Change pid_to_str to return std::string
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "common/gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70 #include "common/scope-exit.h"
71 #include "common/forward-scope-exit.h"
72
73 /* Prototypes for local functions */
74
75 static void sig_print_info (enum gdb_signal);
76
77 static void sig_print_header (void);
78
79 static int follow_fork (void);
80
81 static int follow_fork_inferior (int follow_child, int detach_fork);
82
83 static void follow_inferior_reset_breakpoints (void);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 void nullify_last_target_wait_ptid (void);
88
89 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
90
91 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
93 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
95 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
97 static void resume (gdb_signal sig);
98
99 /* Asynchronous signal handler registered as event loop source for
100 when we have pending events ready to be passed to the core. */
101 static struct async_event_handler *infrun_async_inferior_event_token;
102
103 /* Stores whether infrun_async was previously enabled or disabled.
104 Starts off as -1, indicating "never enabled/disabled". */
105 static int infrun_is_async = -1;
106
107 /* See infrun.h. */
108
109 void
110 infrun_async (int enable)
111 {
112 if (infrun_is_async != enable)
113 {
114 infrun_is_async = enable;
115
116 if (debug_infrun)
117 fprintf_unfiltered (gdb_stdlog,
118 "infrun: infrun_async(%d)\n",
119 enable);
120
121 if (enable)
122 mark_async_event_handler (infrun_async_inferior_event_token);
123 else
124 clear_async_event_handler (infrun_async_inferior_event_token);
125 }
126 }
127
128 /* See infrun.h. */
129
130 void
131 mark_infrun_async_event_handler (void)
132 {
133 mark_async_event_handler (infrun_async_inferior_event_token);
134 }
135
136 /* When set, stop the 'step' command if we enter a function which has
137 no line number information. The normal behavior is that we step
138 over such function. */
139 int step_stop_if_no_debug = 0;
140 static void
141 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
145 }
146
147 /* proceed and normal_stop use this to notify the user when the
148 inferior stopped in a different thread than it had been running
149 in. */
150
151 static ptid_t previous_inferior_ptid;
152
153 /* If set (default for legacy reasons), when following a fork, GDB
154 will detach from one of the fork branches, child or parent.
155 Exactly which branch is detached depends on 'set follow-fork-mode'
156 setting. */
157
158 static int detach_fork = 1;
159
160 int debug_displaced = 0;
161 static void
162 show_debug_displaced (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
166 }
167
168 unsigned int debug_infrun = 0;
169 static void
170 show_debug_infrun (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
174 }
175
176
177 /* Support for disabling address space randomization. */
178
179 int disable_randomization = 1;
180
181 static void
182 show_disable_randomization (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 if (target_supports_disable_randomization ())
186 fprintf_filtered (file,
187 _("Disabling randomization of debuggee's "
188 "virtual address space is %s.\n"),
189 value);
190 else
191 fputs_filtered (_("Disabling randomization of debuggee's "
192 "virtual address space is unsupported on\n"
193 "this platform.\n"), file);
194 }
195
196 static void
197 set_disable_randomization (const char *args, int from_tty,
198 struct cmd_list_element *c)
199 {
200 if (!target_supports_disable_randomization ())
201 error (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform."));
204 }
205
206 /* User interface for non-stop mode. */
207
208 int non_stop = 0;
209 static int non_stop_1 = 0;
210
211 static void
212 set_non_stop (const char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 non_stop_1 = non_stop;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 non_stop = non_stop_1;
222 }
223
224 static void
225 show_non_stop (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227 {
228 fprintf_filtered (file,
229 _("Controlling the inferior in non-stop mode is %s.\n"),
230 value);
231 }
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 int observer_mode = 0;
238 static int observer_mode_1 = 0;
239
240 static void
241 set_observer_mode (const char *args, int from_tty,
242 struct cmd_list_element *c)
243 {
244 if (target_has_execution)
245 {
246 observer_mode_1 = observer_mode;
247 error (_("Cannot change this setting while the inferior is running."));
248 }
249
250 observer_mode = observer_mode_1;
251
252 may_write_registers = !observer_mode;
253 may_write_memory = !observer_mode;
254 may_insert_breakpoints = !observer_mode;
255 may_insert_tracepoints = !observer_mode;
256 /* We can insert fast tracepoints in or out of observer mode,
257 but enable them if we're going into this mode. */
258 if (observer_mode)
259 may_insert_fast_tracepoints = 1;
260 may_stop = !observer_mode;
261 update_target_permissions ();
262
263 /* Going *into* observer mode we must force non-stop, then
264 going out we leave it that way. */
265 if (observer_mode)
266 {
267 pagination_enabled = 0;
268 non_stop = non_stop_1 = 1;
269 }
270
271 if (from_tty)
272 printf_filtered (_("Observer mode is now %s.\n"),
273 (observer_mode ? "on" : "off"));
274 }
275
276 static void
277 show_observer_mode (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
281 }
282
283 /* This updates the value of observer mode based on changes in
284 permissions. Note that we are deliberately ignoring the values of
285 may-write-registers and may-write-memory, since the user may have
286 reason to enable these during a session, for instance to turn on a
287 debugging-related global. */
288
289 void
290 update_observer_mode (void)
291 {
292 int newval;
293
294 newval = (!may_insert_breakpoints
295 && !may_insert_tracepoints
296 && may_insert_fast_tracepoints
297 && !may_stop
298 && non_stop);
299
300 /* Let the user know if things change. */
301 if (newval != observer_mode)
302 printf_filtered (_("Observer mode is now %s.\n"),
303 (newval ? "on" : "off"));
304
305 observer_mode = observer_mode_1 = newval;
306 }
307
308 /* Tables of how to react to signals; the user sets them. */
309
310 static unsigned char signal_stop[GDB_SIGNAL_LAST];
311 static unsigned char signal_print[GDB_SIGNAL_LAST];
312 static unsigned char signal_program[GDB_SIGNAL_LAST];
313
314 /* Table of signals that are registered with "catch signal". A
315 non-zero entry indicates that the signal is caught by some "catch
316 signal" command. */
317 static unsigned char signal_catch[GDB_SIGNAL_LAST];
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char signal_pass[GDB_SIGNAL_LAST];
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals (signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
359 int stop_on_solib_events;
360
361 /* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364 static void
365 set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
367 {
368 update_solib_breakpoints ();
369 }
370
371 static void
372 show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374 {
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377 }
378
379 /* Nonzero after stop if current stack frame should be printed. */
380
381 static int stop_print_frame;
382
383 /* This is a cached copy of the pid/waitstatus of the last event
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
386 static ptid_t target_last_wait_ptid;
387 static struct target_waitstatus target_last_waitstatus;
388
389 void init_thread_stepping_state (struct thread_info *tss);
390
391 static const char follow_fork_mode_child[] = "child";
392 static const char follow_fork_mode_parent[] = "parent";
393
394 static const char *const follow_fork_mode_kind_names[] = {
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
398 };
399
400 static const char *follow_fork_mode_string = follow_fork_mode_parent;
401 static void
402 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404 {
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
408 value);
409 }
410 \f
411
412 /* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418 static int
419 follow_fork_inferior (int follow_child, int detach_fork)
420 {
421 int has_vforked;
422 ptid_t parent_ptid, child_ptid;
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
431 && current_ui->prompt_state == PROMPT_BLOCKED
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440 Can not resume the parent process over vfork in the foreground while\n\
441 holding the child stopped. Try \"set detach-on-fork\" or \
442 \"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
462 remove_breakpoints_inf (current_inferior ());
463 }
464
465 if (print_inferior_events)
466 {
467 /* Ensure that we have a process ptid. */
468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
469
470 target_terminal::ours_for_output ();
471 fprintf_filtered (gdb_stdlog,
472 _("[Detaching after %s from child %s]\n"),
473 has_vforked ? "vfork" : "fork",
474 target_pid_to_str (process_ptid).c_str ());
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
480
481 /* Add process to GDB's tables. */
482 child_inf = add_inferior (child_ptid.pid ());
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
491
492 inferior_ptid = child_ptid;
493 add_thread_silent (inferior_ptid);
494 set_current_inferior (child_inf);
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
515 child_inf->pspace = new program_space (child_inf->aspace);
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
553 if (print_inferior_events)
554 {
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
558 target_terminal::ours_for_output ();
559 fprintf_filtered (gdb_stdlog,
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
562 has_vforked ? "vfork" : "fork",
563 child_pid.c_str ());
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
569 child_inf = add_inferior (child_ptid.pid ());
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
600 {
601 if (print_inferior_events)
602 {
603 /* Ensure that we have a process ptid. */
604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
605
606 target_terminal::ours_for_output ();
607 fprintf_filtered (gdb_stdlog,
608 _("[Detaching after fork from "
609 "parent %s]\n"),
610 target_pid_to_str (process_ptid).c_str ());
611 }
612
613 target_detach (parent_inf, 0);
614 }
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
622 inferior_ptid = child_ptid;
623 add_thread_silent (inferior_ptid);
624 set_current_inferior (child_inf);
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
637 child_inf->pspace = new program_space (child_inf->aspace);
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653 }
654
655 /* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
659 static int
660 follow_fork (void)
661 {
662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
671 struct breakpoint *exception_resume_breakpoint = NULL;
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
675 struct thread_fsm *thread_fsm = NULL;
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
729 thread_fsm = tp->thread_fsm;
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
740 delete_exception_resume_breakpoint (tp);
741 tp->thread_fsm = NULL;
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
762 tp = find_thread_ptid (parent);
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
770 /* If we followed the child, switch to it... */
771 if (follow_child)
772 {
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
788 tp->thread_fsm = thread_fsm;
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
798 warning (_("Not resuming: switched threads "
799 "before following fork child."));
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
817
818 return should_resume;
819 }
820
821 static void
822 follow_inferior_reset_breakpoints (void)
823 {
824 struct thread_info *tp = inferior_thread ();
825
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
839 if (tp->control.step_resume_breakpoint)
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
844
845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
846 if (tp->control.exception_resume_breakpoint)
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
851
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
859 }
860
861 /* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864 static int
865 proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867 {
868 int pid = * (int *) arg;
869
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
873 && !thread->stop_requested
874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
879 target_pid_to_str (thread->ptid).c_str ());
880
881 switch_to_thread (thread);
882 clear_proceed_status (0);
883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
884 }
885
886 return 0;
887 }
888
889 /* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892 class scoped_restore_exited_inferior
893 {
894 public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899 private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903 };
904
905 /* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908 static void
909 handle_vfork_child_exec_or_exit (int exec)
910 {
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
924 struct program_space *pspace;
925 struct address_space *aspace;
926
927 /* follow-fork child, detach-on-fork on. */
928
929 inf->vfork_parent->pending_detach = 0;
930
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
938 if (!exec)
939 maybe_restore_inferior.emplace ();
940 else
941 maybe_restore_thread.emplace ();
942
943 /* We're letting loose of the parent. */
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
964 if (print_inferior_events)
965 {
966 std::string pidstr
967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
968
969 target_terminal::ours_for_output ();
970
971 if (exec)
972 {
973 fprintf_filtered (gdb_stdlog,
974 _("[Detaching vfork parent %s "
975 "after child exec]\n"), pidstr.c_str ());
976 }
977 else
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("[Detaching vfork parent %s "
981 "after child exit]\n"), pidstr.c_str ());
982 }
983 }
984
985 target_detach (inf->vfork_parent, 0);
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
995 inf->pspace = new program_space (maybe_new_address_space ());
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
1029 pspace = new program_space (maybe_new_address_space ());
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
1032 inf->symfile_flags = SYMFILE_NO_READ;
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
1050 scoped_restore_current_thread restore_thread;
1051
1052 if (debug_infrun)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1058 }
1059 }
1060 }
1061
1062 /* Enum strings for "set|show follow-exec-mode". */
1063
1064 static const char follow_exec_mode_new[] = "new";
1065 static const char follow_exec_mode_same[] = "same";
1066 static const char *const follow_exec_mode_names[] =
1067 {
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071 };
1072
1073 static const char *follow_exec_mode_string = follow_exec_mode_same;
1074 static void
1075 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077 {
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079 }
1080
1081 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1082
1083 static void
1084 follow_exec (ptid_t ptid, char *exec_file_target)
1085 {
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid.pid ();
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 for (thread_info *th : all_threads_safe ())
1133 if (th->ptid.pid () == pid && th->ptid != ptid)
1134 delete_thread (th);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 thread_info *th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = ptid_t (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid).c_str (),
1158 exec_file_target);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 breakpoint_init_inferior (inf_execd);
1164
1165 gdb::unique_xmalloc_ptr<char> exec_file_host
1166 = exec_file_find (exec_file_target, NULL);
1167
1168 /* If we were unable to map the executable target pathname onto a host
1169 pathname, tell the user that. Otherwise GDB's subsequent behavior
1170 is confusing. Maybe it would even be better to stop at this point
1171 so that the user can specify a file manually before continuing. */
1172 if (exec_file_host == NULL)
1173 warning (_("Could not load symbols for executable %s.\n"
1174 "Do you need \"set sysroot\"?"),
1175 exec_file_target);
1176
1177 /* Reset the shared library package. This ensures that we get a
1178 shlib event when the child reaches "_start", at which point the
1179 dld will have had a chance to initialize the child. */
1180 /* Also, loading a symbol file below may trigger symbol lookups, and
1181 we don't want those to be satisfied by the libraries of the
1182 previous incarnation of this process. */
1183 no_shared_libraries (NULL, 0);
1184
1185 if (follow_exec_mode_string == follow_exec_mode_new)
1186 {
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
1190 /* Do exit processing for the original inferior before setting the new
1191 inferior's pid. Having two inferiors with the same pid would confuse
1192 find_inferior_p(t)id. Transfer the terminal state and info from the
1193 old to the new inferior. */
1194 inf = add_inferior_with_spaces ();
1195 swap_terminal_info (inf, current_inferior ());
1196 exit_inferior_silent (current_inferior ());
1197
1198 inf->pid = pid;
1199 target_follow_exec (inf, exec_file_target);
1200
1201 set_current_inferior (inf);
1202 set_current_program_space (inf->pspace);
1203 add_thread (ptid);
1204 }
1205 else
1206 {
1207 /* The old description may no longer be fit for the new image.
1208 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1209 old description; we'll read a new one below. No need to do
1210 this on "follow-exec-mode new", as the old inferior stays
1211 around (its description is later cleared/refetched on
1212 restart). */
1213 target_clear_description ();
1214 }
1215
1216 gdb_assert (current_program_space == inf->pspace);
1217
1218 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1219 because the proper displacement for a PIE (Position Independent
1220 Executable) main symbol file will only be computed by
1221 solib_create_inferior_hook below. breakpoint_re_set would fail
1222 to insert the breakpoints with the zero displacement. */
1223 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1224
1225 /* If the target can specify a description, read it. Must do this
1226 after flipping to the new executable (because the target supplied
1227 description must be compatible with the executable's
1228 architecture, and the old executable may e.g., be 32-bit, while
1229 the new one 64-bit), and before anything involving memory or
1230 registers. */
1231 target_find_description ();
1232
1233 solib_create_inferior_hook (0);
1234
1235 jit_inferior_created_hook ();
1236
1237 breakpoint_re_set ();
1238
1239 /* Reinsert all breakpoints. (Those which were symbolic have
1240 been reset to the proper address in the new a.out, thanks
1241 to symbol_file_command...). */
1242 insert_breakpoints ();
1243
1244 /* The next resume of this inferior should bring it to the shlib
1245 startup breakpoints. (If the user had also set bp's on
1246 "main" from the old (parent) process, then they'll auto-
1247 matically get reset there in the new process.). */
1248 }
1249
1250 /* The queue of threads that need to do a step-over operation to get
1251 past e.g., a breakpoint. What technique is used to step over the
1252 breakpoint/watchpoint does not matter -- all threads end up in the
1253 same queue, to maintain rough temporal order of execution, in order
1254 to avoid starvation, otherwise, we could e.g., find ourselves
1255 constantly stepping the same couple threads past their breakpoints
1256 over and over, if the single-step finish fast enough. */
1257 struct thread_info *step_over_queue_head;
1258
1259 /* Bit flags indicating what the thread needs to step over. */
1260
1261 enum step_over_what_flag
1262 {
1263 /* Step over a breakpoint. */
1264 STEP_OVER_BREAKPOINT = 1,
1265
1266 /* Step past a non-continuable watchpoint, in order to let the
1267 instruction execute so we can evaluate the watchpoint
1268 expression. */
1269 STEP_OVER_WATCHPOINT = 2
1270 };
1271 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1272
1273 /* Info about an instruction that is being stepped over. */
1274
1275 struct step_over_info
1276 {
1277 /* If we're stepping past a breakpoint, this is the address space
1278 and address of the instruction the breakpoint is set at. We'll
1279 skip inserting all breakpoints here. Valid iff ASPACE is
1280 non-NULL. */
1281 const address_space *aspace;
1282 CORE_ADDR address;
1283
1284 /* The instruction being stepped over triggers a nonsteppable
1285 watchpoint. If true, we'll skip inserting watchpoints. */
1286 int nonsteppable_watchpoint_p;
1287
1288 /* The thread's global number. */
1289 int thread;
1290 };
1291
1292 /* The step-over info of the location that is being stepped over.
1293
1294 Note that with async/breakpoint always-inserted mode, a user might
1295 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1296 being stepped over. As setting a new breakpoint inserts all
1297 breakpoints, we need to make sure the breakpoint being stepped over
1298 isn't inserted then. We do that by only clearing the step-over
1299 info when the step-over is actually finished (or aborted).
1300
1301 Presently GDB can only step over one breakpoint at any given time.
1302 Given threads that can't run code in the same address space as the
1303 breakpoint's can't really miss the breakpoint, GDB could be taught
1304 to step-over at most one breakpoint per address space (so this info
1305 could move to the address space object if/when GDB is extended).
1306 The set of breakpoints being stepped over will normally be much
1307 smaller than the set of all breakpoints, so a flag in the
1308 breakpoint location structure would be wasteful. A separate list
1309 also saves complexity and run-time, as otherwise we'd have to go
1310 through all breakpoint locations clearing their flag whenever we
1311 start a new sequence. Similar considerations weigh against storing
1312 this info in the thread object. Plus, not all step overs actually
1313 have breakpoint locations -- e.g., stepping past a single-step
1314 breakpoint, or stepping to complete a non-continuable
1315 watchpoint. */
1316 static struct step_over_info step_over_info;
1317
1318 /* Record the address of the breakpoint/instruction we're currently
1319 stepping over.
1320 N.B. We record the aspace and address now, instead of say just the thread,
1321 because when we need the info later the thread may be running. */
1322
1323 static void
1324 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1325 int nonsteppable_watchpoint_p,
1326 int thread)
1327 {
1328 step_over_info.aspace = aspace;
1329 step_over_info.address = address;
1330 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1331 step_over_info.thread = thread;
1332 }
1333
1334 /* Called when we're not longer stepping over a breakpoint / an
1335 instruction, so all breakpoints are free to be (re)inserted. */
1336
1337 static void
1338 clear_step_over_info (void)
1339 {
1340 if (debug_infrun)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "infrun: clear_step_over_info\n");
1343 step_over_info.aspace = NULL;
1344 step_over_info.address = 0;
1345 step_over_info.nonsteppable_watchpoint_p = 0;
1346 step_over_info.thread = -1;
1347 }
1348
1349 /* See infrun.h. */
1350
1351 int
1352 stepping_past_instruction_at (struct address_space *aspace,
1353 CORE_ADDR address)
1354 {
1355 return (step_over_info.aspace != NULL
1356 && breakpoint_address_match (aspace, address,
1357 step_over_info.aspace,
1358 step_over_info.address));
1359 }
1360
1361 /* See infrun.h. */
1362
1363 int
1364 thread_is_stepping_over_breakpoint (int thread)
1365 {
1366 return (step_over_info.thread != -1
1367 && thread == step_over_info.thread);
1368 }
1369
1370 /* See infrun.h. */
1371
1372 int
1373 stepping_past_nonsteppable_watchpoint (void)
1374 {
1375 return step_over_info.nonsteppable_watchpoint_p;
1376 }
1377
1378 /* Returns true if step-over info is valid. */
1379
1380 static int
1381 step_over_info_valid_p (void)
1382 {
1383 return (step_over_info.aspace != NULL
1384 || stepping_past_nonsteppable_watchpoint ());
1385 }
1386
1387 \f
1388 /* Displaced stepping. */
1389
1390 /* In non-stop debugging mode, we must take special care to manage
1391 breakpoints properly; in particular, the traditional strategy for
1392 stepping a thread past a breakpoint it has hit is unsuitable.
1393 'Displaced stepping' is a tactic for stepping one thread past a
1394 breakpoint it has hit while ensuring that other threads running
1395 concurrently will hit the breakpoint as they should.
1396
1397 The traditional way to step a thread T off a breakpoint in a
1398 multi-threaded program in all-stop mode is as follows:
1399
1400 a0) Initially, all threads are stopped, and breakpoints are not
1401 inserted.
1402 a1) We single-step T, leaving breakpoints uninserted.
1403 a2) We insert breakpoints, and resume all threads.
1404
1405 In non-stop debugging, however, this strategy is unsuitable: we
1406 don't want to have to stop all threads in the system in order to
1407 continue or step T past a breakpoint. Instead, we use displaced
1408 stepping:
1409
1410 n0) Initially, T is stopped, other threads are running, and
1411 breakpoints are inserted.
1412 n1) We copy the instruction "under" the breakpoint to a separate
1413 location, outside the main code stream, making any adjustments
1414 to the instruction, register, and memory state as directed by
1415 T's architecture.
1416 n2) We single-step T over the instruction at its new location.
1417 n3) We adjust the resulting register and memory state as directed
1418 by T's architecture. This includes resetting T's PC to point
1419 back into the main instruction stream.
1420 n4) We resume T.
1421
1422 This approach depends on the following gdbarch methods:
1423
1424 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1425 indicate where to copy the instruction, and how much space must
1426 be reserved there. We use these in step n1.
1427
1428 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1429 address, and makes any necessary adjustments to the instruction,
1430 register contents, and memory. We use this in step n1.
1431
1432 - gdbarch_displaced_step_fixup adjusts registers and memory after
1433 we have successfuly single-stepped the instruction, to yield the
1434 same effect the instruction would have had if we had executed it
1435 at its original address. We use this in step n3.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
1474 /* Default destructor for displaced_step_closure. */
1475
1476 displaced_step_closure::~displaced_step_closure () = default;
1477
1478 /* Get the displaced stepping state of process PID. */
1479
1480 static displaced_step_inferior_state *
1481 get_displaced_stepping_state (inferior *inf)
1482 {
1483 return &inf->displaced_step_state;
1484 }
1485
1486 /* Returns true if any inferior has a thread doing a displaced
1487 step. */
1488
1489 static bool
1490 displaced_step_in_progress_any_inferior ()
1491 {
1492 for (inferior *i : all_inferiors ())
1493 {
1494 if (i->displaced_step_state.step_thread != nullptr)
1495 return true;
1496 }
1497
1498 return false;
1499 }
1500
1501 /* Return true if thread represented by PTID is doing a displaced
1502 step. */
1503
1504 static int
1505 displaced_step_in_progress_thread (thread_info *thread)
1506 {
1507 gdb_assert (thread != NULL);
1508
1509 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1510 }
1511
1512 /* Return true if process PID has a thread doing a displaced step. */
1513
1514 static int
1515 displaced_step_in_progress (inferior *inf)
1516 {
1517 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1518 }
1519
1520 /* If inferior is in displaced stepping, and ADDR equals to starting address
1521 of copy area, return corresponding displaced_step_closure. Otherwise,
1522 return NULL. */
1523
1524 struct displaced_step_closure*
1525 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1526 {
1527 displaced_step_inferior_state *displaced
1528 = get_displaced_stepping_state (current_inferior ());
1529
1530 /* If checking the mode of displaced instruction in copy area. */
1531 if (displaced->step_thread != nullptr
1532 && displaced->step_copy == addr)
1533 return displaced->step_closure;
1534
1535 return NULL;
1536 }
1537
1538 static void
1539 infrun_inferior_exit (struct inferior *inf)
1540 {
1541 inf->displaced_step_state.reset ();
1542 }
1543
1544 /* If ON, and the architecture supports it, GDB will use displaced
1545 stepping to step over breakpoints. If OFF, or if the architecture
1546 doesn't support it, GDB will instead use the traditional
1547 hold-and-step approach. If AUTO (which is the default), GDB will
1548 decide which technique to use to step over breakpoints depending on
1549 which of all-stop or non-stop mode is active --- displaced stepping
1550 in non-stop mode; hold-and-step in all-stop mode. */
1551
1552 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1553
1554 static void
1555 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558 {
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
1563 value, target_is_non_stop_p () ? "on" : "off");
1564 else
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
1568 }
1569
1570 /* Return non-zero if displaced stepping can/should be used to step
1571 over breakpoints of thread TP. */
1572
1573 static int
1574 use_displaced_stepping (struct thread_info *tp)
1575 {
1576 struct regcache *regcache = get_thread_regcache (tp);
1577 struct gdbarch *gdbarch = regcache->arch ();
1578 displaced_step_inferior_state *displaced_state
1579 = get_displaced_stepping_state (tp->inf);
1580
1581 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1582 && target_is_non_stop_p ())
1583 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1584 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1585 && find_record_target () == NULL
1586 && !displaced_state->failed_before);
1587 }
1588
1589 /* Clean out any stray displaced stepping state. */
1590 static void
1591 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1592 {
1593 /* Indicate that there is no cleanup pending. */
1594 displaced->step_thread = nullptr;
1595
1596 delete displaced->step_closure;
1597 displaced->step_closure = NULL;
1598 }
1599
1600 /* A cleanup that wraps displaced_step_clear. */
1601 using displaced_step_clear_cleanup
1602 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1603
1604 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1605 void
1606 displaced_step_dump_bytes (struct ui_file *file,
1607 const gdb_byte *buf,
1608 size_t len)
1609 {
1610 int i;
1611
1612 for (i = 0; i < len; i++)
1613 fprintf_unfiltered (file, "%02x ", buf[i]);
1614 fputs_unfiltered ("\n", file);
1615 }
1616
1617 /* Prepare to single-step, using displaced stepping.
1618
1619 Note that we cannot use displaced stepping when we have a signal to
1620 deliver. If we have a signal to deliver and an instruction to step
1621 over, then after the step, there will be no indication from the
1622 target whether the thread entered a signal handler or ignored the
1623 signal and stepped over the instruction successfully --- both cases
1624 result in a simple SIGTRAP. In the first case we mustn't do a
1625 fixup, and in the second case we must --- but we can't tell which.
1626 Comments in the code for 'random signals' in handle_inferior_event
1627 explain how we handle this case instead.
1628
1629 Returns 1 if preparing was successful -- this thread is going to be
1630 stepped now; 0 if displaced stepping this thread got queued; or -1
1631 if this instruction can't be displaced stepped. */
1632
1633 static int
1634 displaced_step_prepare_throw (thread_info *tp)
1635 {
1636 regcache *regcache = get_thread_regcache (tp);
1637 struct gdbarch *gdbarch = regcache->arch ();
1638 const address_space *aspace = regcache->aspace ();
1639 CORE_ADDR original, copy;
1640 ULONGEST len;
1641 struct displaced_step_closure *closure;
1642 int status;
1643
1644 /* We should never reach this function if the architecture does not
1645 support displaced stepping. */
1646 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1647
1648 /* Nor if the thread isn't meant to step over a breakpoint. */
1649 gdb_assert (tp->control.trap_expected);
1650
1651 /* Disable range stepping while executing in the scratch pad. We
1652 want a single-step even if executing the displaced instruction in
1653 the scratch buffer lands within the stepping range (e.g., a
1654 jump/branch). */
1655 tp->control.may_range_step = 0;
1656
1657 /* We have to displaced step one thread at a time, as we only have
1658 access to a single scratch space per inferior. */
1659
1660 displaced_step_inferior_state *displaced
1661 = get_displaced_stepping_state (tp->inf);
1662
1663 if (displaced->step_thread != nullptr)
1664 {
1665 /* Already waiting for a displaced step to finish. Defer this
1666 request and place in queue. */
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "displaced: deferring step of %s\n",
1671 target_pid_to_str (tp->ptid).c_str ());
1672
1673 thread_step_over_chain_enqueue (tp);
1674 return 0;
1675 }
1676 else
1677 {
1678 if (debug_displaced)
1679 fprintf_unfiltered (gdb_stdlog,
1680 "displaced: stepping %s now\n",
1681 target_pid_to_str (tp->ptid).c_str ());
1682 }
1683
1684 displaced_step_clear (displaced);
1685
1686 scoped_restore_current_thread restore_thread;
1687
1688 switch_to_thread (tp);
1689
1690 original = regcache_read_pc (regcache);
1691
1692 copy = gdbarch_displaced_step_location (gdbarch);
1693 len = gdbarch_max_insn_length (gdbarch);
1694
1695 if (breakpoint_in_range_p (aspace, copy, len))
1696 {
1697 /* There's a breakpoint set in the scratch pad location range
1698 (which is usually around the entry point). We'd either
1699 install it before resuming, which would overwrite/corrupt the
1700 scratch pad, or if it was already inserted, this displaced
1701 step would overwrite it. The latter is OK in the sense that
1702 we already assume that no thread is going to execute the code
1703 in the scratch pad range (after initial startup) anyway, but
1704 the former is unacceptable. Simply punt and fallback to
1705 stepping over this breakpoint in-line. */
1706 if (debug_displaced)
1707 {
1708 fprintf_unfiltered (gdb_stdlog,
1709 "displaced: breakpoint set in scratch pad. "
1710 "Stepping over breakpoint in-line instead.\n");
1711 }
1712
1713 return -1;
1714 }
1715
1716 /* Save the original contents of the copy area. */
1717 displaced->step_saved_copy.resize (len);
1718 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1719 if (status != 0)
1720 throw_error (MEMORY_ERROR,
1721 _("Error accessing memory address %s (%s) for "
1722 "displaced-stepping scratch space."),
1723 paddress (gdbarch, copy), safe_strerror (status));
1724 if (debug_displaced)
1725 {
1726 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727 paddress (gdbarch, copy));
1728 displaced_step_dump_bytes (gdb_stdlog,
1729 displaced->step_saved_copy.data (),
1730 len);
1731 };
1732
1733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1734 original, copy, regcache);
1735 if (closure == NULL)
1736 {
1737 /* The architecture doesn't know how or want to displaced step
1738 this instruction or instruction sequence. Fallback to
1739 stepping over the breakpoint in-line. */
1740 return -1;
1741 }
1742
1743 /* Save the information we need to fix things up if the step
1744 succeeds. */
1745 displaced->step_thread = tp;
1746 displaced->step_gdbarch = gdbarch;
1747 displaced->step_closure = closure;
1748 displaced->step_original = original;
1749 displaced->step_copy = copy;
1750
1751 {
1752 displaced_step_clear_cleanup cleanup (displaced);
1753
1754 /* Resume execution at the copy. */
1755 regcache_write_pc (regcache, copy);
1756
1757 cleanup.release ();
1758 }
1759
1760 if (debug_displaced)
1761 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1762 paddress (gdbarch, copy));
1763
1764 return 1;
1765 }
1766
1767 /* Wrapper for displaced_step_prepare_throw that disabled further
1768 attempts at displaced stepping if we get a memory error. */
1769
1770 static int
1771 displaced_step_prepare (thread_info *thread)
1772 {
1773 int prepared = -1;
1774
1775 TRY
1776 {
1777 prepared = displaced_step_prepare_throw (thread);
1778 }
1779 CATCH (ex, RETURN_MASK_ERROR)
1780 {
1781 struct displaced_step_inferior_state *displaced_state;
1782
1783 if (ex.error != MEMORY_ERROR
1784 && ex.error != NOT_SUPPORTED_ERROR)
1785 throw_exception (ex);
1786
1787 if (debug_infrun)
1788 {
1789 fprintf_unfiltered (gdb_stdlog,
1790 "infrun: disabling displaced stepping: %s\n",
1791 ex.message);
1792 }
1793
1794 /* Be verbose if "set displaced-stepping" is "on", silent if
1795 "auto". */
1796 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1797 {
1798 warning (_("disabling displaced stepping: %s"),
1799 ex.message);
1800 }
1801
1802 /* Disable further displaced stepping attempts. */
1803 displaced_state
1804 = get_displaced_stepping_state (thread->inf);
1805 displaced_state->failed_before = 1;
1806 }
1807 END_CATCH
1808
1809 return prepared;
1810 }
1811
1812 static void
1813 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1814 const gdb_byte *myaddr, int len)
1815 {
1816 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1817
1818 inferior_ptid = ptid;
1819 write_memory (memaddr, myaddr, len);
1820 }
1821
1822 /* Restore the contents of the copy area for thread PTID. */
1823
1824 static void
1825 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1826 ptid_t ptid)
1827 {
1828 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1829
1830 write_memory_ptid (ptid, displaced->step_copy,
1831 displaced->step_saved_copy.data (), len);
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1834 target_pid_to_str (ptid).c_str (),
1835 paddress (displaced->step_gdbarch,
1836 displaced->step_copy));
1837 }
1838
1839 /* If we displaced stepped an instruction successfully, adjust
1840 registers and memory to yield the same effect the instruction would
1841 have had if we had executed it at its original address, and return
1842 1. If the instruction didn't complete, relocate the PC and return
1843 -1. If the thread wasn't displaced stepping, return 0. */
1844
1845 static int
1846 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1847 {
1848 struct displaced_step_inferior_state *displaced
1849 = get_displaced_stepping_state (event_thread->inf);
1850 int ret;
1851
1852 /* Was this event for the thread we displaced? */
1853 if (displaced->step_thread != event_thread)
1854 return 0;
1855
1856 displaced_step_clear_cleanup cleanup (displaced);
1857
1858 displaced_step_restore (displaced, displaced->step_thread->ptid);
1859
1860 /* Fixup may need to read memory/registers. Switch to the thread
1861 that we're fixing up. Also, target_stopped_by_watchpoint checks
1862 the current thread. */
1863 switch_to_thread (event_thread);
1864
1865 /* Did the instruction complete successfully? */
1866 if (signal == GDB_SIGNAL_TRAP
1867 && !(target_stopped_by_watchpoint ()
1868 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1869 || target_have_steppable_watchpoint)))
1870 {
1871 /* Fix up the resulting state. */
1872 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1873 displaced->step_closure,
1874 displaced->step_original,
1875 displaced->step_copy,
1876 get_thread_regcache (displaced->step_thread));
1877 ret = 1;
1878 }
1879 else
1880 {
1881 /* Since the instruction didn't complete, all we can do is
1882 relocate the PC. */
1883 struct regcache *regcache = get_thread_regcache (event_thread);
1884 CORE_ADDR pc = regcache_read_pc (regcache);
1885
1886 pc = displaced->step_original + (pc - displaced->step_copy);
1887 regcache_write_pc (regcache, pc);
1888 ret = -1;
1889 }
1890
1891 return ret;
1892 }
1893
1894 /* Data to be passed around while handling an event. This data is
1895 discarded between events. */
1896 struct execution_control_state
1897 {
1898 ptid_t ptid;
1899 /* The thread that got the event, if this was a thread event; NULL
1900 otherwise. */
1901 struct thread_info *event_thread;
1902
1903 struct target_waitstatus ws;
1904 int stop_func_filled_in;
1905 CORE_ADDR stop_func_start;
1906 CORE_ADDR stop_func_end;
1907 const char *stop_func_name;
1908 int wait_some_more;
1909
1910 /* True if the event thread hit the single-step breakpoint of
1911 another thread. Thus the event doesn't cause a stop, the thread
1912 needs to be single-stepped past the single-step breakpoint before
1913 we can switch back to the original stepping thread. */
1914 int hit_singlestep_breakpoint;
1915 };
1916
1917 /* Clear ECS and set it to point at TP. */
1918
1919 static void
1920 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1921 {
1922 memset (ecs, 0, sizeof (*ecs));
1923 ecs->event_thread = tp;
1924 ecs->ptid = tp->ptid;
1925 }
1926
1927 static void keep_going_pass_signal (struct execution_control_state *ecs);
1928 static void prepare_to_wait (struct execution_control_state *ecs);
1929 static int keep_going_stepped_thread (struct thread_info *tp);
1930 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1931
1932 /* Are there any pending step-over requests? If so, run all we can
1933 now and return true. Otherwise, return false. */
1934
1935 static int
1936 start_step_over (void)
1937 {
1938 struct thread_info *tp, *next;
1939
1940 /* Don't start a new step-over if we already have an in-line
1941 step-over operation ongoing. */
1942 if (step_over_info_valid_p ())
1943 return 0;
1944
1945 for (tp = step_over_queue_head; tp != NULL; tp = next)
1946 {
1947 struct execution_control_state ecss;
1948 struct execution_control_state *ecs = &ecss;
1949 step_over_what step_what;
1950 int must_be_in_line;
1951
1952 gdb_assert (!tp->stop_requested);
1953
1954 next = thread_step_over_chain_next (tp);
1955
1956 /* If this inferior already has a displaced step in process,
1957 don't start a new one. */
1958 if (displaced_step_in_progress (tp->inf))
1959 continue;
1960
1961 step_what = thread_still_needs_step_over (tp);
1962 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1963 || ((step_what & STEP_OVER_BREAKPOINT)
1964 && !use_displaced_stepping (tp)));
1965
1966 /* We currently stop all threads of all processes to step-over
1967 in-line. If we need to start a new in-line step-over, let
1968 any pending displaced steps finish first. */
1969 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1970 return 0;
1971
1972 thread_step_over_chain_remove (tp);
1973
1974 if (step_over_queue_head == NULL)
1975 {
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "infrun: step-over queue now empty\n");
1979 }
1980
1981 if (tp->control.trap_expected
1982 || tp->resumed
1983 || tp->executing)
1984 {
1985 internal_error (__FILE__, __LINE__,
1986 "[%s] has inconsistent state: "
1987 "trap_expected=%d, resumed=%d, executing=%d\n",
1988 target_pid_to_str (tp->ptid).c_str (),
1989 tp->control.trap_expected,
1990 tp->resumed,
1991 tp->executing);
1992 }
1993
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: resuming [%s] for step-over\n",
1997 target_pid_to_str (tp->ptid).c_str ());
1998
1999 /* keep_going_pass_signal skips the step-over if the breakpoint
2000 is no longer inserted. In all-stop, we want to keep looking
2001 for a thread that needs a step-over instead of resuming TP,
2002 because we wouldn't be able to resume anything else until the
2003 target stops again. In non-stop, the resume always resumes
2004 only TP, so it's OK to let the thread resume freely. */
2005 if (!target_is_non_stop_p () && !step_what)
2006 continue;
2007
2008 switch_to_thread (tp);
2009 reset_ecs (ecs, tp);
2010 keep_going_pass_signal (ecs);
2011
2012 if (!ecs->wait_some_more)
2013 error (_("Command aborted."));
2014
2015 gdb_assert (tp->resumed);
2016
2017 /* If we started a new in-line step-over, we're done. */
2018 if (step_over_info_valid_p ())
2019 {
2020 gdb_assert (tp->control.trap_expected);
2021 return 1;
2022 }
2023
2024 if (!target_is_non_stop_p ())
2025 {
2026 /* On all-stop, shouldn't have resumed unless we needed a
2027 step over. */
2028 gdb_assert (tp->control.trap_expected
2029 || tp->step_after_step_resume_breakpoint);
2030
2031 /* With remote targets (at least), in all-stop, we can't
2032 issue any further remote commands until the program stops
2033 again. */
2034 return 1;
2035 }
2036
2037 /* Either the thread no longer needed a step-over, or a new
2038 displaced stepping sequence started. Even in the latter
2039 case, continue looking. Maybe we can also start another
2040 displaced step on a thread of other process. */
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* Update global variables holding ptids to hold NEW_PTID if they were
2047 holding OLD_PTID. */
2048 static void
2049 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2050 {
2051 if (inferior_ptid == old_ptid)
2052 inferior_ptid = new_ptid;
2053 }
2054
2055 \f
2056
2057 static const char schedlock_off[] = "off";
2058 static const char schedlock_on[] = "on";
2059 static const char schedlock_step[] = "step";
2060 static const char schedlock_replay[] = "replay";
2061 static const char *const scheduler_enums[] = {
2062 schedlock_off,
2063 schedlock_on,
2064 schedlock_step,
2065 schedlock_replay,
2066 NULL
2067 };
2068 static const char *scheduler_mode = schedlock_replay;
2069 static void
2070 show_scheduler_mode (struct ui_file *file, int from_tty,
2071 struct cmd_list_element *c, const char *value)
2072 {
2073 fprintf_filtered (file,
2074 _("Mode for locking scheduler "
2075 "during execution is \"%s\".\n"),
2076 value);
2077 }
2078
2079 static void
2080 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2081 {
2082 if (!target_can_lock_scheduler)
2083 {
2084 scheduler_mode = schedlock_off;
2085 error (_("Target '%s' cannot support this command."), target_shortname);
2086 }
2087 }
2088
2089 /* True if execution commands resume all threads of all processes by
2090 default; otherwise, resume only threads of the current inferior
2091 process. */
2092 int sched_multi = 0;
2093
2094 /* Try to setup for software single stepping over the specified location.
2095 Return 1 if target_resume() should use hardware single step.
2096
2097 GDBARCH the current gdbarch.
2098 PC the location to step over. */
2099
2100 static int
2101 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2102 {
2103 int hw_step = 1;
2104
2105 if (execution_direction == EXEC_FORWARD
2106 && gdbarch_software_single_step_p (gdbarch))
2107 hw_step = !insert_single_step_breakpoints (gdbarch);
2108
2109 return hw_step;
2110 }
2111
2112 /* See infrun.h. */
2113
2114 ptid_t
2115 user_visible_resume_ptid (int step)
2116 {
2117 ptid_t resume_ptid;
2118
2119 if (non_stop)
2120 {
2121 /* With non-stop mode on, threads are always handled
2122 individually. */
2123 resume_ptid = inferior_ptid;
2124 }
2125 else if ((scheduler_mode == schedlock_on)
2126 || (scheduler_mode == schedlock_step && step))
2127 {
2128 /* User-settable 'scheduler' mode requires solo thread
2129 resume. */
2130 resume_ptid = inferior_ptid;
2131 }
2132 else if ((scheduler_mode == schedlock_replay)
2133 && target_record_will_replay (minus_one_ptid, execution_direction))
2134 {
2135 /* User-settable 'scheduler' mode requires solo thread resume in replay
2136 mode. */
2137 resume_ptid = inferior_ptid;
2138 }
2139 else if (!sched_multi && target_supports_multi_process ())
2140 {
2141 /* Resume all threads of the current process (and none of other
2142 processes). */
2143 resume_ptid = ptid_t (inferior_ptid.pid ());
2144 }
2145 else
2146 {
2147 /* Resume all threads of all processes. */
2148 resume_ptid = RESUME_ALL;
2149 }
2150
2151 return resume_ptid;
2152 }
2153
2154 /* Return a ptid representing the set of threads that we will resume,
2155 in the perspective of the target, assuming run control handling
2156 does not require leaving some threads stopped (e.g., stepping past
2157 breakpoint). USER_STEP indicates whether we're about to start the
2158 target for a stepping command. */
2159
2160 static ptid_t
2161 internal_resume_ptid (int user_step)
2162 {
2163 /* In non-stop, we always control threads individually. Note that
2164 the target may always work in non-stop mode even with "set
2165 non-stop off", in which case user_visible_resume_ptid could
2166 return a wildcard ptid. */
2167 if (target_is_non_stop_p ())
2168 return inferior_ptid;
2169 else
2170 return user_visible_resume_ptid (user_step);
2171 }
2172
2173 /* Wrapper for target_resume, that handles infrun-specific
2174 bookkeeping. */
2175
2176 static void
2177 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2178 {
2179 struct thread_info *tp = inferior_thread ();
2180
2181 gdb_assert (!tp->stop_requested);
2182
2183 /* Install inferior's terminal modes. */
2184 target_terminal::inferior ();
2185
2186 /* Avoid confusing the next resume, if the next stop/resume
2187 happens to apply to another thread. */
2188 tp->suspend.stop_signal = GDB_SIGNAL_0;
2189
2190 /* Advise target which signals may be handled silently.
2191
2192 If we have removed breakpoints because we are stepping over one
2193 in-line (in any thread), we need to receive all signals to avoid
2194 accidentally skipping a breakpoint during execution of a signal
2195 handler.
2196
2197 Likewise if we're displaced stepping, otherwise a trap for a
2198 breakpoint in a signal handler might be confused with the
2199 displaced step finishing. We don't make the displaced_step_fixup
2200 step distinguish the cases instead, because:
2201
2202 - a backtrace while stopped in the signal handler would show the
2203 scratch pad as frame older than the signal handler, instead of
2204 the real mainline code.
2205
2206 - when the thread is later resumed, the signal handler would
2207 return to the scratch pad area, which would no longer be
2208 valid. */
2209 if (step_over_info_valid_p ()
2210 || displaced_step_in_progress (tp->inf))
2211 target_pass_signals ({});
2212 else
2213 target_pass_signals (signal_pass);
2214
2215 target_resume (resume_ptid, step, sig);
2216
2217 target_commit_resume ();
2218 }
2219
2220 /* Resume the inferior. SIG is the signal to give the inferior
2221 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2222 call 'resume', which handles exceptions. */
2223
2224 static void
2225 resume_1 (enum gdb_signal sig)
2226 {
2227 struct regcache *regcache = get_current_regcache ();
2228 struct gdbarch *gdbarch = regcache->arch ();
2229 struct thread_info *tp = inferior_thread ();
2230 CORE_ADDR pc = regcache_read_pc (regcache);
2231 const address_space *aspace = regcache->aspace ();
2232 ptid_t resume_ptid;
2233 /* This represents the user's step vs continue request. When
2234 deciding whether "set scheduler-locking step" applies, it's the
2235 user's intention that counts. */
2236 const int user_step = tp->control.stepping_command;
2237 /* This represents what we'll actually request the target to do.
2238 This can decay from a step to a continue, if e.g., we need to
2239 implement single-stepping with breakpoints (software
2240 single-step). */
2241 int step;
2242
2243 gdb_assert (!tp->stop_requested);
2244 gdb_assert (!thread_is_in_step_over_chain (tp));
2245
2246 if (tp->suspend.waitstatus_pending_p)
2247 {
2248 if (debug_infrun)
2249 {
2250 std::string statstr
2251 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2252
2253 fprintf_unfiltered (gdb_stdlog,
2254 "infrun: resume: thread %s has pending wait "
2255 "status %s (currently_stepping=%d).\n",
2256 target_pid_to_str (tp->ptid).c_str (),
2257 statstr.c_str (),
2258 currently_stepping (tp));
2259 }
2260
2261 tp->resumed = 1;
2262
2263 /* FIXME: What should we do if we are supposed to resume this
2264 thread with a signal? Maybe we should maintain a queue of
2265 pending signals to deliver. */
2266 if (sig != GDB_SIGNAL_0)
2267 {
2268 warning (_("Couldn't deliver signal %s to %s."),
2269 gdb_signal_to_name (sig),
2270 target_pid_to_str (tp->ptid).c_str ());
2271 }
2272
2273 tp->suspend.stop_signal = GDB_SIGNAL_0;
2274
2275 if (target_can_async_p ())
2276 {
2277 target_async (1);
2278 /* Tell the event loop we have an event to process. */
2279 mark_async_event_handler (infrun_async_inferior_event_token);
2280 }
2281 return;
2282 }
2283
2284 tp->stepped_breakpoint = 0;
2285
2286 /* Depends on stepped_breakpoint. */
2287 step = currently_stepping (tp);
2288
2289 if (current_inferior ()->waiting_for_vfork_done)
2290 {
2291 /* Don't try to single-step a vfork parent that is waiting for
2292 the child to get out of the shared memory region (by exec'ing
2293 or exiting). This is particularly important on software
2294 single-step archs, as the child process would trip on the
2295 software single step breakpoint inserted for the parent
2296 process. Since the parent will not actually execute any
2297 instruction until the child is out of the shared region (such
2298 are vfork's semantics), it is safe to simply continue it.
2299 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2300 the parent, and tell it to `keep_going', which automatically
2301 re-sets it stepping. */
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: resume : clear step\n");
2305 step = 0;
2306 }
2307
2308 if (debug_infrun)
2309 fprintf_unfiltered (gdb_stdlog,
2310 "infrun: resume (step=%d, signal=%s), "
2311 "trap_expected=%d, current thread [%s] at %s\n",
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
2314 target_pid_to_str (inferior_ptid).c_str (),
2315 paddress (gdbarch, pc));
2316
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2322 {
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "infrun: resume: skipping permanent breakpoint, "
2342 "deliver signal first\n");
2343
2344 clear_step_over_info ();
2345 tp->control.trap_expected = 0;
2346
2347 if (tp->control.step_resume_breakpoint == NULL)
2348 {
2349 /* Set a "high-priority" step-resume, as we don't want
2350 user breakpoints at PC to trigger (again) when this
2351 hits. */
2352 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2353 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2354
2355 tp->step_after_step_resume_breakpoint = step;
2356 }
2357
2358 insert_breakpoints ();
2359 }
2360 else
2361 {
2362 /* There's no signal to pass, we can go ahead and skip the
2363 permanent breakpoint manually. */
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog,
2366 "infrun: resume: skipping permanent breakpoint\n");
2367 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2368 /* Update pc to reflect the new address from which we will
2369 execute instructions. */
2370 pc = regcache_read_pc (regcache);
2371
2372 if (step)
2373 {
2374 /* We've already advanced the PC, so the stepping part
2375 is done. Now we need to arrange for a trap to be
2376 reported to handle_inferior_event. Set a breakpoint
2377 at the current PC, and run to it. Don't update
2378 prev_pc, because if we end in
2379 switch_back_to_stepped_thread, we want the "expected
2380 thread advanced also" branch to be taken. IOW, we
2381 don't want this thread to step further from PC
2382 (overstep). */
2383 gdb_assert (!step_over_info_valid_p ());
2384 insert_single_step_breakpoint (gdbarch, aspace, pc);
2385 insert_breakpoints ();
2386
2387 resume_ptid = internal_resume_ptid (user_step);
2388 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2389 tp->resumed = 1;
2390 return;
2391 }
2392 }
2393 }
2394
2395 /* If we have a breakpoint to step over, make sure to do a single
2396 step only. Same if we have software watchpoints. */
2397 if (tp->control.trap_expected || bpstat_should_step ())
2398 tp->control.may_range_step = 0;
2399
2400 /* If enabled, step over breakpoints by executing a copy of the
2401 instruction at a different address.
2402
2403 We can't use displaced stepping when we have a signal to deliver;
2404 the comments for displaced_step_prepare explain why. The
2405 comments in the handle_inferior event for dealing with 'random
2406 signals' explain what we do instead.
2407
2408 We can't use displaced stepping when we are waiting for vfork_done
2409 event, displaced stepping breaks the vfork child similarly as single
2410 step software breakpoint. */
2411 if (tp->control.trap_expected
2412 && use_displaced_stepping (tp)
2413 && !step_over_info_valid_p ()
2414 && sig == GDB_SIGNAL_0
2415 && !current_inferior ()->waiting_for_vfork_done)
2416 {
2417 int prepared = displaced_step_prepare (tp);
2418
2419 if (prepared == 0)
2420 {
2421 if (debug_infrun)
2422 fprintf_unfiltered (gdb_stdlog,
2423 "Got placed in step-over queue\n");
2424
2425 tp->control.trap_expected = 0;
2426 return;
2427 }
2428 else if (prepared < 0)
2429 {
2430 /* Fallback to stepping over the breakpoint in-line. */
2431
2432 if (target_is_non_stop_p ())
2433 stop_all_threads ();
2434
2435 set_step_over_info (regcache->aspace (),
2436 regcache_read_pc (regcache), 0, tp->global_num);
2437
2438 step = maybe_software_singlestep (gdbarch, pc);
2439
2440 insert_breakpoints ();
2441 }
2442 else if (prepared > 0)
2443 {
2444 struct displaced_step_inferior_state *displaced;
2445
2446 /* Update pc to reflect the new address from which we will
2447 execute instructions due to displaced stepping. */
2448 pc = regcache_read_pc (get_thread_regcache (tp));
2449
2450 displaced = get_displaced_stepping_state (tp->inf);
2451 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2452 displaced->step_closure);
2453 }
2454 }
2455
2456 /* Do we need to do it the hard way, w/temp breakpoints? */
2457 else if (step)
2458 step = maybe_software_singlestep (gdbarch, pc);
2459
2460 /* Currently, our software single-step implementation leads to different
2461 results than hardware single-stepping in one situation: when stepping
2462 into delivering a signal which has an associated signal handler,
2463 hardware single-step will stop at the first instruction of the handler,
2464 while software single-step will simply skip execution of the handler.
2465
2466 For now, this difference in behavior is accepted since there is no
2467 easy way to actually implement single-stepping into a signal handler
2468 without kernel support.
2469
2470 However, there is one scenario where this difference leads to follow-on
2471 problems: if we're stepping off a breakpoint by removing all breakpoints
2472 and then single-stepping. In this case, the software single-step
2473 behavior means that even if there is a *breakpoint* in the signal
2474 handler, GDB still would not stop.
2475
2476 Fortunately, we can at least fix this particular issue. We detect
2477 here the case where we are about to deliver a signal while software
2478 single-stepping with breakpoints removed. In this situation, we
2479 revert the decisions to remove all breakpoints and insert single-
2480 step breakpoints, and instead we install a step-resume breakpoint
2481 at the current address, deliver the signal without stepping, and
2482 once we arrive back at the step-resume breakpoint, actually step
2483 over the breakpoint we originally wanted to step over. */
2484 if (thread_has_single_step_breakpoints_set (tp)
2485 && sig != GDB_SIGNAL_0
2486 && step_over_info_valid_p ())
2487 {
2488 /* If we have nested signals or a pending signal is delivered
2489 immediately after a handler returns, might might already have
2490 a step-resume breakpoint set on the earlier handler. We cannot
2491 set another step-resume breakpoint; just continue on until the
2492 original breakpoint is hit. */
2493 if (tp->control.step_resume_breakpoint == NULL)
2494 {
2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2496 tp->step_after_step_resume_breakpoint = 1;
2497 }
2498
2499 delete_single_step_breakpoints (tp);
2500
2501 clear_step_over_info ();
2502 tp->control.trap_expected = 0;
2503
2504 insert_breakpoints ();
2505 }
2506
2507 /* If STEP is set, it's a request to use hardware stepping
2508 facilities. But in that case, we should never
2509 use singlestep breakpoint. */
2510 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2511
2512 /* Decide the set of threads to ask the target to resume. */
2513 if (tp->control.trap_expected)
2514 {
2515 /* We're allowing a thread to run past a breakpoint it has
2516 hit, either by single-stepping the thread with the breakpoint
2517 removed, or by displaced stepping, with the breakpoint inserted.
2518 In the former case, we need to single-step only this thread,
2519 and keep others stopped, as they can miss this breakpoint if
2520 allowed to run. That's not really a problem for displaced
2521 stepping, but, we still keep other threads stopped, in case
2522 another thread is also stopped for a breakpoint waiting for
2523 its turn in the displaced stepping queue. */
2524 resume_ptid = inferior_ptid;
2525 }
2526 else
2527 resume_ptid = internal_resume_ptid (user_step);
2528
2529 if (execution_direction != EXEC_REVERSE
2530 && step && breakpoint_inserted_here_p (aspace, pc))
2531 {
2532 /* There are two cases where we currently need to step a
2533 breakpoint instruction when we have a signal to deliver:
2534
2535 - See handle_signal_stop where we handle random signals that
2536 could take out us out of the stepping range. Normally, in
2537 that case we end up continuing (instead of stepping) over the
2538 signal handler with a breakpoint at PC, but there are cases
2539 where we should _always_ single-step, even if we have a
2540 step-resume breakpoint, like when a software watchpoint is
2541 set. Assuming single-stepping and delivering a signal at the
2542 same time would takes us to the signal handler, then we could
2543 have removed the breakpoint at PC to step over it. However,
2544 some hardware step targets (like e.g., Mac OS) can't step
2545 into signal handlers, and for those, we need to leave the
2546 breakpoint at PC inserted, as otherwise if the handler
2547 recurses and executes PC again, it'll miss the breakpoint.
2548 So we leave the breakpoint inserted anyway, but we need to
2549 record that we tried to step a breakpoint instruction, so
2550 that adjust_pc_after_break doesn't end up confused.
2551
2552 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2553 in one thread after another thread that was stepping had been
2554 momentarily paused for a step-over. When we re-resume the
2555 stepping thread, it may be resumed from that address with a
2556 breakpoint that hasn't trapped yet. Seen with
2557 gdb.threads/non-stop-fair-events.exp, on targets that don't
2558 do displaced stepping. */
2559
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "infrun: resume: [%s] stepped breakpoint\n",
2563 target_pid_to_str (tp->ptid).c_str ());
2564
2565 tp->stepped_breakpoint = 1;
2566
2567 /* Most targets can step a breakpoint instruction, thus
2568 executing it normally. But if this one cannot, just
2569 continue and we will hit it anyway. */
2570 if (gdbarch_cannot_step_breakpoint (gdbarch))
2571 step = 0;
2572 }
2573
2574 if (debug_displaced
2575 && tp->control.trap_expected
2576 && use_displaced_stepping (tp)
2577 && !step_over_info_valid_p ())
2578 {
2579 struct regcache *resume_regcache = get_thread_regcache (tp);
2580 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2581 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2582 gdb_byte buf[4];
2583
2584 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2585 paddress (resume_gdbarch, actual_pc));
2586 read_memory (actual_pc, buf, sizeof (buf));
2587 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2588 }
2589
2590 if (tp->control.may_range_step)
2591 {
2592 /* If we're resuming a thread with the PC out of the step
2593 range, then we're doing some nested/finer run control
2594 operation, like stepping the thread out of the dynamic
2595 linker or the displaced stepping scratch pad. We
2596 shouldn't have allowed a range step then. */
2597 gdb_assert (pc_in_thread_step_range (pc, tp));
2598 }
2599
2600 do_target_resume (resume_ptid, step, sig);
2601 tp->resumed = 1;
2602 }
2603
2604 /* Resume the inferior. SIG is the signal to give the inferior
2605 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2606 rolls back state on error. */
2607
2608 static void
2609 resume (gdb_signal sig)
2610 {
2611 TRY
2612 {
2613 resume_1 (sig);
2614 }
2615 CATCH (ex, RETURN_MASK_ALL)
2616 {
2617 /* If resuming is being aborted for any reason, delete any
2618 single-step breakpoint resume_1 may have created, to avoid
2619 confusing the following resumption, and to avoid leaving
2620 single-step breakpoints perturbing other threads, in case
2621 we're running in non-stop mode. */
2622 if (inferior_ptid != null_ptid)
2623 delete_single_step_breakpoints (inferior_thread ());
2624 throw_exception (ex);
2625 }
2626 END_CATCH
2627 }
2628
2629 \f
2630 /* Proceeding. */
2631
2632 /* See infrun.h. */
2633
2634 /* Counter that tracks number of user visible stops. This can be used
2635 to tell whether a command has proceeded the inferior past the
2636 current location. This allows e.g., inferior function calls in
2637 breakpoint commands to not interrupt the command list. When the
2638 call finishes successfully, the inferior is standing at the same
2639 breakpoint as if nothing happened (and so we don't call
2640 normal_stop). */
2641 static ULONGEST current_stop_id;
2642
2643 /* See infrun.h. */
2644
2645 ULONGEST
2646 get_stop_id (void)
2647 {
2648 return current_stop_id;
2649 }
2650
2651 /* Called when we report a user visible stop. */
2652
2653 static void
2654 new_stop_id (void)
2655 {
2656 current_stop_id++;
2657 }
2658
2659 /* Clear out all variables saying what to do when inferior is continued.
2660 First do this, then set the ones you want, then call `proceed'. */
2661
2662 static void
2663 clear_proceed_status_thread (struct thread_info *tp)
2664 {
2665 if (debug_infrun)
2666 fprintf_unfiltered (gdb_stdlog,
2667 "infrun: clear_proceed_status_thread (%s)\n",
2668 target_pid_to_str (tp->ptid).c_str ());
2669
2670 /* If we're starting a new sequence, then the previous finished
2671 single-step is no longer relevant. */
2672 if (tp->suspend.waitstatus_pending_p)
2673 {
2674 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2675 {
2676 if (debug_infrun)
2677 fprintf_unfiltered (gdb_stdlog,
2678 "infrun: clear_proceed_status: pending "
2679 "event of %s was a finished step. "
2680 "Discarding.\n",
2681 target_pid_to_str (tp->ptid).c_str ());
2682
2683 tp->suspend.waitstatus_pending_p = 0;
2684 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2685 }
2686 else if (debug_infrun)
2687 {
2688 std::string statstr
2689 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2690
2691 fprintf_unfiltered (gdb_stdlog,
2692 "infrun: clear_proceed_status_thread: thread %s "
2693 "has pending wait status %s "
2694 "(currently_stepping=%d).\n",
2695 target_pid_to_str (tp->ptid).c_str (),
2696 statstr.c_str (),
2697 currently_stepping (tp));
2698 }
2699 }
2700
2701 /* If this signal should not be seen by program, give it zero.
2702 Used for debugging signals. */
2703 if (!signal_pass_state (tp->suspend.stop_signal))
2704 tp->suspend.stop_signal = GDB_SIGNAL_0;
2705
2706 delete tp->thread_fsm;
2707 tp->thread_fsm = NULL;
2708
2709 tp->control.trap_expected = 0;
2710 tp->control.step_range_start = 0;
2711 tp->control.step_range_end = 0;
2712 tp->control.may_range_step = 0;
2713 tp->control.step_frame_id = null_frame_id;
2714 tp->control.step_stack_frame_id = null_frame_id;
2715 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2716 tp->control.step_start_function = NULL;
2717 tp->stop_requested = 0;
2718
2719 tp->control.stop_step = 0;
2720
2721 tp->control.proceed_to_finish = 0;
2722
2723 tp->control.stepping_command = 0;
2724
2725 /* Discard any remaining commands or status from previous stop. */
2726 bpstat_clear (&tp->control.stop_bpstat);
2727 }
2728
2729 void
2730 clear_proceed_status (int step)
2731 {
2732 /* With scheduler-locking replay, stop replaying other threads if we're
2733 not replaying the user-visible resume ptid.
2734
2735 This is a convenience feature to not require the user to explicitly
2736 stop replaying the other threads. We're assuming that the user's
2737 intent is to resume tracing the recorded process. */
2738 if (!non_stop && scheduler_mode == schedlock_replay
2739 && target_record_is_replaying (minus_one_ptid)
2740 && !target_record_will_replay (user_visible_resume_ptid (step),
2741 execution_direction))
2742 target_record_stop_replaying ();
2743
2744 if (!non_stop && inferior_ptid != null_ptid)
2745 {
2746 ptid_t resume_ptid = user_visible_resume_ptid (step);
2747
2748 /* In all-stop mode, delete the per-thread status of all threads
2749 we're about to resume, implicitly and explicitly. */
2750 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2751 clear_proceed_status_thread (tp);
2752 }
2753
2754 if (inferior_ptid != null_ptid)
2755 {
2756 struct inferior *inferior;
2757
2758 if (non_stop)
2759 {
2760 /* If in non-stop mode, only delete the per-thread status of
2761 the current thread. */
2762 clear_proceed_status_thread (inferior_thread ());
2763 }
2764
2765 inferior = current_inferior ();
2766 inferior->control.stop_soon = NO_STOP_QUIETLY;
2767 }
2768
2769 gdb::observers::about_to_proceed.notify ();
2770 }
2771
2772 /* Returns true if TP is still stopped at a breakpoint that needs
2773 stepping-over in order to make progress. If the breakpoint is gone
2774 meanwhile, we can skip the whole step-over dance. */
2775
2776 static int
2777 thread_still_needs_step_over_bp (struct thread_info *tp)
2778 {
2779 if (tp->stepping_over_breakpoint)
2780 {
2781 struct regcache *regcache = get_thread_regcache (tp);
2782
2783 if (breakpoint_here_p (regcache->aspace (),
2784 regcache_read_pc (regcache))
2785 == ordinary_breakpoint_here)
2786 return 1;
2787
2788 tp->stepping_over_breakpoint = 0;
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* Check whether thread TP still needs to start a step-over in order
2795 to make progress when resumed. Returns an bitwise or of enum
2796 step_over_what bits, indicating what needs to be stepped over. */
2797
2798 static step_over_what
2799 thread_still_needs_step_over (struct thread_info *tp)
2800 {
2801 step_over_what what = 0;
2802
2803 if (thread_still_needs_step_over_bp (tp))
2804 what |= STEP_OVER_BREAKPOINT;
2805
2806 if (tp->stepping_over_watchpoint
2807 && !target_have_steppable_watchpoint)
2808 what |= STEP_OVER_WATCHPOINT;
2809
2810 return what;
2811 }
2812
2813 /* Returns true if scheduler locking applies. STEP indicates whether
2814 we're about to do a step/next-like command to a thread. */
2815
2816 static int
2817 schedlock_applies (struct thread_info *tp)
2818 {
2819 return (scheduler_mode == schedlock_on
2820 || (scheduler_mode == schedlock_step
2821 && tp->control.stepping_command)
2822 || (scheduler_mode == schedlock_replay
2823 && target_record_will_replay (minus_one_ptid,
2824 execution_direction)));
2825 }
2826
2827 /* Basic routine for continuing the program in various fashions.
2828
2829 ADDR is the address to resume at, or -1 for resume where stopped.
2830 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2831 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2832
2833 You should call clear_proceed_status before calling proceed. */
2834
2835 void
2836 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2837 {
2838 struct regcache *regcache;
2839 struct gdbarch *gdbarch;
2840 CORE_ADDR pc;
2841 ptid_t resume_ptid;
2842 struct execution_control_state ecss;
2843 struct execution_control_state *ecs = &ecss;
2844 int started;
2845
2846 /* If we're stopped at a fork/vfork, follow the branch set by the
2847 "set follow-fork-mode" command; otherwise, we'll just proceed
2848 resuming the current thread. */
2849 if (!follow_fork ())
2850 {
2851 /* The target for some reason decided not to resume. */
2852 normal_stop ();
2853 if (target_can_async_p ())
2854 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2855 return;
2856 }
2857
2858 /* We'll update this if & when we switch to a new thread. */
2859 previous_inferior_ptid = inferior_ptid;
2860
2861 regcache = get_current_regcache ();
2862 gdbarch = regcache->arch ();
2863 const address_space *aspace = regcache->aspace ();
2864
2865 pc = regcache_read_pc (regcache);
2866 thread_info *cur_thr = inferior_thread ();
2867
2868 /* Fill in with reasonable starting values. */
2869 init_thread_stepping_state (cur_thr);
2870
2871 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2872
2873 if (addr == (CORE_ADDR) -1)
2874 {
2875 if (pc == cur_thr->suspend.stop_pc
2876 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2877 && execution_direction != EXEC_REVERSE)
2878 /* There is a breakpoint at the address we will resume at,
2879 step one instruction before inserting breakpoints so that
2880 we do not stop right away (and report a second hit at this
2881 breakpoint).
2882
2883 Note, we don't do this in reverse, because we won't
2884 actually be executing the breakpoint insn anyway.
2885 We'll be (un-)executing the previous instruction. */
2886 cur_thr->stepping_over_breakpoint = 1;
2887 else if (gdbarch_single_step_through_delay_p (gdbarch)
2888 && gdbarch_single_step_through_delay (gdbarch,
2889 get_current_frame ()))
2890 /* We stepped onto an instruction that needs to be stepped
2891 again before re-inserting the breakpoint, do so. */
2892 cur_thr->stepping_over_breakpoint = 1;
2893 }
2894 else
2895 {
2896 regcache_write_pc (regcache, addr);
2897 }
2898
2899 if (siggnal != GDB_SIGNAL_DEFAULT)
2900 cur_thr->suspend.stop_signal = siggnal;
2901
2902 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2903
2904 /* If an exception is thrown from this point on, make sure to
2905 propagate GDB's knowledge of the executing state to the
2906 frontend/user running state. */
2907 scoped_finish_thread_state finish_state (resume_ptid);
2908
2909 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2910 threads (e.g., we might need to set threads stepping over
2911 breakpoints first), from the user/frontend's point of view, all
2912 threads in RESUME_PTID are now running. Unless we're calling an
2913 inferior function, as in that case we pretend the inferior
2914 doesn't run at all. */
2915 if (!cur_thr->control.in_infcall)
2916 set_running (resume_ptid, 1);
2917
2918 if (debug_infrun)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "infrun: proceed (addr=%s, signal=%s)\n",
2921 paddress (gdbarch, addr),
2922 gdb_signal_to_symbol_string (siggnal));
2923
2924 annotate_starting ();
2925
2926 /* Make sure that output from GDB appears before output from the
2927 inferior. */
2928 gdb_flush (gdb_stdout);
2929
2930 /* Since we've marked the inferior running, give it the terminal. A
2931 QUIT/Ctrl-C from here on is forwarded to the target (which can
2932 still detect attempts to unblock a stuck connection with repeated
2933 Ctrl-C from within target_pass_ctrlc). */
2934 target_terminal::inferior ();
2935
2936 /* In a multi-threaded task we may select another thread and
2937 then continue or step.
2938
2939 But if a thread that we're resuming had stopped at a breakpoint,
2940 it will immediately cause another breakpoint stop without any
2941 execution (i.e. it will report a breakpoint hit incorrectly). So
2942 we must step over it first.
2943
2944 Look for threads other than the current (TP) that reported a
2945 breakpoint hit and haven't been resumed yet since. */
2946
2947 /* If scheduler locking applies, we can avoid iterating over all
2948 threads. */
2949 if (!non_stop && !schedlock_applies (cur_thr))
2950 {
2951 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2952 {
2953 /* Ignore the current thread here. It's handled
2954 afterwards. */
2955 if (tp == cur_thr)
2956 continue;
2957
2958 if (!thread_still_needs_step_over (tp))
2959 continue;
2960
2961 gdb_assert (!thread_is_in_step_over_chain (tp));
2962
2963 if (debug_infrun)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "infrun: need to step-over [%s] first\n",
2966 target_pid_to_str (tp->ptid).c_str ());
2967
2968 thread_step_over_chain_enqueue (tp);
2969 }
2970 }
2971
2972 /* Enqueue the current thread last, so that we move all other
2973 threads over their breakpoints first. */
2974 if (cur_thr->stepping_over_breakpoint)
2975 thread_step_over_chain_enqueue (cur_thr);
2976
2977 /* If the thread isn't started, we'll still need to set its prev_pc,
2978 so that switch_back_to_stepped_thread knows the thread hasn't
2979 advanced. Must do this before resuming any thread, as in
2980 all-stop/remote, once we resume we can't send any other packet
2981 until the target stops again. */
2982 cur_thr->prev_pc = regcache_read_pc (regcache);
2983
2984 {
2985 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2986
2987 started = start_step_over ();
2988
2989 if (step_over_info_valid_p ())
2990 {
2991 /* Either this thread started a new in-line step over, or some
2992 other thread was already doing one. In either case, don't
2993 resume anything else until the step-over is finished. */
2994 }
2995 else if (started && !target_is_non_stop_p ())
2996 {
2997 /* A new displaced stepping sequence was started. In all-stop,
2998 we can't talk to the target anymore until it next stops. */
2999 }
3000 else if (!non_stop && target_is_non_stop_p ())
3001 {
3002 /* In all-stop, but the target is always in non-stop mode.
3003 Start all other threads that are implicitly resumed too. */
3004 for (thread_info *tp : all_non_exited_threads (resume_ptid))
3005 {
3006 if (tp->resumed)
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] resumed\n",
3011 target_pid_to_str (tp->ptid).c_str ());
3012 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3013 continue;
3014 }
3015
3016 if (thread_is_in_step_over_chain (tp))
3017 {
3018 if (debug_infrun)
3019 fprintf_unfiltered (gdb_stdlog,
3020 "infrun: proceed: [%s] needs step-over\n",
3021 target_pid_to_str (tp->ptid).c_str ());
3022 continue;
3023 }
3024
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: resuming %s\n",
3028 target_pid_to_str (tp->ptid).c_str ());
3029
3030 reset_ecs (ecs, tp);
3031 switch_to_thread (tp);
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
3034 error (_("Command aborted."));
3035 }
3036 }
3037 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3038 {
3039 /* The thread wasn't started, and isn't queued, run it now. */
3040 reset_ecs (ecs, cur_thr);
3041 switch_to_thread (cur_thr);
3042 keep_going_pass_signal (ecs);
3043 if (!ecs->wait_some_more)
3044 error (_("Command aborted."));
3045 }
3046 }
3047
3048 target_commit_resume ();
3049
3050 finish_state.release ();
3051
3052 /* Tell the event loop to wait for it to stop. If the target
3053 supports asynchronous execution, it'll do this from within
3054 target_resume. */
3055 if (!target_can_async_p ())
3056 mark_async_event_handler (infrun_async_inferior_event_token);
3057 }
3058 \f
3059
3060 /* Start remote-debugging of a machine over a serial link. */
3061
3062 void
3063 start_remote (int from_tty)
3064 {
3065 struct inferior *inferior;
3066
3067 inferior = current_inferior ();
3068 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3069
3070 /* Always go on waiting for the target, regardless of the mode. */
3071 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3072 indicate to wait_for_inferior that a target should timeout if
3073 nothing is returned (instead of just blocking). Because of this,
3074 targets expecting an immediate response need to, internally, set
3075 things up so that the target_wait() is forced to eventually
3076 timeout. */
3077 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3078 differentiate to its caller what the state of the target is after
3079 the initial open has been performed. Here we're assuming that
3080 the target has stopped. It should be possible to eventually have
3081 target_open() return to the caller an indication that the target
3082 is currently running and GDB state should be set to the same as
3083 for an async run. */
3084 wait_for_inferior ();
3085
3086 /* Now that the inferior has stopped, do any bookkeeping like
3087 loading shared libraries. We want to do this before normal_stop,
3088 so that the displayed frame is up to date. */
3089 post_create_inferior (current_top_target (), from_tty);
3090
3091 normal_stop ();
3092 }
3093
3094 /* Initialize static vars when a new inferior begins. */
3095
3096 void
3097 init_wait_for_inferior (void)
3098 {
3099 /* These are meaningless until the first time through wait_for_inferior. */
3100
3101 breakpoint_init_inferior (inf_starting);
3102
3103 clear_proceed_status (0);
3104
3105 target_last_wait_ptid = minus_one_ptid;
3106
3107 previous_inferior_ptid = inferior_ptid;
3108 }
3109
3110 \f
3111
3112 static void handle_inferior_event (struct execution_control_state *ecs);
3113
3114 static void handle_step_into_function (struct gdbarch *gdbarch,
3115 struct execution_control_state *ecs);
3116 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3117 struct execution_control_state *ecs);
3118 static void handle_signal_stop (struct execution_control_state *ecs);
3119 static void check_exception_resume (struct execution_control_state *,
3120 struct frame_info *);
3121
3122 static void end_stepping_range (struct execution_control_state *ecs);
3123 static void stop_waiting (struct execution_control_state *ecs);
3124 static void keep_going (struct execution_control_state *ecs);
3125 static void process_event_stop_test (struct execution_control_state *ecs);
3126 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3127
3128 /* This function is attached as a "thread_stop_requested" observer.
3129 Cleanup local state that assumed the PTID was to be resumed, and
3130 report the stop to the frontend. */
3131
3132 static void
3133 infrun_thread_stop_requested (ptid_t ptid)
3134 {
3135 /* PTID was requested to stop. If the thread was already stopped,
3136 but the user/frontend doesn't know about that yet (e.g., the
3137 thread had been temporarily paused for some step-over), set up
3138 for reporting the stop now. */
3139 for (thread_info *tp : all_threads (ptid))
3140 {
3141 if (tp->state != THREAD_RUNNING)
3142 continue;
3143 if (tp->executing)
3144 continue;
3145
3146 /* Remove matching threads from the step-over queue, so
3147 start_step_over doesn't try to resume them
3148 automatically. */
3149 if (thread_is_in_step_over_chain (tp))
3150 thread_step_over_chain_remove (tp);
3151
3152 /* If the thread is stopped, but the user/frontend doesn't
3153 know about that yet, queue a pending event, as if the
3154 thread had just stopped now. Unless the thread already had
3155 a pending event. */
3156 if (!tp->suspend.waitstatus_pending_p)
3157 {
3158 tp->suspend.waitstatus_pending_p = 1;
3159 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3160 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3161 }
3162
3163 /* Clear the inline-frame state, since we're re-processing the
3164 stop. */
3165 clear_inline_frame_state (tp->ptid);
3166
3167 /* If this thread was paused because some other thread was
3168 doing an inline-step over, let that finish first. Once
3169 that happens, we'll restart all threads and consume pending
3170 stop events then. */
3171 if (step_over_info_valid_p ())
3172 continue;
3173
3174 /* Otherwise we can process the (new) pending event now. Set
3175 it so this pending event is considered by
3176 do_target_wait. */
3177 tp->resumed = 1;
3178 }
3179 }
3180
3181 static void
3182 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3183 {
3184 if (target_last_wait_ptid == tp->ptid)
3185 nullify_last_target_wait_ptid ();
3186 }
3187
3188 /* Delete the step resume, single-step and longjmp/exception resume
3189 breakpoints of TP. */
3190
3191 static void
3192 delete_thread_infrun_breakpoints (struct thread_info *tp)
3193 {
3194 delete_step_resume_breakpoint (tp);
3195 delete_exception_resume_breakpoint (tp);
3196 delete_single_step_breakpoints (tp);
3197 }
3198
3199 /* If the target still has execution, call FUNC for each thread that
3200 just stopped. In all-stop, that's all the non-exited threads; in
3201 non-stop, that's the current thread, only. */
3202
3203 typedef void (*for_each_just_stopped_thread_callback_func)
3204 (struct thread_info *tp);
3205
3206 static void
3207 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3208 {
3209 if (!target_has_execution || inferior_ptid == null_ptid)
3210 return;
3211
3212 if (target_is_non_stop_p ())
3213 {
3214 /* If in non-stop mode, only the current thread stopped. */
3215 func (inferior_thread ());
3216 }
3217 else
3218 {
3219 /* In all-stop mode, all threads have stopped. */
3220 for (thread_info *tp : all_non_exited_threads ())
3221 func (tp);
3222 }
3223 }
3224
3225 /* Delete the step resume and longjmp/exception resume breakpoints of
3226 the threads that just stopped. */
3227
3228 static void
3229 delete_just_stopped_threads_infrun_breakpoints (void)
3230 {
3231 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3232 }
3233
3234 /* Delete the single-step breakpoints of the threads that just
3235 stopped. */
3236
3237 static void
3238 delete_just_stopped_threads_single_step_breakpoints (void)
3239 {
3240 for_each_just_stopped_thread (delete_single_step_breakpoints);
3241 }
3242
3243 /* See infrun.h. */
3244
3245 void
3246 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3247 const struct target_waitstatus *ws)
3248 {
3249 std::string status_string = target_waitstatus_to_string (ws);
3250 string_file stb;
3251
3252 /* The text is split over several lines because it was getting too long.
3253 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3254 output as a unit; we want only one timestamp printed if debug_timestamp
3255 is set. */
3256
3257 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3258 waiton_ptid.pid (),
3259 waiton_ptid.lwp (),
3260 waiton_ptid.tid ());
3261 if (waiton_ptid.pid () != -1)
3262 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3263 stb.printf (", status) =\n");
3264 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3265 result_ptid.pid (),
3266 result_ptid.lwp (),
3267 result_ptid.tid (),
3268 target_pid_to_str (result_ptid).c_str ());
3269 stb.printf ("infrun: %s\n", status_string.c_str ());
3270
3271 /* This uses %s in part to handle %'s in the text, but also to avoid
3272 a gcc error: the format attribute requires a string literal. */
3273 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3274 }
3275
3276 /* Select a thread at random, out of those which are resumed and have
3277 had events. */
3278
3279 static struct thread_info *
3280 random_pending_event_thread (ptid_t waiton_ptid)
3281 {
3282 int num_events = 0;
3283
3284 auto has_event = [] (thread_info *tp)
3285 {
3286 return (tp->resumed
3287 && tp->suspend.waitstatus_pending_p);
3288 };
3289
3290 /* First see how many events we have. Count only resumed threads
3291 that have an event pending. */
3292 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3293 if (has_event (tp))
3294 num_events++;
3295
3296 if (num_events == 0)
3297 return NULL;
3298
3299 /* Now randomly pick a thread out of those that have had events. */
3300 int random_selector = (int) ((num_events * (double) rand ())
3301 / (RAND_MAX + 1.0));
3302
3303 if (debug_infrun && num_events > 1)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: Found %d events, selecting #%d\n",
3306 num_events, random_selector);
3307
3308 /* Select the Nth thread that has had an event. */
3309 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3310 if (has_event (tp))
3311 if (random_selector-- == 0)
3312 return tp;
3313
3314 gdb_assert_not_reached ("event thread not found");
3315 }
3316
3317 /* Wrapper for target_wait that first checks whether threads have
3318 pending statuses to report before actually asking the target for
3319 more events. */
3320
3321 static ptid_t
3322 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3323 {
3324 ptid_t event_ptid;
3325 struct thread_info *tp;
3326
3327 /* First check if there is a resumed thread with a wait status
3328 pending. */
3329 if (ptid == minus_one_ptid || ptid.is_pid ())
3330 {
3331 tp = random_pending_event_thread (ptid);
3332 }
3333 else
3334 {
3335 if (debug_infrun)
3336 fprintf_unfiltered (gdb_stdlog,
3337 "infrun: Waiting for specific thread %s.\n",
3338 target_pid_to_str (ptid).c_str ());
3339
3340 /* We have a specific thread to check. */
3341 tp = find_thread_ptid (ptid);
3342 gdb_assert (tp != NULL);
3343 if (!tp->suspend.waitstatus_pending_p)
3344 tp = NULL;
3345 }
3346
3347 if (tp != NULL
3348 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3349 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3350 {
3351 struct regcache *regcache = get_thread_regcache (tp);
3352 struct gdbarch *gdbarch = regcache->arch ();
3353 CORE_ADDR pc;
3354 int discard = 0;
3355
3356 pc = regcache_read_pc (regcache);
3357
3358 if (pc != tp->suspend.stop_pc)
3359 {
3360 if (debug_infrun)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "infrun: PC of %s changed. was=%s, now=%s\n",
3363 target_pid_to_str (tp->ptid).c_str (),
3364 paddress (gdbarch, tp->suspend.stop_pc),
3365 paddress (gdbarch, pc));
3366 discard = 1;
3367 }
3368 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3369 {
3370 if (debug_infrun)
3371 fprintf_unfiltered (gdb_stdlog,
3372 "infrun: previous breakpoint of %s, at %s gone\n",
3373 target_pid_to_str (tp->ptid).c_str (),
3374 paddress (gdbarch, pc));
3375
3376 discard = 1;
3377 }
3378
3379 if (discard)
3380 {
3381 if (debug_infrun)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "infrun: pending event of %s cancelled.\n",
3384 target_pid_to_str (tp->ptid).c_str ());
3385
3386 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3387 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3388 }
3389 }
3390
3391 if (tp != NULL)
3392 {
3393 if (debug_infrun)
3394 {
3395 std::string statstr
3396 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3397
3398 fprintf_unfiltered (gdb_stdlog,
3399 "infrun: Using pending wait status %s for %s.\n",
3400 statstr.c_str (),
3401 target_pid_to_str (tp->ptid).c_str ());
3402 }
3403
3404 /* Now that we've selected our final event LWP, un-adjust its PC
3405 if it was a software breakpoint (and the target doesn't
3406 always adjust the PC itself). */
3407 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3408 && !target_supports_stopped_by_sw_breakpoint ())
3409 {
3410 struct regcache *regcache;
3411 struct gdbarch *gdbarch;
3412 int decr_pc;
3413
3414 regcache = get_thread_regcache (tp);
3415 gdbarch = regcache->arch ();
3416
3417 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3418 if (decr_pc != 0)
3419 {
3420 CORE_ADDR pc;
3421
3422 pc = regcache_read_pc (regcache);
3423 regcache_write_pc (regcache, pc + decr_pc);
3424 }
3425 }
3426
3427 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3428 *status = tp->suspend.waitstatus;
3429 tp->suspend.waitstatus_pending_p = 0;
3430
3431 /* Wake up the event loop again, until all pending events are
3432 processed. */
3433 if (target_is_async_p ())
3434 mark_async_event_handler (infrun_async_inferior_event_token);
3435 return tp->ptid;
3436 }
3437
3438 /* But if we don't find one, we'll have to wait. */
3439
3440 if (deprecated_target_wait_hook)
3441 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3442 else
3443 event_ptid = target_wait (ptid, status, options);
3444
3445 return event_ptid;
3446 }
3447
3448 /* Prepare and stabilize the inferior for detaching it. E.g.,
3449 detaching while a thread is displaced stepping is a recipe for
3450 crashing it, as nothing would readjust the PC out of the scratch
3451 pad. */
3452
3453 void
3454 prepare_for_detach (void)
3455 {
3456 struct inferior *inf = current_inferior ();
3457 ptid_t pid_ptid = ptid_t (inf->pid);
3458
3459 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3460
3461 /* Is any thread of this process displaced stepping? If not,
3462 there's nothing else to do. */
3463 if (displaced->step_thread == nullptr)
3464 return;
3465
3466 if (debug_infrun)
3467 fprintf_unfiltered (gdb_stdlog,
3468 "displaced-stepping in-process while detaching");
3469
3470 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3471
3472 while (displaced->step_thread != nullptr)
3473 {
3474 struct execution_control_state ecss;
3475 struct execution_control_state *ecs;
3476
3477 ecs = &ecss;
3478 memset (ecs, 0, sizeof (*ecs));
3479
3480 overlay_cache_invalid = 1;
3481 /* Flush target cache before starting to handle each event.
3482 Target was running and cache could be stale. This is just a
3483 heuristic. Running threads may modify target memory, but we
3484 don't get any event. */
3485 target_dcache_invalidate ();
3486
3487 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3488
3489 if (debug_infrun)
3490 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3491
3492 /* If an error happens while handling the event, propagate GDB's
3493 knowledge of the executing state to the frontend/user running
3494 state. */
3495 scoped_finish_thread_state finish_state (minus_one_ptid);
3496
3497 /* Now figure out what to do with the result of the result. */
3498 handle_inferior_event (ecs);
3499
3500 /* No error, don't finish the state yet. */
3501 finish_state.release ();
3502
3503 /* Breakpoints and watchpoints are not installed on the target
3504 at this point, and signals are passed directly to the
3505 inferior, so this must mean the process is gone. */
3506 if (!ecs->wait_some_more)
3507 {
3508 restore_detaching.release ();
3509 error (_("Program exited while detaching"));
3510 }
3511 }
3512
3513 restore_detaching.release ();
3514 }
3515
3516 /* Wait for control to return from inferior to debugger.
3517
3518 If inferior gets a signal, we may decide to start it up again
3519 instead of returning. That is why there is a loop in this function.
3520 When this function actually returns it means the inferior
3521 should be left stopped and GDB should read more commands. */
3522
3523 void
3524 wait_for_inferior (void)
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered
3528 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3529
3530 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3531
3532 /* If an error happens while handling the event, propagate GDB's
3533 knowledge of the executing state to the frontend/user running
3534 state. */
3535 scoped_finish_thread_state finish_state (minus_one_ptid);
3536
3537 while (1)
3538 {
3539 struct execution_control_state ecss;
3540 struct execution_control_state *ecs = &ecss;
3541 ptid_t waiton_ptid = minus_one_ptid;
3542
3543 memset (ecs, 0, sizeof (*ecs));
3544
3545 overlay_cache_invalid = 1;
3546
3547 /* Flush target cache before starting to handle each event.
3548 Target was running and cache could be stale. This is just a
3549 heuristic. Running threads may modify target memory, but we
3550 don't get any event. */
3551 target_dcache_invalidate ();
3552
3553 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3554
3555 if (debug_infrun)
3556 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3557
3558 /* Now figure out what to do with the result of the result. */
3559 handle_inferior_event (ecs);
3560
3561 if (!ecs->wait_some_more)
3562 break;
3563 }
3564
3565 /* No error, don't finish the state yet. */
3566 finish_state.release ();
3567 }
3568
3569 /* Cleanup that reinstalls the readline callback handler, if the
3570 target is running in the background. If while handling the target
3571 event something triggered a secondary prompt, like e.g., a
3572 pagination prompt, we'll have removed the callback handler (see
3573 gdb_readline_wrapper_line). Need to do this as we go back to the
3574 event loop, ready to process further input. Note this has no
3575 effect if the handler hasn't actually been removed, because calling
3576 rl_callback_handler_install resets the line buffer, thus losing
3577 input. */
3578
3579 static void
3580 reinstall_readline_callback_handler_cleanup ()
3581 {
3582 struct ui *ui = current_ui;
3583
3584 if (!ui->async)
3585 {
3586 /* We're not going back to the top level event loop yet. Don't
3587 install the readline callback, as it'd prep the terminal,
3588 readline-style (raw, noecho) (e.g., --batch). We'll install
3589 it the next time the prompt is displayed, when we're ready
3590 for input. */
3591 return;
3592 }
3593
3594 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3595 gdb_rl_callback_handler_reinstall ();
3596 }
3597
3598 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3599 that's just the event thread. In all-stop, that's all threads. */
3600
3601 static void
3602 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3603 {
3604 if (ecs->event_thread != NULL
3605 && ecs->event_thread->thread_fsm != NULL)
3606 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3607
3608 if (!non_stop)
3609 {
3610 for (thread_info *thr : all_non_exited_threads ())
3611 {
3612 if (thr->thread_fsm == NULL)
3613 continue;
3614 if (thr == ecs->event_thread)
3615 continue;
3616
3617 switch_to_thread (thr);
3618 thr->thread_fsm->clean_up (thr);
3619 }
3620
3621 if (ecs->event_thread != NULL)
3622 switch_to_thread (ecs->event_thread);
3623 }
3624 }
3625
3626 /* Helper for all_uis_check_sync_execution_done that works on the
3627 current UI. */
3628
3629 static void
3630 check_curr_ui_sync_execution_done (void)
3631 {
3632 struct ui *ui = current_ui;
3633
3634 if (ui->prompt_state == PROMPT_NEEDED
3635 && ui->async
3636 && !gdb_in_secondary_prompt_p (ui))
3637 {
3638 target_terminal::ours ();
3639 gdb::observers::sync_execution_done.notify ();
3640 ui_register_input_event_handler (ui);
3641 }
3642 }
3643
3644 /* See infrun.h. */
3645
3646 void
3647 all_uis_check_sync_execution_done (void)
3648 {
3649 SWITCH_THRU_ALL_UIS ()
3650 {
3651 check_curr_ui_sync_execution_done ();
3652 }
3653 }
3654
3655 /* See infrun.h. */
3656
3657 void
3658 all_uis_on_sync_execution_starting (void)
3659 {
3660 SWITCH_THRU_ALL_UIS ()
3661 {
3662 if (current_ui->prompt_state == PROMPT_NEEDED)
3663 async_disable_stdin ();
3664 }
3665 }
3666
3667 /* Asynchronous version of wait_for_inferior. It is called by the
3668 event loop whenever a change of state is detected on the file
3669 descriptor corresponding to the target. It can be called more than
3670 once to complete a single execution command. In such cases we need
3671 to keep the state in a global variable ECSS. If it is the last time
3672 that this function is called for a single execution command, then
3673 report to the user that the inferior has stopped, and do the
3674 necessary cleanups. */
3675
3676 void
3677 fetch_inferior_event (void *client_data)
3678 {
3679 struct execution_control_state ecss;
3680 struct execution_control_state *ecs = &ecss;
3681 int cmd_done = 0;
3682 ptid_t waiton_ptid = minus_one_ptid;
3683
3684 memset (ecs, 0, sizeof (*ecs));
3685
3686 /* Events are always processed with the main UI as current UI. This
3687 way, warnings, debug output, etc. are always consistently sent to
3688 the main console. */
3689 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3690
3691 /* End up with readline processing input, if necessary. */
3692 {
3693 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3694
3695 /* We're handling a live event, so make sure we're doing live
3696 debugging. If we're looking at traceframes while the target is
3697 running, we're going to need to get back to that mode after
3698 handling the event. */
3699 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3700 if (non_stop)
3701 {
3702 maybe_restore_traceframe.emplace ();
3703 set_current_traceframe (-1);
3704 }
3705
3706 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3707
3708 if (non_stop)
3709 /* In non-stop mode, the user/frontend should not notice a thread
3710 switch due to internal events. Make sure we reverse to the
3711 user selected thread and frame after handling the event and
3712 running any breakpoint commands. */
3713 maybe_restore_thread.emplace ();
3714
3715 overlay_cache_invalid = 1;
3716 /* Flush target cache before starting to handle each event. Target
3717 was running and cache could be stale. This is just a heuristic.
3718 Running threads may modify target memory, but we don't get any
3719 event. */
3720 target_dcache_invalidate ();
3721
3722 scoped_restore save_exec_dir
3723 = make_scoped_restore (&execution_direction,
3724 target_execution_direction ());
3725
3726 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3727 target_can_async_p () ? TARGET_WNOHANG : 0);
3728
3729 if (debug_infrun)
3730 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3731
3732 /* If an error happens while handling the event, propagate GDB's
3733 knowledge of the executing state to the frontend/user running
3734 state. */
3735 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3736 scoped_finish_thread_state finish_state (finish_ptid);
3737
3738 /* Get executed before scoped_restore_current_thread above to apply
3739 still for the thread which has thrown the exception. */
3740 auto defer_bpstat_clear
3741 = make_scope_exit (bpstat_clear_actions);
3742 auto defer_delete_threads
3743 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3744
3745 /* Now figure out what to do with the result of the result. */
3746 handle_inferior_event (ecs);
3747
3748 if (!ecs->wait_some_more)
3749 {
3750 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3751 int should_stop = 1;
3752 struct thread_info *thr = ecs->event_thread;
3753
3754 delete_just_stopped_threads_infrun_breakpoints ();
3755
3756 if (thr != NULL)
3757 {
3758 struct thread_fsm *thread_fsm = thr->thread_fsm;
3759
3760 if (thread_fsm != NULL)
3761 should_stop = thread_fsm->should_stop (thr);
3762 }
3763
3764 if (!should_stop)
3765 {
3766 keep_going (ecs);
3767 }
3768 else
3769 {
3770 bool should_notify_stop = true;
3771 int proceeded = 0;
3772
3773 clean_up_just_stopped_threads_fsms (ecs);
3774
3775 if (thr != NULL && thr->thread_fsm != NULL)
3776 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3777
3778 if (should_notify_stop)
3779 {
3780 /* We may not find an inferior if this was a process exit. */
3781 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3782 proceeded = normal_stop ();
3783 }
3784
3785 if (!proceeded)
3786 {
3787 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3788 cmd_done = 1;
3789 }
3790 }
3791 }
3792
3793 defer_delete_threads.release ();
3794 defer_bpstat_clear.release ();
3795
3796 /* No error, don't finish the thread states yet. */
3797 finish_state.release ();
3798
3799 /* This scope is used to ensure that readline callbacks are
3800 reinstalled here. */
3801 }
3802
3803 /* If a UI was in sync execution mode, and now isn't, restore its
3804 prompt (a synchronous execution command has finished, and we're
3805 ready for input). */
3806 all_uis_check_sync_execution_done ();
3807
3808 if (cmd_done
3809 && exec_done_display_p
3810 && (inferior_ptid == null_ptid
3811 || inferior_thread ()->state != THREAD_RUNNING))
3812 printf_unfiltered (_("completed.\n"));
3813 }
3814
3815 /* Record the frame and location we're currently stepping through. */
3816 void
3817 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3818 {
3819 struct thread_info *tp = inferior_thread ();
3820
3821 tp->control.step_frame_id = get_frame_id (frame);
3822 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3823
3824 tp->current_symtab = sal.symtab;
3825 tp->current_line = sal.line;
3826 }
3827
3828 /* Clear context switchable stepping state. */
3829
3830 void
3831 init_thread_stepping_state (struct thread_info *tss)
3832 {
3833 tss->stepped_breakpoint = 0;
3834 tss->stepping_over_breakpoint = 0;
3835 tss->stepping_over_watchpoint = 0;
3836 tss->step_after_step_resume_breakpoint = 0;
3837 }
3838
3839 /* Set the cached copy of the last ptid/waitstatus. */
3840
3841 void
3842 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3843 {
3844 target_last_wait_ptid = ptid;
3845 target_last_waitstatus = status;
3846 }
3847
3848 /* Return the cached copy of the last pid/waitstatus returned by
3849 target_wait()/deprecated_target_wait_hook(). The data is actually
3850 cached by handle_inferior_event(), which gets called immediately
3851 after target_wait()/deprecated_target_wait_hook(). */
3852
3853 void
3854 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3855 {
3856 *ptidp = target_last_wait_ptid;
3857 *status = target_last_waitstatus;
3858 }
3859
3860 void
3861 nullify_last_target_wait_ptid (void)
3862 {
3863 target_last_wait_ptid = minus_one_ptid;
3864 }
3865
3866 /* Switch thread contexts. */
3867
3868 static void
3869 context_switch (execution_control_state *ecs)
3870 {
3871 if (debug_infrun
3872 && ecs->ptid != inferior_ptid
3873 && ecs->event_thread != inferior_thread ())
3874 {
3875 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3876 target_pid_to_str (inferior_ptid).c_str ());
3877 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3878 target_pid_to_str (ecs->ptid).c_str ());
3879 }
3880
3881 switch_to_thread (ecs->event_thread);
3882 }
3883
3884 /* If the target can't tell whether we've hit breakpoints
3885 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3886 check whether that could have been caused by a breakpoint. If so,
3887 adjust the PC, per gdbarch_decr_pc_after_break. */
3888
3889 static void
3890 adjust_pc_after_break (struct thread_info *thread,
3891 struct target_waitstatus *ws)
3892 {
3893 struct regcache *regcache;
3894 struct gdbarch *gdbarch;
3895 CORE_ADDR breakpoint_pc, decr_pc;
3896
3897 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3898 we aren't, just return.
3899
3900 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3901 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3902 implemented by software breakpoints should be handled through the normal
3903 breakpoint layer.
3904
3905 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3906 different signals (SIGILL or SIGEMT for instance), but it is less
3907 clear where the PC is pointing afterwards. It may not match
3908 gdbarch_decr_pc_after_break. I don't know any specific target that
3909 generates these signals at breakpoints (the code has been in GDB since at
3910 least 1992) so I can not guess how to handle them here.
3911
3912 In earlier versions of GDB, a target with
3913 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3914 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3915 target with both of these set in GDB history, and it seems unlikely to be
3916 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3917
3918 if (ws->kind != TARGET_WAITKIND_STOPPED)
3919 return;
3920
3921 if (ws->value.sig != GDB_SIGNAL_TRAP)
3922 return;
3923
3924 /* In reverse execution, when a breakpoint is hit, the instruction
3925 under it has already been de-executed. The reported PC always
3926 points at the breakpoint address, so adjusting it further would
3927 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3928 architecture:
3929
3930 B1 0x08000000 : INSN1
3931 B2 0x08000001 : INSN2
3932 0x08000002 : INSN3
3933 PC -> 0x08000003 : INSN4
3934
3935 Say you're stopped at 0x08000003 as above. Reverse continuing
3936 from that point should hit B2 as below. Reading the PC when the
3937 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3938 been de-executed already.
3939
3940 B1 0x08000000 : INSN1
3941 B2 PC -> 0x08000001 : INSN2
3942 0x08000002 : INSN3
3943 0x08000003 : INSN4
3944
3945 We can't apply the same logic as for forward execution, because
3946 we would wrongly adjust the PC to 0x08000000, since there's a
3947 breakpoint at PC - 1. We'd then report a hit on B1, although
3948 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3949 behaviour. */
3950 if (execution_direction == EXEC_REVERSE)
3951 return;
3952
3953 /* If the target can tell whether the thread hit a SW breakpoint,
3954 trust it. Targets that can tell also adjust the PC
3955 themselves. */
3956 if (target_supports_stopped_by_sw_breakpoint ())
3957 return;
3958
3959 /* Note that relying on whether a breakpoint is planted in memory to
3960 determine this can fail. E.g,. the breakpoint could have been
3961 removed since. Or the thread could have been told to step an
3962 instruction the size of a breakpoint instruction, and only
3963 _after_ was a breakpoint inserted at its address. */
3964
3965 /* If this target does not decrement the PC after breakpoints, then
3966 we have nothing to do. */
3967 regcache = get_thread_regcache (thread);
3968 gdbarch = regcache->arch ();
3969
3970 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3971 if (decr_pc == 0)
3972 return;
3973
3974 const address_space *aspace = regcache->aspace ();
3975
3976 /* Find the location where (if we've hit a breakpoint) the
3977 breakpoint would be. */
3978 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3979
3980 /* If the target can't tell whether a software breakpoint triggered,
3981 fallback to figuring it out based on breakpoints we think were
3982 inserted in the target, and on whether the thread was stepped or
3983 continued. */
3984
3985 /* Check whether there actually is a software breakpoint inserted at
3986 that location.
3987
3988 If in non-stop mode, a race condition is possible where we've
3989 removed a breakpoint, but stop events for that breakpoint were
3990 already queued and arrive later. To suppress those spurious
3991 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3992 and retire them after a number of stop events are reported. Note
3993 this is an heuristic and can thus get confused. The real fix is
3994 to get the "stopped by SW BP and needs adjustment" info out of
3995 the target/kernel (and thus never reach here; see above). */
3996 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3997 || (target_is_non_stop_p ()
3998 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3999 {
4000 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4001
4002 if (record_full_is_used ())
4003 restore_operation_disable.emplace
4004 (record_full_gdb_operation_disable_set ());
4005
4006 /* When using hardware single-step, a SIGTRAP is reported for both
4007 a completed single-step and a software breakpoint. Need to
4008 differentiate between the two, as the latter needs adjusting
4009 but the former does not.
4010
4011 The SIGTRAP can be due to a completed hardware single-step only if
4012 - we didn't insert software single-step breakpoints
4013 - this thread is currently being stepped
4014
4015 If any of these events did not occur, we must have stopped due
4016 to hitting a software breakpoint, and have to back up to the
4017 breakpoint address.
4018
4019 As a special case, we could have hardware single-stepped a
4020 software breakpoint. In this case (prev_pc == breakpoint_pc),
4021 we also need to back up to the breakpoint address. */
4022
4023 if (thread_has_single_step_breakpoints_set (thread)
4024 || !currently_stepping (thread)
4025 || (thread->stepped_breakpoint
4026 && thread->prev_pc == breakpoint_pc))
4027 regcache_write_pc (regcache, breakpoint_pc);
4028 }
4029 }
4030
4031 static int
4032 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4033 {
4034 for (frame = get_prev_frame (frame);
4035 frame != NULL;
4036 frame = get_prev_frame (frame))
4037 {
4038 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4039 return 1;
4040 if (get_frame_type (frame) != INLINE_FRAME)
4041 break;
4042 }
4043
4044 return 0;
4045 }
4046
4047 /* If the event thread has the stop requested flag set, pretend it
4048 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4049 target_stop). */
4050
4051 static bool
4052 handle_stop_requested (struct execution_control_state *ecs)
4053 {
4054 if (ecs->event_thread->stop_requested)
4055 {
4056 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4057 ecs->ws.value.sig = GDB_SIGNAL_0;
4058 handle_signal_stop (ecs);
4059 return true;
4060 }
4061 return false;
4062 }
4063
4064 /* Auxiliary function that handles syscall entry/return events.
4065 It returns 1 if the inferior should keep going (and GDB
4066 should ignore the event), or 0 if the event deserves to be
4067 processed. */
4068
4069 static int
4070 handle_syscall_event (struct execution_control_state *ecs)
4071 {
4072 struct regcache *regcache;
4073 int syscall_number;
4074
4075 context_switch (ecs);
4076
4077 regcache = get_thread_regcache (ecs->event_thread);
4078 syscall_number = ecs->ws.value.syscall_number;
4079 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4080
4081 if (catch_syscall_enabled () > 0
4082 && catching_syscall_number (syscall_number) > 0)
4083 {
4084 if (debug_infrun)
4085 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4086 syscall_number);
4087
4088 ecs->event_thread->control.stop_bpstat
4089 = bpstat_stop_status (regcache->aspace (),
4090 ecs->event_thread->suspend.stop_pc,
4091 ecs->event_thread, &ecs->ws);
4092
4093 if (handle_stop_requested (ecs))
4094 return 0;
4095
4096 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4097 {
4098 /* Catchpoint hit. */
4099 return 0;
4100 }
4101 }
4102
4103 if (handle_stop_requested (ecs))
4104 return 0;
4105
4106 /* If no catchpoint triggered for this, then keep going. */
4107 keep_going (ecs);
4108 return 1;
4109 }
4110
4111 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4112
4113 static void
4114 fill_in_stop_func (struct gdbarch *gdbarch,
4115 struct execution_control_state *ecs)
4116 {
4117 if (!ecs->stop_func_filled_in)
4118 {
4119 /* Don't care about return value; stop_func_start and stop_func_name
4120 will both be 0 if it doesn't work. */
4121 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4122 &ecs->stop_func_name,
4123 &ecs->stop_func_start,
4124 &ecs->stop_func_end);
4125 ecs->stop_func_start
4126 += gdbarch_deprecated_function_start_offset (gdbarch);
4127
4128 if (gdbarch_skip_entrypoint_p (gdbarch))
4129 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4130 ecs->stop_func_start);
4131
4132 ecs->stop_func_filled_in = 1;
4133 }
4134 }
4135
4136
4137 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4138
4139 static enum stop_kind
4140 get_inferior_stop_soon (execution_control_state *ecs)
4141 {
4142 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4143
4144 gdb_assert (inf != NULL);
4145 return inf->control.stop_soon;
4146 }
4147
4148 /* Wait for one event. Store the resulting waitstatus in WS, and
4149 return the event ptid. */
4150
4151 static ptid_t
4152 wait_one (struct target_waitstatus *ws)
4153 {
4154 ptid_t event_ptid;
4155 ptid_t wait_ptid = minus_one_ptid;
4156
4157 overlay_cache_invalid = 1;
4158
4159 /* Flush target cache before starting to handle each event.
4160 Target was running and cache could be stale. This is just a
4161 heuristic. Running threads may modify target memory, but we
4162 don't get any event. */
4163 target_dcache_invalidate ();
4164
4165 if (deprecated_target_wait_hook)
4166 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4167 else
4168 event_ptid = target_wait (wait_ptid, ws, 0);
4169
4170 if (debug_infrun)
4171 print_target_wait_results (wait_ptid, event_ptid, ws);
4172
4173 return event_ptid;
4174 }
4175
4176 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4177 instead of the current thread. */
4178 #define THREAD_STOPPED_BY(REASON) \
4179 static int \
4180 thread_stopped_by_ ## REASON (ptid_t ptid) \
4181 { \
4182 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4183 inferior_ptid = ptid; \
4184 \
4185 return target_stopped_by_ ## REASON (); \
4186 }
4187
4188 /* Generate thread_stopped_by_watchpoint. */
4189 THREAD_STOPPED_BY (watchpoint)
4190 /* Generate thread_stopped_by_sw_breakpoint. */
4191 THREAD_STOPPED_BY (sw_breakpoint)
4192 /* Generate thread_stopped_by_hw_breakpoint. */
4193 THREAD_STOPPED_BY (hw_breakpoint)
4194
4195 /* Save the thread's event and stop reason to process it later. */
4196
4197 static void
4198 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4199 {
4200 if (debug_infrun)
4201 {
4202 std::string statstr = target_waitstatus_to_string (ws);
4203
4204 fprintf_unfiltered (gdb_stdlog,
4205 "infrun: saving status %s for %d.%ld.%ld\n",
4206 statstr.c_str (),
4207 tp->ptid.pid (),
4208 tp->ptid.lwp (),
4209 tp->ptid.tid ());
4210 }
4211
4212 /* Record for later. */
4213 tp->suspend.waitstatus = *ws;
4214 tp->suspend.waitstatus_pending_p = 1;
4215
4216 struct regcache *regcache = get_thread_regcache (tp);
4217 const address_space *aspace = regcache->aspace ();
4218
4219 if (ws->kind == TARGET_WAITKIND_STOPPED
4220 && ws->value.sig == GDB_SIGNAL_TRAP)
4221 {
4222 CORE_ADDR pc = regcache_read_pc (regcache);
4223
4224 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4225
4226 if (thread_stopped_by_watchpoint (tp->ptid))
4227 {
4228 tp->suspend.stop_reason
4229 = TARGET_STOPPED_BY_WATCHPOINT;
4230 }
4231 else if (target_supports_stopped_by_sw_breakpoint ()
4232 && thread_stopped_by_sw_breakpoint (tp->ptid))
4233 {
4234 tp->suspend.stop_reason
4235 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4236 }
4237 else if (target_supports_stopped_by_hw_breakpoint ()
4238 && thread_stopped_by_hw_breakpoint (tp->ptid))
4239 {
4240 tp->suspend.stop_reason
4241 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4242 }
4243 else if (!target_supports_stopped_by_hw_breakpoint ()
4244 && hardware_breakpoint_inserted_here_p (aspace,
4245 pc))
4246 {
4247 tp->suspend.stop_reason
4248 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 }
4250 else if (!target_supports_stopped_by_sw_breakpoint ()
4251 && software_breakpoint_inserted_here_p (aspace,
4252 pc))
4253 {
4254 tp->suspend.stop_reason
4255 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4256 }
4257 else if (!thread_has_single_step_breakpoints_set (tp)
4258 && currently_stepping (tp))
4259 {
4260 tp->suspend.stop_reason
4261 = TARGET_STOPPED_BY_SINGLE_STEP;
4262 }
4263 }
4264 }
4265
4266 /* See infrun.h. */
4267
4268 void
4269 stop_all_threads (void)
4270 {
4271 /* We may need multiple passes to discover all threads. */
4272 int pass;
4273 int iterations = 0;
4274
4275 gdb_assert (target_is_non_stop_p ());
4276
4277 if (debug_infrun)
4278 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4279
4280 scoped_restore_current_thread restore_thread;
4281
4282 target_thread_events (1);
4283 SCOPE_EXIT { target_thread_events (0); };
4284
4285 /* Request threads to stop, and then wait for the stops. Because
4286 threads we already know about can spawn more threads while we're
4287 trying to stop them, and we only learn about new threads when we
4288 update the thread list, do this in a loop, and keep iterating
4289 until two passes find no threads that need to be stopped. */
4290 for (pass = 0; pass < 2; pass++, iterations++)
4291 {
4292 if (debug_infrun)
4293 fprintf_unfiltered (gdb_stdlog,
4294 "infrun: stop_all_threads, pass=%d, "
4295 "iterations=%d\n", pass, iterations);
4296 while (1)
4297 {
4298 ptid_t event_ptid;
4299 struct target_waitstatus ws;
4300 int need_wait = 0;
4301
4302 update_thread_list ();
4303
4304 /* Go through all threads looking for threads that we need
4305 to tell the target to stop. */
4306 for (thread_info *t : all_non_exited_threads ())
4307 {
4308 if (t->executing)
4309 {
4310 /* If already stopping, don't request a stop again.
4311 We just haven't seen the notification yet. */
4312 if (!t->stop_requested)
4313 {
4314 if (debug_infrun)
4315 fprintf_unfiltered (gdb_stdlog,
4316 "infrun: %s executing, "
4317 "need stop\n",
4318 target_pid_to_str (t->ptid).c_str ());
4319 target_stop (t->ptid);
4320 t->stop_requested = 1;
4321 }
4322 else
4323 {
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog,
4326 "infrun: %s executing, "
4327 "already stopping\n",
4328 target_pid_to_str (t->ptid).c_str ());
4329 }
4330
4331 if (t->stop_requested)
4332 need_wait = 1;
4333 }
4334 else
4335 {
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: %s not executing\n",
4339 target_pid_to_str (t->ptid).c_str ());
4340
4341 /* The thread may be not executing, but still be
4342 resumed with a pending status to process. */
4343 t->resumed = 0;
4344 }
4345 }
4346
4347 if (!need_wait)
4348 break;
4349
4350 /* If we find new threads on the second iteration, restart
4351 over. We want to see two iterations in a row with all
4352 threads stopped. */
4353 if (pass > 0)
4354 pass = -1;
4355
4356 event_ptid = wait_one (&ws);
4357
4358 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4359 {
4360 /* All resumed threads exited. */
4361 }
4362 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4363 || ws.kind == TARGET_WAITKIND_EXITED
4364 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4365 {
4366 if (debug_infrun)
4367 {
4368 ptid_t ptid = ptid_t (ws.value.integer);
4369
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: %s exited while "
4372 "stopping threads\n",
4373 target_pid_to_str (ptid).c_str ());
4374 }
4375 }
4376 else
4377 {
4378 thread_info *t = find_thread_ptid (event_ptid);
4379 if (t == NULL)
4380 t = add_thread (event_ptid);
4381
4382 t->stop_requested = 0;
4383 t->executing = 0;
4384 t->resumed = 0;
4385 t->control.may_range_step = 0;
4386
4387 /* This may be the first time we see the inferior report
4388 a stop. */
4389 inferior *inf = find_inferior_ptid (event_ptid);
4390 if (inf->needs_setup)
4391 {
4392 switch_to_thread_no_regs (t);
4393 setup_inferior (0);
4394 }
4395
4396 if (ws.kind == TARGET_WAITKIND_STOPPED
4397 && ws.value.sig == GDB_SIGNAL_0)
4398 {
4399 /* We caught the event that we intended to catch, so
4400 there's no event pending. */
4401 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4402 t->suspend.waitstatus_pending_p = 0;
4403
4404 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4405 {
4406 /* Add it back to the step-over queue. */
4407 if (debug_infrun)
4408 {
4409 fprintf_unfiltered (gdb_stdlog,
4410 "infrun: displaced-step of %s "
4411 "canceled: adding back to the "
4412 "step-over queue\n",
4413 target_pid_to_str (t->ptid).c_str ());
4414 }
4415 t->control.trap_expected = 0;
4416 thread_step_over_chain_enqueue (t);
4417 }
4418 }
4419 else
4420 {
4421 enum gdb_signal sig;
4422 struct regcache *regcache;
4423
4424 if (debug_infrun)
4425 {
4426 std::string statstr = target_waitstatus_to_string (&ws);
4427
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: target_wait %s, saving "
4430 "status for %d.%ld.%ld\n",
4431 statstr.c_str (),
4432 t->ptid.pid (),
4433 t->ptid.lwp (),
4434 t->ptid.tid ());
4435 }
4436
4437 /* Record for later. */
4438 save_waitstatus (t, &ws);
4439
4440 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4441 ? ws.value.sig : GDB_SIGNAL_0);
4442
4443 if (displaced_step_fixup (t, sig) < 0)
4444 {
4445 /* Add it back to the step-over queue. */
4446 t->control.trap_expected = 0;
4447 thread_step_over_chain_enqueue (t);
4448 }
4449
4450 regcache = get_thread_regcache (t);
4451 t->suspend.stop_pc = regcache_read_pc (regcache);
4452
4453 if (debug_infrun)
4454 {
4455 fprintf_unfiltered (gdb_stdlog,
4456 "infrun: saved stop_pc=%s for %s "
4457 "(currently_stepping=%d)\n",
4458 paddress (target_gdbarch (),
4459 t->suspend.stop_pc),
4460 target_pid_to_str (t->ptid).c_str (),
4461 currently_stepping (t));
4462 }
4463 }
4464 }
4465 }
4466 }
4467
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4470 }
4471
4472 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4473
4474 static int
4475 handle_no_resumed (struct execution_control_state *ecs)
4476 {
4477 if (target_can_async_p ())
4478 {
4479 struct ui *ui;
4480 int any_sync = 0;
4481
4482 ALL_UIS (ui)
4483 {
4484 if (ui->prompt_state == PROMPT_BLOCKED)
4485 {
4486 any_sync = 1;
4487 break;
4488 }
4489 }
4490 if (!any_sync)
4491 {
4492 /* There were no unwaited-for children left in the target, but,
4493 we're not synchronously waiting for events either. Just
4494 ignore. */
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: TARGET_WAITKIND_NO_RESUMED "
4499 "(ignoring: bg)\n");
4500 prepare_to_wait (ecs);
4501 return 1;
4502 }
4503 }
4504
4505 /* Otherwise, if we were running a synchronous execution command, we
4506 may need to cancel it and give the user back the terminal.
4507
4508 In non-stop mode, the target can't tell whether we've already
4509 consumed previous stop events, so it can end up sending us a
4510 no-resumed event like so:
4511
4512 #0 - thread 1 is left stopped
4513
4514 #1 - thread 2 is resumed and hits breakpoint
4515 -> TARGET_WAITKIND_STOPPED
4516
4517 #2 - thread 3 is resumed and exits
4518 this is the last resumed thread, so
4519 -> TARGET_WAITKIND_NO_RESUMED
4520
4521 #3 - gdb processes stop for thread 2 and decides to re-resume
4522 it.
4523
4524 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4525 thread 2 is now resumed, so the event should be ignored.
4526
4527 IOW, if the stop for thread 2 doesn't end a foreground command,
4528 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4529 event. But it could be that the event meant that thread 2 itself
4530 (or whatever other thread was the last resumed thread) exited.
4531
4532 To address this we refresh the thread list and check whether we
4533 have resumed threads _now_. In the example above, this removes
4534 thread 3 from the thread list. If thread 2 was re-resumed, we
4535 ignore this event. If we find no thread resumed, then we cancel
4536 the synchronous command show "no unwaited-for " to the user. */
4537 update_thread_list ();
4538
4539 for (thread_info *thread : all_non_exited_threads ())
4540 {
4541 if (thread->executing
4542 || thread->suspend.waitstatus_pending_p)
4543 {
4544 /* There were no unwaited-for children left in the target at
4545 some point, but there are now. Just ignore. */
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: TARGET_WAITKIND_NO_RESUMED "
4549 "(ignoring: found resumed)\n");
4550 prepare_to_wait (ecs);
4551 return 1;
4552 }
4553 }
4554
4555 /* Note however that we may find no resumed thread because the whole
4556 process exited meanwhile (thus updating the thread list results
4557 in an empty thread list). In this case we know we'll be getting
4558 a process exit event shortly. */
4559 for (inferior *inf : all_inferiors ())
4560 {
4561 if (inf->pid == 0)
4562 continue;
4563
4564 thread_info *thread = any_live_thread_of_inferior (inf);
4565 if (thread == NULL)
4566 {
4567 if (debug_infrun)
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: TARGET_WAITKIND_NO_RESUMED "
4570 "(expect process exit)\n");
4571 prepare_to_wait (ecs);
4572 return 1;
4573 }
4574 }
4575
4576 /* Go ahead and report the event. */
4577 return 0;
4578 }
4579
4580 /* Given an execution control state that has been freshly filled in by
4581 an event from the inferior, figure out what it means and take
4582 appropriate action.
4583
4584 The alternatives are:
4585
4586 1) stop_waiting and return; to really stop and return to the
4587 debugger.
4588
4589 2) keep_going and return; to wait for the next event (set
4590 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4591 once). */
4592
4593 static void
4594 handle_inferior_event_1 (struct execution_control_state *ecs)
4595 {
4596 enum stop_kind stop_soon;
4597
4598 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4599 {
4600 /* We had an event in the inferior, but we are not interested in
4601 handling it at this level. The lower layers have already
4602 done what needs to be done, if anything.
4603
4604 One of the possible circumstances for this is when the
4605 inferior produces output for the console. The inferior has
4606 not stopped, and we are ignoring the event. Another possible
4607 circumstance is any event which the lower level knows will be
4608 reported multiple times without an intervening resume. */
4609 if (debug_infrun)
4610 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4611 prepare_to_wait (ecs);
4612 return;
4613 }
4614
4615 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4616 {
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4619 prepare_to_wait (ecs);
4620 return;
4621 }
4622
4623 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4624 && handle_no_resumed (ecs))
4625 return;
4626
4627 /* Cache the last pid/waitstatus. */
4628 set_last_target_status (ecs->ptid, ecs->ws);
4629
4630 /* Always clear state belonging to the previous time we stopped. */
4631 stop_stack_dummy = STOP_NONE;
4632
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4634 {
4635 /* No unwaited-for children left. IOW, all resumed children
4636 have exited. */
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4639
4640 stop_print_frame = 0;
4641 stop_waiting (ecs);
4642 return;
4643 }
4644
4645 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4646 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4647 {
4648 ecs->event_thread = find_thread_ptid (ecs->ptid);
4649 /* If it's a new thread, add it to the thread database. */
4650 if (ecs->event_thread == NULL)
4651 ecs->event_thread = add_thread (ecs->ptid);
4652
4653 /* Disable range stepping. If the next step request could use a
4654 range, this will be end up re-enabled then. */
4655 ecs->event_thread->control.may_range_step = 0;
4656 }
4657
4658 /* Dependent on valid ECS->EVENT_THREAD. */
4659 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4660
4661 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4662 reinit_frame_cache ();
4663
4664 breakpoint_retire_moribund ();
4665
4666 /* First, distinguish signals caused by the debugger from signals
4667 that have to do with the program's own actions. Note that
4668 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4669 on the operating system version. Here we detect when a SIGILL or
4670 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4671 something similar for SIGSEGV, since a SIGSEGV will be generated
4672 when we're trying to execute a breakpoint instruction on a
4673 non-executable stack. This happens for call dummy breakpoints
4674 for architectures like SPARC that place call dummies on the
4675 stack. */
4676 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4677 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4678 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4679 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4680 {
4681 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4682
4683 if (breakpoint_inserted_here_p (regcache->aspace (),
4684 regcache_read_pc (regcache)))
4685 {
4686 if (debug_infrun)
4687 fprintf_unfiltered (gdb_stdlog,
4688 "infrun: Treating signal as SIGTRAP\n");
4689 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4690 }
4691 }
4692
4693 /* Mark the non-executing threads accordingly. In all-stop, all
4694 threads of all processes are stopped when we get any event
4695 reported. In non-stop mode, only the event thread stops. */
4696 {
4697 ptid_t mark_ptid;
4698
4699 if (!target_is_non_stop_p ())
4700 mark_ptid = minus_one_ptid;
4701 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4702 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4703 {
4704 /* If we're handling a process exit in non-stop mode, even
4705 though threads haven't been deleted yet, one would think
4706 that there is nothing to do, as threads of the dead process
4707 will be soon deleted, and threads of any other process were
4708 left running. However, on some targets, threads survive a
4709 process exit event. E.g., for the "checkpoint" command,
4710 when the current checkpoint/fork exits, linux-fork.c
4711 automatically switches to another fork from within
4712 target_mourn_inferior, by associating the same
4713 inferior/thread to another fork. We haven't mourned yet at
4714 this point, but we must mark any threads left in the
4715 process as not-executing so that finish_thread_state marks
4716 them stopped (in the user's perspective) if/when we present
4717 the stop to the user. */
4718 mark_ptid = ptid_t (ecs->ptid.pid ());
4719 }
4720 else
4721 mark_ptid = ecs->ptid;
4722
4723 set_executing (mark_ptid, 0);
4724
4725 /* Likewise the resumed flag. */
4726 set_resumed (mark_ptid, 0);
4727 }
4728
4729 switch (ecs->ws.kind)
4730 {
4731 case TARGET_WAITKIND_LOADED:
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4734 context_switch (ecs);
4735 /* Ignore gracefully during startup of the inferior, as it might
4736 be the shell which has just loaded some objects, otherwise
4737 add the symbols for the newly loaded objects. Also ignore at
4738 the beginning of an attach or remote session; we will query
4739 the full list of libraries once the connection is
4740 established. */
4741
4742 stop_soon = get_inferior_stop_soon (ecs);
4743 if (stop_soon == NO_STOP_QUIETLY)
4744 {
4745 struct regcache *regcache;
4746
4747 regcache = get_thread_regcache (ecs->event_thread);
4748
4749 handle_solib_event ();
4750
4751 ecs->event_thread->control.stop_bpstat
4752 = bpstat_stop_status (regcache->aspace (),
4753 ecs->event_thread->suspend.stop_pc,
4754 ecs->event_thread, &ecs->ws);
4755
4756 if (handle_stop_requested (ecs))
4757 return;
4758
4759 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4760 {
4761 /* A catchpoint triggered. */
4762 process_event_stop_test (ecs);
4763 return;
4764 }
4765
4766 /* If requested, stop when the dynamic linker notifies
4767 gdb of events. This allows the user to get control
4768 and place breakpoints in initializer routines for
4769 dynamically loaded objects (among other things). */
4770 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4771 if (stop_on_solib_events)
4772 {
4773 /* Make sure we print "Stopped due to solib-event" in
4774 normal_stop. */
4775 stop_print_frame = 1;
4776
4777 stop_waiting (ecs);
4778 return;
4779 }
4780 }
4781
4782 /* If we are skipping through a shell, or through shared library
4783 loading that we aren't interested in, resume the program. If
4784 we're running the program normally, also resume. */
4785 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4786 {
4787 /* Loading of shared libraries might have changed breakpoint
4788 addresses. Make sure new breakpoints are inserted. */
4789 if (stop_soon == NO_STOP_QUIETLY)
4790 insert_breakpoints ();
4791 resume (GDB_SIGNAL_0);
4792 prepare_to_wait (ecs);
4793 return;
4794 }
4795
4796 /* But stop if we're attaching or setting up a remote
4797 connection. */
4798 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4799 || stop_soon == STOP_QUIETLY_REMOTE)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4803 stop_waiting (ecs);
4804 return;
4805 }
4806
4807 internal_error (__FILE__, __LINE__,
4808 _("unhandled stop_soon: %d"), (int) stop_soon);
4809
4810 case TARGET_WAITKIND_SPURIOUS:
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4813 if (handle_stop_requested (ecs))
4814 return;
4815 context_switch (ecs);
4816 resume (GDB_SIGNAL_0);
4817 prepare_to_wait (ecs);
4818 return;
4819
4820 case TARGET_WAITKIND_THREAD_CREATED:
4821 if (debug_infrun)
4822 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
4823 if (handle_stop_requested (ecs))
4824 return;
4825 context_switch (ecs);
4826 if (!switch_back_to_stepped_thread (ecs))
4827 keep_going (ecs);
4828 return;
4829
4830 case TARGET_WAITKIND_EXITED:
4831 case TARGET_WAITKIND_SIGNALLED:
4832 if (debug_infrun)
4833 {
4834 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4835 fprintf_unfiltered (gdb_stdlog,
4836 "infrun: TARGET_WAITKIND_EXITED\n");
4837 else
4838 fprintf_unfiltered (gdb_stdlog,
4839 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4840 }
4841
4842 inferior_ptid = ecs->ptid;
4843 set_current_inferior (find_inferior_ptid (ecs->ptid));
4844 set_current_program_space (current_inferior ()->pspace);
4845 handle_vfork_child_exec_or_exit (0);
4846 target_terminal::ours (); /* Must do this before mourn anyway. */
4847
4848 /* Clearing any previous state of convenience variables. */
4849 clear_exit_convenience_vars ();
4850
4851 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4852 {
4853 /* Record the exit code in the convenience variable $_exitcode, so
4854 that the user can inspect this again later. */
4855 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4856 (LONGEST) ecs->ws.value.integer);
4857
4858 /* Also record this in the inferior itself. */
4859 current_inferior ()->has_exit_code = 1;
4860 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4861
4862 /* Support the --return-child-result option. */
4863 return_child_result_value = ecs->ws.value.integer;
4864
4865 gdb::observers::exited.notify (ecs->ws.value.integer);
4866 }
4867 else
4868 {
4869 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4870
4871 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4872 {
4873 /* Set the value of the internal variable $_exitsignal,
4874 which holds the signal uncaught by the inferior. */
4875 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4876 gdbarch_gdb_signal_to_target (gdbarch,
4877 ecs->ws.value.sig));
4878 }
4879 else
4880 {
4881 /* We don't have access to the target's method used for
4882 converting between signal numbers (GDB's internal
4883 representation <-> target's representation).
4884 Therefore, we cannot do a good job at displaying this
4885 information to the user. It's better to just warn
4886 her about it (if infrun debugging is enabled), and
4887 give up. */
4888 if (debug_infrun)
4889 fprintf_filtered (gdb_stdlog, _("\
4890 Cannot fill $_exitsignal with the correct signal number.\n"));
4891 }
4892
4893 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4894 }
4895
4896 gdb_flush (gdb_stdout);
4897 target_mourn_inferior (inferior_ptid);
4898 stop_print_frame = 0;
4899 stop_waiting (ecs);
4900 return;
4901
4902 /* The following are the only cases in which we keep going;
4903 the above cases end in a continue or goto. */
4904 case TARGET_WAITKIND_FORKED:
4905 case TARGET_WAITKIND_VFORKED:
4906 if (debug_infrun)
4907 {
4908 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4909 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4910 else
4911 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4912 }
4913
4914 /* Check whether the inferior is displaced stepping. */
4915 {
4916 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4917 struct gdbarch *gdbarch = regcache->arch ();
4918
4919 /* If checking displaced stepping is supported, and thread
4920 ecs->ptid is displaced stepping. */
4921 if (displaced_step_in_progress_thread (ecs->event_thread))
4922 {
4923 struct inferior *parent_inf
4924 = find_inferior_ptid (ecs->ptid);
4925 struct regcache *child_regcache;
4926 CORE_ADDR parent_pc;
4927
4928 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4929 indicating that the displaced stepping of syscall instruction
4930 has been done. Perform cleanup for parent process here. Note
4931 that this operation also cleans up the child process for vfork,
4932 because their pages are shared. */
4933 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4934 /* Start a new step-over in another thread if there's one
4935 that needs it. */
4936 start_step_over ();
4937
4938 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4939 {
4940 struct displaced_step_inferior_state *displaced
4941 = get_displaced_stepping_state (parent_inf);
4942
4943 /* Restore scratch pad for child process. */
4944 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4945 }
4946
4947 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4948 the child's PC is also within the scratchpad. Set the child's PC
4949 to the parent's PC value, which has already been fixed up.
4950 FIXME: we use the parent's aspace here, although we're touching
4951 the child, because the child hasn't been added to the inferior
4952 list yet at this point. */
4953
4954 child_regcache
4955 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4956 gdbarch,
4957 parent_inf->aspace);
4958 /* Read PC value of parent process. */
4959 parent_pc = regcache_read_pc (regcache);
4960
4961 if (debug_displaced)
4962 fprintf_unfiltered (gdb_stdlog,
4963 "displaced: write child pc from %s to %s\n",
4964 paddress (gdbarch,
4965 regcache_read_pc (child_regcache)),
4966 paddress (gdbarch, parent_pc));
4967
4968 regcache_write_pc (child_regcache, parent_pc);
4969 }
4970 }
4971
4972 context_switch (ecs);
4973
4974 /* Immediately detach breakpoints from the child before there's
4975 any chance of letting the user delete breakpoints from the
4976 breakpoint lists. If we don't do this early, it's easy to
4977 leave left over traps in the child, vis: "break foo; catch
4978 fork; c; <fork>; del; c; <child calls foo>". We only follow
4979 the fork on the last `continue', and by that time the
4980 breakpoint at "foo" is long gone from the breakpoint table.
4981 If we vforked, then we don't need to unpatch here, since both
4982 parent and child are sharing the same memory pages; we'll
4983 need to unpatch at follow/detach time instead to be certain
4984 that new breakpoints added between catchpoint hit time and
4985 vfork follow are detached. */
4986 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4987 {
4988 /* This won't actually modify the breakpoint list, but will
4989 physically remove the breakpoints from the child. */
4990 detach_breakpoints (ecs->ws.value.related_pid);
4991 }
4992
4993 delete_just_stopped_threads_single_step_breakpoints ();
4994
4995 /* In case the event is caught by a catchpoint, remember that
4996 the event is to be followed at the next resume of the thread,
4997 and not immediately. */
4998 ecs->event_thread->pending_follow = ecs->ws;
4999
5000 ecs->event_thread->suspend.stop_pc
5001 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5002
5003 ecs->event_thread->control.stop_bpstat
5004 = bpstat_stop_status (get_current_regcache ()->aspace (),
5005 ecs->event_thread->suspend.stop_pc,
5006 ecs->event_thread, &ecs->ws);
5007
5008 if (handle_stop_requested (ecs))
5009 return;
5010
5011 /* If no catchpoint triggered for this, then keep going. Note
5012 that we're interested in knowing the bpstat actually causes a
5013 stop, not just if it may explain the signal. Software
5014 watchpoints, for example, always appear in the bpstat. */
5015 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5016 {
5017 int should_resume;
5018 int follow_child
5019 = (follow_fork_mode_string == follow_fork_mode_child);
5020
5021 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5022
5023 should_resume = follow_fork ();
5024
5025 thread_info *parent = ecs->event_thread;
5026 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5027
5028 /* At this point, the parent is marked running, and the
5029 child is marked stopped. */
5030
5031 /* If not resuming the parent, mark it stopped. */
5032 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5033 parent->set_running (false);
5034
5035 /* If resuming the child, mark it running. */
5036 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5037 child->set_running (true);
5038
5039 /* In non-stop mode, also resume the other branch. */
5040 if (!detach_fork && (non_stop
5041 || (sched_multi && target_is_non_stop_p ())))
5042 {
5043 if (follow_child)
5044 switch_to_thread (parent);
5045 else
5046 switch_to_thread (child);
5047
5048 ecs->event_thread = inferior_thread ();
5049 ecs->ptid = inferior_ptid;
5050 keep_going (ecs);
5051 }
5052
5053 if (follow_child)
5054 switch_to_thread (child);
5055 else
5056 switch_to_thread (parent);
5057
5058 ecs->event_thread = inferior_thread ();
5059 ecs->ptid = inferior_ptid;
5060
5061 if (should_resume)
5062 keep_going (ecs);
5063 else
5064 stop_waiting (ecs);
5065 return;
5066 }
5067 process_event_stop_test (ecs);
5068 return;
5069
5070 case TARGET_WAITKIND_VFORK_DONE:
5071 /* Done with the shared memory region. Re-insert breakpoints in
5072 the parent, and keep going. */
5073
5074 if (debug_infrun)
5075 fprintf_unfiltered (gdb_stdlog,
5076 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5077
5078 context_switch (ecs);
5079
5080 current_inferior ()->waiting_for_vfork_done = 0;
5081 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5082
5083 if (handle_stop_requested (ecs))
5084 return;
5085
5086 /* This also takes care of reinserting breakpoints in the
5087 previously locked inferior. */
5088 keep_going (ecs);
5089 return;
5090
5091 case TARGET_WAITKIND_EXECD:
5092 if (debug_infrun)
5093 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5094
5095 /* Note we can't read registers yet (the stop_pc), because we
5096 don't yet know the inferior's post-exec architecture.
5097 'stop_pc' is explicitly read below instead. */
5098 switch_to_thread_no_regs (ecs->event_thread);
5099
5100 /* Do whatever is necessary to the parent branch of the vfork. */
5101 handle_vfork_child_exec_or_exit (1);
5102
5103 /* This causes the eventpoints and symbol table to be reset.
5104 Must do this now, before trying to determine whether to
5105 stop. */
5106 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5107
5108 /* In follow_exec we may have deleted the original thread and
5109 created a new one. Make sure that the event thread is the
5110 execd thread for that case (this is a nop otherwise). */
5111 ecs->event_thread = inferior_thread ();
5112
5113 ecs->event_thread->suspend.stop_pc
5114 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5115
5116 ecs->event_thread->control.stop_bpstat
5117 = bpstat_stop_status (get_current_regcache ()->aspace (),
5118 ecs->event_thread->suspend.stop_pc,
5119 ecs->event_thread, &ecs->ws);
5120
5121 /* Note that this may be referenced from inside
5122 bpstat_stop_status above, through inferior_has_execd. */
5123 xfree (ecs->ws.value.execd_pathname);
5124 ecs->ws.value.execd_pathname = NULL;
5125
5126 if (handle_stop_requested (ecs))
5127 return;
5128
5129 /* If no catchpoint triggered for this, then keep going. */
5130 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5131 {
5132 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5133 keep_going (ecs);
5134 return;
5135 }
5136 process_event_stop_test (ecs);
5137 return;
5138
5139 /* Be careful not to try to gather much state about a thread
5140 that's in a syscall. It's frequently a losing proposition. */
5141 case TARGET_WAITKIND_SYSCALL_ENTRY:
5142 if (debug_infrun)
5143 fprintf_unfiltered (gdb_stdlog,
5144 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5145 /* Getting the current syscall number. */
5146 if (handle_syscall_event (ecs) == 0)
5147 process_event_stop_test (ecs);
5148 return;
5149
5150 /* Before examining the threads further, step this thread to
5151 get it entirely out of the syscall. (We get notice of the
5152 event when the thread is just on the verge of exiting a
5153 syscall. Stepping one instruction seems to get it back
5154 into user code.) */
5155 case TARGET_WAITKIND_SYSCALL_RETURN:
5156 if (debug_infrun)
5157 fprintf_unfiltered (gdb_stdlog,
5158 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5159 if (handle_syscall_event (ecs) == 0)
5160 process_event_stop_test (ecs);
5161 return;
5162
5163 case TARGET_WAITKIND_STOPPED:
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5166 handle_signal_stop (ecs);
5167 return;
5168
5169 case TARGET_WAITKIND_NO_HISTORY:
5170 if (debug_infrun)
5171 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5172 /* Reverse execution: target ran out of history info. */
5173
5174 /* Switch to the stopped thread. */
5175 context_switch (ecs);
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5178
5179 delete_just_stopped_threads_single_step_breakpoints ();
5180 ecs->event_thread->suspend.stop_pc
5181 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5182
5183 if (handle_stop_requested (ecs))
5184 return;
5185
5186 gdb::observers::no_history.notify ();
5187 stop_waiting (ecs);
5188 return;
5189 }
5190 }
5191
5192 /* A wrapper around handle_inferior_event_1, which also makes sure
5193 that all temporary struct value objects that were created during
5194 the handling of the event get deleted at the end. */
5195
5196 static void
5197 handle_inferior_event (struct execution_control_state *ecs)
5198 {
5199 struct value *mark = value_mark ();
5200
5201 handle_inferior_event_1 (ecs);
5202 /* Purge all temporary values created during the event handling,
5203 as it could be a long time before we return to the command level
5204 where such values would otherwise be purged. */
5205 value_free_to_mark (mark);
5206 }
5207
5208 /* Restart threads back to what they were trying to do back when we
5209 paused them for an in-line step-over. The EVENT_THREAD thread is
5210 ignored. */
5211
5212 static void
5213 restart_threads (struct thread_info *event_thread)
5214 {
5215 /* In case the instruction just stepped spawned a new thread. */
5216 update_thread_list ();
5217
5218 for (thread_info *tp : all_non_exited_threads ())
5219 {
5220 if (tp == event_thread)
5221 {
5222 if (debug_infrun)
5223 fprintf_unfiltered (gdb_stdlog,
5224 "infrun: restart threads: "
5225 "[%s] is event thread\n",
5226 target_pid_to_str (tp->ptid).c_str ());
5227 continue;
5228 }
5229
5230 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5231 {
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: restart threads: "
5235 "[%s] not meant to be running\n",
5236 target_pid_to_str (tp->ptid).c_str ());
5237 continue;
5238 }
5239
5240 if (tp->resumed)
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: [%s] resumed\n",
5245 target_pid_to_str (tp->ptid).c_str ());
5246 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5247 continue;
5248 }
5249
5250 if (thread_is_in_step_over_chain (tp))
5251 {
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: restart threads: "
5255 "[%s] needs step-over\n",
5256 target_pid_to_str (tp->ptid).c_str ());
5257 gdb_assert (!tp->resumed);
5258 continue;
5259 }
5260
5261
5262 if (tp->suspend.waitstatus_pending_p)
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: "
5267 "[%s] has pending status\n",
5268 target_pid_to_str (tp->ptid).c_str ());
5269 tp->resumed = 1;
5270 continue;
5271 }
5272
5273 gdb_assert (!tp->stop_requested);
5274
5275 /* If some thread needs to start a step-over at this point, it
5276 should still be in the step-over queue, and thus skipped
5277 above. */
5278 if (thread_still_needs_step_over (tp))
5279 {
5280 internal_error (__FILE__, __LINE__,
5281 "thread [%s] needs a step-over, but not in "
5282 "step-over queue\n",
5283 target_pid_to_str (tp->ptid).c_str ());
5284 }
5285
5286 if (currently_stepping (tp))
5287 {
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: restart threads: [%s] was stepping\n",
5291 target_pid_to_str (tp->ptid).c_str ());
5292 keep_going_stepped_thread (tp);
5293 }
5294 else
5295 {
5296 struct execution_control_state ecss;
5297 struct execution_control_state *ecs = &ecss;
5298
5299 if (debug_infrun)
5300 fprintf_unfiltered (gdb_stdlog,
5301 "infrun: restart threads: [%s] continuing\n",
5302 target_pid_to_str (tp->ptid).c_str ());
5303 reset_ecs (ecs, tp);
5304 switch_to_thread (tp);
5305 keep_going_pass_signal (ecs);
5306 }
5307 }
5308 }
5309
5310 /* Callback for iterate_over_threads. Find a resumed thread that has
5311 a pending waitstatus. */
5312
5313 static int
5314 resumed_thread_with_pending_status (struct thread_info *tp,
5315 void *arg)
5316 {
5317 return (tp->resumed
5318 && tp->suspend.waitstatus_pending_p);
5319 }
5320
5321 /* Called when we get an event that may finish an in-line or
5322 out-of-line (displaced stepping) step-over started previously.
5323 Return true if the event is processed and we should go back to the
5324 event loop; false if the caller should continue processing the
5325 event. */
5326
5327 static int
5328 finish_step_over (struct execution_control_state *ecs)
5329 {
5330 int had_step_over_info;
5331
5332 displaced_step_fixup (ecs->event_thread,
5333 ecs->event_thread->suspend.stop_signal);
5334
5335 had_step_over_info = step_over_info_valid_p ();
5336
5337 if (had_step_over_info)
5338 {
5339 /* If we're stepping over a breakpoint with all threads locked,
5340 then only the thread that was stepped should be reporting
5341 back an event. */
5342 gdb_assert (ecs->event_thread->control.trap_expected);
5343
5344 clear_step_over_info ();
5345 }
5346
5347 if (!target_is_non_stop_p ())
5348 return 0;
5349
5350 /* Start a new step-over in another thread if there's one that
5351 needs it. */
5352 start_step_over ();
5353
5354 /* If we were stepping over a breakpoint before, and haven't started
5355 a new in-line step-over sequence, then restart all other threads
5356 (except the event thread). We can't do this in all-stop, as then
5357 e.g., we wouldn't be able to issue any other remote packet until
5358 these other threads stop. */
5359 if (had_step_over_info && !step_over_info_valid_p ())
5360 {
5361 struct thread_info *pending;
5362
5363 /* If we only have threads with pending statuses, the restart
5364 below won't restart any thread and so nothing re-inserts the
5365 breakpoint we just stepped over. But we need it inserted
5366 when we later process the pending events, otherwise if
5367 another thread has a pending event for this breakpoint too,
5368 we'd discard its event (because the breakpoint that
5369 originally caused the event was no longer inserted). */
5370 context_switch (ecs);
5371 insert_breakpoints ();
5372
5373 restart_threads (ecs->event_thread);
5374
5375 /* If we have events pending, go through handle_inferior_event
5376 again, picking up a pending event at random. This avoids
5377 thread starvation. */
5378
5379 /* But not if we just stepped over a watchpoint in order to let
5380 the instruction execute so we can evaluate its expression.
5381 The set of watchpoints that triggered is recorded in the
5382 breakpoint objects themselves (see bp->watchpoint_triggered).
5383 If we processed another event first, that other event could
5384 clobber this info. */
5385 if (ecs->event_thread->stepping_over_watchpoint)
5386 return 0;
5387
5388 pending = iterate_over_threads (resumed_thread_with_pending_status,
5389 NULL);
5390 if (pending != NULL)
5391 {
5392 struct thread_info *tp = ecs->event_thread;
5393 struct regcache *regcache;
5394
5395 if (debug_infrun)
5396 {
5397 fprintf_unfiltered (gdb_stdlog,
5398 "infrun: found resumed threads with "
5399 "pending events, saving status\n");
5400 }
5401
5402 gdb_assert (pending != tp);
5403
5404 /* Record the event thread's event for later. */
5405 save_waitstatus (tp, &ecs->ws);
5406 /* This was cleared early, by handle_inferior_event. Set it
5407 so this pending event is considered by
5408 do_target_wait. */
5409 tp->resumed = 1;
5410
5411 gdb_assert (!tp->executing);
5412
5413 regcache = get_thread_regcache (tp);
5414 tp->suspend.stop_pc = regcache_read_pc (regcache);
5415
5416 if (debug_infrun)
5417 {
5418 fprintf_unfiltered (gdb_stdlog,
5419 "infrun: saved stop_pc=%s for %s "
5420 "(currently_stepping=%d)\n",
5421 paddress (target_gdbarch (),
5422 tp->suspend.stop_pc),
5423 target_pid_to_str (tp->ptid).c_str (),
5424 currently_stepping (tp));
5425 }
5426
5427 /* This in-line step-over finished; clear this so we won't
5428 start a new one. This is what handle_signal_stop would
5429 do, if we returned false. */
5430 tp->stepping_over_breakpoint = 0;
5431
5432 /* Wake up the event loop again. */
5433 mark_async_event_handler (infrun_async_inferior_event_token);
5434
5435 prepare_to_wait (ecs);
5436 return 1;
5437 }
5438 }
5439
5440 return 0;
5441 }
5442
5443 /* Come here when the program has stopped with a signal. */
5444
5445 static void
5446 handle_signal_stop (struct execution_control_state *ecs)
5447 {
5448 struct frame_info *frame;
5449 struct gdbarch *gdbarch;
5450 int stopped_by_watchpoint;
5451 enum stop_kind stop_soon;
5452 int random_signal;
5453
5454 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5455
5456 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5457
5458 /* Do we need to clean up the state of a thread that has
5459 completed a displaced single-step? (Doing so usually affects
5460 the PC, so do it here, before we set stop_pc.) */
5461 if (finish_step_over (ecs))
5462 return;
5463
5464 /* If we either finished a single-step or hit a breakpoint, but
5465 the user wanted this thread to be stopped, pretend we got a
5466 SIG0 (generic unsignaled stop). */
5467 if (ecs->event_thread->stop_requested
5468 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5469 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5470
5471 ecs->event_thread->suspend.stop_pc
5472 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5473
5474 if (debug_infrun)
5475 {
5476 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5477 struct gdbarch *reg_gdbarch = regcache->arch ();
5478 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5479
5480 inferior_ptid = ecs->ptid;
5481
5482 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5483 paddress (reg_gdbarch,
5484 ecs->event_thread->suspend.stop_pc));
5485 if (target_stopped_by_watchpoint ())
5486 {
5487 CORE_ADDR addr;
5488
5489 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5490
5491 if (target_stopped_data_address (current_top_target (), &addr))
5492 fprintf_unfiltered (gdb_stdlog,
5493 "infrun: stopped data address = %s\n",
5494 paddress (reg_gdbarch, addr));
5495 else
5496 fprintf_unfiltered (gdb_stdlog,
5497 "infrun: (no data address available)\n");
5498 }
5499 }
5500
5501 /* This is originated from start_remote(), start_inferior() and
5502 shared libraries hook functions. */
5503 stop_soon = get_inferior_stop_soon (ecs);
5504 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5505 {
5506 context_switch (ecs);
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5509 stop_print_frame = 1;
5510 stop_waiting (ecs);
5511 return;
5512 }
5513
5514 /* This originates from attach_command(). We need to overwrite
5515 the stop_signal here, because some kernels don't ignore a
5516 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5517 See more comments in inferior.h. On the other hand, if we
5518 get a non-SIGSTOP, report it to the user - assume the backend
5519 will handle the SIGSTOP if it should show up later.
5520
5521 Also consider that the attach is complete when we see a
5522 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5523 target extended-remote report it instead of a SIGSTOP
5524 (e.g. gdbserver). We already rely on SIGTRAP being our
5525 signal, so this is no exception.
5526
5527 Also consider that the attach is complete when we see a
5528 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5529 the target to stop all threads of the inferior, in case the
5530 low level attach operation doesn't stop them implicitly. If
5531 they weren't stopped implicitly, then the stub will report a
5532 GDB_SIGNAL_0, meaning: stopped for no particular reason
5533 other than GDB's request. */
5534 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5535 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5536 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5537 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5538 {
5539 stop_print_frame = 1;
5540 stop_waiting (ecs);
5541 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5542 return;
5543 }
5544
5545 /* See if something interesting happened to the non-current thread. If
5546 so, then switch to that thread. */
5547 if (ecs->ptid != inferior_ptid)
5548 {
5549 if (debug_infrun)
5550 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5551
5552 context_switch (ecs);
5553
5554 if (deprecated_context_hook)
5555 deprecated_context_hook (ecs->event_thread->global_num);
5556 }
5557
5558 /* At this point, get hold of the now-current thread's frame. */
5559 frame = get_current_frame ();
5560 gdbarch = get_frame_arch (frame);
5561
5562 /* Pull the single step breakpoints out of the target. */
5563 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5564 {
5565 struct regcache *regcache;
5566 CORE_ADDR pc;
5567
5568 regcache = get_thread_regcache (ecs->event_thread);
5569 const address_space *aspace = regcache->aspace ();
5570
5571 pc = regcache_read_pc (regcache);
5572
5573 /* However, before doing so, if this single-step breakpoint was
5574 actually for another thread, set this thread up for moving
5575 past it. */
5576 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5577 aspace, pc))
5578 {
5579 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5580 {
5581 if (debug_infrun)
5582 {
5583 fprintf_unfiltered (gdb_stdlog,
5584 "infrun: [%s] hit another thread's "
5585 "single-step breakpoint\n",
5586 target_pid_to_str (ecs->ptid).c_str ());
5587 }
5588 ecs->hit_singlestep_breakpoint = 1;
5589 }
5590 }
5591 else
5592 {
5593 if (debug_infrun)
5594 {
5595 fprintf_unfiltered (gdb_stdlog,
5596 "infrun: [%s] hit its "
5597 "single-step breakpoint\n",
5598 target_pid_to_str (ecs->ptid).c_str ());
5599 }
5600 }
5601 }
5602 delete_just_stopped_threads_single_step_breakpoints ();
5603
5604 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5605 && ecs->event_thread->control.trap_expected
5606 && ecs->event_thread->stepping_over_watchpoint)
5607 stopped_by_watchpoint = 0;
5608 else
5609 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5610
5611 /* If necessary, step over this watchpoint. We'll be back to display
5612 it in a moment. */
5613 if (stopped_by_watchpoint
5614 && (target_have_steppable_watchpoint
5615 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5616 {
5617 /* At this point, we are stopped at an instruction which has
5618 attempted to write to a piece of memory under control of
5619 a watchpoint. The instruction hasn't actually executed
5620 yet. If we were to evaluate the watchpoint expression
5621 now, we would get the old value, and therefore no change
5622 would seem to have occurred.
5623
5624 In order to make watchpoints work `right', we really need
5625 to complete the memory write, and then evaluate the
5626 watchpoint expression. We do this by single-stepping the
5627 target.
5628
5629 It may not be necessary to disable the watchpoint to step over
5630 it. For example, the PA can (with some kernel cooperation)
5631 single step over a watchpoint without disabling the watchpoint.
5632
5633 It is far more common to need to disable a watchpoint to step
5634 the inferior over it. If we have non-steppable watchpoints,
5635 we must disable the current watchpoint; it's simplest to
5636 disable all watchpoints.
5637
5638 Any breakpoint at PC must also be stepped over -- if there's
5639 one, it will have already triggered before the watchpoint
5640 triggered, and we either already reported it to the user, or
5641 it didn't cause a stop and we called keep_going. In either
5642 case, if there was a breakpoint at PC, we must be trying to
5643 step past it. */
5644 ecs->event_thread->stepping_over_watchpoint = 1;
5645 keep_going (ecs);
5646 return;
5647 }
5648
5649 ecs->event_thread->stepping_over_breakpoint = 0;
5650 ecs->event_thread->stepping_over_watchpoint = 0;
5651 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5652 ecs->event_thread->control.stop_step = 0;
5653 stop_print_frame = 1;
5654 stopped_by_random_signal = 0;
5655 bpstat stop_chain = NULL;
5656
5657 /* Hide inlined functions starting here, unless we just performed stepi or
5658 nexti. After stepi and nexti, always show the innermost frame (not any
5659 inline function call sites). */
5660 if (ecs->event_thread->control.step_range_end != 1)
5661 {
5662 const address_space *aspace
5663 = get_thread_regcache (ecs->event_thread)->aspace ();
5664
5665 /* skip_inline_frames is expensive, so we avoid it if we can
5666 determine that the address is one where functions cannot have
5667 been inlined. This improves performance with inferiors that
5668 load a lot of shared libraries, because the solib event
5669 breakpoint is defined as the address of a function (i.e. not
5670 inline). Note that we have to check the previous PC as well
5671 as the current one to catch cases when we have just
5672 single-stepped off a breakpoint prior to reinstating it.
5673 Note that we're assuming that the code we single-step to is
5674 not inline, but that's not definitive: there's nothing
5675 preventing the event breakpoint function from containing
5676 inlined code, and the single-step ending up there. If the
5677 user had set a breakpoint on that inlined code, the missing
5678 skip_inline_frames call would break things. Fortunately
5679 that's an extremely unlikely scenario. */
5680 if (!pc_at_non_inline_function (aspace,
5681 ecs->event_thread->suspend.stop_pc,
5682 &ecs->ws)
5683 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5684 && ecs->event_thread->control.trap_expected
5685 && pc_at_non_inline_function (aspace,
5686 ecs->event_thread->prev_pc,
5687 &ecs->ws)))
5688 {
5689 stop_chain = build_bpstat_chain (aspace,
5690 ecs->event_thread->suspend.stop_pc,
5691 &ecs->ws);
5692 skip_inline_frames (ecs->event_thread, stop_chain);
5693
5694 /* Re-fetch current thread's frame in case that invalidated
5695 the frame cache. */
5696 frame = get_current_frame ();
5697 gdbarch = get_frame_arch (frame);
5698 }
5699 }
5700
5701 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5702 && ecs->event_thread->control.trap_expected
5703 && gdbarch_single_step_through_delay_p (gdbarch)
5704 && currently_stepping (ecs->event_thread))
5705 {
5706 /* We're trying to step off a breakpoint. Turns out that we're
5707 also on an instruction that needs to be stepped multiple
5708 times before it's been fully executing. E.g., architectures
5709 with a delay slot. It needs to be stepped twice, once for
5710 the instruction and once for the delay slot. */
5711 int step_through_delay
5712 = gdbarch_single_step_through_delay (gdbarch, frame);
5713
5714 if (debug_infrun && step_through_delay)
5715 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5716 if (ecs->event_thread->control.step_range_end == 0
5717 && step_through_delay)
5718 {
5719 /* The user issued a continue when stopped at a breakpoint.
5720 Set up for another trap and get out of here. */
5721 ecs->event_thread->stepping_over_breakpoint = 1;
5722 keep_going (ecs);
5723 return;
5724 }
5725 else if (step_through_delay)
5726 {
5727 /* The user issued a step when stopped at a breakpoint.
5728 Maybe we should stop, maybe we should not - the delay
5729 slot *might* correspond to a line of source. In any
5730 case, don't decide that here, just set
5731 ecs->stepping_over_breakpoint, making sure we
5732 single-step again before breakpoints are re-inserted. */
5733 ecs->event_thread->stepping_over_breakpoint = 1;
5734 }
5735 }
5736
5737 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5738 handles this event. */
5739 ecs->event_thread->control.stop_bpstat
5740 = bpstat_stop_status (get_current_regcache ()->aspace (),
5741 ecs->event_thread->suspend.stop_pc,
5742 ecs->event_thread, &ecs->ws, stop_chain);
5743
5744 /* Following in case break condition called a
5745 function. */
5746 stop_print_frame = 1;
5747
5748 /* This is where we handle "moribund" watchpoints. Unlike
5749 software breakpoints traps, hardware watchpoint traps are
5750 always distinguishable from random traps. If no high-level
5751 watchpoint is associated with the reported stop data address
5752 anymore, then the bpstat does not explain the signal ---
5753 simply make sure to ignore it if `stopped_by_watchpoint' is
5754 set. */
5755
5756 if (debug_infrun
5757 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5758 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5759 GDB_SIGNAL_TRAP)
5760 && stopped_by_watchpoint)
5761 fprintf_unfiltered (gdb_stdlog,
5762 "infrun: no user watchpoint explains "
5763 "watchpoint SIGTRAP, ignoring\n");
5764
5765 /* NOTE: cagney/2003-03-29: These checks for a random signal
5766 at one stage in the past included checks for an inferior
5767 function call's call dummy's return breakpoint. The original
5768 comment, that went with the test, read:
5769
5770 ``End of a stack dummy. Some systems (e.g. Sony news) give
5771 another signal besides SIGTRAP, so check here as well as
5772 above.''
5773
5774 If someone ever tries to get call dummys on a
5775 non-executable stack to work (where the target would stop
5776 with something like a SIGSEGV), then those tests might need
5777 to be re-instated. Given, however, that the tests were only
5778 enabled when momentary breakpoints were not being used, I
5779 suspect that it won't be the case.
5780
5781 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5782 be necessary for call dummies on a non-executable stack on
5783 SPARC. */
5784
5785 /* See if the breakpoints module can explain the signal. */
5786 random_signal
5787 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5788 ecs->event_thread->suspend.stop_signal);
5789
5790 /* Maybe this was a trap for a software breakpoint that has since
5791 been removed. */
5792 if (random_signal && target_stopped_by_sw_breakpoint ())
5793 {
5794 if (program_breakpoint_here_p (gdbarch,
5795 ecs->event_thread->suspend.stop_pc))
5796 {
5797 struct regcache *regcache;
5798 int decr_pc;
5799
5800 /* Re-adjust PC to what the program would see if GDB was not
5801 debugging it. */
5802 regcache = get_thread_regcache (ecs->event_thread);
5803 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5804 if (decr_pc != 0)
5805 {
5806 gdb::optional<scoped_restore_tmpl<int>>
5807 restore_operation_disable;
5808
5809 if (record_full_is_used ())
5810 restore_operation_disable.emplace
5811 (record_full_gdb_operation_disable_set ());
5812
5813 regcache_write_pc (regcache,
5814 ecs->event_thread->suspend.stop_pc + decr_pc);
5815 }
5816 }
5817 else
5818 {
5819 /* A delayed software breakpoint event. Ignore the trap. */
5820 if (debug_infrun)
5821 fprintf_unfiltered (gdb_stdlog,
5822 "infrun: delayed software breakpoint "
5823 "trap, ignoring\n");
5824 random_signal = 0;
5825 }
5826 }
5827
5828 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5829 has since been removed. */
5830 if (random_signal && target_stopped_by_hw_breakpoint ())
5831 {
5832 /* A delayed hardware breakpoint event. Ignore the trap. */
5833 if (debug_infrun)
5834 fprintf_unfiltered (gdb_stdlog,
5835 "infrun: delayed hardware breakpoint/watchpoint "
5836 "trap, ignoring\n");
5837 random_signal = 0;
5838 }
5839
5840 /* If not, perhaps stepping/nexting can. */
5841 if (random_signal)
5842 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5843 && currently_stepping (ecs->event_thread));
5844
5845 /* Perhaps the thread hit a single-step breakpoint of _another_
5846 thread. Single-step breakpoints are transparent to the
5847 breakpoints module. */
5848 if (random_signal)
5849 random_signal = !ecs->hit_singlestep_breakpoint;
5850
5851 /* No? Perhaps we got a moribund watchpoint. */
5852 if (random_signal)
5853 random_signal = !stopped_by_watchpoint;
5854
5855 /* Always stop if the user explicitly requested this thread to
5856 remain stopped. */
5857 if (ecs->event_thread->stop_requested)
5858 {
5859 random_signal = 1;
5860 if (debug_infrun)
5861 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5862 }
5863
5864 /* For the program's own signals, act according to
5865 the signal handling tables. */
5866
5867 if (random_signal)
5868 {
5869 /* Signal not for debugging purposes. */
5870 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5871 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5872
5873 if (debug_infrun)
5874 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5875 gdb_signal_to_symbol_string (stop_signal));
5876
5877 stopped_by_random_signal = 1;
5878
5879 /* Always stop on signals if we're either just gaining control
5880 of the program, or the user explicitly requested this thread
5881 to remain stopped. */
5882 if (stop_soon != NO_STOP_QUIETLY
5883 || ecs->event_thread->stop_requested
5884 || (!inf->detaching
5885 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5886 {
5887 stop_waiting (ecs);
5888 return;
5889 }
5890
5891 /* Notify observers the signal has "handle print" set. Note we
5892 returned early above if stopping; normal_stop handles the
5893 printing in that case. */
5894 if (signal_print[ecs->event_thread->suspend.stop_signal])
5895 {
5896 /* The signal table tells us to print about this signal. */
5897 target_terminal::ours_for_output ();
5898 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5899 target_terminal::inferior ();
5900 }
5901
5902 /* Clear the signal if it should not be passed. */
5903 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5904 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5905
5906 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5907 && ecs->event_thread->control.trap_expected
5908 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5909 {
5910 /* We were just starting a new sequence, attempting to
5911 single-step off of a breakpoint and expecting a SIGTRAP.
5912 Instead this signal arrives. This signal will take us out
5913 of the stepping range so GDB needs to remember to, when
5914 the signal handler returns, resume stepping off that
5915 breakpoint. */
5916 /* To simplify things, "continue" is forced to use the same
5917 code paths as single-step - set a breakpoint at the
5918 signal return address and then, once hit, step off that
5919 breakpoint. */
5920 if (debug_infrun)
5921 fprintf_unfiltered (gdb_stdlog,
5922 "infrun: signal arrived while stepping over "
5923 "breakpoint\n");
5924
5925 insert_hp_step_resume_breakpoint_at_frame (frame);
5926 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5927 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5928 ecs->event_thread->control.trap_expected = 0;
5929
5930 /* If we were nexting/stepping some other thread, switch to
5931 it, so that we don't continue it, losing control. */
5932 if (!switch_back_to_stepped_thread (ecs))
5933 keep_going (ecs);
5934 return;
5935 }
5936
5937 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5938 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5939 ecs->event_thread)
5940 || ecs->event_thread->control.step_range_end == 1)
5941 && frame_id_eq (get_stack_frame_id (frame),
5942 ecs->event_thread->control.step_stack_frame_id)
5943 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5944 {
5945 /* The inferior is about to take a signal that will take it
5946 out of the single step range. Set a breakpoint at the
5947 current PC (which is presumably where the signal handler
5948 will eventually return) and then allow the inferior to
5949 run free.
5950
5951 Note that this is only needed for a signal delivered
5952 while in the single-step range. Nested signals aren't a
5953 problem as they eventually all return. */
5954 if (debug_infrun)
5955 fprintf_unfiltered (gdb_stdlog,
5956 "infrun: signal may take us out of "
5957 "single-step range\n");
5958
5959 clear_step_over_info ();
5960 insert_hp_step_resume_breakpoint_at_frame (frame);
5961 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5962 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5963 ecs->event_thread->control.trap_expected = 0;
5964 keep_going (ecs);
5965 return;
5966 }
5967
5968 /* Note: step_resume_breakpoint may be non-NULL. This occures
5969 when either there's a nested signal, or when there's a
5970 pending signal enabled just as the signal handler returns
5971 (leaving the inferior at the step-resume-breakpoint without
5972 actually executing it). Either way continue until the
5973 breakpoint is really hit. */
5974
5975 if (!switch_back_to_stepped_thread (ecs))
5976 {
5977 if (debug_infrun)
5978 fprintf_unfiltered (gdb_stdlog,
5979 "infrun: random signal, keep going\n");
5980
5981 keep_going (ecs);
5982 }
5983 return;
5984 }
5985
5986 process_event_stop_test (ecs);
5987 }
5988
5989 /* Come here when we've got some debug event / signal we can explain
5990 (IOW, not a random signal), and test whether it should cause a
5991 stop, or whether we should resume the inferior (transparently).
5992 E.g., could be a breakpoint whose condition evaluates false; we
5993 could be still stepping within the line; etc. */
5994
5995 static void
5996 process_event_stop_test (struct execution_control_state *ecs)
5997 {
5998 struct symtab_and_line stop_pc_sal;
5999 struct frame_info *frame;
6000 struct gdbarch *gdbarch;
6001 CORE_ADDR jmp_buf_pc;
6002 struct bpstat_what what;
6003
6004 /* Handle cases caused by hitting a breakpoint. */
6005
6006 frame = get_current_frame ();
6007 gdbarch = get_frame_arch (frame);
6008
6009 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6010
6011 if (what.call_dummy)
6012 {
6013 stop_stack_dummy = what.call_dummy;
6014 }
6015
6016 /* A few breakpoint types have callbacks associated (e.g.,
6017 bp_jit_event). Run them now. */
6018 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6019
6020 /* If we hit an internal event that triggers symbol changes, the
6021 current frame will be invalidated within bpstat_what (e.g., if we
6022 hit an internal solib event). Re-fetch it. */
6023 frame = get_current_frame ();
6024 gdbarch = get_frame_arch (frame);
6025
6026 switch (what.main_action)
6027 {
6028 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6029 /* If we hit the breakpoint at longjmp while stepping, we
6030 install a momentary breakpoint at the target of the
6031 jmp_buf. */
6032
6033 if (debug_infrun)
6034 fprintf_unfiltered (gdb_stdlog,
6035 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6036
6037 ecs->event_thread->stepping_over_breakpoint = 1;
6038
6039 if (what.is_longjmp)
6040 {
6041 struct value *arg_value;
6042
6043 /* If we set the longjmp breakpoint via a SystemTap probe,
6044 then use it to extract the arguments. The destination PC
6045 is the third argument to the probe. */
6046 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6047 if (arg_value)
6048 {
6049 jmp_buf_pc = value_as_address (arg_value);
6050 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6051 }
6052 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6053 || !gdbarch_get_longjmp_target (gdbarch,
6054 frame, &jmp_buf_pc))
6055 {
6056 if (debug_infrun)
6057 fprintf_unfiltered (gdb_stdlog,
6058 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6059 "(!gdbarch_get_longjmp_target)\n");
6060 keep_going (ecs);
6061 return;
6062 }
6063
6064 /* Insert a breakpoint at resume address. */
6065 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6066 }
6067 else
6068 check_exception_resume (ecs, frame);
6069 keep_going (ecs);
6070 return;
6071
6072 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6073 {
6074 struct frame_info *init_frame;
6075
6076 /* There are several cases to consider.
6077
6078 1. The initiating frame no longer exists. In this case we
6079 must stop, because the exception or longjmp has gone too
6080 far.
6081
6082 2. The initiating frame exists, and is the same as the
6083 current frame. We stop, because the exception or longjmp
6084 has been caught.
6085
6086 3. The initiating frame exists and is different from the
6087 current frame. This means the exception or longjmp has
6088 been caught beneath the initiating frame, so keep going.
6089
6090 4. longjmp breakpoint has been placed just to protect
6091 against stale dummy frames and user is not interested in
6092 stopping around longjmps. */
6093
6094 if (debug_infrun)
6095 fprintf_unfiltered (gdb_stdlog,
6096 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6097
6098 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6099 != NULL);
6100 delete_exception_resume_breakpoint (ecs->event_thread);
6101
6102 if (what.is_longjmp)
6103 {
6104 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6105
6106 if (!frame_id_p (ecs->event_thread->initiating_frame))
6107 {
6108 /* Case 4. */
6109 keep_going (ecs);
6110 return;
6111 }
6112 }
6113
6114 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6115
6116 if (init_frame)
6117 {
6118 struct frame_id current_id
6119 = get_frame_id (get_current_frame ());
6120 if (frame_id_eq (current_id,
6121 ecs->event_thread->initiating_frame))
6122 {
6123 /* Case 2. Fall through. */
6124 }
6125 else
6126 {
6127 /* Case 3. */
6128 keep_going (ecs);
6129 return;
6130 }
6131 }
6132
6133 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6134 exists. */
6135 delete_step_resume_breakpoint (ecs->event_thread);
6136
6137 end_stepping_range (ecs);
6138 }
6139 return;
6140
6141 case BPSTAT_WHAT_SINGLE:
6142 if (debug_infrun)
6143 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6144 ecs->event_thread->stepping_over_breakpoint = 1;
6145 /* Still need to check other stuff, at least the case where we
6146 are stepping and step out of the right range. */
6147 break;
6148
6149 case BPSTAT_WHAT_STEP_RESUME:
6150 if (debug_infrun)
6151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6152
6153 delete_step_resume_breakpoint (ecs->event_thread);
6154 if (ecs->event_thread->control.proceed_to_finish
6155 && execution_direction == EXEC_REVERSE)
6156 {
6157 struct thread_info *tp = ecs->event_thread;
6158
6159 /* We are finishing a function in reverse, and just hit the
6160 step-resume breakpoint at the start address of the
6161 function, and we're almost there -- just need to back up
6162 by one more single-step, which should take us back to the
6163 function call. */
6164 tp->control.step_range_start = tp->control.step_range_end = 1;
6165 keep_going (ecs);
6166 return;
6167 }
6168 fill_in_stop_func (gdbarch, ecs);
6169 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6170 && execution_direction == EXEC_REVERSE)
6171 {
6172 /* We are stepping over a function call in reverse, and just
6173 hit the step-resume breakpoint at the start address of
6174 the function. Go back to single-stepping, which should
6175 take us back to the function call. */
6176 ecs->event_thread->stepping_over_breakpoint = 1;
6177 keep_going (ecs);
6178 return;
6179 }
6180 break;
6181
6182 case BPSTAT_WHAT_STOP_NOISY:
6183 if (debug_infrun)
6184 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6185 stop_print_frame = 1;
6186
6187 /* Assume the thread stopped for a breapoint. We'll still check
6188 whether a/the breakpoint is there when the thread is next
6189 resumed. */
6190 ecs->event_thread->stepping_over_breakpoint = 1;
6191
6192 stop_waiting (ecs);
6193 return;
6194
6195 case BPSTAT_WHAT_STOP_SILENT:
6196 if (debug_infrun)
6197 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6198 stop_print_frame = 0;
6199
6200 /* Assume the thread stopped for a breapoint. We'll still check
6201 whether a/the breakpoint is there when the thread is next
6202 resumed. */
6203 ecs->event_thread->stepping_over_breakpoint = 1;
6204 stop_waiting (ecs);
6205 return;
6206
6207 case BPSTAT_WHAT_HP_STEP_RESUME:
6208 if (debug_infrun)
6209 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6210
6211 delete_step_resume_breakpoint (ecs->event_thread);
6212 if (ecs->event_thread->step_after_step_resume_breakpoint)
6213 {
6214 /* Back when the step-resume breakpoint was inserted, we
6215 were trying to single-step off a breakpoint. Go back to
6216 doing that. */
6217 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6218 ecs->event_thread->stepping_over_breakpoint = 1;
6219 keep_going (ecs);
6220 return;
6221 }
6222 break;
6223
6224 case BPSTAT_WHAT_KEEP_CHECKING:
6225 break;
6226 }
6227
6228 /* If we stepped a permanent breakpoint and we had a high priority
6229 step-resume breakpoint for the address we stepped, but we didn't
6230 hit it, then we must have stepped into the signal handler. The
6231 step-resume was only necessary to catch the case of _not_
6232 stepping into the handler, so delete it, and fall through to
6233 checking whether the step finished. */
6234 if (ecs->event_thread->stepped_breakpoint)
6235 {
6236 struct breakpoint *sr_bp
6237 = ecs->event_thread->control.step_resume_breakpoint;
6238
6239 if (sr_bp != NULL
6240 && sr_bp->loc->permanent
6241 && sr_bp->type == bp_hp_step_resume
6242 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6243 {
6244 if (debug_infrun)
6245 fprintf_unfiltered (gdb_stdlog,
6246 "infrun: stepped permanent breakpoint, stopped in "
6247 "handler\n");
6248 delete_step_resume_breakpoint (ecs->event_thread);
6249 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6250 }
6251 }
6252
6253 /* We come here if we hit a breakpoint but should not stop for it.
6254 Possibly we also were stepping and should stop for that. So fall
6255 through and test for stepping. But, if not stepping, do not
6256 stop. */
6257
6258 /* In all-stop mode, if we're currently stepping but have stopped in
6259 some other thread, we need to switch back to the stepped thread. */
6260 if (switch_back_to_stepped_thread (ecs))
6261 return;
6262
6263 if (ecs->event_thread->control.step_resume_breakpoint)
6264 {
6265 if (debug_infrun)
6266 fprintf_unfiltered (gdb_stdlog,
6267 "infrun: step-resume breakpoint is inserted\n");
6268
6269 /* Having a step-resume breakpoint overrides anything
6270 else having to do with stepping commands until
6271 that breakpoint is reached. */
6272 keep_going (ecs);
6273 return;
6274 }
6275
6276 if (ecs->event_thread->control.step_range_end == 0)
6277 {
6278 if (debug_infrun)
6279 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6280 /* Likewise if we aren't even stepping. */
6281 keep_going (ecs);
6282 return;
6283 }
6284
6285 /* Re-fetch current thread's frame in case the code above caused
6286 the frame cache to be re-initialized, making our FRAME variable
6287 a dangling pointer. */
6288 frame = get_current_frame ();
6289 gdbarch = get_frame_arch (frame);
6290 fill_in_stop_func (gdbarch, ecs);
6291
6292 /* If stepping through a line, keep going if still within it.
6293
6294 Note that step_range_end is the address of the first instruction
6295 beyond the step range, and NOT the address of the last instruction
6296 within it!
6297
6298 Note also that during reverse execution, we may be stepping
6299 through a function epilogue and therefore must detect when
6300 the current-frame changes in the middle of a line. */
6301
6302 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6303 ecs->event_thread)
6304 && (execution_direction != EXEC_REVERSE
6305 || frame_id_eq (get_frame_id (frame),
6306 ecs->event_thread->control.step_frame_id)))
6307 {
6308 if (debug_infrun)
6309 fprintf_unfiltered
6310 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6311 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6312 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6313
6314 /* Tentatively re-enable range stepping; `resume' disables it if
6315 necessary (e.g., if we're stepping over a breakpoint or we
6316 have software watchpoints). */
6317 ecs->event_thread->control.may_range_step = 1;
6318
6319 /* When stepping backward, stop at beginning of line range
6320 (unless it's the function entry point, in which case
6321 keep going back to the call point). */
6322 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6323 if (stop_pc == ecs->event_thread->control.step_range_start
6324 && stop_pc != ecs->stop_func_start
6325 && execution_direction == EXEC_REVERSE)
6326 end_stepping_range (ecs);
6327 else
6328 keep_going (ecs);
6329
6330 return;
6331 }
6332
6333 /* We stepped out of the stepping range. */
6334
6335 /* If we are stepping at the source level and entered the runtime
6336 loader dynamic symbol resolution code...
6337
6338 EXEC_FORWARD: we keep on single stepping until we exit the run
6339 time loader code and reach the callee's address.
6340
6341 EXEC_REVERSE: we've already executed the callee (backward), and
6342 the runtime loader code is handled just like any other
6343 undebuggable function call. Now we need only keep stepping
6344 backward through the trampoline code, and that's handled further
6345 down, so there is nothing for us to do here. */
6346
6347 if (execution_direction != EXEC_REVERSE
6348 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6349 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6350 {
6351 CORE_ADDR pc_after_resolver =
6352 gdbarch_skip_solib_resolver (gdbarch,
6353 ecs->event_thread->suspend.stop_pc);
6354
6355 if (debug_infrun)
6356 fprintf_unfiltered (gdb_stdlog,
6357 "infrun: stepped into dynsym resolve code\n");
6358
6359 if (pc_after_resolver)
6360 {
6361 /* Set up a step-resume breakpoint at the address
6362 indicated by SKIP_SOLIB_RESOLVER. */
6363 symtab_and_line sr_sal;
6364 sr_sal.pc = pc_after_resolver;
6365 sr_sal.pspace = get_frame_program_space (frame);
6366
6367 insert_step_resume_breakpoint_at_sal (gdbarch,
6368 sr_sal, null_frame_id);
6369 }
6370
6371 keep_going (ecs);
6372 return;
6373 }
6374
6375 /* Step through an indirect branch thunk. */
6376 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6377 && gdbarch_in_indirect_branch_thunk (gdbarch,
6378 ecs->event_thread->suspend.stop_pc))
6379 {
6380 if (debug_infrun)
6381 fprintf_unfiltered (gdb_stdlog,
6382 "infrun: stepped into indirect branch thunk\n");
6383 keep_going (ecs);
6384 return;
6385 }
6386
6387 if (ecs->event_thread->control.step_range_end != 1
6388 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6389 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6390 && get_frame_type (frame) == SIGTRAMP_FRAME)
6391 {
6392 if (debug_infrun)
6393 fprintf_unfiltered (gdb_stdlog,
6394 "infrun: stepped into signal trampoline\n");
6395 /* The inferior, while doing a "step" or "next", has ended up in
6396 a signal trampoline (either by a signal being delivered or by
6397 the signal handler returning). Just single-step until the
6398 inferior leaves the trampoline (either by calling the handler
6399 or returning). */
6400 keep_going (ecs);
6401 return;
6402 }
6403
6404 /* If we're in the return path from a shared library trampoline,
6405 we want to proceed through the trampoline when stepping. */
6406 /* macro/2012-04-25: This needs to come before the subroutine
6407 call check below as on some targets return trampolines look
6408 like subroutine calls (MIPS16 return thunks). */
6409 if (gdbarch_in_solib_return_trampoline (gdbarch,
6410 ecs->event_thread->suspend.stop_pc,
6411 ecs->stop_func_name)
6412 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6413 {
6414 /* Determine where this trampoline returns. */
6415 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6416 CORE_ADDR real_stop_pc
6417 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6418
6419 if (debug_infrun)
6420 fprintf_unfiltered (gdb_stdlog,
6421 "infrun: stepped into solib return tramp\n");
6422
6423 /* Only proceed through if we know where it's going. */
6424 if (real_stop_pc)
6425 {
6426 /* And put the step-breakpoint there and go until there. */
6427 symtab_and_line sr_sal;
6428 sr_sal.pc = real_stop_pc;
6429 sr_sal.section = find_pc_overlay (sr_sal.pc);
6430 sr_sal.pspace = get_frame_program_space (frame);
6431
6432 /* Do not specify what the fp should be when we stop since
6433 on some machines the prologue is where the new fp value
6434 is established. */
6435 insert_step_resume_breakpoint_at_sal (gdbarch,
6436 sr_sal, null_frame_id);
6437
6438 /* Restart without fiddling with the step ranges or
6439 other state. */
6440 keep_going (ecs);
6441 return;
6442 }
6443 }
6444
6445 /* Check for subroutine calls. The check for the current frame
6446 equalling the step ID is not necessary - the check of the
6447 previous frame's ID is sufficient - but it is a common case and
6448 cheaper than checking the previous frame's ID.
6449
6450 NOTE: frame_id_eq will never report two invalid frame IDs as
6451 being equal, so to get into this block, both the current and
6452 previous frame must have valid frame IDs. */
6453 /* The outer_frame_id check is a heuristic to detect stepping
6454 through startup code. If we step over an instruction which
6455 sets the stack pointer from an invalid value to a valid value,
6456 we may detect that as a subroutine call from the mythical
6457 "outermost" function. This could be fixed by marking
6458 outermost frames as !stack_p,code_p,special_p. Then the
6459 initial outermost frame, before sp was valid, would
6460 have code_addr == &_start. See the comment in frame_id_eq
6461 for more. */
6462 if (!frame_id_eq (get_stack_frame_id (frame),
6463 ecs->event_thread->control.step_stack_frame_id)
6464 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6465 ecs->event_thread->control.step_stack_frame_id)
6466 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6467 outer_frame_id)
6468 || (ecs->event_thread->control.step_start_function
6469 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6470 {
6471 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6472 CORE_ADDR real_stop_pc;
6473
6474 if (debug_infrun)
6475 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6476
6477 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6478 {
6479 /* I presume that step_over_calls is only 0 when we're
6480 supposed to be stepping at the assembly language level
6481 ("stepi"). Just stop. */
6482 /* And this works the same backward as frontward. MVS */
6483 end_stepping_range (ecs);
6484 return;
6485 }
6486
6487 /* Reverse stepping through solib trampolines. */
6488
6489 if (execution_direction == EXEC_REVERSE
6490 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6491 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6492 || (ecs->stop_func_start == 0
6493 && in_solib_dynsym_resolve_code (stop_pc))))
6494 {
6495 /* Any solib trampoline code can be handled in reverse
6496 by simply continuing to single-step. We have already
6497 executed the solib function (backwards), and a few
6498 steps will take us back through the trampoline to the
6499 caller. */
6500 keep_going (ecs);
6501 return;
6502 }
6503
6504 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6505 {
6506 /* We're doing a "next".
6507
6508 Normal (forward) execution: set a breakpoint at the
6509 callee's return address (the address at which the caller
6510 will resume).
6511
6512 Reverse (backward) execution. set the step-resume
6513 breakpoint at the start of the function that we just
6514 stepped into (backwards), and continue to there. When we
6515 get there, we'll need to single-step back to the caller. */
6516
6517 if (execution_direction == EXEC_REVERSE)
6518 {
6519 /* If we're already at the start of the function, we've either
6520 just stepped backward into a single instruction function,
6521 or stepped back out of a signal handler to the first instruction
6522 of the function. Just keep going, which will single-step back
6523 to the caller. */
6524 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6525 {
6526 /* Normal function call return (static or dynamic). */
6527 symtab_and_line sr_sal;
6528 sr_sal.pc = ecs->stop_func_start;
6529 sr_sal.pspace = get_frame_program_space (frame);
6530 insert_step_resume_breakpoint_at_sal (gdbarch,
6531 sr_sal, null_frame_id);
6532 }
6533 }
6534 else
6535 insert_step_resume_breakpoint_at_caller (frame);
6536
6537 keep_going (ecs);
6538 return;
6539 }
6540
6541 /* If we are in a function call trampoline (a stub between the
6542 calling routine and the real function), locate the real
6543 function. That's what tells us (a) whether we want to step
6544 into it at all, and (b) what prologue we want to run to the
6545 end of, if we do step into it. */
6546 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6547 if (real_stop_pc == 0)
6548 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6549 if (real_stop_pc != 0)
6550 ecs->stop_func_start = real_stop_pc;
6551
6552 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6553 {
6554 symtab_and_line sr_sal;
6555 sr_sal.pc = ecs->stop_func_start;
6556 sr_sal.pspace = get_frame_program_space (frame);
6557
6558 insert_step_resume_breakpoint_at_sal (gdbarch,
6559 sr_sal, null_frame_id);
6560 keep_going (ecs);
6561 return;
6562 }
6563
6564 /* If we have line number information for the function we are
6565 thinking of stepping into and the function isn't on the skip
6566 list, step into it.
6567
6568 If there are several symtabs at that PC (e.g. with include
6569 files), just want to know whether *any* of them have line
6570 numbers. find_pc_line handles this. */
6571 {
6572 struct symtab_and_line tmp_sal;
6573
6574 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6575 if (tmp_sal.line != 0
6576 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6577 tmp_sal))
6578 {
6579 if (execution_direction == EXEC_REVERSE)
6580 handle_step_into_function_backward (gdbarch, ecs);
6581 else
6582 handle_step_into_function (gdbarch, ecs);
6583 return;
6584 }
6585 }
6586
6587 /* If we have no line number and the step-stop-if-no-debug is
6588 set, we stop the step so that the user has a chance to switch
6589 in assembly mode. */
6590 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6591 && step_stop_if_no_debug)
6592 {
6593 end_stepping_range (ecs);
6594 return;
6595 }
6596
6597 if (execution_direction == EXEC_REVERSE)
6598 {
6599 /* If we're already at the start of the function, we've either just
6600 stepped backward into a single instruction function without line
6601 number info, or stepped back out of a signal handler to the first
6602 instruction of the function without line number info. Just keep
6603 going, which will single-step back to the caller. */
6604 if (ecs->stop_func_start != stop_pc)
6605 {
6606 /* Set a breakpoint at callee's start address.
6607 From there we can step once and be back in the caller. */
6608 symtab_and_line sr_sal;
6609 sr_sal.pc = ecs->stop_func_start;
6610 sr_sal.pspace = get_frame_program_space (frame);
6611 insert_step_resume_breakpoint_at_sal (gdbarch,
6612 sr_sal, null_frame_id);
6613 }
6614 }
6615 else
6616 /* Set a breakpoint at callee's return address (the address
6617 at which the caller will resume). */
6618 insert_step_resume_breakpoint_at_caller (frame);
6619
6620 keep_going (ecs);
6621 return;
6622 }
6623
6624 /* Reverse stepping through solib trampolines. */
6625
6626 if (execution_direction == EXEC_REVERSE
6627 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6628 {
6629 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6630
6631 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6632 || (ecs->stop_func_start == 0
6633 && in_solib_dynsym_resolve_code (stop_pc)))
6634 {
6635 /* Any solib trampoline code can be handled in reverse
6636 by simply continuing to single-step. We have already
6637 executed the solib function (backwards), and a few
6638 steps will take us back through the trampoline to the
6639 caller. */
6640 keep_going (ecs);
6641 return;
6642 }
6643 else if (in_solib_dynsym_resolve_code (stop_pc))
6644 {
6645 /* Stepped backward into the solib dynsym resolver.
6646 Set a breakpoint at its start and continue, then
6647 one more step will take us out. */
6648 symtab_and_line sr_sal;
6649 sr_sal.pc = ecs->stop_func_start;
6650 sr_sal.pspace = get_frame_program_space (frame);
6651 insert_step_resume_breakpoint_at_sal (gdbarch,
6652 sr_sal, null_frame_id);
6653 keep_going (ecs);
6654 return;
6655 }
6656 }
6657
6658 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6659
6660 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6661 the trampoline processing logic, however, there are some trampolines
6662 that have no names, so we should do trampoline handling first. */
6663 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6664 && ecs->stop_func_name == NULL
6665 && stop_pc_sal.line == 0)
6666 {
6667 if (debug_infrun)
6668 fprintf_unfiltered (gdb_stdlog,
6669 "infrun: stepped into undebuggable function\n");
6670
6671 /* The inferior just stepped into, or returned to, an
6672 undebuggable function (where there is no debugging information
6673 and no line number corresponding to the address where the
6674 inferior stopped). Since we want to skip this kind of code,
6675 we keep going until the inferior returns from this
6676 function - unless the user has asked us not to (via
6677 set step-mode) or we no longer know how to get back
6678 to the call site. */
6679 if (step_stop_if_no_debug
6680 || !frame_id_p (frame_unwind_caller_id (frame)))
6681 {
6682 /* If we have no line number and the step-stop-if-no-debug
6683 is set, we stop the step so that the user has a chance to
6684 switch in assembly mode. */
6685 end_stepping_range (ecs);
6686 return;
6687 }
6688 else
6689 {
6690 /* Set a breakpoint at callee's return address (the address
6691 at which the caller will resume). */
6692 insert_step_resume_breakpoint_at_caller (frame);
6693 keep_going (ecs);
6694 return;
6695 }
6696 }
6697
6698 if (ecs->event_thread->control.step_range_end == 1)
6699 {
6700 /* It is stepi or nexti. We always want to stop stepping after
6701 one instruction. */
6702 if (debug_infrun)
6703 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6704 end_stepping_range (ecs);
6705 return;
6706 }
6707
6708 if (stop_pc_sal.line == 0)
6709 {
6710 /* We have no line number information. That means to stop
6711 stepping (does this always happen right after one instruction,
6712 when we do "s" in a function with no line numbers,
6713 or can this happen as a result of a return or longjmp?). */
6714 if (debug_infrun)
6715 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6716 end_stepping_range (ecs);
6717 return;
6718 }
6719
6720 /* Look for "calls" to inlined functions, part one. If the inline
6721 frame machinery detected some skipped call sites, we have entered
6722 a new inline function. */
6723
6724 if (frame_id_eq (get_frame_id (get_current_frame ()),
6725 ecs->event_thread->control.step_frame_id)
6726 && inline_skipped_frames (ecs->event_thread))
6727 {
6728 if (debug_infrun)
6729 fprintf_unfiltered (gdb_stdlog,
6730 "infrun: stepped into inlined function\n");
6731
6732 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6733
6734 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6735 {
6736 /* For "step", we're going to stop. But if the call site
6737 for this inlined function is on the same source line as
6738 we were previously stepping, go down into the function
6739 first. Otherwise stop at the call site. */
6740
6741 if (call_sal.line == ecs->event_thread->current_line
6742 && call_sal.symtab == ecs->event_thread->current_symtab)
6743 step_into_inline_frame (ecs->event_thread);
6744
6745 end_stepping_range (ecs);
6746 return;
6747 }
6748 else
6749 {
6750 /* For "next", we should stop at the call site if it is on a
6751 different source line. Otherwise continue through the
6752 inlined function. */
6753 if (call_sal.line == ecs->event_thread->current_line
6754 && call_sal.symtab == ecs->event_thread->current_symtab)
6755 keep_going (ecs);
6756 else
6757 end_stepping_range (ecs);
6758 return;
6759 }
6760 }
6761
6762 /* Look for "calls" to inlined functions, part two. If we are still
6763 in the same real function we were stepping through, but we have
6764 to go further up to find the exact frame ID, we are stepping
6765 through a more inlined call beyond its call site. */
6766
6767 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6768 && !frame_id_eq (get_frame_id (get_current_frame ()),
6769 ecs->event_thread->control.step_frame_id)
6770 && stepped_in_from (get_current_frame (),
6771 ecs->event_thread->control.step_frame_id))
6772 {
6773 if (debug_infrun)
6774 fprintf_unfiltered (gdb_stdlog,
6775 "infrun: stepping through inlined function\n");
6776
6777 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6778 keep_going (ecs);
6779 else
6780 end_stepping_range (ecs);
6781 return;
6782 }
6783
6784 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6785 && (ecs->event_thread->current_line != stop_pc_sal.line
6786 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6787 {
6788 /* We are at the start of a different line. So stop. Note that
6789 we don't stop if we step into the middle of a different line.
6790 That is said to make things like for (;;) statements work
6791 better. */
6792 if (debug_infrun)
6793 fprintf_unfiltered (gdb_stdlog,
6794 "infrun: stepped to a different line\n");
6795 end_stepping_range (ecs);
6796 return;
6797 }
6798
6799 /* We aren't done stepping.
6800
6801 Optimize by setting the stepping range to the line.
6802 (We might not be in the original line, but if we entered a
6803 new line in mid-statement, we continue stepping. This makes
6804 things like for(;;) statements work better.) */
6805
6806 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6807 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6808 ecs->event_thread->control.may_range_step = 1;
6809 set_step_info (frame, stop_pc_sal);
6810
6811 if (debug_infrun)
6812 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6813 keep_going (ecs);
6814 }
6815
6816 /* In all-stop mode, if we're currently stepping but have stopped in
6817 some other thread, we may need to switch back to the stepped
6818 thread. Returns true we set the inferior running, false if we left
6819 it stopped (and the event needs further processing). */
6820
6821 static int
6822 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6823 {
6824 if (!target_is_non_stop_p ())
6825 {
6826 struct thread_info *stepping_thread;
6827
6828 /* If any thread is blocked on some internal breakpoint, and we
6829 simply need to step over that breakpoint to get it going
6830 again, do that first. */
6831
6832 /* However, if we see an event for the stepping thread, then we
6833 know all other threads have been moved past their breakpoints
6834 already. Let the caller check whether the step is finished,
6835 etc., before deciding to move it past a breakpoint. */
6836 if (ecs->event_thread->control.step_range_end != 0)
6837 return 0;
6838
6839 /* Check if the current thread is blocked on an incomplete
6840 step-over, interrupted by a random signal. */
6841 if (ecs->event_thread->control.trap_expected
6842 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6843 {
6844 if (debug_infrun)
6845 {
6846 fprintf_unfiltered (gdb_stdlog,
6847 "infrun: need to finish step-over of [%s]\n",
6848 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6849 }
6850 keep_going (ecs);
6851 return 1;
6852 }
6853
6854 /* Check if the current thread is blocked by a single-step
6855 breakpoint of another thread. */
6856 if (ecs->hit_singlestep_breakpoint)
6857 {
6858 if (debug_infrun)
6859 {
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: need to step [%s] over single-step "
6862 "breakpoint\n",
6863 target_pid_to_str (ecs->ptid).c_str ());
6864 }
6865 keep_going (ecs);
6866 return 1;
6867 }
6868
6869 /* If this thread needs yet another step-over (e.g., stepping
6870 through a delay slot), do it first before moving on to
6871 another thread. */
6872 if (thread_still_needs_step_over (ecs->event_thread))
6873 {
6874 if (debug_infrun)
6875 {
6876 fprintf_unfiltered (gdb_stdlog,
6877 "infrun: thread [%s] still needs step-over\n",
6878 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6879 }
6880 keep_going (ecs);
6881 return 1;
6882 }
6883
6884 /* If scheduler locking applies even if not stepping, there's no
6885 need to walk over threads. Above we've checked whether the
6886 current thread is stepping. If some other thread not the
6887 event thread is stepping, then it must be that scheduler
6888 locking is not in effect. */
6889 if (schedlock_applies (ecs->event_thread))
6890 return 0;
6891
6892 /* Otherwise, we no longer expect a trap in the current thread.
6893 Clear the trap_expected flag before switching back -- this is
6894 what keep_going does as well, if we call it. */
6895 ecs->event_thread->control.trap_expected = 0;
6896
6897 /* Likewise, clear the signal if it should not be passed. */
6898 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6899 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6900
6901 /* Do all pending step-overs before actually proceeding with
6902 step/next/etc. */
6903 if (start_step_over ())
6904 {
6905 prepare_to_wait (ecs);
6906 return 1;
6907 }
6908
6909 /* Look for the stepping/nexting thread. */
6910 stepping_thread = NULL;
6911
6912 for (thread_info *tp : all_non_exited_threads ())
6913 {
6914 /* Ignore threads of processes the caller is not
6915 resuming. */
6916 if (!sched_multi
6917 && tp->ptid.pid () != ecs->ptid.pid ())
6918 continue;
6919
6920 /* When stepping over a breakpoint, we lock all threads
6921 except the one that needs to move past the breakpoint.
6922 If a non-event thread has this set, the "incomplete
6923 step-over" check above should have caught it earlier. */
6924 if (tp->control.trap_expected)
6925 {
6926 internal_error (__FILE__, __LINE__,
6927 "[%s] has inconsistent state: "
6928 "trap_expected=%d\n",
6929 target_pid_to_str (tp->ptid).c_str (),
6930 tp->control.trap_expected);
6931 }
6932
6933 /* Did we find the stepping thread? */
6934 if (tp->control.step_range_end)
6935 {
6936 /* Yep. There should only one though. */
6937 gdb_assert (stepping_thread == NULL);
6938
6939 /* The event thread is handled at the top, before we
6940 enter this loop. */
6941 gdb_assert (tp != ecs->event_thread);
6942
6943 /* If some thread other than the event thread is
6944 stepping, then scheduler locking can't be in effect,
6945 otherwise we wouldn't have resumed the current event
6946 thread in the first place. */
6947 gdb_assert (!schedlock_applies (tp));
6948
6949 stepping_thread = tp;
6950 }
6951 }
6952
6953 if (stepping_thread != NULL)
6954 {
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog,
6957 "infrun: switching back to stepped thread\n");
6958
6959 if (keep_going_stepped_thread (stepping_thread))
6960 {
6961 prepare_to_wait (ecs);
6962 return 1;
6963 }
6964 }
6965 }
6966
6967 return 0;
6968 }
6969
6970 /* Set a previously stepped thread back to stepping. Returns true on
6971 success, false if the resume is not possible (e.g., the thread
6972 vanished). */
6973
6974 static int
6975 keep_going_stepped_thread (struct thread_info *tp)
6976 {
6977 struct frame_info *frame;
6978 struct execution_control_state ecss;
6979 struct execution_control_state *ecs = &ecss;
6980
6981 /* If the stepping thread exited, then don't try to switch back and
6982 resume it, which could fail in several different ways depending
6983 on the target. Instead, just keep going.
6984
6985 We can find a stepping dead thread in the thread list in two
6986 cases:
6987
6988 - The target supports thread exit events, and when the target
6989 tries to delete the thread from the thread list, inferior_ptid
6990 pointed at the exiting thread. In such case, calling
6991 delete_thread does not really remove the thread from the list;
6992 instead, the thread is left listed, with 'exited' state.
6993
6994 - The target's debug interface does not support thread exit
6995 events, and so we have no idea whatsoever if the previously
6996 stepping thread is still alive. For that reason, we need to
6997 synchronously query the target now. */
6998
6999 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7000 {
7001 if (debug_infrun)
7002 fprintf_unfiltered (gdb_stdlog,
7003 "infrun: not resuming previously "
7004 "stepped thread, it has vanished\n");
7005
7006 delete_thread (tp);
7007 return 0;
7008 }
7009
7010 if (debug_infrun)
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: resuming previously stepped thread\n");
7013
7014 reset_ecs (ecs, tp);
7015 switch_to_thread (tp);
7016
7017 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7018 frame = get_current_frame ();
7019
7020 /* If the PC of the thread we were trying to single-step has
7021 changed, then that thread has trapped or been signaled, but the
7022 event has not been reported to GDB yet. Re-poll the target
7023 looking for this particular thread's event (i.e. temporarily
7024 enable schedlock) by:
7025
7026 - setting a break at the current PC
7027 - resuming that particular thread, only (by setting trap
7028 expected)
7029
7030 This prevents us continuously moving the single-step breakpoint
7031 forward, one instruction at a time, overstepping. */
7032
7033 if (tp->suspend.stop_pc != tp->prev_pc)
7034 {
7035 ptid_t resume_ptid;
7036
7037 if (debug_infrun)
7038 fprintf_unfiltered (gdb_stdlog,
7039 "infrun: expected thread advanced also (%s -> %s)\n",
7040 paddress (target_gdbarch (), tp->prev_pc),
7041 paddress (target_gdbarch (), tp->suspend.stop_pc));
7042
7043 /* Clear the info of the previous step-over, as it's no longer
7044 valid (if the thread was trying to step over a breakpoint, it
7045 has already succeeded). It's what keep_going would do too,
7046 if we called it. Do this before trying to insert the sss
7047 breakpoint, otherwise if we were previously trying to step
7048 over this exact address in another thread, the breakpoint is
7049 skipped. */
7050 clear_step_over_info ();
7051 tp->control.trap_expected = 0;
7052
7053 insert_single_step_breakpoint (get_frame_arch (frame),
7054 get_frame_address_space (frame),
7055 tp->suspend.stop_pc);
7056
7057 tp->resumed = 1;
7058 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7059 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7060 }
7061 else
7062 {
7063 if (debug_infrun)
7064 fprintf_unfiltered (gdb_stdlog,
7065 "infrun: expected thread still hasn't advanced\n");
7066
7067 keep_going_pass_signal (ecs);
7068 }
7069 return 1;
7070 }
7071
7072 /* Is thread TP in the middle of (software or hardware)
7073 single-stepping? (Note the result of this function must never be
7074 passed directly as target_resume's STEP parameter.) */
7075
7076 static int
7077 currently_stepping (struct thread_info *tp)
7078 {
7079 return ((tp->control.step_range_end
7080 && tp->control.step_resume_breakpoint == NULL)
7081 || tp->control.trap_expected
7082 || tp->stepped_breakpoint
7083 || bpstat_should_step ());
7084 }
7085
7086 /* Inferior has stepped into a subroutine call with source code that
7087 we should not step over. Do step to the first line of code in
7088 it. */
7089
7090 static void
7091 handle_step_into_function (struct gdbarch *gdbarch,
7092 struct execution_control_state *ecs)
7093 {
7094 fill_in_stop_func (gdbarch, ecs);
7095
7096 compunit_symtab *cust
7097 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7098 if (cust != NULL && compunit_language (cust) != language_asm)
7099 ecs->stop_func_start
7100 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7101
7102 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7103 /* Use the step_resume_break to step until the end of the prologue,
7104 even if that involves jumps (as it seems to on the vax under
7105 4.2). */
7106 /* If the prologue ends in the middle of a source line, continue to
7107 the end of that source line (if it is still within the function).
7108 Otherwise, just go to end of prologue. */
7109 if (stop_func_sal.end
7110 && stop_func_sal.pc != ecs->stop_func_start
7111 && stop_func_sal.end < ecs->stop_func_end)
7112 ecs->stop_func_start = stop_func_sal.end;
7113
7114 /* Architectures which require breakpoint adjustment might not be able
7115 to place a breakpoint at the computed address. If so, the test
7116 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7117 ecs->stop_func_start to an address at which a breakpoint may be
7118 legitimately placed.
7119
7120 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7121 made, GDB will enter an infinite loop when stepping through
7122 optimized code consisting of VLIW instructions which contain
7123 subinstructions corresponding to different source lines. On
7124 FR-V, it's not permitted to place a breakpoint on any but the
7125 first subinstruction of a VLIW instruction. When a breakpoint is
7126 set, GDB will adjust the breakpoint address to the beginning of
7127 the VLIW instruction. Thus, we need to make the corresponding
7128 adjustment here when computing the stop address. */
7129
7130 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7131 {
7132 ecs->stop_func_start
7133 = gdbarch_adjust_breakpoint_address (gdbarch,
7134 ecs->stop_func_start);
7135 }
7136
7137 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7138 {
7139 /* We are already there: stop now. */
7140 end_stepping_range (ecs);
7141 return;
7142 }
7143 else
7144 {
7145 /* Put the step-breakpoint there and go until there. */
7146 symtab_and_line sr_sal;
7147 sr_sal.pc = ecs->stop_func_start;
7148 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7149 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7150
7151 /* Do not specify what the fp should be when we stop since on
7152 some machines the prologue is where the new fp value is
7153 established. */
7154 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7155
7156 /* And make sure stepping stops right away then. */
7157 ecs->event_thread->control.step_range_end
7158 = ecs->event_thread->control.step_range_start;
7159 }
7160 keep_going (ecs);
7161 }
7162
7163 /* Inferior has stepped backward into a subroutine call with source
7164 code that we should not step over. Do step to the beginning of the
7165 last line of code in it. */
7166
7167 static void
7168 handle_step_into_function_backward (struct gdbarch *gdbarch,
7169 struct execution_control_state *ecs)
7170 {
7171 struct compunit_symtab *cust;
7172 struct symtab_and_line stop_func_sal;
7173
7174 fill_in_stop_func (gdbarch, ecs);
7175
7176 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7177 if (cust != NULL && compunit_language (cust) != language_asm)
7178 ecs->stop_func_start
7179 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7180
7181 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7182
7183 /* OK, we're just going to keep stepping here. */
7184 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7185 {
7186 /* We're there already. Just stop stepping now. */
7187 end_stepping_range (ecs);
7188 }
7189 else
7190 {
7191 /* Else just reset the step range and keep going.
7192 No step-resume breakpoint, they don't work for
7193 epilogues, which can have multiple entry paths. */
7194 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7195 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7196 keep_going (ecs);
7197 }
7198 return;
7199 }
7200
7201 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7202 This is used to both functions and to skip over code. */
7203
7204 static void
7205 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7206 struct symtab_and_line sr_sal,
7207 struct frame_id sr_id,
7208 enum bptype sr_type)
7209 {
7210 /* There should never be more than one step-resume or longjmp-resume
7211 breakpoint per thread, so we should never be setting a new
7212 step_resume_breakpoint when one is already active. */
7213 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7214 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7215
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
7218 "infrun: inserting step-resume breakpoint at %s\n",
7219 paddress (gdbarch, sr_sal.pc));
7220
7221 inferior_thread ()->control.step_resume_breakpoint
7222 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7223 }
7224
7225 void
7226 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7227 struct symtab_and_line sr_sal,
7228 struct frame_id sr_id)
7229 {
7230 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7231 sr_sal, sr_id,
7232 bp_step_resume);
7233 }
7234
7235 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7236 This is used to skip a potential signal handler.
7237
7238 This is called with the interrupted function's frame. The signal
7239 handler, when it returns, will resume the interrupted function at
7240 RETURN_FRAME.pc. */
7241
7242 static void
7243 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7244 {
7245 gdb_assert (return_frame != NULL);
7246
7247 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7248
7249 symtab_and_line sr_sal;
7250 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7251 sr_sal.section = find_pc_overlay (sr_sal.pc);
7252 sr_sal.pspace = get_frame_program_space (return_frame);
7253
7254 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7255 get_stack_frame_id (return_frame),
7256 bp_hp_step_resume);
7257 }
7258
7259 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7260 is used to skip a function after stepping into it (for "next" or if
7261 the called function has no debugging information).
7262
7263 The current function has almost always been reached by single
7264 stepping a call or return instruction. NEXT_FRAME belongs to the
7265 current function, and the breakpoint will be set at the caller's
7266 resume address.
7267
7268 This is a separate function rather than reusing
7269 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7270 get_prev_frame, which may stop prematurely (see the implementation
7271 of frame_unwind_caller_id for an example). */
7272
7273 static void
7274 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7275 {
7276 /* We shouldn't have gotten here if we don't know where the call site
7277 is. */
7278 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7279
7280 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7281
7282 symtab_and_line sr_sal;
7283 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7284 frame_unwind_caller_pc (next_frame));
7285 sr_sal.section = find_pc_overlay (sr_sal.pc);
7286 sr_sal.pspace = frame_unwind_program_space (next_frame);
7287
7288 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7289 frame_unwind_caller_id (next_frame));
7290 }
7291
7292 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7293 new breakpoint at the target of a jmp_buf. The handling of
7294 longjmp-resume uses the same mechanisms used for handling
7295 "step-resume" breakpoints. */
7296
7297 static void
7298 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7299 {
7300 /* There should never be more than one longjmp-resume breakpoint per
7301 thread, so we should never be setting a new
7302 longjmp_resume_breakpoint when one is already active. */
7303 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7304
7305 if (debug_infrun)
7306 fprintf_unfiltered (gdb_stdlog,
7307 "infrun: inserting longjmp-resume breakpoint at %s\n",
7308 paddress (gdbarch, pc));
7309
7310 inferior_thread ()->control.exception_resume_breakpoint =
7311 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7312 }
7313
7314 /* Insert an exception resume breakpoint. TP is the thread throwing
7315 the exception. The block B is the block of the unwinder debug hook
7316 function. FRAME is the frame corresponding to the call to this
7317 function. SYM is the symbol of the function argument holding the
7318 target PC of the exception. */
7319
7320 static void
7321 insert_exception_resume_breakpoint (struct thread_info *tp,
7322 const struct block *b,
7323 struct frame_info *frame,
7324 struct symbol *sym)
7325 {
7326 TRY
7327 {
7328 struct block_symbol vsym;
7329 struct value *value;
7330 CORE_ADDR handler;
7331 struct breakpoint *bp;
7332
7333 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7334 b, VAR_DOMAIN);
7335 value = read_var_value (vsym.symbol, vsym.block, frame);
7336 /* If the value was optimized out, revert to the old behavior. */
7337 if (! value_optimized_out (value))
7338 {
7339 handler = value_as_address (value);
7340
7341 if (debug_infrun)
7342 fprintf_unfiltered (gdb_stdlog,
7343 "infrun: exception resume at %lx\n",
7344 (unsigned long) handler);
7345
7346 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7347 handler,
7348 bp_exception_resume).release ();
7349
7350 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7351 frame = NULL;
7352
7353 bp->thread = tp->global_num;
7354 inferior_thread ()->control.exception_resume_breakpoint = bp;
7355 }
7356 }
7357 CATCH (e, RETURN_MASK_ERROR)
7358 {
7359 /* We want to ignore errors here. */
7360 }
7361 END_CATCH
7362 }
7363
7364 /* A helper for check_exception_resume that sets an
7365 exception-breakpoint based on a SystemTap probe. */
7366
7367 static void
7368 insert_exception_resume_from_probe (struct thread_info *tp,
7369 const struct bound_probe *probe,
7370 struct frame_info *frame)
7371 {
7372 struct value *arg_value;
7373 CORE_ADDR handler;
7374 struct breakpoint *bp;
7375
7376 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7377 if (!arg_value)
7378 return;
7379
7380 handler = value_as_address (arg_value);
7381
7382 if (debug_infrun)
7383 fprintf_unfiltered (gdb_stdlog,
7384 "infrun: exception resume at %s\n",
7385 paddress (get_objfile_arch (probe->objfile),
7386 handler));
7387
7388 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7389 handler, bp_exception_resume).release ();
7390 bp->thread = tp->global_num;
7391 inferior_thread ()->control.exception_resume_breakpoint = bp;
7392 }
7393
7394 /* This is called when an exception has been intercepted. Check to
7395 see whether the exception's destination is of interest, and if so,
7396 set an exception resume breakpoint there. */
7397
7398 static void
7399 check_exception_resume (struct execution_control_state *ecs,
7400 struct frame_info *frame)
7401 {
7402 struct bound_probe probe;
7403 struct symbol *func;
7404
7405 /* First see if this exception unwinding breakpoint was set via a
7406 SystemTap probe point. If so, the probe has two arguments: the
7407 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7408 set a breakpoint there. */
7409 probe = find_probe_by_pc (get_frame_pc (frame));
7410 if (probe.prob)
7411 {
7412 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7413 return;
7414 }
7415
7416 func = get_frame_function (frame);
7417 if (!func)
7418 return;
7419
7420 TRY
7421 {
7422 const struct block *b;
7423 struct block_iterator iter;
7424 struct symbol *sym;
7425 int argno = 0;
7426
7427 /* The exception breakpoint is a thread-specific breakpoint on
7428 the unwinder's debug hook, declared as:
7429
7430 void _Unwind_DebugHook (void *cfa, void *handler);
7431
7432 The CFA argument indicates the frame to which control is
7433 about to be transferred. HANDLER is the destination PC.
7434
7435 We ignore the CFA and set a temporary breakpoint at HANDLER.
7436 This is not extremely efficient but it avoids issues in gdb
7437 with computing the DWARF CFA, and it also works even in weird
7438 cases such as throwing an exception from inside a signal
7439 handler. */
7440
7441 b = SYMBOL_BLOCK_VALUE (func);
7442 ALL_BLOCK_SYMBOLS (b, iter, sym)
7443 {
7444 if (!SYMBOL_IS_ARGUMENT (sym))
7445 continue;
7446
7447 if (argno == 0)
7448 ++argno;
7449 else
7450 {
7451 insert_exception_resume_breakpoint (ecs->event_thread,
7452 b, frame, sym);
7453 break;
7454 }
7455 }
7456 }
7457 CATCH (e, RETURN_MASK_ERROR)
7458 {
7459 }
7460 END_CATCH
7461 }
7462
7463 static void
7464 stop_waiting (struct execution_control_state *ecs)
7465 {
7466 if (debug_infrun)
7467 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7468
7469 /* Let callers know we don't want to wait for the inferior anymore. */
7470 ecs->wait_some_more = 0;
7471
7472 /* If all-stop, but the target is always in non-stop mode, stop all
7473 threads now that we're presenting the stop to the user. */
7474 if (!non_stop && target_is_non_stop_p ())
7475 stop_all_threads ();
7476 }
7477
7478 /* Like keep_going, but passes the signal to the inferior, even if the
7479 signal is set to nopass. */
7480
7481 static void
7482 keep_going_pass_signal (struct execution_control_state *ecs)
7483 {
7484 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7485 gdb_assert (!ecs->event_thread->resumed);
7486
7487 /* Save the pc before execution, to compare with pc after stop. */
7488 ecs->event_thread->prev_pc
7489 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7490
7491 if (ecs->event_thread->control.trap_expected)
7492 {
7493 struct thread_info *tp = ecs->event_thread;
7494
7495 if (debug_infrun)
7496 fprintf_unfiltered (gdb_stdlog,
7497 "infrun: %s has trap_expected set, "
7498 "resuming to collect trap\n",
7499 target_pid_to_str (tp->ptid).c_str ());
7500
7501 /* We haven't yet gotten our trap, and either: intercepted a
7502 non-signal event (e.g., a fork); or took a signal which we
7503 are supposed to pass through to the inferior. Simply
7504 continue. */
7505 resume (ecs->event_thread->suspend.stop_signal);
7506 }
7507 else if (step_over_info_valid_p ())
7508 {
7509 /* Another thread is stepping over a breakpoint in-line. If
7510 this thread needs a step-over too, queue the request. In
7511 either case, this resume must be deferred for later. */
7512 struct thread_info *tp = ecs->event_thread;
7513
7514 if (ecs->hit_singlestep_breakpoint
7515 || thread_still_needs_step_over (tp))
7516 {
7517 if (debug_infrun)
7518 fprintf_unfiltered (gdb_stdlog,
7519 "infrun: step-over already in progress: "
7520 "step-over for %s deferred\n",
7521 target_pid_to_str (tp->ptid).c_str ());
7522 thread_step_over_chain_enqueue (tp);
7523 }
7524 else
7525 {
7526 if (debug_infrun)
7527 fprintf_unfiltered (gdb_stdlog,
7528 "infrun: step-over in progress: "
7529 "resume of %s deferred\n",
7530 target_pid_to_str (tp->ptid).c_str ());
7531 }
7532 }
7533 else
7534 {
7535 struct regcache *regcache = get_current_regcache ();
7536 int remove_bp;
7537 int remove_wps;
7538 step_over_what step_what;
7539
7540 /* Either the trap was not expected, but we are continuing
7541 anyway (if we got a signal, the user asked it be passed to
7542 the child)
7543 -- or --
7544 We got our expected trap, but decided we should resume from
7545 it.
7546
7547 We're going to run this baby now!
7548
7549 Note that insert_breakpoints won't try to re-insert
7550 already inserted breakpoints. Therefore, we don't
7551 care if breakpoints were already inserted, or not. */
7552
7553 /* If we need to step over a breakpoint, and we're not using
7554 displaced stepping to do so, insert all breakpoints
7555 (watchpoints, etc.) but the one we're stepping over, step one
7556 instruction, and then re-insert the breakpoint when that step
7557 is finished. */
7558
7559 step_what = thread_still_needs_step_over (ecs->event_thread);
7560
7561 remove_bp = (ecs->hit_singlestep_breakpoint
7562 || (step_what & STEP_OVER_BREAKPOINT));
7563 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7564
7565 /* We can't use displaced stepping if we need to step past a
7566 watchpoint. The instruction copied to the scratch pad would
7567 still trigger the watchpoint. */
7568 if (remove_bp
7569 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7570 {
7571 set_step_over_info (regcache->aspace (),
7572 regcache_read_pc (regcache), remove_wps,
7573 ecs->event_thread->global_num);
7574 }
7575 else if (remove_wps)
7576 set_step_over_info (NULL, 0, remove_wps, -1);
7577
7578 /* If we now need to do an in-line step-over, we need to stop
7579 all other threads. Note this must be done before
7580 insert_breakpoints below, because that removes the breakpoint
7581 we're about to step over, otherwise other threads could miss
7582 it. */
7583 if (step_over_info_valid_p () && target_is_non_stop_p ())
7584 stop_all_threads ();
7585
7586 /* Stop stepping if inserting breakpoints fails. */
7587 TRY
7588 {
7589 insert_breakpoints ();
7590 }
7591 CATCH (e, RETURN_MASK_ERROR)
7592 {
7593 exception_print (gdb_stderr, e);
7594 stop_waiting (ecs);
7595 clear_step_over_info ();
7596 return;
7597 }
7598 END_CATCH
7599
7600 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7601
7602 resume (ecs->event_thread->suspend.stop_signal);
7603 }
7604
7605 prepare_to_wait (ecs);
7606 }
7607
7608 /* Called when we should continue running the inferior, because the
7609 current event doesn't cause a user visible stop. This does the
7610 resuming part; waiting for the next event is done elsewhere. */
7611
7612 static void
7613 keep_going (struct execution_control_state *ecs)
7614 {
7615 if (ecs->event_thread->control.trap_expected
7616 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7617 ecs->event_thread->control.trap_expected = 0;
7618
7619 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7620 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7621 keep_going_pass_signal (ecs);
7622 }
7623
7624 /* This function normally comes after a resume, before
7625 handle_inferior_event exits. It takes care of any last bits of
7626 housekeeping, and sets the all-important wait_some_more flag. */
7627
7628 static void
7629 prepare_to_wait (struct execution_control_state *ecs)
7630 {
7631 if (debug_infrun)
7632 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7633
7634 ecs->wait_some_more = 1;
7635
7636 if (!target_is_async_p ())
7637 mark_infrun_async_event_handler ();
7638 }
7639
7640 /* We are done with the step range of a step/next/si/ni command.
7641 Called once for each n of a "step n" operation. */
7642
7643 static void
7644 end_stepping_range (struct execution_control_state *ecs)
7645 {
7646 ecs->event_thread->control.stop_step = 1;
7647 stop_waiting (ecs);
7648 }
7649
7650 /* Several print_*_reason functions to print why the inferior has stopped.
7651 We always print something when the inferior exits, or receives a signal.
7652 The rest of the cases are dealt with later on in normal_stop and
7653 print_it_typical. Ideally there should be a call to one of these
7654 print_*_reason functions functions from handle_inferior_event each time
7655 stop_waiting is called.
7656
7657 Note that we don't call these directly, instead we delegate that to
7658 the interpreters, through observers. Interpreters then call these
7659 with whatever uiout is right. */
7660
7661 void
7662 print_end_stepping_range_reason (struct ui_out *uiout)
7663 {
7664 /* For CLI-like interpreters, print nothing. */
7665
7666 if (uiout->is_mi_like_p ())
7667 {
7668 uiout->field_string ("reason",
7669 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7670 }
7671 }
7672
7673 void
7674 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7675 {
7676 annotate_signalled ();
7677 if (uiout->is_mi_like_p ())
7678 uiout->field_string
7679 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7680 uiout->text ("\nProgram terminated with signal ");
7681 annotate_signal_name ();
7682 uiout->field_string ("signal-name",
7683 gdb_signal_to_name (siggnal));
7684 annotate_signal_name_end ();
7685 uiout->text (", ");
7686 annotate_signal_string ();
7687 uiout->field_string ("signal-meaning",
7688 gdb_signal_to_string (siggnal));
7689 annotate_signal_string_end ();
7690 uiout->text (".\n");
7691 uiout->text ("The program no longer exists.\n");
7692 }
7693
7694 void
7695 print_exited_reason (struct ui_out *uiout, int exitstatus)
7696 {
7697 struct inferior *inf = current_inferior ();
7698 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7699
7700 annotate_exited (exitstatus);
7701 if (exitstatus)
7702 {
7703 if (uiout->is_mi_like_p ())
7704 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7705 uiout->text ("[Inferior ");
7706 uiout->text (plongest (inf->num));
7707 uiout->text (" (");
7708 uiout->text (pidstr.c_str ());
7709 uiout->text (") exited with code ");
7710 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7711 uiout->text ("]\n");
7712 }
7713 else
7714 {
7715 if (uiout->is_mi_like_p ())
7716 uiout->field_string
7717 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7718 uiout->text ("[Inferior ");
7719 uiout->text (plongest (inf->num));
7720 uiout->text (" (");
7721 uiout->text (pidstr.c_str ());
7722 uiout->text (") exited normally]\n");
7723 }
7724 }
7725
7726 /* Some targets/architectures can do extra processing/display of
7727 segmentation faults. E.g., Intel MPX boundary faults.
7728 Call the architecture dependent function to handle the fault. */
7729
7730 static void
7731 handle_segmentation_fault (struct ui_out *uiout)
7732 {
7733 struct regcache *regcache = get_current_regcache ();
7734 struct gdbarch *gdbarch = regcache->arch ();
7735
7736 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7737 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7738 }
7739
7740 void
7741 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7742 {
7743 struct thread_info *thr = inferior_thread ();
7744
7745 annotate_signal ();
7746
7747 if (uiout->is_mi_like_p ())
7748 ;
7749 else if (show_thread_that_caused_stop ())
7750 {
7751 const char *name;
7752
7753 uiout->text ("\nThread ");
7754 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7755
7756 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7757 if (name != NULL)
7758 {
7759 uiout->text (" \"");
7760 uiout->field_fmt ("name", "%s", name);
7761 uiout->text ("\"");
7762 }
7763 }
7764 else
7765 uiout->text ("\nProgram");
7766
7767 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7768 uiout->text (" stopped");
7769 else
7770 {
7771 uiout->text (" received signal ");
7772 annotate_signal_name ();
7773 if (uiout->is_mi_like_p ())
7774 uiout->field_string
7775 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7776 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7777 annotate_signal_name_end ();
7778 uiout->text (", ");
7779 annotate_signal_string ();
7780 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7781
7782 if (siggnal == GDB_SIGNAL_SEGV)
7783 handle_segmentation_fault (uiout);
7784
7785 annotate_signal_string_end ();
7786 }
7787 uiout->text (".\n");
7788 }
7789
7790 void
7791 print_no_history_reason (struct ui_out *uiout)
7792 {
7793 uiout->text ("\nNo more reverse-execution history.\n");
7794 }
7795
7796 /* Print current location without a level number, if we have changed
7797 functions or hit a breakpoint. Print source line if we have one.
7798 bpstat_print contains the logic deciding in detail what to print,
7799 based on the event(s) that just occurred. */
7800
7801 static void
7802 print_stop_location (struct target_waitstatus *ws)
7803 {
7804 int bpstat_ret;
7805 enum print_what source_flag;
7806 int do_frame_printing = 1;
7807 struct thread_info *tp = inferior_thread ();
7808
7809 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7810 switch (bpstat_ret)
7811 {
7812 case PRINT_UNKNOWN:
7813 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7814 should) carry around the function and does (or should) use
7815 that when doing a frame comparison. */
7816 if (tp->control.stop_step
7817 && frame_id_eq (tp->control.step_frame_id,
7818 get_frame_id (get_current_frame ()))
7819 && (tp->control.step_start_function
7820 == find_pc_function (tp->suspend.stop_pc)))
7821 {
7822 /* Finished step, just print source line. */
7823 source_flag = SRC_LINE;
7824 }
7825 else
7826 {
7827 /* Print location and source line. */
7828 source_flag = SRC_AND_LOC;
7829 }
7830 break;
7831 case PRINT_SRC_AND_LOC:
7832 /* Print location and source line. */
7833 source_flag = SRC_AND_LOC;
7834 break;
7835 case PRINT_SRC_ONLY:
7836 source_flag = SRC_LINE;
7837 break;
7838 case PRINT_NOTHING:
7839 /* Something bogus. */
7840 source_flag = SRC_LINE;
7841 do_frame_printing = 0;
7842 break;
7843 default:
7844 internal_error (__FILE__, __LINE__, _("Unknown value."));
7845 }
7846
7847 /* The behavior of this routine with respect to the source
7848 flag is:
7849 SRC_LINE: Print only source line
7850 LOCATION: Print only location
7851 SRC_AND_LOC: Print location and source line. */
7852 if (do_frame_printing)
7853 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7854 }
7855
7856 /* See infrun.h. */
7857
7858 void
7859 print_stop_event (struct ui_out *uiout)
7860 {
7861 struct target_waitstatus last;
7862 ptid_t last_ptid;
7863 struct thread_info *tp;
7864
7865 get_last_target_status (&last_ptid, &last);
7866
7867 {
7868 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7869
7870 print_stop_location (&last);
7871
7872 /* Display the auto-display expressions. */
7873 do_displays ();
7874 }
7875
7876 tp = inferior_thread ();
7877 if (tp->thread_fsm != NULL
7878 && tp->thread_fsm->finished_p ())
7879 {
7880 struct return_value_info *rv;
7881
7882 rv = tp->thread_fsm->return_value ();
7883 if (rv != NULL)
7884 print_return_value (uiout, rv);
7885 }
7886 }
7887
7888 /* See infrun.h. */
7889
7890 void
7891 maybe_remove_breakpoints (void)
7892 {
7893 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7894 {
7895 if (remove_breakpoints ())
7896 {
7897 target_terminal::ours_for_output ();
7898 printf_filtered (_("Cannot remove breakpoints because "
7899 "program is no longer writable.\nFurther "
7900 "execution is probably impossible.\n"));
7901 }
7902 }
7903 }
7904
7905 /* The execution context that just caused a normal stop. */
7906
7907 struct stop_context
7908 {
7909 stop_context ();
7910 ~stop_context ();
7911
7912 DISABLE_COPY_AND_ASSIGN (stop_context);
7913
7914 bool changed () const;
7915
7916 /* The stop ID. */
7917 ULONGEST stop_id;
7918
7919 /* The event PTID. */
7920
7921 ptid_t ptid;
7922
7923 /* If stopp for a thread event, this is the thread that caused the
7924 stop. */
7925 struct thread_info *thread;
7926
7927 /* The inferior that caused the stop. */
7928 int inf_num;
7929 };
7930
7931 /* Initializes a new stop context. If stopped for a thread event, this
7932 takes a strong reference to the thread. */
7933
7934 stop_context::stop_context ()
7935 {
7936 stop_id = get_stop_id ();
7937 ptid = inferior_ptid;
7938 inf_num = current_inferior ()->num;
7939
7940 if (inferior_ptid != null_ptid)
7941 {
7942 /* Take a strong reference so that the thread can't be deleted
7943 yet. */
7944 thread = inferior_thread ();
7945 thread->incref ();
7946 }
7947 else
7948 thread = NULL;
7949 }
7950
7951 /* Release a stop context previously created with save_stop_context.
7952 Releases the strong reference to the thread as well. */
7953
7954 stop_context::~stop_context ()
7955 {
7956 if (thread != NULL)
7957 thread->decref ();
7958 }
7959
7960 /* Return true if the current context no longer matches the saved stop
7961 context. */
7962
7963 bool
7964 stop_context::changed () const
7965 {
7966 if (ptid != inferior_ptid)
7967 return true;
7968 if (inf_num != current_inferior ()->num)
7969 return true;
7970 if (thread != NULL && thread->state != THREAD_STOPPED)
7971 return true;
7972 if (get_stop_id () != stop_id)
7973 return true;
7974 return false;
7975 }
7976
7977 /* See infrun.h. */
7978
7979 int
7980 normal_stop (void)
7981 {
7982 struct target_waitstatus last;
7983 ptid_t last_ptid;
7984
7985 get_last_target_status (&last_ptid, &last);
7986
7987 new_stop_id ();
7988
7989 /* If an exception is thrown from this point on, make sure to
7990 propagate GDB's knowledge of the executing state to the
7991 frontend/user running state. A QUIT is an easy exception to see
7992 here, so do this before any filtered output. */
7993
7994 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7995
7996 if (!non_stop)
7997 maybe_finish_thread_state.emplace (minus_one_ptid);
7998 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7999 || last.kind == TARGET_WAITKIND_EXITED)
8000 {
8001 /* On some targets, we may still have live threads in the
8002 inferior when we get a process exit event. E.g., for
8003 "checkpoint", when the current checkpoint/fork exits,
8004 linux-fork.c automatically switches to another fork from
8005 within target_mourn_inferior. */
8006 if (inferior_ptid != null_ptid)
8007 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8008 }
8009 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8010 maybe_finish_thread_state.emplace (inferior_ptid);
8011
8012 /* As we're presenting a stop, and potentially removing breakpoints,
8013 update the thread list so we can tell whether there are threads
8014 running on the target. With target remote, for example, we can
8015 only learn about new threads when we explicitly update the thread
8016 list. Do this before notifying the interpreters about signal
8017 stops, end of stepping ranges, etc., so that the "new thread"
8018 output is emitted before e.g., "Program received signal FOO",
8019 instead of after. */
8020 update_thread_list ();
8021
8022 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8023 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8024
8025 /* As with the notification of thread events, we want to delay
8026 notifying the user that we've switched thread context until
8027 the inferior actually stops.
8028
8029 There's no point in saying anything if the inferior has exited.
8030 Note that SIGNALLED here means "exited with a signal", not
8031 "received a signal".
8032
8033 Also skip saying anything in non-stop mode. In that mode, as we
8034 don't want GDB to switch threads behind the user's back, to avoid
8035 races where the user is typing a command to apply to thread x,
8036 but GDB switches to thread y before the user finishes entering
8037 the command, fetch_inferior_event installs a cleanup to restore
8038 the current thread back to the thread the user had selected right
8039 after this event is handled, so we're not really switching, only
8040 informing of a stop. */
8041 if (!non_stop
8042 && previous_inferior_ptid != inferior_ptid
8043 && target_has_execution
8044 && last.kind != TARGET_WAITKIND_SIGNALLED
8045 && last.kind != TARGET_WAITKIND_EXITED
8046 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8047 {
8048 SWITCH_THRU_ALL_UIS ()
8049 {
8050 target_terminal::ours_for_output ();
8051 printf_filtered (_("[Switching to %s]\n"),
8052 target_pid_to_str (inferior_ptid).c_str ());
8053 annotate_thread_changed ();
8054 }
8055 previous_inferior_ptid = inferior_ptid;
8056 }
8057
8058 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8059 {
8060 SWITCH_THRU_ALL_UIS ()
8061 if (current_ui->prompt_state == PROMPT_BLOCKED)
8062 {
8063 target_terminal::ours_for_output ();
8064 printf_filtered (_("No unwaited-for children left.\n"));
8065 }
8066 }
8067
8068 /* Note: this depends on the update_thread_list call above. */
8069 maybe_remove_breakpoints ();
8070
8071 /* If an auto-display called a function and that got a signal,
8072 delete that auto-display to avoid an infinite recursion. */
8073
8074 if (stopped_by_random_signal)
8075 disable_current_display ();
8076
8077 SWITCH_THRU_ALL_UIS ()
8078 {
8079 async_enable_stdin ();
8080 }
8081
8082 /* Let the user/frontend see the threads as stopped. */
8083 maybe_finish_thread_state.reset ();
8084
8085 /* Select innermost stack frame - i.e., current frame is frame 0,
8086 and current location is based on that. Handle the case where the
8087 dummy call is returning after being stopped. E.g. the dummy call
8088 previously hit a breakpoint. (If the dummy call returns
8089 normally, we won't reach here.) Do this before the stop hook is
8090 run, so that it doesn't get to see the temporary dummy frame,
8091 which is not where we'll present the stop. */
8092 if (has_stack_frames ())
8093 {
8094 if (stop_stack_dummy == STOP_STACK_DUMMY)
8095 {
8096 /* Pop the empty frame that contains the stack dummy. This
8097 also restores inferior state prior to the call (struct
8098 infcall_suspend_state). */
8099 struct frame_info *frame = get_current_frame ();
8100
8101 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8102 frame_pop (frame);
8103 /* frame_pop calls reinit_frame_cache as the last thing it
8104 does which means there's now no selected frame. */
8105 }
8106
8107 select_frame (get_current_frame ());
8108
8109 /* Set the current source location. */
8110 set_current_sal_from_frame (get_current_frame ());
8111 }
8112
8113 /* Look up the hook_stop and run it (CLI internally handles problem
8114 of stop_command's pre-hook not existing). */
8115 if (stop_command != NULL)
8116 {
8117 stop_context saved_context;
8118
8119 TRY
8120 {
8121 execute_cmd_pre_hook (stop_command);
8122 }
8123 CATCH (ex, RETURN_MASK_ALL)
8124 {
8125 exception_fprintf (gdb_stderr, ex,
8126 "Error while running hook_stop:\n");
8127 }
8128 END_CATCH
8129
8130 /* If the stop hook resumes the target, then there's no point in
8131 trying to notify about the previous stop; its context is
8132 gone. Likewise if the command switches thread or inferior --
8133 the observers would print a stop for the wrong
8134 thread/inferior. */
8135 if (saved_context.changed ())
8136 return 1;
8137 }
8138
8139 /* Notify observers about the stop. This is where the interpreters
8140 print the stop event. */
8141 if (inferior_ptid != null_ptid)
8142 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8143 stop_print_frame);
8144 else
8145 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8146
8147 annotate_stopped ();
8148
8149 if (target_has_execution)
8150 {
8151 if (last.kind != TARGET_WAITKIND_SIGNALLED
8152 && last.kind != TARGET_WAITKIND_EXITED
8153 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8154 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8155 Delete any breakpoint that is to be deleted at the next stop. */
8156 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8157 }
8158
8159 /* Try to get rid of automatically added inferiors that are no
8160 longer needed. Keeping those around slows down things linearly.
8161 Note that this never removes the current inferior. */
8162 prune_inferiors ();
8163
8164 return 0;
8165 }
8166 \f
8167 int
8168 signal_stop_state (int signo)
8169 {
8170 return signal_stop[signo];
8171 }
8172
8173 int
8174 signal_print_state (int signo)
8175 {
8176 return signal_print[signo];
8177 }
8178
8179 int
8180 signal_pass_state (int signo)
8181 {
8182 return signal_program[signo];
8183 }
8184
8185 static void
8186 signal_cache_update (int signo)
8187 {
8188 if (signo == -1)
8189 {
8190 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8191 signal_cache_update (signo);
8192
8193 return;
8194 }
8195
8196 signal_pass[signo] = (signal_stop[signo] == 0
8197 && signal_print[signo] == 0
8198 && signal_program[signo] == 1
8199 && signal_catch[signo] == 0);
8200 }
8201
8202 int
8203 signal_stop_update (int signo, int state)
8204 {
8205 int ret = signal_stop[signo];
8206
8207 signal_stop[signo] = state;
8208 signal_cache_update (signo);
8209 return ret;
8210 }
8211
8212 int
8213 signal_print_update (int signo, int state)
8214 {
8215 int ret = signal_print[signo];
8216
8217 signal_print[signo] = state;
8218 signal_cache_update (signo);
8219 return ret;
8220 }
8221
8222 int
8223 signal_pass_update (int signo, int state)
8224 {
8225 int ret = signal_program[signo];
8226
8227 signal_program[signo] = state;
8228 signal_cache_update (signo);
8229 return ret;
8230 }
8231
8232 /* Update the global 'signal_catch' from INFO and notify the
8233 target. */
8234
8235 void
8236 signal_catch_update (const unsigned int *info)
8237 {
8238 int i;
8239
8240 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8241 signal_catch[i] = info[i] > 0;
8242 signal_cache_update (-1);
8243 target_pass_signals (signal_pass);
8244 }
8245
8246 static void
8247 sig_print_header (void)
8248 {
8249 printf_filtered (_("Signal Stop\tPrint\tPass "
8250 "to program\tDescription\n"));
8251 }
8252
8253 static void
8254 sig_print_info (enum gdb_signal oursig)
8255 {
8256 const char *name = gdb_signal_to_name (oursig);
8257 int name_padding = 13 - strlen (name);
8258
8259 if (name_padding <= 0)
8260 name_padding = 0;
8261
8262 printf_filtered ("%s", name);
8263 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8264 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8265 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8266 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8267 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8268 }
8269
8270 /* Specify how various signals in the inferior should be handled. */
8271
8272 static void
8273 handle_command (const char *args, int from_tty)
8274 {
8275 int digits, wordlen;
8276 int sigfirst, siglast;
8277 enum gdb_signal oursig;
8278 int allsigs;
8279
8280 if (args == NULL)
8281 {
8282 error_no_arg (_("signal to handle"));
8283 }
8284
8285 /* Allocate and zero an array of flags for which signals to handle. */
8286
8287 const size_t nsigs = GDB_SIGNAL_LAST;
8288 unsigned char sigs[nsigs] {};
8289
8290 /* Break the command line up into args. */
8291
8292 gdb_argv built_argv (args);
8293
8294 /* Walk through the args, looking for signal oursigs, signal names, and
8295 actions. Signal numbers and signal names may be interspersed with
8296 actions, with the actions being performed for all signals cumulatively
8297 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8298
8299 for (char *arg : built_argv)
8300 {
8301 wordlen = strlen (arg);
8302 for (digits = 0; isdigit (arg[digits]); digits++)
8303 {;
8304 }
8305 allsigs = 0;
8306 sigfirst = siglast = -1;
8307
8308 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8309 {
8310 /* Apply action to all signals except those used by the
8311 debugger. Silently skip those. */
8312 allsigs = 1;
8313 sigfirst = 0;
8314 siglast = nsigs - 1;
8315 }
8316 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8317 {
8318 SET_SIGS (nsigs, sigs, signal_stop);
8319 SET_SIGS (nsigs, sigs, signal_print);
8320 }
8321 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8322 {
8323 UNSET_SIGS (nsigs, sigs, signal_program);
8324 }
8325 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8326 {
8327 SET_SIGS (nsigs, sigs, signal_print);
8328 }
8329 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8330 {
8331 SET_SIGS (nsigs, sigs, signal_program);
8332 }
8333 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8334 {
8335 UNSET_SIGS (nsigs, sigs, signal_stop);
8336 }
8337 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8338 {
8339 SET_SIGS (nsigs, sigs, signal_program);
8340 }
8341 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8342 {
8343 UNSET_SIGS (nsigs, sigs, signal_print);
8344 UNSET_SIGS (nsigs, sigs, signal_stop);
8345 }
8346 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8347 {
8348 UNSET_SIGS (nsigs, sigs, signal_program);
8349 }
8350 else if (digits > 0)
8351 {
8352 /* It is numeric. The numeric signal refers to our own
8353 internal signal numbering from target.h, not to host/target
8354 signal number. This is a feature; users really should be
8355 using symbolic names anyway, and the common ones like
8356 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8357
8358 sigfirst = siglast = (int)
8359 gdb_signal_from_command (atoi (arg));
8360 if (arg[digits] == '-')
8361 {
8362 siglast = (int)
8363 gdb_signal_from_command (atoi (arg + digits + 1));
8364 }
8365 if (sigfirst > siglast)
8366 {
8367 /* Bet he didn't figure we'd think of this case... */
8368 std::swap (sigfirst, siglast);
8369 }
8370 }
8371 else
8372 {
8373 oursig = gdb_signal_from_name (arg);
8374 if (oursig != GDB_SIGNAL_UNKNOWN)
8375 {
8376 sigfirst = siglast = (int) oursig;
8377 }
8378 else
8379 {
8380 /* Not a number and not a recognized flag word => complain. */
8381 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8382 }
8383 }
8384
8385 /* If any signal numbers or symbol names were found, set flags for
8386 which signals to apply actions to. */
8387
8388 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8389 {
8390 switch ((enum gdb_signal) signum)
8391 {
8392 case GDB_SIGNAL_TRAP:
8393 case GDB_SIGNAL_INT:
8394 if (!allsigs && !sigs[signum])
8395 {
8396 if (query (_("%s is used by the debugger.\n\
8397 Are you sure you want to change it? "),
8398 gdb_signal_to_name ((enum gdb_signal) signum)))
8399 {
8400 sigs[signum] = 1;
8401 }
8402 else
8403 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8404 }
8405 break;
8406 case GDB_SIGNAL_0:
8407 case GDB_SIGNAL_DEFAULT:
8408 case GDB_SIGNAL_UNKNOWN:
8409 /* Make sure that "all" doesn't print these. */
8410 break;
8411 default:
8412 sigs[signum] = 1;
8413 break;
8414 }
8415 }
8416 }
8417
8418 for (int signum = 0; signum < nsigs; signum++)
8419 if (sigs[signum])
8420 {
8421 signal_cache_update (-1);
8422 target_pass_signals (signal_pass);
8423 target_program_signals (signal_program);
8424
8425 if (from_tty)
8426 {
8427 /* Show the results. */
8428 sig_print_header ();
8429 for (; signum < nsigs; signum++)
8430 if (sigs[signum])
8431 sig_print_info ((enum gdb_signal) signum);
8432 }
8433
8434 break;
8435 }
8436 }
8437
8438 /* Complete the "handle" command. */
8439
8440 static void
8441 handle_completer (struct cmd_list_element *ignore,
8442 completion_tracker &tracker,
8443 const char *text, const char *word)
8444 {
8445 static const char * const keywords[] =
8446 {
8447 "all",
8448 "stop",
8449 "ignore",
8450 "print",
8451 "pass",
8452 "nostop",
8453 "noignore",
8454 "noprint",
8455 "nopass",
8456 NULL,
8457 };
8458
8459 signal_completer (ignore, tracker, text, word);
8460 complete_on_enum (tracker, keywords, word, word);
8461 }
8462
8463 enum gdb_signal
8464 gdb_signal_from_command (int num)
8465 {
8466 if (num >= 1 && num <= 15)
8467 return (enum gdb_signal) num;
8468 error (_("Only signals 1-15 are valid as numeric signals.\n\
8469 Use \"info signals\" for a list of symbolic signals."));
8470 }
8471
8472 /* Print current contents of the tables set by the handle command.
8473 It is possible we should just be printing signals actually used
8474 by the current target (but for things to work right when switching
8475 targets, all signals should be in the signal tables). */
8476
8477 static void
8478 info_signals_command (const char *signum_exp, int from_tty)
8479 {
8480 enum gdb_signal oursig;
8481
8482 sig_print_header ();
8483
8484 if (signum_exp)
8485 {
8486 /* First see if this is a symbol name. */
8487 oursig = gdb_signal_from_name (signum_exp);
8488 if (oursig == GDB_SIGNAL_UNKNOWN)
8489 {
8490 /* No, try numeric. */
8491 oursig =
8492 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8493 }
8494 sig_print_info (oursig);
8495 return;
8496 }
8497
8498 printf_filtered ("\n");
8499 /* These ugly casts brought to you by the native VAX compiler. */
8500 for (oursig = GDB_SIGNAL_FIRST;
8501 (int) oursig < (int) GDB_SIGNAL_LAST;
8502 oursig = (enum gdb_signal) ((int) oursig + 1))
8503 {
8504 QUIT;
8505
8506 if (oursig != GDB_SIGNAL_UNKNOWN
8507 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8508 sig_print_info (oursig);
8509 }
8510
8511 printf_filtered (_("\nUse the \"handle\" command "
8512 "to change these tables.\n"));
8513 }
8514
8515 /* The $_siginfo convenience variable is a bit special. We don't know
8516 for sure the type of the value until we actually have a chance to
8517 fetch the data. The type can change depending on gdbarch, so it is
8518 also dependent on which thread you have selected.
8519
8520 1. making $_siginfo be an internalvar that creates a new value on
8521 access.
8522
8523 2. making the value of $_siginfo be an lval_computed value. */
8524
8525 /* This function implements the lval_computed support for reading a
8526 $_siginfo value. */
8527
8528 static void
8529 siginfo_value_read (struct value *v)
8530 {
8531 LONGEST transferred;
8532
8533 /* If we can access registers, so can we access $_siginfo. Likewise
8534 vice versa. */
8535 validate_registers_access ();
8536
8537 transferred =
8538 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8539 NULL,
8540 value_contents_all_raw (v),
8541 value_offset (v),
8542 TYPE_LENGTH (value_type (v)));
8543
8544 if (transferred != TYPE_LENGTH (value_type (v)))
8545 error (_("Unable to read siginfo"));
8546 }
8547
8548 /* This function implements the lval_computed support for writing a
8549 $_siginfo value. */
8550
8551 static void
8552 siginfo_value_write (struct value *v, struct value *fromval)
8553 {
8554 LONGEST transferred;
8555
8556 /* If we can access registers, so can we access $_siginfo. Likewise
8557 vice versa. */
8558 validate_registers_access ();
8559
8560 transferred = target_write (current_top_target (),
8561 TARGET_OBJECT_SIGNAL_INFO,
8562 NULL,
8563 value_contents_all_raw (fromval),
8564 value_offset (v),
8565 TYPE_LENGTH (value_type (fromval)));
8566
8567 if (transferred != TYPE_LENGTH (value_type (fromval)))
8568 error (_("Unable to write siginfo"));
8569 }
8570
8571 static const struct lval_funcs siginfo_value_funcs =
8572 {
8573 siginfo_value_read,
8574 siginfo_value_write
8575 };
8576
8577 /* Return a new value with the correct type for the siginfo object of
8578 the current thread using architecture GDBARCH. Return a void value
8579 if there's no object available. */
8580
8581 static struct value *
8582 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8583 void *ignore)
8584 {
8585 if (target_has_stack
8586 && inferior_ptid != null_ptid
8587 && gdbarch_get_siginfo_type_p (gdbarch))
8588 {
8589 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8590
8591 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8592 }
8593
8594 return allocate_value (builtin_type (gdbarch)->builtin_void);
8595 }
8596
8597 \f
8598 /* infcall_suspend_state contains state about the program itself like its
8599 registers and any signal it received when it last stopped.
8600 This state must be restored regardless of how the inferior function call
8601 ends (either successfully, or after it hits a breakpoint or signal)
8602 if the program is to properly continue where it left off. */
8603
8604 class infcall_suspend_state
8605 {
8606 public:
8607 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8608 once the inferior function call has finished. */
8609 infcall_suspend_state (struct gdbarch *gdbarch,
8610 const struct thread_info *tp,
8611 struct regcache *regcache)
8612 : m_thread_suspend (tp->suspend),
8613 m_registers (new readonly_detached_regcache (*regcache))
8614 {
8615 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8616
8617 if (gdbarch_get_siginfo_type_p (gdbarch))
8618 {
8619 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8620 size_t len = TYPE_LENGTH (type);
8621
8622 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8623
8624 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8625 siginfo_data.get (), 0, len) != len)
8626 {
8627 /* Errors ignored. */
8628 siginfo_data.reset (nullptr);
8629 }
8630 }
8631
8632 if (siginfo_data)
8633 {
8634 m_siginfo_gdbarch = gdbarch;
8635 m_siginfo_data = std::move (siginfo_data);
8636 }
8637 }
8638
8639 /* Return a pointer to the stored register state. */
8640
8641 readonly_detached_regcache *registers () const
8642 {
8643 return m_registers.get ();
8644 }
8645
8646 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8647
8648 void restore (struct gdbarch *gdbarch,
8649 struct thread_info *tp,
8650 struct regcache *regcache) const
8651 {
8652 tp->suspend = m_thread_suspend;
8653
8654 if (m_siginfo_gdbarch == gdbarch)
8655 {
8656 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8657
8658 /* Errors ignored. */
8659 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8660 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8661 }
8662
8663 /* The inferior can be gone if the user types "print exit(0)"
8664 (and perhaps other times). */
8665 if (target_has_execution)
8666 /* NB: The register write goes through to the target. */
8667 regcache->restore (registers ());
8668 }
8669
8670 private:
8671 /* How the current thread stopped before the inferior function call was
8672 executed. */
8673 struct thread_suspend_state m_thread_suspend;
8674
8675 /* The registers before the inferior function call was executed. */
8676 std::unique_ptr<readonly_detached_regcache> m_registers;
8677
8678 /* Format of SIGINFO_DATA or NULL if it is not present. */
8679 struct gdbarch *m_siginfo_gdbarch = nullptr;
8680
8681 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8682 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8683 content would be invalid. */
8684 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8685 };
8686
8687 infcall_suspend_state_up
8688 save_infcall_suspend_state ()
8689 {
8690 struct thread_info *tp = inferior_thread ();
8691 struct regcache *regcache = get_current_regcache ();
8692 struct gdbarch *gdbarch = regcache->arch ();
8693
8694 infcall_suspend_state_up inf_state
8695 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8696
8697 /* Having saved the current state, adjust the thread state, discarding
8698 any stop signal information. The stop signal is not useful when
8699 starting an inferior function call, and run_inferior_call will not use
8700 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8701 tp->suspend.stop_signal = GDB_SIGNAL_0;
8702
8703 return inf_state;
8704 }
8705
8706 /* Restore inferior session state to INF_STATE. */
8707
8708 void
8709 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8710 {
8711 struct thread_info *tp = inferior_thread ();
8712 struct regcache *regcache = get_current_regcache ();
8713 struct gdbarch *gdbarch = regcache->arch ();
8714
8715 inf_state->restore (gdbarch, tp, regcache);
8716 discard_infcall_suspend_state (inf_state);
8717 }
8718
8719 void
8720 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8721 {
8722 delete inf_state;
8723 }
8724
8725 readonly_detached_regcache *
8726 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8727 {
8728 return inf_state->registers ();
8729 }
8730
8731 /* infcall_control_state contains state regarding gdb's control of the
8732 inferior itself like stepping control. It also contains session state like
8733 the user's currently selected frame. */
8734
8735 struct infcall_control_state
8736 {
8737 struct thread_control_state thread_control;
8738 struct inferior_control_state inferior_control;
8739
8740 /* Other fields: */
8741 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8742 int stopped_by_random_signal = 0;
8743
8744 /* ID if the selected frame when the inferior function call was made. */
8745 struct frame_id selected_frame_id {};
8746 };
8747
8748 /* Save all of the information associated with the inferior<==>gdb
8749 connection. */
8750
8751 infcall_control_state_up
8752 save_infcall_control_state ()
8753 {
8754 infcall_control_state_up inf_status (new struct infcall_control_state);
8755 struct thread_info *tp = inferior_thread ();
8756 struct inferior *inf = current_inferior ();
8757
8758 inf_status->thread_control = tp->control;
8759 inf_status->inferior_control = inf->control;
8760
8761 tp->control.step_resume_breakpoint = NULL;
8762 tp->control.exception_resume_breakpoint = NULL;
8763
8764 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8765 chain. If caller's caller is walking the chain, they'll be happier if we
8766 hand them back the original chain when restore_infcall_control_state is
8767 called. */
8768 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8769
8770 /* Other fields: */
8771 inf_status->stop_stack_dummy = stop_stack_dummy;
8772 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8773
8774 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8775
8776 return inf_status;
8777 }
8778
8779 static void
8780 restore_selected_frame (const frame_id &fid)
8781 {
8782 frame_info *frame = frame_find_by_id (fid);
8783
8784 /* If inf_status->selected_frame_id is NULL, there was no previously
8785 selected frame. */
8786 if (frame == NULL)
8787 {
8788 warning (_("Unable to restore previously selected frame."));
8789 return;
8790 }
8791
8792 select_frame (frame);
8793 }
8794
8795 /* Restore inferior session state to INF_STATUS. */
8796
8797 void
8798 restore_infcall_control_state (struct infcall_control_state *inf_status)
8799 {
8800 struct thread_info *tp = inferior_thread ();
8801 struct inferior *inf = current_inferior ();
8802
8803 if (tp->control.step_resume_breakpoint)
8804 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8805
8806 if (tp->control.exception_resume_breakpoint)
8807 tp->control.exception_resume_breakpoint->disposition
8808 = disp_del_at_next_stop;
8809
8810 /* Handle the bpstat_copy of the chain. */
8811 bpstat_clear (&tp->control.stop_bpstat);
8812
8813 tp->control = inf_status->thread_control;
8814 inf->control = inf_status->inferior_control;
8815
8816 /* Other fields: */
8817 stop_stack_dummy = inf_status->stop_stack_dummy;
8818 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8819
8820 if (target_has_stack)
8821 {
8822 /* The point of the try/catch is that if the stack is clobbered,
8823 walking the stack might encounter a garbage pointer and
8824 error() trying to dereference it. */
8825 TRY
8826 {
8827 restore_selected_frame (inf_status->selected_frame_id);
8828 }
8829 CATCH (ex, RETURN_MASK_ERROR)
8830 {
8831 exception_fprintf (gdb_stderr, ex,
8832 "Unable to restore previously selected frame:\n");
8833 /* Error in restoring the selected frame. Select the
8834 innermost frame. */
8835 select_frame (get_current_frame ());
8836 }
8837 END_CATCH
8838 }
8839
8840 delete inf_status;
8841 }
8842
8843 void
8844 discard_infcall_control_state (struct infcall_control_state *inf_status)
8845 {
8846 if (inf_status->thread_control.step_resume_breakpoint)
8847 inf_status->thread_control.step_resume_breakpoint->disposition
8848 = disp_del_at_next_stop;
8849
8850 if (inf_status->thread_control.exception_resume_breakpoint)
8851 inf_status->thread_control.exception_resume_breakpoint->disposition
8852 = disp_del_at_next_stop;
8853
8854 /* See save_infcall_control_state for info on stop_bpstat. */
8855 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8856
8857 delete inf_status;
8858 }
8859 \f
8860 /* See infrun.h. */
8861
8862 void
8863 clear_exit_convenience_vars (void)
8864 {
8865 clear_internalvar (lookup_internalvar ("_exitsignal"));
8866 clear_internalvar (lookup_internalvar ("_exitcode"));
8867 }
8868 \f
8869
8870 /* User interface for reverse debugging:
8871 Set exec-direction / show exec-direction commands
8872 (returns error unless target implements to_set_exec_direction method). */
8873
8874 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8875 static const char exec_forward[] = "forward";
8876 static const char exec_reverse[] = "reverse";
8877 static const char *exec_direction = exec_forward;
8878 static const char *const exec_direction_names[] = {
8879 exec_forward,
8880 exec_reverse,
8881 NULL
8882 };
8883
8884 static void
8885 set_exec_direction_func (const char *args, int from_tty,
8886 struct cmd_list_element *cmd)
8887 {
8888 if (target_can_execute_reverse)
8889 {
8890 if (!strcmp (exec_direction, exec_forward))
8891 execution_direction = EXEC_FORWARD;
8892 else if (!strcmp (exec_direction, exec_reverse))
8893 execution_direction = EXEC_REVERSE;
8894 }
8895 else
8896 {
8897 exec_direction = exec_forward;
8898 error (_("Target does not support this operation."));
8899 }
8900 }
8901
8902 static void
8903 show_exec_direction_func (struct ui_file *out, int from_tty,
8904 struct cmd_list_element *cmd, const char *value)
8905 {
8906 switch (execution_direction) {
8907 case EXEC_FORWARD:
8908 fprintf_filtered (out, _("Forward.\n"));
8909 break;
8910 case EXEC_REVERSE:
8911 fprintf_filtered (out, _("Reverse.\n"));
8912 break;
8913 default:
8914 internal_error (__FILE__, __LINE__,
8915 _("bogus execution_direction value: %d"),
8916 (int) execution_direction);
8917 }
8918 }
8919
8920 static void
8921 show_schedule_multiple (struct ui_file *file, int from_tty,
8922 struct cmd_list_element *c, const char *value)
8923 {
8924 fprintf_filtered (file, _("Resuming the execution of threads "
8925 "of all processes is %s.\n"), value);
8926 }
8927
8928 /* Implementation of `siginfo' variable. */
8929
8930 static const struct internalvar_funcs siginfo_funcs =
8931 {
8932 siginfo_make_value,
8933 NULL,
8934 NULL
8935 };
8936
8937 /* Callback for infrun's target events source. This is marked when a
8938 thread has a pending status to process. */
8939
8940 static void
8941 infrun_async_inferior_event_handler (gdb_client_data data)
8942 {
8943 inferior_event_handler (INF_REG_EVENT, NULL);
8944 }
8945
8946 void
8947 _initialize_infrun (void)
8948 {
8949 struct cmd_list_element *c;
8950
8951 /* Register extra event sources in the event loop. */
8952 infrun_async_inferior_event_token
8953 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8954
8955 add_info ("signals", info_signals_command, _("\
8956 What debugger does when program gets various signals.\n\
8957 Specify a signal as argument to print info on that signal only."));
8958 add_info_alias ("handle", "signals", 0);
8959
8960 c = add_com ("handle", class_run, handle_command, _("\
8961 Specify how to handle signals.\n\
8962 Usage: handle SIGNAL [ACTIONS]\n\
8963 Args are signals and actions to apply to those signals.\n\
8964 If no actions are specified, the current settings for the specified signals\n\
8965 will be displayed instead.\n\
8966 \n\
8967 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8968 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8969 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8970 The special arg \"all\" is recognized to mean all signals except those\n\
8971 used by the debugger, typically SIGTRAP and SIGINT.\n\
8972 \n\
8973 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8974 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8975 Stop means reenter debugger if this signal happens (implies print).\n\
8976 Print means print a message if this signal happens.\n\
8977 Pass means let program see this signal; otherwise program doesn't know.\n\
8978 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8979 Pass and Stop may be combined.\n\
8980 \n\
8981 Multiple signals may be specified. Signal numbers and signal names\n\
8982 may be interspersed with actions, with the actions being performed for\n\
8983 all signals cumulatively specified."));
8984 set_cmd_completer (c, handle_completer);
8985
8986 if (!dbx_commands)
8987 stop_command = add_cmd ("stop", class_obscure,
8988 not_just_help_class_command, _("\
8989 There is no `stop' command, but you can set a hook on `stop'.\n\
8990 This allows you to set a list of commands to be run each time execution\n\
8991 of the program stops."), &cmdlist);
8992
8993 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8994 Set inferior debugging."), _("\
8995 Show inferior debugging."), _("\
8996 When non-zero, inferior specific debugging is enabled."),
8997 NULL,
8998 show_debug_infrun,
8999 &setdebuglist, &showdebuglist);
9000
9001 add_setshow_boolean_cmd ("displaced", class_maintenance,
9002 &debug_displaced, _("\
9003 Set displaced stepping debugging."), _("\
9004 Show displaced stepping debugging."), _("\
9005 When non-zero, displaced stepping specific debugging is enabled."),
9006 NULL,
9007 show_debug_displaced,
9008 &setdebuglist, &showdebuglist);
9009
9010 add_setshow_boolean_cmd ("non-stop", no_class,
9011 &non_stop_1, _("\
9012 Set whether gdb controls the inferior in non-stop mode."), _("\
9013 Show whether gdb controls the inferior in non-stop mode."), _("\
9014 When debugging a multi-threaded program and this setting is\n\
9015 off (the default, also called all-stop mode), when one thread stops\n\
9016 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9017 all other threads in the program while you interact with the thread of\n\
9018 interest. When you continue or step a thread, you can allow the other\n\
9019 threads to run, or have them remain stopped, but while you inspect any\n\
9020 thread's state, all threads stop.\n\
9021 \n\
9022 In non-stop mode, when one thread stops, other threads can continue\n\
9023 to run freely. You'll be able to step each thread independently,\n\
9024 leave it stopped or free to run as needed."),
9025 set_non_stop,
9026 show_non_stop,
9027 &setlist,
9028 &showlist);
9029
9030 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9031 {
9032 signal_stop[i] = 1;
9033 signal_print[i] = 1;
9034 signal_program[i] = 1;
9035 signal_catch[i] = 0;
9036 }
9037
9038 /* Signals caused by debugger's own actions should not be given to
9039 the program afterwards.
9040
9041 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9042 explicitly specifies that it should be delivered to the target
9043 program. Typically, that would occur when a user is debugging a
9044 target monitor on a simulator: the target monitor sets a
9045 breakpoint; the simulator encounters this breakpoint and halts
9046 the simulation handing control to GDB; GDB, noting that the stop
9047 address doesn't map to any known breakpoint, returns control back
9048 to the simulator; the simulator then delivers the hardware
9049 equivalent of a GDB_SIGNAL_TRAP to the program being
9050 debugged. */
9051 signal_program[GDB_SIGNAL_TRAP] = 0;
9052 signal_program[GDB_SIGNAL_INT] = 0;
9053
9054 /* Signals that are not errors should not normally enter the debugger. */
9055 signal_stop[GDB_SIGNAL_ALRM] = 0;
9056 signal_print[GDB_SIGNAL_ALRM] = 0;
9057 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9058 signal_print[GDB_SIGNAL_VTALRM] = 0;
9059 signal_stop[GDB_SIGNAL_PROF] = 0;
9060 signal_print[GDB_SIGNAL_PROF] = 0;
9061 signal_stop[GDB_SIGNAL_CHLD] = 0;
9062 signal_print[GDB_SIGNAL_CHLD] = 0;
9063 signal_stop[GDB_SIGNAL_IO] = 0;
9064 signal_print[GDB_SIGNAL_IO] = 0;
9065 signal_stop[GDB_SIGNAL_POLL] = 0;
9066 signal_print[GDB_SIGNAL_POLL] = 0;
9067 signal_stop[GDB_SIGNAL_URG] = 0;
9068 signal_print[GDB_SIGNAL_URG] = 0;
9069 signal_stop[GDB_SIGNAL_WINCH] = 0;
9070 signal_print[GDB_SIGNAL_WINCH] = 0;
9071 signal_stop[GDB_SIGNAL_PRIO] = 0;
9072 signal_print[GDB_SIGNAL_PRIO] = 0;
9073
9074 /* These signals are used internally by user-level thread
9075 implementations. (See signal(5) on Solaris.) Like the above
9076 signals, a healthy program receives and handles them as part of
9077 its normal operation. */
9078 signal_stop[GDB_SIGNAL_LWP] = 0;
9079 signal_print[GDB_SIGNAL_LWP] = 0;
9080 signal_stop[GDB_SIGNAL_WAITING] = 0;
9081 signal_print[GDB_SIGNAL_WAITING] = 0;
9082 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9083 signal_print[GDB_SIGNAL_CANCEL] = 0;
9084 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9085 signal_print[GDB_SIGNAL_LIBRT] = 0;
9086
9087 /* Update cached state. */
9088 signal_cache_update (-1);
9089
9090 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9091 &stop_on_solib_events, _("\
9092 Set stopping for shared library events."), _("\
9093 Show stopping for shared library events."), _("\
9094 If nonzero, gdb will give control to the user when the dynamic linker\n\
9095 notifies gdb of shared library events. The most common event of interest\n\
9096 to the user would be loading/unloading of a new library."),
9097 set_stop_on_solib_events,
9098 show_stop_on_solib_events,
9099 &setlist, &showlist);
9100
9101 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9102 follow_fork_mode_kind_names,
9103 &follow_fork_mode_string, _("\
9104 Set debugger response to a program call of fork or vfork."), _("\
9105 Show debugger response to a program call of fork or vfork."), _("\
9106 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9107 parent - the original process is debugged after a fork\n\
9108 child - the new process is debugged after a fork\n\
9109 The unfollowed process will continue to run.\n\
9110 By default, the debugger will follow the parent process."),
9111 NULL,
9112 show_follow_fork_mode_string,
9113 &setlist, &showlist);
9114
9115 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9116 follow_exec_mode_names,
9117 &follow_exec_mode_string, _("\
9118 Set debugger response to a program call of exec."), _("\
9119 Show debugger response to a program call of exec."), _("\
9120 An exec call replaces the program image of a process.\n\
9121 \n\
9122 follow-exec-mode can be:\n\
9123 \n\
9124 new - the debugger creates a new inferior and rebinds the process\n\
9125 to this new inferior. The program the process was running before\n\
9126 the exec call can be restarted afterwards by restarting the original\n\
9127 inferior.\n\
9128 \n\
9129 same - the debugger keeps the process bound to the same inferior.\n\
9130 The new executable image replaces the previous executable loaded in\n\
9131 the inferior. Restarting the inferior after the exec call restarts\n\
9132 the executable the process was running after the exec call.\n\
9133 \n\
9134 By default, the debugger will use the same inferior."),
9135 NULL,
9136 show_follow_exec_mode_string,
9137 &setlist, &showlist);
9138
9139 add_setshow_enum_cmd ("scheduler-locking", class_run,
9140 scheduler_enums, &scheduler_mode, _("\
9141 Set mode for locking scheduler during execution."), _("\
9142 Show mode for locking scheduler during execution."), _("\
9143 off == no locking (threads may preempt at any time)\n\
9144 on == full locking (no thread except the current thread may run)\n\
9145 This applies to both normal execution and replay mode.\n\
9146 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9147 In this mode, other threads may run during other commands.\n\
9148 This applies to both normal execution and replay mode.\n\
9149 replay == scheduler locked in replay mode and unlocked during normal execution."),
9150 set_schedlock_func, /* traps on target vector */
9151 show_scheduler_mode,
9152 &setlist, &showlist);
9153
9154 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9155 Set mode for resuming threads of all processes."), _("\
9156 Show mode for resuming threads of all processes."), _("\
9157 When on, execution commands (such as 'continue' or 'next') resume all\n\
9158 threads of all processes. When off (which is the default), execution\n\
9159 commands only resume the threads of the current process. The set of\n\
9160 threads that are resumed is further refined by the scheduler-locking\n\
9161 mode (see help set scheduler-locking)."),
9162 NULL,
9163 show_schedule_multiple,
9164 &setlist, &showlist);
9165
9166 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9167 Set mode of the step operation."), _("\
9168 Show mode of the step operation."), _("\
9169 When set, doing a step over a function without debug line information\n\
9170 will stop at the first instruction of that function. Otherwise, the\n\
9171 function is skipped and the step command stops at a different source line."),
9172 NULL,
9173 show_step_stop_if_no_debug,
9174 &setlist, &showlist);
9175
9176 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9177 &can_use_displaced_stepping, _("\
9178 Set debugger's willingness to use displaced stepping."), _("\
9179 Show debugger's willingness to use displaced stepping."), _("\
9180 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9181 supported by the target architecture. If off, gdb will not use displaced\n\
9182 stepping to step over breakpoints, even if such is supported by the target\n\
9183 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9184 if the target architecture supports it and non-stop mode is active, but will not\n\
9185 use it in all-stop mode (see help set non-stop)."),
9186 NULL,
9187 show_can_use_displaced_stepping,
9188 &setlist, &showlist);
9189
9190 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9191 &exec_direction, _("Set direction of execution.\n\
9192 Options are 'forward' or 'reverse'."),
9193 _("Show direction of execution (forward/reverse)."),
9194 _("Tells gdb whether to execute forward or backward."),
9195 set_exec_direction_func, show_exec_direction_func,
9196 &setlist, &showlist);
9197
9198 /* Set/show detach-on-fork: user-settable mode. */
9199
9200 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9201 Set whether gdb will detach the child of a fork."), _("\
9202 Show whether gdb will detach the child of a fork."), _("\
9203 Tells gdb whether to detach the child of a fork."),
9204 NULL, NULL, &setlist, &showlist);
9205
9206 /* Set/show disable address space randomization mode. */
9207
9208 add_setshow_boolean_cmd ("disable-randomization", class_support,
9209 &disable_randomization, _("\
9210 Set disabling of debuggee's virtual address space randomization."), _("\
9211 Show disabling of debuggee's virtual address space randomization."), _("\
9212 When this mode is on (which is the default), randomization of the virtual\n\
9213 address space is disabled. Standalone programs run with the randomization\n\
9214 enabled by default on some platforms."),
9215 &set_disable_randomization,
9216 &show_disable_randomization,
9217 &setlist, &showlist);
9218
9219 /* ptid initializations */
9220 inferior_ptid = null_ptid;
9221 target_last_wait_ptid = minus_one_ptid;
9222
9223 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9224 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9225 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9226 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9227
9228 /* Explicitly create without lookup, since that tries to create a
9229 value with a void typed value, and when we get here, gdbarch
9230 isn't initialized yet. At this point, we're quite sure there
9231 isn't another convenience variable of the same name. */
9232 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9233
9234 add_setshow_boolean_cmd ("observer", no_class,
9235 &observer_mode_1, _("\
9236 Set whether gdb controls the inferior in observer mode."), _("\
9237 Show whether gdb controls the inferior in observer mode."), _("\
9238 In observer mode, GDB can get data from the inferior, but not\n\
9239 affect its execution. Registers and memory may not be changed,\n\
9240 breakpoints may not be set, and the program cannot be interrupted\n\
9241 or signalled."),
9242 set_observer_mode,
9243 show_observer_mode,
9244 &setlist,
9245 &showlist);
9246 }
This page took 0.579522 seconds and 5 git commands to generate.