330 };
9331
9332 /* Callback for infrun's target events source. This is marked when a
9333 thread has a pending status to process. */
9334
9335 static void
9336 infrun_async_inferior_event_handler (gdb_client_data data)
9337 {
9338 inferior_event_handler (INF_REG_EVENT, NULL);
9339 }
9340
9341 void _initialize_infrun ();
9342 void
9343 _initialize_infrun ()
9344 {
9345 struct cmd_list_element *c;
9346
9347 /* Register extra event sources in the event loop. */
9348 infrun_async_inferior_event_token
9349 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9350
9351 add_info ("signals", info_signals_command, _("\
9352 What debugger does when program gets various signals.\n\
9353 Specify a signal as argument to print info on that signal only."));
9354 add_info_alias ("handle", "signals", 0);
9355
9356 c = add_com ("handle", class_run, handle_command, _("\
9357 Specify how to handle signals.\n\
9358 Usage: handle SIGNAL [ACTIONS]\n\
9359 Args are signals and actions to apply to those signals.\n\
9360 If no actions are specified, the current settings for the specified signals\n\
9361 will be displayed instead.\n\
9362 \n\
9363 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9364 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9365 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9366 The special arg \"all\" is recognized to mean all signals except those\n\
9367 used by the debugger, typically SIGTRAP and SIGINT.\n\
9368 \n\
9369 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9370 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9371 Stop means reenter debugger if this signal happens (implies print).\n\
9372 Print means print a message if this signal happens.\n\
9373 Pass means let program see this signal; otherwise program doesn't know.\n\
9374 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9375 Pass and Stop may be combined.\n\
9376 \n\
9377 Multiple signals may be specified. Signal numbers and signal names\n\
9378 may be interspersed with actions, with the actions being performed for\n\
9379 all signals cumulatively specified."));
9380 set_cmd_completer (c, handle_completer);
9381
9382 if (!dbx_commands)
9383 stop_command = add_cmd ("stop", class_obscure,
9384 not_just_help_class_command, _("\
9385 There is no `stop' command, but you can set a hook on `stop'.\n\
9386 This allows you to set a list of commands to be run each time execution\n\
9387 of the program stops."), &cmdlist);
9388
9389 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9390 Set inferior debugging."), _("\
9391 Show inferior debugging."), _("\
9392 When non-zero, inferior specific debugging is enabled."),
9393 NULL,
9394 show_debug_infrun,
9395 &setdebuglist, &showdebuglist);
9396
9397 add_setshow_boolean_cmd ("displaced", class_maintenance,
9398 &debug_displaced, _("\
9399 Set displaced stepping debugging."), _("\
9400 Show displaced stepping debugging."), _("\
9401 When non-zero, displaced stepping specific debugging is enabled."),
9402 NULL,
9403 show_debug_displaced,
9404 &setdebuglist, &showdebuglist);
9405
9406 add_setshow_boolean_cmd ("non-stop", no_class,
9407 &non_stop_1, _("\
9408 Set whether gdb controls the inferior in non-stop mode."), _("\
9409 Show whether gdb controls the inferior in non-stop mode."), _("\
9410 When debugging a multi-threaded program and this setting is\n\
9411 off (the default, also called all-stop mode), when one thread stops\n\
9412 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9413 all other threads in the program while you interact with the thread of\n\
9414 interest. When you continue or step a thread, you can allow the other\n\
9415 threads to run, or have them remain stopped, but while you inspect any\n\
9416 thread's state, all threads stop.\n\
9417 \n\
9418 In non-stop mode, when one thread stops, other threads can continue\n\
9419 to run freely. You'll be able to step each thread independently,\n\
9420 leave it stopped or free to run as needed."),
9421 set_non_stop,
9422 show_non_stop,
9423 &setlist,
9424 &showlist);
9425
9426 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9427 {
9428 signal_stop[i] = 1;
9429 signal_print[i] = 1;
9430 signal_program[i] = 1;
9431 signal_catch[i] = 0;
9432 }
9433
9434 /* Signals caused by debugger's own actions should not be given to
9435 the program afterwards.
9436
9437 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9438 explicitly specifies that it should be delivered to the target
9439 program. Typically, that would occur when a user is debugging a
9440 target monitor on a simulator: the target monitor sets a
9441 breakpoint; the simulator encounters this breakpoint and halts
9442 the simulation handing control to GDB; GDB, noting that the stop
9443 address doesn't map to any known breakpoint, returns control back
9444 to the simulator; the simulator then delivers the hardware
9445 equivalent of a GDB_SIGNAL_TRAP to the program being
9446 debugged. */
9447 signal_program[GDB_SIGNAL_TRAP] = 0;
9448 signal_program[GDB_SIGNAL_INT] = 0;
9449
9450 /* Signals that are not errors should not normally enter the debugger. */
9451 signal_stop[GDB_SIGNAL_ALRM] = 0;
9452 signal_print[GDB_SIGNAL_ALRM] = 0;
9453 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9454 signal_print[GDB_SIGNAL_VTALRM] = 0;
9455 signal_stop[GDB_SIGNAL_PROF] = 0;
9456 signal_print[GDB_SIGNAL_PROF] = 0;
9457 signal_stop[GDB_SIGNAL_CHLD] = 0;
9458 signal_print[GDB_SIGNAL_CHLD] = 0;
9459 signal_stop[GDB_SIGNAL_IO] = 0;
9460 signal_print[GDB_SIGNAL_IO] = 0;
9461 signal_stop[GDB_SIGNAL_POLL] = 0;
9462 signal_print[GDB_SIGNAL_POLL] = 0;
9463 signal_stop[GDB_SIGNAL_URG] = 0;
9464 signal_print[GDB_SIGNAL_URG] = 0;
9465 signal_stop[GDB_SIGNAL_WINCH] = 0;
9466 signal_print[GDB_SIGNAL_WINCH] = 0;
9467 signal_stop[GDB_SIGNAL_PRIO] = 0;
9468 signal_print[GDB_SIGNAL_PRIO] = 0;
9469
9470 /* These signals are used internally by user-level thread
9471 implementations. (See signal(5) on Solaris.) Like the above
9472 signals, a healthy program receives and handles them as part of
9473 its normal operation. */
9474 signal_stop[GDB_SIGNAL_LWP] = 0;
9475 signal_print[GDB_SIGNAL_LWP] = 0;
9476 signal_stop[GDB_SIGNAL_WAITING] = 0;
9477 signal_print[GDB_SIGNAL_WAITING] = 0;
9478 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9479 signal_print[GDB_SIGNAL_CANCEL] = 0;
9480 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9481 signal_print[GDB_SIGNAL_LIBRT] = 0;
9482
9483 /* Update cached state. */
9484 signal_cache_update (-1);
9485
9486 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9487 &stop_on_solib_events, _("\
9488 Set stopping for shared library events."), _("\
9489 Show stopping for shared library events."), _("\
9490 If nonzero, gdb will give control to the user when the dynamic linker\n\
9491 notifies gdb of shared library events. The most common event of interest\n\
9492 to the user would be loading/unloading of a new library."),
9493 set_stop_on_solib_events,
9494 show_stop_on_solib_events,
9495 &setlist, &showlist);
9496
9497 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9498 follow_fork_mode_kind_names,
9499 &follow_fork_mode_string, _("\
9500 Set debugger response to a program call of fork or vfork."), _("\
9501 Show debugger response to a program call of fork or vfork."), _("\
9502 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9503 parent - the original process is debugged after a fork\n\
9504 child - the new process is debugged after a fork\n\
9505 The unfollowed process will continue to run.\n\
9506 By default, the debugger will follow the parent process."),
9507 NULL,
9508 show_follow_fork_mode_string,
9509 &setlist, &showlist);
9510
9511 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9512 follow_exec_mode_names,
9513 &follow_exec_mode_string, _("\
9514 Set debugger response to a program call of exec."), _("\
9515 Show debugger response to a program call of exec."), _("\
9516 An exec call replaces the program image of a process.\n\
9517 \n\
9518 follow-exec-mode can be:\n\
9519 \n\
9520 new - the debugger creates a new inferior and rebinds the process\n\
9521 to this new inferior. The program the process was running before\n\
9522 the exec call can be restarted afterwards by restarting the original\n\
9523 inferior.\n\
9524 \n\
9525 same - the debugger keeps the process bound to the same inferior.\n\
9526 The new executable image replaces the previous executable loaded in\n\
9527 the inferior. Restarting the inferior after the exec call restarts\n\
9528 the executable the process was running after the exec call.\n\
9529 \n\
9530 By default, the debugger will use the same inferior."),
9531 NULL,
9532 show_follow_exec_mode_string,
9533 &setlist, &showlist);
9534
9535 add_setshow_enum_cmd ("scheduler-locking", class_run,
9536 scheduler_enums, &scheduler_mode, _("\
9537 Set mode for locking scheduler during execution."), _("\
9538 Show mode for locking scheduler during execution."), _("\
9539 off == no locking (threads may preempt at any time)\n\
9540 on == full locking (no thread except the current thread may run)\n\
9541 This applies to both normal execution and replay mode.\n\
9542 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9543 In this mode, other threads may run during other commands.\n\
9544 This applies to both normal execution and replay mode.\n\
9545 replay == scheduler locked in replay mode and unlocked during normal execution."),
9546 set_schedlock_func, /* traps on target vector */
9547 show_scheduler_mode,
9548 &setlist, &showlist);
9549
9550 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9551 Set mode for resuming threads of all processes."), _("\
9552 Show mode for resuming threads of all processes."), _("\
9553 When on, execution commands (such as 'continue' or 'next') resume all\n\
9554 threads of all processes. When off (which is the default), execution\n\
9555 commands only resume the threads of the current process. The set of\n\
9556 threads that are resumed is further refined by the scheduler-locking\n\
9557 mode (see help set scheduler-locking)."),
9558 NULL,
9559 show_schedule_multiple,
9560 &setlist, &showlist);
9561
9562 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9563 Set mode of the step operation."), _("\
9564 Show mode of the step operation."), _("\
9565 When set, doing a step over a function without debug line information\n\
9566 will stop at the first instruction of that function. Otherwise, the\n\
9567 function is skipped and the step command stops at a different source line."),
9568 NULL,
9569 show_step_stop_if_no_debug,
9570 &setlist, &showlist);
9571
9572 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9573 &can_use_displaced_stepping, _("\
9574 Set debugger's willingness to use displaced stepping."), _("\
9575 Show debugger's willingness to use displaced stepping."), _("\
9576 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9577 supported by the target architecture. If off, gdb will not use displaced\n\
9578 stepping to step over breakpoints, even if such is supported by the target\n\
9579 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9580 if the target architecture supports it and non-stop mode is active, but will not\n\
9581 use it in all-stop mode (see help set non-stop)."),
9582 NULL,
9583 show_can_use_displaced_stepping,
9584 &setlist, &showlist);
9585
9586 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9587 &exec_direction, _("Set direction of execution.\n\
9588 Options are 'forward' or 'reverse'."),
9589 _("Show direction of execution (forward/reverse)."),
9590 _("Tells gdb whether to execute forward or backward."),
9591 set_exec_direction_func, show_exec_direction_func,
9592 &setlist, &showlist);
9593
9594 /* Set/show detach-on-fork: user-settable mode. */
9595
9596 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9597 Set whether gdb will detach the child of a fork."), _("\
9598 Show whether gdb will detach the child of a fork."), _("\
9599 Tells gdb whether to detach the child of a fork."),
9600 NULL, NULL, &setlist, &showlist);
9601
9602 /* Set/show disable address space randomization mode. */
9603
9604 add_setshow_boolean_cmd ("disable-randomization", class_support,
9605 &disable_randomization, _("\
9606 Set disabling of debuggee's virtual address space randomization."), _("\
9607 Show disabling of debuggee's virtual address space randomization."), _("\
9608 When this mode is on (which is the default), randomization of the virtual\n\
9609 address space is disabled. Standalone programs run with the randomization\n\
9610 enabled by default on some platforms."),
9611 &set_disable_randomization,
9612 &show_disable_randomization,
9613 &setlist, &showlist);
9614
9615 /* ptid initializations */
9616 inferior_ptid = null_ptid;
9617 target_last_wait_ptid = minus_one_ptid;
9618
9619 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9620 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9621 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9622 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9623
9624 /* Explicitly create without lookup, since that tries to create a
9625 value with a void typed value, and when we get here, gdbarch
9626 isn't initialized yet. At this point, we're quite sure there
9627 isn't another convenience variable of the same name. */
9628 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9629
9630 add_setshow_boolean_cmd ("observer", no_class,
9631 &observer_mode_1, _("\
9632 Set whether gdb controls the inferior in observer mode."), _("\
9633 Show whether gdb controls the inferior in observer mode."), _("\
9634 In observer mode, GDB can get data from the inferior, but not\n\
9635 affect its execution. Registers and memory may not be changed,\n\
9636 breakpoints may not be set, and the program cannot be interrupted\n\
9637 or signalled."),
9638 set_observer_mode,
9639 show_observer_mode,
9640 &setlist,
9641 &showlist);
9642 }
This page took 0.303332 seconds and 5 git commands to generate.