[gdb] Handle vfork in thread with follow-fork-mode child
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "common/gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70 #include "common/scope-exit.h"
71 #include "common/forward-scope-exit.h"
72
73 /* Prototypes for local functions */
74
75 static void sig_print_info (enum gdb_signal);
76
77 static void sig_print_header (void);
78
79 static int follow_fork (void);
80
81 static int follow_fork_inferior (int follow_child, int detach_fork);
82
83 static void follow_inferior_reset_breakpoints (void);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 void nullify_last_target_wait_ptid (void);
88
89 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
90
91 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
93 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
95 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
97 static void resume (gdb_signal sig);
98
99 /* Asynchronous signal handler registered as event loop source for
100 when we have pending events ready to be passed to the core. */
101 static struct async_event_handler *infrun_async_inferior_event_token;
102
103 /* Stores whether infrun_async was previously enabled or disabled.
104 Starts off as -1, indicating "never enabled/disabled". */
105 static int infrun_is_async = -1;
106
107 /* See infrun.h. */
108
109 void
110 infrun_async (int enable)
111 {
112 if (infrun_is_async != enable)
113 {
114 infrun_is_async = enable;
115
116 if (debug_infrun)
117 fprintf_unfiltered (gdb_stdlog,
118 "infrun: infrun_async(%d)\n",
119 enable);
120
121 if (enable)
122 mark_async_event_handler (infrun_async_inferior_event_token);
123 else
124 clear_async_event_handler (infrun_async_inferior_event_token);
125 }
126 }
127
128 /* See infrun.h. */
129
130 void
131 mark_infrun_async_event_handler (void)
132 {
133 mark_async_event_handler (infrun_async_inferior_event_token);
134 }
135
136 /* When set, stop the 'step' command if we enter a function which has
137 no line number information. The normal behavior is that we step
138 over such function. */
139 int step_stop_if_no_debug = 0;
140 static void
141 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
145 }
146
147 /* proceed and normal_stop use this to notify the user when the
148 inferior stopped in a different thread than it had been running
149 in. */
150
151 static ptid_t previous_inferior_ptid;
152
153 /* If set (default for legacy reasons), when following a fork, GDB
154 will detach from one of the fork branches, child or parent.
155 Exactly which branch is detached depends on 'set follow-fork-mode'
156 setting. */
157
158 static int detach_fork = 1;
159
160 int debug_displaced = 0;
161 static void
162 show_debug_displaced (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
166 }
167
168 unsigned int debug_infrun = 0;
169 static void
170 show_debug_infrun (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
174 }
175
176
177 /* Support for disabling address space randomization. */
178
179 int disable_randomization = 1;
180
181 static void
182 show_disable_randomization (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 if (target_supports_disable_randomization ())
186 fprintf_filtered (file,
187 _("Disabling randomization of debuggee's "
188 "virtual address space is %s.\n"),
189 value);
190 else
191 fputs_filtered (_("Disabling randomization of debuggee's "
192 "virtual address space is unsupported on\n"
193 "this platform.\n"), file);
194 }
195
196 static void
197 set_disable_randomization (const char *args, int from_tty,
198 struct cmd_list_element *c)
199 {
200 if (!target_supports_disable_randomization ())
201 error (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform."));
204 }
205
206 /* User interface for non-stop mode. */
207
208 int non_stop = 0;
209 static int non_stop_1 = 0;
210
211 static void
212 set_non_stop (const char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 non_stop_1 = non_stop;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 non_stop = non_stop_1;
222 }
223
224 static void
225 show_non_stop (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227 {
228 fprintf_filtered (file,
229 _("Controlling the inferior in non-stop mode is %s.\n"),
230 value);
231 }
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 int observer_mode = 0;
238 static int observer_mode_1 = 0;
239
240 static void
241 set_observer_mode (const char *args, int from_tty,
242 struct cmd_list_element *c)
243 {
244 if (target_has_execution)
245 {
246 observer_mode_1 = observer_mode;
247 error (_("Cannot change this setting while the inferior is running."));
248 }
249
250 observer_mode = observer_mode_1;
251
252 may_write_registers = !observer_mode;
253 may_write_memory = !observer_mode;
254 may_insert_breakpoints = !observer_mode;
255 may_insert_tracepoints = !observer_mode;
256 /* We can insert fast tracepoints in or out of observer mode,
257 but enable them if we're going into this mode. */
258 if (observer_mode)
259 may_insert_fast_tracepoints = 1;
260 may_stop = !observer_mode;
261 update_target_permissions ();
262
263 /* Going *into* observer mode we must force non-stop, then
264 going out we leave it that way. */
265 if (observer_mode)
266 {
267 pagination_enabled = 0;
268 non_stop = non_stop_1 = 1;
269 }
270
271 if (from_tty)
272 printf_filtered (_("Observer mode is now %s.\n"),
273 (observer_mode ? "on" : "off"));
274 }
275
276 static void
277 show_observer_mode (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
281 }
282
283 /* This updates the value of observer mode based on changes in
284 permissions. Note that we are deliberately ignoring the values of
285 may-write-registers and may-write-memory, since the user may have
286 reason to enable these during a session, for instance to turn on a
287 debugging-related global. */
288
289 void
290 update_observer_mode (void)
291 {
292 int newval;
293
294 newval = (!may_insert_breakpoints
295 && !may_insert_tracepoints
296 && may_insert_fast_tracepoints
297 && !may_stop
298 && non_stop);
299
300 /* Let the user know if things change. */
301 if (newval != observer_mode)
302 printf_filtered (_("Observer mode is now %s.\n"),
303 (newval ? "on" : "off"));
304
305 observer_mode = observer_mode_1 = newval;
306 }
307
308 /* Tables of how to react to signals; the user sets them. */
309
310 static unsigned char signal_stop[GDB_SIGNAL_LAST];
311 static unsigned char signal_print[GDB_SIGNAL_LAST];
312 static unsigned char signal_program[GDB_SIGNAL_LAST];
313
314 /* Table of signals that are registered with "catch signal". A
315 non-zero entry indicates that the signal is caught by some "catch
316 signal" command. */
317 static unsigned char signal_catch[GDB_SIGNAL_LAST];
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char signal_pass[GDB_SIGNAL_LAST];
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals (signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
359 int stop_on_solib_events;
360
361 /* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364 static void
365 set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
367 {
368 update_solib_breakpoints ();
369 }
370
371 static void
372 show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374 {
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377 }
378
379 /* Nonzero after stop if current stack frame should be printed. */
380
381 static int stop_print_frame;
382
383 /* This is a cached copy of the pid/waitstatus of the last event
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
386 static ptid_t target_last_wait_ptid;
387 static struct target_waitstatus target_last_waitstatus;
388
389 void init_thread_stepping_state (struct thread_info *tss);
390
391 static const char follow_fork_mode_child[] = "child";
392 static const char follow_fork_mode_parent[] = "parent";
393
394 static const char *const follow_fork_mode_kind_names[] = {
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
398 };
399
400 static const char *follow_fork_mode_string = follow_fork_mode_parent;
401 static void
402 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404 {
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
408 value);
409 }
410 \f
411
412 /* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418 static int
419 follow_fork_inferior (int follow_child, int detach_fork)
420 {
421 int has_vforked;
422 ptid_t parent_ptid, child_ptid;
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
431 && current_ui->prompt_state == PROMPT_BLOCKED
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440 Can not resume the parent process over vfork in the foreground while\n\
441 holding the child stopped. Try \"set detach-on-fork\" or \
442 \"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
462 remove_breakpoints_inf (current_inferior ());
463 }
464
465 if (print_inferior_events)
466 {
467 /* Ensure that we have a process ptid. */
468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
469
470 target_terminal::ours_for_output ();
471 fprintf_filtered (gdb_stdlog,
472 _("[Detaching after %s from child %s]\n"),
473 has_vforked ? "vfork" : "fork",
474 target_pid_to_str (process_ptid).c_str ());
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
480
481 /* Add process to GDB's tables. */
482 child_inf = add_inferior (child_ptid.pid ());
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
491
492 inferior_ptid = child_ptid;
493 add_thread_silent (inferior_ptid);
494 set_current_inferior (child_inf);
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
515 child_inf->pspace = new program_space (child_inf->aspace);
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
553 if (print_inferior_events)
554 {
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
558 target_terminal::ours_for_output ();
559 fprintf_filtered (gdb_stdlog,
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
562 has_vforked ? "vfork" : "fork",
563 child_pid.c_str ());
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
569 child_inf = add_inferior (child_ptid.pid ());
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
600 {
601 if (print_inferior_events)
602 {
603 /* Ensure that we have a process ptid. */
604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
605
606 target_terminal::ours_for_output ();
607 fprintf_filtered (gdb_stdlog,
608 _("[Detaching after fork from "
609 "parent %s]\n"),
610 target_pid_to_str (process_ptid).c_str ());
611 }
612
613 target_detach (parent_inf, 0);
614 }
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
622 inferior_ptid = child_ptid;
623 add_thread_silent (inferior_ptid);
624 set_current_inferior (child_inf);
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
637 child_inf->pspace = new program_space (child_inf->aspace);
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653 }
654
655 /* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
659 static int
660 follow_fork (void)
661 {
662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
671 struct breakpoint *exception_resume_breakpoint = NULL;
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
675 struct thread_fsm *thread_fsm = NULL;
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
729 thread_fsm = tp->thread_fsm;
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
740 delete_exception_resume_breakpoint (tp);
741 tp->thread_fsm = NULL;
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
762 tp = find_thread_ptid (parent);
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
770 /* If we followed the child, switch to it... */
771 if (follow_child)
772 {
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
788 tp->thread_fsm = thread_fsm;
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
798 warning (_("Not resuming: switched threads "
799 "before following fork child."));
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
817
818 return should_resume;
819 }
820
821 static void
822 follow_inferior_reset_breakpoints (void)
823 {
824 struct thread_info *tp = inferior_thread ();
825
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
839 if (tp->control.step_resume_breakpoint)
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
844
845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
846 if (tp->control.exception_resume_breakpoint)
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
851
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
859 }
860
861 /* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864 static int
865 proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867 {
868 int pid = * (int *) arg;
869
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
873 && !thread->stop_requested
874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
879 target_pid_to_str (thread->ptid).c_str ());
880
881 switch_to_thread (thread);
882 clear_proceed_status (0);
883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
884 }
885
886 return 0;
887 }
888
889 /* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892 class scoped_restore_exited_inferior
893 {
894 public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899 private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903 };
904
905 /* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908 static void
909 handle_vfork_child_exec_or_exit (int exec)
910 {
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. Break the bonds. */
919 inferior *vfork_parent = inf->vfork_parent;
920 inf->vfork_parent->vfork_child = NULL;
921 inf->vfork_parent = NULL;
922
923 /* If the user wanted to detach from the parent, now is the
924 time. */
925 if (vfork_parent->pending_detach)
926 {
927 struct thread_info *tp;
928 struct program_space *pspace;
929 struct address_space *aspace;
930
931 /* follow-fork child, detach-on-fork on. */
932
933 vfork_parent->pending_detach = 0;
934
935 gdb::optional<scoped_restore_exited_inferior>
936 maybe_restore_inferior;
937 gdb::optional<scoped_restore_current_pspace_and_thread>
938 maybe_restore_thread;
939
940 /* If we're handling a child exit, then inferior_ptid points
941 at the inferior's pid, not to a thread. */
942 if (!exec)
943 maybe_restore_inferior.emplace ();
944 else
945 maybe_restore_thread.emplace ();
946
947 /* We're letting loose of the parent. */
948 tp = any_live_thread_of_inferior (vfork_parent);
949 switch_to_thread (tp);
950
951 /* We're about to detach from the parent, which implicitly
952 removes breakpoints from its address space. There's a
953 catch here: we want to reuse the spaces for the child,
954 but, parent/child are still sharing the pspace at this
955 point, although the exec in reality makes the kernel give
956 the child a fresh set of new pages. The problem here is
957 that the breakpoints module being unaware of this, would
958 likely chose the child process to write to the parent
959 address space. Swapping the child temporarily away from
960 the spaces has the desired effect. Yes, this is "sort
961 of" a hack. */
962
963 pspace = inf->pspace;
964 aspace = inf->aspace;
965 inf->aspace = NULL;
966 inf->pspace = NULL;
967
968 if (print_inferior_events)
969 {
970 std::string pidstr
971 = target_pid_to_str (ptid_t (vfork_parent->pid));
972
973 target_terminal::ours_for_output ();
974
975 if (exec)
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("[Detaching vfork parent %s "
979 "after child exec]\n"), pidstr.c_str ());
980 }
981 else
982 {
983 fprintf_filtered (gdb_stdlog,
984 _("[Detaching vfork parent %s "
985 "after child exit]\n"), pidstr.c_str ());
986 }
987 }
988
989 target_detach (vfork_parent, 0);
990
991 /* Put it back. */
992 inf->pspace = pspace;
993 inf->aspace = aspace;
994 }
995 else if (exec)
996 {
997 /* We're staying attached to the parent, so, really give the
998 child a new address space. */
999 inf->pspace = new program_space (maybe_new_address_space ());
1000 inf->aspace = inf->pspace->aspace;
1001 inf->removable = 1;
1002 set_current_program_space (inf->pspace);
1003
1004 resume_parent = vfork_parent->pid;
1005 }
1006 else
1007 {
1008 struct program_space *pspace;
1009
1010 /* If this is a vfork child exiting, then the pspace and
1011 aspaces were shared with the parent. Since we're
1012 reporting the process exit, we'll be mourning all that is
1013 found in the address space, and switching to null_ptid,
1014 preparing to start a new inferior. But, since we don't
1015 want to clobber the parent's address/program spaces, we
1016 go ahead and create a new one for this exiting
1017 inferior. */
1018
1019 /* Switch to null_ptid while running clone_program_space, so
1020 that clone_program_space doesn't want to read the
1021 selected frame of a dead process. */
1022 scoped_restore restore_ptid
1023 = make_scoped_restore (&inferior_ptid, null_ptid);
1024
1025 /* This inferior is dead, so avoid giving the breakpoints
1026 module the option to write through to it (cloning a
1027 program space resets breakpoints). */
1028 inf->aspace = NULL;
1029 inf->pspace = NULL;
1030 pspace = new program_space (maybe_new_address_space ());
1031 set_current_program_space (pspace);
1032 inf->removable = 1;
1033 inf->symfile_flags = SYMFILE_NO_READ;
1034 clone_program_space (pspace, vfork_parent->pspace);
1035 inf->pspace = pspace;
1036 inf->aspace = pspace->aspace;
1037
1038 resume_parent = vfork_parent->pid;
1039 }
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 scoped_restore_current_thread restore_thread;
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055 }
1056 }
1057 }
1058
1059 /* Enum strings for "set|show follow-exec-mode". */
1060
1061 static const char follow_exec_mode_new[] = "new";
1062 static const char follow_exec_mode_same[] = "same";
1063 static const char *const follow_exec_mode_names[] =
1064 {
1065 follow_exec_mode_new,
1066 follow_exec_mode_same,
1067 NULL,
1068 };
1069
1070 static const char *follow_exec_mode_string = follow_exec_mode_same;
1071 static void
1072 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c, const char *value)
1074 {
1075 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1076 }
1077
1078 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1079
1080 static void
1081 follow_exec (ptid_t ptid, char *exec_file_target)
1082 {
1083 struct inferior *inf = current_inferior ();
1084 int pid = ptid.pid ();
1085 ptid_t process_ptid;
1086
1087 /* Switch terminal for any messages produced e.g. by
1088 breakpoint_re_set. */
1089 target_terminal::ours_for_output ();
1090
1091 /* This is an exec event that we actually wish to pay attention to.
1092 Refresh our symbol table to the newly exec'd program, remove any
1093 momentary bp's, etc.
1094
1095 If there are breakpoints, they aren't really inserted now,
1096 since the exec() transformed our inferior into a fresh set
1097 of instructions.
1098
1099 We want to preserve symbolic breakpoints on the list, since
1100 we have hopes that they can be reset after the new a.out's
1101 symbol table is read.
1102
1103 However, any "raw" breakpoints must be removed from the list
1104 (e.g., the solib bp's), since their address is probably invalid
1105 now.
1106
1107 And, we DON'T want to call delete_breakpoints() here, since
1108 that may write the bp's "shadow contents" (the instruction
1109 value that was overwritten witha TRAP instruction). Since
1110 we now have a new a.out, those shadow contents aren't valid. */
1111
1112 mark_breakpoints_out ();
1113
1114 /* The target reports the exec event to the main thread, even if
1115 some other thread does the exec, and even if the main thread was
1116 stopped or already gone. We may still have non-leader threads of
1117 the process on our list. E.g., on targets that don't have thread
1118 exit events (like remote); or on native Linux in non-stop mode if
1119 there were only two threads in the inferior and the non-leader
1120 one is the one that execs (and nothing forces an update of the
1121 thread list up to here). When debugging remotely, it's best to
1122 avoid extra traffic, when possible, so avoid syncing the thread
1123 list with the target, and instead go ahead and delete all threads
1124 of the process but one that reported the event. Note this must
1125 be done before calling update_breakpoints_after_exec, as
1126 otherwise clearing the threads' resources would reference stale
1127 thread breakpoints -- it may have been one of these threads that
1128 stepped across the exec. We could just clear their stepping
1129 states, but as long as we're iterating, might as well delete
1130 them. Deleting them now rather than at the next user-visible
1131 stop provides a nicer sequence of events for user and MI
1132 notifications. */
1133 for (thread_info *th : all_threads_safe ())
1134 if (th->ptid.pid () == pid && th->ptid != ptid)
1135 delete_thread (th);
1136
1137 /* We also need to clear any left over stale state for the
1138 leader/event thread. E.g., if there was any step-resume
1139 breakpoint or similar, it's gone now. We cannot truly
1140 step-to-next statement through an exec(). */
1141 thread_info *th = inferior_thread ();
1142 th->control.step_resume_breakpoint = NULL;
1143 th->control.exception_resume_breakpoint = NULL;
1144 th->control.single_step_breakpoints = NULL;
1145 th->control.step_range_start = 0;
1146 th->control.step_range_end = 0;
1147
1148 /* The user may have had the main thread held stopped in the
1149 previous image (e.g., schedlock on, or non-stop). Release
1150 it now. */
1151 th->stop_requested = 0;
1152
1153 update_breakpoints_after_exec ();
1154
1155 /* What is this a.out's name? */
1156 process_ptid = ptid_t (pid);
1157 printf_unfiltered (_("%s is executing new program: %s\n"),
1158 target_pid_to_str (process_ptid).c_str (),
1159 exec_file_target);
1160
1161 /* We've followed the inferior through an exec. Therefore, the
1162 inferior has essentially been killed & reborn. */
1163
1164 breakpoint_init_inferior (inf_execd);
1165
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
1168
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
1177
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
1197 exit_inferior_silent (current_inferior ());
1198
1199 inf->pid = pid;
1200 target_follow_exec (inf, exec_file_target);
1201
1202 set_current_inferior (inf);
1203 set_current_program_space (inf->pspace);
1204 add_thread (ptid);
1205 }
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1225
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
1234 solib_create_inferior_hook (0);
1235
1236 jit_inferior_created_hook ();
1237
1238 breakpoint_re_set ();
1239
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1242 to symbol_file_command...). */
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1248 matically get reset there in the new process.). */
1249 }
1250
1251 /* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258 struct thread_info *step_over_queue_head;
1259
1260 /* Bit flags indicating what the thread needs to step over. */
1261
1262 enum step_over_what_flag
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
1272 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1273
1274 /* Info about an instruction that is being stepped over. */
1275
1276 struct step_over_info
1277 {
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
1282 const address_space *aspace;
1283 CORE_ADDR address;
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
1288
1289 /* The thread's global number. */
1290 int thread;
1291 };
1292
1293 /* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317 static struct step_over_info step_over_info;
1318
1319 /* Record the address of the breakpoint/instruction we're currently
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
1323
1324 static void
1325 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1326 int nonsteppable_watchpoint_p,
1327 int thread)
1328 {
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1332 step_over_info.thread = thread;
1333 }
1334
1335 /* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338 static void
1339 clear_step_over_info (void)
1340 {
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
1346 step_over_info.nonsteppable_watchpoint_p = 0;
1347 step_over_info.thread = -1;
1348 }
1349
1350 /* See infrun.h. */
1351
1352 int
1353 stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355 {
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 thread_is_stepping_over_breakpoint (int thread)
1366 {
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 stepping_past_nonsteppable_watchpoint (void)
1375 {
1376 return step_over_info.nonsteppable_watchpoint_p;
1377 }
1378
1379 /* Returns true if step-over info is valid. */
1380
1381 static int
1382 step_over_info_valid_p (void)
1383 {
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
1386 }
1387
1388 \f
1389 /* Displaced stepping. */
1390
1391 /* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
1475 /* Default destructor for displaced_step_closure. */
1476
1477 displaced_step_closure::~displaced_step_closure () = default;
1478
1479 /* Get the displaced stepping state of process PID. */
1480
1481 static displaced_step_inferior_state *
1482 get_displaced_stepping_state (inferior *inf)
1483 {
1484 return &inf->displaced_step_state;
1485 }
1486
1487 /* Returns true if any inferior has a thread doing a displaced
1488 step. */
1489
1490 static bool
1491 displaced_step_in_progress_any_inferior ()
1492 {
1493 for (inferior *i : all_inferiors ())
1494 {
1495 if (i->displaced_step_state.step_thread != nullptr)
1496 return true;
1497 }
1498
1499 return false;
1500 }
1501
1502 /* Return true if thread represented by PTID is doing a displaced
1503 step. */
1504
1505 static int
1506 displaced_step_in_progress_thread (thread_info *thread)
1507 {
1508 gdb_assert (thread != NULL);
1509
1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1511 }
1512
1513 /* Return true if process PID has a thread doing a displaced step. */
1514
1515 static int
1516 displaced_step_in_progress (inferior *inf)
1517 {
1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1519 }
1520
1521 /* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525 struct displaced_step_closure*
1526 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527 {
1528 displaced_step_inferior_state *displaced
1529 = get_displaced_stepping_state (current_inferior ());
1530
1531 /* If checking the mode of displaced instruction in copy area. */
1532 if (displaced->step_thread != nullptr
1533 && displaced->step_copy == addr)
1534 return displaced->step_closure;
1535
1536 return NULL;
1537 }
1538
1539 static void
1540 infrun_inferior_exit (struct inferior *inf)
1541 {
1542 inf->displaced_step_state.reset ();
1543 }
1544
1545 /* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 which of all-stop or non-stop mode is active --- displaced stepping
1551 in non-stop mode; hold-and-step in all-stop mode. */
1552
1553 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1554
1555 static void
1556 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559 {
1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
1564 value, target_is_non_stop_p () ? "on" : "off");
1565 else
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
1569 }
1570
1571 /* Return non-zero if displaced stepping can/should be used to step
1572 over breakpoints of thread TP. */
1573
1574 static int
1575 use_displaced_stepping (struct thread_info *tp)
1576 {
1577 struct regcache *regcache = get_thread_regcache (tp);
1578 struct gdbarch *gdbarch = regcache->arch ();
1579 displaced_step_inferior_state *displaced_state
1580 = get_displaced_stepping_state (tp->inf);
1581
1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 && target_is_non_stop_p ())
1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1585 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1586 && find_record_target () == NULL
1587 && !displaced_state->failed_before);
1588 }
1589
1590 /* Clean out any stray displaced stepping state. */
1591 static void
1592 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1593 {
1594 /* Indicate that there is no cleanup pending. */
1595 displaced->step_thread = nullptr;
1596
1597 delete displaced->step_closure;
1598 displaced->step_closure = NULL;
1599 }
1600
1601 /* A cleanup that wraps displaced_step_clear. */
1602 using displaced_step_clear_cleanup
1603 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1604
1605 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1606 void
1607 displaced_step_dump_bytes (struct ui_file *file,
1608 const gdb_byte *buf,
1609 size_t len)
1610 {
1611 int i;
1612
1613 for (i = 0; i < len; i++)
1614 fprintf_unfiltered (file, "%02x ", buf[i]);
1615 fputs_unfiltered ("\n", file);
1616 }
1617
1618 /* Prepare to single-step, using displaced stepping.
1619
1620 Note that we cannot use displaced stepping when we have a signal to
1621 deliver. If we have a signal to deliver and an instruction to step
1622 over, then after the step, there will be no indication from the
1623 target whether the thread entered a signal handler or ignored the
1624 signal and stepped over the instruction successfully --- both cases
1625 result in a simple SIGTRAP. In the first case we mustn't do a
1626 fixup, and in the second case we must --- but we can't tell which.
1627 Comments in the code for 'random signals' in handle_inferior_event
1628 explain how we handle this case instead.
1629
1630 Returns 1 if preparing was successful -- this thread is going to be
1631 stepped now; 0 if displaced stepping this thread got queued; or -1
1632 if this instruction can't be displaced stepped. */
1633
1634 static int
1635 displaced_step_prepare_throw (thread_info *tp)
1636 {
1637 regcache *regcache = get_thread_regcache (tp);
1638 struct gdbarch *gdbarch = regcache->arch ();
1639 const address_space *aspace = regcache->aspace ();
1640 CORE_ADDR original, copy;
1641 ULONGEST len;
1642 struct displaced_step_closure *closure;
1643 int status;
1644
1645 /* We should never reach this function if the architecture does not
1646 support displaced stepping. */
1647 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1648
1649 /* Nor if the thread isn't meant to step over a breakpoint. */
1650 gdb_assert (tp->control.trap_expected);
1651
1652 /* Disable range stepping while executing in the scratch pad. We
1653 want a single-step even if executing the displaced instruction in
1654 the scratch buffer lands within the stepping range (e.g., a
1655 jump/branch). */
1656 tp->control.may_range_step = 0;
1657
1658 /* We have to displaced step one thread at a time, as we only have
1659 access to a single scratch space per inferior. */
1660
1661 displaced_step_inferior_state *displaced
1662 = get_displaced_stepping_state (tp->inf);
1663
1664 if (displaced->step_thread != nullptr)
1665 {
1666 /* Already waiting for a displaced step to finish. Defer this
1667 request and place in queue. */
1668
1669 if (debug_displaced)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "displaced: deferring step of %s\n",
1672 target_pid_to_str (tp->ptid).c_str ());
1673
1674 thread_step_over_chain_enqueue (tp);
1675 return 0;
1676 }
1677 else
1678 {
1679 if (debug_displaced)
1680 fprintf_unfiltered (gdb_stdlog,
1681 "displaced: stepping %s now\n",
1682 target_pid_to_str (tp->ptid).c_str ());
1683 }
1684
1685 displaced_step_clear (displaced);
1686
1687 scoped_restore_current_thread restore_thread;
1688
1689 switch_to_thread (tp);
1690
1691 original = regcache_read_pc (regcache);
1692
1693 copy = gdbarch_displaced_step_location (gdbarch);
1694 len = gdbarch_max_insn_length (gdbarch);
1695
1696 if (breakpoint_in_range_p (aspace, copy, len))
1697 {
1698 /* There's a breakpoint set in the scratch pad location range
1699 (which is usually around the entry point). We'd either
1700 install it before resuming, which would overwrite/corrupt the
1701 scratch pad, or if it was already inserted, this displaced
1702 step would overwrite it. The latter is OK in the sense that
1703 we already assume that no thread is going to execute the code
1704 in the scratch pad range (after initial startup) anyway, but
1705 the former is unacceptable. Simply punt and fallback to
1706 stepping over this breakpoint in-line. */
1707 if (debug_displaced)
1708 {
1709 fprintf_unfiltered (gdb_stdlog,
1710 "displaced: breakpoint set in scratch pad. "
1711 "Stepping over breakpoint in-line instead.\n");
1712 }
1713
1714 return -1;
1715 }
1716
1717 /* Save the original contents of the copy area. */
1718 displaced->step_saved_copy.resize (len);
1719 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1720 if (status != 0)
1721 throw_error (MEMORY_ERROR,
1722 _("Error accessing memory address %s (%s) for "
1723 "displaced-stepping scratch space."),
1724 paddress (gdbarch, copy), safe_strerror (status));
1725 if (debug_displaced)
1726 {
1727 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1728 paddress (gdbarch, copy));
1729 displaced_step_dump_bytes (gdb_stdlog,
1730 displaced->step_saved_copy.data (),
1731 len);
1732 };
1733
1734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1735 original, copy, regcache);
1736 if (closure == NULL)
1737 {
1738 /* The architecture doesn't know how or want to displaced step
1739 this instruction or instruction sequence. Fallback to
1740 stepping over the breakpoint in-line. */
1741 return -1;
1742 }
1743
1744 /* Save the information we need to fix things up if the step
1745 succeeds. */
1746 displaced->step_thread = tp;
1747 displaced->step_gdbarch = gdbarch;
1748 displaced->step_closure = closure;
1749 displaced->step_original = original;
1750 displaced->step_copy = copy;
1751
1752 {
1753 displaced_step_clear_cleanup cleanup (displaced);
1754
1755 /* Resume execution at the copy. */
1756 regcache_write_pc (regcache, copy);
1757
1758 cleanup.release ();
1759 }
1760
1761 if (debug_displaced)
1762 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1763 paddress (gdbarch, copy));
1764
1765 return 1;
1766 }
1767
1768 /* Wrapper for displaced_step_prepare_throw that disabled further
1769 attempts at displaced stepping if we get a memory error. */
1770
1771 static int
1772 displaced_step_prepare (thread_info *thread)
1773 {
1774 int prepared = -1;
1775
1776 try
1777 {
1778 prepared = displaced_step_prepare_throw (thread);
1779 }
1780 catch (const gdb_exception_error &ex)
1781 {
1782 struct displaced_step_inferior_state *displaced_state;
1783
1784 if (ex.error != MEMORY_ERROR
1785 && ex.error != NOT_SUPPORTED_ERROR)
1786 throw;
1787
1788 if (debug_infrun)
1789 {
1790 fprintf_unfiltered (gdb_stdlog,
1791 "infrun: disabling displaced stepping: %s\n",
1792 ex.what ());
1793 }
1794
1795 /* Be verbose if "set displaced-stepping" is "on", silent if
1796 "auto". */
1797 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1798 {
1799 warning (_("disabling displaced stepping: %s"),
1800 ex.what ());
1801 }
1802
1803 /* Disable further displaced stepping attempts. */
1804 displaced_state
1805 = get_displaced_stepping_state (thread->inf);
1806 displaced_state->failed_before = 1;
1807 }
1808
1809 return prepared;
1810 }
1811
1812 static void
1813 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1814 const gdb_byte *myaddr, int len)
1815 {
1816 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1817
1818 inferior_ptid = ptid;
1819 write_memory (memaddr, myaddr, len);
1820 }
1821
1822 /* Restore the contents of the copy area for thread PTID. */
1823
1824 static void
1825 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1826 ptid_t ptid)
1827 {
1828 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1829
1830 write_memory_ptid (ptid, displaced->step_copy,
1831 displaced->step_saved_copy.data (), len);
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1834 target_pid_to_str (ptid).c_str (),
1835 paddress (displaced->step_gdbarch,
1836 displaced->step_copy));
1837 }
1838
1839 /* If we displaced stepped an instruction successfully, adjust
1840 registers and memory to yield the same effect the instruction would
1841 have had if we had executed it at its original address, and return
1842 1. If the instruction didn't complete, relocate the PC and return
1843 -1. If the thread wasn't displaced stepping, return 0. */
1844
1845 static int
1846 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1847 {
1848 struct displaced_step_inferior_state *displaced
1849 = get_displaced_stepping_state (event_thread->inf);
1850 int ret;
1851
1852 /* Was this event for the thread we displaced? */
1853 if (displaced->step_thread != event_thread)
1854 return 0;
1855
1856 displaced_step_clear_cleanup cleanup (displaced);
1857
1858 displaced_step_restore (displaced, displaced->step_thread->ptid);
1859
1860 /* Fixup may need to read memory/registers. Switch to the thread
1861 that we're fixing up. Also, target_stopped_by_watchpoint checks
1862 the current thread. */
1863 switch_to_thread (event_thread);
1864
1865 /* Did the instruction complete successfully? */
1866 if (signal == GDB_SIGNAL_TRAP
1867 && !(target_stopped_by_watchpoint ()
1868 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1869 || target_have_steppable_watchpoint)))
1870 {
1871 /* Fix up the resulting state. */
1872 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1873 displaced->step_closure,
1874 displaced->step_original,
1875 displaced->step_copy,
1876 get_thread_regcache (displaced->step_thread));
1877 ret = 1;
1878 }
1879 else
1880 {
1881 /* Since the instruction didn't complete, all we can do is
1882 relocate the PC. */
1883 struct regcache *regcache = get_thread_regcache (event_thread);
1884 CORE_ADDR pc = regcache_read_pc (regcache);
1885
1886 pc = displaced->step_original + (pc - displaced->step_copy);
1887 regcache_write_pc (regcache, pc);
1888 ret = -1;
1889 }
1890
1891 return ret;
1892 }
1893
1894 /* Data to be passed around while handling an event. This data is
1895 discarded between events. */
1896 struct execution_control_state
1897 {
1898 ptid_t ptid;
1899 /* The thread that got the event, if this was a thread event; NULL
1900 otherwise. */
1901 struct thread_info *event_thread;
1902
1903 struct target_waitstatus ws;
1904 int stop_func_filled_in;
1905 CORE_ADDR stop_func_start;
1906 CORE_ADDR stop_func_end;
1907 const char *stop_func_name;
1908 int wait_some_more;
1909
1910 /* True if the event thread hit the single-step breakpoint of
1911 another thread. Thus the event doesn't cause a stop, the thread
1912 needs to be single-stepped past the single-step breakpoint before
1913 we can switch back to the original stepping thread. */
1914 int hit_singlestep_breakpoint;
1915 };
1916
1917 /* Clear ECS and set it to point at TP. */
1918
1919 static void
1920 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1921 {
1922 memset (ecs, 0, sizeof (*ecs));
1923 ecs->event_thread = tp;
1924 ecs->ptid = tp->ptid;
1925 }
1926
1927 static void keep_going_pass_signal (struct execution_control_state *ecs);
1928 static void prepare_to_wait (struct execution_control_state *ecs);
1929 static int keep_going_stepped_thread (struct thread_info *tp);
1930 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1931
1932 /* Are there any pending step-over requests? If so, run all we can
1933 now and return true. Otherwise, return false. */
1934
1935 static int
1936 start_step_over (void)
1937 {
1938 struct thread_info *tp, *next;
1939
1940 /* Don't start a new step-over if we already have an in-line
1941 step-over operation ongoing. */
1942 if (step_over_info_valid_p ())
1943 return 0;
1944
1945 for (tp = step_over_queue_head; tp != NULL; tp = next)
1946 {
1947 struct execution_control_state ecss;
1948 struct execution_control_state *ecs = &ecss;
1949 step_over_what step_what;
1950 int must_be_in_line;
1951
1952 gdb_assert (!tp->stop_requested);
1953
1954 next = thread_step_over_chain_next (tp);
1955
1956 /* If this inferior already has a displaced step in process,
1957 don't start a new one. */
1958 if (displaced_step_in_progress (tp->inf))
1959 continue;
1960
1961 step_what = thread_still_needs_step_over (tp);
1962 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1963 || ((step_what & STEP_OVER_BREAKPOINT)
1964 && !use_displaced_stepping (tp)));
1965
1966 /* We currently stop all threads of all processes to step-over
1967 in-line. If we need to start a new in-line step-over, let
1968 any pending displaced steps finish first. */
1969 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1970 return 0;
1971
1972 thread_step_over_chain_remove (tp);
1973
1974 if (step_over_queue_head == NULL)
1975 {
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "infrun: step-over queue now empty\n");
1979 }
1980
1981 if (tp->control.trap_expected
1982 || tp->resumed
1983 || tp->executing)
1984 {
1985 internal_error (__FILE__, __LINE__,
1986 "[%s] has inconsistent state: "
1987 "trap_expected=%d, resumed=%d, executing=%d\n",
1988 target_pid_to_str (tp->ptid).c_str (),
1989 tp->control.trap_expected,
1990 tp->resumed,
1991 tp->executing);
1992 }
1993
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: resuming [%s] for step-over\n",
1997 target_pid_to_str (tp->ptid).c_str ());
1998
1999 /* keep_going_pass_signal skips the step-over if the breakpoint
2000 is no longer inserted. In all-stop, we want to keep looking
2001 for a thread that needs a step-over instead of resuming TP,
2002 because we wouldn't be able to resume anything else until the
2003 target stops again. In non-stop, the resume always resumes
2004 only TP, so it's OK to let the thread resume freely. */
2005 if (!target_is_non_stop_p () && !step_what)
2006 continue;
2007
2008 switch_to_thread (tp);
2009 reset_ecs (ecs, tp);
2010 keep_going_pass_signal (ecs);
2011
2012 if (!ecs->wait_some_more)
2013 error (_("Command aborted."));
2014
2015 gdb_assert (tp->resumed);
2016
2017 /* If we started a new in-line step-over, we're done. */
2018 if (step_over_info_valid_p ())
2019 {
2020 gdb_assert (tp->control.trap_expected);
2021 return 1;
2022 }
2023
2024 if (!target_is_non_stop_p ())
2025 {
2026 /* On all-stop, shouldn't have resumed unless we needed a
2027 step over. */
2028 gdb_assert (tp->control.trap_expected
2029 || tp->step_after_step_resume_breakpoint);
2030
2031 /* With remote targets (at least), in all-stop, we can't
2032 issue any further remote commands until the program stops
2033 again. */
2034 return 1;
2035 }
2036
2037 /* Either the thread no longer needed a step-over, or a new
2038 displaced stepping sequence started. Even in the latter
2039 case, continue looking. Maybe we can also start another
2040 displaced step on a thread of other process. */
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* Update global variables holding ptids to hold NEW_PTID if they were
2047 holding OLD_PTID. */
2048 static void
2049 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2050 {
2051 if (inferior_ptid == old_ptid)
2052 inferior_ptid = new_ptid;
2053 }
2054
2055 \f
2056
2057 static const char schedlock_off[] = "off";
2058 static const char schedlock_on[] = "on";
2059 static const char schedlock_step[] = "step";
2060 static const char schedlock_replay[] = "replay";
2061 static const char *const scheduler_enums[] = {
2062 schedlock_off,
2063 schedlock_on,
2064 schedlock_step,
2065 schedlock_replay,
2066 NULL
2067 };
2068 static const char *scheduler_mode = schedlock_replay;
2069 static void
2070 show_scheduler_mode (struct ui_file *file, int from_tty,
2071 struct cmd_list_element *c, const char *value)
2072 {
2073 fprintf_filtered (file,
2074 _("Mode for locking scheduler "
2075 "during execution is \"%s\".\n"),
2076 value);
2077 }
2078
2079 static void
2080 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2081 {
2082 if (!target_can_lock_scheduler)
2083 {
2084 scheduler_mode = schedlock_off;
2085 error (_("Target '%s' cannot support this command."), target_shortname);
2086 }
2087 }
2088
2089 /* True if execution commands resume all threads of all processes by
2090 default; otherwise, resume only threads of the current inferior
2091 process. */
2092 int sched_multi = 0;
2093
2094 /* Try to setup for software single stepping over the specified location.
2095 Return 1 if target_resume() should use hardware single step.
2096
2097 GDBARCH the current gdbarch.
2098 PC the location to step over. */
2099
2100 static int
2101 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2102 {
2103 int hw_step = 1;
2104
2105 if (execution_direction == EXEC_FORWARD
2106 && gdbarch_software_single_step_p (gdbarch))
2107 hw_step = !insert_single_step_breakpoints (gdbarch);
2108
2109 return hw_step;
2110 }
2111
2112 /* See infrun.h. */
2113
2114 ptid_t
2115 user_visible_resume_ptid (int step)
2116 {
2117 ptid_t resume_ptid;
2118
2119 if (non_stop)
2120 {
2121 /* With non-stop mode on, threads are always handled
2122 individually. */
2123 resume_ptid = inferior_ptid;
2124 }
2125 else if ((scheduler_mode == schedlock_on)
2126 || (scheduler_mode == schedlock_step && step))
2127 {
2128 /* User-settable 'scheduler' mode requires solo thread
2129 resume. */
2130 resume_ptid = inferior_ptid;
2131 }
2132 else if ((scheduler_mode == schedlock_replay)
2133 && target_record_will_replay (minus_one_ptid, execution_direction))
2134 {
2135 /* User-settable 'scheduler' mode requires solo thread resume in replay
2136 mode. */
2137 resume_ptid = inferior_ptid;
2138 }
2139 else if (!sched_multi && target_supports_multi_process ())
2140 {
2141 /* Resume all threads of the current process (and none of other
2142 processes). */
2143 resume_ptid = ptid_t (inferior_ptid.pid ());
2144 }
2145 else
2146 {
2147 /* Resume all threads of all processes. */
2148 resume_ptid = RESUME_ALL;
2149 }
2150
2151 return resume_ptid;
2152 }
2153
2154 /* Return a ptid representing the set of threads that we will resume,
2155 in the perspective of the target, assuming run control handling
2156 does not require leaving some threads stopped (e.g., stepping past
2157 breakpoint). USER_STEP indicates whether we're about to start the
2158 target for a stepping command. */
2159
2160 static ptid_t
2161 internal_resume_ptid (int user_step)
2162 {
2163 /* In non-stop, we always control threads individually. Note that
2164 the target may always work in non-stop mode even with "set
2165 non-stop off", in which case user_visible_resume_ptid could
2166 return a wildcard ptid. */
2167 if (target_is_non_stop_p ())
2168 return inferior_ptid;
2169 else
2170 return user_visible_resume_ptid (user_step);
2171 }
2172
2173 /* Wrapper for target_resume, that handles infrun-specific
2174 bookkeeping. */
2175
2176 static void
2177 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2178 {
2179 struct thread_info *tp = inferior_thread ();
2180
2181 gdb_assert (!tp->stop_requested);
2182
2183 /* Install inferior's terminal modes. */
2184 target_terminal::inferior ();
2185
2186 /* Avoid confusing the next resume, if the next stop/resume
2187 happens to apply to another thread. */
2188 tp->suspend.stop_signal = GDB_SIGNAL_0;
2189
2190 /* Advise target which signals may be handled silently.
2191
2192 If we have removed breakpoints because we are stepping over one
2193 in-line (in any thread), we need to receive all signals to avoid
2194 accidentally skipping a breakpoint during execution of a signal
2195 handler.
2196
2197 Likewise if we're displaced stepping, otherwise a trap for a
2198 breakpoint in a signal handler might be confused with the
2199 displaced step finishing. We don't make the displaced_step_fixup
2200 step distinguish the cases instead, because:
2201
2202 - a backtrace while stopped in the signal handler would show the
2203 scratch pad as frame older than the signal handler, instead of
2204 the real mainline code.
2205
2206 - when the thread is later resumed, the signal handler would
2207 return to the scratch pad area, which would no longer be
2208 valid. */
2209 if (step_over_info_valid_p ()
2210 || displaced_step_in_progress (tp->inf))
2211 target_pass_signals ({});
2212 else
2213 target_pass_signals (signal_pass);
2214
2215 target_resume (resume_ptid, step, sig);
2216
2217 target_commit_resume ();
2218 }
2219
2220 /* Resume the inferior. SIG is the signal to give the inferior
2221 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2222 call 'resume', which handles exceptions. */
2223
2224 static void
2225 resume_1 (enum gdb_signal sig)
2226 {
2227 struct regcache *regcache = get_current_regcache ();
2228 struct gdbarch *gdbarch = regcache->arch ();
2229 struct thread_info *tp = inferior_thread ();
2230 CORE_ADDR pc = regcache_read_pc (regcache);
2231 const address_space *aspace = regcache->aspace ();
2232 ptid_t resume_ptid;
2233 /* This represents the user's step vs continue request. When
2234 deciding whether "set scheduler-locking step" applies, it's the
2235 user's intention that counts. */
2236 const int user_step = tp->control.stepping_command;
2237 /* This represents what we'll actually request the target to do.
2238 This can decay from a step to a continue, if e.g., we need to
2239 implement single-stepping with breakpoints (software
2240 single-step). */
2241 int step;
2242
2243 gdb_assert (!tp->stop_requested);
2244 gdb_assert (!thread_is_in_step_over_chain (tp));
2245
2246 if (tp->suspend.waitstatus_pending_p)
2247 {
2248 if (debug_infrun)
2249 {
2250 std::string statstr
2251 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2252
2253 fprintf_unfiltered (gdb_stdlog,
2254 "infrun: resume: thread %s has pending wait "
2255 "status %s (currently_stepping=%d).\n",
2256 target_pid_to_str (tp->ptid).c_str (),
2257 statstr.c_str (),
2258 currently_stepping (tp));
2259 }
2260
2261 tp->resumed = 1;
2262
2263 /* FIXME: What should we do if we are supposed to resume this
2264 thread with a signal? Maybe we should maintain a queue of
2265 pending signals to deliver. */
2266 if (sig != GDB_SIGNAL_0)
2267 {
2268 warning (_("Couldn't deliver signal %s to %s."),
2269 gdb_signal_to_name (sig),
2270 target_pid_to_str (tp->ptid).c_str ());
2271 }
2272
2273 tp->suspend.stop_signal = GDB_SIGNAL_0;
2274
2275 if (target_can_async_p ())
2276 {
2277 target_async (1);
2278 /* Tell the event loop we have an event to process. */
2279 mark_async_event_handler (infrun_async_inferior_event_token);
2280 }
2281 return;
2282 }
2283
2284 tp->stepped_breakpoint = 0;
2285
2286 /* Depends on stepped_breakpoint. */
2287 step = currently_stepping (tp);
2288
2289 if (current_inferior ()->waiting_for_vfork_done)
2290 {
2291 /* Don't try to single-step a vfork parent that is waiting for
2292 the child to get out of the shared memory region (by exec'ing
2293 or exiting). This is particularly important on software
2294 single-step archs, as the child process would trip on the
2295 software single step breakpoint inserted for the parent
2296 process. Since the parent will not actually execute any
2297 instruction until the child is out of the shared region (such
2298 are vfork's semantics), it is safe to simply continue it.
2299 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2300 the parent, and tell it to `keep_going', which automatically
2301 re-sets it stepping. */
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: resume : clear step\n");
2305 step = 0;
2306 }
2307
2308 if (debug_infrun)
2309 fprintf_unfiltered (gdb_stdlog,
2310 "infrun: resume (step=%d, signal=%s), "
2311 "trap_expected=%d, current thread [%s] at %s\n",
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
2314 target_pid_to_str (inferior_ptid).c_str (),
2315 paddress (gdbarch, pc));
2316
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2322 {
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "infrun: resume: skipping permanent breakpoint, "
2342 "deliver signal first\n");
2343
2344 clear_step_over_info ();
2345 tp->control.trap_expected = 0;
2346
2347 if (tp->control.step_resume_breakpoint == NULL)
2348 {
2349 /* Set a "high-priority" step-resume, as we don't want
2350 user breakpoints at PC to trigger (again) when this
2351 hits. */
2352 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2353 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2354
2355 tp->step_after_step_resume_breakpoint = step;
2356 }
2357
2358 insert_breakpoints ();
2359 }
2360 else
2361 {
2362 /* There's no signal to pass, we can go ahead and skip the
2363 permanent breakpoint manually. */
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog,
2366 "infrun: resume: skipping permanent breakpoint\n");
2367 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2368 /* Update pc to reflect the new address from which we will
2369 execute instructions. */
2370 pc = regcache_read_pc (regcache);
2371
2372 if (step)
2373 {
2374 /* We've already advanced the PC, so the stepping part
2375 is done. Now we need to arrange for a trap to be
2376 reported to handle_inferior_event. Set a breakpoint
2377 at the current PC, and run to it. Don't update
2378 prev_pc, because if we end in
2379 switch_back_to_stepped_thread, we want the "expected
2380 thread advanced also" branch to be taken. IOW, we
2381 don't want this thread to step further from PC
2382 (overstep). */
2383 gdb_assert (!step_over_info_valid_p ());
2384 insert_single_step_breakpoint (gdbarch, aspace, pc);
2385 insert_breakpoints ();
2386
2387 resume_ptid = internal_resume_ptid (user_step);
2388 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2389 tp->resumed = 1;
2390 return;
2391 }
2392 }
2393 }
2394
2395 /* If we have a breakpoint to step over, make sure to do a single
2396 step only. Same if we have software watchpoints. */
2397 if (tp->control.trap_expected || bpstat_should_step ())
2398 tp->control.may_range_step = 0;
2399
2400 /* If enabled, step over breakpoints by executing a copy of the
2401 instruction at a different address.
2402
2403 We can't use displaced stepping when we have a signal to deliver;
2404 the comments for displaced_step_prepare explain why. The
2405 comments in the handle_inferior event for dealing with 'random
2406 signals' explain what we do instead.
2407
2408 We can't use displaced stepping when we are waiting for vfork_done
2409 event, displaced stepping breaks the vfork child similarly as single
2410 step software breakpoint. */
2411 if (tp->control.trap_expected
2412 && use_displaced_stepping (tp)
2413 && !step_over_info_valid_p ()
2414 && sig == GDB_SIGNAL_0
2415 && !current_inferior ()->waiting_for_vfork_done)
2416 {
2417 int prepared = displaced_step_prepare (tp);
2418
2419 if (prepared == 0)
2420 {
2421 if (debug_infrun)
2422 fprintf_unfiltered (gdb_stdlog,
2423 "Got placed in step-over queue\n");
2424
2425 tp->control.trap_expected = 0;
2426 return;
2427 }
2428 else if (prepared < 0)
2429 {
2430 /* Fallback to stepping over the breakpoint in-line. */
2431
2432 if (target_is_non_stop_p ())
2433 stop_all_threads ();
2434
2435 set_step_over_info (regcache->aspace (),
2436 regcache_read_pc (regcache), 0, tp->global_num);
2437
2438 step = maybe_software_singlestep (gdbarch, pc);
2439
2440 insert_breakpoints ();
2441 }
2442 else if (prepared > 0)
2443 {
2444 struct displaced_step_inferior_state *displaced;
2445
2446 /* Update pc to reflect the new address from which we will
2447 execute instructions due to displaced stepping. */
2448 pc = regcache_read_pc (get_thread_regcache (tp));
2449
2450 displaced = get_displaced_stepping_state (tp->inf);
2451 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2452 displaced->step_closure);
2453 }
2454 }
2455
2456 /* Do we need to do it the hard way, w/temp breakpoints? */
2457 else if (step)
2458 step = maybe_software_singlestep (gdbarch, pc);
2459
2460 /* Currently, our software single-step implementation leads to different
2461 results than hardware single-stepping in one situation: when stepping
2462 into delivering a signal which has an associated signal handler,
2463 hardware single-step will stop at the first instruction of the handler,
2464 while software single-step will simply skip execution of the handler.
2465
2466 For now, this difference in behavior is accepted since there is no
2467 easy way to actually implement single-stepping into a signal handler
2468 without kernel support.
2469
2470 However, there is one scenario where this difference leads to follow-on
2471 problems: if we're stepping off a breakpoint by removing all breakpoints
2472 and then single-stepping. In this case, the software single-step
2473 behavior means that even if there is a *breakpoint* in the signal
2474 handler, GDB still would not stop.
2475
2476 Fortunately, we can at least fix this particular issue. We detect
2477 here the case where we are about to deliver a signal while software
2478 single-stepping with breakpoints removed. In this situation, we
2479 revert the decisions to remove all breakpoints and insert single-
2480 step breakpoints, and instead we install a step-resume breakpoint
2481 at the current address, deliver the signal without stepping, and
2482 once we arrive back at the step-resume breakpoint, actually step
2483 over the breakpoint we originally wanted to step over. */
2484 if (thread_has_single_step_breakpoints_set (tp)
2485 && sig != GDB_SIGNAL_0
2486 && step_over_info_valid_p ())
2487 {
2488 /* If we have nested signals or a pending signal is delivered
2489 immediately after a handler returns, might might already have
2490 a step-resume breakpoint set on the earlier handler. We cannot
2491 set another step-resume breakpoint; just continue on until the
2492 original breakpoint is hit. */
2493 if (tp->control.step_resume_breakpoint == NULL)
2494 {
2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2496 tp->step_after_step_resume_breakpoint = 1;
2497 }
2498
2499 delete_single_step_breakpoints (tp);
2500
2501 clear_step_over_info ();
2502 tp->control.trap_expected = 0;
2503
2504 insert_breakpoints ();
2505 }
2506
2507 /* If STEP is set, it's a request to use hardware stepping
2508 facilities. But in that case, we should never
2509 use singlestep breakpoint. */
2510 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2511
2512 /* Decide the set of threads to ask the target to resume. */
2513 if (tp->control.trap_expected)
2514 {
2515 /* We're allowing a thread to run past a breakpoint it has
2516 hit, either by single-stepping the thread with the breakpoint
2517 removed, or by displaced stepping, with the breakpoint inserted.
2518 In the former case, we need to single-step only this thread,
2519 and keep others stopped, as they can miss this breakpoint if
2520 allowed to run. That's not really a problem for displaced
2521 stepping, but, we still keep other threads stopped, in case
2522 another thread is also stopped for a breakpoint waiting for
2523 its turn in the displaced stepping queue. */
2524 resume_ptid = inferior_ptid;
2525 }
2526 else
2527 resume_ptid = internal_resume_ptid (user_step);
2528
2529 if (execution_direction != EXEC_REVERSE
2530 && step && breakpoint_inserted_here_p (aspace, pc))
2531 {
2532 /* There are two cases where we currently need to step a
2533 breakpoint instruction when we have a signal to deliver:
2534
2535 - See handle_signal_stop where we handle random signals that
2536 could take out us out of the stepping range. Normally, in
2537 that case we end up continuing (instead of stepping) over the
2538 signal handler with a breakpoint at PC, but there are cases
2539 where we should _always_ single-step, even if we have a
2540 step-resume breakpoint, like when a software watchpoint is
2541 set. Assuming single-stepping and delivering a signal at the
2542 same time would takes us to the signal handler, then we could
2543 have removed the breakpoint at PC to step over it. However,
2544 some hardware step targets (like e.g., Mac OS) can't step
2545 into signal handlers, and for those, we need to leave the
2546 breakpoint at PC inserted, as otherwise if the handler
2547 recurses and executes PC again, it'll miss the breakpoint.
2548 So we leave the breakpoint inserted anyway, but we need to
2549 record that we tried to step a breakpoint instruction, so
2550 that adjust_pc_after_break doesn't end up confused.
2551
2552 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2553 in one thread after another thread that was stepping had been
2554 momentarily paused for a step-over. When we re-resume the
2555 stepping thread, it may be resumed from that address with a
2556 breakpoint that hasn't trapped yet. Seen with
2557 gdb.threads/non-stop-fair-events.exp, on targets that don't
2558 do displaced stepping. */
2559
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "infrun: resume: [%s] stepped breakpoint\n",
2563 target_pid_to_str (tp->ptid).c_str ());
2564
2565 tp->stepped_breakpoint = 1;
2566
2567 /* Most targets can step a breakpoint instruction, thus
2568 executing it normally. But if this one cannot, just
2569 continue and we will hit it anyway. */
2570 if (gdbarch_cannot_step_breakpoint (gdbarch))
2571 step = 0;
2572 }
2573
2574 if (debug_displaced
2575 && tp->control.trap_expected
2576 && use_displaced_stepping (tp)
2577 && !step_over_info_valid_p ())
2578 {
2579 struct regcache *resume_regcache = get_thread_regcache (tp);
2580 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2581 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2582 gdb_byte buf[4];
2583
2584 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2585 paddress (resume_gdbarch, actual_pc));
2586 read_memory (actual_pc, buf, sizeof (buf));
2587 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2588 }
2589
2590 if (tp->control.may_range_step)
2591 {
2592 /* If we're resuming a thread with the PC out of the step
2593 range, then we're doing some nested/finer run control
2594 operation, like stepping the thread out of the dynamic
2595 linker or the displaced stepping scratch pad. We
2596 shouldn't have allowed a range step then. */
2597 gdb_assert (pc_in_thread_step_range (pc, tp));
2598 }
2599
2600 do_target_resume (resume_ptid, step, sig);
2601 tp->resumed = 1;
2602 }
2603
2604 /* Resume the inferior. SIG is the signal to give the inferior
2605 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2606 rolls back state on error. */
2607
2608 static void
2609 resume (gdb_signal sig)
2610 {
2611 try
2612 {
2613 resume_1 (sig);
2614 }
2615 catch (const gdb_exception &ex)
2616 {
2617 /* If resuming is being aborted for any reason, delete any
2618 single-step breakpoint resume_1 may have created, to avoid
2619 confusing the following resumption, and to avoid leaving
2620 single-step breakpoints perturbing other threads, in case
2621 we're running in non-stop mode. */
2622 if (inferior_ptid != null_ptid)
2623 delete_single_step_breakpoints (inferior_thread ());
2624 throw;
2625 }
2626 }
2627
2628 \f
2629 /* Proceeding. */
2630
2631 /* See infrun.h. */
2632
2633 /* Counter that tracks number of user visible stops. This can be used
2634 to tell whether a command has proceeded the inferior past the
2635 current location. This allows e.g., inferior function calls in
2636 breakpoint commands to not interrupt the command list. When the
2637 call finishes successfully, the inferior is standing at the same
2638 breakpoint as if nothing happened (and so we don't call
2639 normal_stop). */
2640 static ULONGEST current_stop_id;
2641
2642 /* See infrun.h. */
2643
2644 ULONGEST
2645 get_stop_id (void)
2646 {
2647 return current_stop_id;
2648 }
2649
2650 /* Called when we report a user visible stop. */
2651
2652 static void
2653 new_stop_id (void)
2654 {
2655 current_stop_id++;
2656 }
2657
2658 /* Clear out all variables saying what to do when inferior is continued.
2659 First do this, then set the ones you want, then call `proceed'. */
2660
2661 static void
2662 clear_proceed_status_thread (struct thread_info *tp)
2663 {
2664 if (debug_infrun)
2665 fprintf_unfiltered (gdb_stdlog,
2666 "infrun: clear_proceed_status_thread (%s)\n",
2667 target_pid_to_str (tp->ptid).c_str ());
2668
2669 /* If we're starting a new sequence, then the previous finished
2670 single-step is no longer relevant. */
2671 if (tp->suspend.waitstatus_pending_p)
2672 {
2673 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2674 {
2675 if (debug_infrun)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "infrun: clear_proceed_status: pending "
2678 "event of %s was a finished step. "
2679 "Discarding.\n",
2680 target_pid_to_str (tp->ptid).c_str ());
2681
2682 tp->suspend.waitstatus_pending_p = 0;
2683 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2684 }
2685 else if (debug_infrun)
2686 {
2687 std::string statstr
2688 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2689
2690 fprintf_unfiltered (gdb_stdlog,
2691 "infrun: clear_proceed_status_thread: thread %s "
2692 "has pending wait status %s "
2693 "(currently_stepping=%d).\n",
2694 target_pid_to_str (tp->ptid).c_str (),
2695 statstr.c_str (),
2696 currently_stepping (tp));
2697 }
2698 }
2699
2700 /* If this signal should not be seen by program, give it zero.
2701 Used for debugging signals. */
2702 if (!signal_pass_state (tp->suspend.stop_signal))
2703 tp->suspend.stop_signal = GDB_SIGNAL_0;
2704
2705 delete tp->thread_fsm;
2706 tp->thread_fsm = NULL;
2707
2708 tp->control.trap_expected = 0;
2709 tp->control.step_range_start = 0;
2710 tp->control.step_range_end = 0;
2711 tp->control.may_range_step = 0;
2712 tp->control.step_frame_id = null_frame_id;
2713 tp->control.step_stack_frame_id = null_frame_id;
2714 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2715 tp->control.step_start_function = NULL;
2716 tp->stop_requested = 0;
2717
2718 tp->control.stop_step = 0;
2719
2720 tp->control.proceed_to_finish = 0;
2721
2722 tp->control.stepping_command = 0;
2723
2724 /* Discard any remaining commands or status from previous stop. */
2725 bpstat_clear (&tp->control.stop_bpstat);
2726 }
2727
2728 void
2729 clear_proceed_status (int step)
2730 {
2731 /* With scheduler-locking replay, stop replaying other threads if we're
2732 not replaying the user-visible resume ptid.
2733
2734 This is a convenience feature to not require the user to explicitly
2735 stop replaying the other threads. We're assuming that the user's
2736 intent is to resume tracing the recorded process. */
2737 if (!non_stop && scheduler_mode == schedlock_replay
2738 && target_record_is_replaying (minus_one_ptid)
2739 && !target_record_will_replay (user_visible_resume_ptid (step),
2740 execution_direction))
2741 target_record_stop_replaying ();
2742
2743 if (!non_stop && inferior_ptid != null_ptid)
2744 {
2745 ptid_t resume_ptid = user_visible_resume_ptid (step);
2746
2747 /* In all-stop mode, delete the per-thread status of all threads
2748 we're about to resume, implicitly and explicitly. */
2749 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2750 clear_proceed_status_thread (tp);
2751 }
2752
2753 if (inferior_ptid != null_ptid)
2754 {
2755 struct inferior *inferior;
2756
2757 if (non_stop)
2758 {
2759 /* If in non-stop mode, only delete the per-thread status of
2760 the current thread. */
2761 clear_proceed_status_thread (inferior_thread ());
2762 }
2763
2764 inferior = current_inferior ();
2765 inferior->control.stop_soon = NO_STOP_QUIETLY;
2766 }
2767
2768 gdb::observers::about_to_proceed.notify ();
2769 }
2770
2771 /* Returns true if TP is still stopped at a breakpoint that needs
2772 stepping-over in order to make progress. If the breakpoint is gone
2773 meanwhile, we can skip the whole step-over dance. */
2774
2775 static int
2776 thread_still_needs_step_over_bp (struct thread_info *tp)
2777 {
2778 if (tp->stepping_over_breakpoint)
2779 {
2780 struct regcache *regcache = get_thread_regcache (tp);
2781
2782 if (breakpoint_here_p (regcache->aspace (),
2783 regcache_read_pc (regcache))
2784 == ordinary_breakpoint_here)
2785 return 1;
2786
2787 tp->stepping_over_breakpoint = 0;
2788 }
2789
2790 return 0;
2791 }
2792
2793 /* Check whether thread TP still needs to start a step-over in order
2794 to make progress when resumed. Returns an bitwise or of enum
2795 step_over_what bits, indicating what needs to be stepped over. */
2796
2797 static step_over_what
2798 thread_still_needs_step_over (struct thread_info *tp)
2799 {
2800 step_over_what what = 0;
2801
2802 if (thread_still_needs_step_over_bp (tp))
2803 what |= STEP_OVER_BREAKPOINT;
2804
2805 if (tp->stepping_over_watchpoint
2806 && !target_have_steppable_watchpoint)
2807 what |= STEP_OVER_WATCHPOINT;
2808
2809 return what;
2810 }
2811
2812 /* Returns true if scheduler locking applies. STEP indicates whether
2813 we're about to do a step/next-like command to a thread. */
2814
2815 static int
2816 schedlock_applies (struct thread_info *tp)
2817 {
2818 return (scheduler_mode == schedlock_on
2819 || (scheduler_mode == schedlock_step
2820 && tp->control.stepping_command)
2821 || (scheduler_mode == schedlock_replay
2822 && target_record_will_replay (minus_one_ptid,
2823 execution_direction)));
2824 }
2825
2826 /* Basic routine for continuing the program in various fashions.
2827
2828 ADDR is the address to resume at, or -1 for resume where stopped.
2829 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2830 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2831
2832 You should call clear_proceed_status before calling proceed. */
2833
2834 void
2835 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2836 {
2837 struct regcache *regcache;
2838 struct gdbarch *gdbarch;
2839 CORE_ADDR pc;
2840 ptid_t resume_ptid;
2841 struct execution_control_state ecss;
2842 struct execution_control_state *ecs = &ecss;
2843 int started;
2844
2845 /* If we're stopped at a fork/vfork, follow the branch set by the
2846 "set follow-fork-mode" command; otherwise, we'll just proceed
2847 resuming the current thread. */
2848 if (!follow_fork ())
2849 {
2850 /* The target for some reason decided not to resume. */
2851 normal_stop ();
2852 if (target_can_async_p ())
2853 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2854 return;
2855 }
2856
2857 /* We'll update this if & when we switch to a new thread. */
2858 previous_inferior_ptid = inferior_ptid;
2859
2860 regcache = get_current_regcache ();
2861 gdbarch = regcache->arch ();
2862 const address_space *aspace = regcache->aspace ();
2863
2864 pc = regcache_read_pc (regcache);
2865 thread_info *cur_thr = inferior_thread ();
2866
2867 /* Fill in with reasonable starting values. */
2868 init_thread_stepping_state (cur_thr);
2869
2870 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2871
2872 if (addr == (CORE_ADDR) -1)
2873 {
2874 if (pc == cur_thr->suspend.stop_pc
2875 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2876 && execution_direction != EXEC_REVERSE)
2877 /* There is a breakpoint at the address we will resume at,
2878 step one instruction before inserting breakpoints so that
2879 we do not stop right away (and report a second hit at this
2880 breakpoint).
2881
2882 Note, we don't do this in reverse, because we won't
2883 actually be executing the breakpoint insn anyway.
2884 We'll be (un-)executing the previous instruction. */
2885 cur_thr->stepping_over_breakpoint = 1;
2886 else if (gdbarch_single_step_through_delay_p (gdbarch)
2887 && gdbarch_single_step_through_delay (gdbarch,
2888 get_current_frame ()))
2889 /* We stepped onto an instruction that needs to be stepped
2890 again before re-inserting the breakpoint, do so. */
2891 cur_thr->stepping_over_breakpoint = 1;
2892 }
2893 else
2894 {
2895 regcache_write_pc (regcache, addr);
2896 }
2897
2898 if (siggnal != GDB_SIGNAL_DEFAULT)
2899 cur_thr->suspend.stop_signal = siggnal;
2900
2901 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2902
2903 /* If an exception is thrown from this point on, make sure to
2904 propagate GDB's knowledge of the executing state to the
2905 frontend/user running state. */
2906 scoped_finish_thread_state finish_state (resume_ptid);
2907
2908 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2909 threads (e.g., we might need to set threads stepping over
2910 breakpoints first), from the user/frontend's point of view, all
2911 threads in RESUME_PTID are now running. Unless we're calling an
2912 inferior function, as in that case we pretend the inferior
2913 doesn't run at all. */
2914 if (!cur_thr->control.in_infcall)
2915 set_running (resume_ptid, 1);
2916
2917 if (debug_infrun)
2918 fprintf_unfiltered (gdb_stdlog,
2919 "infrun: proceed (addr=%s, signal=%s)\n",
2920 paddress (gdbarch, addr),
2921 gdb_signal_to_symbol_string (siggnal));
2922
2923 annotate_starting ();
2924
2925 /* Make sure that output from GDB appears before output from the
2926 inferior. */
2927 gdb_flush (gdb_stdout);
2928
2929 /* Since we've marked the inferior running, give it the terminal. A
2930 QUIT/Ctrl-C from here on is forwarded to the target (which can
2931 still detect attempts to unblock a stuck connection with repeated
2932 Ctrl-C from within target_pass_ctrlc). */
2933 target_terminal::inferior ();
2934
2935 /* In a multi-threaded task we may select another thread and
2936 then continue or step.
2937
2938 But if a thread that we're resuming had stopped at a breakpoint,
2939 it will immediately cause another breakpoint stop without any
2940 execution (i.e. it will report a breakpoint hit incorrectly). So
2941 we must step over it first.
2942
2943 Look for threads other than the current (TP) that reported a
2944 breakpoint hit and haven't been resumed yet since. */
2945
2946 /* If scheduler locking applies, we can avoid iterating over all
2947 threads. */
2948 if (!non_stop && !schedlock_applies (cur_thr))
2949 {
2950 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2951 {
2952 /* Ignore the current thread here. It's handled
2953 afterwards. */
2954 if (tp == cur_thr)
2955 continue;
2956
2957 if (!thread_still_needs_step_over (tp))
2958 continue;
2959
2960 gdb_assert (!thread_is_in_step_over_chain (tp));
2961
2962 if (debug_infrun)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "infrun: need to step-over [%s] first\n",
2965 target_pid_to_str (tp->ptid).c_str ());
2966
2967 thread_step_over_chain_enqueue (tp);
2968 }
2969 }
2970
2971 /* Enqueue the current thread last, so that we move all other
2972 threads over their breakpoints first. */
2973 if (cur_thr->stepping_over_breakpoint)
2974 thread_step_over_chain_enqueue (cur_thr);
2975
2976 /* If the thread isn't started, we'll still need to set its prev_pc,
2977 so that switch_back_to_stepped_thread knows the thread hasn't
2978 advanced. Must do this before resuming any thread, as in
2979 all-stop/remote, once we resume we can't send any other packet
2980 until the target stops again. */
2981 cur_thr->prev_pc = regcache_read_pc (regcache);
2982
2983 {
2984 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2985
2986 started = start_step_over ();
2987
2988 if (step_over_info_valid_p ())
2989 {
2990 /* Either this thread started a new in-line step over, or some
2991 other thread was already doing one. In either case, don't
2992 resume anything else until the step-over is finished. */
2993 }
2994 else if (started && !target_is_non_stop_p ())
2995 {
2996 /* A new displaced stepping sequence was started. In all-stop,
2997 we can't talk to the target anymore until it next stops. */
2998 }
2999 else if (!non_stop && target_is_non_stop_p ())
3000 {
3001 /* In all-stop, but the target is always in non-stop mode.
3002 Start all other threads that are implicitly resumed too. */
3003 for (thread_info *tp : all_non_exited_threads (resume_ptid))
3004 {
3005 if (tp->resumed)
3006 {
3007 if (debug_infrun)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "infrun: proceed: [%s] resumed\n",
3010 target_pid_to_str (tp->ptid).c_str ());
3011 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3012 continue;
3013 }
3014
3015 if (thread_is_in_step_over_chain (tp))
3016 {
3017 if (debug_infrun)
3018 fprintf_unfiltered (gdb_stdlog,
3019 "infrun: proceed: [%s] needs step-over\n",
3020 target_pid_to_str (tp->ptid).c_str ());
3021 continue;
3022 }
3023
3024 if (debug_infrun)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "infrun: proceed: resuming %s\n",
3027 target_pid_to_str (tp->ptid).c_str ());
3028
3029 reset_ecs (ecs, tp);
3030 switch_to_thread (tp);
3031 keep_going_pass_signal (ecs);
3032 if (!ecs->wait_some_more)
3033 error (_("Command aborted."));
3034 }
3035 }
3036 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3037 {
3038 /* The thread wasn't started, and isn't queued, run it now. */
3039 reset_ecs (ecs, cur_thr);
3040 switch_to_thread (cur_thr);
3041 keep_going_pass_signal (ecs);
3042 if (!ecs->wait_some_more)
3043 error (_("Command aborted."));
3044 }
3045 }
3046
3047 target_commit_resume ();
3048
3049 finish_state.release ();
3050
3051 /* Tell the event loop to wait for it to stop. If the target
3052 supports asynchronous execution, it'll do this from within
3053 target_resume. */
3054 if (!target_can_async_p ())
3055 mark_async_event_handler (infrun_async_inferior_event_token);
3056 }
3057 \f
3058
3059 /* Start remote-debugging of a machine over a serial link. */
3060
3061 void
3062 start_remote (int from_tty)
3063 {
3064 struct inferior *inferior;
3065
3066 inferior = current_inferior ();
3067 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3068
3069 /* Always go on waiting for the target, regardless of the mode. */
3070 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3071 indicate to wait_for_inferior that a target should timeout if
3072 nothing is returned (instead of just blocking). Because of this,
3073 targets expecting an immediate response need to, internally, set
3074 things up so that the target_wait() is forced to eventually
3075 timeout. */
3076 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3077 differentiate to its caller what the state of the target is after
3078 the initial open has been performed. Here we're assuming that
3079 the target has stopped. It should be possible to eventually have
3080 target_open() return to the caller an indication that the target
3081 is currently running and GDB state should be set to the same as
3082 for an async run. */
3083 wait_for_inferior ();
3084
3085 /* Now that the inferior has stopped, do any bookkeeping like
3086 loading shared libraries. We want to do this before normal_stop,
3087 so that the displayed frame is up to date. */
3088 post_create_inferior (current_top_target (), from_tty);
3089
3090 normal_stop ();
3091 }
3092
3093 /* Initialize static vars when a new inferior begins. */
3094
3095 void
3096 init_wait_for_inferior (void)
3097 {
3098 /* These are meaningless until the first time through wait_for_inferior. */
3099
3100 breakpoint_init_inferior (inf_starting);
3101
3102 clear_proceed_status (0);
3103
3104 target_last_wait_ptid = minus_one_ptid;
3105
3106 previous_inferior_ptid = inferior_ptid;
3107 }
3108
3109 \f
3110
3111 static void handle_inferior_event (struct execution_control_state *ecs);
3112
3113 static void handle_step_into_function (struct gdbarch *gdbarch,
3114 struct execution_control_state *ecs);
3115 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs);
3117 static void handle_signal_stop (struct execution_control_state *ecs);
3118 static void check_exception_resume (struct execution_control_state *,
3119 struct frame_info *);
3120
3121 static void end_stepping_range (struct execution_control_state *ecs);
3122 static void stop_waiting (struct execution_control_state *ecs);
3123 static void keep_going (struct execution_control_state *ecs);
3124 static void process_event_stop_test (struct execution_control_state *ecs);
3125 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3126
3127 /* This function is attached as a "thread_stop_requested" observer.
3128 Cleanup local state that assumed the PTID was to be resumed, and
3129 report the stop to the frontend. */
3130
3131 static void
3132 infrun_thread_stop_requested (ptid_t ptid)
3133 {
3134 /* PTID was requested to stop. If the thread was already stopped,
3135 but the user/frontend doesn't know about that yet (e.g., the
3136 thread had been temporarily paused for some step-over), set up
3137 for reporting the stop now. */
3138 for (thread_info *tp : all_threads (ptid))
3139 {
3140 if (tp->state != THREAD_RUNNING)
3141 continue;
3142 if (tp->executing)
3143 continue;
3144
3145 /* Remove matching threads from the step-over queue, so
3146 start_step_over doesn't try to resume them
3147 automatically. */
3148 if (thread_is_in_step_over_chain (tp))
3149 thread_step_over_chain_remove (tp);
3150
3151 /* If the thread is stopped, but the user/frontend doesn't
3152 know about that yet, queue a pending event, as if the
3153 thread had just stopped now. Unless the thread already had
3154 a pending event. */
3155 if (!tp->suspend.waitstatus_pending_p)
3156 {
3157 tp->suspend.waitstatus_pending_p = 1;
3158 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3159 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3160 }
3161
3162 /* Clear the inline-frame state, since we're re-processing the
3163 stop. */
3164 clear_inline_frame_state (tp->ptid);
3165
3166 /* If this thread was paused because some other thread was
3167 doing an inline-step over, let that finish first. Once
3168 that happens, we'll restart all threads and consume pending
3169 stop events then. */
3170 if (step_over_info_valid_p ())
3171 continue;
3172
3173 /* Otherwise we can process the (new) pending event now. Set
3174 it so this pending event is considered by
3175 do_target_wait. */
3176 tp->resumed = 1;
3177 }
3178 }
3179
3180 static void
3181 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3182 {
3183 if (target_last_wait_ptid == tp->ptid)
3184 nullify_last_target_wait_ptid ();
3185 }
3186
3187 /* Delete the step resume, single-step and longjmp/exception resume
3188 breakpoints of TP. */
3189
3190 static void
3191 delete_thread_infrun_breakpoints (struct thread_info *tp)
3192 {
3193 delete_step_resume_breakpoint (tp);
3194 delete_exception_resume_breakpoint (tp);
3195 delete_single_step_breakpoints (tp);
3196 }
3197
3198 /* If the target still has execution, call FUNC for each thread that
3199 just stopped. In all-stop, that's all the non-exited threads; in
3200 non-stop, that's the current thread, only. */
3201
3202 typedef void (*for_each_just_stopped_thread_callback_func)
3203 (struct thread_info *tp);
3204
3205 static void
3206 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3207 {
3208 if (!target_has_execution || inferior_ptid == null_ptid)
3209 return;
3210
3211 if (target_is_non_stop_p ())
3212 {
3213 /* If in non-stop mode, only the current thread stopped. */
3214 func (inferior_thread ());
3215 }
3216 else
3217 {
3218 /* In all-stop mode, all threads have stopped. */
3219 for (thread_info *tp : all_non_exited_threads ())
3220 func (tp);
3221 }
3222 }
3223
3224 /* Delete the step resume and longjmp/exception resume breakpoints of
3225 the threads that just stopped. */
3226
3227 static void
3228 delete_just_stopped_threads_infrun_breakpoints (void)
3229 {
3230 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3231 }
3232
3233 /* Delete the single-step breakpoints of the threads that just
3234 stopped. */
3235
3236 static void
3237 delete_just_stopped_threads_single_step_breakpoints (void)
3238 {
3239 for_each_just_stopped_thread (delete_single_step_breakpoints);
3240 }
3241
3242 /* See infrun.h. */
3243
3244 void
3245 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3246 const struct target_waitstatus *ws)
3247 {
3248 std::string status_string = target_waitstatus_to_string (ws);
3249 string_file stb;
3250
3251 /* The text is split over several lines because it was getting too long.
3252 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3253 output as a unit; we want only one timestamp printed if debug_timestamp
3254 is set. */
3255
3256 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3257 waiton_ptid.pid (),
3258 waiton_ptid.lwp (),
3259 waiton_ptid.tid ());
3260 if (waiton_ptid.pid () != -1)
3261 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3262 stb.printf (", status) =\n");
3263 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3264 result_ptid.pid (),
3265 result_ptid.lwp (),
3266 result_ptid.tid (),
3267 target_pid_to_str (result_ptid).c_str ());
3268 stb.printf ("infrun: %s\n", status_string.c_str ());
3269
3270 /* This uses %s in part to handle %'s in the text, but also to avoid
3271 a gcc error: the format attribute requires a string literal. */
3272 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3273 }
3274
3275 /* Select a thread at random, out of those which are resumed and have
3276 had events. */
3277
3278 static struct thread_info *
3279 random_pending_event_thread (ptid_t waiton_ptid)
3280 {
3281 int num_events = 0;
3282
3283 auto has_event = [] (thread_info *tp)
3284 {
3285 return (tp->resumed
3286 && tp->suspend.waitstatus_pending_p);
3287 };
3288
3289 /* First see how many events we have. Count only resumed threads
3290 that have an event pending. */
3291 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3292 if (has_event (tp))
3293 num_events++;
3294
3295 if (num_events == 0)
3296 return NULL;
3297
3298 /* Now randomly pick a thread out of those that have had events. */
3299 int random_selector = (int) ((num_events * (double) rand ())
3300 / (RAND_MAX + 1.0));
3301
3302 if (debug_infrun && num_events > 1)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "infrun: Found %d events, selecting #%d\n",
3305 num_events, random_selector);
3306
3307 /* Select the Nth thread that has had an event. */
3308 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3309 if (has_event (tp))
3310 if (random_selector-- == 0)
3311 return tp;
3312
3313 gdb_assert_not_reached ("event thread not found");
3314 }
3315
3316 /* Wrapper for target_wait that first checks whether threads have
3317 pending statuses to report before actually asking the target for
3318 more events. */
3319
3320 static ptid_t
3321 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3322 {
3323 ptid_t event_ptid;
3324 struct thread_info *tp;
3325
3326 /* First check if there is a resumed thread with a wait status
3327 pending. */
3328 if (ptid == minus_one_ptid || ptid.is_pid ())
3329 {
3330 tp = random_pending_event_thread (ptid);
3331 }
3332 else
3333 {
3334 if (debug_infrun)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "infrun: Waiting for specific thread %s.\n",
3337 target_pid_to_str (ptid).c_str ());
3338
3339 /* We have a specific thread to check. */
3340 tp = find_thread_ptid (ptid);
3341 gdb_assert (tp != NULL);
3342 if (!tp->suspend.waitstatus_pending_p)
3343 tp = NULL;
3344 }
3345
3346 if (tp != NULL
3347 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3348 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3349 {
3350 struct regcache *regcache = get_thread_regcache (tp);
3351 struct gdbarch *gdbarch = regcache->arch ();
3352 CORE_ADDR pc;
3353 int discard = 0;
3354
3355 pc = regcache_read_pc (regcache);
3356
3357 if (pc != tp->suspend.stop_pc)
3358 {
3359 if (debug_infrun)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "infrun: PC of %s changed. was=%s, now=%s\n",
3362 target_pid_to_str (tp->ptid).c_str (),
3363 paddress (gdbarch, tp->suspend.stop_pc),
3364 paddress (gdbarch, pc));
3365 discard = 1;
3366 }
3367 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3368 {
3369 if (debug_infrun)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "infrun: previous breakpoint of %s, at %s gone\n",
3372 target_pid_to_str (tp->ptid).c_str (),
3373 paddress (gdbarch, pc));
3374
3375 discard = 1;
3376 }
3377
3378 if (discard)
3379 {
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "infrun: pending event of %s cancelled.\n",
3383 target_pid_to_str (tp->ptid).c_str ());
3384
3385 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3386 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3387 }
3388 }
3389
3390 if (tp != NULL)
3391 {
3392 if (debug_infrun)
3393 {
3394 std::string statstr
3395 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3396
3397 fprintf_unfiltered (gdb_stdlog,
3398 "infrun: Using pending wait status %s for %s.\n",
3399 statstr.c_str (),
3400 target_pid_to_str (tp->ptid).c_str ());
3401 }
3402
3403 /* Now that we've selected our final event LWP, un-adjust its PC
3404 if it was a software breakpoint (and the target doesn't
3405 always adjust the PC itself). */
3406 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3407 && !target_supports_stopped_by_sw_breakpoint ())
3408 {
3409 struct regcache *regcache;
3410 struct gdbarch *gdbarch;
3411 int decr_pc;
3412
3413 regcache = get_thread_regcache (tp);
3414 gdbarch = regcache->arch ();
3415
3416 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3417 if (decr_pc != 0)
3418 {
3419 CORE_ADDR pc;
3420
3421 pc = regcache_read_pc (regcache);
3422 regcache_write_pc (regcache, pc + decr_pc);
3423 }
3424 }
3425
3426 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3427 *status = tp->suspend.waitstatus;
3428 tp->suspend.waitstatus_pending_p = 0;
3429
3430 /* Wake up the event loop again, until all pending events are
3431 processed. */
3432 if (target_is_async_p ())
3433 mark_async_event_handler (infrun_async_inferior_event_token);
3434 return tp->ptid;
3435 }
3436
3437 /* But if we don't find one, we'll have to wait. */
3438
3439 if (deprecated_target_wait_hook)
3440 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3441 else
3442 event_ptid = target_wait (ptid, status, options);
3443
3444 return event_ptid;
3445 }
3446
3447 /* Prepare and stabilize the inferior for detaching it. E.g.,
3448 detaching while a thread is displaced stepping is a recipe for
3449 crashing it, as nothing would readjust the PC out of the scratch
3450 pad. */
3451
3452 void
3453 prepare_for_detach (void)
3454 {
3455 struct inferior *inf = current_inferior ();
3456 ptid_t pid_ptid = ptid_t (inf->pid);
3457
3458 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3459
3460 /* Is any thread of this process displaced stepping? If not,
3461 there's nothing else to do. */
3462 if (displaced->step_thread == nullptr)
3463 return;
3464
3465 if (debug_infrun)
3466 fprintf_unfiltered (gdb_stdlog,
3467 "displaced-stepping in-process while detaching");
3468
3469 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3470
3471 while (displaced->step_thread != nullptr)
3472 {
3473 struct execution_control_state ecss;
3474 struct execution_control_state *ecs;
3475
3476 ecs = &ecss;
3477 memset (ecs, 0, sizeof (*ecs));
3478
3479 overlay_cache_invalid = 1;
3480 /* Flush target cache before starting to handle each event.
3481 Target was running and cache could be stale. This is just a
3482 heuristic. Running threads may modify target memory, but we
3483 don't get any event. */
3484 target_dcache_invalidate ();
3485
3486 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3487
3488 if (debug_infrun)
3489 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3490
3491 /* If an error happens while handling the event, propagate GDB's
3492 knowledge of the executing state to the frontend/user running
3493 state. */
3494 scoped_finish_thread_state finish_state (minus_one_ptid);
3495
3496 /* Now figure out what to do with the result of the result. */
3497 handle_inferior_event (ecs);
3498
3499 /* No error, don't finish the state yet. */
3500 finish_state.release ();
3501
3502 /* Breakpoints and watchpoints are not installed on the target
3503 at this point, and signals are passed directly to the
3504 inferior, so this must mean the process is gone. */
3505 if (!ecs->wait_some_more)
3506 {
3507 restore_detaching.release ();
3508 error (_("Program exited while detaching"));
3509 }
3510 }
3511
3512 restore_detaching.release ();
3513 }
3514
3515 /* Wait for control to return from inferior to debugger.
3516
3517 If inferior gets a signal, we may decide to start it up again
3518 instead of returning. That is why there is a loop in this function.
3519 When this function actually returns it means the inferior
3520 should be left stopped and GDB should read more commands. */
3521
3522 void
3523 wait_for_inferior (void)
3524 {
3525 if (debug_infrun)
3526 fprintf_unfiltered
3527 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3528
3529 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3530
3531 /* If an error happens while handling the event, propagate GDB's
3532 knowledge of the executing state to the frontend/user running
3533 state. */
3534 scoped_finish_thread_state finish_state (minus_one_ptid);
3535
3536 while (1)
3537 {
3538 struct execution_control_state ecss;
3539 struct execution_control_state *ecs = &ecss;
3540 ptid_t waiton_ptid = minus_one_ptid;
3541
3542 memset (ecs, 0, sizeof (*ecs));
3543
3544 overlay_cache_invalid = 1;
3545
3546 /* Flush target cache before starting to handle each event.
3547 Target was running and cache could be stale. This is just a
3548 heuristic. Running threads may modify target memory, but we
3549 don't get any event. */
3550 target_dcache_invalidate ();
3551
3552 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3553
3554 if (debug_infrun)
3555 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3556
3557 /* Now figure out what to do with the result of the result. */
3558 handle_inferior_event (ecs);
3559
3560 if (!ecs->wait_some_more)
3561 break;
3562 }
3563
3564 /* No error, don't finish the state yet. */
3565 finish_state.release ();
3566 }
3567
3568 /* Cleanup that reinstalls the readline callback handler, if the
3569 target is running in the background. If while handling the target
3570 event something triggered a secondary prompt, like e.g., a
3571 pagination prompt, we'll have removed the callback handler (see
3572 gdb_readline_wrapper_line). Need to do this as we go back to the
3573 event loop, ready to process further input. Note this has no
3574 effect if the handler hasn't actually been removed, because calling
3575 rl_callback_handler_install resets the line buffer, thus losing
3576 input. */
3577
3578 static void
3579 reinstall_readline_callback_handler_cleanup ()
3580 {
3581 struct ui *ui = current_ui;
3582
3583 if (!ui->async)
3584 {
3585 /* We're not going back to the top level event loop yet. Don't
3586 install the readline callback, as it'd prep the terminal,
3587 readline-style (raw, noecho) (e.g., --batch). We'll install
3588 it the next time the prompt is displayed, when we're ready
3589 for input. */
3590 return;
3591 }
3592
3593 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3594 gdb_rl_callback_handler_reinstall ();
3595 }
3596
3597 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3598 that's just the event thread. In all-stop, that's all threads. */
3599
3600 static void
3601 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3602 {
3603 if (ecs->event_thread != NULL
3604 && ecs->event_thread->thread_fsm != NULL)
3605 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3606
3607 if (!non_stop)
3608 {
3609 for (thread_info *thr : all_non_exited_threads ())
3610 {
3611 if (thr->thread_fsm == NULL)
3612 continue;
3613 if (thr == ecs->event_thread)
3614 continue;
3615
3616 switch_to_thread (thr);
3617 thr->thread_fsm->clean_up (thr);
3618 }
3619
3620 if (ecs->event_thread != NULL)
3621 switch_to_thread (ecs->event_thread);
3622 }
3623 }
3624
3625 /* Helper for all_uis_check_sync_execution_done that works on the
3626 current UI. */
3627
3628 static void
3629 check_curr_ui_sync_execution_done (void)
3630 {
3631 struct ui *ui = current_ui;
3632
3633 if (ui->prompt_state == PROMPT_NEEDED
3634 && ui->async
3635 && !gdb_in_secondary_prompt_p (ui))
3636 {
3637 target_terminal::ours ();
3638 gdb::observers::sync_execution_done.notify ();
3639 ui_register_input_event_handler (ui);
3640 }
3641 }
3642
3643 /* See infrun.h. */
3644
3645 void
3646 all_uis_check_sync_execution_done (void)
3647 {
3648 SWITCH_THRU_ALL_UIS ()
3649 {
3650 check_curr_ui_sync_execution_done ();
3651 }
3652 }
3653
3654 /* See infrun.h. */
3655
3656 void
3657 all_uis_on_sync_execution_starting (void)
3658 {
3659 SWITCH_THRU_ALL_UIS ()
3660 {
3661 if (current_ui->prompt_state == PROMPT_NEEDED)
3662 async_disable_stdin ();
3663 }
3664 }
3665
3666 /* Asynchronous version of wait_for_inferior. It is called by the
3667 event loop whenever a change of state is detected on the file
3668 descriptor corresponding to the target. It can be called more than
3669 once to complete a single execution command. In such cases we need
3670 to keep the state in a global variable ECSS. If it is the last time
3671 that this function is called for a single execution command, then
3672 report to the user that the inferior has stopped, and do the
3673 necessary cleanups. */
3674
3675 void
3676 fetch_inferior_event (void *client_data)
3677 {
3678 struct execution_control_state ecss;
3679 struct execution_control_state *ecs = &ecss;
3680 int cmd_done = 0;
3681 ptid_t waiton_ptid = minus_one_ptid;
3682
3683 memset (ecs, 0, sizeof (*ecs));
3684
3685 /* Events are always processed with the main UI as current UI. This
3686 way, warnings, debug output, etc. are always consistently sent to
3687 the main console. */
3688 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3689
3690 /* End up with readline processing input, if necessary. */
3691 {
3692 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3693
3694 /* We're handling a live event, so make sure we're doing live
3695 debugging. If we're looking at traceframes while the target is
3696 running, we're going to need to get back to that mode after
3697 handling the event. */
3698 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3699 if (non_stop)
3700 {
3701 maybe_restore_traceframe.emplace ();
3702 set_current_traceframe (-1);
3703 }
3704
3705 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3706
3707 if (non_stop)
3708 /* In non-stop mode, the user/frontend should not notice a thread
3709 switch due to internal events. Make sure we reverse to the
3710 user selected thread and frame after handling the event and
3711 running any breakpoint commands. */
3712 maybe_restore_thread.emplace ();
3713
3714 overlay_cache_invalid = 1;
3715 /* Flush target cache before starting to handle each event. Target
3716 was running and cache could be stale. This is just a heuristic.
3717 Running threads may modify target memory, but we don't get any
3718 event. */
3719 target_dcache_invalidate ();
3720
3721 scoped_restore save_exec_dir
3722 = make_scoped_restore (&execution_direction,
3723 target_execution_direction ());
3724
3725 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3726 target_can_async_p () ? TARGET_WNOHANG : 0);
3727
3728 if (debug_infrun)
3729 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3730
3731 /* If an error happens while handling the event, propagate GDB's
3732 knowledge of the executing state to the frontend/user running
3733 state. */
3734 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3735 scoped_finish_thread_state finish_state (finish_ptid);
3736
3737 /* Get executed before scoped_restore_current_thread above to apply
3738 still for the thread which has thrown the exception. */
3739 auto defer_bpstat_clear
3740 = make_scope_exit (bpstat_clear_actions);
3741 auto defer_delete_threads
3742 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3743
3744 /* Now figure out what to do with the result of the result. */
3745 handle_inferior_event (ecs);
3746
3747 if (!ecs->wait_some_more)
3748 {
3749 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3750 int should_stop = 1;
3751 struct thread_info *thr = ecs->event_thread;
3752
3753 delete_just_stopped_threads_infrun_breakpoints ();
3754
3755 if (thr != NULL)
3756 {
3757 struct thread_fsm *thread_fsm = thr->thread_fsm;
3758
3759 if (thread_fsm != NULL)
3760 should_stop = thread_fsm->should_stop (thr);
3761 }
3762
3763 if (!should_stop)
3764 {
3765 keep_going (ecs);
3766 }
3767 else
3768 {
3769 bool should_notify_stop = true;
3770 int proceeded = 0;
3771
3772 clean_up_just_stopped_threads_fsms (ecs);
3773
3774 if (thr != NULL && thr->thread_fsm != NULL)
3775 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3776
3777 if (should_notify_stop)
3778 {
3779 /* We may not find an inferior if this was a process exit. */
3780 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3781 proceeded = normal_stop ();
3782 }
3783
3784 if (!proceeded)
3785 {
3786 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3787 cmd_done = 1;
3788 }
3789 }
3790 }
3791
3792 defer_delete_threads.release ();
3793 defer_bpstat_clear.release ();
3794
3795 /* No error, don't finish the thread states yet. */
3796 finish_state.release ();
3797
3798 /* This scope is used to ensure that readline callbacks are
3799 reinstalled here. */
3800 }
3801
3802 /* If a UI was in sync execution mode, and now isn't, restore its
3803 prompt (a synchronous execution command has finished, and we're
3804 ready for input). */
3805 all_uis_check_sync_execution_done ();
3806
3807 if (cmd_done
3808 && exec_done_display_p
3809 && (inferior_ptid == null_ptid
3810 || inferior_thread ()->state != THREAD_RUNNING))
3811 printf_unfiltered (_("completed.\n"));
3812 }
3813
3814 /* Record the frame and location we're currently stepping through. */
3815 void
3816 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3817 {
3818 struct thread_info *tp = inferior_thread ();
3819
3820 tp->control.step_frame_id = get_frame_id (frame);
3821 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3822
3823 tp->current_symtab = sal.symtab;
3824 tp->current_line = sal.line;
3825 }
3826
3827 /* Clear context switchable stepping state. */
3828
3829 void
3830 init_thread_stepping_state (struct thread_info *tss)
3831 {
3832 tss->stepped_breakpoint = 0;
3833 tss->stepping_over_breakpoint = 0;
3834 tss->stepping_over_watchpoint = 0;
3835 tss->step_after_step_resume_breakpoint = 0;
3836 }
3837
3838 /* Set the cached copy of the last ptid/waitstatus. */
3839
3840 void
3841 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3842 {
3843 target_last_wait_ptid = ptid;
3844 target_last_waitstatus = status;
3845 }
3846
3847 /* Return the cached copy of the last pid/waitstatus returned by
3848 target_wait()/deprecated_target_wait_hook(). The data is actually
3849 cached by handle_inferior_event(), which gets called immediately
3850 after target_wait()/deprecated_target_wait_hook(). */
3851
3852 void
3853 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3854 {
3855 *ptidp = target_last_wait_ptid;
3856 *status = target_last_waitstatus;
3857 }
3858
3859 void
3860 nullify_last_target_wait_ptid (void)
3861 {
3862 target_last_wait_ptid = minus_one_ptid;
3863 }
3864
3865 /* Switch thread contexts. */
3866
3867 static void
3868 context_switch (execution_control_state *ecs)
3869 {
3870 if (debug_infrun
3871 && ecs->ptid != inferior_ptid
3872 && ecs->event_thread != inferior_thread ())
3873 {
3874 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3875 target_pid_to_str (inferior_ptid).c_str ());
3876 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3877 target_pid_to_str (ecs->ptid).c_str ());
3878 }
3879
3880 switch_to_thread (ecs->event_thread);
3881 }
3882
3883 /* If the target can't tell whether we've hit breakpoints
3884 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3885 check whether that could have been caused by a breakpoint. If so,
3886 adjust the PC, per gdbarch_decr_pc_after_break. */
3887
3888 static void
3889 adjust_pc_after_break (struct thread_info *thread,
3890 struct target_waitstatus *ws)
3891 {
3892 struct regcache *regcache;
3893 struct gdbarch *gdbarch;
3894 CORE_ADDR breakpoint_pc, decr_pc;
3895
3896 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3897 we aren't, just return.
3898
3899 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3900 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3901 implemented by software breakpoints should be handled through the normal
3902 breakpoint layer.
3903
3904 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3905 different signals (SIGILL or SIGEMT for instance), but it is less
3906 clear where the PC is pointing afterwards. It may not match
3907 gdbarch_decr_pc_after_break. I don't know any specific target that
3908 generates these signals at breakpoints (the code has been in GDB since at
3909 least 1992) so I can not guess how to handle them here.
3910
3911 In earlier versions of GDB, a target with
3912 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3913 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3914 target with both of these set in GDB history, and it seems unlikely to be
3915 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3916
3917 if (ws->kind != TARGET_WAITKIND_STOPPED)
3918 return;
3919
3920 if (ws->value.sig != GDB_SIGNAL_TRAP)
3921 return;
3922
3923 /* In reverse execution, when a breakpoint is hit, the instruction
3924 under it has already been de-executed. The reported PC always
3925 points at the breakpoint address, so adjusting it further would
3926 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3927 architecture:
3928
3929 B1 0x08000000 : INSN1
3930 B2 0x08000001 : INSN2
3931 0x08000002 : INSN3
3932 PC -> 0x08000003 : INSN4
3933
3934 Say you're stopped at 0x08000003 as above. Reverse continuing
3935 from that point should hit B2 as below. Reading the PC when the
3936 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3937 been de-executed already.
3938
3939 B1 0x08000000 : INSN1
3940 B2 PC -> 0x08000001 : INSN2
3941 0x08000002 : INSN3
3942 0x08000003 : INSN4
3943
3944 We can't apply the same logic as for forward execution, because
3945 we would wrongly adjust the PC to 0x08000000, since there's a
3946 breakpoint at PC - 1. We'd then report a hit on B1, although
3947 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3948 behaviour. */
3949 if (execution_direction == EXEC_REVERSE)
3950 return;
3951
3952 /* If the target can tell whether the thread hit a SW breakpoint,
3953 trust it. Targets that can tell also adjust the PC
3954 themselves. */
3955 if (target_supports_stopped_by_sw_breakpoint ())
3956 return;
3957
3958 /* Note that relying on whether a breakpoint is planted in memory to
3959 determine this can fail. E.g,. the breakpoint could have been
3960 removed since. Or the thread could have been told to step an
3961 instruction the size of a breakpoint instruction, and only
3962 _after_ was a breakpoint inserted at its address. */
3963
3964 /* If this target does not decrement the PC after breakpoints, then
3965 we have nothing to do. */
3966 regcache = get_thread_regcache (thread);
3967 gdbarch = regcache->arch ();
3968
3969 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3970 if (decr_pc == 0)
3971 return;
3972
3973 const address_space *aspace = regcache->aspace ();
3974
3975 /* Find the location where (if we've hit a breakpoint) the
3976 breakpoint would be. */
3977 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3978
3979 /* If the target can't tell whether a software breakpoint triggered,
3980 fallback to figuring it out based on breakpoints we think were
3981 inserted in the target, and on whether the thread was stepped or
3982 continued. */
3983
3984 /* Check whether there actually is a software breakpoint inserted at
3985 that location.
3986
3987 If in non-stop mode, a race condition is possible where we've
3988 removed a breakpoint, but stop events for that breakpoint were
3989 already queued and arrive later. To suppress those spurious
3990 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3991 and retire them after a number of stop events are reported. Note
3992 this is an heuristic and can thus get confused. The real fix is
3993 to get the "stopped by SW BP and needs adjustment" info out of
3994 the target/kernel (and thus never reach here; see above). */
3995 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3996 || (target_is_non_stop_p ()
3997 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3998 {
3999 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4000
4001 if (record_full_is_used ())
4002 restore_operation_disable.emplace
4003 (record_full_gdb_operation_disable_set ());
4004
4005 /* When using hardware single-step, a SIGTRAP is reported for both
4006 a completed single-step and a software breakpoint. Need to
4007 differentiate between the two, as the latter needs adjusting
4008 but the former does not.
4009
4010 The SIGTRAP can be due to a completed hardware single-step only if
4011 - we didn't insert software single-step breakpoints
4012 - this thread is currently being stepped
4013
4014 If any of these events did not occur, we must have stopped due
4015 to hitting a software breakpoint, and have to back up to the
4016 breakpoint address.
4017
4018 As a special case, we could have hardware single-stepped a
4019 software breakpoint. In this case (prev_pc == breakpoint_pc),
4020 we also need to back up to the breakpoint address. */
4021
4022 if (thread_has_single_step_breakpoints_set (thread)
4023 || !currently_stepping (thread)
4024 || (thread->stepped_breakpoint
4025 && thread->prev_pc == breakpoint_pc))
4026 regcache_write_pc (regcache, breakpoint_pc);
4027 }
4028 }
4029
4030 static int
4031 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4032 {
4033 for (frame = get_prev_frame (frame);
4034 frame != NULL;
4035 frame = get_prev_frame (frame))
4036 {
4037 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4038 return 1;
4039 if (get_frame_type (frame) != INLINE_FRAME)
4040 break;
4041 }
4042
4043 return 0;
4044 }
4045
4046 /* If the event thread has the stop requested flag set, pretend it
4047 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4048 target_stop). */
4049
4050 static bool
4051 handle_stop_requested (struct execution_control_state *ecs)
4052 {
4053 if (ecs->event_thread->stop_requested)
4054 {
4055 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4056 ecs->ws.value.sig = GDB_SIGNAL_0;
4057 handle_signal_stop (ecs);
4058 return true;
4059 }
4060 return false;
4061 }
4062
4063 /* Auxiliary function that handles syscall entry/return events.
4064 It returns 1 if the inferior should keep going (and GDB
4065 should ignore the event), or 0 if the event deserves to be
4066 processed. */
4067
4068 static int
4069 handle_syscall_event (struct execution_control_state *ecs)
4070 {
4071 struct regcache *regcache;
4072 int syscall_number;
4073
4074 context_switch (ecs);
4075
4076 regcache = get_thread_regcache (ecs->event_thread);
4077 syscall_number = ecs->ws.value.syscall_number;
4078 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4079
4080 if (catch_syscall_enabled () > 0
4081 && catching_syscall_number (syscall_number) > 0)
4082 {
4083 if (debug_infrun)
4084 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4085 syscall_number);
4086
4087 ecs->event_thread->control.stop_bpstat
4088 = bpstat_stop_status (regcache->aspace (),
4089 ecs->event_thread->suspend.stop_pc,
4090 ecs->event_thread, &ecs->ws);
4091
4092 if (handle_stop_requested (ecs))
4093 return 0;
4094
4095 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4096 {
4097 /* Catchpoint hit. */
4098 return 0;
4099 }
4100 }
4101
4102 if (handle_stop_requested (ecs))
4103 return 0;
4104
4105 /* If no catchpoint triggered for this, then keep going. */
4106 keep_going (ecs);
4107 return 1;
4108 }
4109
4110 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4111
4112 static void
4113 fill_in_stop_func (struct gdbarch *gdbarch,
4114 struct execution_control_state *ecs)
4115 {
4116 if (!ecs->stop_func_filled_in)
4117 {
4118 /* Don't care about return value; stop_func_start and stop_func_name
4119 will both be 0 if it doesn't work. */
4120 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4121 &ecs->stop_func_name,
4122 &ecs->stop_func_start,
4123 &ecs->stop_func_end);
4124 ecs->stop_func_start
4125 += gdbarch_deprecated_function_start_offset (gdbarch);
4126
4127 if (gdbarch_skip_entrypoint_p (gdbarch))
4128 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4129 ecs->stop_func_start);
4130
4131 ecs->stop_func_filled_in = 1;
4132 }
4133 }
4134
4135
4136 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4137
4138 static enum stop_kind
4139 get_inferior_stop_soon (execution_control_state *ecs)
4140 {
4141 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4142
4143 gdb_assert (inf != NULL);
4144 return inf->control.stop_soon;
4145 }
4146
4147 /* Wait for one event. Store the resulting waitstatus in WS, and
4148 return the event ptid. */
4149
4150 static ptid_t
4151 wait_one (struct target_waitstatus *ws)
4152 {
4153 ptid_t event_ptid;
4154 ptid_t wait_ptid = minus_one_ptid;
4155
4156 overlay_cache_invalid = 1;
4157
4158 /* Flush target cache before starting to handle each event.
4159 Target was running and cache could be stale. This is just a
4160 heuristic. Running threads may modify target memory, but we
4161 don't get any event. */
4162 target_dcache_invalidate ();
4163
4164 if (deprecated_target_wait_hook)
4165 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4166 else
4167 event_ptid = target_wait (wait_ptid, ws, 0);
4168
4169 if (debug_infrun)
4170 print_target_wait_results (wait_ptid, event_ptid, ws);
4171
4172 return event_ptid;
4173 }
4174
4175 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4176 instead of the current thread. */
4177 #define THREAD_STOPPED_BY(REASON) \
4178 static int \
4179 thread_stopped_by_ ## REASON (ptid_t ptid) \
4180 { \
4181 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4182 inferior_ptid = ptid; \
4183 \
4184 return target_stopped_by_ ## REASON (); \
4185 }
4186
4187 /* Generate thread_stopped_by_watchpoint. */
4188 THREAD_STOPPED_BY (watchpoint)
4189 /* Generate thread_stopped_by_sw_breakpoint. */
4190 THREAD_STOPPED_BY (sw_breakpoint)
4191 /* Generate thread_stopped_by_hw_breakpoint. */
4192 THREAD_STOPPED_BY (hw_breakpoint)
4193
4194 /* Save the thread's event and stop reason to process it later. */
4195
4196 static void
4197 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4198 {
4199 if (debug_infrun)
4200 {
4201 std::string statstr = target_waitstatus_to_string (ws);
4202
4203 fprintf_unfiltered (gdb_stdlog,
4204 "infrun: saving status %s for %d.%ld.%ld\n",
4205 statstr.c_str (),
4206 tp->ptid.pid (),
4207 tp->ptid.lwp (),
4208 tp->ptid.tid ());
4209 }
4210
4211 /* Record for later. */
4212 tp->suspend.waitstatus = *ws;
4213 tp->suspend.waitstatus_pending_p = 1;
4214
4215 struct regcache *regcache = get_thread_regcache (tp);
4216 const address_space *aspace = regcache->aspace ();
4217
4218 if (ws->kind == TARGET_WAITKIND_STOPPED
4219 && ws->value.sig == GDB_SIGNAL_TRAP)
4220 {
4221 CORE_ADDR pc = regcache_read_pc (regcache);
4222
4223 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4224
4225 if (thread_stopped_by_watchpoint (tp->ptid))
4226 {
4227 tp->suspend.stop_reason
4228 = TARGET_STOPPED_BY_WATCHPOINT;
4229 }
4230 else if (target_supports_stopped_by_sw_breakpoint ()
4231 && thread_stopped_by_sw_breakpoint (tp->ptid))
4232 {
4233 tp->suspend.stop_reason
4234 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4235 }
4236 else if (target_supports_stopped_by_hw_breakpoint ()
4237 && thread_stopped_by_hw_breakpoint (tp->ptid))
4238 {
4239 tp->suspend.stop_reason
4240 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4241 }
4242 else if (!target_supports_stopped_by_hw_breakpoint ()
4243 && hardware_breakpoint_inserted_here_p (aspace,
4244 pc))
4245 {
4246 tp->suspend.stop_reason
4247 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4248 }
4249 else if (!target_supports_stopped_by_sw_breakpoint ()
4250 && software_breakpoint_inserted_here_p (aspace,
4251 pc))
4252 {
4253 tp->suspend.stop_reason
4254 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4255 }
4256 else if (!thread_has_single_step_breakpoints_set (tp)
4257 && currently_stepping (tp))
4258 {
4259 tp->suspend.stop_reason
4260 = TARGET_STOPPED_BY_SINGLE_STEP;
4261 }
4262 }
4263 }
4264
4265 /* See infrun.h. */
4266
4267 void
4268 stop_all_threads (void)
4269 {
4270 /* We may need multiple passes to discover all threads. */
4271 int pass;
4272 int iterations = 0;
4273
4274 gdb_assert (target_is_non_stop_p ());
4275
4276 if (debug_infrun)
4277 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4278
4279 scoped_restore_current_thread restore_thread;
4280
4281 target_thread_events (1);
4282 SCOPE_EXIT { target_thread_events (0); };
4283
4284 /* Request threads to stop, and then wait for the stops. Because
4285 threads we already know about can spawn more threads while we're
4286 trying to stop them, and we only learn about new threads when we
4287 update the thread list, do this in a loop, and keep iterating
4288 until two passes find no threads that need to be stopped. */
4289 for (pass = 0; pass < 2; pass++, iterations++)
4290 {
4291 if (debug_infrun)
4292 fprintf_unfiltered (gdb_stdlog,
4293 "infrun: stop_all_threads, pass=%d, "
4294 "iterations=%d\n", pass, iterations);
4295 while (1)
4296 {
4297 ptid_t event_ptid;
4298 struct target_waitstatus ws;
4299 int need_wait = 0;
4300
4301 update_thread_list ();
4302
4303 /* Go through all threads looking for threads that we need
4304 to tell the target to stop. */
4305 for (thread_info *t : all_non_exited_threads ())
4306 {
4307 if (t->executing)
4308 {
4309 /* If already stopping, don't request a stop again.
4310 We just haven't seen the notification yet. */
4311 if (!t->stop_requested)
4312 {
4313 if (debug_infrun)
4314 fprintf_unfiltered (gdb_stdlog,
4315 "infrun: %s executing, "
4316 "need stop\n",
4317 target_pid_to_str (t->ptid).c_str ());
4318 target_stop (t->ptid);
4319 t->stop_requested = 1;
4320 }
4321 else
4322 {
4323 if (debug_infrun)
4324 fprintf_unfiltered (gdb_stdlog,
4325 "infrun: %s executing, "
4326 "already stopping\n",
4327 target_pid_to_str (t->ptid).c_str ());
4328 }
4329
4330 if (t->stop_requested)
4331 need_wait = 1;
4332 }
4333 else
4334 {
4335 if (debug_infrun)
4336 fprintf_unfiltered (gdb_stdlog,
4337 "infrun: %s not executing\n",
4338 target_pid_to_str (t->ptid).c_str ());
4339
4340 /* The thread may be not executing, but still be
4341 resumed with a pending status to process. */
4342 t->resumed = 0;
4343 }
4344 }
4345
4346 if (!need_wait)
4347 break;
4348
4349 /* If we find new threads on the second iteration, restart
4350 over. We want to see two iterations in a row with all
4351 threads stopped. */
4352 if (pass > 0)
4353 pass = -1;
4354
4355 event_ptid = wait_one (&ws);
4356 if (debug_infrun)
4357 {
4358 fprintf_unfiltered (gdb_stdlog,
4359 "infrun: stop_all_threads %s %s\n",
4360 target_waitstatus_to_string (&ws).c_str (),
4361 target_pid_to_str (event_ptid).c_str ());
4362 }
4363
4364 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4365 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4366 || ws.kind == TARGET_WAITKIND_EXITED
4367 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4368 {
4369 /* All resumed threads exited
4370 or one thread/process exited/signalled. */
4371 }
4372 else
4373 {
4374 thread_info *t = find_thread_ptid (event_ptid);
4375 if (t == NULL)
4376 t = add_thread (event_ptid);
4377
4378 t->stop_requested = 0;
4379 t->executing = 0;
4380 t->resumed = 0;
4381 t->control.may_range_step = 0;
4382
4383 /* This may be the first time we see the inferior report
4384 a stop. */
4385 inferior *inf = find_inferior_ptid (event_ptid);
4386 if (inf->needs_setup)
4387 {
4388 switch_to_thread_no_regs (t);
4389 setup_inferior (0);
4390 }
4391
4392 if (ws.kind == TARGET_WAITKIND_STOPPED
4393 && ws.value.sig == GDB_SIGNAL_0)
4394 {
4395 /* We caught the event that we intended to catch, so
4396 there's no event pending. */
4397 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4398 t->suspend.waitstatus_pending_p = 0;
4399
4400 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4401 {
4402 /* Add it back to the step-over queue. */
4403 if (debug_infrun)
4404 {
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: displaced-step of %s "
4407 "canceled: adding back to the "
4408 "step-over queue\n",
4409 target_pid_to_str (t->ptid).c_str ());
4410 }
4411 t->control.trap_expected = 0;
4412 thread_step_over_chain_enqueue (t);
4413 }
4414 }
4415 else
4416 {
4417 enum gdb_signal sig;
4418 struct regcache *regcache;
4419
4420 if (debug_infrun)
4421 {
4422 std::string statstr = target_waitstatus_to_string (&ws);
4423
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: target_wait %s, saving "
4426 "status for %d.%ld.%ld\n",
4427 statstr.c_str (),
4428 t->ptid.pid (),
4429 t->ptid.lwp (),
4430 t->ptid.tid ());
4431 }
4432
4433 /* Record for later. */
4434 save_waitstatus (t, &ws);
4435
4436 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4437 ? ws.value.sig : GDB_SIGNAL_0);
4438
4439 if (displaced_step_fixup (t, sig) < 0)
4440 {
4441 /* Add it back to the step-over queue. */
4442 t->control.trap_expected = 0;
4443 thread_step_over_chain_enqueue (t);
4444 }
4445
4446 regcache = get_thread_regcache (t);
4447 t->suspend.stop_pc = regcache_read_pc (regcache);
4448
4449 if (debug_infrun)
4450 {
4451 fprintf_unfiltered (gdb_stdlog,
4452 "infrun: saved stop_pc=%s for %s "
4453 "(currently_stepping=%d)\n",
4454 paddress (target_gdbarch (),
4455 t->suspend.stop_pc),
4456 target_pid_to_str (t->ptid).c_str (),
4457 currently_stepping (t));
4458 }
4459 }
4460 }
4461 }
4462 }
4463
4464 if (debug_infrun)
4465 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4466 }
4467
4468 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4469
4470 static int
4471 handle_no_resumed (struct execution_control_state *ecs)
4472 {
4473 if (target_can_async_p ())
4474 {
4475 struct ui *ui;
4476 int any_sync = 0;
4477
4478 ALL_UIS (ui)
4479 {
4480 if (ui->prompt_state == PROMPT_BLOCKED)
4481 {
4482 any_sync = 1;
4483 break;
4484 }
4485 }
4486 if (!any_sync)
4487 {
4488 /* There were no unwaited-for children left in the target, but,
4489 we're not synchronously waiting for events either. Just
4490 ignore. */
4491
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: TARGET_WAITKIND_NO_RESUMED "
4495 "(ignoring: bg)\n");
4496 prepare_to_wait (ecs);
4497 return 1;
4498 }
4499 }
4500
4501 /* Otherwise, if we were running a synchronous execution command, we
4502 may need to cancel it and give the user back the terminal.
4503
4504 In non-stop mode, the target can't tell whether we've already
4505 consumed previous stop events, so it can end up sending us a
4506 no-resumed event like so:
4507
4508 #0 - thread 1 is left stopped
4509
4510 #1 - thread 2 is resumed and hits breakpoint
4511 -> TARGET_WAITKIND_STOPPED
4512
4513 #2 - thread 3 is resumed and exits
4514 this is the last resumed thread, so
4515 -> TARGET_WAITKIND_NO_RESUMED
4516
4517 #3 - gdb processes stop for thread 2 and decides to re-resume
4518 it.
4519
4520 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4521 thread 2 is now resumed, so the event should be ignored.
4522
4523 IOW, if the stop for thread 2 doesn't end a foreground command,
4524 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4525 event. But it could be that the event meant that thread 2 itself
4526 (or whatever other thread was the last resumed thread) exited.
4527
4528 To address this we refresh the thread list and check whether we
4529 have resumed threads _now_. In the example above, this removes
4530 thread 3 from the thread list. If thread 2 was re-resumed, we
4531 ignore this event. If we find no thread resumed, then we cancel
4532 the synchronous command show "no unwaited-for " to the user. */
4533 update_thread_list ();
4534
4535 for (thread_info *thread : all_non_exited_threads ())
4536 {
4537 if (thread->executing
4538 || thread->suspend.waitstatus_pending_p)
4539 {
4540 /* There were no unwaited-for children left in the target at
4541 some point, but there are now. Just ignore. */
4542 if (debug_infrun)
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: TARGET_WAITKIND_NO_RESUMED "
4545 "(ignoring: found resumed)\n");
4546 prepare_to_wait (ecs);
4547 return 1;
4548 }
4549 }
4550
4551 /* Note however that we may find no resumed thread because the whole
4552 process exited meanwhile (thus updating the thread list results
4553 in an empty thread list). In this case we know we'll be getting
4554 a process exit event shortly. */
4555 for (inferior *inf : all_inferiors ())
4556 {
4557 if (inf->pid == 0)
4558 continue;
4559
4560 thread_info *thread = any_live_thread_of_inferior (inf);
4561 if (thread == NULL)
4562 {
4563 if (debug_infrun)
4564 fprintf_unfiltered (gdb_stdlog,
4565 "infrun: TARGET_WAITKIND_NO_RESUMED "
4566 "(expect process exit)\n");
4567 prepare_to_wait (ecs);
4568 return 1;
4569 }
4570 }
4571
4572 /* Go ahead and report the event. */
4573 return 0;
4574 }
4575
4576 /* Given an execution control state that has been freshly filled in by
4577 an event from the inferior, figure out what it means and take
4578 appropriate action.
4579
4580 The alternatives are:
4581
4582 1) stop_waiting and return; to really stop and return to the
4583 debugger.
4584
4585 2) keep_going and return; to wait for the next event (set
4586 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4587 once). */
4588
4589 static void
4590 handle_inferior_event (struct execution_control_state *ecs)
4591 {
4592 /* Make sure that all temporary struct value objects that were
4593 created during the handling of the event get deleted at the
4594 end. */
4595 scoped_value_mark free_values;
4596
4597 enum stop_kind stop_soon;
4598
4599 if (debug_infrun)
4600 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4601 target_waitstatus_to_string (&ecs->ws).c_str ());
4602
4603 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4604 {
4605 /* We had an event in the inferior, but we are not interested in
4606 handling it at this level. The lower layers have already
4607 done what needs to be done, if anything.
4608
4609 One of the possible circumstances for this is when the
4610 inferior produces output for the console. The inferior has
4611 not stopped, and we are ignoring the event. Another possible
4612 circumstance is any event which the lower level knows will be
4613 reported multiple times without an intervening resume. */
4614 prepare_to_wait (ecs);
4615 return;
4616 }
4617
4618 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4619 {
4620 prepare_to_wait (ecs);
4621 return;
4622 }
4623
4624 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4625 && handle_no_resumed (ecs))
4626 return;
4627
4628 /* Cache the last pid/waitstatus. */
4629 set_last_target_status (ecs->ptid, ecs->ws);
4630
4631 /* Always clear state belonging to the previous time we stopped. */
4632 stop_stack_dummy = STOP_NONE;
4633
4634 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4635 {
4636 /* No unwaited-for children left. IOW, all resumed children
4637 have exited. */
4638 stop_print_frame = 0;
4639 stop_waiting (ecs);
4640 return;
4641 }
4642
4643 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4644 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4645 {
4646 ecs->event_thread = find_thread_ptid (ecs->ptid);
4647 /* If it's a new thread, add it to the thread database. */
4648 if (ecs->event_thread == NULL)
4649 ecs->event_thread = add_thread (ecs->ptid);
4650
4651 /* Disable range stepping. If the next step request could use a
4652 range, this will be end up re-enabled then. */
4653 ecs->event_thread->control.may_range_step = 0;
4654 }
4655
4656 /* Dependent on valid ECS->EVENT_THREAD. */
4657 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4658
4659 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4660 reinit_frame_cache ();
4661
4662 breakpoint_retire_moribund ();
4663
4664 /* First, distinguish signals caused by the debugger from signals
4665 that have to do with the program's own actions. Note that
4666 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4667 on the operating system version. Here we detect when a SIGILL or
4668 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4669 something similar for SIGSEGV, since a SIGSEGV will be generated
4670 when we're trying to execute a breakpoint instruction on a
4671 non-executable stack. This happens for call dummy breakpoints
4672 for architectures like SPARC that place call dummies on the
4673 stack. */
4674 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4675 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4676 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4677 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4678 {
4679 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4680
4681 if (breakpoint_inserted_here_p (regcache->aspace (),
4682 regcache_read_pc (regcache)))
4683 {
4684 if (debug_infrun)
4685 fprintf_unfiltered (gdb_stdlog,
4686 "infrun: Treating signal as SIGTRAP\n");
4687 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4688 }
4689 }
4690
4691 /* Mark the non-executing threads accordingly. In all-stop, all
4692 threads of all processes are stopped when we get any event
4693 reported. In non-stop mode, only the event thread stops. */
4694 {
4695 ptid_t mark_ptid;
4696
4697 if (!target_is_non_stop_p ())
4698 mark_ptid = minus_one_ptid;
4699 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4700 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4701 {
4702 /* If we're handling a process exit in non-stop mode, even
4703 though threads haven't been deleted yet, one would think
4704 that there is nothing to do, as threads of the dead process
4705 will be soon deleted, and threads of any other process were
4706 left running. However, on some targets, threads survive a
4707 process exit event. E.g., for the "checkpoint" command,
4708 when the current checkpoint/fork exits, linux-fork.c
4709 automatically switches to another fork from within
4710 target_mourn_inferior, by associating the same
4711 inferior/thread to another fork. We haven't mourned yet at
4712 this point, but we must mark any threads left in the
4713 process as not-executing so that finish_thread_state marks
4714 them stopped (in the user's perspective) if/when we present
4715 the stop to the user. */
4716 mark_ptid = ptid_t (ecs->ptid.pid ());
4717 }
4718 else
4719 mark_ptid = ecs->ptid;
4720
4721 set_executing (mark_ptid, 0);
4722
4723 /* Likewise the resumed flag. */
4724 set_resumed (mark_ptid, 0);
4725 }
4726
4727 switch (ecs->ws.kind)
4728 {
4729 case TARGET_WAITKIND_LOADED:
4730 context_switch (ecs);
4731 /* Ignore gracefully during startup of the inferior, as it might
4732 be the shell which has just loaded some objects, otherwise
4733 add the symbols for the newly loaded objects. Also ignore at
4734 the beginning of an attach or remote session; we will query
4735 the full list of libraries once the connection is
4736 established. */
4737
4738 stop_soon = get_inferior_stop_soon (ecs);
4739 if (stop_soon == NO_STOP_QUIETLY)
4740 {
4741 struct regcache *regcache;
4742
4743 regcache = get_thread_regcache (ecs->event_thread);
4744
4745 handle_solib_event ();
4746
4747 ecs->event_thread->control.stop_bpstat
4748 = bpstat_stop_status (regcache->aspace (),
4749 ecs->event_thread->suspend.stop_pc,
4750 ecs->event_thread, &ecs->ws);
4751
4752 if (handle_stop_requested (ecs))
4753 return;
4754
4755 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4756 {
4757 /* A catchpoint triggered. */
4758 process_event_stop_test (ecs);
4759 return;
4760 }
4761
4762 /* If requested, stop when the dynamic linker notifies
4763 gdb of events. This allows the user to get control
4764 and place breakpoints in initializer routines for
4765 dynamically loaded objects (among other things). */
4766 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4767 if (stop_on_solib_events)
4768 {
4769 /* Make sure we print "Stopped due to solib-event" in
4770 normal_stop. */
4771 stop_print_frame = 1;
4772
4773 stop_waiting (ecs);
4774 return;
4775 }
4776 }
4777
4778 /* If we are skipping through a shell, or through shared library
4779 loading that we aren't interested in, resume the program. If
4780 we're running the program normally, also resume. */
4781 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4782 {
4783 /* Loading of shared libraries might have changed breakpoint
4784 addresses. Make sure new breakpoints are inserted. */
4785 if (stop_soon == NO_STOP_QUIETLY)
4786 insert_breakpoints ();
4787 resume (GDB_SIGNAL_0);
4788 prepare_to_wait (ecs);
4789 return;
4790 }
4791
4792 /* But stop if we're attaching or setting up a remote
4793 connection. */
4794 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4795 || stop_soon == STOP_QUIETLY_REMOTE)
4796 {
4797 if (debug_infrun)
4798 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4799 stop_waiting (ecs);
4800 return;
4801 }
4802
4803 internal_error (__FILE__, __LINE__,
4804 _("unhandled stop_soon: %d"), (int) stop_soon);
4805
4806 case TARGET_WAITKIND_SPURIOUS:
4807 if (handle_stop_requested (ecs))
4808 return;
4809 context_switch (ecs);
4810 resume (GDB_SIGNAL_0);
4811 prepare_to_wait (ecs);
4812 return;
4813
4814 case TARGET_WAITKIND_THREAD_CREATED:
4815 if (handle_stop_requested (ecs))
4816 return;
4817 context_switch (ecs);
4818 if (!switch_back_to_stepped_thread (ecs))
4819 keep_going (ecs);
4820 return;
4821
4822 case TARGET_WAITKIND_EXITED:
4823 case TARGET_WAITKIND_SIGNALLED:
4824 inferior_ptid = ecs->ptid;
4825 set_current_inferior (find_inferior_ptid (ecs->ptid));
4826 set_current_program_space (current_inferior ()->pspace);
4827 handle_vfork_child_exec_or_exit (0);
4828 target_terminal::ours (); /* Must do this before mourn anyway. */
4829
4830 /* Clearing any previous state of convenience variables. */
4831 clear_exit_convenience_vars ();
4832
4833 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4834 {
4835 /* Record the exit code in the convenience variable $_exitcode, so
4836 that the user can inspect this again later. */
4837 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4838 (LONGEST) ecs->ws.value.integer);
4839
4840 /* Also record this in the inferior itself. */
4841 current_inferior ()->has_exit_code = 1;
4842 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4843
4844 /* Support the --return-child-result option. */
4845 return_child_result_value = ecs->ws.value.integer;
4846
4847 gdb::observers::exited.notify (ecs->ws.value.integer);
4848 }
4849 else
4850 {
4851 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4852
4853 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4854 {
4855 /* Set the value of the internal variable $_exitsignal,
4856 which holds the signal uncaught by the inferior. */
4857 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4858 gdbarch_gdb_signal_to_target (gdbarch,
4859 ecs->ws.value.sig));
4860 }
4861 else
4862 {
4863 /* We don't have access to the target's method used for
4864 converting between signal numbers (GDB's internal
4865 representation <-> target's representation).
4866 Therefore, we cannot do a good job at displaying this
4867 information to the user. It's better to just warn
4868 her about it (if infrun debugging is enabled), and
4869 give up. */
4870 if (debug_infrun)
4871 fprintf_filtered (gdb_stdlog, _("\
4872 Cannot fill $_exitsignal with the correct signal number.\n"));
4873 }
4874
4875 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4876 }
4877
4878 gdb_flush (gdb_stdout);
4879 target_mourn_inferior (inferior_ptid);
4880 stop_print_frame = 0;
4881 stop_waiting (ecs);
4882 return;
4883
4884 /* The following are the only cases in which we keep going;
4885 the above cases end in a continue or goto. */
4886 case TARGET_WAITKIND_FORKED:
4887 case TARGET_WAITKIND_VFORKED:
4888 /* Check whether the inferior is displaced stepping. */
4889 {
4890 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4891 struct gdbarch *gdbarch = regcache->arch ();
4892
4893 /* If checking displaced stepping is supported, and thread
4894 ecs->ptid is displaced stepping. */
4895 if (displaced_step_in_progress_thread (ecs->event_thread))
4896 {
4897 struct inferior *parent_inf
4898 = find_inferior_ptid (ecs->ptid);
4899 struct regcache *child_regcache;
4900 CORE_ADDR parent_pc;
4901
4902 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4903 indicating that the displaced stepping of syscall instruction
4904 has been done. Perform cleanup for parent process here. Note
4905 that this operation also cleans up the child process for vfork,
4906 because their pages are shared. */
4907 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4908 /* Start a new step-over in another thread if there's one
4909 that needs it. */
4910 start_step_over ();
4911
4912 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4913 {
4914 struct displaced_step_inferior_state *displaced
4915 = get_displaced_stepping_state (parent_inf);
4916
4917 /* Restore scratch pad for child process. */
4918 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4919 }
4920
4921 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4922 the child's PC is also within the scratchpad. Set the child's PC
4923 to the parent's PC value, which has already been fixed up.
4924 FIXME: we use the parent's aspace here, although we're touching
4925 the child, because the child hasn't been added to the inferior
4926 list yet at this point. */
4927
4928 child_regcache
4929 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4930 gdbarch,
4931 parent_inf->aspace);
4932 /* Read PC value of parent process. */
4933 parent_pc = regcache_read_pc (regcache);
4934
4935 if (debug_displaced)
4936 fprintf_unfiltered (gdb_stdlog,
4937 "displaced: write child pc from %s to %s\n",
4938 paddress (gdbarch,
4939 regcache_read_pc (child_regcache)),
4940 paddress (gdbarch, parent_pc));
4941
4942 regcache_write_pc (child_regcache, parent_pc);
4943 }
4944 }
4945
4946 context_switch (ecs);
4947
4948 /* Immediately detach breakpoints from the child before there's
4949 any chance of letting the user delete breakpoints from the
4950 breakpoint lists. If we don't do this early, it's easy to
4951 leave left over traps in the child, vis: "break foo; catch
4952 fork; c; <fork>; del; c; <child calls foo>". We only follow
4953 the fork on the last `continue', and by that time the
4954 breakpoint at "foo" is long gone from the breakpoint table.
4955 If we vforked, then we don't need to unpatch here, since both
4956 parent and child are sharing the same memory pages; we'll
4957 need to unpatch at follow/detach time instead to be certain
4958 that new breakpoints added between catchpoint hit time and
4959 vfork follow are detached. */
4960 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4961 {
4962 /* This won't actually modify the breakpoint list, but will
4963 physically remove the breakpoints from the child. */
4964 detach_breakpoints (ecs->ws.value.related_pid);
4965 }
4966
4967 delete_just_stopped_threads_single_step_breakpoints ();
4968
4969 /* In case the event is caught by a catchpoint, remember that
4970 the event is to be followed at the next resume of the thread,
4971 and not immediately. */
4972 ecs->event_thread->pending_follow = ecs->ws;
4973
4974 ecs->event_thread->suspend.stop_pc
4975 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
4976
4977 ecs->event_thread->control.stop_bpstat
4978 = bpstat_stop_status (get_current_regcache ()->aspace (),
4979 ecs->event_thread->suspend.stop_pc,
4980 ecs->event_thread, &ecs->ws);
4981
4982 if (handle_stop_requested (ecs))
4983 return;
4984
4985 /* If no catchpoint triggered for this, then keep going. Note
4986 that we're interested in knowing the bpstat actually causes a
4987 stop, not just if it may explain the signal. Software
4988 watchpoints, for example, always appear in the bpstat. */
4989 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4990 {
4991 int should_resume;
4992 int follow_child
4993 = (follow_fork_mode_string == follow_fork_mode_child);
4994
4995 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4996
4997 should_resume = follow_fork ();
4998
4999 thread_info *parent = ecs->event_thread;
5000 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5001
5002 /* At this point, the parent is marked running, and the
5003 child is marked stopped. */
5004
5005 /* If not resuming the parent, mark it stopped. */
5006 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5007 parent->set_running (false);
5008
5009 /* If resuming the child, mark it running. */
5010 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5011 child->set_running (true);
5012
5013 /* In non-stop mode, also resume the other branch. */
5014 if (!detach_fork && (non_stop
5015 || (sched_multi && target_is_non_stop_p ())))
5016 {
5017 if (follow_child)
5018 switch_to_thread (parent);
5019 else
5020 switch_to_thread (child);
5021
5022 ecs->event_thread = inferior_thread ();
5023 ecs->ptid = inferior_ptid;
5024 keep_going (ecs);
5025 }
5026
5027 if (follow_child)
5028 switch_to_thread (child);
5029 else
5030 switch_to_thread (parent);
5031
5032 ecs->event_thread = inferior_thread ();
5033 ecs->ptid = inferior_ptid;
5034
5035 if (should_resume)
5036 keep_going (ecs);
5037 else
5038 stop_waiting (ecs);
5039 return;
5040 }
5041 process_event_stop_test (ecs);
5042 return;
5043
5044 case TARGET_WAITKIND_VFORK_DONE:
5045 /* Done with the shared memory region. Re-insert breakpoints in
5046 the parent, and keep going. */
5047
5048 context_switch (ecs);
5049
5050 current_inferior ()->waiting_for_vfork_done = 0;
5051 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5052
5053 if (handle_stop_requested (ecs))
5054 return;
5055
5056 /* This also takes care of reinserting breakpoints in the
5057 previously locked inferior. */
5058 keep_going (ecs);
5059 return;
5060
5061 case TARGET_WAITKIND_EXECD:
5062
5063 /* Note we can't read registers yet (the stop_pc), because we
5064 don't yet know the inferior's post-exec architecture.
5065 'stop_pc' is explicitly read below instead. */
5066 switch_to_thread_no_regs (ecs->event_thread);
5067
5068 /* Do whatever is necessary to the parent branch of the vfork. */
5069 handle_vfork_child_exec_or_exit (1);
5070
5071 /* This causes the eventpoints and symbol table to be reset.
5072 Must do this now, before trying to determine whether to
5073 stop. */
5074 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5075
5076 /* In follow_exec we may have deleted the original thread and
5077 created a new one. Make sure that the event thread is the
5078 execd thread for that case (this is a nop otherwise). */
5079 ecs->event_thread = inferior_thread ();
5080
5081 ecs->event_thread->suspend.stop_pc
5082 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5083
5084 ecs->event_thread->control.stop_bpstat
5085 = bpstat_stop_status (get_current_regcache ()->aspace (),
5086 ecs->event_thread->suspend.stop_pc,
5087 ecs->event_thread, &ecs->ws);
5088
5089 /* Note that this may be referenced from inside
5090 bpstat_stop_status above, through inferior_has_execd. */
5091 xfree (ecs->ws.value.execd_pathname);
5092 ecs->ws.value.execd_pathname = NULL;
5093
5094 if (handle_stop_requested (ecs))
5095 return;
5096
5097 /* If no catchpoint triggered for this, then keep going. */
5098 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5099 {
5100 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5101 keep_going (ecs);
5102 return;
5103 }
5104 process_event_stop_test (ecs);
5105 return;
5106
5107 /* Be careful not to try to gather much state about a thread
5108 that's in a syscall. It's frequently a losing proposition. */
5109 case TARGET_WAITKIND_SYSCALL_ENTRY:
5110 /* Getting the current syscall number. */
5111 if (handle_syscall_event (ecs) == 0)
5112 process_event_stop_test (ecs);
5113 return;
5114
5115 /* Before examining the threads further, step this thread to
5116 get it entirely out of the syscall. (We get notice of the
5117 event when the thread is just on the verge of exiting a
5118 syscall. Stepping one instruction seems to get it back
5119 into user code.) */
5120 case TARGET_WAITKIND_SYSCALL_RETURN:
5121 if (handle_syscall_event (ecs) == 0)
5122 process_event_stop_test (ecs);
5123 return;
5124
5125 case TARGET_WAITKIND_STOPPED:
5126 handle_signal_stop (ecs);
5127 return;
5128
5129 case TARGET_WAITKIND_NO_HISTORY:
5130 /* Reverse execution: target ran out of history info. */
5131
5132 /* Switch to the stopped thread. */
5133 context_switch (ecs);
5134 if (debug_infrun)
5135 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5136
5137 delete_just_stopped_threads_single_step_breakpoints ();
5138 ecs->event_thread->suspend.stop_pc
5139 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5140
5141 if (handle_stop_requested (ecs))
5142 return;
5143
5144 gdb::observers::no_history.notify ();
5145 stop_waiting (ecs);
5146 return;
5147 }
5148 }
5149
5150 /* Restart threads back to what they were trying to do back when we
5151 paused them for an in-line step-over. The EVENT_THREAD thread is
5152 ignored. */
5153
5154 static void
5155 restart_threads (struct thread_info *event_thread)
5156 {
5157 /* In case the instruction just stepped spawned a new thread. */
5158 update_thread_list ();
5159
5160 for (thread_info *tp : all_non_exited_threads ())
5161 {
5162 if (tp == event_thread)
5163 {
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: restart threads: "
5167 "[%s] is event thread\n",
5168 target_pid_to_str (tp->ptid).c_str ());
5169 continue;
5170 }
5171
5172 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5173 {
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: restart threads: "
5177 "[%s] not meant to be running\n",
5178 target_pid_to_str (tp->ptid).c_str ());
5179 continue;
5180 }
5181
5182 if (tp->resumed)
5183 {
5184 if (debug_infrun)
5185 fprintf_unfiltered (gdb_stdlog,
5186 "infrun: restart threads: [%s] resumed\n",
5187 target_pid_to_str (tp->ptid).c_str ());
5188 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5189 continue;
5190 }
5191
5192 if (thread_is_in_step_over_chain (tp))
5193 {
5194 if (debug_infrun)
5195 fprintf_unfiltered (gdb_stdlog,
5196 "infrun: restart threads: "
5197 "[%s] needs step-over\n",
5198 target_pid_to_str (tp->ptid).c_str ());
5199 gdb_assert (!tp->resumed);
5200 continue;
5201 }
5202
5203
5204 if (tp->suspend.waitstatus_pending_p)
5205 {
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog,
5208 "infrun: restart threads: "
5209 "[%s] has pending status\n",
5210 target_pid_to_str (tp->ptid).c_str ());
5211 tp->resumed = 1;
5212 continue;
5213 }
5214
5215 gdb_assert (!tp->stop_requested);
5216
5217 /* If some thread needs to start a step-over at this point, it
5218 should still be in the step-over queue, and thus skipped
5219 above. */
5220 if (thread_still_needs_step_over (tp))
5221 {
5222 internal_error (__FILE__, __LINE__,
5223 "thread [%s] needs a step-over, but not in "
5224 "step-over queue\n",
5225 target_pid_to_str (tp->ptid).c_str ());
5226 }
5227
5228 if (currently_stepping (tp))
5229 {
5230 if (debug_infrun)
5231 fprintf_unfiltered (gdb_stdlog,
5232 "infrun: restart threads: [%s] was stepping\n",
5233 target_pid_to_str (tp->ptid).c_str ());
5234 keep_going_stepped_thread (tp);
5235 }
5236 else
5237 {
5238 struct execution_control_state ecss;
5239 struct execution_control_state *ecs = &ecss;
5240
5241 if (debug_infrun)
5242 fprintf_unfiltered (gdb_stdlog,
5243 "infrun: restart threads: [%s] continuing\n",
5244 target_pid_to_str (tp->ptid).c_str ());
5245 reset_ecs (ecs, tp);
5246 switch_to_thread (tp);
5247 keep_going_pass_signal (ecs);
5248 }
5249 }
5250 }
5251
5252 /* Callback for iterate_over_threads. Find a resumed thread that has
5253 a pending waitstatus. */
5254
5255 static int
5256 resumed_thread_with_pending_status (struct thread_info *tp,
5257 void *arg)
5258 {
5259 return (tp->resumed
5260 && tp->suspend.waitstatus_pending_p);
5261 }
5262
5263 /* Called when we get an event that may finish an in-line or
5264 out-of-line (displaced stepping) step-over started previously.
5265 Return true if the event is processed and we should go back to the
5266 event loop; false if the caller should continue processing the
5267 event. */
5268
5269 static int
5270 finish_step_over (struct execution_control_state *ecs)
5271 {
5272 int had_step_over_info;
5273
5274 displaced_step_fixup (ecs->event_thread,
5275 ecs->event_thread->suspend.stop_signal);
5276
5277 had_step_over_info = step_over_info_valid_p ();
5278
5279 if (had_step_over_info)
5280 {
5281 /* If we're stepping over a breakpoint with all threads locked,
5282 then only the thread that was stepped should be reporting
5283 back an event. */
5284 gdb_assert (ecs->event_thread->control.trap_expected);
5285
5286 clear_step_over_info ();
5287 }
5288
5289 if (!target_is_non_stop_p ())
5290 return 0;
5291
5292 /* Start a new step-over in another thread if there's one that
5293 needs it. */
5294 start_step_over ();
5295
5296 /* If we were stepping over a breakpoint before, and haven't started
5297 a new in-line step-over sequence, then restart all other threads
5298 (except the event thread). We can't do this in all-stop, as then
5299 e.g., we wouldn't be able to issue any other remote packet until
5300 these other threads stop. */
5301 if (had_step_over_info && !step_over_info_valid_p ())
5302 {
5303 struct thread_info *pending;
5304
5305 /* If we only have threads with pending statuses, the restart
5306 below won't restart any thread and so nothing re-inserts the
5307 breakpoint we just stepped over. But we need it inserted
5308 when we later process the pending events, otherwise if
5309 another thread has a pending event for this breakpoint too,
5310 we'd discard its event (because the breakpoint that
5311 originally caused the event was no longer inserted). */
5312 context_switch (ecs);
5313 insert_breakpoints ();
5314
5315 restart_threads (ecs->event_thread);
5316
5317 /* If we have events pending, go through handle_inferior_event
5318 again, picking up a pending event at random. This avoids
5319 thread starvation. */
5320
5321 /* But not if we just stepped over a watchpoint in order to let
5322 the instruction execute so we can evaluate its expression.
5323 The set of watchpoints that triggered is recorded in the
5324 breakpoint objects themselves (see bp->watchpoint_triggered).
5325 If we processed another event first, that other event could
5326 clobber this info. */
5327 if (ecs->event_thread->stepping_over_watchpoint)
5328 return 0;
5329
5330 pending = iterate_over_threads (resumed_thread_with_pending_status,
5331 NULL);
5332 if (pending != NULL)
5333 {
5334 struct thread_info *tp = ecs->event_thread;
5335 struct regcache *regcache;
5336
5337 if (debug_infrun)
5338 {
5339 fprintf_unfiltered (gdb_stdlog,
5340 "infrun: found resumed threads with "
5341 "pending events, saving status\n");
5342 }
5343
5344 gdb_assert (pending != tp);
5345
5346 /* Record the event thread's event for later. */
5347 save_waitstatus (tp, &ecs->ws);
5348 /* This was cleared early, by handle_inferior_event. Set it
5349 so this pending event is considered by
5350 do_target_wait. */
5351 tp->resumed = 1;
5352
5353 gdb_assert (!tp->executing);
5354
5355 regcache = get_thread_regcache (tp);
5356 tp->suspend.stop_pc = regcache_read_pc (regcache);
5357
5358 if (debug_infrun)
5359 {
5360 fprintf_unfiltered (gdb_stdlog,
5361 "infrun: saved stop_pc=%s for %s "
5362 "(currently_stepping=%d)\n",
5363 paddress (target_gdbarch (),
5364 tp->suspend.stop_pc),
5365 target_pid_to_str (tp->ptid).c_str (),
5366 currently_stepping (tp));
5367 }
5368
5369 /* This in-line step-over finished; clear this so we won't
5370 start a new one. This is what handle_signal_stop would
5371 do, if we returned false. */
5372 tp->stepping_over_breakpoint = 0;
5373
5374 /* Wake up the event loop again. */
5375 mark_async_event_handler (infrun_async_inferior_event_token);
5376
5377 prepare_to_wait (ecs);
5378 return 1;
5379 }
5380 }
5381
5382 return 0;
5383 }
5384
5385 /* Come here when the program has stopped with a signal. */
5386
5387 static void
5388 handle_signal_stop (struct execution_control_state *ecs)
5389 {
5390 struct frame_info *frame;
5391 struct gdbarch *gdbarch;
5392 int stopped_by_watchpoint;
5393 enum stop_kind stop_soon;
5394 int random_signal;
5395
5396 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5397
5398 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5399
5400 /* Do we need to clean up the state of a thread that has
5401 completed a displaced single-step? (Doing so usually affects
5402 the PC, so do it here, before we set stop_pc.) */
5403 if (finish_step_over (ecs))
5404 return;
5405
5406 /* If we either finished a single-step or hit a breakpoint, but
5407 the user wanted this thread to be stopped, pretend we got a
5408 SIG0 (generic unsignaled stop). */
5409 if (ecs->event_thread->stop_requested
5410 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5411 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5412
5413 ecs->event_thread->suspend.stop_pc
5414 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5415
5416 if (debug_infrun)
5417 {
5418 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5419 struct gdbarch *reg_gdbarch = regcache->arch ();
5420 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5421
5422 inferior_ptid = ecs->ptid;
5423
5424 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5425 paddress (reg_gdbarch,
5426 ecs->event_thread->suspend.stop_pc));
5427 if (target_stopped_by_watchpoint ())
5428 {
5429 CORE_ADDR addr;
5430
5431 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5432
5433 if (target_stopped_data_address (current_top_target (), &addr))
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: stopped data address = %s\n",
5436 paddress (reg_gdbarch, addr));
5437 else
5438 fprintf_unfiltered (gdb_stdlog,
5439 "infrun: (no data address available)\n");
5440 }
5441 }
5442
5443 /* This is originated from start_remote(), start_inferior() and
5444 shared libraries hook functions. */
5445 stop_soon = get_inferior_stop_soon (ecs);
5446 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5447 {
5448 context_switch (ecs);
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5451 stop_print_frame = 1;
5452 stop_waiting (ecs);
5453 return;
5454 }
5455
5456 /* This originates from attach_command(). We need to overwrite
5457 the stop_signal here, because some kernels don't ignore a
5458 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5459 See more comments in inferior.h. On the other hand, if we
5460 get a non-SIGSTOP, report it to the user - assume the backend
5461 will handle the SIGSTOP if it should show up later.
5462
5463 Also consider that the attach is complete when we see a
5464 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5465 target extended-remote report it instead of a SIGSTOP
5466 (e.g. gdbserver). We already rely on SIGTRAP being our
5467 signal, so this is no exception.
5468
5469 Also consider that the attach is complete when we see a
5470 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5471 the target to stop all threads of the inferior, in case the
5472 low level attach operation doesn't stop them implicitly. If
5473 they weren't stopped implicitly, then the stub will report a
5474 GDB_SIGNAL_0, meaning: stopped for no particular reason
5475 other than GDB's request. */
5476 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5477 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5478 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5479 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5480 {
5481 stop_print_frame = 1;
5482 stop_waiting (ecs);
5483 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5484 return;
5485 }
5486
5487 /* See if something interesting happened to the non-current thread. If
5488 so, then switch to that thread. */
5489 if (ecs->ptid != inferior_ptid)
5490 {
5491 if (debug_infrun)
5492 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5493
5494 context_switch (ecs);
5495
5496 if (deprecated_context_hook)
5497 deprecated_context_hook (ecs->event_thread->global_num);
5498 }
5499
5500 /* At this point, get hold of the now-current thread's frame. */
5501 frame = get_current_frame ();
5502 gdbarch = get_frame_arch (frame);
5503
5504 /* Pull the single step breakpoints out of the target. */
5505 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5506 {
5507 struct regcache *regcache;
5508 CORE_ADDR pc;
5509
5510 regcache = get_thread_regcache (ecs->event_thread);
5511 const address_space *aspace = regcache->aspace ();
5512
5513 pc = regcache_read_pc (regcache);
5514
5515 /* However, before doing so, if this single-step breakpoint was
5516 actually for another thread, set this thread up for moving
5517 past it. */
5518 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5519 aspace, pc))
5520 {
5521 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5522 {
5523 if (debug_infrun)
5524 {
5525 fprintf_unfiltered (gdb_stdlog,
5526 "infrun: [%s] hit another thread's "
5527 "single-step breakpoint\n",
5528 target_pid_to_str (ecs->ptid).c_str ());
5529 }
5530 ecs->hit_singlestep_breakpoint = 1;
5531 }
5532 }
5533 else
5534 {
5535 if (debug_infrun)
5536 {
5537 fprintf_unfiltered (gdb_stdlog,
5538 "infrun: [%s] hit its "
5539 "single-step breakpoint\n",
5540 target_pid_to_str (ecs->ptid).c_str ());
5541 }
5542 }
5543 }
5544 delete_just_stopped_threads_single_step_breakpoints ();
5545
5546 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5547 && ecs->event_thread->control.trap_expected
5548 && ecs->event_thread->stepping_over_watchpoint)
5549 stopped_by_watchpoint = 0;
5550 else
5551 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5552
5553 /* If necessary, step over this watchpoint. We'll be back to display
5554 it in a moment. */
5555 if (stopped_by_watchpoint
5556 && (target_have_steppable_watchpoint
5557 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5558 {
5559 /* At this point, we are stopped at an instruction which has
5560 attempted to write to a piece of memory under control of
5561 a watchpoint. The instruction hasn't actually executed
5562 yet. If we were to evaluate the watchpoint expression
5563 now, we would get the old value, and therefore no change
5564 would seem to have occurred.
5565
5566 In order to make watchpoints work `right', we really need
5567 to complete the memory write, and then evaluate the
5568 watchpoint expression. We do this by single-stepping the
5569 target.
5570
5571 It may not be necessary to disable the watchpoint to step over
5572 it. For example, the PA can (with some kernel cooperation)
5573 single step over a watchpoint without disabling the watchpoint.
5574
5575 It is far more common to need to disable a watchpoint to step
5576 the inferior over it. If we have non-steppable watchpoints,
5577 we must disable the current watchpoint; it's simplest to
5578 disable all watchpoints.
5579
5580 Any breakpoint at PC must also be stepped over -- if there's
5581 one, it will have already triggered before the watchpoint
5582 triggered, and we either already reported it to the user, or
5583 it didn't cause a stop and we called keep_going. In either
5584 case, if there was a breakpoint at PC, we must be trying to
5585 step past it. */
5586 ecs->event_thread->stepping_over_watchpoint = 1;
5587 keep_going (ecs);
5588 return;
5589 }
5590
5591 ecs->event_thread->stepping_over_breakpoint = 0;
5592 ecs->event_thread->stepping_over_watchpoint = 0;
5593 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5594 ecs->event_thread->control.stop_step = 0;
5595 stop_print_frame = 1;
5596 stopped_by_random_signal = 0;
5597 bpstat stop_chain = NULL;
5598
5599 /* Hide inlined functions starting here, unless we just performed stepi or
5600 nexti. After stepi and nexti, always show the innermost frame (not any
5601 inline function call sites). */
5602 if (ecs->event_thread->control.step_range_end != 1)
5603 {
5604 const address_space *aspace
5605 = get_thread_regcache (ecs->event_thread)->aspace ();
5606
5607 /* skip_inline_frames is expensive, so we avoid it if we can
5608 determine that the address is one where functions cannot have
5609 been inlined. This improves performance with inferiors that
5610 load a lot of shared libraries, because the solib event
5611 breakpoint is defined as the address of a function (i.e. not
5612 inline). Note that we have to check the previous PC as well
5613 as the current one to catch cases when we have just
5614 single-stepped off a breakpoint prior to reinstating it.
5615 Note that we're assuming that the code we single-step to is
5616 not inline, but that's not definitive: there's nothing
5617 preventing the event breakpoint function from containing
5618 inlined code, and the single-step ending up there. If the
5619 user had set a breakpoint on that inlined code, the missing
5620 skip_inline_frames call would break things. Fortunately
5621 that's an extremely unlikely scenario. */
5622 if (!pc_at_non_inline_function (aspace,
5623 ecs->event_thread->suspend.stop_pc,
5624 &ecs->ws)
5625 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5626 && ecs->event_thread->control.trap_expected
5627 && pc_at_non_inline_function (aspace,
5628 ecs->event_thread->prev_pc,
5629 &ecs->ws)))
5630 {
5631 stop_chain = build_bpstat_chain (aspace,
5632 ecs->event_thread->suspend.stop_pc,
5633 &ecs->ws);
5634 skip_inline_frames (ecs->event_thread, stop_chain);
5635
5636 /* Re-fetch current thread's frame in case that invalidated
5637 the frame cache. */
5638 frame = get_current_frame ();
5639 gdbarch = get_frame_arch (frame);
5640 }
5641 }
5642
5643 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5644 && ecs->event_thread->control.trap_expected
5645 && gdbarch_single_step_through_delay_p (gdbarch)
5646 && currently_stepping (ecs->event_thread))
5647 {
5648 /* We're trying to step off a breakpoint. Turns out that we're
5649 also on an instruction that needs to be stepped multiple
5650 times before it's been fully executing. E.g., architectures
5651 with a delay slot. It needs to be stepped twice, once for
5652 the instruction and once for the delay slot. */
5653 int step_through_delay
5654 = gdbarch_single_step_through_delay (gdbarch, frame);
5655
5656 if (debug_infrun && step_through_delay)
5657 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5658 if (ecs->event_thread->control.step_range_end == 0
5659 && step_through_delay)
5660 {
5661 /* The user issued a continue when stopped at a breakpoint.
5662 Set up for another trap and get out of here. */
5663 ecs->event_thread->stepping_over_breakpoint = 1;
5664 keep_going (ecs);
5665 return;
5666 }
5667 else if (step_through_delay)
5668 {
5669 /* The user issued a step when stopped at a breakpoint.
5670 Maybe we should stop, maybe we should not - the delay
5671 slot *might* correspond to a line of source. In any
5672 case, don't decide that here, just set
5673 ecs->stepping_over_breakpoint, making sure we
5674 single-step again before breakpoints are re-inserted. */
5675 ecs->event_thread->stepping_over_breakpoint = 1;
5676 }
5677 }
5678
5679 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5680 handles this event. */
5681 ecs->event_thread->control.stop_bpstat
5682 = bpstat_stop_status (get_current_regcache ()->aspace (),
5683 ecs->event_thread->suspend.stop_pc,
5684 ecs->event_thread, &ecs->ws, stop_chain);
5685
5686 /* Following in case break condition called a
5687 function. */
5688 stop_print_frame = 1;
5689
5690 /* This is where we handle "moribund" watchpoints. Unlike
5691 software breakpoints traps, hardware watchpoint traps are
5692 always distinguishable from random traps. If no high-level
5693 watchpoint is associated with the reported stop data address
5694 anymore, then the bpstat does not explain the signal ---
5695 simply make sure to ignore it if `stopped_by_watchpoint' is
5696 set. */
5697
5698 if (debug_infrun
5699 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5700 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5701 GDB_SIGNAL_TRAP)
5702 && stopped_by_watchpoint)
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: no user watchpoint explains "
5705 "watchpoint SIGTRAP, ignoring\n");
5706
5707 /* NOTE: cagney/2003-03-29: These checks for a random signal
5708 at one stage in the past included checks for an inferior
5709 function call's call dummy's return breakpoint. The original
5710 comment, that went with the test, read:
5711
5712 ``End of a stack dummy. Some systems (e.g. Sony news) give
5713 another signal besides SIGTRAP, so check here as well as
5714 above.''
5715
5716 If someone ever tries to get call dummys on a
5717 non-executable stack to work (where the target would stop
5718 with something like a SIGSEGV), then those tests might need
5719 to be re-instated. Given, however, that the tests were only
5720 enabled when momentary breakpoints were not being used, I
5721 suspect that it won't be the case.
5722
5723 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5724 be necessary for call dummies on a non-executable stack on
5725 SPARC. */
5726
5727 /* See if the breakpoints module can explain the signal. */
5728 random_signal
5729 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5730 ecs->event_thread->suspend.stop_signal);
5731
5732 /* Maybe this was a trap for a software breakpoint that has since
5733 been removed. */
5734 if (random_signal && target_stopped_by_sw_breakpoint ())
5735 {
5736 if (program_breakpoint_here_p (gdbarch,
5737 ecs->event_thread->suspend.stop_pc))
5738 {
5739 struct regcache *regcache;
5740 int decr_pc;
5741
5742 /* Re-adjust PC to what the program would see if GDB was not
5743 debugging it. */
5744 regcache = get_thread_regcache (ecs->event_thread);
5745 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5746 if (decr_pc != 0)
5747 {
5748 gdb::optional<scoped_restore_tmpl<int>>
5749 restore_operation_disable;
5750
5751 if (record_full_is_used ())
5752 restore_operation_disable.emplace
5753 (record_full_gdb_operation_disable_set ());
5754
5755 regcache_write_pc (regcache,
5756 ecs->event_thread->suspend.stop_pc + decr_pc);
5757 }
5758 }
5759 else
5760 {
5761 /* A delayed software breakpoint event. Ignore the trap. */
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog,
5764 "infrun: delayed software breakpoint "
5765 "trap, ignoring\n");
5766 random_signal = 0;
5767 }
5768 }
5769
5770 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5771 has since been removed. */
5772 if (random_signal && target_stopped_by_hw_breakpoint ())
5773 {
5774 /* A delayed hardware breakpoint event. Ignore the trap. */
5775 if (debug_infrun)
5776 fprintf_unfiltered (gdb_stdlog,
5777 "infrun: delayed hardware breakpoint/watchpoint "
5778 "trap, ignoring\n");
5779 random_signal = 0;
5780 }
5781
5782 /* If not, perhaps stepping/nexting can. */
5783 if (random_signal)
5784 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5785 && currently_stepping (ecs->event_thread));
5786
5787 /* Perhaps the thread hit a single-step breakpoint of _another_
5788 thread. Single-step breakpoints are transparent to the
5789 breakpoints module. */
5790 if (random_signal)
5791 random_signal = !ecs->hit_singlestep_breakpoint;
5792
5793 /* No? Perhaps we got a moribund watchpoint. */
5794 if (random_signal)
5795 random_signal = !stopped_by_watchpoint;
5796
5797 /* Always stop if the user explicitly requested this thread to
5798 remain stopped. */
5799 if (ecs->event_thread->stop_requested)
5800 {
5801 random_signal = 1;
5802 if (debug_infrun)
5803 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5804 }
5805
5806 /* For the program's own signals, act according to
5807 the signal handling tables. */
5808
5809 if (random_signal)
5810 {
5811 /* Signal not for debugging purposes. */
5812 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5813 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5814
5815 if (debug_infrun)
5816 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5817 gdb_signal_to_symbol_string (stop_signal));
5818
5819 stopped_by_random_signal = 1;
5820
5821 /* Always stop on signals if we're either just gaining control
5822 of the program, or the user explicitly requested this thread
5823 to remain stopped. */
5824 if (stop_soon != NO_STOP_QUIETLY
5825 || ecs->event_thread->stop_requested
5826 || (!inf->detaching
5827 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5828 {
5829 stop_waiting (ecs);
5830 return;
5831 }
5832
5833 /* Notify observers the signal has "handle print" set. Note we
5834 returned early above if stopping; normal_stop handles the
5835 printing in that case. */
5836 if (signal_print[ecs->event_thread->suspend.stop_signal])
5837 {
5838 /* The signal table tells us to print about this signal. */
5839 target_terminal::ours_for_output ();
5840 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5841 target_terminal::inferior ();
5842 }
5843
5844 /* Clear the signal if it should not be passed. */
5845 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5846 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5847
5848 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5849 && ecs->event_thread->control.trap_expected
5850 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5851 {
5852 /* We were just starting a new sequence, attempting to
5853 single-step off of a breakpoint and expecting a SIGTRAP.
5854 Instead this signal arrives. This signal will take us out
5855 of the stepping range so GDB needs to remember to, when
5856 the signal handler returns, resume stepping off that
5857 breakpoint. */
5858 /* To simplify things, "continue" is forced to use the same
5859 code paths as single-step - set a breakpoint at the
5860 signal return address and then, once hit, step off that
5861 breakpoint. */
5862 if (debug_infrun)
5863 fprintf_unfiltered (gdb_stdlog,
5864 "infrun: signal arrived while stepping over "
5865 "breakpoint\n");
5866
5867 insert_hp_step_resume_breakpoint_at_frame (frame);
5868 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5869 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5870 ecs->event_thread->control.trap_expected = 0;
5871
5872 /* If we were nexting/stepping some other thread, switch to
5873 it, so that we don't continue it, losing control. */
5874 if (!switch_back_to_stepped_thread (ecs))
5875 keep_going (ecs);
5876 return;
5877 }
5878
5879 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5880 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5881 ecs->event_thread)
5882 || ecs->event_thread->control.step_range_end == 1)
5883 && frame_id_eq (get_stack_frame_id (frame),
5884 ecs->event_thread->control.step_stack_frame_id)
5885 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5886 {
5887 /* The inferior is about to take a signal that will take it
5888 out of the single step range. Set a breakpoint at the
5889 current PC (which is presumably where the signal handler
5890 will eventually return) and then allow the inferior to
5891 run free.
5892
5893 Note that this is only needed for a signal delivered
5894 while in the single-step range. Nested signals aren't a
5895 problem as they eventually all return. */
5896 if (debug_infrun)
5897 fprintf_unfiltered (gdb_stdlog,
5898 "infrun: signal may take us out of "
5899 "single-step range\n");
5900
5901 clear_step_over_info ();
5902 insert_hp_step_resume_breakpoint_at_frame (frame);
5903 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5904 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5905 ecs->event_thread->control.trap_expected = 0;
5906 keep_going (ecs);
5907 return;
5908 }
5909
5910 /* Note: step_resume_breakpoint may be non-NULL. This occures
5911 when either there's a nested signal, or when there's a
5912 pending signal enabled just as the signal handler returns
5913 (leaving the inferior at the step-resume-breakpoint without
5914 actually executing it). Either way continue until the
5915 breakpoint is really hit. */
5916
5917 if (!switch_back_to_stepped_thread (ecs))
5918 {
5919 if (debug_infrun)
5920 fprintf_unfiltered (gdb_stdlog,
5921 "infrun: random signal, keep going\n");
5922
5923 keep_going (ecs);
5924 }
5925 return;
5926 }
5927
5928 process_event_stop_test (ecs);
5929 }
5930
5931 /* Come here when we've got some debug event / signal we can explain
5932 (IOW, not a random signal), and test whether it should cause a
5933 stop, or whether we should resume the inferior (transparently).
5934 E.g., could be a breakpoint whose condition evaluates false; we
5935 could be still stepping within the line; etc. */
5936
5937 static void
5938 process_event_stop_test (struct execution_control_state *ecs)
5939 {
5940 struct symtab_and_line stop_pc_sal;
5941 struct frame_info *frame;
5942 struct gdbarch *gdbarch;
5943 CORE_ADDR jmp_buf_pc;
5944 struct bpstat_what what;
5945
5946 /* Handle cases caused by hitting a breakpoint. */
5947
5948 frame = get_current_frame ();
5949 gdbarch = get_frame_arch (frame);
5950
5951 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5952
5953 if (what.call_dummy)
5954 {
5955 stop_stack_dummy = what.call_dummy;
5956 }
5957
5958 /* A few breakpoint types have callbacks associated (e.g.,
5959 bp_jit_event). Run them now. */
5960 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5961
5962 /* If we hit an internal event that triggers symbol changes, the
5963 current frame will be invalidated within bpstat_what (e.g., if we
5964 hit an internal solib event). Re-fetch it. */
5965 frame = get_current_frame ();
5966 gdbarch = get_frame_arch (frame);
5967
5968 switch (what.main_action)
5969 {
5970 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5971 /* If we hit the breakpoint at longjmp while stepping, we
5972 install a momentary breakpoint at the target of the
5973 jmp_buf. */
5974
5975 if (debug_infrun)
5976 fprintf_unfiltered (gdb_stdlog,
5977 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5978
5979 ecs->event_thread->stepping_over_breakpoint = 1;
5980
5981 if (what.is_longjmp)
5982 {
5983 struct value *arg_value;
5984
5985 /* If we set the longjmp breakpoint via a SystemTap probe,
5986 then use it to extract the arguments. The destination PC
5987 is the third argument to the probe. */
5988 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5989 if (arg_value)
5990 {
5991 jmp_buf_pc = value_as_address (arg_value);
5992 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5993 }
5994 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5995 || !gdbarch_get_longjmp_target (gdbarch,
5996 frame, &jmp_buf_pc))
5997 {
5998 if (debug_infrun)
5999 fprintf_unfiltered (gdb_stdlog,
6000 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6001 "(!gdbarch_get_longjmp_target)\n");
6002 keep_going (ecs);
6003 return;
6004 }
6005
6006 /* Insert a breakpoint at resume address. */
6007 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6008 }
6009 else
6010 check_exception_resume (ecs, frame);
6011 keep_going (ecs);
6012 return;
6013
6014 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6015 {
6016 struct frame_info *init_frame;
6017
6018 /* There are several cases to consider.
6019
6020 1. The initiating frame no longer exists. In this case we
6021 must stop, because the exception or longjmp has gone too
6022 far.
6023
6024 2. The initiating frame exists, and is the same as the
6025 current frame. We stop, because the exception or longjmp
6026 has been caught.
6027
6028 3. The initiating frame exists and is different from the
6029 current frame. This means the exception or longjmp has
6030 been caught beneath the initiating frame, so keep going.
6031
6032 4. longjmp breakpoint has been placed just to protect
6033 against stale dummy frames and user is not interested in
6034 stopping around longjmps. */
6035
6036 if (debug_infrun)
6037 fprintf_unfiltered (gdb_stdlog,
6038 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6039
6040 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6041 != NULL);
6042 delete_exception_resume_breakpoint (ecs->event_thread);
6043
6044 if (what.is_longjmp)
6045 {
6046 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6047
6048 if (!frame_id_p (ecs->event_thread->initiating_frame))
6049 {
6050 /* Case 4. */
6051 keep_going (ecs);
6052 return;
6053 }
6054 }
6055
6056 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6057
6058 if (init_frame)
6059 {
6060 struct frame_id current_id
6061 = get_frame_id (get_current_frame ());
6062 if (frame_id_eq (current_id,
6063 ecs->event_thread->initiating_frame))
6064 {
6065 /* Case 2. Fall through. */
6066 }
6067 else
6068 {
6069 /* Case 3. */
6070 keep_going (ecs);
6071 return;
6072 }
6073 }
6074
6075 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6076 exists. */
6077 delete_step_resume_breakpoint (ecs->event_thread);
6078
6079 end_stepping_range (ecs);
6080 }
6081 return;
6082
6083 case BPSTAT_WHAT_SINGLE:
6084 if (debug_infrun)
6085 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6086 ecs->event_thread->stepping_over_breakpoint = 1;
6087 /* Still need to check other stuff, at least the case where we
6088 are stepping and step out of the right range. */
6089 break;
6090
6091 case BPSTAT_WHAT_STEP_RESUME:
6092 if (debug_infrun)
6093 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6094
6095 delete_step_resume_breakpoint (ecs->event_thread);
6096 if (ecs->event_thread->control.proceed_to_finish
6097 && execution_direction == EXEC_REVERSE)
6098 {
6099 struct thread_info *tp = ecs->event_thread;
6100
6101 /* We are finishing a function in reverse, and just hit the
6102 step-resume breakpoint at the start address of the
6103 function, and we're almost there -- just need to back up
6104 by one more single-step, which should take us back to the
6105 function call. */
6106 tp->control.step_range_start = tp->control.step_range_end = 1;
6107 keep_going (ecs);
6108 return;
6109 }
6110 fill_in_stop_func (gdbarch, ecs);
6111 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6112 && execution_direction == EXEC_REVERSE)
6113 {
6114 /* We are stepping over a function call in reverse, and just
6115 hit the step-resume breakpoint at the start address of
6116 the function. Go back to single-stepping, which should
6117 take us back to the function call. */
6118 ecs->event_thread->stepping_over_breakpoint = 1;
6119 keep_going (ecs);
6120 return;
6121 }
6122 break;
6123
6124 case BPSTAT_WHAT_STOP_NOISY:
6125 if (debug_infrun)
6126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6127 stop_print_frame = 1;
6128
6129 /* Assume the thread stopped for a breapoint. We'll still check
6130 whether a/the breakpoint is there when the thread is next
6131 resumed. */
6132 ecs->event_thread->stepping_over_breakpoint = 1;
6133
6134 stop_waiting (ecs);
6135 return;
6136
6137 case BPSTAT_WHAT_STOP_SILENT:
6138 if (debug_infrun)
6139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6140 stop_print_frame = 0;
6141
6142 /* Assume the thread stopped for a breapoint. We'll still check
6143 whether a/the breakpoint is there when the thread is next
6144 resumed. */
6145 ecs->event_thread->stepping_over_breakpoint = 1;
6146 stop_waiting (ecs);
6147 return;
6148
6149 case BPSTAT_WHAT_HP_STEP_RESUME:
6150 if (debug_infrun)
6151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6152
6153 delete_step_resume_breakpoint (ecs->event_thread);
6154 if (ecs->event_thread->step_after_step_resume_breakpoint)
6155 {
6156 /* Back when the step-resume breakpoint was inserted, we
6157 were trying to single-step off a breakpoint. Go back to
6158 doing that. */
6159 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6160 ecs->event_thread->stepping_over_breakpoint = 1;
6161 keep_going (ecs);
6162 return;
6163 }
6164 break;
6165
6166 case BPSTAT_WHAT_KEEP_CHECKING:
6167 break;
6168 }
6169
6170 /* If we stepped a permanent breakpoint and we had a high priority
6171 step-resume breakpoint for the address we stepped, but we didn't
6172 hit it, then we must have stepped into the signal handler. The
6173 step-resume was only necessary to catch the case of _not_
6174 stepping into the handler, so delete it, and fall through to
6175 checking whether the step finished. */
6176 if (ecs->event_thread->stepped_breakpoint)
6177 {
6178 struct breakpoint *sr_bp
6179 = ecs->event_thread->control.step_resume_breakpoint;
6180
6181 if (sr_bp != NULL
6182 && sr_bp->loc->permanent
6183 && sr_bp->type == bp_hp_step_resume
6184 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6185 {
6186 if (debug_infrun)
6187 fprintf_unfiltered (gdb_stdlog,
6188 "infrun: stepped permanent breakpoint, stopped in "
6189 "handler\n");
6190 delete_step_resume_breakpoint (ecs->event_thread);
6191 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6192 }
6193 }
6194
6195 /* We come here if we hit a breakpoint but should not stop for it.
6196 Possibly we also were stepping and should stop for that. So fall
6197 through and test for stepping. But, if not stepping, do not
6198 stop. */
6199
6200 /* In all-stop mode, if we're currently stepping but have stopped in
6201 some other thread, we need to switch back to the stepped thread. */
6202 if (switch_back_to_stepped_thread (ecs))
6203 return;
6204
6205 if (ecs->event_thread->control.step_resume_breakpoint)
6206 {
6207 if (debug_infrun)
6208 fprintf_unfiltered (gdb_stdlog,
6209 "infrun: step-resume breakpoint is inserted\n");
6210
6211 /* Having a step-resume breakpoint overrides anything
6212 else having to do with stepping commands until
6213 that breakpoint is reached. */
6214 keep_going (ecs);
6215 return;
6216 }
6217
6218 if (ecs->event_thread->control.step_range_end == 0)
6219 {
6220 if (debug_infrun)
6221 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6222 /* Likewise if we aren't even stepping. */
6223 keep_going (ecs);
6224 return;
6225 }
6226
6227 /* Re-fetch current thread's frame in case the code above caused
6228 the frame cache to be re-initialized, making our FRAME variable
6229 a dangling pointer. */
6230 frame = get_current_frame ();
6231 gdbarch = get_frame_arch (frame);
6232 fill_in_stop_func (gdbarch, ecs);
6233
6234 /* If stepping through a line, keep going if still within it.
6235
6236 Note that step_range_end is the address of the first instruction
6237 beyond the step range, and NOT the address of the last instruction
6238 within it!
6239
6240 Note also that during reverse execution, we may be stepping
6241 through a function epilogue and therefore must detect when
6242 the current-frame changes in the middle of a line. */
6243
6244 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6245 ecs->event_thread)
6246 && (execution_direction != EXEC_REVERSE
6247 || frame_id_eq (get_frame_id (frame),
6248 ecs->event_thread->control.step_frame_id)))
6249 {
6250 if (debug_infrun)
6251 fprintf_unfiltered
6252 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6253 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6254 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6255
6256 /* Tentatively re-enable range stepping; `resume' disables it if
6257 necessary (e.g., if we're stepping over a breakpoint or we
6258 have software watchpoints). */
6259 ecs->event_thread->control.may_range_step = 1;
6260
6261 /* When stepping backward, stop at beginning of line range
6262 (unless it's the function entry point, in which case
6263 keep going back to the call point). */
6264 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6265 if (stop_pc == ecs->event_thread->control.step_range_start
6266 && stop_pc != ecs->stop_func_start
6267 && execution_direction == EXEC_REVERSE)
6268 end_stepping_range (ecs);
6269 else
6270 keep_going (ecs);
6271
6272 return;
6273 }
6274
6275 /* We stepped out of the stepping range. */
6276
6277 /* If we are stepping at the source level and entered the runtime
6278 loader dynamic symbol resolution code...
6279
6280 EXEC_FORWARD: we keep on single stepping until we exit the run
6281 time loader code and reach the callee's address.
6282
6283 EXEC_REVERSE: we've already executed the callee (backward), and
6284 the runtime loader code is handled just like any other
6285 undebuggable function call. Now we need only keep stepping
6286 backward through the trampoline code, and that's handled further
6287 down, so there is nothing for us to do here. */
6288
6289 if (execution_direction != EXEC_REVERSE
6290 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6291 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6292 {
6293 CORE_ADDR pc_after_resolver =
6294 gdbarch_skip_solib_resolver (gdbarch,
6295 ecs->event_thread->suspend.stop_pc);
6296
6297 if (debug_infrun)
6298 fprintf_unfiltered (gdb_stdlog,
6299 "infrun: stepped into dynsym resolve code\n");
6300
6301 if (pc_after_resolver)
6302 {
6303 /* Set up a step-resume breakpoint at the address
6304 indicated by SKIP_SOLIB_RESOLVER. */
6305 symtab_and_line sr_sal;
6306 sr_sal.pc = pc_after_resolver;
6307 sr_sal.pspace = get_frame_program_space (frame);
6308
6309 insert_step_resume_breakpoint_at_sal (gdbarch,
6310 sr_sal, null_frame_id);
6311 }
6312
6313 keep_going (ecs);
6314 return;
6315 }
6316
6317 /* Step through an indirect branch thunk. */
6318 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6319 && gdbarch_in_indirect_branch_thunk (gdbarch,
6320 ecs->event_thread->suspend.stop_pc))
6321 {
6322 if (debug_infrun)
6323 fprintf_unfiltered (gdb_stdlog,
6324 "infrun: stepped into indirect branch thunk\n");
6325 keep_going (ecs);
6326 return;
6327 }
6328
6329 if (ecs->event_thread->control.step_range_end != 1
6330 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6331 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6332 && get_frame_type (frame) == SIGTRAMP_FRAME)
6333 {
6334 if (debug_infrun)
6335 fprintf_unfiltered (gdb_stdlog,
6336 "infrun: stepped into signal trampoline\n");
6337 /* The inferior, while doing a "step" or "next", has ended up in
6338 a signal trampoline (either by a signal being delivered or by
6339 the signal handler returning). Just single-step until the
6340 inferior leaves the trampoline (either by calling the handler
6341 or returning). */
6342 keep_going (ecs);
6343 return;
6344 }
6345
6346 /* If we're in the return path from a shared library trampoline,
6347 we want to proceed through the trampoline when stepping. */
6348 /* macro/2012-04-25: This needs to come before the subroutine
6349 call check below as on some targets return trampolines look
6350 like subroutine calls (MIPS16 return thunks). */
6351 if (gdbarch_in_solib_return_trampoline (gdbarch,
6352 ecs->event_thread->suspend.stop_pc,
6353 ecs->stop_func_name)
6354 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6355 {
6356 /* Determine where this trampoline returns. */
6357 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6358 CORE_ADDR real_stop_pc
6359 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6360
6361 if (debug_infrun)
6362 fprintf_unfiltered (gdb_stdlog,
6363 "infrun: stepped into solib return tramp\n");
6364
6365 /* Only proceed through if we know where it's going. */
6366 if (real_stop_pc)
6367 {
6368 /* And put the step-breakpoint there and go until there. */
6369 symtab_and_line sr_sal;
6370 sr_sal.pc = real_stop_pc;
6371 sr_sal.section = find_pc_overlay (sr_sal.pc);
6372 sr_sal.pspace = get_frame_program_space (frame);
6373
6374 /* Do not specify what the fp should be when we stop since
6375 on some machines the prologue is where the new fp value
6376 is established. */
6377 insert_step_resume_breakpoint_at_sal (gdbarch,
6378 sr_sal, null_frame_id);
6379
6380 /* Restart without fiddling with the step ranges or
6381 other state. */
6382 keep_going (ecs);
6383 return;
6384 }
6385 }
6386
6387 /* Check for subroutine calls. The check for the current frame
6388 equalling the step ID is not necessary - the check of the
6389 previous frame's ID is sufficient - but it is a common case and
6390 cheaper than checking the previous frame's ID.
6391
6392 NOTE: frame_id_eq will never report two invalid frame IDs as
6393 being equal, so to get into this block, both the current and
6394 previous frame must have valid frame IDs. */
6395 /* The outer_frame_id check is a heuristic to detect stepping
6396 through startup code. If we step over an instruction which
6397 sets the stack pointer from an invalid value to a valid value,
6398 we may detect that as a subroutine call from the mythical
6399 "outermost" function. This could be fixed by marking
6400 outermost frames as !stack_p,code_p,special_p. Then the
6401 initial outermost frame, before sp was valid, would
6402 have code_addr == &_start. See the comment in frame_id_eq
6403 for more. */
6404 if (!frame_id_eq (get_stack_frame_id (frame),
6405 ecs->event_thread->control.step_stack_frame_id)
6406 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6407 ecs->event_thread->control.step_stack_frame_id)
6408 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6409 outer_frame_id)
6410 || (ecs->event_thread->control.step_start_function
6411 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6412 {
6413 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6414 CORE_ADDR real_stop_pc;
6415
6416 if (debug_infrun)
6417 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6418
6419 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6420 {
6421 /* I presume that step_over_calls is only 0 when we're
6422 supposed to be stepping at the assembly language level
6423 ("stepi"). Just stop. */
6424 /* And this works the same backward as frontward. MVS */
6425 end_stepping_range (ecs);
6426 return;
6427 }
6428
6429 /* Reverse stepping through solib trampolines. */
6430
6431 if (execution_direction == EXEC_REVERSE
6432 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6433 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6434 || (ecs->stop_func_start == 0
6435 && in_solib_dynsym_resolve_code (stop_pc))))
6436 {
6437 /* Any solib trampoline code can be handled in reverse
6438 by simply continuing to single-step. We have already
6439 executed the solib function (backwards), and a few
6440 steps will take us back through the trampoline to the
6441 caller. */
6442 keep_going (ecs);
6443 return;
6444 }
6445
6446 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6447 {
6448 /* We're doing a "next".
6449
6450 Normal (forward) execution: set a breakpoint at the
6451 callee's return address (the address at which the caller
6452 will resume).
6453
6454 Reverse (backward) execution. set the step-resume
6455 breakpoint at the start of the function that we just
6456 stepped into (backwards), and continue to there. When we
6457 get there, we'll need to single-step back to the caller. */
6458
6459 if (execution_direction == EXEC_REVERSE)
6460 {
6461 /* If we're already at the start of the function, we've either
6462 just stepped backward into a single instruction function,
6463 or stepped back out of a signal handler to the first instruction
6464 of the function. Just keep going, which will single-step back
6465 to the caller. */
6466 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6467 {
6468 /* Normal function call return (static or dynamic). */
6469 symtab_and_line sr_sal;
6470 sr_sal.pc = ecs->stop_func_start;
6471 sr_sal.pspace = get_frame_program_space (frame);
6472 insert_step_resume_breakpoint_at_sal (gdbarch,
6473 sr_sal, null_frame_id);
6474 }
6475 }
6476 else
6477 insert_step_resume_breakpoint_at_caller (frame);
6478
6479 keep_going (ecs);
6480 return;
6481 }
6482
6483 /* If we are in a function call trampoline (a stub between the
6484 calling routine and the real function), locate the real
6485 function. That's what tells us (a) whether we want to step
6486 into it at all, and (b) what prologue we want to run to the
6487 end of, if we do step into it. */
6488 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6489 if (real_stop_pc == 0)
6490 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6491 if (real_stop_pc != 0)
6492 ecs->stop_func_start = real_stop_pc;
6493
6494 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6495 {
6496 symtab_and_line sr_sal;
6497 sr_sal.pc = ecs->stop_func_start;
6498 sr_sal.pspace = get_frame_program_space (frame);
6499
6500 insert_step_resume_breakpoint_at_sal (gdbarch,
6501 sr_sal, null_frame_id);
6502 keep_going (ecs);
6503 return;
6504 }
6505
6506 /* If we have line number information for the function we are
6507 thinking of stepping into and the function isn't on the skip
6508 list, step into it.
6509
6510 If there are several symtabs at that PC (e.g. with include
6511 files), just want to know whether *any* of them have line
6512 numbers. find_pc_line handles this. */
6513 {
6514 struct symtab_and_line tmp_sal;
6515
6516 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6517 if (tmp_sal.line != 0
6518 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6519 tmp_sal))
6520 {
6521 if (execution_direction == EXEC_REVERSE)
6522 handle_step_into_function_backward (gdbarch, ecs);
6523 else
6524 handle_step_into_function (gdbarch, ecs);
6525 return;
6526 }
6527 }
6528
6529 /* If we have no line number and the step-stop-if-no-debug is
6530 set, we stop the step so that the user has a chance to switch
6531 in assembly mode. */
6532 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6533 && step_stop_if_no_debug)
6534 {
6535 end_stepping_range (ecs);
6536 return;
6537 }
6538
6539 if (execution_direction == EXEC_REVERSE)
6540 {
6541 /* If we're already at the start of the function, we've either just
6542 stepped backward into a single instruction function without line
6543 number info, or stepped back out of a signal handler to the first
6544 instruction of the function without line number info. Just keep
6545 going, which will single-step back to the caller. */
6546 if (ecs->stop_func_start != stop_pc)
6547 {
6548 /* Set a breakpoint at callee's start address.
6549 From there we can step once and be back in the caller. */
6550 symtab_and_line sr_sal;
6551 sr_sal.pc = ecs->stop_func_start;
6552 sr_sal.pspace = get_frame_program_space (frame);
6553 insert_step_resume_breakpoint_at_sal (gdbarch,
6554 sr_sal, null_frame_id);
6555 }
6556 }
6557 else
6558 /* Set a breakpoint at callee's return address (the address
6559 at which the caller will resume). */
6560 insert_step_resume_breakpoint_at_caller (frame);
6561
6562 keep_going (ecs);
6563 return;
6564 }
6565
6566 /* Reverse stepping through solib trampolines. */
6567
6568 if (execution_direction == EXEC_REVERSE
6569 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6570 {
6571 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6572
6573 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6574 || (ecs->stop_func_start == 0
6575 && in_solib_dynsym_resolve_code (stop_pc)))
6576 {
6577 /* Any solib trampoline code can be handled in reverse
6578 by simply continuing to single-step. We have already
6579 executed the solib function (backwards), and a few
6580 steps will take us back through the trampoline to the
6581 caller. */
6582 keep_going (ecs);
6583 return;
6584 }
6585 else if (in_solib_dynsym_resolve_code (stop_pc))
6586 {
6587 /* Stepped backward into the solib dynsym resolver.
6588 Set a breakpoint at its start and continue, then
6589 one more step will take us out. */
6590 symtab_and_line sr_sal;
6591 sr_sal.pc = ecs->stop_func_start;
6592 sr_sal.pspace = get_frame_program_space (frame);
6593 insert_step_resume_breakpoint_at_sal (gdbarch,
6594 sr_sal, null_frame_id);
6595 keep_going (ecs);
6596 return;
6597 }
6598 }
6599
6600 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6601
6602 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6603 the trampoline processing logic, however, there are some trampolines
6604 that have no names, so we should do trampoline handling first. */
6605 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6606 && ecs->stop_func_name == NULL
6607 && stop_pc_sal.line == 0)
6608 {
6609 if (debug_infrun)
6610 fprintf_unfiltered (gdb_stdlog,
6611 "infrun: stepped into undebuggable function\n");
6612
6613 /* The inferior just stepped into, or returned to, an
6614 undebuggable function (where there is no debugging information
6615 and no line number corresponding to the address where the
6616 inferior stopped). Since we want to skip this kind of code,
6617 we keep going until the inferior returns from this
6618 function - unless the user has asked us not to (via
6619 set step-mode) or we no longer know how to get back
6620 to the call site. */
6621 if (step_stop_if_no_debug
6622 || !frame_id_p (frame_unwind_caller_id (frame)))
6623 {
6624 /* If we have no line number and the step-stop-if-no-debug
6625 is set, we stop the step so that the user has a chance to
6626 switch in assembly mode. */
6627 end_stepping_range (ecs);
6628 return;
6629 }
6630 else
6631 {
6632 /* Set a breakpoint at callee's return address (the address
6633 at which the caller will resume). */
6634 insert_step_resume_breakpoint_at_caller (frame);
6635 keep_going (ecs);
6636 return;
6637 }
6638 }
6639
6640 if (ecs->event_thread->control.step_range_end == 1)
6641 {
6642 /* It is stepi or nexti. We always want to stop stepping after
6643 one instruction. */
6644 if (debug_infrun)
6645 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6646 end_stepping_range (ecs);
6647 return;
6648 }
6649
6650 if (stop_pc_sal.line == 0)
6651 {
6652 /* We have no line number information. That means to stop
6653 stepping (does this always happen right after one instruction,
6654 when we do "s" in a function with no line numbers,
6655 or can this happen as a result of a return or longjmp?). */
6656 if (debug_infrun)
6657 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6658 end_stepping_range (ecs);
6659 return;
6660 }
6661
6662 /* Look for "calls" to inlined functions, part one. If the inline
6663 frame machinery detected some skipped call sites, we have entered
6664 a new inline function. */
6665
6666 if (frame_id_eq (get_frame_id (get_current_frame ()),
6667 ecs->event_thread->control.step_frame_id)
6668 && inline_skipped_frames (ecs->event_thread))
6669 {
6670 if (debug_infrun)
6671 fprintf_unfiltered (gdb_stdlog,
6672 "infrun: stepped into inlined function\n");
6673
6674 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6675
6676 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6677 {
6678 /* For "step", we're going to stop. But if the call site
6679 for this inlined function is on the same source line as
6680 we were previously stepping, go down into the function
6681 first. Otherwise stop at the call site. */
6682
6683 if (call_sal.line == ecs->event_thread->current_line
6684 && call_sal.symtab == ecs->event_thread->current_symtab)
6685 step_into_inline_frame (ecs->event_thread);
6686
6687 end_stepping_range (ecs);
6688 return;
6689 }
6690 else
6691 {
6692 /* For "next", we should stop at the call site if it is on a
6693 different source line. Otherwise continue through the
6694 inlined function. */
6695 if (call_sal.line == ecs->event_thread->current_line
6696 && call_sal.symtab == ecs->event_thread->current_symtab)
6697 keep_going (ecs);
6698 else
6699 end_stepping_range (ecs);
6700 return;
6701 }
6702 }
6703
6704 /* Look for "calls" to inlined functions, part two. If we are still
6705 in the same real function we were stepping through, but we have
6706 to go further up to find the exact frame ID, we are stepping
6707 through a more inlined call beyond its call site. */
6708
6709 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6710 && !frame_id_eq (get_frame_id (get_current_frame ()),
6711 ecs->event_thread->control.step_frame_id)
6712 && stepped_in_from (get_current_frame (),
6713 ecs->event_thread->control.step_frame_id))
6714 {
6715 if (debug_infrun)
6716 fprintf_unfiltered (gdb_stdlog,
6717 "infrun: stepping through inlined function\n");
6718
6719 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6720 keep_going (ecs);
6721 else
6722 end_stepping_range (ecs);
6723 return;
6724 }
6725
6726 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6727 && (ecs->event_thread->current_line != stop_pc_sal.line
6728 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6729 {
6730 /* We are at the start of a different line. So stop. Note that
6731 we don't stop if we step into the middle of a different line.
6732 That is said to make things like for (;;) statements work
6733 better. */
6734 if (debug_infrun)
6735 fprintf_unfiltered (gdb_stdlog,
6736 "infrun: stepped to a different line\n");
6737 end_stepping_range (ecs);
6738 return;
6739 }
6740
6741 /* We aren't done stepping.
6742
6743 Optimize by setting the stepping range to the line.
6744 (We might not be in the original line, but if we entered a
6745 new line in mid-statement, we continue stepping. This makes
6746 things like for(;;) statements work better.) */
6747
6748 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6749 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6750 ecs->event_thread->control.may_range_step = 1;
6751 set_step_info (frame, stop_pc_sal);
6752
6753 if (debug_infrun)
6754 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6755 keep_going (ecs);
6756 }
6757
6758 /* In all-stop mode, if we're currently stepping but have stopped in
6759 some other thread, we may need to switch back to the stepped
6760 thread. Returns true we set the inferior running, false if we left
6761 it stopped (and the event needs further processing). */
6762
6763 static int
6764 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6765 {
6766 if (!target_is_non_stop_p ())
6767 {
6768 struct thread_info *stepping_thread;
6769
6770 /* If any thread is blocked on some internal breakpoint, and we
6771 simply need to step over that breakpoint to get it going
6772 again, do that first. */
6773
6774 /* However, if we see an event for the stepping thread, then we
6775 know all other threads have been moved past their breakpoints
6776 already. Let the caller check whether the step is finished,
6777 etc., before deciding to move it past a breakpoint. */
6778 if (ecs->event_thread->control.step_range_end != 0)
6779 return 0;
6780
6781 /* Check if the current thread is blocked on an incomplete
6782 step-over, interrupted by a random signal. */
6783 if (ecs->event_thread->control.trap_expected
6784 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6785 {
6786 if (debug_infrun)
6787 {
6788 fprintf_unfiltered (gdb_stdlog,
6789 "infrun: need to finish step-over of [%s]\n",
6790 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6791 }
6792 keep_going (ecs);
6793 return 1;
6794 }
6795
6796 /* Check if the current thread is blocked by a single-step
6797 breakpoint of another thread. */
6798 if (ecs->hit_singlestep_breakpoint)
6799 {
6800 if (debug_infrun)
6801 {
6802 fprintf_unfiltered (gdb_stdlog,
6803 "infrun: need to step [%s] over single-step "
6804 "breakpoint\n",
6805 target_pid_to_str (ecs->ptid).c_str ());
6806 }
6807 keep_going (ecs);
6808 return 1;
6809 }
6810
6811 /* If this thread needs yet another step-over (e.g., stepping
6812 through a delay slot), do it first before moving on to
6813 another thread. */
6814 if (thread_still_needs_step_over (ecs->event_thread))
6815 {
6816 if (debug_infrun)
6817 {
6818 fprintf_unfiltered (gdb_stdlog,
6819 "infrun: thread [%s] still needs step-over\n",
6820 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6821 }
6822 keep_going (ecs);
6823 return 1;
6824 }
6825
6826 /* If scheduler locking applies even if not stepping, there's no
6827 need to walk over threads. Above we've checked whether the
6828 current thread is stepping. If some other thread not the
6829 event thread is stepping, then it must be that scheduler
6830 locking is not in effect. */
6831 if (schedlock_applies (ecs->event_thread))
6832 return 0;
6833
6834 /* Otherwise, we no longer expect a trap in the current thread.
6835 Clear the trap_expected flag before switching back -- this is
6836 what keep_going does as well, if we call it. */
6837 ecs->event_thread->control.trap_expected = 0;
6838
6839 /* Likewise, clear the signal if it should not be passed. */
6840 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6841 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6842
6843 /* Do all pending step-overs before actually proceeding with
6844 step/next/etc. */
6845 if (start_step_over ())
6846 {
6847 prepare_to_wait (ecs);
6848 return 1;
6849 }
6850
6851 /* Look for the stepping/nexting thread. */
6852 stepping_thread = NULL;
6853
6854 for (thread_info *tp : all_non_exited_threads ())
6855 {
6856 /* Ignore threads of processes the caller is not
6857 resuming. */
6858 if (!sched_multi
6859 && tp->ptid.pid () != ecs->ptid.pid ())
6860 continue;
6861
6862 /* When stepping over a breakpoint, we lock all threads
6863 except the one that needs to move past the breakpoint.
6864 If a non-event thread has this set, the "incomplete
6865 step-over" check above should have caught it earlier. */
6866 if (tp->control.trap_expected)
6867 {
6868 internal_error (__FILE__, __LINE__,
6869 "[%s] has inconsistent state: "
6870 "trap_expected=%d\n",
6871 target_pid_to_str (tp->ptid).c_str (),
6872 tp->control.trap_expected);
6873 }
6874
6875 /* Did we find the stepping thread? */
6876 if (tp->control.step_range_end)
6877 {
6878 /* Yep. There should only one though. */
6879 gdb_assert (stepping_thread == NULL);
6880
6881 /* The event thread is handled at the top, before we
6882 enter this loop. */
6883 gdb_assert (tp != ecs->event_thread);
6884
6885 /* If some thread other than the event thread is
6886 stepping, then scheduler locking can't be in effect,
6887 otherwise we wouldn't have resumed the current event
6888 thread in the first place. */
6889 gdb_assert (!schedlock_applies (tp));
6890
6891 stepping_thread = tp;
6892 }
6893 }
6894
6895 if (stepping_thread != NULL)
6896 {
6897 if (debug_infrun)
6898 fprintf_unfiltered (gdb_stdlog,
6899 "infrun: switching back to stepped thread\n");
6900
6901 if (keep_going_stepped_thread (stepping_thread))
6902 {
6903 prepare_to_wait (ecs);
6904 return 1;
6905 }
6906 }
6907 }
6908
6909 return 0;
6910 }
6911
6912 /* Set a previously stepped thread back to stepping. Returns true on
6913 success, false if the resume is not possible (e.g., the thread
6914 vanished). */
6915
6916 static int
6917 keep_going_stepped_thread (struct thread_info *tp)
6918 {
6919 struct frame_info *frame;
6920 struct execution_control_state ecss;
6921 struct execution_control_state *ecs = &ecss;
6922
6923 /* If the stepping thread exited, then don't try to switch back and
6924 resume it, which could fail in several different ways depending
6925 on the target. Instead, just keep going.
6926
6927 We can find a stepping dead thread in the thread list in two
6928 cases:
6929
6930 - The target supports thread exit events, and when the target
6931 tries to delete the thread from the thread list, inferior_ptid
6932 pointed at the exiting thread. In such case, calling
6933 delete_thread does not really remove the thread from the list;
6934 instead, the thread is left listed, with 'exited' state.
6935
6936 - The target's debug interface does not support thread exit
6937 events, and so we have no idea whatsoever if the previously
6938 stepping thread is still alive. For that reason, we need to
6939 synchronously query the target now. */
6940
6941 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
6942 {
6943 if (debug_infrun)
6944 fprintf_unfiltered (gdb_stdlog,
6945 "infrun: not resuming previously "
6946 "stepped thread, it has vanished\n");
6947
6948 delete_thread (tp);
6949 return 0;
6950 }
6951
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: resuming previously stepped thread\n");
6955
6956 reset_ecs (ecs, tp);
6957 switch_to_thread (tp);
6958
6959 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
6960 frame = get_current_frame ();
6961
6962 /* If the PC of the thread we were trying to single-step has
6963 changed, then that thread has trapped or been signaled, but the
6964 event has not been reported to GDB yet. Re-poll the target
6965 looking for this particular thread's event (i.e. temporarily
6966 enable schedlock) by:
6967
6968 - setting a break at the current PC
6969 - resuming that particular thread, only (by setting trap
6970 expected)
6971
6972 This prevents us continuously moving the single-step breakpoint
6973 forward, one instruction at a time, overstepping. */
6974
6975 if (tp->suspend.stop_pc != tp->prev_pc)
6976 {
6977 ptid_t resume_ptid;
6978
6979 if (debug_infrun)
6980 fprintf_unfiltered (gdb_stdlog,
6981 "infrun: expected thread advanced also (%s -> %s)\n",
6982 paddress (target_gdbarch (), tp->prev_pc),
6983 paddress (target_gdbarch (), tp->suspend.stop_pc));
6984
6985 /* Clear the info of the previous step-over, as it's no longer
6986 valid (if the thread was trying to step over a breakpoint, it
6987 has already succeeded). It's what keep_going would do too,
6988 if we called it. Do this before trying to insert the sss
6989 breakpoint, otherwise if we were previously trying to step
6990 over this exact address in another thread, the breakpoint is
6991 skipped. */
6992 clear_step_over_info ();
6993 tp->control.trap_expected = 0;
6994
6995 insert_single_step_breakpoint (get_frame_arch (frame),
6996 get_frame_address_space (frame),
6997 tp->suspend.stop_pc);
6998
6999 tp->resumed = 1;
7000 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7001 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7002 }
7003 else
7004 {
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: expected thread still hasn't advanced\n");
7008
7009 keep_going_pass_signal (ecs);
7010 }
7011 return 1;
7012 }
7013
7014 /* Is thread TP in the middle of (software or hardware)
7015 single-stepping? (Note the result of this function must never be
7016 passed directly as target_resume's STEP parameter.) */
7017
7018 static int
7019 currently_stepping (struct thread_info *tp)
7020 {
7021 return ((tp->control.step_range_end
7022 && tp->control.step_resume_breakpoint == NULL)
7023 || tp->control.trap_expected
7024 || tp->stepped_breakpoint
7025 || bpstat_should_step ());
7026 }
7027
7028 /* Inferior has stepped into a subroutine call with source code that
7029 we should not step over. Do step to the first line of code in
7030 it. */
7031
7032 static void
7033 handle_step_into_function (struct gdbarch *gdbarch,
7034 struct execution_control_state *ecs)
7035 {
7036 fill_in_stop_func (gdbarch, ecs);
7037
7038 compunit_symtab *cust
7039 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7040 if (cust != NULL && compunit_language (cust) != language_asm)
7041 ecs->stop_func_start
7042 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7043
7044 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7045 /* Use the step_resume_break to step until the end of the prologue,
7046 even if that involves jumps (as it seems to on the vax under
7047 4.2). */
7048 /* If the prologue ends in the middle of a source line, continue to
7049 the end of that source line (if it is still within the function).
7050 Otherwise, just go to end of prologue. */
7051 if (stop_func_sal.end
7052 && stop_func_sal.pc != ecs->stop_func_start
7053 && stop_func_sal.end < ecs->stop_func_end)
7054 ecs->stop_func_start = stop_func_sal.end;
7055
7056 /* Architectures which require breakpoint adjustment might not be able
7057 to place a breakpoint at the computed address. If so, the test
7058 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7059 ecs->stop_func_start to an address at which a breakpoint may be
7060 legitimately placed.
7061
7062 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7063 made, GDB will enter an infinite loop when stepping through
7064 optimized code consisting of VLIW instructions which contain
7065 subinstructions corresponding to different source lines. On
7066 FR-V, it's not permitted to place a breakpoint on any but the
7067 first subinstruction of a VLIW instruction. When a breakpoint is
7068 set, GDB will adjust the breakpoint address to the beginning of
7069 the VLIW instruction. Thus, we need to make the corresponding
7070 adjustment here when computing the stop address. */
7071
7072 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7073 {
7074 ecs->stop_func_start
7075 = gdbarch_adjust_breakpoint_address (gdbarch,
7076 ecs->stop_func_start);
7077 }
7078
7079 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7080 {
7081 /* We are already there: stop now. */
7082 end_stepping_range (ecs);
7083 return;
7084 }
7085 else
7086 {
7087 /* Put the step-breakpoint there and go until there. */
7088 symtab_and_line sr_sal;
7089 sr_sal.pc = ecs->stop_func_start;
7090 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7091 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7092
7093 /* Do not specify what the fp should be when we stop since on
7094 some machines the prologue is where the new fp value is
7095 established. */
7096 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7097
7098 /* And make sure stepping stops right away then. */
7099 ecs->event_thread->control.step_range_end
7100 = ecs->event_thread->control.step_range_start;
7101 }
7102 keep_going (ecs);
7103 }
7104
7105 /* Inferior has stepped backward into a subroutine call with source
7106 code that we should not step over. Do step to the beginning of the
7107 last line of code in it. */
7108
7109 static void
7110 handle_step_into_function_backward (struct gdbarch *gdbarch,
7111 struct execution_control_state *ecs)
7112 {
7113 struct compunit_symtab *cust;
7114 struct symtab_and_line stop_func_sal;
7115
7116 fill_in_stop_func (gdbarch, ecs);
7117
7118 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7119 if (cust != NULL && compunit_language (cust) != language_asm)
7120 ecs->stop_func_start
7121 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7122
7123 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7124
7125 /* OK, we're just going to keep stepping here. */
7126 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7127 {
7128 /* We're there already. Just stop stepping now. */
7129 end_stepping_range (ecs);
7130 }
7131 else
7132 {
7133 /* Else just reset the step range and keep going.
7134 No step-resume breakpoint, they don't work for
7135 epilogues, which can have multiple entry paths. */
7136 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7137 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7138 keep_going (ecs);
7139 }
7140 return;
7141 }
7142
7143 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7144 This is used to both functions and to skip over code. */
7145
7146 static void
7147 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7148 struct symtab_and_line sr_sal,
7149 struct frame_id sr_id,
7150 enum bptype sr_type)
7151 {
7152 /* There should never be more than one step-resume or longjmp-resume
7153 breakpoint per thread, so we should never be setting a new
7154 step_resume_breakpoint when one is already active. */
7155 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7156 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7157
7158 if (debug_infrun)
7159 fprintf_unfiltered (gdb_stdlog,
7160 "infrun: inserting step-resume breakpoint at %s\n",
7161 paddress (gdbarch, sr_sal.pc));
7162
7163 inferior_thread ()->control.step_resume_breakpoint
7164 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7165 }
7166
7167 void
7168 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7169 struct symtab_and_line sr_sal,
7170 struct frame_id sr_id)
7171 {
7172 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7173 sr_sal, sr_id,
7174 bp_step_resume);
7175 }
7176
7177 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7178 This is used to skip a potential signal handler.
7179
7180 This is called with the interrupted function's frame. The signal
7181 handler, when it returns, will resume the interrupted function at
7182 RETURN_FRAME.pc. */
7183
7184 static void
7185 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7186 {
7187 gdb_assert (return_frame != NULL);
7188
7189 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7190
7191 symtab_and_line sr_sal;
7192 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7193 sr_sal.section = find_pc_overlay (sr_sal.pc);
7194 sr_sal.pspace = get_frame_program_space (return_frame);
7195
7196 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7197 get_stack_frame_id (return_frame),
7198 bp_hp_step_resume);
7199 }
7200
7201 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7202 is used to skip a function after stepping into it (for "next" or if
7203 the called function has no debugging information).
7204
7205 The current function has almost always been reached by single
7206 stepping a call or return instruction. NEXT_FRAME belongs to the
7207 current function, and the breakpoint will be set at the caller's
7208 resume address.
7209
7210 This is a separate function rather than reusing
7211 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7212 get_prev_frame, which may stop prematurely (see the implementation
7213 of frame_unwind_caller_id for an example). */
7214
7215 static void
7216 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7217 {
7218 /* We shouldn't have gotten here if we don't know where the call site
7219 is. */
7220 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7221
7222 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7223
7224 symtab_and_line sr_sal;
7225 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7226 frame_unwind_caller_pc (next_frame));
7227 sr_sal.section = find_pc_overlay (sr_sal.pc);
7228 sr_sal.pspace = frame_unwind_program_space (next_frame);
7229
7230 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7231 frame_unwind_caller_id (next_frame));
7232 }
7233
7234 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7235 new breakpoint at the target of a jmp_buf. The handling of
7236 longjmp-resume uses the same mechanisms used for handling
7237 "step-resume" breakpoints. */
7238
7239 static void
7240 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7241 {
7242 /* There should never be more than one longjmp-resume breakpoint per
7243 thread, so we should never be setting a new
7244 longjmp_resume_breakpoint when one is already active. */
7245 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7246
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: inserting longjmp-resume breakpoint at %s\n",
7250 paddress (gdbarch, pc));
7251
7252 inferior_thread ()->control.exception_resume_breakpoint =
7253 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7254 }
7255
7256 /* Insert an exception resume breakpoint. TP is the thread throwing
7257 the exception. The block B is the block of the unwinder debug hook
7258 function. FRAME is the frame corresponding to the call to this
7259 function. SYM is the symbol of the function argument holding the
7260 target PC of the exception. */
7261
7262 static void
7263 insert_exception_resume_breakpoint (struct thread_info *tp,
7264 const struct block *b,
7265 struct frame_info *frame,
7266 struct symbol *sym)
7267 {
7268 try
7269 {
7270 struct block_symbol vsym;
7271 struct value *value;
7272 CORE_ADDR handler;
7273 struct breakpoint *bp;
7274
7275 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7276 b, VAR_DOMAIN);
7277 value = read_var_value (vsym.symbol, vsym.block, frame);
7278 /* If the value was optimized out, revert to the old behavior. */
7279 if (! value_optimized_out (value))
7280 {
7281 handler = value_as_address (value);
7282
7283 if (debug_infrun)
7284 fprintf_unfiltered (gdb_stdlog,
7285 "infrun: exception resume at %lx\n",
7286 (unsigned long) handler);
7287
7288 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7289 handler,
7290 bp_exception_resume).release ();
7291
7292 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7293 frame = NULL;
7294
7295 bp->thread = tp->global_num;
7296 inferior_thread ()->control.exception_resume_breakpoint = bp;
7297 }
7298 }
7299 catch (const gdb_exception_error &e)
7300 {
7301 /* We want to ignore errors here. */
7302 }
7303 }
7304
7305 /* A helper for check_exception_resume that sets an
7306 exception-breakpoint based on a SystemTap probe. */
7307
7308 static void
7309 insert_exception_resume_from_probe (struct thread_info *tp,
7310 const struct bound_probe *probe,
7311 struct frame_info *frame)
7312 {
7313 struct value *arg_value;
7314 CORE_ADDR handler;
7315 struct breakpoint *bp;
7316
7317 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7318 if (!arg_value)
7319 return;
7320
7321 handler = value_as_address (arg_value);
7322
7323 if (debug_infrun)
7324 fprintf_unfiltered (gdb_stdlog,
7325 "infrun: exception resume at %s\n",
7326 paddress (get_objfile_arch (probe->objfile),
7327 handler));
7328
7329 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7330 handler, bp_exception_resume).release ();
7331 bp->thread = tp->global_num;
7332 inferior_thread ()->control.exception_resume_breakpoint = bp;
7333 }
7334
7335 /* This is called when an exception has been intercepted. Check to
7336 see whether the exception's destination is of interest, and if so,
7337 set an exception resume breakpoint there. */
7338
7339 static void
7340 check_exception_resume (struct execution_control_state *ecs,
7341 struct frame_info *frame)
7342 {
7343 struct bound_probe probe;
7344 struct symbol *func;
7345
7346 /* First see if this exception unwinding breakpoint was set via a
7347 SystemTap probe point. If so, the probe has two arguments: the
7348 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7349 set a breakpoint there. */
7350 probe = find_probe_by_pc (get_frame_pc (frame));
7351 if (probe.prob)
7352 {
7353 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7354 return;
7355 }
7356
7357 func = get_frame_function (frame);
7358 if (!func)
7359 return;
7360
7361 try
7362 {
7363 const struct block *b;
7364 struct block_iterator iter;
7365 struct symbol *sym;
7366 int argno = 0;
7367
7368 /* The exception breakpoint is a thread-specific breakpoint on
7369 the unwinder's debug hook, declared as:
7370
7371 void _Unwind_DebugHook (void *cfa, void *handler);
7372
7373 The CFA argument indicates the frame to which control is
7374 about to be transferred. HANDLER is the destination PC.
7375
7376 We ignore the CFA and set a temporary breakpoint at HANDLER.
7377 This is not extremely efficient but it avoids issues in gdb
7378 with computing the DWARF CFA, and it also works even in weird
7379 cases such as throwing an exception from inside a signal
7380 handler. */
7381
7382 b = SYMBOL_BLOCK_VALUE (func);
7383 ALL_BLOCK_SYMBOLS (b, iter, sym)
7384 {
7385 if (!SYMBOL_IS_ARGUMENT (sym))
7386 continue;
7387
7388 if (argno == 0)
7389 ++argno;
7390 else
7391 {
7392 insert_exception_resume_breakpoint (ecs->event_thread,
7393 b, frame, sym);
7394 break;
7395 }
7396 }
7397 }
7398 catch (const gdb_exception_error &e)
7399 {
7400 }
7401 }
7402
7403 static void
7404 stop_waiting (struct execution_control_state *ecs)
7405 {
7406 if (debug_infrun)
7407 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7408
7409 /* Let callers know we don't want to wait for the inferior anymore. */
7410 ecs->wait_some_more = 0;
7411
7412 /* If all-stop, but the target is always in non-stop mode, stop all
7413 threads now that we're presenting the stop to the user. */
7414 if (!non_stop && target_is_non_stop_p ())
7415 stop_all_threads ();
7416 }
7417
7418 /* Like keep_going, but passes the signal to the inferior, even if the
7419 signal is set to nopass. */
7420
7421 static void
7422 keep_going_pass_signal (struct execution_control_state *ecs)
7423 {
7424 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7425 gdb_assert (!ecs->event_thread->resumed);
7426
7427 /* Save the pc before execution, to compare with pc after stop. */
7428 ecs->event_thread->prev_pc
7429 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7430
7431 if (ecs->event_thread->control.trap_expected)
7432 {
7433 struct thread_info *tp = ecs->event_thread;
7434
7435 if (debug_infrun)
7436 fprintf_unfiltered (gdb_stdlog,
7437 "infrun: %s has trap_expected set, "
7438 "resuming to collect trap\n",
7439 target_pid_to_str (tp->ptid).c_str ());
7440
7441 /* We haven't yet gotten our trap, and either: intercepted a
7442 non-signal event (e.g., a fork); or took a signal which we
7443 are supposed to pass through to the inferior. Simply
7444 continue. */
7445 resume (ecs->event_thread->suspend.stop_signal);
7446 }
7447 else if (step_over_info_valid_p ())
7448 {
7449 /* Another thread is stepping over a breakpoint in-line. If
7450 this thread needs a step-over too, queue the request. In
7451 either case, this resume must be deferred for later. */
7452 struct thread_info *tp = ecs->event_thread;
7453
7454 if (ecs->hit_singlestep_breakpoint
7455 || thread_still_needs_step_over (tp))
7456 {
7457 if (debug_infrun)
7458 fprintf_unfiltered (gdb_stdlog,
7459 "infrun: step-over already in progress: "
7460 "step-over for %s deferred\n",
7461 target_pid_to_str (tp->ptid).c_str ());
7462 thread_step_over_chain_enqueue (tp);
7463 }
7464 else
7465 {
7466 if (debug_infrun)
7467 fprintf_unfiltered (gdb_stdlog,
7468 "infrun: step-over in progress: "
7469 "resume of %s deferred\n",
7470 target_pid_to_str (tp->ptid).c_str ());
7471 }
7472 }
7473 else
7474 {
7475 struct regcache *regcache = get_current_regcache ();
7476 int remove_bp;
7477 int remove_wps;
7478 step_over_what step_what;
7479
7480 /* Either the trap was not expected, but we are continuing
7481 anyway (if we got a signal, the user asked it be passed to
7482 the child)
7483 -- or --
7484 We got our expected trap, but decided we should resume from
7485 it.
7486
7487 We're going to run this baby now!
7488
7489 Note that insert_breakpoints won't try to re-insert
7490 already inserted breakpoints. Therefore, we don't
7491 care if breakpoints were already inserted, or not. */
7492
7493 /* If we need to step over a breakpoint, and we're not using
7494 displaced stepping to do so, insert all breakpoints
7495 (watchpoints, etc.) but the one we're stepping over, step one
7496 instruction, and then re-insert the breakpoint when that step
7497 is finished. */
7498
7499 step_what = thread_still_needs_step_over (ecs->event_thread);
7500
7501 remove_bp = (ecs->hit_singlestep_breakpoint
7502 || (step_what & STEP_OVER_BREAKPOINT));
7503 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7504
7505 /* We can't use displaced stepping if we need to step past a
7506 watchpoint. The instruction copied to the scratch pad would
7507 still trigger the watchpoint. */
7508 if (remove_bp
7509 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7510 {
7511 set_step_over_info (regcache->aspace (),
7512 regcache_read_pc (regcache), remove_wps,
7513 ecs->event_thread->global_num);
7514 }
7515 else if (remove_wps)
7516 set_step_over_info (NULL, 0, remove_wps, -1);
7517
7518 /* If we now need to do an in-line step-over, we need to stop
7519 all other threads. Note this must be done before
7520 insert_breakpoints below, because that removes the breakpoint
7521 we're about to step over, otherwise other threads could miss
7522 it. */
7523 if (step_over_info_valid_p () && target_is_non_stop_p ())
7524 stop_all_threads ();
7525
7526 /* Stop stepping if inserting breakpoints fails. */
7527 try
7528 {
7529 insert_breakpoints ();
7530 }
7531 catch (const gdb_exception_error &e)
7532 {
7533 exception_print (gdb_stderr, e);
7534 stop_waiting (ecs);
7535 clear_step_over_info ();
7536 return;
7537 }
7538
7539 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7540
7541 resume (ecs->event_thread->suspend.stop_signal);
7542 }
7543
7544 prepare_to_wait (ecs);
7545 }
7546
7547 /* Called when we should continue running the inferior, because the
7548 current event doesn't cause a user visible stop. This does the
7549 resuming part; waiting for the next event is done elsewhere. */
7550
7551 static void
7552 keep_going (struct execution_control_state *ecs)
7553 {
7554 if (ecs->event_thread->control.trap_expected
7555 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7556 ecs->event_thread->control.trap_expected = 0;
7557
7558 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7559 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7560 keep_going_pass_signal (ecs);
7561 }
7562
7563 /* This function normally comes after a resume, before
7564 handle_inferior_event exits. It takes care of any last bits of
7565 housekeeping, and sets the all-important wait_some_more flag. */
7566
7567 static void
7568 prepare_to_wait (struct execution_control_state *ecs)
7569 {
7570 if (debug_infrun)
7571 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7572
7573 ecs->wait_some_more = 1;
7574
7575 if (!target_is_async_p ())
7576 mark_infrun_async_event_handler ();
7577 }
7578
7579 /* We are done with the step range of a step/next/si/ni command.
7580 Called once for each n of a "step n" operation. */
7581
7582 static void
7583 end_stepping_range (struct execution_control_state *ecs)
7584 {
7585 ecs->event_thread->control.stop_step = 1;
7586 stop_waiting (ecs);
7587 }
7588
7589 /* Several print_*_reason functions to print why the inferior has stopped.
7590 We always print something when the inferior exits, or receives a signal.
7591 The rest of the cases are dealt with later on in normal_stop and
7592 print_it_typical. Ideally there should be a call to one of these
7593 print_*_reason functions functions from handle_inferior_event each time
7594 stop_waiting is called.
7595
7596 Note that we don't call these directly, instead we delegate that to
7597 the interpreters, through observers. Interpreters then call these
7598 with whatever uiout is right. */
7599
7600 void
7601 print_end_stepping_range_reason (struct ui_out *uiout)
7602 {
7603 /* For CLI-like interpreters, print nothing. */
7604
7605 if (uiout->is_mi_like_p ())
7606 {
7607 uiout->field_string ("reason",
7608 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7609 }
7610 }
7611
7612 void
7613 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7614 {
7615 annotate_signalled ();
7616 if (uiout->is_mi_like_p ())
7617 uiout->field_string
7618 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7619 uiout->text ("\nProgram terminated with signal ");
7620 annotate_signal_name ();
7621 uiout->field_string ("signal-name",
7622 gdb_signal_to_name (siggnal));
7623 annotate_signal_name_end ();
7624 uiout->text (", ");
7625 annotate_signal_string ();
7626 uiout->field_string ("signal-meaning",
7627 gdb_signal_to_string (siggnal));
7628 annotate_signal_string_end ();
7629 uiout->text (".\n");
7630 uiout->text ("The program no longer exists.\n");
7631 }
7632
7633 void
7634 print_exited_reason (struct ui_out *uiout, int exitstatus)
7635 {
7636 struct inferior *inf = current_inferior ();
7637 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7638
7639 annotate_exited (exitstatus);
7640 if (exitstatus)
7641 {
7642 if (uiout->is_mi_like_p ())
7643 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7644 uiout->text ("[Inferior ");
7645 uiout->text (plongest (inf->num));
7646 uiout->text (" (");
7647 uiout->text (pidstr.c_str ());
7648 uiout->text (") exited with code ");
7649 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7650 uiout->text ("]\n");
7651 }
7652 else
7653 {
7654 if (uiout->is_mi_like_p ())
7655 uiout->field_string
7656 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7657 uiout->text ("[Inferior ");
7658 uiout->text (plongest (inf->num));
7659 uiout->text (" (");
7660 uiout->text (pidstr.c_str ());
7661 uiout->text (") exited normally]\n");
7662 }
7663 }
7664
7665 /* Some targets/architectures can do extra processing/display of
7666 segmentation faults. E.g., Intel MPX boundary faults.
7667 Call the architecture dependent function to handle the fault. */
7668
7669 static void
7670 handle_segmentation_fault (struct ui_out *uiout)
7671 {
7672 struct regcache *regcache = get_current_regcache ();
7673 struct gdbarch *gdbarch = regcache->arch ();
7674
7675 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7676 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7677 }
7678
7679 void
7680 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7681 {
7682 struct thread_info *thr = inferior_thread ();
7683
7684 annotate_signal ();
7685
7686 if (uiout->is_mi_like_p ())
7687 ;
7688 else if (show_thread_that_caused_stop ())
7689 {
7690 const char *name;
7691
7692 uiout->text ("\nThread ");
7693 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7694
7695 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7696 if (name != NULL)
7697 {
7698 uiout->text (" \"");
7699 uiout->field_fmt ("name", "%s", name);
7700 uiout->text ("\"");
7701 }
7702 }
7703 else
7704 uiout->text ("\nProgram");
7705
7706 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7707 uiout->text (" stopped");
7708 else
7709 {
7710 uiout->text (" received signal ");
7711 annotate_signal_name ();
7712 if (uiout->is_mi_like_p ())
7713 uiout->field_string
7714 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7715 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7716 annotate_signal_name_end ();
7717 uiout->text (", ");
7718 annotate_signal_string ();
7719 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7720
7721 if (siggnal == GDB_SIGNAL_SEGV)
7722 handle_segmentation_fault (uiout);
7723
7724 annotate_signal_string_end ();
7725 }
7726 uiout->text (".\n");
7727 }
7728
7729 void
7730 print_no_history_reason (struct ui_out *uiout)
7731 {
7732 uiout->text ("\nNo more reverse-execution history.\n");
7733 }
7734
7735 /* Print current location without a level number, if we have changed
7736 functions or hit a breakpoint. Print source line if we have one.
7737 bpstat_print contains the logic deciding in detail what to print,
7738 based on the event(s) that just occurred. */
7739
7740 static void
7741 print_stop_location (struct target_waitstatus *ws)
7742 {
7743 int bpstat_ret;
7744 enum print_what source_flag;
7745 int do_frame_printing = 1;
7746 struct thread_info *tp = inferior_thread ();
7747
7748 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7749 switch (bpstat_ret)
7750 {
7751 case PRINT_UNKNOWN:
7752 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7753 should) carry around the function and does (or should) use
7754 that when doing a frame comparison. */
7755 if (tp->control.stop_step
7756 && frame_id_eq (tp->control.step_frame_id,
7757 get_frame_id (get_current_frame ()))
7758 && (tp->control.step_start_function
7759 == find_pc_function (tp->suspend.stop_pc)))
7760 {
7761 /* Finished step, just print source line. */
7762 source_flag = SRC_LINE;
7763 }
7764 else
7765 {
7766 /* Print location and source line. */
7767 source_flag = SRC_AND_LOC;
7768 }
7769 break;
7770 case PRINT_SRC_AND_LOC:
7771 /* Print location and source line. */
7772 source_flag = SRC_AND_LOC;
7773 break;
7774 case PRINT_SRC_ONLY:
7775 source_flag = SRC_LINE;
7776 break;
7777 case PRINT_NOTHING:
7778 /* Something bogus. */
7779 source_flag = SRC_LINE;
7780 do_frame_printing = 0;
7781 break;
7782 default:
7783 internal_error (__FILE__, __LINE__, _("Unknown value."));
7784 }
7785
7786 /* The behavior of this routine with respect to the source
7787 flag is:
7788 SRC_LINE: Print only source line
7789 LOCATION: Print only location
7790 SRC_AND_LOC: Print location and source line. */
7791 if (do_frame_printing)
7792 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7793 }
7794
7795 /* See infrun.h. */
7796
7797 void
7798 print_stop_event (struct ui_out *uiout, bool displays)
7799 {
7800 struct target_waitstatus last;
7801 ptid_t last_ptid;
7802 struct thread_info *tp;
7803
7804 get_last_target_status (&last_ptid, &last);
7805
7806 {
7807 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7808
7809 print_stop_location (&last);
7810
7811 /* Display the auto-display expressions. */
7812 if (displays)
7813 do_displays ();
7814 }
7815
7816 tp = inferior_thread ();
7817 if (tp->thread_fsm != NULL
7818 && tp->thread_fsm->finished_p ())
7819 {
7820 struct return_value_info *rv;
7821
7822 rv = tp->thread_fsm->return_value ();
7823 if (rv != NULL)
7824 print_return_value (uiout, rv);
7825 }
7826 }
7827
7828 /* See infrun.h. */
7829
7830 void
7831 maybe_remove_breakpoints (void)
7832 {
7833 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7834 {
7835 if (remove_breakpoints ())
7836 {
7837 target_terminal::ours_for_output ();
7838 printf_filtered (_("Cannot remove breakpoints because "
7839 "program is no longer writable.\nFurther "
7840 "execution is probably impossible.\n"));
7841 }
7842 }
7843 }
7844
7845 /* The execution context that just caused a normal stop. */
7846
7847 struct stop_context
7848 {
7849 stop_context ();
7850 ~stop_context ();
7851
7852 DISABLE_COPY_AND_ASSIGN (stop_context);
7853
7854 bool changed () const;
7855
7856 /* The stop ID. */
7857 ULONGEST stop_id;
7858
7859 /* The event PTID. */
7860
7861 ptid_t ptid;
7862
7863 /* If stopp for a thread event, this is the thread that caused the
7864 stop. */
7865 struct thread_info *thread;
7866
7867 /* The inferior that caused the stop. */
7868 int inf_num;
7869 };
7870
7871 /* Initializes a new stop context. If stopped for a thread event, this
7872 takes a strong reference to the thread. */
7873
7874 stop_context::stop_context ()
7875 {
7876 stop_id = get_stop_id ();
7877 ptid = inferior_ptid;
7878 inf_num = current_inferior ()->num;
7879
7880 if (inferior_ptid != null_ptid)
7881 {
7882 /* Take a strong reference so that the thread can't be deleted
7883 yet. */
7884 thread = inferior_thread ();
7885 thread->incref ();
7886 }
7887 else
7888 thread = NULL;
7889 }
7890
7891 /* Release a stop context previously created with save_stop_context.
7892 Releases the strong reference to the thread as well. */
7893
7894 stop_context::~stop_context ()
7895 {
7896 if (thread != NULL)
7897 thread->decref ();
7898 }
7899
7900 /* Return true if the current context no longer matches the saved stop
7901 context. */
7902
7903 bool
7904 stop_context::changed () const
7905 {
7906 if (ptid != inferior_ptid)
7907 return true;
7908 if (inf_num != current_inferior ()->num)
7909 return true;
7910 if (thread != NULL && thread->state != THREAD_STOPPED)
7911 return true;
7912 if (get_stop_id () != stop_id)
7913 return true;
7914 return false;
7915 }
7916
7917 /* See infrun.h. */
7918
7919 int
7920 normal_stop (void)
7921 {
7922 struct target_waitstatus last;
7923 ptid_t last_ptid;
7924
7925 get_last_target_status (&last_ptid, &last);
7926
7927 new_stop_id ();
7928
7929 /* If an exception is thrown from this point on, make sure to
7930 propagate GDB's knowledge of the executing state to the
7931 frontend/user running state. A QUIT is an easy exception to see
7932 here, so do this before any filtered output. */
7933
7934 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7935
7936 if (!non_stop)
7937 maybe_finish_thread_state.emplace (minus_one_ptid);
7938 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7939 || last.kind == TARGET_WAITKIND_EXITED)
7940 {
7941 /* On some targets, we may still have live threads in the
7942 inferior when we get a process exit event. E.g., for
7943 "checkpoint", when the current checkpoint/fork exits,
7944 linux-fork.c automatically switches to another fork from
7945 within target_mourn_inferior. */
7946 if (inferior_ptid != null_ptid)
7947 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
7948 }
7949 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7950 maybe_finish_thread_state.emplace (inferior_ptid);
7951
7952 /* As we're presenting a stop, and potentially removing breakpoints,
7953 update the thread list so we can tell whether there are threads
7954 running on the target. With target remote, for example, we can
7955 only learn about new threads when we explicitly update the thread
7956 list. Do this before notifying the interpreters about signal
7957 stops, end of stepping ranges, etc., so that the "new thread"
7958 output is emitted before e.g., "Program received signal FOO",
7959 instead of after. */
7960 update_thread_list ();
7961
7962 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7963 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
7964
7965 /* As with the notification of thread events, we want to delay
7966 notifying the user that we've switched thread context until
7967 the inferior actually stops.
7968
7969 There's no point in saying anything if the inferior has exited.
7970 Note that SIGNALLED here means "exited with a signal", not
7971 "received a signal".
7972
7973 Also skip saying anything in non-stop mode. In that mode, as we
7974 don't want GDB to switch threads behind the user's back, to avoid
7975 races where the user is typing a command to apply to thread x,
7976 but GDB switches to thread y before the user finishes entering
7977 the command, fetch_inferior_event installs a cleanup to restore
7978 the current thread back to the thread the user had selected right
7979 after this event is handled, so we're not really switching, only
7980 informing of a stop. */
7981 if (!non_stop
7982 && previous_inferior_ptid != inferior_ptid
7983 && target_has_execution
7984 && last.kind != TARGET_WAITKIND_SIGNALLED
7985 && last.kind != TARGET_WAITKIND_EXITED
7986 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7987 {
7988 SWITCH_THRU_ALL_UIS ()
7989 {
7990 target_terminal::ours_for_output ();
7991 printf_filtered (_("[Switching to %s]\n"),
7992 target_pid_to_str (inferior_ptid).c_str ());
7993 annotate_thread_changed ();
7994 }
7995 previous_inferior_ptid = inferior_ptid;
7996 }
7997
7998 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7999 {
8000 SWITCH_THRU_ALL_UIS ()
8001 if (current_ui->prompt_state == PROMPT_BLOCKED)
8002 {
8003 target_terminal::ours_for_output ();
8004 printf_filtered (_("No unwaited-for children left.\n"));
8005 }
8006 }
8007
8008 /* Note: this depends on the update_thread_list call above. */
8009 maybe_remove_breakpoints ();
8010
8011 /* If an auto-display called a function and that got a signal,
8012 delete that auto-display to avoid an infinite recursion. */
8013
8014 if (stopped_by_random_signal)
8015 disable_current_display ();
8016
8017 SWITCH_THRU_ALL_UIS ()
8018 {
8019 async_enable_stdin ();
8020 }
8021
8022 /* Let the user/frontend see the threads as stopped. */
8023 maybe_finish_thread_state.reset ();
8024
8025 /* Select innermost stack frame - i.e., current frame is frame 0,
8026 and current location is based on that. Handle the case where the
8027 dummy call is returning after being stopped. E.g. the dummy call
8028 previously hit a breakpoint. (If the dummy call returns
8029 normally, we won't reach here.) Do this before the stop hook is
8030 run, so that it doesn't get to see the temporary dummy frame,
8031 which is not where we'll present the stop. */
8032 if (has_stack_frames ())
8033 {
8034 if (stop_stack_dummy == STOP_STACK_DUMMY)
8035 {
8036 /* Pop the empty frame that contains the stack dummy. This
8037 also restores inferior state prior to the call (struct
8038 infcall_suspend_state). */
8039 struct frame_info *frame = get_current_frame ();
8040
8041 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8042 frame_pop (frame);
8043 /* frame_pop calls reinit_frame_cache as the last thing it
8044 does which means there's now no selected frame. */
8045 }
8046
8047 select_frame (get_current_frame ());
8048
8049 /* Set the current source location. */
8050 set_current_sal_from_frame (get_current_frame ());
8051 }
8052
8053 /* Look up the hook_stop and run it (CLI internally handles problem
8054 of stop_command's pre-hook not existing). */
8055 if (stop_command != NULL)
8056 {
8057 stop_context saved_context;
8058
8059 try
8060 {
8061 execute_cmd_pre_hook (stop_command);
8062 }
8063 catch (const gdb_exception &ex)
8064 {
8065 exception_fprintf (gdb_stderr, ex,
8066 "Error while running hook_stop:\n");
8067 }
8068
8069 /* If the stop hook resumes the target, then there's no point in
8070 trying to notify about the previous stop; its context is
8071 gone. Likewise if the command switches thread or inferior --
8072 the observers would print a stop for the wrong
8073 thread/inferior. */
8074 if (saved_context.changed ())
8075 return 1;
8076 }
8077
8078 /* Notify observers about the stop. This is where the interpreters
8079 print the stop event. */
8080 if (inferior_ptid != null_ptid)
8081 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8082 stop_print_frame);
8083 else
8084 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8085
8086 annotate_stopped ();
8087
8088 if (target_has_execution)
8089 {
8090 if (last.kind != TARGET_WAITKIND_SIGNALLED
8091 && last.kind != TARGET_WAITKIND_EXITED
8092 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8093 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8094 Delete any breakpoint that is to be deleted at the next stop. */
8095 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8096 }
8097
8098 /* Try to get rid of automatically added inferiors that are no
8099 longer needed. Keeping those around slows down things linearly.
8100 Note that this never removes the current inferior. */
8101 prune_inferiors ();
8102
8103 return 0;
8104 }
8105 \f
8106 int
8107 signal_stop_state (int signo)
8108 {
8109 return signal_stop[signo];
8110 }
8111
8112 int
8113 signal_print_state (int signo)
8114 {
8115 return signal_print[signo];
8116 }
8117
8118 int
8119 signal_pass_state (int signo)
8120 {
8121 return signal_program[signo];
8122 }
8123
8124 static void
8125 signal_cache_update (int signo)
8126 {
8127 if (signo == -1)
8128 {
8129 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8130 signal_cache_update (signo);
8131
8132 return;
8133 }
8134
8135 signal_pass[signo] = (signal_stop[signo] == 0
8136 && signal_print[signo] == 0
8137 && signal_program[signo] == 1
8138 && signal_catch[signo] == 0);
8139 }
8140
8141 int
8142 signal_stop_update (int signo, int state)
8143 {
8144 int ret = signal_stop[signo];
8145
8146 signal_stop[signo] = state;
8147 signal_cache_update (signo);
8148 return ret;
8149 }
8150
8151 int
8152 signal_print_update (int signo, int state)
8153 {
8154 int ret = signal_print[signo];
8155
8156 signal_print[signo] = state;
8157 signal_cache_update (signo);
8158 return ret;
8159 }
8160
8161 int
8162 signal_pass_update (int signo, int state)
8163 {
8164 int ret = signal_program[signo];
8165
8166 signal_program[signo] = state;
8167 signal_cache_update (signo);
8168 return ret;
8169 }
8170
8171 /* Update the global 'signal_catch' from INFO and notify the
8172 target. */
8173
8174 void
8175 signal_catch_update (const unsigned int *info)
8176 {
8177 int i;
8178
8179 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8180 signal_catch[i] = info[i] > 0;
8181 signal_cache_update (-1);
8182 target_pass_signals (signal_pass);
8183 }
8184
8185 static void
8186 sig_print_header (void)
8187 {
8188 printf_filtered (_("Signal Stop\tPrint\tPass "
8189 "to program\tDescription\n"));
8190 }
8191
8192 static void
8193 sig_print_info (enum gdb_signal oursig)
8194 {
8195 const char *name = gdb_signal_to_name (oursig);
8196 int name_padding = 13 - strlen (name);
8197
8198 if (name_padding <= 0)
8199 name_padding = 0;
8200
8201 printf_filtered ("%s", name);
8202 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8203 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8204 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8205 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8206 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8207 }
8208
8209 /* Specify how various signals in the inferior should be handled. */
8210
8211 static void
8212 handle_command (const char *args, int from_tty)
8213 {
8214 int digits, wordlen;
8215 int sigfirst, siglast;
8216 enum gdb_signal oursig;
8217 int allsigs;
8218
8219 if (args == NULL)
8220 {
8221 error_no_arg (_("signal to handle"));
8222 }
8223
8224 /* Allocate and zero an array of flags for which signals to handle. */
8225
8226 const size_t nsigs = GDB_SIGNAL_LAST;
8227 unsigned char sigs[nsigs] {};
8228
8229 /* Break the command line up into args. */
8230
8231 gdb_argv built_argv (args);
8232
8233 /* Walk through the args, looking for signal oursigs, signal names, and
8234 actions. Signal numbers and signal names may be interspersed with
8235 actions, with the actions being performed for all signals cumulatively
8236 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8237
8238 for (char *arg : built_argv)
8239 {
8240 wordlen = strlen (arg);
8241 for (digits = 0; isdigit (arg[digits]); digits++)
8242 {;
8243 }
8244 allsigs = 0;
8245 sigfirst = siglast = -1;
8246
8247 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8248 {
8249 /* Apply action to all signals except those used by the
8250 debugger. Silently skip those. */
8251 allsigs = 1;
8252 sigfirst = 0;
8253 siglast = nsigs - 1;
8254 }
8255 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8256 {
8257 SET_SIGS (nsigs, sigs, signal_stop);
8258 SET_SIGS (nsigs, sigs, signal_print);
8259 }
8260 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8261 {
8262 UNSET_SIGS (nsigs, sigs, signal_program);
8263 }
8264 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8265 {
8266 SET_SIGS (nsigs, sigs, signal_print);
8267 }
8268 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8269 {
8270 SET_SIGS (nsigs, sigs, signal_program);
8271 }
8272 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8273 {
8274 UNSET_SIGS (nsigs, sigs, signal_stop);
8275 }
8276 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8277 {
8278 SET_SIGS (nsigs, sigs, signal_program);
8279 }
8280 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8281 {
8282 UNSET_SIGS (nsigs, sigs, signal_print);
8283 UNSET_SIGS (nsigs, sigs, signal_stop);
8284 }
8285 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8286 {
8287 UNSET_SIGS (nsigs, sigs, signal_program);
8288 }
8289 else if (digits > 0)
8290 {
8291 /* It is numeric. The numeric signal refers to our own
8292 internal signal numbering from target.h, not to host/target
8293 signal number. This is a feature; users really should be
8294 using symbolic names anyway, and the common ones like
8295 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8296
8297 sigfirst = siglast = (int)
8298 gdb_signal_from_command (atoi (arg));
8299 if (arg[digits] == '-')
8300 {
8301 siglast = (int)
8302 gdb_signal_from_command (atoi (arg + digits + 1));
8303 }
8304 if (sigfirst > siglast)
8305 {
8306 /* Bet he didn't figure we'd think of this case... */
8307 std::swap (sigfirst, siglast);
8308 }
8309 }
8310 else
8311 {
8312 oursig = gdb_signal_from_name (arg);
8313 if (oursig != GDB_SIGNAL_UNKNOWN)
8314 {
8315 sigfirst = siglast = (int) oursig;
8316 }
8317 else
8318 {
8319 /* Not a number and not a recognized flag word => complain. */
8320 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8321 }
8322 }
8323
8324 /* If any signal numbers or symbol names were found, set flags for
8325 which signals to apply actions to. */
8326
8327 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8328 {
8329 switch ((enum gdb_signal) signum)
8330 {
8331 case GDB_SIGNAL_TRAP:
8332 case GDB_SIGNAL_INT:
8333 if (!allsigs && !sigs[signum])
8334 {
8335 if (query (_("%s is used by the debugger.\n\
8336 Are you sure you want to change it? "),
8337 gdb_signal_to_name ((enum gdb_signal) signum)))
8338 {
8339 sigs[signum] = 1;
8340 }
8341 else
8342 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8343 }
8344 break;
8345 case GDB_SIGNAL_0:
8346 case GDB_SIGNAL_DEFAULT:
8347 case GDB_SIGNAL_UNKNOWN:
8348 /* Make sure that "all" doesn't print these. */
8349 break;
8350 default:
8351 sigs[signum] = 1;
8352 break;
8353 }
8354 }
8355 }
8356
8357 for (int signum = 0; signum < nsigs; signum++)
8358 if (sigs[signum])
8359 {
8360 signal_cache_update (-1);
8361 target_pass_signals (signal_pass);
8362 target_program_signals (signal_program);
8363
8364 if (from_tty)
8365 {
8366 /* Show the results. */
8367 sig_print_header ();
8368 for (; signum < nsigs; signum++)
8369 if (sigs[signum])
8370 sig_print_info ((enum gdb_signal) signum);
8371 }
8372
8373 break;
8374 }
8375 }
8376
8377 /* Complete the "handle" command. */
8378
8379 static void
8380 handle_completer (struct cmd_list_element *ignore,
8381 completion_tracker &tracker,
8382 const char *text, const char *word)
8383 {
8384 static const char * const keywords[] =
8385 {
8386 "all",
8387 "stop",
8388 "ignore",
8389 "print",
8390 "pass",
8391 "nostop",
8392 "noignore",
8393 "noprint",
8394 "nopass",
8395 NULL,
8396 };
8397
8398 signal_completer (ignore, tracker, text, word);
8399 complete_on_enum (tracker, keywords, word, word);
8400 }
8401
8402 enum gdb_signal
8403 gdb_signal_from_command (int num)
8404 {
8405 if (num >= 1 && num <= 15)
8406 return (enum gdb_signal) num;
8407 error (_("Only signals 1-15 are valid as numeric signals.\n\
8408 Use \"info signals\" for a list of symbolic signals."));
8409 }
8410
8411 /* Print current contents of the tables set by the handle command.
8412 It is possible we should just be printing signals actually used
8413 by the current target (but for things to work right when switching
8414 targets, all signals should be in the signal tables). */
8415
8416 static void
8417 info_signals_command (const char *signum_exp, int from_tty)
8418 {
8419 enum gdb_signal oursig;
8420
8421 sig_print_header ();
8422
8423 if (signum_exp)
8424 {
8425 /* First see if this is a symbol name. */
8426 oursig = gdb_signal_from_name (signum_exp);
8427 if (oursig == GDB_SIGNAL_UNKNOWN)
8428 {
8429 /* No, try numeric. */
8430 oursig =
8431 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8432 }
8433 sig_print_info (oursig);
8434 return;
8435 }
8436
8437 printf_filtered ("\n");
8438 /* These ugly casts brought to you by the native VAX compiler. */
8439 for (oursig = GDB_SIGNAL_FIRST;
8440 (int) oursig < (int) GDB_SIGNAL_LAST;
8441 oursig = (enum gdb_signal) ((int) oursig + 1))
8442 {
8443 QUIT;
8444
8445 if (oursig != GDB_SIGNAL_UNKNOWN
8446 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8447 sig_print_info (oursig);
8448 }
8449
8450 printf_filtered (_("\nUse the \"handle\" command "
8451 "to change these tables.\n"));
8452 }
8453
8454 /* The $_siginfo convenience variable is a bit special. We don't know
8455 for sure the type of the value until we actually have a chance to
8456 fetch the data. The type can change depending on gdbarch, so it is
8457 also dependent on which thread you have selected.
8458
8459 1. making $_siginfo be an internalvar that creates a new value on
8460 access.
8461
8462 2. making the value of $_siginfo be an lval_computed value. */
8463
8464 /* This function implements the lval_computed support for reading a
8465 $_siginfo value. */
8466
8467 static void
8468 siginfo_value_read (struct value *v)
8469 {
8470 LONGEST transferred;
8471
8472 /* If we can access registers, so can we access $_siginfo. Likewise
8473 vice versa. */
8474 validate_registers_access ();
8475
8476 transferred =
8477 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8478 NULL,
8479 value_contents_all_raw (v),
8480 value_offset (v),
8481 TYPE_LENGTH (value_type (v)));
8482
8483 if (transferred != TYPE_LENGTH (value_type (v)))
8484 error (_("Unable to read siginfo"));
8485 }
8486
8487 /* This function implements the lval_computed support for writing a
8488 $_siginfo value. */
8489
8490 static void
8491 siginfo_value_write (struct value *v, struct value *fromval)
8492 {
8493 LONGEST transferred;
8494
8495 /* If we can access registers, so can we access $_siginfo. Likewise
8496 vice versa. */
8497 validate_registers_access ();
8498
8499 transferred = target_write (current_top_target (),
8500 TARGET_OBJECT_SIGNAL_INFO,
8501 NULL,
8502 value_contents_all_raw (fromval),
8503 value_offset (v),
8504 TYPE_LENGTH (value_type (fromval)));
8505
8506 if (transferred != TYPE_LENGTH (value_type (fromval)))
8507 error (_("Unable to write siginfo"));
8508 }
8509
8510 static const struct lval_funcs siginfo_value_funcs =
8511 {
8512 siginfo_value_read,
8513 siginfo_value_write
8514 };
8515
8516 /* Return a new value with the correct type for the siginfo object of
8517 the current thread using architecture GDBARCH. Return a void value
8518 if there's no object available. */
8519
8520 static struct value *
8521 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8522 void *ignore)
8523 {
8524 if (target_has_stack
8525 && inferior_ptid != null_ptid
8526 && gdbarch_get_siginfo_type_p (gdbarch))
8527 {
8528 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8529
8530 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8531 }
8532
8533 return allocate_value (builtin_type (gdbarch)->builtin_void);
8534 }
8535
8536 \f
8537 /* infcall_suspend_state contains state about the program itself like its
8538 registers and any signal it received when it last stopped.
8539 This state must be restored regardless of how the inferior function call
8540 ends (either successfully, or after it hits a breakpoint or signal)
8541 if the program is to properly continue where it left off. */
8542
8543 class infcall_suspend_state
8544 {
8545 public:
8546 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8547 once the inferior function call has finished. */
8548 infcall_suspend_state (struct gdbarch *gdbarch,
8549 const struct thread_info *tp,
8550 struct regcache *regcache)
8551 : m_thread_suspend (tp->suspend),
8552 m_registers (new readonly_detached_regcache (*regcache))
8553 {
8554 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8555
8556 if (gdbarch_get_siginfo_type_p (gdbarch))
8557 {
8558 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8559 size_t len = TYPE_LENGTH (type);
8560
8561 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8562
8563 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8564 siginfo_data.get (), 0, len) != len)
8565 {
8566 /* Errors ignored. */
8567 siginfo_data.reset (nullptr);
8568 }
8569 }
8570
8571 if (siginfo_data)
8572 {
8573 m_siginfo_gdbarch = gdbarch;
8574 m_siginfo_data = std::move (siginfo_data);
8575 }
8576 }
8577
8578 /* Return a pointer to the stored register state. */
8579
8580 readonly_detached_regcache *registers () const
8581 {
8582 return m_registers.get ();
8583 }
8584
8585 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8586
8587 void restore (struct gdbarch *gdbarch,
8588 struct thread_info *tp,
8589 struct regcache *regcache) const
8590 {
8591 tp->suspend = m_thread_suspend;
8592
8593 if (m_siginfo_gdbarch == gdbarch)
8594 {
8595 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8596
8597 /* Errors ignored. */
8598 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8599 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8600 }
8601
8602 /* The inferior can be gone if the user types "print exit(0)"
8603 (and perhaps other times). */
8604 if (target_has_execution)
8605 /* NB: The register write goes through to the target. */
8606 regcache->restore (registers ());
8607 }
8608
8609 private:
8610 /* How the current thread stopped before the inferior function call was
8611 executed. */
8612 struct thread_suspend_state m_thread_suspend;
8613
8614 /* The registers before the inferior function call was executed. */
8615 std::unique_ptr<readonly_detached_regcache> m_registers;
8616
8617 /* Format of SIGINFO_DATA or NULL if it is not present. */
8618 struct gdbarch *m_siginfo_gdbarch = nullptr;
8619
8620 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8621 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8622 content would be invalid. */
8623 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8624 };
8625
8626 infcall_suspend_state_up
8627 save_infcall_suspend_state ()
8628 {
8629 struct thread_info *tp = inferior_thread ();
8630 struct regcache *regcache = get_current_regcache ();
8631 struct gdbarch *gdbarch = regcache->arch ();
8632
8633 infcall_suspend_state_up inf_state
8634 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8635
8636 /* Having saved the current state, adjust the thread state, discarding
8637 any stop signal information. The stop signal is not useful when
8638 starting an inferior function call, and run_inferior_call will not use
8639 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8640 tp->suspend.stop_signal = GDB_SIGNAL_0;
8641
8642 return inf_state;
8643 }
8644
8645 /* Restore inferior session state to INF_STATE. */
8646
8647 void
8648 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8649 {
8650 struct thread_info *tp = inferior_thread ();
8651 struct regcache *regcache = get_current_regcache ();
8652 struct gdbarch *gdbarch = regcache->arch ();
8653
8654 inf_state->restore (gdbarch, tp, regcache);
8655 discard_infcall_suspend_state (inf_state);
8656 }
8657
8658 void
8659 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8660 {
8661 delete inf_state;
8662 }
8663
8664 readonly_detached_regcache *
8665 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8666 {
8667 return inf_state->registers ();
8668 }
8669
8670 /* infcall_control_state contains state regarding gdb's control of the
8671 inferior itself like stepping control. It also contains session state like
8672 the user's currently selected frame. */
8673
8674 struct infcall_control_state
8675 {
8676 struct thread_control_state thread_control;
8677 struct inferior_control_state inferior_control;
8678
8679 /* Other fields: */
8680 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8681 int stopped_by_random_signal = 0;
8682
8683 /* ID if the selected frame when the inferior function call was made. */
8684 struct frame_id selected_frame_id {};
8685 };
8686
8687 /* Save all of the information associated with the inferior<==>gdb
8688 connection. */
8689
8690 infcall_control_state_up
8691 save_infcall_control_state ()
8692 {
8693 infcall_control_state_up inf_status (new struct infcall_control_state);
8694 struct thread_info *tp = inferior_thread ();
8695 struct inferior *inf = current_inferior ();
8696
8697 inf_status->thread_control = tp->control;
8698 inf_status->inferior_control = inf->control;
8699
8700 tp->control.step_resume_breakpoint = NULL;
8701 tp->control.exception_resume_breakpoint = NULL;
8702
8703 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8704 chain. If caller's caller is walking the chain, they'll be happier if we
8705 hand them back the original chain when restore_infcall_control_state is
8706 called. */
8707 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8708
8709 /* Other fields: */
8710 inf_status->stop_stack_dummy = stop_stack_dummy;
8711 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8712
8713 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8714
8715 return inf_status;
8716 }
8717
8718 static void
8719 restore_selected_frame (const frame_id &fid)
8720 {
8721 frame_info *frame = frame_find_by_id (fid);
8722
8723 /* If inf_status->selected_frame_id is NULL, there was no previously
8724 selected frame. */
8725 if (frame == NULL)
8726 {
8727 warning (_("Unable to restore previously selected frame."));
8728 return;
8729 }
8730
8731 select_frame (frame);
8732 }
8733
8734 /* Restore inferior session state to INF_STATUS. */
8735
8736 void
8737 restore_infcall_control_state (struct infcall_control_state *inf_status)
8738 {
8739 struct thread_info *tp = inferior_thread ();
8740 struct inferior *inf = current_inferior ();
8741
8742 if (tp->control.step_resume_breakpoint)
8743 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8744
8745 if (tp->control.exception_resume_breakpoint)
8746 tp->control.exception_resume_breakpoint->disposition
8747 = disp_del_at_next_stop;
8748
8749 /* Handle the bpstat_copy of the chain. */
8750 bpstat_clear (&tp->control.stop_bpstat);
8751
8752 tp->control = inf_status->thread_control;
8753 inf->control = inf_status->inferior_control;
8754
8755 /* Other fields: */
8756 stop_stack_dummy = inf_status->stop_stack_dummy;
8757 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8758
8759 if (target_has_stack)
8760 {
8761 /* The point of the try/catch is that if the stack is clobbered,
8762 walking the stack might encounter a garbage pointer and
8763 error() trying to dereference it. */
8764 try
8765 {
8766 restore_selected_frame (inf_status->selected_frame_id);
8767 }
8768 catch (const gdb_exception_error &ex)
8769 {
8770 exception_fprintf (gdb_stderr, ex,
8771 "Unable to restore previously selected frame:\n");
8772 /* Error in restoring the selected frame. Select the
8773 innermost frame. */
8774 select_frame (get_current_frame ());
8775 }
8776 }
8777
8778 delete inf_status;
8779 }
8780
8781 void
8782 discard_infcall_control_state (struct infcall_control_state *inf_status)
8783 {
8784 if (inf_status->thread_control.step_resume_breakpoint)
8785 inf_status->thread_control.step_resume_breakpoint->disposition
8786 = disp_del_at_next_stop;
8787
8788 if (inf_status->thread_control.exception_resume_breakpoint)
8789 inf_status->thread_control.exception_resume_breakpoint->disposition
8790 = disp_del_at_next_stop;
8791
8792 /* See save_infcall_control_state for info on stop_bpstat. */
8793 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8794
8795 delete inf_status;
8796 }
8797 \f
8798 /* See infrun.h. */
8799
8800 void
8801 clear_exit_convenience_vars (void)
8802 {
8803 clear_internalvar (lookup_internalvar ("_exitsignal"));
8804 clear_internalvar (lookup_internalvar ("_exitcode"));
8805 }
8806 \f
8807
8808 /* User interface for reverse debugging:
8809 Set exec-direction / show exec-direction commands
8810 (returns error unless target implements to_set_exec_direction method). */
8811
8812 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8813 static const char exec_forward[] = "forward";
8814 static const char exec_reverse[] = "reverse";
8815 static const char *exec_direction = exec_forward;
8816 static const char *const exec_direction_names[] = {
8817 exec_forward,
8818 exec_reverse,
8819 NULL
8820 };
8821
8822 static void
8823 set_exec_direction_func (const char *args, int from_tty,
8824 struct cmd_list_element *cmd)
8825 {
8826 if (target_can_execute_reverse)
8827 {
8828 if (!strcmp (exec_direction, exec_forward))
8829 execution_direction = EXEC_FORWARD;
8830 else if (!strcmp (exec_direction, exec_reverse))
8831 execution_direction = EXEC_REVERSE;
8832 }
8833 else
8834 {
8835 exec_direction = exec_forward;
8836 error (_("Target does not support this operation."));
8837 }
8838 }
8839
8840 static void
8841 show_exec_direction_func (struct ui_file *out, int from_tty,
8842 struct cmd_list_element *cmd, const char *value)
8843 {
8844 switch (execution_direction) {
8845 case EXEC_FORWARD:
8846 fprintf_filtered (out, _("Forward.\n"));
8847 break;
8848 case EXEC_REVERSE:
8849 fprintf_filtered (out, _("Reverse.\n"));
8850 break;
8851 default:
8852 internal_error (__FILE__, __LINE__,
8853 _("bogus execution_direction value: %d"),
8854 (int) execution_direction);
8855 }
8856 }
8857
8858 static void
8859 show_schedule_multiple (struct ui_file *file, int from_tty,
8860 struct cmd_list_element *c, const char *value)
8861 {
8862 fprintf_filtered (file, _("Resuming the execution of threads "
8863 "of all processes is %s.\n"), value);
8864 }
8865
8866 /* Implementation of `siginfo' variable. */
8867
8868 static const struct internalvar_funcs siginfo_funcs =
8869 {
8870 siginfo_make_value,
8871 NULL,
8872 NULL
8873 };
8874
8875 /* Callback for infrun's target events source. This is marked when a
8876 thread has a pending status to process. */
8877
8878 static void
8879 infrun_async_inferior_event_handler (gdb_client_data data)
8880 {
8881 inferior_event_handler (INF_REG_EVENT, NULL);
8882 }
8883
8884 void
8885 _initialize_infrun (void)
8886 {
8887 struct cmd_list_element *c;
8888
8889 /* Register extra event sources in the event loop. */
8890 infrun_async_inferior_event_token
8891 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8892
8893 add_info ("signals", info_signals_command, _("\
8894 What debugger does when program gets various signals.\n\
8895 Specify a signal as argument to print info on that signal only."));
8896 add_info_alias ("handle", "signals", 0);
8897
8898 c = add_com ("handle", class_run, handle_command, _("\
8899 Specify how to handle signals.\n\
8900 Usage: handle SIGNAL [ACTIONS]\n\
8901 Args are signals and actions to apply to those signals.\n\
8902 If no actions are specified, the current settings for the specified signals\n\
8903 will be displayed instead.\n\
8904 \n\
8905 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8906 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8907 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8908 The special arg \"all\" is recognized to mean all signals except those\n\
8909 used by the debugger, typically SIGTRAP and SIGINT.\n\
8910 \n\
8911 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8912 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8913 Stop means reenter debugger if this signal happens (implies print).\n\
8914 Print means print a message if this signal happens.\n\
8915 Pass means let program see this signal; otherwise program doesn't know.\n\
8916 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8917 Pass and Stop may be combined.\n\
8918 \n\
8919 Multiple signals may be specified. Signal numbers and signal names\n\
8920 may be interspersed with actions, with the actions being performed for\n\
8921 all signals cumulatively specified."));
8922 set_cmd_completer (c, handle_completer);
8923
8924 if (!dbx_commands)
8925 stop_command = add_cmd ("stop", class_obscure,
8926 not_just_help_class_command, _("\
8927 There is no `stop' command, but you can set a hook on `stop'.\n\
8928 This allows you to set a list of commands to be run each time execution\n\
8929 of the program stops."), &cmdlist);
8930
8931 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8932 Set inferior debugging."), _("\
8933 Show inferior debugging."), _("\
8934 When non-zero, inferior specific debugging is enabled."),
8935 NULL,
8936 show_debug_infrun,
8937 &setdebuglist, &showdebuglist);
8938
8939 add_setshow_boolean_cmd ("displaced", class_maintenance,
8940 &debug_displaced, _("\
8941 Set displaced stepping debugging."), _("\
8942 Show displaced stepping debugging."), _("\
8943 When non-zero, displaced stepping specific debugging is enabled."),
8944 NULL,
8945 show_debug_displaced,
8946 &setdebuglist, &showdebuglist);
8947
8948 add_setshow_boolean_cmd ("non-stop", no_class,
8949 &non_stop_1, _("\
8950 Set whether gdb controls the inferior in non-stop mode."), _("\
8951 Show whether gdb controls the inferior in non-stop mode."), _("\
8952 When debugging a multi-threaded program and this setting is\n\
8953 off (the default, also called all-stop mode), when one thread stops\n\
8954 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8955 all other threads in the program while you interact with the thread of\n\
8956 interest. When you continue or step a thread, you can allow the other\n\
8957 threads to run, or have them remain stopped, but while you inspect any\n\
8958 thread's state, all threads stop.\n\
8959 \n\
8960 In non-stop mode, when one thread stops, other threads can continue\n\
8961 to run freely. You'll be able to step each thread independently,\n\
8962 leave it stopped or free to run as needed."),
8963 set_non_stop,
8964 show_non_stop,
8965 &setlist,
8966 &showlist);
8967
8968 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
8969 {
8970 signal_stop[i] = 1;
8971 signal_print[i] = 1;
8972 signal_program[i] = 1;
8973 signal_catch[i] = 0;
8974 }
8975
8976 /* Signals caused by debugger's own actions should not be given to
8977 the program afterwards.
8978
8979 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8980 explicitly specifies that it should be delivered to the target
8981 program. Typically, that would occur when a user is debugging a
8982 target monitor on a simulator: the target monitor sets a
8983 breakpoint; the simulator encounters this breakpoint and halts
8984 the simulation handing control to GDB; GDB, noting that the stop
8985 address doesn't map to any known breakpoint, returns control back
8986 to the simulator; the simulator then delivers the hardware
8987 equivalent of a GDB_SIGNAL_TRAP to the program being
8988 debugged. */
8989 signal_program[GDB_SIGNAL_TRAP] = 0;
8990 signal_program[GDB_SIGNAL_INT] = 0;
8991
8992 /* Signals that are not errors should not normally enter the debugger. */
8993 signal_stop[GDB_SIGNAL_ALRM] = 0;
8994 signal_print[GDB_SIGNAL_ALRM] = 0;
8995 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8996 signal_print[GDB_SIGNAL_VTALRM] = 0;
8997 signal_stop[GDB_SIGNAL_PROF] = 0;
8998 signal_print[GDB_SIGNAL_PROF] = 0;
8999 signal_stop[GDB_SIGNAL_CHLD] = 0;
9000 signal_print[GDB_SIGNAL_CHLD] = 0;
9001 signal_stop[GDB_SIGNAL_IO] = 0;
9002 signal_print[GDB_SIGNAL_IO] = 0;
9003 signal_stop[GDB_SIGNAL_POLL] = 0;
9004 signal_print[GDB_SIGNAL_POLL] = 0;
9005 signal_stop[GDB_SIGNAL_URG] = 0;
9006 signal_print[GDB_SIGNAL_URG] = 0;
9007 signal_stop[GDB_SIGNAL_WINCH] = 0;
9008 signal_print[GDB_SIGNAL_WINCH] = 0;
9009 signal_stop[GDB_SIGNAL_PRIO] = 0;
9010 signal_print[GDB_SIGNAL_PRIO] = 0;
9011
9012 /* These signals are used internally by user-level thread
9013 implementations. (See signal(5) on Solaris.) Like the above
9014 signals, a healthy program receives and handles them as part of
9015 its normal operation. */
9016 signal_stop[GDB_SIGNAL_LWP] = 0;
9017 signal_print[GDB_SIGNAL_LWP] = 0;
9018 signal_stop[GDB_SIGNAL_WAITING] = 0;
9019 signal_print[GDB_SIGNAL_WAITING] = 0;
9020 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9021 signal_print[GDB_SIGNAL_CANCEL] = 0;
9022 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9023 signal_print[GDB_SIGNAL_LIBRT] = 0;
9024
9025 /* Update cached state. */
9026 signal_cache_update (-1);
9027
9028 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9029 &stop_on_solib_events, _("\
9030 Set stopping for shared library events."), _("\
9031 Show stopping for shared library events."), _("\
9032 If nonzero, gdb will give control to the user when the dynamic linker\n\
9033 notifies gdb of shared library events. The most common event of interest\n\
9034 to the user would be loading/unloading of a new library."),
9035 set_stop_on_solib_events,
9036 show_stop_on_solib_events,
9037 &setlist, &showlist);
9038
9039 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9040 follow_fork_mode_kind_names,
9041 &follow_fork_mode_string, _("\
9042 Set debugger response to a program call of fork or vfork."), _("\
9043 Show debugger response to a program call of fork or vfork."), _("\
9044 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9045 parent - the original process is debugged after a fork\n\
9046 child - the new process is debugged after a fork\n\
9047 The unfollowed process will continue to run.\n\
9048 By default, the debugger will follow the parent process."),
9049 NULL,
9050 show_follow_fork_mode_string,
9051 &setlist, &showlist);
9052
9053 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9054 follow_exec_mode_names,
9055 &follow_exec_mode_string, _("\
9056 Set debugger response to a program call of exec."), _("\
9057 Show debugger response to a program call of exec."), _("\
9058 An exec call replaces the program image of a process.\n\
9059 \n\
9060 follow-exec-mode can be:\n\
9061 \n\
9062 new - the debugger creates a new inferior and rebinds the process\n\
9063 to this new inferior. The program the process was running before\n\
9064 the exec call can be restarted afterwards by restarting the original\n\
9065 inferior.\n\
9066 \n\
9067 same - the debugger keeps the process bound to the same inferior.\n\
9068 The new executable image replaces the previous executable loaded in\n\
9069 the inferior. Restarting the inferior after the exec call restarts\n\
9070 the executable the process was running after the exec call.\n\
9071 \n\
9072 By default, the debugger will use the same inferior."),
9073 NULL,
9074 show_follow_exec_mode_string,
9075 &setlist, &showlist);
9076
9077 add_setshow_enum_cmd ("scheduler-locking", class_run,
9078 scheduler_enums, &scheduler_mode, _("\
9079 Set mode for locking scheduler during execution."), _("\
9080 Show mode for locking scheduler during execution."), _("\
9081 off == no locking (threads may preempt at any time)\n\
9082 on == full locking (no thread except the current thread may run)\n\
9083 This applies to both normal execution and replay mode.\n\
9084 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9085 In this mode, other threads may run during other commands.\n\
9086 This applies to both normal execution and replay mode.\n\
9087 replay == scheduler locked in replay mode and unlocked during normal execution."),
9088 set_schedlock_func, /* traps on target vector */
9089 show_scheduler_mode,
9090 &setlist, &showlist);
9091
9092 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9093 Set mode for resuming threads of all processes."), _("\
9094 Show mode for resuming threads of all processes."), _("\
9095 When on, execution commands (such as 'continue' or 'next') resume all\n\
9096 threads of all processes. When off (which is the default), execution\n\
9097 commands only resume the threads of the current process. The set of\n\
9098 threads that are resumed is further refined by the scheduler-locking\n\
9099 mode (see help set scheduler-locking)."),
9100 NULL,
9101 show_schedule_multiple,
9102 &setlist, &showlist);
9103
9104 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9105 Set mode of the step operation."), _("\
9106 Show mode of the step operation."), _("\
9107 When set, doing a step over a function without debug line information\n\
9108 will stop at the first instruction of that function. Otherwise, the\n\
9109 function is skipped and the step command stops at a different source line."),
9110 NULL,
9111 show_step_stop_if_no_debug,
9112 &setlist, &showlist);
9113
9114 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9115 &can_use_displaced_stepping, _("\
9116 Set debugger's willingness to use displaced stepping."), _("\
9117 Show debugger's willingness to use displaced stepping."), _("\
9118 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9119 supported by the target architecture. If off, gdb will not use displaced\n\
9120 stepping to step over breakpoints, even if such is supported by the target\n\
9121 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9122 if the target architecture supports it and non-stop mode is active, but will not\n\
9123 use it in all-stop mode (see help set non-stop)."),
9124 NULL,
9125 show_can_use_displaced_stepping,
9126 &setlist, &showlist);
9127
9128 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9129 &exec_direction, _("Set direction of execution.\n\
9130 Options are 'forward' or 'reverse'."),
9131 _("Show direction of execution (forward/reverse)."),
9132 _("Tells gdb whether to execute forward or backward."),
9133 set_exec_direction_func, show_exec_direction_func,
9134 &setlist, &showlist);
9135
9136 /* Set/show detach-on-fork: user-settable mode. */
9137
9138 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9139 Set whether gdb will detach the child of a fork."), _("\
9140 Show whether gdb will detach the child of a fork."), _("\
9141 Tells gdb whether to detach the child of a fork."),
9142 NULL, NULL, &setlist, &showlist);
9143
9144 /* Set/show disable address space randomization mode. */
9145
9146 add_setshow_boolean_cmd ("disable-randomization", class_support,
9147 &disable_randomization, _("\
9148 Set disabling of debuggee's virtual address space randomization."), _("\
9149 Show disabling of debuggee's virtual address space randomization."), _("\
9150 When this mode is on (which is the default), randomization of the virtual\n\
9151 address space is disabled. Standalone programs run with the randomization\n\
9152 enabled by default on some platforms."),
9153 &set_disable_randomization,
9154 &show_disable_randomization,
9155 &setlist, &showlist);
9156
9157 /* ptid initializations */
9158 inferior_ptid = null_ptid;
9159 target_last_wait_ptid = minus_one_ptid;
9160
9161 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9162 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9163 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9164 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9165
9166 /* Explicitly create without lookup, since that tries to create a
9167 value with a void typed value, and when we get here, gdbarch
9168 isn't initialized yet. At this point, we're quite sure there
9169 isn't another convenience variable of the same name. */
9170 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9171
9172 add_setshow_boolean_cmd ("observer", no_class,
9173 &observer_mode_1, _("\
9174 Set whether gdb controls the inferior in observer mode."), _("\
9175 Show whether gdb controls the inferior in observer mode."), _("\
9176 In observer mode, GDB can get data from the inferior, but not\n\
9177 affect its execution. Registers and memory may not be changed,\n\
9178 breakpoints may not be set, and the program cannot be interrupted\n\
9179 or signalled."),
9180 set_observer_mode,
9181 show_observer_mode,
9182 &setlist,
9183 &showlist);
9184 }
This page took 0.206076 seconds and 5 git commands to generate.