comment fixes
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63 #include "target-dcache.h"
64
65 /* Prototypes for local functions */
66
67 static void signals_info (char *, int);
68
69 static void handle_command (char *, int);
70
71 static void sig_print_info (enum gdb_signal);
72
73 static void sig_print_header (void);
74
75 static void resume_cleanups (void *);
76
77 static int hook_stop_stub (void *);
78
79 static int restore_selected_frame (void *);
80
81 static int follow_fork (void);
82
83 static void set_schedlock_func (char *args, int from_tty,
84 struct cmd_list_element *c);
85
86 static int currently_stepping (struct thread_info *tp);
87
88 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
89 void *data);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 static int prepare_to_proceed (int);
94
95 static void print_exited_reason (int exitstatus);
96
97 static void print_signal_exited_reason (enum gdb_signal siggnal);
98
99 static void print_no_history_reason (void);
100
101 static void print_signal_received_reason (enum gdb_signal siggnal);
102
103 static void print_end_stepping_range_reason (void);
104
105 void _initialize_infrun (void);
106
107 void nullify_last_target_wait_ptid (void);
108
109 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
110
111 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
112
113 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
114
115 /* When set, stop the 'step' command if we enter a function which has
116 no line number information. The normal behavior is that we step
117 over such function. */
118 int step_stop_if_no_debug = 0;
119 static void
120 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
124 }
125
126 /* In asynchronous mode, but simulating synchronous execution. */
127
128 int sync_execution = 0;
129
130 /* wait_for_inferior and normal_stop use this to notify the user
131 when the inferior stopped in a different thread than it had been
132 running in. */
133
134 static ptid_t previous_inferior_ptid;
135
136 /* If set (default for legacy reasons), when following a fork, GDB
137 will detach from one of the fork branches, child or parent.
138 Exactly which branch is detached depends on 'set follow-fork-mode'
139 setting. */
140
141 static int detach_fork = 1;
142
143 int debug_displaced = 0;
144 static void
145 show_debug_displaced (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
149 }
150
151 unsigned int debug_infrun = 0;
152 static void
153 show_debug_infrun (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
157 }
158
159
160 /* Support for disabling address space randomization. */
161
162 int disable_randomization = 1;
163
164 static void
165 show_disable_randomization (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 if (target_supports_disable_randomization ())
169 fprintf_filtered (file,
170 _("Disabling randomization of debuggee's "
171 "virtual address space is %s.\n"),
172 value);
173 else
174 fputs_filtered (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform.\n"), file);
177 }
178
179 static void
180 set_disable_randomization (char *args, int from_tty,
181 struct cmd_list_element *c)
182 {
183 if (!target_supports_disable_randomization ())
184 error (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform."));
187 }
188
189 /* User interface for non-stop mode. */
190
191 int non_stop = 0;
192 static int non_stop_1 = 0;
193
194 static void
195 set_non_stop (char *args, int from_tty,
196 struct cmd_list_element *c)
197 {
198 if (target_has_execution)
199 {
200 non_stop_1 = non_stop;
201 error (_("Cannot change this setting while the inferior is running."));
202 }
203
204 non_stop = non_stop_1;
205 }
206
207 static void
208 show_non_stop (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file,
212 _("Controlling the inferior in non-stop mode is %s.\n"),
213 value);
214 }
215
216 /* "Observer mode" is somewhat like a more extreme version of
217 non-stop, in which all GDB operations that might affect the
218 target's execution have been disabled. */
219
220 int observer_mode = 0;
221 static int observer_mode_1 = 0;
222
223 static void
224 set_observer_mode (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 observer_mode_1 = observer_mode;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 observer_mode = observer_mode_1;
234
235 may_write_registers = !observer_mode;
236 may_write_memory = !observer_mode;
237 may_insert_breakpoints = !observer_mode;
238 may_insert_tracepoints = !observer_mode;
239 /* We can insert fast tracepoints in or out of observer mode,
240 but enable them if we're going into this mode. */
241 if (observer_mode)
242 may_insert_fast_tracepoints = 1;
243 may_stop = !observer_mode;
244 update_target_permissions ();
245
246 /* Going *into* observer mode we must force non-stop, then
247 going out we leave it that way. */
248 if (observer_mode)
249 {
250 target_async_permitted = 1;
251 pagination_enabled = 0;
252 non_stop = non_stop_1 = 1;
253 }
254
255 if (from_tty)
256 printf_filtered (_("Observer mode is now %s.\n"),
257 (observer_mode ? "on" : "off"));
258 }
259
260 static void
261 show_observer_mode (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
265 }
266
267 /* This updates the value of observer mode based on changes in
268 permissions. Note that we are deliberately ignoring the values of
269 may-write-registers and may-write-memory, since the user may have
270 reason to enable these during a session, for instance to turn on a
271 debugging-related global. */
272
273 void
274 update_observer_mode (void)
275 {
276 int newval;
277
278 newval = (!may_insert_breakpoints
279 && !may_insert_tracepoints
280 && may_insert_fast_tracepoints
281 && !may_stop
282 && non_stop);
283
284 /* Let the user know if things change. */
285 if (newval != observer_mode)
286 printf_filtered (_("Observer mode is now %s.\n"),
287 (newval ? "on" : "off"));
288
289 observer_mode = observer_mode_1 = newval;
290 }
291
292 /* Tables of how to react to signals; the user sets them. */
293
294 static unsigned char *signal_stop;
295 static unsigned char *signal_print;
296 static unsigned char *signal_program;
297
298 /* Table of signals that are registered with "catch signal". A
299 non-zero entry indicates that the signal is caught by some "catch
300 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
301 signals. */
302 static unsigned char *signal_catch;
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char *signal_pass;
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Function inferior was in as of last step command. */
343
344 static struct symbol *step_start_function;
345
346 /* Nonzero if we want to give control to the user when we're notified
347 of shared library events by the dynamic linker. */
348 int stop_on_solib_events;
349
350 /* Enable or disable optional shared library event breakpoints
351 as appropriate when the above flag is changed. */
352
353 static void
354 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
355 {
356 update_solib_breakpoints ();
357 }
358
359 static void
360 show_stop_on_solib_events (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362 {
363 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
364 value);
365 }
366
367 /* Nonzero means expecting a trace trap
368 and should stop the inferior and return silently when it happens. */
369
370 int stop_after_trap;
371
372 /* Save register contents here when executing a "finish" command or are
373 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
374 Thus this contains the return value from the called function (assuming
375 values are returned in a register). */
376
377 struct regcache *stop_registers;
378
379 /* Nonzero after stop if current stack frame should be printed. */
380
381 static int stop_print_frame;
382
383 /* This is a cached copy of the pid/waitstatus of the last event
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
386 static ptid_t target_last_wait_ptid;
387 static struct target_waitstatus target_last_waitstatus;
388
389 static void context_switch (ptid_t ptid);
390
391 void init_thread_stepping_state (struct thread_info *tss);
392
393 static void init_infwait_state (void);
394
395 static const char follow_fork_mode_child[] = "child";
396 static const char follow_fork_mode_parent[] = "parent";
397
398 static const char *const follow_fork_mode_kind_names[] = {
399 follow_fork_mode_child,
400 follow_fork_mode_parent,
401 NULL
402 };
403
404 static const char *follow_fork_mode_string = follow_fork_mode_parent;
405 static void
406 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c, const char *value)
408 {
409 fprintf_filtered (file,
410 _("Debugger response to a program "
411 "call of fork or vfork is \"%s\".\n"),
412 value);
413 }
414 \f
415
416 /* Tell the target to follow the fork we're stopped at. Returns true
417 if the inferior should be resumed; false, if the target for some
418 reason decided it's best not to resume. */
419
420 static int
421 follow_fork (void)
422 {
423 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
424 int should_resume = 1;
425 struct thread_info *tp;
426
427 /* Copy user stepping state to the new inferior thread. FIXME: the
428 followed fork child thread should have a copy of most of the
429 parent thread structure's run control related fields, not just these.
430 Initialized to avoid "may be used uninitialized" warnings from gcc. */
431 struct breakpoint *step_resume_breakpoint = NULL;
432 struct breakpoint *exception_resume_breakpoint = NULL;
433 CORE_ADDR step_range_start = 0;
434 CORE_ADDR step_range_end = 0;
435 struct frame_id step_frame_id = { 0 };
436
437 if (!non_stop)
438 {
439 ptid_t wait_ptid;
440 struct target_waitstatus wait_status;
441
442 /* Get the last target status returned by target_wait(). */
443 get_last_target_status (&wait_ptid, &wait_status);
444
445 /* If not stopped at a fork event, then there's nothing else to
446 do. */
447 if (wait_status.kind != TARGET_WAITKIND_FORKED
448 && wait_status.kind != TARGET_WAITKIND_VFORKED)
449 return 1;
450
451 /* Check if we switched over from WAIT_PTID, since the event was
452 reported. */
453 if (!ptid_equal (wait_ptid, minus_one_ptid)
454 && !ptid_equal (inferior_ptid, wait_ptid))
455 {
456 /* We did. Switch back to WAIT_PTID thread, to tell the
457 target to follow it (in either direction). We'll
458 afterwards refuse to resume, and inform the user what
459 happened. */
460 switch_to_thread (wait_ptid);
461 should_resume = 0;
462 }
463 }
464
465 tp = inferior_thread ();
466
467 /* If there were any forks/vforks that were caught and are now to be
468 followed, then do so now. */
469 switch (tp->pending_follow.kind)
470 {
471 case TARGET_WAITKIND_FORKED:
472 case TARGET_WAITKIND_VFORKED:
473 {
474 ptid_t parent, child;
475
476 /* If the user did a next/step, etc, over a fork call,
477 preserve the stepping state in the fork child. */
478 if (follow_child && should_resume)
479 {
480 step_resume_breakpoint = clone_momentary_breakpoint
481 (tp->control.step_resume_breakpoint);
482 step_range_start = tp->control.step_range_start;
483 step_range_end = tp->control.step_range_end;
484 step_frame_id = tp->control.step_frame_id;
485 exception_resume_breakpoint
486 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
487
488 /* For now, delete the parent's sr breakpoint, otherwise,
489 parent/child sr breakpoints are considered duplicates,
490 and the child version will not be installed. Remove
491 this when the breakpoints module becomes aware of
492 inferiors and address spaces. */
493 delete_step_resume_breakpoint (tp);
494 tp->control.step_range_start = 0;
495 tp->control.step_range_end = 0;
496 tp->control.step_frame_id = null_frame_id;
497 delete_exception_resume_breakpoint (tp);
498 }
499
500 parent = inferior_ptid;
501 child = tp->pending_follow.value.related_pid;
502
503 /* Tell the target to do whatever is necessary to follow
504 either parent or child. */
505 if (target_follow_fork (follow_child, detach_fork))
506 {
507 /* Target refused to follow, or there's some other reason
508 we shouldn't resume. */
509 should_resume = 0;
510 }
511 else
512 {
513 /* This pending follow fork event is now handled, one way
514 or another. The previous selected thread may be gone
515 from the lists by now, but if it is still around, need
516 to clear the pending follow request. */
517 tp = find_thread_ptid (parent);
518 if (tp)
519 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
520
521 /* This makes sure we don't try to apply the "Switched
522 over from WAIT_PID" logic above. */
523 nullify_last_target_wait_ptid ();
524
525 /* If we followed the child, switch to it... */
526 if (follow_child)
527 {
528 switch_to_thread (child);
529
530 /* ... and preserve the stepping state, in case the
531 user was stepping over the fork call. */
532 if (should_resume)
533 {
534 tp = inferior_thread ();
535 tp->control.step_resume_breakpoint
536 = step_resume_breakpoint;
537 tp->control.step_range_start = step_range_start;
538 tp->control.step_range_end = step_range_end;
539 tp->control.step_frame_id = step_frame_id;
540 tp->control.exception_resume_breakpoint
541 = exception_resume_breakpoint;
542 }
543 else
544 {
545 /* If we get here, it was because we're trying to
546 resume from a fork catchpoint, but, the user
547 has switched threads away from the thread that
548 forked. In that case, the resume command
549 issued is most likely not applicable to the
550 child, so just warn, and refuse to resume. */
551 warning (_("Not resuming: switched threads "
552 "before following fork child.\n"));
553 }
554
555 /* Reset breakpoints in the child as appropriate. */
556 follow_inferior_reset_breakpoints ();
557 }
558 else
559 switch_to_thread (parent);
560 }
561 }
562 break;
563 case TARGET_WAITKIND_SPURIOUS:
564 /* Nothing to follow. */
565 break;
566 default:
567 internal_error (__FILE__, __LINE__,
568 "Unexpected pending_follow.kind %d\n",
569 tp->pending_follow.kind);
570 break;
571 }
572
573 return should_resume;
574 }
575
576 void
577 follow_inferior_reset_breakpoints (void)
578 {
579 struct thread_info *tp = inferior_thread ();
580
581 /* Was there a step_resume breakpoint? (There was if the user
582 did a "next" at the fork() call.) If so, explicitly reset its
583 thread number.
584
585 step_resumes are a form of bp that are made to be per-thread.
586 Since we created the step_resume bp when the parent process
587 was being debugged, and now are switching to the child process,
588 from the breakpoint package's viewpoint, that's a switch of
589 "threads". We must update the bp's notion of which thread
590 it is for, or it'll be ignored when it triggers. */
591
592 if (tp->control.step_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
594
595 if (tp->control.exception_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
597
598 /* Reinsert all breakpoints in the child. The user may have set
599 breakpoints after catching the fork, in which case those
600 were never set in the child, but only in the parent. This makes
601 sure the inserted breakpoints match the breakpoint list. */
602
603 breakpoint_re_set ();
604 insert_breakpoints ();
605 }
606
607 /* The child has exited or execed: resume threads of the parent the
608 user wanted to be executing. */
609
610 static int
611 proceed_after_vfork_done (struct thread_info *thread,
612 void *arg)
613 {
614 int pid = * (int *) arg;
615
616 if (ptid_get_pid (thread->ptid) == pid
617 && is_running (thread->ptid)
618 && !is_executing (thread->ptid)
619 && !thread->stop_requested
620 && thread->suspend.stop_signal == GDB_SIGNAL_0)
621 {
622 if (debug_infrun)
623 fprintf_unfiltered (gdb_stdlog,
624 "infrun: resuming vfork parent thread %s\n",
625 target_pid_to_str (thread->ptid));
626
627 switch_to_thread (thread->ptid);
628 clear_proceed_status ();
629 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
630 }
631
632 return 0;
633 }
634
635 /* Called whenever we notice an exec or exit event, to handle
636 detaching or resuming a vfork parent. */
637
638 static void
639 handle_vfork_child_exec_or_exit (int exec)
640 {
641 struct inferior *inf = current_inferior ();
642
643 if (inf->vfork_parent)
644 {
645 int resume_parent = -1;
646
647 /* This exec or exit marks the end of the shared memory region
648 between the parent and the child. If the user wanted to
649 detach from the parent, now is the time. */
650
651 if (inf->vfork_parent->pending_detach)
652 {
653 struct thread_info *tp;
654 struct cleanup *old_chain;
655 struct program_space *pspace;
656 struct address_space *aspace;
657
658 /* follow-fork child, detach-on-fork on. */
659
660 inf->vfork_parent->pending_detach = 0;
661
662 if (!exec)
663 {
664 /* If we're handling a child exit, then inferior_ptid
665 points at the inferior's pid, not to a thread. */
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668 save_current_inferior ();
669 }
670 else
671 old_chain = save_current_space_and_thread ();
672
673 /* We're letting loose of the parent. */
674 tp = any_live_thread_of_process (inf->vfork_parent->pid);
675 switch_to_thread (tp->ptid);
676
677 /* We're about to detach from the parent, which implicitly
678 removes breakpoints from its address space. There's a
679 catch here: we want to reuse the spaces for the child,
680 but, parent/child are still sharing the pspace at this
681 point, although the exec in reality makes the kernel give
682 the child a fresh set of new pages. The problem here is
683 that the breakpoints module being unaware of this, would
684 likely chose the child process to write to the parent
685 address space. Swapping the child temporarily away from
686 the spaces has the desired effect. Yes, this is "sort
687 of" a hack. */
688
689 pspace = inf->pspace;
690 aspace = inf->aspace;
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693
694 if (debug_infrun || info_verbose)
695 {
696 target_terminal_ours ();
697
698 if (exec)
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exec.\n",
702 inf->vfork_parent->pid);
703 else
704 fprintf_filtered (gdb_stdlog,
705 "Detaching vfork parent process "
706 "%d after child exit.\n",
707 inf->vfork_parent->pid);
708 }
709
710 target_detach (NULL, 0);
711
712 /* Put it back. */
713 inf->pspace = pspace;
714 inf->aspace = aspace;
715
716 do_cleanups (old_chain);
717 }
718 else if (exec)
719 {
720 /* We're staying attached to the parent, so, really give the
721 child a new address space. */
722 inf->pspace = add_program_space (maybe_new_address_space ());
723 inf->aspace = inf->pspace->aspace;
724 inf->removable = 1;
725 set_current_program_space (inf->pspace);
726
727 resume_parent = inf->vfork_parent->pid;
728
729 /* Break the bonds. */
730 inf->vfork_parent->vfork_child = NULL;
731 }
732 else
733 {
734 struct cleanup *old_chain;
735 struct program_space *pspace;
736
737 /* If this is a vfork child exiting, then the pspace and
738 aspaces were shared with the parent. Since we're
739 reporting the process exit, we'll be mourning all that is
740 found in the address space, and switching to null_ptid,
741 preparing to start a new inferior. But, since we don't
742 want to clobber the parent's address/program spaces, we
743 go ahead and create a new one for this exiting
744 inferior. */
745
746 /* Switch to null_ptid, so that clone_program_space doesn't want
747 to read the selected frame of a dead process. */
748 old_chain = save_inferior_ptid ();
749 inferior_ptid = null_ptid;
750
751 /* This inferior is dead, so avoid giving the breakpoints
752 module the option to write through to it (cloning a
753 program space resets breakpoints). */
754 inf->aspace = NULL;
755 inf->pspace = NULL;
756 pspace = add_program_space (maybe_new_address_space ());
757 set_current_program_space (pspace);
758 inf->removable = 1;
759 inf->symfile_flags = SYMFILE_NO_READ;
760 clone_program_space (pspace, inf->vfork_parent->pspace);
761 inf->pspace = pspace;
762 inf->aspace = pspace->aspace;
763
764 /* Put back inferior_ptid. We'll continue mourning this
765 inferior. */
766 do_cleanups (old_chain);
767
768 resume_parent = inf->vfork_parent->pid;
769 /* Break the bonds. */
770 inf->vfork_parent->vfork_child = NULL;
771 }
772
773 inf->vfork_parent = NULL;
774
775 gdb_assert (current_program_space == inf->pspace);
776
777 if (non_stop && resume_parent != -1)
778 {
779 /* If the user wanted the parent to be running, let it go
780 free now. */
781 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: resuming vfork parent process %d\n",
786 resume_parent);
787
788 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
789
790 do_cleanups (old_chain);
791 }
792 }
793 }
794
795 /* Enum strings for "set|show follow-exec-mode". */
796
797 static const char follow_exec_mode_new[] = "new";
798 static const char follow_exec_mode_same[] = "same";
799 static const char *const follow_exec_mode_names[] =
800 {
801 follow_exec_mode_new,
802 follow_exec_mode_same,
803 NULL,
804 };
805
806 static const char *follow_exec_mode_string = follow_exec_mode_same;
807 static void
808 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c, const char *value)
810 {
811 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
812 }
813
814 /* EXECD_PATHNAME is assumed to be non-NULL. */
815
816 static void
817 follow_exec (ptid_t pid, char *execd_pathname)
818 {
819 struct thread_info *th = inferior_thread ();
820 struct inferior *inf = current_inferior ();
821
822 /* This is an exec event that we actually wish to pay attention to.
823 Refresh our symbol table to the newly exec'd program, remove any
824 momentary bp's, etc.
825
826 If there are breakpoints, they aren't really inserted now,
827 since the exec() transformed our inferior into a fresh set
828 of instructions.
829
830 We want to preserve symbolic breakpoints on the list, since
831 we have hopes that they can be reset after the new a.out's
832 symbol table is read.
833
834 However, any "raw" breakpoints must be removed from the list
835 (e.g., the solib bp's), since their address is probably invalid
836 now.
837
838 And, we DON'T want to call delete_breakpoints() here, since
839 that may write the bp's "shadow contents" (the instruction
840 value that was overwritten witha TRAP instruction). Since
841 we now have a new a.out, those shadow contents aren't valid. */
842
843 mark_breakpoints_out ();
844
845 update_breakpoints_after_exec ();
846
847 /* If there was one, it's gone now. We cannot truly step-to-next
848 statement through an exec(). */
849 th->control.step_resume_breakpoint = NULL;
850 th->control.exception_resume_breakpoint = NULL;
851 th->control.step_range_start = 0;
852 th->control.step_range_end = 0;
853
854 /* The target reports the exec event to the main thread, even if
855 some other thread does the exec, and even if the main thread was
856 already stopped --- if debugging in non-stop mode, it's possible
857 the user had the main thread held stopped in the previous image
858 --- release it now. This is the same behavior as step-over-exec
859 with scheduler-locking on in all-stop mode. */
860 th->stop_requested = 0;
861
862 /* What is this a.out's name? */
863 printf_unfiltered (_("%s is executing new program: %s\n"),
864 target_pid_to_str (inferior_ptid),
865 execd_pathname);
866
867 /* We've followed the inferior through an exec. Therefore, the
868 inferior has essentially been killed & reborn. */
869
870 gdb_flush (gdb_stdout);
871
872 breakpoint_init_inferior (inf_execd);
873
874 if (gdb_sysroot && *gdb_sysroot)
875 {
876 char *name = alloca (strlen (gdb_sysroot)
877 + strlen (execd_pathname)
878 + 1);
879
880 strcpy (name, gdb_sysroot);
881 strcat (name, execd_pathname);
882 execd_pathname = name;
883 }
884
885 /* Reset the shared library package. This ensures that we get a
886 shlib event when the child reaches "_start", at which point the
887 dld will have had a chance to initialize the child. */
888 /* Also, loading a symbol file below may trigger symbol lookups, and
889 we don't want those to be satisfied by the libraries of the
890 previous incarnation of this process. */
891 no_shared_libraries (NULL, 0);
892
893 if (follow_exec_mode_string == follow_exec_mode_new)
894 {
895 struct program_space *pspace;
896
897 /* The user wants to keep the old inferior and program spaces
898 around. Create a new fresh one, and switch to it. */
899
900 inf = add_inferior (current_inferior ()->pid);
901 pspace = add_program_space (maybe_new_address_space ());
902 inf->pspace = pspace;
903 inf->aspace = pspace->aspace;
904
905 exit_inferior_num_silent (current_inferior ()->num);
906
907 set_current_inferior (inf);
908 set_current_program_space (pspace);
909 }
910 else
911 {
912 /* The old description may no longer be fit for the new image.
913 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
914 old description; we'll read a new one below. No need to do
915 this on "follow-exec-mode new", as the old inferior stays
916 around (its description is later cleared/refetched on
917 restart). */
918 target_clear_description ();
919 }
920
921 gdb_assert (current_program_space == inf->pspace);
922
923 /* That a.out is now the one to use. */
924 exec_file_attach (execd_pathname, 0);
925
926 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
927 (Position Independent Executable) main symbol file will get applied by
928 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
929 the breakpoints with the zero displacement. */
930
931 symbol_file_add (execd_pathname,
932 (inf->symfile_flags
933 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
934 NULL, 0);
935
936 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
937 set_initial_language ();
938
939 /* If the target can specify a description, read it. Must do this
940 after flipping to the new executable (because the target supplied
941 description must be compatible with the executable's
942 architecture, and the old executable may e.g., be 32-bit, while
943 the new one 64-bit), and before anything involving memory or
944 registers. */
945 target_find_description ();
946
947 solib_create_inferior_hook (0);
948
949 jit_inferior_created_hook ();
950
951 breakpoint_re_set ();
952
953 /* Reinsert all breakpoints. (Those which were symbolic have
954 been reset to the proper address in the new a.out, thanks
955 to symbol_file_command...). */
956 insert_breakpoints ();
957
958 /* The next resume of this inferior should bring it to the shlib
959 startup breakpoints. (If the user had also set bp's on
960 "main" from the old (parent) process, then they'll auto-
961 matically get reset there in the new process.). */
962 }
963
964 /* Non-zero if we just simulating a single-step. This is needed
965 because we cannot remove the breakpoints in the inferior process
966 until after the `wait' in `wait_for_inferior'. */
967 static int singlestep_breakpoints_inserted_p = 0;
968
969 /* The thread we inserted single-step breakpoints for. */
970 static ptid_t singlestep_ptid;
971
972 /* PC when we started this single-step. */
973 static CORE_ADDR singlestep_pc;
974
975 /* If another thread hit the singlestep breakpoint, we save the original
976 thread here so that we can resume single-stepping it later. */
977 static ptid_t saved_singlestep_ptid;
978 static int stepping_past_singlestep_breakpoint;
979
980 /* If not equal to null_ptid, this means that after stepping over breakpoint
981 is finished, we need to switch to deferred_step_ptid, and step it.
982
983 The use case is when one thread has hit a breakpoint, and then the user
984 has switched to another thread and issued 'step'. We need to step over
985 breakpoint in the thread which hit the breakpoint, but then continue
986 stepping the thread user has selected. */
987 static ptid_t deferred_step_ptid;
988 \f
989 /* Displaced stepping. */
990
991 /* In non-stop debugging mode, we must take special care to manage
992 breakpoints properly; in particular, the traditional strategy for
993 stepping a thread past a breakpoint it has hit is unsuitable.
994 'Displaced stepping' is a tactic for stepping one thread past a
995 breakpoint it has hit while ensuring that other threads running
996 concurrently will hit the breakpoint as they should.
997
998 The traditional way to step a thread T off a breakpoint in a
999 multi-threaded program in all-stop mode is as follows:
1000
1001 a0) Initially, all threads are stopped, and breakpoints are not
1002 inserted.
1003 a1) We single-step T, leaving breakpoints uninserted.
1004 a2) We insert breakpoints, and resume all threads.
1005
1006 In non-stop debugging, however, this strategy is unsuitable: we
1007 don't want to have to stop all threads in the system in order to
1008 continue or step T past a breakpoint. Instead, we use displaced
1009 stepping:
1010
1011 n0) Initially, T is stopped, other threads are running, and
1012 breakpoints are inserted.
1013 n1) We copy the instruction "under" the breakpoint to a separate
1014 location, outside the main code stream, making any adjustments
1015 to the instruction, register, and memory state as directed by
1016 T's architecture.
1017 n2) We single-step T over the instruction at its new location.
1018 n3) We adjust the resulting register and memory state as directed
1019 by T's architecture. This includes resetting T's PC to point
1020 back into the main instruction stream.
1021 n4) We resume T.
1022
1023 This approach depends on the following gdbarch methods:
1024
1025 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1026 indicate where to copy the instruction, and how much space must
1027 be reserved there. We use these in step n1.
1028
1029 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1030 address, and makes any necessary adjustments to the instruction,
1031 register contents, and memory. We use this in step n1.
1032
1033 - gdbarch_displaced_step_fixup adjusts registers and memory after
1034 we have successfuly single-stepped the instruction, to yield the
1035 same effect the instruction would have had if we had executed it
1036 at its original address. We use this in step n3.
1037
1038 - gdbarch_displaced_step_free_closure provides cleanup.
1039
1040 The gdbarch_displaced_step_copy_insn and
1041 gdbarch_displaced_step_fixup functions must be written so that
1042 copying an instruction with gdbarch_displaced_step_copy_insn,
1043 single-stepping across the copied instruction, and then applying
1044 gdbarch_displaced_insn_fixup should have the same effects on the
1045 thread's memory and registers as stepping the instruction in place
1046 would have. Exactly which responsibilities fall to the copy and
1047 which fall to the fixup is up to the author of those functions.
1048
1049 See the comments in gdbarch.sh for details.
1050
1051 Note that displaced stepping and software single-step cannot
1052 currently be used in combination, although with some care I think
1053 they could be made to. Software single-step works by placing
1054 breakpoints on all possible subsequent instructions; if the
1055 displaced instruction is a PC-relative jump, those breakpoints
1056 could fall in very strange places --- on pages that aren't
1057 executable, or at addresses that are not proper instruction
1058 boundaries. (We do generally let other threads run while we wait
1059 to hit the software single-step breakpoint, and they might
1060 encounter such a corrupted instruction.) One way to work around
1061 this would be to have gdbarch_displaced_step_copy_insn fully
1062 simulate the effect of PC-relative instructions (and return NULL)
1063 on architectures that use software single-stepping.
1064
1065 In non-stop mode, we can have independent and simultaneous step
1066 requests, so more than one thread may need to simultaneously step
1067 over a breakpoint. The current implementation assumes there is
1068 only one scratch space per process. In this case, we have to
1069 serialize access to the scratch space. If thread A wants to step
1070 over a breakpoint, but we are currently waiting for some other
1071 thread to complete a displaced step, we leave thread A stopped and
1072 place it in the displaced_step_request_queue. Whenever a displaced
1073 step finishes, we pick the next thread in the queue and start a new
1074 displaced step operation on it. See displaced_step_prepare and
1075 displaced_step_fixup for details. */
1076
1077 struct displaced_step_request
1078 {
1079 ptid_t ptid;
1080 struct displaced_step_request *next;
1081 };
1082
1083 /* Per-inferior displaced stepping state. */
1084 struct displaced_step_inferior_state
1085 {
1086 /* Pointer to next in linked list. */
1087 struct displaced_step_inferior_state *next;
1088
1089 /* The process this displaced step state refers to. */
1090 int pid;
1091
1092 /* A queue of pending displaced stepping requests. One entry per
1093 thread that needs to do a displaced step. */
1094 struct displaced_step_request *step_request_queue;
1095
1096 /* If this is not null_ptid, this is the thread carrying out a
1097 displaced single-step in process PID. This thread's state will
1098 require fixing up once it has completed its step. */
1099 ptid_t step_ptid;
1100
1101 /* The architecture the thread had when we stepped it. */
1102 struct gdbarch *step_gdbarch;
1103
1104 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1105 for post-step cleanup. */
1106 struct displaced_step_closure *step_closure;
1107
1108 /* The address of the original instruction, and the copy we
1109 made. */
1110 CORE_ADDR step_original, step_copy;
1111
1112 /* Saved contents of copy area. */
1113 gdb_byte *step_saved_copy;
1114 };
1115
1116 /* The list of states of processes involved in displaced stepping
1117 presently. */
1118 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1119
1120 /* Get the displaced stepping state of process PID. */
1121
1122 static struct displaced_step_inferior_state *
1123 get_displaced_stepping_state (int pid)
1124 {
1125 struct displaced_step_inferior_state *state;
1126
1127 for (state = displaced_step_inferior_states;
1128 state != NULL;
1129 state = state->next)
1130 if (state->pid == pid)
1131 return state;
1132
1133 return NULL;
1134 }
1135
1136 /* Add a new displaced stepping state for process PID to the displaced
1137 stepping state list, or return a pointer to an already existing
1138 entry, if it already exists. Never returns NULL. */
1139
1140 static struct displaced_step_inferior_state *
1141 add_displaced_stepping_state (int pid)
1142 {
1143 struct displaced_step_inferior_state *state;
1144
1145 for (state = displaced_step_inferior_states;
1146 state != NULL;
1147 state = state->next)
1148 if (state->pid == pid)
1149 return state;
1150
1151 state = xcalloc (1, sizeof (*state));
1152 state->pid = pid;
1153 state->next = displaced_step_inferior_states;
1154 displaced_step_inferior_states = state;
1155
1156 return state;
1157 }
1158
1159 /* If inferior is in displaced stepping, and ADDR equals to starting address
1160 of copy area, return corresponding displaced_step_closure. Otherwise,
1161 return NULL. */
1162
1163 struct displaced_step_closure*
1164 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1165 {
1166 struct displaced_step_inferior_state *displaced
1167 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1168
1169 /* If checking the mode of displaced instruction in copy area. */
1170 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1171 && (displaced->step_copy == addr))
1172 return displaced->step_closure;
1173
1174 return NULL;
1175 }
1176
1177 /* Remove the displaced stepping state of process PID. */
1178
1179 static void
1180 remove_displaced_stepping_state (int pid)
1181 {
1182 struct displaced_step_inferior_state *it, **prev_next_p;
1183
1184 gdb_assert (pid != 0);
1185
1186 it = displaced_step_inferior_states;
1187 prev_next_p = &displaced_step_inferior_states;
1188 while (it)
1189 {
1190 if (it->pid == pid)
1191 {
1192 *prev_next_p = it->next;
1193 xfree (it);
1194 return;
1195 }
1196
1197 prev_next_p = &it->next;
1198 it = *prev_next_p;
1199 }
1200 }
1201
1202 static void
1203 infrun_inferior_exit (struct inferior *inf)
1204 {
1205 remove_displaced_stepping_state (inf->pid);
1206 }
1207
1208 /* If ON, and the architecture supports it, GDB will use displaced
1209 stepping to step over breakpoints. If OFF, or if the architecture
1210 doesn't support it, GDB will instead use the traditional
1211 hold-and-step approach. If AUTO (which is the default), GDB will
1212 decide which technique to use to step over breakpoints depending on
1213 which of all-stop or non-stop mode is active --- displaced stepping
1214 in non-stop mode; hold-and-step in all-stop mode. */
1215
1216 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1217
1218 static void
1219 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1220 struct cmd_list_element *c,
1221 const char *value)
1222 {
1223 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1224 fprintf_filtered (file,
1225 _("Debugger's willingness to use displaced stepping "
1226 "to step over breakpoints is %s (currently %s).\n"),
1227 value, non_stop ? "on" : "off");
1228 else
1229 fprintf_filtered (file,
1230 _("Debugger's willingness to use displaced stepping "
1231 "to step over breakpoints is %s.\n"), value);
1232 }
1233
1234 /* Return non-zero if displaced stepping can/should be used to step
1235 over breakpoints. */
1236
1237 static int
1238 use_displaced_stepping (struct gdbarch *gdbarch)
1239 {
1240 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1241 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1242 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1243 && find_record_target () == NULL);
1244 }
1245
1246 /* Clean out any stray displaced stepping state. */
1247 static void
1248 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1249 {
1250 /* Indicate that there is no cleanup pending. */
1251 displaced->step_ptid = null_ptid;
1252
1253 if (displaced->step_closure)
1254 {
1255 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1256 displaced->step_closure);
1257 displaced->step_closure = NULL;
1258 }
1259 }
1260
1261 static void
1262 displaced_step_clear_cleanup (void *arg)
1263 {
1264 struct displaced_step_inferior_state *state = arg;
1265
1266 displaced_step_clear (state);
1267 }
1268
1269 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1270 void
1271 displaced_step_dump_bytes (struct ui_file *file,
1272 const gdb_byte *buf,
1273 size_t len)
1274 {
1275 int i;
1276
1277 for (i = 0; i < len; i++)
1278 fprintf_unfiltered (file, "%02x ", buf[i]);
1279 fputs_unfiltered ("\n", file);
1280 }
1281
1282 /* Prepare to single-step, using displaced stepping.
1283
1284 Note that we cannot use displaced stepping when we have a signal to
1285 deliver. If we have a signal to deliver and an instruction to step
1286 over, then after the step, there will be no indication from the
1287 target whether the thread entered a signal handler or ignored the
1288 signal and stepped over the instruction successfully --- both cases
1289 result in a simple SIGTRAP. In the first case we mustn't do a
1290 fixup, and in the second case we must --- but we can't tell which.
1291 Comments in the code for 'random signals' in handle_inferior_event
1292 explain how we handle this case instead.
1293
1294 Returns 1 if preparing was successful -- this thread is going to be
1295 stepped now; or 0 if displaced stepping this thread got queued. */
1296 static int
1297 displaced_step_prepare (ptid_t ptid)
1298 {
1299 struct cleanup *old_cleanups, *ignore_cleanups;
1300 struct thread_info *tp = find_thread_ptid (ptid);
1301 struct regcache *regcache = get_thread_regcache (ptid);
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 CORE_ADDR original, copy;
1304 ULONGEST len;
1305 struct displaced_step_closure *closure;
1306 struct displaced_step_inferior_state *displaced;
1307 int status;
1308
1309 /* We should never reach this function if the architecture does not
1310 support displaced stepping. */
1311 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1312
1313 /* Disable range stepping while executing in the scratch pad. We
1314 want a single-step even if executing the displaced instruction in
1315 the scratch buffer lands within the stepping range (e.g., a
1316 jump/branch). */
1317 tp->control.may_range_step = 0;
1318
1319 /* We have to displaced step one thread at a time, as we only have
1320 access to a single scratch space per inferior. */
1321
1322 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1323
1324 if (!ptid_equal (displaced->step_ptid, null_ptid))
1325 {
1326 /* Already waiting for a displaced step to finish. Defer this
1327 request and place in queue. */
1328 struct displaced_step_request *req, *new_req;
1329
1330 if (debug_displaced)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "displaced: defering step of %s\n",
1333 target_pid_to_str (ptid));
1334
1335 new_req = xmalloc (sizeof (*new_req));
1336 new_req->ptid = ptid;
1337 new_req->next = NULL;
1338
1339 if (displaced->step_request_queue)
1340 {
1341 for (req = displaced->step_request_queue;
1342 req && req->next;
1343 req = req->next)
1344 ;
1345 req->next = new_req;
1346 }
1347 else
1348 displaced->step_request_queue = new_req;
1349
1350 return 0;
1351 }
1352 else
1353 {
1354 if (debug_displaced)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "displaced: stepping %s now\n",
1357 target_pid_to_str (ptid));
1358 }
1359
1360 displaced_step_clear (displaced);
1361
1362 old_cleanups = save_inferior_ptid ();
1363 inferior_ptid = ptid;
1364
1365 original = regcache_read_pc (regcache);
1366
1367 copy = gdbarch_displaced_step_location (gdbarch);
1368 len = gdbarch_max_insn_length (gdbarch);
1369
1370 /* Save the original contents of the copy area. */
1371 displaced->step_saved_copy = xmalloc (len);
1372 ignore_cleanups = make_cleanup (free_current_contents,
1373 &displaced->step_saved_copy);
1374 status = target_read_memory (copy, displaced->step_saved_copy, len);
1375 if (status != 0)
1376 throw_error (MEMORY_ERROR,
1377 _("Error accessing memory address %s (%s) for "
1378 "displaced-stepping scratch space."),
1379 paddress (gdbarch, copy), safe_strerror (status));
1380 if (debug_displaced)
1381 {
1382 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1383 paddress (gdbarch, copy));
1384 displaced_step_dump_bytes (gdb_stdlog,
1385 displaced->step_saved_copy,
1386 len);
1387 };
1388
1389 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1390 original, copy, regcache);
1391
1392 /* We don't support the fully-simulated case at present. */
1393 gdb_assert (closure);
1394
1395 /* Save the information we need to fix things up if the step
1396 succeeds. */
1397 displaced->step_ptid = ptid;
1398 displaced->step_gdbarch = gdbarch;
1399 displaced->step_closure = closure;
1400 displaced->step_original = original;
1401 displaced->step_copy = copy;
1402
1403 make_cleanup (displaced_step_clear_cleanup, displaced);
1404
1405 /* Resume execution at the copy. */
1406 regcache_write_pc (regcache, copy);
1407
1408 discard_cleanups (ignore_cleanups);
1409
1410 do_cleanups (old_cleanups);
1411
1412 if (debug_displaced)
1413 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1414 paddress (gdbarch, copy));
1415
1416 return 1;
1417 }
1418
1419 static void
1420 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1421 const gdb_byte *myaddr, int len)
1422 {
1423 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1424
1425 inferior_ptid = ptid;
1426 write_memory (memaddr, myaddr, len);
1427 do_cleanups (ptid_cleanup);
1428 }
1429
1430 /* Restore the contents of the copy area for thread PTID. */
1431
1432 static void
1433 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1434 ptid_t ptid)
1435 {
1436 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1437
1438 write_memory_ptid (ptid, displaced->step_copy,
1439 displaced->step_saved_copy, len);
1440 if (debug_displaced)
1441 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1442 target_pid_to_str (ptid),
1443 paddress (displaced->step_gdbarch,
1444 displaced->step_copy));
1445 }
1446
1447 static void
1448 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1449 {
1450 struct cleanup *old_cleanups;
1451 struct displaced_step_inferior_state *displaced
1452 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1453
1454 /* Was any thread of this process doing a displaced step? */
1455 if (displaced == NULL)
1456 return;
1457
1458 /* Was this event for the pid we displaced? */
1459 if (ptid_equal (displaced->step_ptid, null_ptid)
1460 || ! ptid_equal (displaced->step_ptid, event_ptid))
1461 return;
1462
1463 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1464
1465 displaced_step_restore (displaced, displaced->step_ptid);
1466
1467 /* Did the instruction complete successfully? */
1468 if (signal == GDB_SIGNAL_TRAP)
1469 {
1470 /* Fix up the resulting state. */
1471 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1472 displaced->step_closure,
1473 displaced->step_original,
1474 displaced->step_copy,
1475 get_thread_regcache (displaced->step_ptid));
1476 }
1477 else
1478 {
1479 /* Since the instruction didn't complete, all we can do is
1480 relocate the PC. */
1481 struct regcache *regcache = get_thread_regcache (event_ptid);
1482 CORE_ADDR pc = regcache_read_pc (regcache);
1483
1484 pc = displaced->step_original + (pc - displaced->step_copy);
1485 regcache_write_pc (regcache, pc);
1486 }
1487
1488 do_cleanups (old_cleanups);
1489
1490 displaced->step_ptid = null_ptid;
1491
1492 /* Are there any pending displaced stepping requests? If so, run
1493 one now. Leave the state object around, since we're likely to
1494 need it again soon. */
1495 while (displaced->step_request_queue)
1496 {
1497 struct displaced_step_request *head;
1498 ptid_t ptid;
1499 struct regcache *regcache;
1500 struct gdbarch *gdbarch;
1501 CORE_ADDR actual_pc;
1502 struct address_space *aspace;
1503
1504 head = displaced->step_request_queue;
1505 ptid = head->ptid;
1506 displaced->step_request_queue = head->next;
1507 xfree (head);
1508
1509 context_switch (ptid);
1510
1511 regcache = get_thread_regcache (ptid);
1512 actual_pc = regcache_read_pc (regcache);
1513 aspace = get_regcache_aspace (regcache);
1514
1515 if (breakpoint_here_p (aspace, actual_pc))
1516 {
1517 if (debug_displaced)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "displaced: stepping queued %s now\n",
1520 target_pid_to_str (ptid));
1521
1522 displaced_step_prepare (ptid);
1523
1524 gdbarch = get_regcache_arch (regcache);
1525
1526 if (debug_displaced)
1527 {
1528 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1529 gdb_byte buf[4];
1530
1531 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1532 paddress (gdbarch, actual_pc));
1533 read_memory (actual_pc, buf, sizeof (buf));
1534 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1535 }
1536
1537 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1538 displaced->step_closure))
1539 target_resume (ptid, 1, GDB_SIGNAL_0);
1540 else
1541 target_resume (ptid, 0, GDB_SIGNAL_0);
1542
1543 /* Done, we're stepping a thread. */
1544 break;
1545 }
1546 else
1547 {
1548 int step;
1549 struct thread_info *tp = inferior_thread ();
1550
1551 /* The breakpoint we were sitting under has since been
1552 removed. */
1553 tp->control.trap_expected = 0;
1554
1555 /* Go back to what we were trying to do. */
1556 step = currently_stepping (tp);
1557
1558 if (debug_displaced)
1559 fprintf_unfiltered (gdb_stdlog,
1560 "displaced: breakpoint is gone: %s, step(%d)\n",
1561 target_pid_to_str (tp->ptid), step);
1562
1563 target_resume (ptid, step, GDB_SIGNAL_0);
1564 tp->suspend.stop_signal = GDB_SIGNAL_0;
1565
1566 /* This request was discarded. See if there's any other
1567 thread waiting for its turn. */
1568 }
1569 }
1570 }
1571
1572 /* Update global variables holding ptids to hold NEW_PTID if they were
1573 holding OLD_PTID. */
1574 static void
1575 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1576 {
1577 struct displaced_step_request *it;
1578 struct displaced_step_inferior_state *displaced;
1579
1580 if (ptid_equal (inferior_ptid, old_ptid))
1581 inferior_ptid = new_ptid;
1582
1583 if (ptid_equal (singlestep_ptid, old_ptid))
1584 singlestep_ptid = new_ptid;
1585
1586 if (ptid_equal (deferred_step_ptid, old_ptid))
1587 deferred_step_ptid = new_ptid;
1588
1589 for (displaced = displaced_step_inferior_states;
1590 displaced;
1591 displaced = displaced->next)
1592 {
1593 if (ptid_equal (displaced->step_ptid, old_ptid))
1594 displaced->step_ptid = new_ptid;
1595
1596 for (it = displaced->step_request_queue; it; it = it->next)
1597 if (ptid_equal (it->ptid, old_ptid))
1598 it->ptid = new_ptid;
1599 }
1600 }
1601
1602 \f
1603 /* Resuming. */
1604
1605 /* Things to clean up if we QUIT out of resume (). */
1606 static void
1607 resume_cleanups (void *ignore)
1608 {
1609 normal_stop ();
1610 }
1611
1612 static const char schedlock_off[] = "off";
1613 static const char schedlock_on[] = "on";
1614 static const char schedlock_step[] = "step";
1615 static const char *const scheduler_enums[] = {
1616 schedlock_off,
1617 schedlock_on,
1618 schedlock_step,
1619 NULL
1620 };
1621 static const char *scheduler_mode = schedlock_off;
1622 static void
1623 show_scheduler_mode (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c, const char *value)
1625 {
1626 fprintf_filtered (file,
1627 _("Mode for locking scheduler "
1628 "during execution is \"%s\".\n"),
1629 value);
1630 }
1631
1632 static void
1633 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1634 {
1635 if (!target_can_lock_scheduler)
1636 {
1637 scheduler_mode = schedlock_off;
1638 error (_("Target '%s' cannot support this command."), target_shortname);
1639 }
1640 }
1641
1642 /* True if execution commands resume all threads of all processes by
1643 default; otherwise, resume only threads of the current inferior
1644 process. */
1645 int sched_multi = 0;
1646
1647 /* Try to setup for software single stepping over the specified location.
1648 Return 1 if target_resume() should use hardware single step.
1649
1650 GDBARCH the current gdbarch.
1651 PC the location to step over. */
1652
1653 static int
1654 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1655 {
1656 int hw_step = 1;
1657
1658 if (execution_direction == EXEC_FORWARD
1659 && gdbarch_software_single_step_p (gdbarch)
1660 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1661 {
1662 hw_step = 0;
1663 /* Do not pull these breakpoints until after a `wait' in
1664 `wait_for_inferior'. */
1665 singlestep_breakpoints_inserted_p = 1;
1666 singlestep_ptid = inferior_ptid;
1667 singlestep_pc = pc;
1668 }
1669 return hw_step;
1670 }
1671
1672 /* Return a ptid representing the set of threads that we will proceed,
1673 in the perspective of the user/frontend. We may actually resume
1674 fewer threads at first, e.g., if a thread is stopped at a
1675 breakpoint that needs stepping-off, but that should not be visible
1676 to the user/frontend, and neither should the frontend/user be
1677 allowed to proceed any of the threads that happen to be stopped for
1678 internal run control handling, if a previous command wanted them
1679 resumed. */
1680
1681 ptid_t
1682 user_visible_resume_ptid (int step)
1683 {
1684 /* By default, resume all threads of all processes. */
1685 ptid_t resume_ptid = RESUME_ALL;
1686
1687 /* Maybe resume only all threads of the current process. */
1688 if (!sched_multi && target_supports_multi_process ())
1689 {
1690 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1691 }
1692
1693 /* Maybe resume a single thread after all. */
1694 if (non_stop)
1695 {
1696 /* With non-stop mode on, threads are always handled
1697 individually. */
1698 resume_ptid = inferior_ptid;
1699 }
1700 else if ((scheduler_mode == schedlock_on)
1701 || (scheduler_mode == schedlock_step
1702 && (step || singlestep_breakpoints_inserted_p)))
1703 {
1704 /* User-settable 'scheduler' mode requires solo thread resume. */
1705 resume_ptid = inferior_ptid;
1706 }
1707
1708 return resume_ptid;
1709 }
1710
1711 /* Resume the inferior, but allow a QUIT. This is useful if the user
1712 wants to interrupt some lengthy single-stepping operation
1713 (for child processes, the SIGINT goes to the inferior, and so
1714 we get a SIGINT random_signal, but for remote debugging and perhaps
1715 other targets, that's not true).
1716
1717 STEP nonzero if we should step (zero to continue instead).
1718 SIG is the signal to give the inferior (zero for none). */
1719 void
1720 resume (int step, enum gdb_signal sig)
1721 {
1722 int should_resume = 1;
1723 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1724 struct regcache *regcache = get_current_regcache ();
1725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1726 struct thread_info *tp = inferior_thread ();
1727 CORE_ADDR pc = regcache_read_pc (regcache);
1728 struct address_space *aspace = get_regcache_aspace (regcache);
1729
1730 QUIT;
1731
1732 if (current_inferior ()->waiting_for_vfork_done)
1733 {
1734 /* Don't try to single-step a vfork parent that is waiting for
1735 the child to get out of the shared memory region (by exec'ing
1736 or exiting). This is particularly important on software
1737 single-step archs, as the child process would trip on the
1738 software single step breakpoint inserted for the parent
1739 process. Since the parent will not actually execute any
1740 instruction until the child is out of the shared region (such
1741 are vfork's semantics), it is safe to simply continue it.
1742 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1743 the parent, and tell it to `keep_going', which automatically
1744 re-sets it stepping. */
1745 if (debug_infrun)
1746 fprintf_unfiltered (gdb_stdlog,
1747 "infrun: resume : clear step\n");
1748 step = 0;
1749 }
1750
1751 if (debug_infrun)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "infrun: resume (step=%d, signal=%s), "
1754 "trap_expected=%d, current thread [%s] at %s\n",
1755 step, gdb_signal_to_symbol_string (sig),
1756 tp->control.trap_expected,
1757 target_pid_to_str (inferior_ptid),
1758 paddress (gdbarch, pc));
1759
1760 /* Normally, by the time we reach `resume', the breakpoints are either
1761 removed or inserted, as appropriate. The exception is if we're sitting
1762 at a permanent breakpoint; we need to step over it, but permanent
1763 breakpoints can't be removed. So we have to test for it here. */
1764 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1765 {
1766 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1767 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1768 else
1769 error (_("\
1770 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1771 how to step past a permanent breakpoint on this architecture. Try using\n\
1772 a command like `return' or `jump' to continue execution."));
1773 }
1774
1775 /* If we have a breakpoint to step over, make sure to do a single
1776 step only. Same if we have software watchpoints. */
1777 if (tp->control.trap_expected || bpstat_should_step ())
1778 tp->control.may_range_step = 0;
1779
1780 /* If enabled, step over breakpoints by executing a copy of the
1781 instruction at a different address.
1782
1783 We can't use displaced stepping when we have a signal to deliver;
1784 the comments for displaced_step_prepare explain why. The
1785 comments in the handle_inferior event for dealing with 'random
1786 signals' explain what we do instead.
1787
1788 We can't use displaced stepping when we are waiting for vfork_done
1789 event, displaced stepping breaks the vfork child similarly as single
1790 step software breakpoint. */
1791 if (use_displaced_stepping (gdbarch)
1792 && (tp->control.trap_expected
1793 || (step && gdbarch_software_single_step_p (gdbarch)))
1794 && sig == GDB_SIGNAL_0
1795 && !current_inferior ()->waiting_for_vfork_done)
1796 {
1797 struct displaced_step_inferior_state *displaced;
1798
1799 if (!displaced_step_prepare (inferior_ptid))
1800 {
1801 /* Got placed in displaced stepping queue. Will be resumed
1802 later when all the currently queued displaced stepping
1803 requests finish. The thread is not executing at this point,
1804 and the call to set_executing will be made later. But we
1805 need to call set_running here, since from frontend point of view,
1806 the thread is running. */
1807 set_running (inferior_ptid, 1);
1808 discard_cleanups (old_cleanups);
1809 return;
1810 }
1811
1812 /* Update pc to reflect the new address from which we will execute
1813 instructions due to displaced stepping. */
1814 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1815
1816 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1817 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1818 displaced->step_closure);
1819 }
1820
1821 /* Do we need to do it the hard way, w/temp breakpoints? */
1822 else if (step)
1823 step = maybe_software_singlestep (gdbarch, pc);
1824
1825 /* Currently, our software single-step implementation leads to different
1826 results than hardware single-stepping in one situation: when stepping
1827 into delivering a signal which has an associated signal handler,
1828 hardware single-step will stop at the first instruction of the handler,
1829 while software single-step will simply skip execution of the handler.
1830
1831 For now, this difference in behavior is accepted since there is no
1832 easy way to actually implement single-stepping into a signal handler
1833 without kernel support.
1834
1835 However, there is one scenario where this difference leads to follow-on
1836 problems: if we're stepping off a breakpoint by removing all breakpoints
1837 and then single-stepping. In this case, the software single-step
1838 behavior means that even if there is a *breakpoint* in the signal
1839 handler, GDB still would not stop.
1840
1841 Fortunately, we can at least fix this particular issue. We detect
1842 here the case where we are about to deliver a signal while software
1843 single-stepping with breakpoints removed. In this situation, we
1844 revert the decisions to remove all breakpoints and insert single-
1845 step breakpoints, and instead we install a step-resume breakpoint
1846 at the current address, deliver the signal without stepping, and
1847 once we arrive back at the step-resume breakpoint, actually step
1848 over the breakpoint we originally wanted to step over. */
1849 if (singlestep_breakpoints_inserted_p
1850 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1851 {
1852 /* If we have nested signals or a pending signal is delivered
1853 immediately after a handler returns, might might already have
1854 a step-resume breakpoint set on the earlier handler. We cannot
1855 set another step-resume breakpoint; just continue on until the
1856 original breakpoint is hit. */
1857 if (tp->control.step_resume_breakpoint == NULL)
1858 {
1859 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1860 tp->step_after_step_resume_breakpoint = 1;
1861 }
1862
1863 remove_single_step_breakpoints ();
1864 singlestep_breakpoints_inserted_p = 0;
1865
1866 insert_breakpoints ();
1867 tp->control.trap_expected = 0;
1868 }
1869
1870 if (should_resume)
1871 {
1872 ptid_t resume_ptid;
1873
1874 /* If STEP is set, it's a request to use hardware stepping
1875 facilities. But in that case, we should never
1876 use singlestep breakpoint. */
1877 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1878
1879 /* Decide the set of threads to ask the target to resume. Start
1880 by assuming everything will be resumed, than narrow the set
1881 by applying increasingly restricting conditions. */
1882 resume_ptid = user_visible_resume_ptid (step);
1883
1884 /* Maybe resume a single thread after all. */
1885 if (singlestep_breakpoints_inserted_p
1886 && stepping_past_singlestep_breakpoint)
1887 {
1888 /* The situation here is as follows. In thread T1 we wanted to
1889 single-step. Lacking hardware single-stepping we've
1890 set breakpoint at the PC of the next instruction -- call it
1891 P. After resuming, we've hit that breakpoint in thread T2.
1892 Now we've removed original breakpoint, inserted breakpoint
1893 at P+1, and try to step to advance T2 past breakpoint.
1894 We need to step only T2, as if T1 is allowed to freely run,
1895 it can run past P, and if other threads are allowed to run,
1896 they can hit breakpoint at P+1, and nested hits of single-step
1897 breakpoints is not something we'd want -- that's complicated
1898 to support, and has no value. */
1899 resume_ptid = inferior_ptid;
1900 }
1901 else if ((step || singlestep_breakpoints_inserted_p)
1902 && tp->control.trap_expected)
1903 {
1904 /* We're allowing a thread to run past a breakpoint it has
1905 hit, by single-stepping the thread with the breakpoint
1906 removed. In which case, we need to single-step only this
1907 thread, and keep others stopped, as they can miss this
1908 breakpoint if allowed to run.
1909
1910 The current code actually removes all breakpoints when
1911 doing this, not just the one being stepped over, so if we
1912 let other threads run, we can actually miss any
1913 breakpoint, not just the one at PC. */
1914 resume_ptid = inferior_ptid;
1915 }
1916
1917 if (gdbarch_cannot_step_breakpoint (gdbarch))
1918 {
1919 /* Most targets can step a breakpoint instruction, thus
1920 executing it normally. But if this one cannot, just
1921 continue and we will hit it anyway. */
1922 if (step && breakpoint_inserted_here_p (aspace, pc))
1923 step = 0;
1924 }
1925
1926 if (debug_displaced
1927 && use_displaced_stepping (gdbarch)
1928 && tp->control.trap_expected)
1929 {
1930 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1931 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1932 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1933 gdb_byte buf[4];
1934
1935 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1936 paddress (resume_gdbarch, actual_pc));
1937 read_memory (actual_pc, buf, sizeof (buf));
1938 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1939 }
1940
1941 if (tp->control.may_range_step)
1942 {
1943 /* If we're resuming a thread with the PC out of the step
1944 range, then we're doing some nested/finer run control
1945 operation, like stepping the thread out of the dynamic
1946 linker or the displaced stepping scratch pad. We
1947 shouldn't have allowed a range step then. */
1948 gdb_assert (pc_in_thread_step_range (pc, tp));
1949 }
1950
1951 /* Install inferior's terminal modes. */
1952 target_terminal_inferior ();
1953
1954 /* Avoid confusing the next resume, if the next stop/resume
1955 happens to apply to another thread. */
1956 tp->suspend.stop_signal = GDB_SIGNAL_0;
1957
1958 /* Advise target which signals may be handled silently. If we have
1959 removed breakpoints because we are stepping over one (which can
1960 happen only if we are not using displaced stepping), we need to
1961 receive all signals to avoid accidentally skipping a breakpoint
1962 during execution of a signal handler. */
1963 if ((step || singlestep_breakpoints_inserted_p)
1964 && tp->control.trap_expected
1965 && !use_displaced_stepping (gdbarch))
1966 target_pass_signals (0, NULL);
1967 else
1968 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1969
1970 target_resume (resume_ptid, step, sig);
1971 }
1972
1973 discard_cleanups (old_cleanups);
1974 }
1975 \f
1976 /* Proceeding. */
1977
1978 /* Clear out all variables saying what to do when inferior is continued.
1979 First do this, then set the ones you want, then call `proceed'. */
1980
1981 static void
1982 clear_proceed_status_thread (struct thread_info *tp)
1983 {
1984 if (debug_infrun)
1985 fprintf_unfiltered (gdb_stdlog,
1986 "infrun: clear_proceed_status_thread (%s)\n",
1987 target_pid_to_str (tp->ptid));
1988
1989 tp->control.trap_expected = 0;
1990 tp->control.step_range_start = 0;
1991 tp->control.step_range_end = 0;
1992 tp->control.may_range_step = 0;
1993 tp->control.step_frame_id = null_frame_id;
1994 tp->control.step_stack_frame_id = null_frame_id;
1995 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1996 tp->stop_requested = 0;
1997
1998 tp->control.stop_step = 0;
1999
2000 tp->control.proceed_to_finish = 0;
2001
2002 /* Discard any remaining commands or status from previous stop. */
2003 bpstat_clear (&tp->control.stop_bpstat);
2004 }
2005
2006 static int
2007 clear_proceed_status_callback (struct thread_info *tp, void *data)
2008 {
2009 if (is_exited (tp->ptid))
2010 return 0;
2011
2012 clear_proceed_status_thread (tp);
2013 return 0;
2014 }
2015
2016 void
2017 clear_proceed_status (void)
2018 {
2019 if (!non_stop)
2020 {
2021 /* In all-stop mode, delete the per-thread status of all
2022 threads, even if inferior_ptid is null_ptid, there may be
2023 threads on the list. E.g., we may be launching a new
2024 process, while selecting the executable. */
2025 iterate_over_threads (clear_proceed_status_callback, NULL);
2026 }
2027
2028 if (!ptid_equal (inferior_ptid, null_ptid))
2029 {
2030 struct inferior *inferior;
2031
2032 if (non_stop)
2033 {
2034 /* If in non-stop mode, only delete the per-thread status of
2035 the current thread. */
2036 clear_proceed_status_thread (inferior_thread ());
2037 }
2038
2039 inferior = current_inferior ();
2040 inferior->control.stop_soon = NO_STOP_QUIETLY;
2041 }
2042
2043 stop_after_trap = 0;
2044
2045 observer_notify_about_to_proceed ();
2046
2047 if (stop_registers)
2048 {
2049 regcache_xfree (stop_registers);
2050 stop_registers = NULL;
2051 }
2052 }
2053
2054 /* Check the current thread against the thread that reported the most recent
2055 event. If a step-over is required return TRUE and set the current thread
2056 to the old thread. Otherwise return FALSE.
2057
2058 This should be suitable for any targets that support threads. */
2059
2060 static int
2061 prepare_to_proceed (int step)
2062 {
2063 ptid_t wait_ptid;
2064 struct target_waitstatus wait_status;
2065 int schedlock_enabled;
2066
2067 /* With non-stop mode on, threads are always handled individually. */
2068 gdb_assert (! non_stop);
2069
2070 /* Get the last target status returned by target_wait(). */
2071 get_last_target_status (&wait_ptid, &wait_status);
2072
2073 /* Make sure we were stopped at a breakpoint. */
2074 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2075 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2076 && wait_status.value.sig != GDB_SIGNAL_ILL
2077 && wait_status.value.sig != GDB_SIGNAL_SEGV
2078 && wait_status.value.sig != GDB_SIGNAL_EMT))
2079 {
2080 return 0;
2081 }
2082
2083 schedlock_enabled = (scheduler_mode == schedlock_on
2084 || (scheduler_mode == schedlock_step
2085 && step));
2086
2087 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2088 if (schedlock_enabled)
2089 return 0;
2090
2091 /* Don't switch over if we're about to resume some other process
2092 other than WAIT_PTID's, and schedule-multiple is off. */
2093 if (!sched_multi
2094 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2095 return 0;
2096
2097 /* Switched over from WAIT_PID. */
2098 if (!ptid_equal (wait_ptid, minus_one_ptid)
2099 && !ptid_equal (inferior_ptid, wait_ptid))
2100 {
2101 struct regcache *regcache = get_thread_regcache (wait_ptid);
2102
2103 if (breakpoint_here_p (get_regcache_aspace (regcache),
2104 regcache_read_pc (regcache)))
2105 {
2106 /* If stepping, remember current thread to switch back to. */
2107 if (step)
2108 deferred_step_ptid = inferior_ptid;
2109
2110 /* Switch back to WAIT_PID thread. */
2111 switch_to_thread (wait_ptid);
2112
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: prepare_to_proceed (step=%d), "
2116 "switched to [%s]\n",
2117 step, target_pid_to_str (inferior_ptid));
2118
2119 /* We return 1 to indicate that there is a breakpoint here,
2120 so we need to step over it before continuing to avoid
2121 hitting it straight away. */
2122 return 1;
2123 }
2124 }
2125
2126 return 0;
2127 }
2128
2129 /* Basic routine for continuing the program in various fashions.
2130
2131 ADDR is the address to resume at, or -1 for resume where stopped.
2132 SIGGNAL is the signal to give it, or 0 for none,
2133 or -1 for act according to how it stopped.
2134 STEP is nonzero if should trap after one instruction.
2135 -1 means return after that and print nothing.
2136 You should probably set various step_... variables
2137 before calling here, if you are stepping.
2138
2139 You should call clear_proceed_status before calling proceed. */
2140
2141 void
2142 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2143 {
2144 struct regcache *regcache;
2145 struct gdbarch *gdbarch;
2146 struct thread_info *tp;
2147 CORE_ADDR pc;
2148 struct address_space *aspace;
2149 /* GDB may force the inferior to step due to various reasons. */
2150 int force_step = 0;
2151
2152 /* If we're stopped at a fork/vfork, follow the branch set by the
2153 "set follow-fork-mode" command; otherwise, we'll just proceed
2154 resuming the current thread. */
2155 if (!follow_fork ())
2156 {
2157 /* The target for some reason decided not to resume. */
2158 normal_stop ();
2159 if (target_can_async_p ())
2160 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2161 return;
2162 }
2163
2164 /* We'll update this if & when we switch to a new thread. */
2165 previous_inferior_ptid = inferior_ptid;
2166
2167 regcache = get_current_regcache ();
2168 gdbarch = get_regcache_arch (regcache);
2169 aspace = get_regcache_aspace (regcache);
2170 pc = regcache_read_pc (regcache);
2171
2172 if (step > 0)
2173 step_start_function = find_pc_function (pc);
2174 if (step < 0)
2175 stop_after_trap = 1;
2176
2177 if (addr == (CORE_ADDR) -1)
2178 {
2179 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2180 && execution_direction != EXEC_REVERSE)
2181 /* There is a breakpoint at the address we will resume at,
2182 step one instruction before inserting breakpoints so that
2183 we do not stop right away (and report a second hit at this
2184 breakpoint).
2185
2186 Note, we don't do this in reverse, because we won't
2187 actually be executing the breakpoint insn anyway.
2188 We'll be (un-)executing the previous instruction. */
2189
2190 force_step = 1;
2191 else if (gdbarch_single_step_through_delay_p (gdbarch)
2192 && gdbarch_single_step_through_delay (gdbarch,
2193 get_current_frame ()))
2194 /* We stepped onto an instruction that needs to be stepped
2195 again before re-inserting the breakpoint, do so. */
2196 force_step = 1;
2197 }
2198 else
2199 {
2200 regcache_write_pc (regcache, addr);
2201 }
2202
2203 if (debug_infrun)
2204 fprintf_unfiltered (gdb_stdlog,
2205 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2206 paddress (gdbarch, addr),
2207 gdb_signal_to_symbol_string (siggnal), step);
2208
2209 if (non_stop)
2210 /* In non-stop, each thread is handled individually. The context
2211 must already be set to the right thread here. */
2212 ;
2213 else
2214 {
2215 /* In a multi-threaded task we may select another thread and
2216 then continue or step.
2217
2218 But if the old thread was stopped at a breakpoint, it will
2219 immediately cause another breakpoint stop without any
2220 execution (i.e. it will report a breakpoint hit incorrectly).
2221 So we must step over it first.
2222
2223 prepare_to_proceed checks the current thread against the
2224 thread that reported the most recent event. If a step-over
2225 is required it returns TRUE and sets the current thread to
2226 the old thread. */
2227 if (prepare_to_proceed (step))
2228 force_step = 1;
2229 }
2230
2231 /* prepare_to_proceed may change the current thread. */
2232 tp = inferior_thread ();
2233
2234 if (force_step)
2235 {
2236 tp->control.trap_expected = 1;
2237 /* If displaced stepping is enabled, we can step over the
2238 breakpoint without hitting it, so leave all breakpoints
2239 inserted. Otherwise we need to disable all breakpoints, step
2240 one instruction, and then re-add them when that step is
2241 finished. */
2242 if (!use_displaced_stepping (gdbarch))
2243 remove_breakpoints ();
2244 }
2245
2246 /* We can insert breakpoints if we're not trying to step over one,
2247 or if we are stepping over one but we're using displaced stepping
2248 to do so. */
2249 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2250 insert_breakpoints ();
2251
2252 if (!non_stop)
2253 {
2254 /* Pass the last stop signal to the thread we're resuming,
2255 irrespective of whether the current thread is the thread that
2256 got the last event or not. This was historically GDB's
2257 behaviour before keeping a stop_signal per thread. */
2258
2259 struct thread_info *last_thread;
2260 ptid_t last_ptid;
2261 struct target_waitstatus last_status;
2262
2263 get_last_target_status (&last_ptid, &last_status);
2264 if (!ptid_equal (inferior_ptid, last_ptid)
2265 && !ptid_equal (last_ptid, null_ptid)
2266 && !ptid_equal (last_ptid, minus_one_ptid))
2267 {
2268 last_thread = find_thread_ptid (last_ptid);
2269 if (last_thread)
2270 {
2271 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2272 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2273 }
2274 }
2275 }
2276
2277 if (siggnal != GDB_SIGNAL_DEFAULT)
2278 tp->suspend.stop_signal = siggnal;
2279 /* If this signal should not be seen by program,
2280 give it zero. Used for debugging signals. */
2281 else if (!signal_program[tp->suspend.stop_signal])
2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
2283
2284 annotate_starting ();
2285
2286 /* Make sure that output from GDB appears before output from the
2287 inferior. */
2288 gdb_flush (gdb_stdout);
2289
2290 /* Refresh prev_pc value just prior to resuming. This used to be
2291 done in stop_stepping, however, setting prev_pc there did not handle
2292 scenarios such as inferior function calls or returning from
2293 a function via the return command. In those cases, the prev_pc
2294 value was not set properly for subsequent commands. The prev_pc value
2295 is used to initialize the starting line number in the ecs. With an
2296 invalid value, the gdb next command ends up stopping at the position
2297 represented by the next line table entry past our start position.
2298 On platforms that generate one line table entry per line, this
2299 is not a problem. However, on the ia64, the compiler generates
2300 extraneous line table entries that do not increase the line number.
2301 When we issue the gdb next command on the ia64 after an inferior call
2302 or a return command, we often end up a few instructions forward, still
2303 within the original line we started.
2304
2305 An attempt was made to refresh the prev_pc at the same time the
2306 execution_control_state is initialized (for instance, just before
2307 waiting for an inferior event). But this approach did not work
2308 because of platforms that use ptrace, where the pc register cannot
2309 be read unless the inferior is stopped. At that point, we are not
2310 guaranteed the inferior is stopped and so the regcache_read_pc() call
2311 can fail. Setting the prev_pc value here ensures the value is updated
2312 correctly when the inferior is stopped. */
2313 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2314
2315 /* Fill in with reasonable starting values. */
2316 init_thread_stepping_state (tp);
2317
2318 /* Reset to normal state. */
2319 init_infwait_state ();
2320
2321 /* Resume inferior. */
2322 resume (force_step || step || bpstat_should_step (),
2323 tp->suspend.stop_signal);
2324
2325 /* Wait for it to stop (if not standalone)
2326 and in any case decode why it stopped, and act accordingly. */
2327 /* Do this only if we are not using the event loop, or if the target
2328 does not support asynchronous execution. */
2329 if (!target_can_async_p ())
2330 {
2331 wait_for_inferior ();
2332 normal_stop ();
2333 }
2334 }
2335 \f
2336
2337 /* Start remote-debugging of a machine over a serial link. */
2338
2339 void
2340 start_remote (int from_tty)
2341 {
2342 struct inferior *inferior;
2343
2344 inferior = current_inferior ();
2345 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2346
2347 /* Always go on waiting for the target, regardless of the mode. */
2348 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2349 indicate to wait_for_inferior that a target should timeout if
2350 nothing is returned (instead of just blocking). Because of this,
2351 targets expecting an immediate response need to, internally, set
2352 things up so that the target_wait() is forced to eventually
2353 timeout. */
2354 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2355 differentiate to its caller what the state of the target is after
2356 the initial open has been performed. Here we're assuming that
2357 the target has stopped. It should be possible to eventually have
2358 target_open() return to the caller an indication that the target
2359 is currently running and GDB state should be set to the same as
2360 for an async run. */
2361 wait_for_inferior ();
2362
2363 /* Now that the inferior has stopped, do any bookkeeping like
2364 loading shared libraries. We want to do this before normal_stop,
2365 so that the displayed frame is up to date. */
2366 post_create_inferior (&current_target, from_tty);
2367
2368 normal_stop ();
2369 }
2370
2371 /* Initialize static vars when a new inferior begins. */
2372
2373 void
2374 init_wait_for_inferior (void)
2375 {
2376 /* These are meaningless until the first time through wait_for_inferior. */
2377
2378 breakpoint_init_inferior (inf_starting);
2379
2380 clear_proceed_status ();
2381
2382 stepping_past_singlestep_breakpoint = 0;
2383 deferred_step_ptid = null_ptid;
2384
2385 target_last_wait_ptid = minus_one_ptid;
2386
2387 previous_inferior_ptid = inferior_ptid;
2388 init_infwait_state ();
2389
2390 /* Discard any skipped inlined frames. */
2391 clear_inline_frame_state (minus_one_ptid);
2392 }
2393
2394 \f
2395 /* This enum encodes possible reasons for doing a target_wait, so that
2396 wfi can call target_wait in one place. (Ultimately the call will be
2397 moved out of the infinite loop entirely.) */
2398
2399 enum infwait_states
2400 {
2401 infwait_normal_state,
2402 infwait_thread_hop_state,
2403 infwait_step_watch_state,
2404 infwait_nonstep_watch_state
2405 };
2406
2407 /* The PTID we'll do a target_wait on.*/
2408 ptid_t waiton_ptid;
2409
2410 /* Current inferior wait state. */
2411 static enum infwait_states infwait_state;
2412
2413 /* Data to be passed around while handling an event. This data is
2414 discarded between events. */
2415 struct execution_control_state
2416 {
2417 ptid_t ptid;
2418 /* The thread that got the event, if this was a thread event; NULL
2419 otherwise. */
2420 struct thread_info *event_thread;
2421
2422 struct target_waitstatus ws;
2423 int stop_func_filled_in;
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2426 const char *stop_func_name;
2427 int wait_some_more;
2428
2429 /* We were in infwait_step_watch_state or
2430 infwait_nonstep_watch_state state, and the thread reported an
2431 event. */
2432 int stepped_after_stopped_by_watchpoint;
2433 };
2434
2435 static void handle_inferior_event (struct execution_control_state *ecs);
2436
2437 static void handle_step_into_function (struct gdbarch *gdbarch,
2438 struct execution_control_state *ecs);
2439 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2440 struct execution_control_state *ecs);
2441 static void handle_signal_stop (struct execution_control_state *ecs);
2442 static void check_exception_resume (struct execution_control_state *,
2443 struct frame_info *);
2444
2445 static void stop_stepping (struct execution_control_state *ecs);
2446 static void prepare_to_wait (struct execution_control_state *ecs);
2447 static void keep_going (struct execution_control_state *ecs);
2448 static void process_event_stop_test (struct execution_control_state *ecs);
2449 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2450
2451 /* Callback for iterate over threads. If the thread is stopped, but
2452 the user/frontend doesn't know about that yet, go through
2453 normal_stop, as if the thread had just stopped now. ARG points at
2454 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2455 ptid_is_pid(PTID) is true, applies to all threads of the process
2456 pointed at by PTID. Otherwise, apply only to the thread pointed by
2457 PTID. */
2458
2459 static int
2460 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2461 {
2462 ptid_t ptid = * (ptid_t *) arg;
2463
2464 if ((ptid_equal (info->ptid, ptid)
2465 || ptid_equal (minus_one_ptid, ptid)
2466 || (ptid_is_pid (ptid)
2467 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2468 && is_running (info->ptid)
2469 && !is_executing (info->ptid))
2470 {
2471 struct cleanup *old_chain;
2472 struct execution_control_state ecss;
2473 struct execution_control_state *ecs = &ecss;
2474
2475 memset (ecs, 0, sizeof (*ecs));
2476
2477 old_chain = make_cleanup_restore_current_thread ();
2478
2479 overlay_cache_invalid = 1;
2480 /* Flush target cache before starting to handle each event.
2481 Target was running and cache could be stale. This is just a
2482 heuristic. Running threads may modify target memory, but we
2483 don't get any event. */
2484 target_dcache_invalidate ();
2485
2486 /* Go through handle_inferior_event/normal_stop, so we always
2487 have consistent output as if the stop event had been
2488 reported. */
2489 ecs->ptid = info->ptid;
2490 ecs->event_thread = find_thread_ptid (info->ptid);
2491 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2492 ecs->ws.value.sig = GDB_SIGNAL_0;
2493
2494 handle_inferior_event (ecs);
2495
2496 if (!ecs->wait_some_more)
2497 {
2498 struct thread_info *tp;
2499
2500 normal_stop ();
2501
2502 /* Finish off the continuations. */
2503 tp = inferior_thread ();
2504 do_all_intermediate_continuations_thread (tp, 1);
2505 do_all_continuations_thread (tp, 1);
2506 }
2507
2508 do_cleanups (old_chain);
2509 }
2510
2511 return 0;
2512 }
2513
2514 /* This function is attached as a "thread_stop_requested" observer.
2515 Cleanup local state that assumed the PTID was to be resumed, and
2516 report the stop to the frontend. */
2517
2518 static void
2519 infrun_thread_stop_requested (ptid_t ptid)
2520 {
2521 struct displaced_step_inferior_state *displaced;
2522
2523 /* PTID was requested to stop. Remove it from the displaced
2524 stepping queue, so we don't try to resume it automatically. */
2525
2526 for (displaced = displaced_step_inferior_states;
2527 displaced;
2528 displaced = displaced->next)
2529 {
2530 struct displaced_step_request *it, **prev_next_p;
2531
2532 it = displaced->step_request_queue;
2533 prev_next_p = &displaced->step_request_queue;
2534 while (it)
2535 {
2536 if (ptid_match (it->ptid, ptid))
2537 {
2538 *prev_next_p = it->next;
2539 it->next = NULL;
2540 xfree (it);
2541 }
2542 else
2543 {
2544 prev_next_p = &it->next;
2545 }
2546
2547 it = *prev_next_p;
2548 }
2549 }
2550
2551 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2552 }
2553
2554 static void
2555 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2556 {
2557 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2558 nullify_last_target_wait_ptid ();
2559 }
2560
2561 /* Callback for iterate_over_threads. */
2562
2563 static int
2564 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2565 {
2566 if (is_exited (info->ptid))
2567 return 0;
2568
2569 delete_step_resume_breakpoint (info);
2570 delete_exception_resume_breakpoint (info);
2571 return 0;
2572 }
2573
2574 /* In all-stop, delete the step resume breakpoint of any thread that
2575 had one. In non-stop, delete the step resume breakpoint of the
2576 thread that just stopped. */
2577
2578 static void
2579 delete_step_thread_step_resume_breakpoint (void)
2580 {
2581 if (!target_has_execution
2582 || ptid_equal (inferior_ptid, null_ptid))
2583 /* If the inferior has exited, we have already deleted the step
2584 resume breakpoints out of GDB's lists. */
2585 return;
2586
2587 if (non_stop)
2588 {
2589 /* If in non-stop mode, only delete the step-resume or
2590 longjmp-resume breakpoint of the thread that just stopped
2591 stepping. */
2592 struct thread_info *tp = inferior_thread ();
2593
2594 delete_step_resume_breakpoint (tp);
2595 delete_exception_resume_breakpoint (tp);
2596 }
2597 else
2598 /* In all-stop mode, delete all step-resume and longjmp-resume
2599 breakpoints of any thread that had them. */
2600 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2601 }
2602
2603 /* A cleanup wrapper. */
2604
2605 static void
2606 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2607 {
2608 delete_step_thread_step_resume_breakpoint ();
2609 }
2610
2611 /* Pretty print the results of target_wait, for debugging purposes. */
2612
2613 static void
2614 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2615 const struct target_waitstatus *ws)
2616 {
2617 char *status_string = target_waitstatus_to_string (ws);
2618 struct ui_file *tmp_stream = mem_fileopen ();
2619 char *text;
2620
2621 /* The text is split over several lines because it was getting too long.
2622 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2623 output as a unit; we want only one timestamp printed if debug_timestamp
2624 is set. */
2625
2626 fprintf_unfiltered (tmp_stream,
2627 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2628 if (ptid_get_pid (waiton_ptid) != -1)
2629 fprintf_unfiltered (tmp_stream,
2630 " [%s]", target_pid_to_str (waiton_ptid));
2631 fprintf_unfiltered (tmp_stream, ", status) =\n");
2632 fprintf_unfiltered (tmp_stream,
2633 "infrun: %d [%s],\n",
2634 ptid_get_pid (result_ptid),
2635 target_pid_to_str (result_ptid));
2636 fprintf_unfiltered (tmp_stream,
2637 "infrun: %s\n",
2638 status_string);
2639
2640 text = ui_file_xstrdup (tmp_stream, NULL);
2641
2642 /* This uses %s in part to handle %'s in the text, but also to avoid
2643 a gcc error: the format attribute requires a string literal. */
2644 fprintf_unfiltered (gdb_stdlog, "%s", text);
2645
2646 xfree (status_string);
2647 xfree (text);
2648 ui_file_delete (tmp_stream);
2649 }
2650
2651 /* Prepare and stabilize the inferior for detaching it. E.g.,
2652 detaching while a thread is displaced stepping is a recipe for
2653 crashing it, as nothing would readjust the PC out of the scratch
2654 pad. */
2655
2656 void
2657 prepare_for_detach (void)
2658 {
2659 struct inferior *inf = current_inferior ();
2660 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2661 struct cleanup *old_chain_1;
2662 struct displaced_step_inferior_state *displaced;
2663
2664 displaced = get_displaced_stepping_state (inf->pid);
2665
2666 /* Is any thread of this process displaced stepping? If not,
2667 there's nothing else to do. */
2668 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2669 return;
2670
2671 if (debug_infrun)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "displaced-stepping in-process while detaching");
2674
2675 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2676 inf->detaching = 1;
2677
2678 while (!ptid_equal (displaced->step_ptid, null_ptid))
2679 {
2680 struct cleanup *old_chain_2;
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs;
2683
2684 ecs = &ecss;
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
2688 /* Flush target cache before starting to handle each event.
2689 Target was running and cache could be stale. This is just a
2690 heuristic. Running threads may modify target memory, but we
2691 don't get any event. */
2692 target_dcache_invalidate ();
2693
2694 if (deprecated_target_wait_hook)
2695 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2696 else
2697 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2698
2699 if (debug_infrun)
2700 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2701
2702 /* If an error happens while handling the event, propagate GDB's
2703 knowledge of the executing state to the frontend/user running
2704 state. */
2705 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2706 &minus_one_ptid);
2707
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
2710
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain_2);
2713
2714 /* Breakpoints and watchpoints are not installed on the target
2715 at this point, and signals are passed directly to the
2716 inferior, so this must mean the process is gone. */
2717 if (!ecs->wait_some_more)
2718 {
2719 discard_cleanups (old_chain_1);
2720 error (_("Program exited while detaching"));
2721 }
2722 }
2723
2724 discard_cleanups (old_chain_1);
2725 }
2726
2727 /* Wait for control to return from inferior to debugger.
2728
2729 If inferior gets a signal, we may decide to start it up again
2730 instead of returning. That is why there is a loop in this function.
2731 When this function actually returns it means the inferior
2732 should be left stopped and GDB should read more commands. */
2733
2734 void
2735 wait_for_inferior (void)
2736 {
2737 struct cleanup *old_cleanups;
2738
2739 if (debug_infrun)
2740 fprintf_unfiltered
2741 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2742
2743 old_cleanups =
2744 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2745
2746 while (1)
2747 {
2748 struct execution_control_state ecss;
2749 struct execution_control_state *ecs = &ecss;
2750 struct cleanup *old_chain;
2751
2752 memset (ecs, 0, sizeof (*ecs));
2753
2754 overlay_cache_invalid = 1;
2755
2756 /* Flush target cache before starting to handle each event.
2757 Target was running and cache could be stale. This is just a
2758 heuristic. Running threads may modify target memory, but we
2759 don't get any event. */
2760 target_dcache_invalidate ();
2761
2762 if (deprecated_target_wait_hook)
2763 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2764 else
2765 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2766
2767 if (debug_infrun)
2768 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2769
2770 /* If an error happens while handling the event, propagate GDB's
2771 knowledge of the executing state to the frontend/user running
2772 state. */
2773 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2774
2775 /* Now figure out what to do with the result of the result. */
2776 handle_inferior_event (ecs);
2777
2778 /* No error, don't finish the state yet. */
2779 discard_cleanups (old_chain);
2780
2781 if (!ecs->wait_some_more)
2782 break;
2783 }
2784
2785 do_cleanups (old_cleanups);
2786 }
2787
2788 /* Asynchronous version of wait_for_inferior. It is called by the
2789 event loop whenever a change of state is detected on the file
2790 descriptor corresponding to the target. It can be called more than
2791 once to complete a single execution command. In such cases we need
2792 to keep the state in a global variable ECSS. If it is the last time
2793 that this function is called for a single execution command, then
2794 report to the user that the inferior has stopped, and do the
2795 necessary cleanups. */
2796
2797 void
2798 fetch_inferior_event (void *client_data)
2799 {
2800 struct execution_control_state ecss;
2801 struct execution_control_state *ecs = &ecss;
2802 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2803 struct cleanup *ts_old_chain;
2804 int was_sync = sync_execution;
2805 int cmd_done = 0;
2806
2807 memset (ecs, 0, sizeof (*ecs));
2808
2809 /* We're handling a live event, so make sure we're doing live
2810 debugging. If we're looking at traceframes while the target is
2811 running, we're going to need to get back to that mode after
2812 handling the event. */
2813 if (non_stop)
2814 {
2815 make_cleanup_restore_current_traceframe ();
2816 set_current_traceframe (-1);
2817 }
2818
2819 if (non_stop)
2820 /* In non-stop mode, the user/frontend should not notice a thread
2821 switch due to internal events. Make sure we reverse to the
2822 user selected thread and frame after handling the event and
2823 running any breakpoint commands. */
2824 make_cleanup_restore_current_thread ();
2825
2826 overlay_cache_invalid = 1;
2827 /* Flush target cache before starting to handle each event. Target
2828 was running and cache could be stale. This is just a heuristic.
2829 Running threads may modify target memory, but we don't get any
2830 event. */
2831 target_dcache_invalidate ();
2832
2833 make_cleanup_restore_integer (&execution_direction);
2834 execution_direction = target_execution_direction ();
2835
2836 if (deprecated_target_wait_hook)
2837 ecs->ptid =
2838 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2839 else
2840 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2841
2842 if (debug_infrun)
2843 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2844
2845 /* If an error happens while handling the event, propagate GDB's
2846 knowledge of the executing state to the frontend/user running
2847 state. */
2848 if (!non_stop)
2849 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2850 else
2851 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2852
2853 /* Get executed before make_cleanup_restore_current_thread above to apply
2854 still for the thread which has thrown the exception. */
2855 make_bpstat_clear_actions_cleanup ();
2856
2857 /* Now figure out what to do with the result of the result. */
2858 handle_inferior_event (ecs);
2859
2860 if (!ecs->wait_some_more)
2861 {
2862 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2863
2864 delete_step_thread_step_resume_breakpoint ();
2865
2866 /* We may not find an inferior if this was a process exit. */
2867 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2868 normal_stop ();
2869
2870 if (target_has_execution
2871 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2872 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2873 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2874 && ecs->event_thread->step_multi
2875 && ecs->event_thread->control.stop_step)
2876 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2877 else
2878 {
2879 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2880 cmd_done = 1;
2881 }
2882 }
2883
2884 /* No error, don't finish the thread states yet. */
2885 discard_cleanups (ts_old_chain);
2886
2887 /* Revert thread and frame. */
2888 do_cleanups (old_chain);
2889
2890 /* If the inferior was in sync execution mode, and now isn't,
2891 restore the prompt (a synchronous execution command has finished,
2892 and we're ready for input). */
2893 if (interpreter_async && was_sync && !sync_execution)
2894 display_gdb_prompt (0);
2895
2896 if (cmd_done
2897 && !was_sync
2898 && exec_done_display_p
2899 && (ptid_equal (inferior_ptid, null_ptid)
2900 || !is_running (inferior_ptid)))
2901 printf_unfiltered (_("completed.\n"));
2902 }
2903
2904 /* Record the frame and location we're currently stepping through. */
2905 void
2906 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2907 {
2908 struct thread_info *tp = inferior_thread ();
2909
2910 tp->control.step_frame_id = get_frame_id (frame);
2911 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2912
2913 tp->current_symtab = sal.symtab;
2914 tp->current_line = sal.line;
2915 }
2916
2917 /* Clear context switchable stepping state. */
2918
2919 void
2920 init_thread_stepping_state (struct thread_info *tss)
2921 {
2922 tss->stepping_over_breakpoint = 0;
2923 tss->step_after_step_resume_breakpoint = 0;
2924 }
2925
2926 /* Return the cached copy of the last pid/waitstatus returned by
2927 target_wait()/deprecated_target_wait_hook(). The data is actually
2928 cached by handle_inferior_event(), which gets called immediately
2929 after target_wait()/deprecated_target_wait_hook(). */
2930
2931 void
2932 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2933 {
2934 *ptidp = target_last_wait_ptid;
2935 *status = target_last_waitstatus;
2936 }
2937
2938 void
2939 nullify_last_target_wait_ptid (void)
2940 {
2941 target_last_wait_ptid = minus_one_ptid;
2942 }
2943
2944 /* Switch thread contexts. */
2945
2946 static void
2947 context_switch (ptid_t ptid)
2948 {
2949 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2950 {
2951 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2952 target_pid_to_str (inferior_ptid));
2953 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2954 target_pid_to_str (ptid));
2955 }
2956
2957 switch_to_thread (ptid);
2958 }
2959
2960 static void
2961 adjust_pc_after_break (struct execution_control_state *ecs)
2962 {
2963 struct regcache *regcache;
2964 struct gdbarch *gdbarch;
2965 struct address_space *aspace;
2966 CORE_ADDR breakpoint_pc, decr_pc;
2967
2968 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2969 we aren't, just return.
2970
2971 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2972 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2973 implemented by software breakpoints should be handled through the normal
2974 breakpoint layer.
2975
2976 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2977 different signals (SIGILL or SIGEMT for instance), but it is less
2978 clear where the PC is pointing afterwards. It may not match
2979 gdbarch_decr_pc_after_break. I don't know any specific target that
2980 generates these signals at breakpoints (the code has been in GDB since at
2981 least 1992) so I can not guess how to handle them here.
2982
2983 In earlier versions of GDB, a target with
2984 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2985 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2986 target with both of these set in GDB history, and it seems unlikely to be
2987 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2988
2989 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2990 return;
2991
2992 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2993 return;
2994
2995 /* In reverse execution, when a breakpoint is hit, the instruction
2996 under it has already been de-executed. The reported PC always
2997 points at the breakpoint address, so adjusting it further would
2998 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2999 architecture:
3000
3001 B1 0x08000000 : INSN1
3002 B2 0x08000001 : INSN2
3003 0x08000002 : INSN3
3004 PC -> 0x08000003 : INSN4
3005
3006 Say you're stopped at 0x08000003 as above. Reverse continuing
3007 from that point should hit B2 as below. Reading the PC when the
3008 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3009 been de-executed already.
3010
3011 B1 0x08000000 : INSN1
3012 B2 PC -> 0x08000001 : INSN2
3013 0x08000002 : INSN3
3014 0x08000003 : INSN4
3015
3016 We can't apply the same logic as for forward execution, because
3017 we would wrongly adjust the PC to 0x08000000, since there's a
3018 breakpoint at PC - 1. We'd then report a hit on B1, although
3019 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3020 behaviour. */
3021 if (execution_direction == EXEC_REVERSE)
3022 return;
3023
3024 /* If this target does not decrement the PC after breakpoints, then
3025 we have nothing to do. */
3026 regcache = get_thread_regcache (ecs->ptid);
3027 gdbarch = get_regcache_arch (regcache);
3028
3029 decr_pc = target_decr_pc_after_break (gdbarch);
3030 if (decr_pc == 0)
3031 return;
3032
3033 aspace = get_regcache_aspace (regcache);
3034
3035 /* Find the location where (if we've hit a breakpoint) the
3036 breakpoint would be. */
3037 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3038
3039 /* Check whether there actually is a software breakpoint inserted at
3040 that location.
3041
3042 If in non-stop mode, a race condition is possible where we've
3043 removed a breakpoint, but stop events for that breakpoint were
3044 already queued and arrive later. To suppress those spurious
3045 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3046 and retire them after a number of stop events are reported. */
3047 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3048 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3049 {
3050 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3051
3052 if (record_full_is_used ())
3053 record_full_gdb_operation_disable_set ();
3054
3055 /* When using hardware single-step, a SIGTRAP is reported for both
3056 a completed single-step and a software breakpoint. Need to
3057 differentiate between the two, as the latter needs adjusting
3058 but the former does not.
3059
3060 The SIGTRAP can be due to a completed hardware single-step only if
3061 - we didn't insert software single-step breakpoints
3062 - the thread to be examined is still the current thread
3063 - this thread is currently being stepped
3064
3065 If any of these events did not occur, we must have stopped due
3066 to hitting a software breakpoint, and have to back up to the
3067 breakpoint address.
3068
3069 As a special case, we could have hardware single-stepped a
3070 software breakpoint. In this case (prev_pc == breakpoint_pc),
3071 we also need to back up to the breakpoint address. */
3072
3073 if (singlestep_breakpoints_inserted_p
3074 || !ptid_equal (ecs->ptid, inferior_ptid)
3075 || !currently_stepping (ecs->event_thread)
3076 || ecs->event_thread->prev_pc == breakpoint_pc)
3077 regcache_write_pc (regcache, breakpoint_pc);
3078
3079 do_cleanups (old_cleanups);
3080 }
3081 }
3082
3083 static void
3084 init_infwait_state (void)
3085 {
3086 waiton_ptid = pid_to_ptid (-1);
3087 infwait_state = infwait_normal_state;
3088 }
3089
3090 static int
3091 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3092 {
3093 for (frame = get_prev_frame (frame);
3094 frame != NULL;
3095 frame = get_prev_frame (frame))
3096 {
3097 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3098 return 1;
3099 if (get_frame_type (frame) != INLINE_FRAME)
3100 break;
3101 }
3102
3103 return 0;
3104 }
3105
3106 /* Auxiliary function that handles syscall entry/return events.
3107 It returns 1 if the inferior should keep going (and GDB
3108 should ignore the event), or 0 if the event deserves to be
3109 processed. */
3110
3111 static int
3112 handle_syscall_event (struct execution_control_state *ecs)
3113 {
3114 struct regcache *regcache;
3115 int syscall_number;
3116
3117 if (!ptid_equal (ecs->ptid, inferior_ptid))
3118 context_switch (ecs->ptid);
3119
3120 regcache = get_thread_regcache (ecs->ptid);
3121 syscall_number = ecs->ws.value.syscall_number;
3122 stop_pc = regcache_read_pc (regcache);
3123
3124 if (catch_syscall_enabled () > 0
3125 && catching_syscall_number (syscall_number) > 0)
3126 {
3127 if (debug_infrun)
3128 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3129 syscall_number);
3130
3131 ecs->event_thread->control.stop_bpstat
3132 = bpstat_stop_status (get_regcache_aspace (regcache),
3133 stop_pc, ecs->ptid, &ecs->ws);
3134
3135 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3136 {
3137 /* Catchpoint hit. */
3138 return 0;
3139 }
3140 }
3141
3142 /* If no catchpoint triggered for this, then keep going. */
3143 keep_going (ecs);
3144 return 1;
3145 }
3146
3147 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3148
3149 static void
3150 fill_in_stop_func (struct gdbarch *gdbarch,
3151 struct execution_control_state *ecs)
3152 {
3153 if (!ecs->stop_func_filled_in)
3154 {
3155 /* Don't care about return value; stop_func_start and stop_func_name
3156 will both be 0 if it doesn't work. */
3157 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3158 &ecs->stop_func_start, &ecs->stop_func_end);
3159 ecs->stop_func_start
3160 += gdbarch_deprecated_function_start_offset (gdbarch);
3161
3162 if (gdbarch_skip_entrypoint_p (gdbarch))
3163 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3164 ecs->stop_func_start);
3165
3166 ecs->stop_func_filled_in = 1;
3167 }
3168 }
3169
3170
3171 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3172
3173 static enum stop_kind
3174 get_inferior_stop_soon (ptid_t ptid)
3175 {
3176 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3177
3178 gdb_assert (inf != NULL);
3179 return inf->control.stop_soon;
3180 }
3181
3182 /* Given an execution control state that has been freshly filled in by
3183 an event from the inferior, figure out what it means and take
3184 appropriate action.
3185
3186 The alternatives are:
3187
3188 1) stop_stepping and return; to really stop and return to the
3189 debugger.
3190
3191 2) keep_going and return; to wait for the next event (set
3192 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3193 once). */
3194
3195 static void
3196 handle_inferior_event (struct execution_control_state *ecs)
3197 {
3198 enum stop_kind stop_soon;
3199
3200 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3201 {
3202 /* We had an event in the inferior, but we are not interested in
3203 handling it at this level. The lower layers have already
3204 done what needs to be done, if anything.
3205
3206 One of the possible circumstances for this is when the
3207 inferior produces output for the console. The inferior has
3208 not stopped, and we are ignoring the event. Another possible
3209 circumstance is any event which the lower level knows will be
3210 reported multiple times without an intervening resume. */
3211 if (debug_infrun)
3212 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3213 prepare_to_wait (ecs);
3214 return;
3215 }
3216
3217 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3218 && target_can_async_p () && !sync_execution)
3219 {
3220 /* There were no unwaited-for children left in the target, but,
3221 we're not synchronously waiting for events either. Just
3222 ignore. Otherwise, if we were running a synchronous
3223 execution command, we need to cancel it and give the user
3224 back the terminal. */
3225 if (debug_infrun)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3228 prepare_to_wait (ecs);
3229 return;
3230 }
3231
3232 /* Cache the last pid/waitstatus. */
3233 target_last_wait_ptid = ecs->ptid;
3234 target_last_waitstatus = ecs->ws;
3235
3236 /* Always clear state belonging to the previous time we stopped. */
3237 stop_stack_dummy = STOP_NONE;
3238
3239 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3240 {
3241 /* No unwaited-for children left. IOW, all resumed children
3242 have exited. */
3243 if (debug_infrun)
3244 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3245
3246 stop_print_frame = 0;
3247 stop_stepping (ecs);
3248 return;
3249 }
3250
3251 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3252 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3253 {
3254 ecs->event_thread = find_thread_ptid (ecs->ptid);
3255 /* If it's a new thread, add it to the thread database. */
3256 if (ecs->event_thread == NULL)
3257 ecs->event_thread = add_thread (ecs->ptid);
3258
3259 /* Disable range stepping. If the next step request could use a
3260 range, this will be end up re-enabled then. */
3261 ecs->event_thread->control.may_range_step = 0;
3262 }
3263
3264 /* Dependent on valid ECS->EVENT_THREAD. */
3265 adjust_pc_after_break (ecs);
3266
3267 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3268 reinit_frame_cache ();
3269
3270 breakpoint_retire_moribund ();
3271
3272 /* First, distinguish signals caused by the debugger from signals
3273 that have to do with the program's own actions. Note that
3274 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3275 on the operating system version. Here we detect when a SIGILL or
3276 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3277 something similar for SIGSEGV, since a SIGSEGV will be generated
3278 when we're trying to execute a breakpoint instruction on a
3279 non-executable stack. This happens for call dummy breakpoints
3280 for architectures like SPARC that place call dummies on the
3281 stack. */
3282 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3283 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3284 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3285 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3286 {
3287 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3288
3289 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3290 regcache_read_pc (regcache)))
3291 {
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: Treating signal as SIGTRAP\n");
3295 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3296 }
3297 }
3298
3299 /* Mark the non-executing threads accordingly. In all-stop, all
3300 threads of all processes are stopped when we get any event
3301 reported. In non-stop mode, only the event thread stops. If
3302 we're handling a process exit in non-stop mode, there's nothing
3303 to do, as threads of the dead process are gone, and threads of
3304 any other process were left running. */
3305 if (!non_stop)
3306 set_executing (minus_one_ptid, 0);
3307 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3308 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3309 set_executing (ecs->ptid, 0);
3310
3311 switch (infwait_state)
3312 {
3313 case infwait_thread_hop_state:
3314 if (debug_infrun)
3315 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3316 break;
3317
3318 case infwait_normal_state:
3319 if (debug_infrun)
3320 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3321 break;
3322
3323 case infwait_step_watch_state:
3324 if (debug_infrun)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "infrun: infwait_step_watch_state\n");
3327
3328 ecs->stepped_after_stopped_by_watchpoint = 1;
3329 break;
3330
3331 case infwait_nonstep_watch_state:
3332 if (debug_infrun)
3333 fprintf_unfiltered (gdb_stdlog,
3334 "infrun: infwait_nonstep_watch_state\n");
3335 insert_breakpoints ();
3336
3337 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3338 handle things like signals arriving and other things happening
3339 in combination correctly? */
3340 ecs->stepped_after_stopped_by_watchpoint = 1;
3341 break;
3342
3343 default:
3344 internal_error (__FILE__, __LINE__, _("bad switch"));
3345 }
3346
3347 infwait_state = infwait_normal_state;
3348 waiton_ptid = pid_to_ptid (-1);
3349
3350 switch (ecs->ws.kind)
3351 {
3352 case TARGET_WAITKIND_LOADED:
3353 if (debug_infrun)
3354 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3355 if (!ptid_equal (ecs->ptid, inferior_ptid))
3356 context_switch (ecs->ptid);
3357 /* Ignore gracefully during startup of the inferior, as it might
3358 be the shell which has just loaded some objects, otherwise
3359 add the symbols for the newly loaded objects. Also ignore at
3360 the beginning of an attach or remote session; we will query
3361 the full list of libraries once the connection is
3362 established. */
3363
3364 stop_soon = get_inferior_stop_soon (ecs->ptid);
3365 if (stop_soon == NO_STOP_QUIETLY)
3366 {
3367 struct regcache *regcache;
3368
3369 regcache = get_thread_regcache (ecs->ptid);
3370
3371 handle_solib_event ();
3372
3373 ecs->event_thread->control.stop_bpstat
3374 = bpstat_stop_status (get_regcache_aspace (regcache),
3375 stop_pc, ecs->ptid, &ecs->ws);
3376
3377 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3378 {
3379 /* A catchpoint triggered. */
3380 process_event_stop_test (ecs);
3381 return;
3382 }
3383
3384 /* If requested, stop when the dynamic linker notifies
3385 gdb of events. This allows the user to get control
3386 and place breakpoints in initializer routines for
3387 dynamically loaded objects (among other things). */
3388 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3389 if (stop_on_solib_events)
3390 {
3391 /* Make sure we print "Stopped due to solib-event" in
3392 normal_stop. */
3393 stop_print_frame = 1;
3394
3395 stop_stepping (ecs);
3396 return;
3397 }
3398 }
3399
3400 /* If we are skipping through a shell, or through shared library
3401 loading that we aren't interested in, resume the program. If
3402 we're running the program normally, also resume. */
3403 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3404 {
3405 /* Loading of shared libraries might have changed breakpoint
3406 addresses. Make sure new breakpoints are inserted. */
3407 if (stop_soon == NO_STOP_QUIETLY
3408 && !breakpoints_always_inserted_mode ())
3409 insert_breakpoints ();
3410 resume (0, GDB_SIGNAL_0);
3411 prepare_to_wait (ecs);
3412 return;
3413 }
3414
3415 /* But stop if we're attaching or setting up a remote
3416 connection. */
3417 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3418 || stop_soon == STOP_QUIETLY_REMOTE)
3419 {
3420 if (debug_infrun)
3421 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3422 stop_stepping (ecs);
3423 return;
3424 }
3425
3426 internal_error (__FILE__, __LINE__,
3427 _("unhandled stop_soon: %d"), (int) stop_soon);
3428
3429 case TARGET_WAITKIND_SPURIOUS:
3430 if (debug_infrun)
3431 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3432 if (!ptid_equal (ecs->ptid, inferior_ptid))
3433 context_switch (ecs->ptid);
3434 resume (0, GDB_SIGNAL_0);
3435 prepare_to_wait (ecs);
3436 return;
3437
3438 case TARGET_WAITKIND_EXITED:
3439 case TARGET_WAITKIND_SIGNALLED:
3440 if (debug_infrun)
3441 {
3442 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3443 fprintf_unfiltered (gdb_stdlog,
3444 "infrun: TARGET_WAITKIND_EXITED\n");
3445 else
3446 fprintf_unfiltered (gdb_stdlog,
3447 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3448 }
3449
3450 inferior_ptid = ecs->ptid;
3451 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3452 set_current_program_space (current_inferior ()->pspace);
3453 handle_vfork_child_exec_or_exit (0);
3454 target_terminal_ours (); /* Must do this before mourn anyway. */
3455
3456 /* Clearing any previous state of convenience variables. */
3457 clear_exit_convenience_vars ();
3458
3459 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3460 {
3461 /* Record the exit code in the convenience variable $_exitcode, so
3462 that the user can inspect this again later. */
3463 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3464 (LONGEST) ecs->ws.value.integer);
3465
3466 /* Also record this in the inferior itself. */
3467 current_inferior ()->has_exit_code = 1;
3468 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3469
3470 print_exited_reason (ecs->ws.value.integer);
3471 }
3472 else
3473 {
3474 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3475 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3476
3477 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3478 {
3479 /* Set the value of the internal variable $_exitsignal,
3480 which holds the signal uncaught by the inferior. */
3481 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3482 gdbarch_gdb_signal_to_target (gdbarch,
3483 ecs->ws.value.sig));
3484 }
3485 else
3486 {
3487 /* We don't have access to the target's method used for
3488 converting between signal numbers (GDB's internal
3489 representation <-> target's representation).
3490 Therefore, we cannot do a good job at displaying this
3491 information to the user. It's better to just warn
3492 her about it (if infrun debugging is enabled), and
3493 give up. */
3494 if (debug_infrun)
3495 fprintf_filtered (gdb_stdlog, _("\
3496 Cannot fill $_exitsignal with the correct signal number.\n"));
3497 }
3498
3499 print_signal_exited_reason (ecs->ws.value.sig);
3500 }
3501
3502 gdb_flush (gdb_stdout);
3503 target_mourn_inferior ();
3504 singlestep_breakpoints_inserted_p = 0;
3505 cancel_single_step_breakpoints ();
3506 stop_print_frame = 0;
3507 stop_stepping (ecs);
3508 return;
3509
3510 /* The following are the only cases in which we keep going;
3511 the above cases end in a continue or goto. */
3512 case TARGET_WAITKIND_FORKED:
3513 case TARGET_WAITKIND_VFORKED:
3514 if (debug_infrun)
3515 {
3516 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3518 else
3519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3520 }
3521
3522 /* Check whether the inferior is displaced stepping. */
3523 {
3524 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3525 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3526 struct displaced_step_inferior_state *displaced
3527 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3528
3529 /* If checking displaced stepping is supported, and thread
3530 ecs->ptid is displaced stepping. */
3531 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3532 {
3533 struct inferior *parent_inf
3534 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3535 struct regcache *child_regcache;
3536 CORE_ADDR parent_pc;
3537
3538 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3539 indicating that the displaced stepping of syscall instruction
3540 has been done. Perform cleanup for parent process here. Note
3541 that this operation also cleans up the child process for vfork,
3542 because their pages are shared. */
3543 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3544
3545 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3546 {
3547 /* Restore scratch pad for child process. */
3548 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3549 }
3550
3551 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3552 the child's PC is also within the scratchpad. Set the child's PC
3553 to the parent's PC value, which has already been fixed up.
3554 FIXME: we use the parent's aspace here, although we're touching
3555 the child, because the child hasn't been added to the inferior
3556 list yet at this point. */
3557
3558 child_regcache
3559 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3560 gdbarch,
3561 parent_inf->aspace);
3562 /* Read PC value of parent process. */
3563 parent_pc = regcache_read_pc (regcache);
3564
3565 if (debug_displaced)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "displaced: write child pc from %s to %s\n",
3568 paddress (gdbarch,
3569 regcache_read_pc (child_regcache)),
3570 paddress (gdbarch, parent_pc));
3571
3572 regcache_write_pc (child_regcache, parent_pc);
3573 }
3574 }
3575
3576 if (!ptid_equal (ecs->ptid, inferior_ptid))
3577 context_switch (ecs->ptid);
3578
3579 /* Immediately detach breakpoints from the child before there's
3580 any chance of letting the user delete breakpoints from the
3581 breakpoint lists. If we don't do this early, it's easy to
3582 leave left over traps in the child, vis: "break foo; catch
3583 fork; c; <fork>; del; c; <child calls foo>". We only follow
3584 the fork on the last `continue', and by that time the
3585 breakpoint at "foo" is long gone from the breakpoint table.
3586 If we vforked, then we don't need to unpatch here, since both
3587 parent and child are sharing the same memory pages; we'll
3588 need to unpatch at follow/detach time instead to be certain
3589 that new breakpoints added between catchpoint hit time and
3590 vfork follow are detached. */
3591 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3592 {
3593 /* This won't actually modify the breakpoint list, but will
3594 physically remove the breakpoints from the child. */
3595 detach_breakpoints (ecs->ws.value.related_pid);
3596 }
3597
3598 if (singlestep_breakpoints_inserted_p)
3599 {
3600 /* Pull the single step breakpoints out of the target. */
3601 remove_single_step_breakpoints ();
3602 singlestep_breakpoints_inserted_p = 0;
3603 }
3604
3605 /* In case the event is caught by a catchpoint, remember that
3606 the event is to be followed at the next resume of the thread,
3607 and not immediately. */
3608 ecs->event_thread->pending_follow = ecs->ws;
3609
3610 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3611
3612 ecs->event_thread->control.stop_bpstat
3613 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3614 stop_pc, ecs->ptid, &ecs->ws);
3615
3616 /* If no catchpoint triggered for this, then keep going. Note
3617 that we're interested in knowing the bpstat actually causes a
3618 stop, not just if it may explain the signal. Software
3619 watchpoints, for example, always appear in the bpstat. */
3620 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3621 {
3622 ptid_t parent;
3623 ptid_t child;
3624 int should_resume;
3625 int follow_child
3626 = (follow_fork_mode_string == follow_fork_mode_child);
3627
3628 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3629
3630 should_resume = follow_fork ();
3631
3632 parent = ecs->ptid;
3633 child = ecs->ws.value.related_pid;
3634
3635 /* In non-stop mode, also resume the other branch. */
3636 if (non_stop && !detach_fork)
3637 {
3638 if (follow_child)
3639 switch_to_thread (parent);
3640 else
3641 switch_to_thread (child);
3642
3643 ecs->event_thread = inferior_thread ();
3644 ecs->ptid = inferior_ptid;
3645 keep_going (ecs);
3646 }
3647
3648 if (follow_child)
3649 switch_to_thread (child);
3650 else
3651 switch_to_thread (parent);
3652
3653 ecs->event_thread = inferior_thread ();
3654 ecs->ptid = inferior_ptid;
3655
3656 if (should_resume)
3657 keep_going (ecs);
3658 else
3659 stop_stepping (ecs);
3660 return;
3661 }
3662 process_event_stop_test (ecs);
3663 return;
3664
3665 case TARGET_WAITKIND_VFORK_DONE:
3666 /* Done with the shared memory region. Re-insert breakpoints in
3667 the parent, and keep going. */
3668
3669 if (debug_infrun)
3670 fprintf_unfiltered (gdb_stdlog,
3671 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3672
3673 if (!ptid_equal (ecs->ptid, inferior_ptid))
3674 context_switch (ecs->ptid);
3675
3676 current_inferior ()->waiting_for_vfork_done = 0;
3677 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3678 /* This also takes care of reinserting breakpoints in the
3679 previously locked inferior. */
3680 keep_going (ecs);
3681 return;
3682
3683 case TARGET_WAITKIND_EXECD:
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3686
3687 if (!ptid_equal (ecs->ptid, inferior_ptid))
3688 context_switch (ecs->ptid);
3689
3690 singlestep_breakpoints_inserted_p = 0;
3691 cancel_single_step_breakpoints ();
3692
3693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3694
3695 /* Do whatever is necessary to the parent branch of the vfork. */
3696 handle_vfork_child_exec_or_exit (1);
3697
3698 /* This causes the eventpoints and symbol table to be reset.
3699 Must do this now, before trying to determine whether to
3700 stop. */
3701 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3702
3703 ecs->event_thread->control.stop_bpstat
3704 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3705 stop_pc, ecs->ptid, &ecs->ws);
3706
3707 /* Note that this may be referenced from inside
3708 bpstat_stop_status above, through inferior_has_execd. */
3709 xfree (ecs->ws.value.execd_pathname);
3710 ecs->ws.value.execd_pathname = NULL;
3711
3712 /* If no catchpoint triggered for this, then keep going. */
3713 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3714 {
3715 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3716 keep_going (ecs);
3717 return;
3718 }
3719 process_event_stop_test (ecs);
3720 return;
3721
3722 /* Be careful not to try to gather much state about a thread
3723 that's in a syscall. It's frequently a losing proposition. */
3724 case TARGET_WAITKIND_SYSCALL_ENTRY:
3725 if (debug_infrun)
3726 fprintf_unfiltered (gdb_stdlog,
3727 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3728 /* Getting the current syscall number. */
3729 if (handle_syscall_event (ecs) == 0)
3730 process_event_stop_test (ecs);
3731 return;
3732
3733 /* Before examining the threads further, step this thread to
3734 get it entirely out of the syscall. (We get notice of the
3735 event when the thread is just on the verge of exiting a
3736 syscall. Stepping one instruction seems to get it back
3737 into user code.) */
3738 case TARGET_WAITKIND_SYSCALL_RETURN:
3739 if (debug_infrun)
3740 fprintf_unfiltered (gdb_stdlog,
3741 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3742 if (handle_syscall_event (ecs) == 0)
3743 process_event_stop_test (ecs);
3744 return;
3745
3746 case TARGET_WAITKIND_STOPPED:
3747 if (debug_infrun)
3748 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3749 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3750 handle_signal_stop (ecs);
3751 return;
3752
3753 case TARGET_WAITKIND_NO_HISTORY:
3754 if (debug_infrun)
3755 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3756 /* Reverse execution: target ran out of history info. */
3757
3758 /* Pull the single step breakpoints out of the target. */
3759 if (singlestep_breakpoints_inserted_p)
3760 {
3761 if (!ptid_equal (ecs->ptid, inferior_ptid))
3762 context_switch (ecs->ptid);
3763 remove_single_step_breakpoints ();
3764 singlestep_breakpoints_inserted_p = 0;
3765 }
3766 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3767 print_no_history_reason ();
3768 stop_stepping (ecs);
3769 return;
3770 }
3771 }
3772
3773 /* Come here when the program has stopped with a signal. */
3774
3775 static void
3776 handle_signal_stop (struct execution_control_state *ecs)
3777 {
3778 struct frame_info *frame;
3779 struct gdbarch *gdbarch;
3780 int stopped_by_watchpoint;
3781 enum stop_kind stop_soon;
3782 int random_signal;
3783
3784 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
3785
3786 /* Do we need to clean up the state of a thread that has
3787 completed a displaced single-step? (Doing so usually affects
3788 the PC, so do it here, before we set stop_pc.) */
3789 displaced_step_fixup (ecs->ptid,
3790 ecs->event_thread->suspend.stop_signal);
3791
3792 /* If we either finished a single-step or hit a breakpoint, but
3793 the user wanted this thread to be stopped, pretend we got a
3794 SIG0 (generic unsignaled stop). */
3795 if (ecs->event_thread->stop_requested
3796 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3797 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3798
3799 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3800
3801 if (debug_infrun)
3802 {
3803 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3805 struct cleanup *old_chain = save_inferior_ptid ();
3806
3807 inferior_ptid = ecs->ptid;
3808
3809 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3810 paddress (gdbarch, stop_pc));
3811 if (target_stopped_by_watchpoint ())
3812 {
3813 CORE_ADDR addr;
3814
3815 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3816
3817 if (target_stopped_data_address (&current_target, &addr))
3818 fprintf_unfiltered (gdb_stdlog,
3819 "infrun: stopped data address = %s\n",
3820 paddress (gdbarch, addr));
3821 else
3822 fprintf_unfiltered (gdb_stdlog,
3823 "infrun: (no data address available)\n");
3824 }
3825
3826 do_cleanups (old_chain);
3827 }
3828
3829 /* This is originated from start_remote(), start_inferior() and
3830 shared libraries hook functions. */
3831 stop_soon = get_inferior_stop_soon (ecs->ptid);
3832 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3833 {
3834 if (!ptid_equal (ecs->ptid, inferior_ptid))
3835 context_switch (ecs->ptid);
3836 if (debug_infrun)
3837 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3838 stop_print_frame = 1;
3839 stop_stepping (ecs);
3840 return;
3841 }
3842
3843 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3844 && stop_after_trap)
3845 {
3846 if (!ptid_equal (ecs->ptid, inferior_ptid))
3847 context_switch (ecs->ptid);
3848 if (debug_infrun)
3849 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3850 stop_print_frame = 0;
3851 stop_stepping (ecs);
3852 return;
3853 }
3854
3855 /* This originates from attach_command(). We need to overwrite
3856 the stop_signal here, because some kernels don't ignore a
3857 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3858 See more comments in inferior.h. On the other hand, if we
3859 get a non-SIGSTOP, report it to the user - assume the backend
3860 will handle the SIGSTOP if it should show up later.
3861
3862 Also consider that the attach is complete when we see a
3863 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3864 target extended-remote report it instead of a SIGSTOP
3865 (e.g. gdbserver). We already rely on SIGTRAP being our
3866 signal, so this is no exception.
3867
3868 Also consider that the attach is complete when we see a
3869 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3870 the target to stop all threads of the inferior, in case the
3871 low level attach operation doesn't stop them implicitly. If
3872 they weren't stopped implicitly, then the stub will report a
3873 GDB_SIGNAL_0, meaning: stopped for no particular reason
3874 other than GDB's request. */
3875 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3876 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3877 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3878 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3879 {
3880 stop_print_frame = 1;
3881 stop_stepping (ecs);
3882 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3883 return;
3884 }
3885
3886 if (stepping_past_singlestep_breakpoint)
3887 {
3888 gdb_assert (singlestep_breakpoints_inserted_p);
3889 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3890 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3891
3892 stepping_past_singlestep_breakpoint = 0;
3893
3894 /* We've either finished single-stepping past the single-step
3895 breakpoint, or stopped for some other reason. It would be nice if
3896 we could tell, but we can't reliably. */
3897 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3898 {
3899 if (debug_infrun)
3900 fprintf_unfiltered (gdb_stdlog,
3901 "infrun: stepping_past_"
3902 "singlestep_breakpoint\n");
3903 /* Pull the single step breakpoints out of the target. */
3904 if (!ptid_equal (ecs->ptid, inferior_ptid))
3905 context_switch (ecs->ptid);
3906 remove_single_step_breakpoints ();
3907 singlestep_breakpoints_inserted_p = 0;
3908
3909 ecs->event_thread->control.trap_expected = 0;
3910
3911 context_switch (saved_singlestep_ptid);
3912 if (deprecated_context_hook)
3913 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3914
3915 resume (1, GDB_SIGNAL_0);
3916 prepare_to_wait (ecs);
3917 return;
3918 }
3919 }
3920
3921 if (!ptid_equal (deferred_step_ptid, null_ptid))
3922 {
3923 /* In non-stop mode, there's never a deferred_step_ptid set. */
3924 gdb_assert (!non_stop);
3925
3926 /* If we stopped for some other reason than single-stepping, ignore
3927 the fact that we were supposed to switch back. */
3928 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3929 {
3930 if (debug_infrun)
3931 fprintf_unfiltered (gdb_stdlog,
3932 "infrun: handling deferred step\n");
3933
3934 /* Pull the single step breakpoints out of the target. */
3935 if (singlestep_breakpoints_inserted_p)
3936 {
3937 if (!ptid_equal (ecs->ptid, inferior_ptid))
3938 context_switch (ecs->ptid);
3939 remove_single_step_breakpoints ();
3940 singlestep_breakpoints_inserted_p = 0;
3941 }
3942
3943 ecs->event_thread->control.trap_expected = 0;
3944
3945 context_switch (deferred_step_ptid);
3946 deferred_step_ptid = null_ptid;
3947 /* Suppress spurious "Switching to ..." message. */
3948 previous_inferior_ptid = inferior_ptid;
3949
3950 resume (1, GDB_SIGNAL_0);
3951 prepare_to_wait (ecs);
3952 return;
3953 }
3954
3955 deferred_step_ptid = null_ptid;
3956 }
3957
3958 /* See if a thread hit a thread-specific breakpoint that was meant for
3959 another thread. If so, then step that thread past the breakpoint,
3960 and continue it. */
3961
3962 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3963 {
3964 int thread_hop_needed = 0;
3965 struct address_space *aspace =
3966 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3967
3968 /* Check if a regular breakpoint has been hit before checking
3969 for a potential single step breakpoint. Otherwise, GDB will
3970 not see this breakpoint hit when stepping onto breakpoints. */
3971 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3972 {
3973 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3974 thread_hop_needed = 1;
3975 }
3976 else if (singlestep_breakpoints_inserted_p)
3977 {
3978 /* We have not context switched yet, so this should be true
3979 no matter which thread hit the singlestep breakpoint. */
3980 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3981 if (debug_infrun)
3982 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3983 "trap for %s\n",
3984 target_pid_to_str (ecs->ptid));
3985
3986 /* The call to in_thread_list is necessary because PTIDs sometimes
3987 change when we go from single-threaded to multi-threaded. If
3988 the singlestep_ptid is still in the list, assume that it is
3989 really different from ecs->ptid. */
3990 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3991 && in_thread_list (singlestep_ptid))
3992 {
3993 /* If the PC of the thread we were trying to single-step
3994 has changed, discard this event (which we were going
3995 to ignore anyway), and pretend we saw that thread
3996 trap. This prevents us continuously moving the
3997 single-step breakpoint forward, one instruction at a
3998 time. If the PC has changed, then the thread we were
3999 trying to single-step has trapped or been signalled,
4000 but the event has not been reported to GDB yet.
4001
4002 There might be some cases where this loses signal
4003 information, if a signal has arrived at exactly the
4004 same time that the PC changed, but this is the best
4005 we can do with the information available. Perhaps we
4006 should arrange to report all events for all threads
4007 when they stop, or to re-poll the remote looking for
4008 this particular thread (i.e. temporarily enable
4009 schedlock). */
4010
4011 CORE_ADDR new_singlestep_pc
4012 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
4013
4014 if (new_singlestep_pc != singlestep_pc)
4015 {
4016 enum gdb_signal stop_signal;
4017
4018 if (debug_infrun)
4019 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
4020 " but expected thread advanced also\n");
4021
4022 /* The current context still belongs to
4023 singlestep_ptid. Don't swap here, since that's
4024 the context we want to use. Just fudge our
4025 state and continue. */
4026 stop_signal = ecs->event_thread->suspend.stop_signal;
4027 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4028 ecs->ptid = singlestep_ptid;
4029 ecs->event_thread = find_thread_ptid (ecs->ptid);
4030 ecs->event_thread->suspend.stop_signal = stop_signal;
4031 stop_pc = new_singlestep_pc;
4032 }
4033 else
4034 {
4035 if (debug_infrun)
4036 fprintf_unfiltered (gdb_stdlog,
4037 "infrun: unexpected thread\n");
4038
4039 thread_hop_needed = 1;
4040 stepping_past_singlestep_breakpoint = 1;
4041 saved_singlestep_ptid = singlestep_ptid;
4042 }
4043 }
4044 }
4045
4046 if (thread_hop_needed)
4047 {
4048 struct regcache *thread_regcache;
4049 int remove_status = 0;
4050
4051 if (debug_infrun)
4052 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
4053
4054 /* Switch context before touching inferior memory, the
4055 previous thread may have exited. */
4056 if (!ptid_equal (inferior_ptid, ecs->ptid))
4057 context_switch (ecs->ptid);
4058
4059 /* Saw a breakpoint, but it was hit by the wrong thread.
4060 Just continue. */
4061
4062 if (singlestep_breakpoints_inserted_p)
4063 {
4064 /* Pull the single step breakpoints out of the target. */
4065 remove_single_step_breakpoints ();
4066 singlestep_breakpoints_inserted_p = 0;
4067 }
4068
4069 /* If the arch can displace step, don't remove the
4070 breakpoints. */
4071 thread_regcache = get_thread_regcache (ecs->ptid);
4072 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4073 remove_status = remove_breakpoints ();
4074
4075 /* Did we fail to remove breakpoints? If so, try
4076 to set the PC past the bp. (There's at least
4077 one situation in which we can fail to remove
4078 the bp's: On HP-UX's that use ttrace, we can't
4079 change the address space of a vforking child
4080 process until the child exits (well, okay, not
4081 then either :-) or execs. */
4082 if (remove_status != 0)
4083 error (_("Cannot step over breakpoint hit in wrong thread"));
4084 else
4085 { /* Single step */
4086 if (!non_stop)
4087 {
4088 /* Only need to require the next event from this
4089 thread in all-stop mode. */
4090 waiton_ptid = ecs->ptid;
4091 infwait_state = infwait_thread_hop_state;
4092 }
4093
4094 ecs->event_thread->stepping_over_breakpoint = 1;
4095 keep_going (ecs);
4096 return;
4097 }
4098 }
4099 }
4100
4101 /* See if something interesting happened to the non-current thread. If
4102 so, then switch to that thread. */
4103 if (!ptid_equal (ecs->ptid, inferior_ptid))
4104 {
4105 if (debug_infrun)
4106 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4107
4108 context_switch (ecs->ptid);
4109
4110 if (deprecated_context_hook)
4111 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4112 }
4113
4114 /* At this point, get hold of the now-current thread's frame. */
4115 frame = get_current_frame ();
4116 gdbarch = get_frame_arch (frame);
4117
4118 if (singlestep_breakpoints_inserted_p)
4119 {
4120 /* Pull the single step breakpoints out of the target. */
4121 remove_single_step_breakpoints ();
4122 singlestep_breakpoints_inserted_p = 0;
4123 }
4124
4125 if (ecs->stepped_after_stopped_by_watchpoint)
4126 stopped_by_watchpoint = 0;
4127 else
4128 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4129
4130 /* If necessary, step over this watchpoint. We'll be back to display
4131 it in a moment. */
4132 if (stopped_by_watchpoint
4133 && (target_have_steppable_watchpoint
4134 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4135 {
4136 /* At this point, we are stopped at an instruction which has
4137 attempted to write to a piece of memory under control of
4138 a watchpoint. The instruction hasn't actually executed
4139 yet. If we were to evaluate the watchpoint expression
4140 now, we would get the old value, and therefore no change
4141 would seem to have occurred.
4142
4143 In order to make watchpoints work `right', we really need
4144 to complete the memory write, and then evaluate the
4145 watchpoint expression. We do this by single-stepping the
4146 target.
4147
4148 It may not be necessary to disable the watchpoint to stop over
4149 it. For example, the PA can (with some kernel cooperation)
4150 single step over a watchpoint without disabling the watchpoint.
4151
4152 It is far more common to need to disable a watchpoint to step
4153 the inferior over it. If we have non-steppable watchpoints,
4154 we must disable the current watchpoint; it's simplest to
4155 disable all watchpoints and breakpoints. */
4156 int hw_step = 1;
4157
4158 if (!target_have_steppable_watchpoint)
4159 {
4160 remove_breakpoints ();
4161 /* See comment in resume why we need to stop bypassing signals
4162 while breakpoints have been removed. */
4163 target_pass_signals (0, NULL);
4164 }
4165 /* Single step */
4166 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4167 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4168 waiton_ptid = ecs->ptid;
4169 if (target_have_steppable_watchpoint)
4170 infwait_state = infwait_step_watch_state;
4171 else
4172 infwait_state = infwait_nonstep_watch_state;
4173 prepare_to_wait (ecs);
4174 return;
4175 }
4176
4177 ecs->event_thread->stepping_over_breakpoint = 0;
4178 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4179 ecs->event_thread->control.stop_step = 0;
4180 stop_print_frame = 1;
4181 stopped_by_random_signal = 0;
4182
4183 /* Hide inlined functions starting here, unless we just performed stepi or
4184 nexti. After stepi and nexti, always show the innermost frame (not any
4185 inline function call sites). */
4186 if (ecs->event_thread->control.step_range_end != 1)
4187 {
4188 struct address_space *aspace =
4189 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4190
4191 /* skip_inline_frames is expensive, so we avoid it if we can
4192 determine that the address is one where functions cannot have
4193 been inlined. This improves performance with inferiors that
4194 load a lot of shared libraries, because the solib event
4195 breakpoint is defined as the address of a function (i.e. not
4196 inline). Note that we have to check the previous PC as well
4197 as the current one to catch cases when we have just
4198 single-stepped off a breakpoint prior to reinstating it.
4199 Note that we're assuming that the code we single-step to is
4200 not inline, but that's not definitive: there's nothing
4201 preventing the event breakpoint function from containing
4202 inlined code, and the single-step ending up there. If the
4203 user had set a breakpoint on that inlined code, the missing
4204 skip_inline_frames call would break things. Fortunately
4205 that's an extremely unlikely scenario. */
4206 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4207 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4208 && ecs->event_thread->control.trap_expected
4209 && pc_at_non_inline_function (aspace,
4210 ecs->event_thread->prev_pc,
4211 &ecs->ws)))
4212 {
4213 skip_inline_frames (ecs->ptid);
4214
4215 /* Re-fetch current thread's frame in case that invalidated
4216 the frame cache. */
4217 frame = get_current_frame ();
4218 gdbarch = get_frame_arch (frame);
4219 }
4220 }
4221
4222 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4223 && ecs->event_thread->control.trap_expected
4224 && gdbarch_single_step_through_delay_p (gdbarch)
4225 && currently_stepping (ecs->event_thread))
4226 {
4227 /* We're trying to step off a breakpoint. Turns out that we're
4228 also on an instruction that needs to be stepped multiple
4229 times before it's been fully executing. E.g., architectures
4230 with a delay slot. It needs to be stepped twice, once for
4231 the instruction and once for the delay slot. */
4232 int step_through_delay
4233 = gdbarch_single_step_through_delay (gdbarch, frame);
4234
4235 if (debug_infrun && step_through_delay)
4236 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4237 if (ecs->event_thread->control.step_range_end == 0
4238 && step_through_delay)
4239 {
4240 /* The user issued a continue when stopped at a breakpoint.
4241 Set up for another trap and get out of here. */
4242 ecs->event_thread->stepping_over_breakpoint = 1;
4243 keep_going (ecs);
4244 return;
4245 }
4246 else if (step_through_delay)
4247 {
4248 /* The user issued a step when stopped at a breakpoint.
4249 Maybe we should stop, maybe we should not - the delay
4250 slot *might* correspond to a line of source. In any
4251 case, don't decide that here, just set
4252 ecs->stepping_over_breakpoint, making sure we
4253 single-step again before breakpoints are re-inserted. */
4254 ecs->event_thread->stepping_over_breakpoint = 1;
4255 }
4256 }
4257
4258 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4259 handles this event. */
4260 ecs->event_thread->control.stop_bpstat
4261 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4262 stop_pc, ecs->ptid, &ecs->ws);
4263
4264 /* Following in case break condition called a
4265 function. */
4266 stop_print_frame = 1;
4267
4268 /* This is where we handle "moribund" watchpoints. Unlike
4269 software breakpoints traps, hardware watchpoint traps are
4270 always distinguishable from random traps. If no high-level
4271 watchpoint is associated with the reported stop data address
4272 anymore, then the bpstat does not explain the signal ---
4273 simply make sure to ignore it if `stopped_by_watchpoint' is
4274 set. */
4275
4276 if (debug_infrun
4277 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4278 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4279 GDB_SIGNAL_TRAP)
4280 && stopped_by_watchpoint)
4281 fprintf_unfiltered (gdb_stdlog,
4282 "infrun: no user watchpoint explains "
4283 "watchpoint SIGTRAP, ignoring\n");
4284
4285 /* NOTE: cagney/2003-03-29: These checks for a random signal
4286 at one stage in the past included checks for an inferior
4287 function call's call dummy's return breakpoint. The original
4288 comment, that went with the test, read:
4289
4290 ``End of a stack dummy. Some systems (e.g. Sony news) give
4291 another signal besides SIGTRAP, so check here as well as
4292 above.''
4293
4294 If someone ever tries to get call dummys on a
4295 non-executable stack to work (where the target would stop
4296 with something like a SIGSEGV), then those tests might need
4297 to be re-instated. Given, however, that the tests were only
4298 enabled when momentary breakpoints were not being used, I
4299 suspect that it won't be the case.
4300
4301 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4302 be necessary for call dummies on a non-executable stack on
4303 SPARC. */
4304
4305 /* See if the breakpoints module can explain the signal. */
4306 random_signal
4307 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4308 ecs->event_thread->suspend.stop_signal);
4309
4310 /* If not, perhaps stepping/nexting can. */
4311 if (random_signal)
4312 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4313 && currently_stepping (ecs->event_thread));
4314
4315 /* No? Perhaps we got a moribund watchpoint. */
4316 if (random_signal)
4317 random_signal = !stopped_by_watchpoint;
4318
4319 /* For the program's own signals, act according to
4320 the signal handling tables. */
4321
4322 if (random_signal)
4323 {
4324 /* Signal not for debugging purposes. */
4325 int printed = 0;
4326 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4327 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4328
4329 if (debug_infrun)
4330 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4331 gdb_signal_to_symbol_string (stop_signal));
4332
4333 stopped_by_random_signal = 1;
4334
4335 if (signal_print[ecs->event_thread->suspend.stop_signal])
4336 {
4337 printed = 1;
4338 target_terminal_ours_for_output ();
4339 print_signal_received_reason
4340 (ecs->event_thread->suspend.stop_signal);
4341 }
4342 /* Always stop on signals if we're either just gaining control
4343 of the program, or the user explicitly requested this thread
4344 to remain stopped. */
4345 if (stop_soon != NO_STOP_QUIETLY
4346 || ecs->event_thread->stop_requested
4347 || (!inf->detaching
4348 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4349 {
4350 stop_stepping (ecs);
4351 return;
4352 }
4353 /* If not going to stop, give terminal back
4354 if we took it away. */
4355 else if (printed)
4356 target_terminal_inferior ();
4357
4358 /* Clear the signal if it should not be passed. */
4359 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4360 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4361
4362 if (ecs->event_thread->prev_pc == stop_pc
4363 && ecs->event_thread->control.trap_expected
4364 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4365 {
4366 /* We were just starting a new sequence, attempting to
4367 single-step off of a breakpoint and expecting a SIGTRAP.
4368 Instead this signal arrives. This signal will take us out
4369 of the stepping range so GDB needs to remember to, when
4370 the signal handler returns, resume stepping off that
4371 breakpoint. */
4372 /* To simplify things, "continue" is forced to use the same
4373 code paths as single-step - set a breakpoint at the
4374 signal return address and then, once hit, step off that
4375 breakpoint. */
4376 if (debug_infrun)
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: signal arrived while stepping over "
4379 "breakpoint\n");
4380
4381 insert_hp_step_resume_breakpoint_at_frame (frame);
4382 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4383 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4384 ecs->event_thread->control.trap_expected = 0;
4385
4386 /* If we were nexting/stepping some other thread, switch to
4387 it, so that we don't continue it, losing control. */
4388 if (!switch_back_to_stepped_thread (ecs))
4389 keep_going (ecs);
4390 return;
4391 }
4392
4393 if (ecs->event_thread->control.step_range_end != 0
4394 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4395 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4396 && frame_id_eq (get_stack_frame_id (frame),
4397 ecs->event_thread->control.step_stack_frame_id)
4398 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4399 {
4400 /* The inferior is about to take a signal that will take it
4401 out of the single step range. Set a breakpoint at the
4402 current PC (which is presumably where the signal handler
4403 will eventually return) and then allow the inferior to
4404 run free.
4405
4406 Note that this is only needed for a signal delivered
4407 while in the single-step range. Nested signals aren't a
4408 problem as they eventually all return. */
4409 if (debug_infrun)
4410 fprintf_unfiltered (gdb_stdlog,
4411 "infrun: signal may take us out of "
4412 "single-step range\n");
4413
4414 insert_hp_step_resume_breakpoint_at_frame (frame);
4415 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4416 ecs->event_thread->control.trap_expected = 0;
4417 keep_going (ecs);
4418 return;
4419 }
4420
4421 /* Note: step_resume_breakpoint may be non-NULL. This occures
4422 when either there's a nested signal, or when there's a
4423 pending signal enabled just as the signal handler returns
4424 (leaving the inferior at the step-resume-breakpoint without
4425 actually executing it). Either way continue until the
4426 breakpoint is really hit. */
4427
4428 if (!switch_back_to_stepped_thread (ecs))
4429 {
4430 if (debug_infrun)
4431 fprintf_unfiltered (gdb_stdlog,
4432 "infrun: random signal, keep going\n");
4433
4434 keep_going (ecs);
4435 }
4436 return;
4437 }
4438
4439 process_event_stop_test (ecs);
4440 }
4441
4442 /* Come here when we've got some debug event / signal we can explain
4443 (IOW, not a random signal), and test whether it should cause a
4444 stop, or whether we should resume the inferior (transparently).
4445 E.g., could be a breakpoint whose condition evaluates false; we
4446 could be still stepping within the line; etc. */
4447
4448 static void
4449 process_event_stop_test (struct execution_control_state *ecs)
4450 {
4451 struct symtab_and_line stop_pc_sal;
4452 struct frame_info *frame;
4453 struct gdbarch *gdbarch;
4454 CORE_ADDR jmp_buf_pc;
4455 struct bpstat_what what;
4456
4457 /* Handle cases caused by hitting a breakpoint. */
4458
4459 frame = get_current_frame ();
4460 gdbarch = get_frame_arch (frame);
4461
4462 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4463
4464 if (what.call_dummy)
4465 {
4466 stop_stack_dummy = what.call_dummy;
4467 }
4468
4469 /* If we hit an internal event that triggers symbol changes, the
4470 current frame will be invalidated within bpstat_what (e.g., if we
4471 hit an internal solib event). Re-fetch it. */
4472 frame = get_current_frame ();
4473 gdbarch = get_frame_arch (frame);
4474
4475 switch (what.main_action)
4476 {
4477 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4478 /* If we hit the breakpoint at longjmp while stepping, we
4479 install a momentary breakpoint at the target of the
4480 jmp_buf. */
4481
4482 if (debug_infrun)
4483 fprintf_unfiltered (gdb_stdlog,
4484 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4485
4486 ecs->event_thread->stepping_over_breakpoint = 1;
4487
4488 if (what.is_longjmp)
4489 {
4490 struct value *arg_value;
4491
4492 /* If we set the longjmp breakpoint via a SystemTap probe,
4493 then use it to extract the arguments. The destination PC
4494 is the third argument to the probe. */
4495 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4496 if (arg_value)
4497 jmp_buf_pc = value_as_address (arg_value);
4498 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4499 || !gdbarch_get_longjmp_target (gdbarch,
4500 frame, &jmp_buf_pc))
4501 {
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4505 "(!gdbarch_get_longjmp_target)\n");
4506 keep_going (ecs);
4507 return;
4508 }
4509
4510 /* Insert a breakpoint at resume address. */
4511 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4512 }
4513 else
4514 check_exception_resume (ecs, frame);
4515 keep_going (ecs);
4516 return;
4517
4518 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4519 {
4520 struct frame_info *init_frame;
4521
4522 /* There are several cases to consider.
4523
4524 1. The initiating frame no longer exists. In this case we
4525 must stop, because the exception or longjmp has gone too
4526 far.
4527
4528 2. The initiating frame exists, and is the same as the
4529 current frame. We stop, because the exception or longjmp
4530 has been caught.
4531
4532 3. The initiating frame exists and is different from the
4533 current frame. This means the exception or longjmp has
4534 been caught beneath the initiating frame, so keep going.
4535
4536 4. longjmp breakpoint has been placed just to protect
4537 against stale dummy frames and user is not interested in
4538 stopping around longjmps. */
4539
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4543
4544 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4545 != NULL);
4546 delete_exception_resume_breakpoint (ecs->event_thread);
4547
4548 if (what.is_longjmp)
4549 {
4550 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4551
4552 if (!frame_id_p (ecs->event_thread->initiating_frame))
4553 {
4554 /* Case 4. */
4555 keep_going (ecs);
4556 return;
4557 }
4558 }
4559
4560 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4561
4562 if (init_frame)
4563 {
4564 struct frame_id current_id
4565 = get_frame_id (get_current_frame ());
4566 if (frame_id_eq (current_id,
4567 ecs->event_thread->initiating_frame))
4568 {
4569 /* Case 2. Fall through. */
4570 }
4571 else
4572 {
4573 /* Case 3. */
4574 keep_going (ecs);
4575 return;
4576 }
4577 }
4578
4579 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4580 exists. */
4581 delete_step_resume_breakpoint (ecs->event_thread);
4582
4583 ecs->event_thread->control.stop_step = 1;
4584 print_end_stepping_range_reason ();
4585 stop_stepping (ecs);
4586 }
4587 return;
4588
4589 case BPSTAT_WHAT_SINGLE:
4590 if (debug_infrun)
4591 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4592 ecs->event_thread->stepping_over_breakpoint = 1;
4593 /* Still need to check other stuff, at least the case where we
4594 are stepping and step out of the right range. */
4595 break;
4596
4597 case BPSTAT_WHAT_STEP_RESUME:
4598 if (debug_infrun)
4599 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4600
4601 delete_step_resume_breakpoint (ecs->event_thread);
4602 if (ecs->event_thread->control.proceed_to_finish
4603 && execution_direction == EXEC_REVERSE)
4604 {
4605 struct thread_info *tp = ecs->event_thread;
4606
4607 /* We are finishing a function in reverse, and just hit the
4608 step-resume breakpoint at the start address of the
4609 function, and we're almost there -- just need to back up
4610 by one more single-step, which should take us back to the
4611 function call. */
4612 tp->control.step_range_start = tp->control.step_range_end = 1;
4613 keep_going (ecs);
4614 return;
4615 }
4616 fill_in_stop_func (gdbarch, ecs);
4617 if (stop_pc == ecs->stop_func_start
4618 && execution_direction == EXEC_REVERSE)
4619 {
4620 /* We are stepping over a function call in reverse, and just
4621 hit the step-resume breakpoint at the start address of
4622 the function. Go back to single-stepping, which should
4623 take us back to the function call. */
4624 ecs->event_thread->stepping_over_breakpoint = 1;
4625 keep_going (ecs);
4626 return;
4627 }
4628 break;
4629
4630 case BPSTAT_WHAT_STOP_NOISY:
4631 if (debug_infrun)
4632 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4633 stop_print_frame = 1;
4634
4635 /* We are about to nuke the step_resume_breakpointt via the
4636 cleanup chain, so no need to worry about it here. */
4637
4638 stop_stepping (ecs);
4639 return;
4640
4641 case BPSTAT_WHAT_STOP_SILENT:
4642 if (debug_infrun)
4643 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4644 stop_print_frame = 0;
4645
4646 /* We are about to nuke the step_resume_breakpoin via the
4647 cleanup chain, so no need to worry about it here. */
4648
4649 stop_stepping (ecs);
4650 return;
4651
4652 case BPSTAT_WHAT_HP_STEP_RESUME:
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4655
4656 delete_step_resume_breakpoint (ecs->event_thread);
4657 if (ecs->event_thread->step_after_step_resume_breakpoint)
4658 {
4659 /* Back when the step-resume breakpoint was inserted, we
4660 were trying to single-step off a breakpoint. Go back to
4661 doing that. */
4662 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4663 ecs->event_thread->stepping_over_breakpoint = 1;
4664 keep_going (ecs);
4665 return;
4666 }
4667 break;
4668
4669 case BPSTAT_WHAT_KEEP_CHECKING:
4670 break;
4671 }
4672
4673 /* We come here if we hit a breakpoint but should not stop for it.
4674 Possibly we also were stepping and should stop for that. So fall
4675 through and test for stepping. But, if not stepping, do not
4676 stop. */
4677
4678 /* In all-stop mode, if we're currently stepping but have stopped in
4679 some other thread, we need to switch back to the stepped thread. */
4680 if (switch_back_to_stepped_thread (ecs))
4681 return;
4682
4683 if (ecs->event_thread->control.step_resume_breakpoint)
4684 {
4685 if (debug_infrun)
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: step-resume breakpoint is inserted\n");
4688
4689 /* Having a step-resume breakpoint overrides anything
4690 else having to do with stepping commands until
4691 that breakpoint is reached. */
4692 keep_going (ecs);
4693 return;
4694 }
4695
4696 if (ecs->event_thread->control.step_range_end == 0)
4697 {
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4700 /* Likewise if we aren't even stepping. */
4701 keep_going (ecs);
4702 return;
4703 }
4704
4705 /* Re-fetch current thread's frame in case the code above caused
4706 the frame cache to be re-initialized, making our FRAME variable
4707 a dangling pointer. */
4708 frame = get_current_frame ();
4709 gdbarch = get_frame_arch (frame);
4710 fill_in_stop_func (gdbarch, ecs);
4711
4712 /* If stepping through a line, keep going if still within it.
4713
4714 Note that step_range_end is the address of the first instruction
4715 beyond the step range, and NOT the address of the last instruction
4716 within it!
4717
4718 Note also that during reverse execution, we may be stepping
4719 through a function epilogue and therefore must detect when
4720 the current-frame changes in the middle of a line. */
4721
4722 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4723 && (execution_direction != EXEC_REVERSE
4724 || frame_id_eq (get_frame_id (frame),
4725 ecs->event_thread->control.step_frame_id)))
4726 {
4727 if (debug_infrun)
4728 fprintf_unfiltered
4729 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4730 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4731 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4732
4733 /* Tentatively re-enable range stepping; `resume' disables it if
4734 necessary (e.g., if we're stepping over a breakpoint or we
4735 have software watchpoints). */
4736 ecs->event_thread->control.may_range_step = 1;
4737
4738 /* When stepping backward, stop at beginning of line range
4739 (unless it's the function entry point, in which case
4740 keep going back to the call point). */
4741 if (stop_pc == ecs->event_thread->control.step_range_start
4742 && stop_pc != ecs->stop_func_start
4743 && execution_direction == EXEC_REVERSE)
4744 {
4745 ecs->event_thread->control.stop_step = 1;
4746 print_end_stepping_range_reason ();
4747 stop_stepping (ecs);
4748 }
4749 else
4750 keep_going (ecs);
4751
4752 return;
4753 }
4754
4755 /* We stepped out of the stepping range. */
4756
4757 /* If we are stepping at the source level and entered the runtime
4758 loader dynamic symbol resolution code...
4759
4760 EXEC_FORWARD: we keep on single stepping until we exit the run
4761 time loader code and reach the callee's address.
4762
4763 EXEC_REVERSE: we've already executed the callee (backward), and
4764 the runtime loader code is handled just like any other
4765 undebuggable function call. Now we need only keep stepping
4766 backward through the trampoline code, and that's handled further
4767 down, so there is nothing for us to do here. */
4768
4769 if (execution_direction != EXEC_REVERSE
4770 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4771 && in_solib_dynsym_resolve_code (stop_pc))
4772 {
4773 CORE_ADDR pc_after_resolver =
4774 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4775
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: stepped into dynsym resolve code\n");
4779
4780 if (pc_after_resolver)
4781 {
4782 /* Set up a step-resume breakpoint at the address
4783 indicated by SKIP_SOLIB_RESOLVER. */
4784 struct symtab_and_line sr_sal;
4785
4786 init_sal (&sr_sal);
4787 sr_sal.pc = pc_after_resolver;
4788 sr_sal.pspace = get_frame_program_space (frame);
4789
4790 insert_step_resume_breakpoint_at_sal (gdbarch,
4791 sr_sal, null_frame_id);
4792 }
4793
4794 keep_going (ecs);
4795 return;
4796 }
4797
4798 if (ecs->event_thread->control.step_range_end != 1
4799 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4800 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4801 && get_frame_type (frame) == SIGTRAMP_FRAME)
4802 {
4803 if (debug_infrun)
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: stepped into signal trampoline\n");
4806 /* The inferior, while doing a "step" or "next", has ended up in
4807 a signal trampoline (either by a signal being delivered or by
4808 the signal handler returning). Just single-step until the
4809 inferior leaves the trampoline (either by calling the handler
4810 or returning). */
4811 keep_going (ecs);
4812 return;
4813 }
4814
4815 /* If we're in the return path from a shared library trampoline,
4816 we want to proceed through the trampoline when stepping. */
4817 /* macro/2012-04-25: This needs to come before the subroutine
4818 call check below as on some targets return trampolines look
4819 like subroutine calls (MIPS16 return thunks). */
4820 if (gdbarch_in_solib_return_trampoline (gdbarch,
4821 stop_pc, ecs->stop_func_name)
4822 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4823 {
4824 /* Determine where this trampoline returns. */
4825 CORE_ADDR real_stop_pc;
4826
4827 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4828
4829 if (debug_infrun)
4830 fprintf_unfiltered (gdb_stdlog,
4831 "infrun: stepped into solib return tramp\n");
4832
4833 /* Only proceed through if we know where it's going. */
4834 if (real_stop_pc)
4835 {
4836 /* And put the step-breakpoint there and go until there. */
4837 struct symtab_and_line sr_sal;
4838
4839 init_sal (&sr_sal); /* initialize to zeroes */
4840 sr_sal.pc = real_stop_pc;
4841 sr_sal.section = find_pc_overlay (sr_sal.pc);
4842 sr_sal.pspace = get_frame_program_space (frame);
4843
4844 /* Do not specify what the fp should be when we stop since
4845 on some machines the prologue is where the new fp value
4846 is established. */
4847 insert_step_resume_breakpoint_at_sal (gdbarch,
4848 sr_sal, null_frame_id);
4849
4850 /* Restart without fiddling with the step ranges or
4851 other state. */
4852 keep_going (ecs);
4853 return;
4854 }
4855 }
4856
4857 /* Check for subroutine calls. The check for the current frame
4858 equalling the step ID is not necessary - the check of the
4859 previous frame's ID is sufficient - but it is a common case and
4860 cheaper than checking the previous frame's ID.
4861
4862 NOTE: frame_id_eq will never report two invalid frame IDs as
4863 being equal, so to get into this block, both the current and
4864 previous frame must have valid frame IDs. */
4865 /* The outer_frame_id check is a heuristic to detect stepping
4866 through startup code. If we step over an instruction which
4867 sets the stack pointer from an invalid value to a valid value,
4868 we may detect that as a subroutine call from the mythical
4869 "outermost" function. This could be fixed by marking
4870 outermost frames as !stack_p,code_p,special_p. Then the
4871 initial outermost frame, before sp was valid, would
4872 have code_addr == &_start. See the comment in frame_id_eq
4873 for more. */
4874 if (!frame_id_eq (get_stack_frame_id (frame),
4875 ecs->event_thread->control.step_stack_frame_id)
4876 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4877 ecs->event_thread->control.step_stack_frame_id)
4878 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4879 outer_frame_id)
4880 || step_start_function != find_pc_function (stop_pc))))
4881 {
4882 CORE_ADDR real_stop_pc;
4883
4884 if (debug_infrun)
4885 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4886
4887 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4888 || ((ecs->event_thread->control.step_range_end == 1)
4889 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4890 ecs->stop_func_start)))
4891 {
4892 /* I presume that step_over_calls is only 0 when we're
4893 supposed to be stepping at the assembly language level
4894 ("stepi"). Just stop. */
4895 /* Also, maybe we just did a "nexti" inside a prolog, so we
4896 thought it was a subroutine call but it was not. Stop as
4897 well. FENN */
4898 /* And this works the same backward as frontward. MVS */
4899 ecs->event_thread->control.stop_step = 1;
4900 print_end_stepping_range_reason ();
4901 stop_stepping (ecs);
4902 return;
4903 }
4904
4905 /* Reverse stepping through solib trampolines. */
4906
4907 if (execution_direction == EXEC_REVERSE
4908 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4909 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4910 || (ecs->stop_func_start == 0
4911 && in_solib_dynsym_resolve_code (stop_pc))))
4912 {
4913 /* Any solib trampoline code can be handled in reverse
4914 by simply continuing to single-step. We have already
4915 executed the solib function (backwards), and a few
4916 steps will take us back through the trampoline to the
4917 caller. */
4918 keep_going (ecs);
4919 return;
4920 }
4921
4922 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4923 {
4924 /* We're doing a "next".
4925
4926 Normal (forward) execution: set a breakpoint at the
4927 callee's return address (the address at which the caller
4928 will resume).
4929
4930 Reverse (backward) execution. set the step-resume
4931 breakpoint at the start of the function that we just
4932 stepped into (backwards), and continue to there. When we
4933 get there, we'll need to single-step back to the caller. */
4934
4935 if (execution_direction == EXEC_REVERSE)
4936 {
4937 /* If we're already at the start of the function, we've either
4938 just stepped backward into a single instruction function,
4939 or stepped back out of a signal handler to the first instruction
4940 of the function. Just keep going, which will single-step back
4941 to the caller. */
4942 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4943 {
4944 struct symtab_and_line sr_sal;
4945
4946 /* Normal function call return (static or dynamic). */
4947 init_sal (&sr_sal);
4948 sr_sal.pc = ecs->stop_func_start;
4949 sr_sal.pspace = get_frame_program_space (frame);
4950 insert_step_resume_breakpoint_at_sal (gdbarch,
4951 sr_sal, null_frame_id);
4952 }
4953 }
4954 else
4955 insert_step_resume_breakpoint_at_caller (frame);
4956
4957 keep_going (ecs);
4958 return;
4959 }
4960
4961 /* If we are in a function call trampoline (a stub between the
4962 calling routine and the real function), locate the real
4963 function. That's what tells us (a) whether we want to step
4964 into it at all, and (b) what prologue we want to run to the
4965 end of, if we do step into it. */
4966 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4967 if (real_stop_pc == 0)
4968 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4969 if (real_stop_pc != 0)
4970 ecs->stop_func_start = real_stop_pc;
4971
4972 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4973 {
4974 struct symtab_and_line sr_sal;
4975
4976 init_sal (&sr_sal);
4977 sr_sal.pc = ecs->stop_func_start;
4978 sr_sal.pspace = get_frame_program_space (frame);
4979
4980 insert_step_resume_breakpoint_at_sal (gdbarch,
4981 sr_sal, null_frame_id);
4982 keep_going (ecs);
4983 return;
4984 }
4985
4986 /* If we have line number information for the function we are
4987 thinking of stepping into and the function isn't on the skip
4988 list, step into it.
4989
4990 If there are several symtabs at that PC (e.g. with include
4991 files), just want to know whether *any* of them have line
4992 numbers. find_pc_line handles this. */
4993 {
4994 struct symtab_and_line tmp_sal;
4995
4996 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4997 if (tmp_sal.line != 0
4998 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4999 &tmp_sal))
5000 {
5001 if (execution_direction == EXEC_REVERSE)
5002 handle_step_into_function_backward (gdbarch, ecs);
5003 else
5004 handle_step_into_function (gdbarch, ecs);
5005 return;
5006 }
5007 }
5008
5009 /* If we have no line number and the step-stop-if-no-debug is
5010 set, we stop the step so that the user has a chance to switch
5011 in assembly mode. */
5012 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5013 && step_stop_if_no_debug)
5014 {
5015 ecs->event_thread->control.stop_step = 1;
5016 print_end_stepping_range_reason ();
5017 stop_stepping (ecs);
5018 return;
5019 }
5020
5021 if (execution_direction == EXEC_REVERSE)
5022 {
5023 /* If we're already at the start of the function, we've either just
5024 stepped backward into a single instruction function without line
5025 number info, or stepped back out of a signal handler to the first
5026 instruction of the function without line number info. Just keep
5027 going, which will single-step back to the caller. */
5028 if (ecs->stop_func_start != stop_pc)
5029 {
5030 /* Set a breakpoint at callee's start address.
5031 From there we can step once and be back in the caller. */
5032 struct symtab_and_line sr_sal;
5033
5034 init_sal (&sr_sal);
5035 sr_sal.pc = ecs->stop_func_start;
5036 sr_sal.pspace = get_frame_program_space (frame);
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
5039 }
5040 }
5041 else
5042 /* Set a breakpoint at callee's return address (the address
5043 at which the caller will resume). */
5044 insert_step_resume_breakpoint_at_caller (frame);
5045
5046 keep_going (ecs);
5047 return;
5048 }
5049
5050 /* Reverse stepping through solib trampolines. */
5051
5052 if (execution_direction == EXEC_REVERSE
5053 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5054 {
5055 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5056 || (ecs->stop_func_start == 0
5057 && in_solib_dynsym_resolve_code (stop_pc)))
5058 {
5059 /* Any solib trampoline code can be handled in reverse
5060 by simply continuing to single-step. We have already
5061 executed the solib function (backwards), and a few
5062 steps will take us back through the trampoline to the
5063 caller. */
5064 keep_going (ecs);
5065 return;
5066 }
5067 else if (in_solib_dynsym_resolve_code (stop_pc))
5068 {
5069 /* Stepped backward into the solib dynsym resolver.
5070 Set a breakpoint at its start and continue, then
5071 one more step will take us out. */
5072 struct symtab_and_line sr_sal;
5073
5074 init_sal (&sr_sal);
5075 sr_sal.pc = ecs->stop_func_start;
5076 sr_sal.pspace = get_frame_program_space (frame);
5077 insert_step_resume_breakpoint_at_sal (gdbarch,
5078 sr_sal, null_frame_id);
5079 keep_going (ecs);
5080 return;
5081 }
5082 }
5083
5084 stop_pc_sal = find_pc_line (stop_pc, 0);
5085
5086 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5087 the trampoline processing logic, however, there are some trampolines
5088 that have no names, so we should do trampoline handling first. */
5089 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5090 && ecs->stop_func_name == NULL
5091 && stop_pc_sal.line == 0)
5092 {
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog,
5095 "infrun: stepped into undebuggable function\n");
5096
5097 /* The inferior just stepped into, or returned to, an
5098 undebuggable function (where there is no debugging information
5099 and no line number corresponding to the address where the
5100 inferior stopped). Since we want to skip this kind of code,
5101 we keep going until the inferior returns from this
5102 function - unless the user has asked us not to (via
5103 set step-mode) or we no longer know how to get back
5104 to the call site. */
5105 if (step_stop_if_no_debug
5106 || !frame_id_p (frame_unwind_caller_id (frame)))
5107 {
5108 /* If we have no line number and the step-stop-if-no-debug
5109 is set, we stop the step so that the user has a chance to
5110 switch in assembly mode. */
5111 ecs->event_thread->control.stop_step = 1;
5112 print_end_stepping_range_reason ();
5113 stop_stepping (ecs);
5114 return;
5115 }
5116 else
5117 {
5118 /* Set a breakpoint at callee's return address (the address
5119 at which the caller will resume). */
5120 insert_step_resume_breakpoint_at_caller (frame);
5121 keep_going (ecs);
5122 return;
5123 }
5124 }
5125
5126 if (ecs->event_thread->control.step_range_end == 1)
5127 {
5128 /* It is stepi or nexti. We always want to stop stepping after
5129 one instruction. */
5130 if (debug_infrun)
5131 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5132 ecs->event_thread->control.stop_step = 1;
5133 print_end_stepping_range_reason ();
5134 stop_stepping (ecs);
5135 return;
5136 }
5137
5138 if (stop_pc_sal.line == 0)
5139 {
5140 /* We have no line number information. That means to stop
5141 stepping (does this always happen right after one instruction,
5142 when we do "s" in a function with no line numbers,
5143 or can this happen as a result of a return or longjmp?). */
5144 if (debug_infrun)
5145 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5146 ecs->event_thread->control.stop_step = 1;
5147 print_end_stepping_range_reason ();
5148 stop_stepping (ecs);
5149 return;
5150 }
5151
5152 /* Look for "calls" to inlined functions, part one. If the inline
5153 frame machinery detected some skipped call sites, we have entered
5154 a new inline function. */
5155
5156 if (frame_id_eq (get_frame_id (get_current_frame ()),
5157 ecs->event_thread->control.step_frame_id)
5158 && inline_skipped_frames (ecs->ptid))
5159 {
5160 struct symtab_and_line call_sal;
5161
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog,
5164 "infrun: stepped into inlined function\n");
5165
5166 find_frame_sal (get_current_frame (), &call_sal);
5167
5168 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5169 {
5170 /* For "step", we're going to stop. But if the call site
5171 for this inlined function is on the same source line as
5172 we were previously stepping, go down into the function
5173 first. Otherwise stop at the call site. */
5174
5175 if (call_sal.line == ecs->event_thread->current_line
5176 && call_sal.symtab == ecs->event_thread->current_symtab)
5177 step_into_inline_frame (ecs->ptid);
5178
5179 ecs->event_thread->control.stop_step = 1;
5180 print_end_stepping_range_reason ();
5181 stop_stepping (ecs);
5182 return;
5183 }
5184 else
5185 {
5186 /* For "next", we should stop at the call site if it is on a
5187 different source line. Otherwise continue through the
5188 inlined function. */
5189 if (call_sal.line == ecs->event_thread->current_line
5190 && call_sal.symtab == ecs->event_thread->current_symtab)
5191 keep_going (ecs);
5192 else
5193 {
5194 ecs->event_thread->control.stop_step = 1;
5195 print_end_stepping_range_reason ();
5196 stop_stepping (ecs);
5197 }
5198 return;
5199 }
5200 }
5201
5202 /* Look for "calls" to inlined functions, part two. If we are still
5203 in the same real function we were stepping through, but we have
5204 to go further up to find the exact frame ID, we are stepping
5205 through a more inlined call beyond its call site. */
5206
5207 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5208 && !frame_id_eq (get_frame_id (get_current_frame ()),
5209 ecs->event_thread->control.step_frame_id)
5210 && stepped_in_from (get_current_frame (),
5211 ecs->event_thread->control.step_frame_id))
5212 {
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: stepping through inlined function\n");
5216
5217 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5218 keep_going (ecs);
5219 else
5220 {
5221 ecs->event_thread->control.stop_step = 1;
5222 print_end_stepping_range_reason ();
5223 stop_stepping (ecs);
5224 }
5225 return;
5226 }
5227
5228 if ((stop_pc == stop_pc_sal.pc)
5229 && (ecs->event_thread->current_line != stop_pc_sal.line
5230 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5231 {
5232 /* We are at the start of a different line. So stop. Note that
5233 we don't stop if we step into the middle of a different line.
5234 That is said to make things like for (;;) statements work
5235 better. */
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: stepped to a different line\n");
5239 ecs->event_thread->control.stop_step = 1;
5240 print_end_stepping_range_reason ();
5241 stop_stepping (ecs);
5242 return;
5243 }
5244
5245 /* We aren't done stepping.
5246
5247 Optimize by setting the stepping range to the line.
5248 (We might not be in the original line, but if we entered a
5249 new line in mid-statement, we continue stepping. This makes
5250 things like for(;;) statements work better.) */
5251
5252 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5253 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5254 ecs->event_thread->control.may_range_step = 1;
5255 set_step_info (frame, stop_pc_sal);
5256
5257 if (debug_infrun)
5258 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5259 keep_going (ecs);
5260 }
5261
5262 /* In all-stop mode, if we're currently stepping but have stopped in
5263 some other thread, we may need to switch back to the stepped
5264 thread. Returns true we set the inferior running, false if we left
5265 it stopped (and the event needs further processing). */
5266
5267 static int
5268 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5269 {
5270 if (!non_stop)
5271 {
5272 struct thread_info *tp;
5273
5274 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5275 ecs->event_thread);
5276 if (tp)
5277 {
5278 /* However, if the current thread is blocked on some internal
5279 breakpoint, and we simply need to step over that breakpoint
5280 to get it going again, do that first. */
5281 if ((ecs->event_thread->control.trap_expected
5282 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5283 || ecs->event_thread->stepping_over_breakpoint)
5284 {
5285 keep_going (ecs);
5286 return 1;
5287 }
5288
5289 /* If the stepping thread exited, then don't try to switch
5290 back and resume it, which could fail in several different
5291 ways depending on the target. Instead, just keep going.
5292
5293 We can find a stepping dead thread in the thread list in
5294 two cases:
5295
5296 - The target supports thread exit events, and when the
5297 target tries to delete the thread from the thread list,
5298 inferior_ptid pointed at the exiting thread. In such
5299 case, calling delete_thread does not really remove the
5300 thread from the list; instead, the thread is left listed,
5301 with 'exited' state.
5302
5303 - The target's debug interface does not support thread
5304 exit events, and so we have no idea whatsoever if the
5305 previously stepping thread is still alive. For that
5306 reason, we need to synchronously query the target
5307 now. */
5308 if (is_exited (tp->ptid)
5309 || !target_thread_alive (tp->ptid))
5310 {
5311 if (debug_infrun)
5312 fprintf_unfiltered (gdb_stdlog,
5313 "infrun: not switching back to "
5314 "stepped thread, it has vanished\n");
5315
5316 delete_thread (tp->ptid);
5317 keep_going (ecs);
5318 return 1;
5319 }
5320
5321 /* Otherwise, we no longer expect a trap in the current thread.
5322 Clear the trap_expected flag before switching back -- this is
5323 what keep_going would do as well, if we called it. */
5324 ecs->event_thread->control.trap_expected = 0;
5325
5326 if (debug_infrun)
5327 fprintf_unfiltered (gdb_stdlog,
5328 "infrun: switching back to stepped thread\n");
5329
5330 ecs->event_thread = tp;
5331 ecs->ptid = tp->ptid;
5332 context_switch (ecs->ptid);
5333 keep_going (ecs);
5334 return 1;
5335 }
5336 }
5337 return 0;
5338 }
5339
5340 /* Is thread TP in the middle of single-stepping? */
5341
5342 static int
5343 currently_stepping (struct thread_info *tp)
5344 {
5345 return ((tp->control.step_range_end
5346 && tp->control.step_resume_breakpoint == NULL)
5347 || tp->control.trap_expected
5348 || bpstat_should_step ());
5349 }
5350
5351 /* Returns true if any thread *but* the one passed in "data" is in the
5352 middle of stepping or of handling a "next". */
5353
5354 static int
5355 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5356 {
5357 if (tp == data)
5358 return 0;
5359
5360 return (tp->control.step_range_end
5361 || tp->control.trap_expected);
5362 }
5363
5364 /* Inferior has stepped into a subroutine call with source code that
5365 we should not step over. Do step to the first line of code in
5366 it. */
5367
5368 static void
5369 handle_step_into_function (struct gdbarch *gdbarch,
5370 struct execution_control_state *ecs)
5371 {
5372 struct symtab *s;
5373 struct symtab_and_line stop_func_sal, sr_sal;
5374
5375 fill_in_stop_func (gdbarch, ecs);
5376
5377 s = find_pc_symtab (stop_pc);
5378 if (s && s->language != language_asm)
5379 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5380 ecs->stop_func_start);
5381
5382 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5383 /* Use the step_resume_break to step until the end of the prologue,
5384 even if that involves jumps (as it seems to on the vax under
5385 4.2). */
5386 /* If the prologue ends in the middle of a source line, continue to
5387 the end of that source line (if it is still within the function).
5388 Otherwise, just go to end of prologue. */
5389 if (stop_func_sal.end
5390 && stop_func_sal.pc != ecs->stop_func_start
5391 && stop_func_sal.end < ecs->stop_func_end)
5392 ecs->stop_func_start = stop_func_sal.end;
5393
5394 /* Architectures which require breakpoint adjustment might not be able
5395 to place a breakpoint at the computed address. If so, the test
5396 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5397 ecs->stop_func_start to an address at which a breakpoint may be
5398 legitimately placed.
5399
5400 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5401 made, GDB will enter an infinite loop when stepping through
5402 optimized code consisting of VLIW instructions which contain
5403 subinstructions corresponding to different source lines. On
5404 FR-V, it's not permitted to place a breakpoint on any but the
5405 first subinstruction of a VLIW instruction. When a breakpoint is
5406 set, GDB will adjust the breakpoint address to the beginning of
5407 the VLIW instruction. Thus, we need to make the corresponding
5408 adjustment here when computing the stop address. */
5409
5410 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5411 {
5412 ecs->stop_func_start
5413 = gdbarch_adjust_breakpoint_address (gdbarch,
5414 ecs->stop_func_start);
5415 }
5416
5417 if (ecs->stop_func_start == stop_pc)
5418 {
5419 /* We are already there: stop now. */
5420 ecs->event_thread->control.stop_step = 1;
5421 print_end_stepping_range_reason ();
5422 stop_stepping (ecs);
5423 return;
5424 }
5425 else
5426 {
5427 /* Put the step-breakpoint there and go until there. */
5428 init_sal (&sr_sal); /* initialize to zeroes */
5429 sr_sal.pc = ecs->stop_func_start;
5430 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5431 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5432
5433 /* Do not specify what the fp should be when we stop since on
5434 some machines the prologue is where the new fp value is
5435 established. */
5436 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5437
5438 /* And make sure stepping stops right away then. */
5439 ecs->event_thread->control.step_range_end
5440 = ecs->event_thread->control.step_range_start;
5441 }
5442 keep_going (ecs);
5443 }
5444
5445 /* Inferior has stepped backward into a subroutine call with source
5446 code that we should not step over. Do step to the beginning of the
5447 last line of code in it. */
5448
5449 static void
5450 handle_step_into_function_backward (struct gdbarch *gdbarch,
5451 struct execution_control_state *ecs)
5452 {
5453 struct symtab *s;
5454 struct symtab_and_line stop_func_sal;
5455
5456 fill_in_stop_func (gdbarch, ecs);
5457
5458 s = find_pc_symtab (stop_pc);
5459 if (s && s->language != language_asm)
5460 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5461 ecs->stop_func_start);
5462
5463 stop_func_sal = find_pc_line (stop_pc, 0);
5464
5465 /* OK, we're just going to keep stepping here. */
5466 if (stop_func_sal.pc == stop_pc)
5467 {
5468 /* We're there already. Just stop stepping now. */
5469 ecs->event_thread->control.stop_step = 1;
5470 print_end_stepping_range_reason ();
5471 stop_stepping (ecs);
5472 }
5473 else
5474 {
5475 /* Else just reset the step range and keep going.
5476 No step-resume breakpoint, they don't work for
5477 epilogues, which can have multiple entry paths. */
5478 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5479 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5480 keep_going (ecs);
5481 }
5482 return;
5483 }
5484
5485 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5486 This is used to both functions and to skip over code. */
5487
5488 static void
5489 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5490 struct symtab_and_line sr_sal,
5491 struct frame_id sr_id,
5492 enum bptype sr_type)
5493 {
5494 /* There should never be more than one step-resume or longjmp-resume
5495 breakpoint per thread, so we should never be setting a new
5496 step_resume_breakpoint when one is already active. */
5497 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5498 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5499
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: inserting step-resume breakpoint at %s\n",
5503 paddress (gdbarch, sr_sal.pc));
5504
5505 inferior_thread ()->control.step_resume_breakpoint
5506 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5507 }
5508
5509 void
5510 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5511 struct symtab_and_line sr_sal,
5512 struct frame_id sr_id)
5513 {
5514 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5515 sr_sal, sr_id,
5516 bp_step_resume);
5517 }
5518
5519 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5520 This is used to skip a potential signal handler.
5521
5522 This is called with the interrupted function's frame. The signal
5523 handler, when it returns, will resume the interrupted function at
5524 RETURN_FRAME.pc. */
5525
5526 static void
5527 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5528 {
5529 struct symtab_and_line sr_sal;
5530 struct gdbarch *gdbarch;
5531
5532 gdb_assert (return_frame != NULL);
5533 init_sal (&sr_sal); /* initialize to zeros */
5534
5535 gdbarch = get_frame_arch (return_frame);
5536 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5537 sr_sal.section = find_pc_overlay (sr_sal.pc);
5538 sr_sal.pspace = get_frame_program_space (return_frame);
5539
5540 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5541 get_stack_frame_id (return_frame),
5542 bp_hp_step_resume);
5543 }
5544
5545 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5546 is used to skip a function after stepping into it (for "next" or if
5547 the called function has no debugging information).
5548
5549 The current function has almost always been reached by single
5550 stepping a call or return instruction. NEXT_FRAME belongs to the
5551 current function, and the breakpoint will be set at the caller's
5552 resume address.
5553
5554 This is a separate function rather than reusing
5555 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5556 get_prev_frame, which may stop prematurely (see the implementation
5557 of frame_unwind_caller_id for an example). */
5558
5559 static void
5560 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5561 {
5562 struct symtab_and_line sr_sal;
5563 struct gdbarch *gdbarch;
5564
5565 /* We shouldn't have gotten here if we don't know where the call site
5566 is. */
5567 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5568
5569 init_sal (&sr_sal); /* initialize to zeros */
5570
5571 gdbarch = frame_unwind_caller_arch (next_frame);
5572 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5573 frame_unwind_caller_pc (next_frame));
5574 sr_sal.section = find_pc_overlay (sr_sal.pc);
5575 sr_sal.pspace = frame_unwind_program_space (next_frame);
5576
5577 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5578 frame_unwind_caller_id (next_frame));
5579 }
5580
5581 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5582 new breakpoint at the target of a jmp_buf. The handling of
5583 longjmp-resume uses the same mechanisms used for handling
5584 "step-resume" breakpoints. */
5585
5586 static void
5587 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5588 {
5589 /* There should never be more than one longjmp-resume breakpoint per
5590 thread, so we should never be setting a new
5591 longjmp_resume_breakpoint when one is already active. */
5592 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5593
5594 if (debug_infrun)
5595 fprintf_unfiltered (gdb_stdlog,
5596 "infrun: inserting longjmp-resume breakpoint at %s\n",
5597 paddress (gdbarch, pc));
5598
5599 inferior_thread ()->control.exception_resume_breakpoint =
5600 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5601 }
5602
5603 /* Insert an exception resume breakpoint. TP is the thread throwing
5604 the exception. The block B is the block of the unwinder debug hook
5605 function. FRAME is the frame corresponding to the call to this
5606 function. SYM is the symbol of the function argument holding the
5607 target PC of the exception. */
5608
5609 static void
5610 insert_exception_resume_breakpoint (struct thread_info *tp,
5611 struct block *b,
5612 struct frame_info *frame,
5613 struct symbol *sym)
5614 {
5615 volatile struct gdb_exception e;
5616
5617 /* We want to ignore errors here. */
5618 TRY_CATCH (e, RETURN_MASK_ERROR)
5619 {
5620 struct symbol *vsym;
5621 struct value *value;
5622 CORE_ADDR handler;
5623 struct breakpoint *bp;
5624
5625 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5626 value = read_var_value (vsym, frame);
5627 /* If the value was optimized out, revert to the old behavior. */
5628 if (! value_optimized_out (value))
5629 {
5630 handler = value_as_address (value);
5631
5632 if (debug_infrun)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: exception resume at %lx\n",
5635 (unsigned long) handler);
5636
5637 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5638 handler, bp_exception_resume);
5639
5640 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5641 frame = NULL;
5642
5643 bp->thread = tp->num;
5644 inferior_thread ()->control.exception_resume_breakpoint = bp;
5645 }
5646 }
5647 }
5648
5649 /* A helper for check_exception_resume that sets an
5650 exception-breakpoint based on a SystemTap probe. */
5651
5652 static void
5653 insert_exception_resume_from_probe (struct thread_info *tp,
5654 const struct probe *probe,
5655 struct frame_info *frame)
5656 {
5657 struct value *arg_value;
5658 CORE_ADDR handler;
5659 struct breakpoint *bp;
5660
5661 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5662 if (!arg_value)
5663 return;
5664
5665 handler = value_as_address (arg_value);
5666
5667 if (debug_infrun)
5668 fprintf_unfiltered (gdb_stdlog,
5669 "infrun: exception resume at %s\n",
5670 paddress (get_objfile_arch (probe->objfile),
5671 handler));
5672
5673 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5674 handler, bp_exception_resume);
5675 bp->thread = tp->num;
5676 inferior_thread ()->control.exception_resume_breakpoint = bp;
5677 }
5678
5679 /* This is called when an exception has been intercepted. Check to
5680 see whether the exception's destination is of interest, and if so,
5681 set an exception resume breakpoint there. */
5682
5683 static void
5684 check_exception_resume (struct execution_control_state *ecs,
5685 struct frame_info *frame)
5686 {
5687 volatile struct gdb_exception e;
5688 const struct probe *probe;
5689 struct symbol *func;
5690
5691 /* First see if this exception unwinding breakpoint was set via a
5692 SystemTap probe point. If so, the probe has two arguments: the
5693 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5694 set a breakpoint there. */
5695 probe = find_probe_by_pc (get_frame_pc (frame));
5696 if (probe)
5697 {
5698 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5699 return;
5700 }
5701
5702 func = get_frame_function (frame);
5703 if (!func)
5704 return;
5705
5706 TRY_CATCH (e, RETURN_MASK_ERROR)
5707 {
5708 struct block *b;
5709 struct block_iterator iter;
5710 struct symbol *sym;
5711 int argno = 0;
5712
5713 /* The exception breakpoint is a thread-specific breakpoint on
5714 the unwinder's debug hook, declared as:
5715
5716 void _Unwind_DebugHook (void *cfa, void *handler);
5717
5718 The CFA argument indicates the frame to which control is
5719 about to be transferred. HANDLER is the destination PC.
5720
5721 We ignore the CFA and set a temporary breakpoint at HANDLER.
5722 This is not extremely efficient but it avoids issues in gdb
5723 with computing the DWARF CFA, and it also works even in weird
5724 cases such as throwing an exception from inside a signal
5725 handler. */
5726
5727 b = SYMBOL_BLOCK_VALUE (func);
5728 ALL_BLOCK_SYMBOLS (b, iter, sym)
5729 {
5730 if (!SYMBOL_IS_ARGUMENT (sym))
5731 continue;
5732
5733 if (argno == 0)
5734 ++argno;
5735 else
5736 {
5737 insert_exception_resume_breakpoint (ecs->event_thread,
5738 b, frame, sym);
5739 break;
5740 }
5741 }
5742 }
5743 }
5744
5745 static void
5746 stop_stepping (struct execution_control_state *ecs)
5747 {
5748 if (debug_infrun)
5749 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5750
5751 /* Let callers know we don't want to wait for the inferior anymore. */
5752 ecs->wait_some_more = 0;
5753 }
5754
5755 /* Called when we should continue running the inferior, because the
5756 current event doesn't cause a user visible stop. This does the
5757 resuming part; waiting for the next event is done elsewhere. */
5758
5759 static void
5760 keep_going (struct execution_control_state *ecs)
5761 {
5762 /* Make sure normal_stop is called if we get a QUIT handled before
5763 reaching resume. */
5764 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5765
5766 /* Save the pc before execution, to compare with pc after stop. */
5767 ecs->event_thread->prev_pc
5768 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5769
5770 if (ecs->event_thread->control.trap_expected
5771 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5772 {
5773 /* We haven't yet gotten our trap, and either: intercepted a
5774 non-signal event (e.g., a fork); or took a signal which we
5775 are supposed to pass through to the inferior. Simply
5776 continue. */
5777 discard_cleanups (old_cleanups);
5778 resume (currently_stepping (ecs->event_thread),
5779 ecs->event_thread->suspend.stop_signal);
5780 }
5781 else
5782 {
5783 /* Either the trap was not expected, but we are continuing
5784 anyway (if we got a signal, the user asked it be passed to
5785 the child)
5786 -- or --
5787 We got our expected trap, but decided we should resume from
5788 it.
5789
5790 We're going to run this baby now!
5791
5792 Note that insert_breakpoints won't try to re-insert
5793 already inserted breakpoints. Therefore, we don't
5794 care if breakpoints were already inserted, or not. */
5795
5796 if (ecs->event_thread->stepping_over_breakpoint)
5797 {
5798 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5799
5800 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5801 {
5802 /* Since we can't do a displaced step, we have to remove
5803 the breakpoint while we step it. To keep things
5804 simple, we remove them all. */
5805 remove_breakpoints ();
5806 }
5807 }
5808 else
5809 {
5810 volatile struct gdb_exception e;
5811
5812 /* Stop stepping if inserting breakpoints fails. */
5813 TRY_CATCH (e, RETURN_MASK_ERROR)
5814 {
5815 insert_breakpoints ();
5816 }
5817 if (e.reason < 0)
5818 {
5819 exception_print (gdb_stderr, e);
5820 stop_stepping (ecs);
5821 return;
5822 }
5823 }
5824
5825 ecs->event_thread->control.trap_expected
5826 = ecs->event_thread->stepping_over_breakpoint;
5827
5828 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5829 explicitly specifies that such a signal should be delivered
5830 to the target program). Typically, that would occur when a
5831 user is debugging a target monitor on a simulator: the target
5832 monitor sets a breakpoint; the simulator encounters this
5833 breakpoint and halts the simulation handing control to GDB;
5834 GDB, noting that the stop address doesn't map to any known
5835 breakpoint, returns control back to the simulator; the
5836 simulator then delivers the hardware equivalent of a
5837 GDB_SIGNAL_TRAP to the program being debugged. */
5838 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5839 && !signal_program[ecs->event_thread->suspend.stop_signal])
5840 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5841
5842 discard_cleanups (old_cleanups);
5843 resume (currently_stepping (ecs->event_thread),
5844 ecs->event_thread->suspend.stop_signal);
5845 }
5846
5847 prepare_to_wait (ecs);
5848 }
5849
5850 /* This function normally comes after a resume, before
5851 handle_inferior_event exits. It takes care of any last bits of
5852 housekeeping, and sets the all-important wait_some_more flag. */
5853
5854 static void
5855 prepare_to_wait (struct execution_control_state *ecs)
5856 {
5857 if (debug_infrun)
5858 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5859
5860 /* This is the old end of the while loop. Let everybody know we
5861 want to wait for the inferior some more and get called again
5862 soon. */
5863 ecs->wait_some_more = 1;
5864 }
5865
5866 /* Several print_*_reason functions to print why the inferior has stopped.
5867 We always print something when the inferior exits, or receives a signal.
5868 The rest of the cases are dealt with later on in normal_stop and
5869 print_it_typical. Ideally there should be a call to one of these
5870 print_*_reason functions functions from handle_inferior_event each time
5871 stop_stepping is called. */
5872
5873 /* Print why the inferior has stopped.
5874 We are done with a step/next/si/ni command, print why the inferior has
5875 stopped. For now print nothing. Print a message only if not in the middle
5876 of doing a "step n" operation for n > 1. */
5877
5878 static void
5879 print_end_stepping_range_reason (void)
5880 {
5881 if ((!inferior_thread ()->step_multi
5882 || !inferior_thread ()->control.stop_step)
5883 && ui_out_is_mi_like_p (current_uiout))
5884 ui_out_field_string (current_uiout, "reason",
5885 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5886 }
5887
5888 /* The inferior was terminated by a signal, print why it stopped. */
5889
5890 static void
5891 print_signal_exited_reason (enum gdb_signal siggnal)
5892 {
5893 struct ui_out *uiout = current_uiout;
5894
5895 annotate_signalled ();
5896 if (ui_out_is_mi_like_p (uiout))
5897 ui_out_field_string
5898 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5899 ui_out_text (uiout, "\nProgram terminated with signal ");
5900 annotate_signal_name ();
5901 ui_out_field_string (uiout, "signal-name",
5902 gdb_signal_to_name (siggnal));
5903 annotate_signal_name_end ();
5904 ui_out_text (uiout, ", ");
5905 annotate_signal_string ();
5906 ui_out_field_string (uiout, "signal-meaning",
5907 gdb_signal_to_string (siggnal));
5908 annotate_signal_string_end ();
5909 ui_out_text (uiout, ".\n");
5910 ui_out_text (uiout, "The program no longer exists.\n");
5911 }
5912
5913 /* The inferior program is finished, print why it stopped. */
5914
5915 static void
5916 print_exited_reason (int exitstatus)
5917 {
5918 struct inferior *inf = current_inferior ();
5919 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5920 struct ui_out *uiout = current_uiout;
5921
5922 annotate_exited (exitstatus);
5923 if (exitstatus)
5924 {
5925 if (ui_out_is_mi_like_p (uiout))
5926 ui_out_field_string (uiout, "reason",
5927 async_reason_lookup (EXEC_ASYNC_EXITED));
5928 ui_out_text (uiout, "[Inferior ");
5929 ui_out_text (uiout, plongest (inf->num));
5930 ui_out_text (uiout, " (");
5931 ui_out_text (uiout, pidstr);
5932 ui_out_text (uiout, ") exited with code ");
5933 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5934 ui_out_text (uiout, "]\n");
5935 }
5936 else
5937 {
5938 if (ui_out_is_mi_like_p (uiout))
5939 ui_out_field_string
5940 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5941 ui_out_text (uiout, "[Inferior ");
5942 ui_out_text (uiout, plongest (inf->num));
5943 ui_out_text (uiout, " (");
5944 ui_out_text (uiout, pidstr);
5945 ui_out_text (uiout, ") exited normally]\n");
5946 }
5947 /* Support the --return-child-result option. */
5948 return_child_result_value = exitstatus;
5949 }
5950
5951 /* Signal received, print why the inferior has stopped. The signal table
5952 tells us to print about it. */
5953
5954 static void
5955 print_signal_received_reason (enum gdb_signal siggnal)
5956 {
5957 struct ui_out *uiout = current_uiout;
5958
5959 annotate_signal ();
5960
5961 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5962 {
5963 struct thread_info *t = inferior_thread ();
5964
5965 ui_out_text (uiout, "\n[");
5966 ui_out_field_string (uiout, "thread-name",
5967 target_pid_to_str (t->ptid));
5968 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5969 ui_out_text (uiout, " stopped");
5970 }
5971 else
5972 {
5973 ui_out_text (uiout, "\nProgram received signal ");
5974 annotate_signal_name ();
5975 if (ui_out_is_mi_like_p (uiout))
5976 ui_out_field_string
5977 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5978 ui_out_field_string (uiout, "signal-name",
5979 gdb_signal_to_name (siggnal));
5980 annotate_signal_name_end ();
5981 ui_out_text (uiout, ", ");
5982 annotate_signal_string ();
5983 ui_out_field_string (uiout, "signal-meaning",
5984 gdb_signal_to_string (siggnal));
5985 annotate_signal_string_end ();
5986 }
5987 ui_out_text (uiout, ".\n");
5988 }
5989
5990 /* Reverse execution: target ran out of history info, print why the inferior
5991 has stopped. */
5992
5993 static void
5994 print_no_history_reason (void)
5995 {
5996 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5997 }
5998
5999 /* Here to return control to GDB when the inferior stops for real.
6000 Print appropriate messages, remove breakpoints, give terminal our modes.
6001
6002 STOP_PRINT_FRAME nonzero means print the executing frame
6003 (pc, function, args, file, line number and line text).
6004 BREAKPOINTS_FAILED nonzero means stop was due to error
6005 attempting to insert breakpoints. */
6006
6007 void
6008 normal_stop (void)
6009 {
6010 struct target_waitstatus last;
6011 ptid_t last_ptid;
6012 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6013
6014 get_last_target_status (&last_ptid, &last);
6015
6016 /* If an exception is thrown from this point on, make sure to
6017 propagate GDB's knowledge of the executing state to the
6018 frontend/user running state. A QUIT is an easy exception to see
6019 here, so do this before any filtered output. */
6020 if (!non_stop)
6021 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6022 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6023 && last.kind != TARGET_WAITKIND_EXITED
6024 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6025 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6026
6027 /* In non-stop mode, we don't want GDB to switch threads behind the
6028 user's back, to avoid races where the user is typing a command to
6029 apply to thread x, but GDB switches to thread y before the user
6030 finishes entering the command. */
6031
6032 /* As with the notification of thread events, we want to delay
6033 notifying the user that we've switched thread context until
6034 the inferior actually stops.
6035
6036 There's no point in saying anything if the inferior has exited.
6037 Note that SIGNALLED here means "exited with a signal", not
6038 "received a signal". */
6039 if (!non_stop
6040 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6041 && target_has_execution
6042 && last.kind != TARGET_WAITKIND_SIGNALLED
6043 && last.kind != TARGET_WAITKIND_EXITED
6044 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6045 {
6046 target_terminal_ours_for_output ();
6047 printf_filtered (_("[Switching to %s]\n"),
6048 target_pid_to_str (inferior_ptid));
6049 annotate_thread_changed ();
6050 previous_inferior_ptid = inferior_ptid;
6051 }
6052
6053 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6054 {
6055 gdb_assert (sync_execution || !target_can_async_p ());
6056
6057 target_terminal_ours_for_output ();
6058 printf_filtered (_("No unwaited-for children left.\n"));
6059 }
6060
6061 if (!breakpoints_always_inserted_mode () && target_has_execution)
6062 {
6063 if (remove_breakpoints ())
6064 {
6065 target_terminal_ours_for_output ();
6066 printf_filtered (_("Cannot remove breakpoints because "
6067 "program is no longer writable.\nFurther "
6068 "execution is probably impossible.\n"));
6069 }
6070 }
6071
6072 /* If an auto-display called a function and that got a signal,
6073 delete that auto-display to avoid an infinite recursion. */
6074
6075 if (stopped_by_random_signal)
6076 disable_current_display ();
6077
6078 /* Don't print a message if in the middle of doing a "step n"
6079 operation for n > 1 */
6080 if (target_has_execution
6081 && last.kind != TARGET_WAITKIND_SIGNALLED
6082 && last.kind != TARGET_WAITKIND_EXITED
6083 && inferior_thread ()->step_multi
6084 && inferior_thread ()->control.stop_step)
6085 goto done;
6086
6087 target_terminal_ours ();
6088 async_enable_stdin ();
6089
6090 /* Set the current source location. This will also happen if we
6091 display the frame below, but the current SAL will be incorrect
6092 during a user hook-stop function. */
6093 if (has_stack_frames () && !stop_stack_dummy)
6094 set_current_sal_from_frame (get_current_frame (), 1);
6095
6096 /* Let the user/frontend see the threads as stopped. */
6097 do_cleanups (old_chain);
6098
6099 /* Look up the hook_stop and run it (CLI internally handles problem
6100 of stop_command's pre-hook not existing). */
6101 if (stop_command)
6102 catch_errors (hook_stop_stub, stop_command,
6103 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6104
6105 if (!has_stack_frames ())
6106 goto done;
6107
6108 if (last.kind == TARGET_WAITKIND_SIGNALLED
6109 || last.kind == TARGET_WAITKIND_EXITED)
6110 goto done;
6111
6112 /* Select innermost stack frame - i.e., current frame is frame 0,
6113 and current location is based on that.
6114 Don't do this on return from a stack dummy routine,
6115 or if the program has exited. */
6116
6117 if (!stop_stack_dummy)
6118 {
6119 select_frame (get_current_frame ());
6120
6121 /* Print current location without a level number, if
6122 we have changed functions or hit a breakpoint.
6123 Print source line if we have one.
6124 bpstat_print() contains the logic deciding in detail
6125 what to print, based on the event(s) that just occurred. */
6126
6127 /* If --batch-silent is enabled then there's no need to print the current
6128 source location, and to try risks causing an error message about
6129 missing source files. */
6130 if (stop_print_frame && !batch_silent)
6131 {
6132 int bpstat_ret;
6133 int source_flag;
6134 int do_frame_printing = 1;
6135 struct thread_info *tp = inferior_thread ();
6136
6137 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6138 switch (bpstat_ret)
6139 {
6140 case PRINT_UNKNOWN:
6141 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6142 (or should) carry around the function and does (or
6143 should) use that when doing a frame comparison. */
6144 if (tp->control.stop_step
6145 && frame_id_eq (tp->control.step_frame_id,
6146 get_frame_id (get_current_frame ()))
6147 && step_start_function == find_pc_function (stop_pc))
6148 source_flag = SRC_LINE; /* Finished step, just
6149 print source line. */
6150 else
6151 source_flag = SRC_AND_LOC; /* Print location and
6152 source line. */
6153 break;
6154 case PRINT_SRC_AND_LOC:
6155 source_flag = SRC_AND_LOC; /* Print location and
6156 source line. */
6157 break;
6158 case PRINT_SRC_ONLY:
6159 source_flag = SRC_LINE;
6160 break;
6161 case PRINT_NOTHING:
6162 source_flag = SRC_LINE; /* something bogus */
6163 do_frame_printing = 0;
6164 break;
6165 default:
6166 internal_error (__FILE__, __LINE__, _("Unknown value."));
6167 }
6168
6169 /* The behavior of this routine with respect to the source
6170 flag is:
6171 SRC_LINE: Print only source line
6172 LOCATION: Print only location
6173 SRC_AND_LOC: Print location and source line. */
6174 if (do_frame_printing)
6175 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6176
6177 /* Display the auto-display expressions. */
6178 do_displays ();
6179 }
6180 }
6181
6182 /* Save the function value return registers, if we care.
6183 We might be about to restore their previous contents. */
6184 if (inferior_thread ()->control.proceed_to_finish
6185 && execution_direction != EXEC_REVERSE)
6186 {
6187 /* This should not be necessary. */
6188 if (stop_registers)
6189 regcache_xfree (stop_registers);
6190
6191 /* NB: The copy goes through to the target picking up the value of
6192 all the registers. */
6193 stop_registers = regcache_dup (get_current_regcache ());
6194 }
6195
6196 if (stop_stack_dummy == STOP_STACK_DUMMY)
6197 {
6198 /* Pop the empty frame that contains the stack dummy.
6199 This also restores inferior state prior to the call
6200 (struct infcall_suspend_state). */
6201 struct frame_info *frame = get_current_frame ();
6202
6203 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6204 frame_pop (frame);
6205 /* frame_pop() calls reinit_frame_cache as the last thing it
6206 does which means there's currently no selected frame. We
6207 don't need to re-establish a selected frame if the dummy call
6208 returns normally, that will be done by
6209 restore_infcall_control_state. However, we do have to handle
6210 the case where the dummy call is returning after being
6211 stopped (e.g. the dummy call previously hit a breakpoint).
6212 We can't know which case we have so just always re-establish
6213 a selected frame here. */
6214 select_frame (get_current_frame ());
6215 }
6216
6217 done:
6218 annotate_stopped ();
6219
6220 /* Suppress the stop observer if we're in the middle of:
6221
6222 - a step n (n > 1), as there still more steps to be done.
6223
6224 - a "finish" command, as the observer will be called in
6225 finish_command_continuation, so it can include the inferior
6226 function's return value.
6227
6228 - calling an inferior function, as we pretend we inferior didn't
6229 run at all. The return value of the call is handled by the
6230 expression evaluator, through call_function_by_hand. */
6231
6232 if (!target_has_execution
6233 || last.kind == TARGET_WAITKIND_SIGNALLED
6234 || last.kind == TARGET_WAITKIND_EXITED
6235 || last.kind == TARGET_WAITKIND_NO_RESUMED
6236 || (!(inferior_thread ()->step_multi
6237 && inferior_thread ()->control.stop_step)
6238 && !(inferior_thread ()->control.stop_bpstat
6239 && inferior_thread ()->control.proceed_to_finish)
6240 && !inferior_thread ()->control.in_infcall))
6241 {
6242 if (!ptid_equal (inferior_ptid, null_ptid))
6243 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6244 stop_print_frame);
6245 else
6246 observer_notify_normal_stop (NULL, stop_print_frame);
6247 }
6248
6249 if (target_has_execution)
6250 {
6251 if (last.kind != TARGET_WAITKIND_SIGNALLED
6252 && last.kind != TARGET_WAITKIND_EXITED)
6253 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6254 Delete any breakpoint that is to be deleted at the next stop. */
6255 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6256 }
6257
6258 /* Try to get rid of automatically added inferiors that are no
6259 longer needed. Keeping those around slows down things linearly.
6260 Note that this never removes the current inferior. */
6261 prune_inferiors ();
6262 }
6263
6264 static int
6265 hook_stop_stub (void *cmd)
6266 {
6267 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6268 return (0);
6269 }
6270 \f
6271 int
6272 signal_stop_state (int signo)
6273 {
6274 return signal_stop[signo];
6275 }
6276
6277 int
6278 signal_print_state (int signo)
6279 {
6280 return signal_print[signo];
6281 }
6282
6283 int
6284 signal_pass_state (int signo)
6285 {
6286 return signal_program[signo];
6287 }
6288
6289 static void
6290 signal_cache_update (int signo)
6291 {
6292 if (signo == -1)
6293 {
6294 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6295 signal_cache_update (signo);
6296
6297 return;
6298 }
6299
6300 signal_pass[signo] = (signal_stop[signo] == 0
6301 && signal_print[signo] == 0
6302 && signal_program[signo] == 1
6303 && signal_catch[signo] == 0);
6304 }
6305
6306 int
6307 signal_stop_update (int signo, int state)
6308 {
6309 int ret = signal_stop[signo];
6310
6311 signal_stop[signo] = state;
6312 signal_cache_update (signo);
6313 return ret;
6314 }
6315
6316 int
6317 signal_print_update (int signo, int state)
6318 {
6319 int ret = signal_print[signo];
6320
6321 signal_print[signo] = state;
6322 signal_cache_update (signo);
6323 return ret;
6324 }
6325
6326 int
6327 signal_pass_update (int signo, int state)
6328 {
6329 int ret = signal_program[signo];
6330
6331 signal_program[signo] = state;
6332 signal_cache_update (signo);
6333 return ret;
6334 }
6335
6336 /* Update the global 'signal_catch' from INFO and notify the
6337 target. */
6338
6339 void
6340 signal_catch_update (const unsigned int *info)
6341 {
6342 int i;
6343
6344 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6345 signal_catch[i] = info[i] > 0;
6346 signal_cache_update (-1);
6347 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6348 }
6349
6350 static void
6351 sig_print_header (void)
6352 {
6353 printf_filtered (_("Signal Stop\tPrint\tPass "
6354 "to program\tDescription\n"));
6355 }
6356
6357 static void
6358 sig_print_info (enum gdb_signal oursig)
6359 {
6360 const char *name = gdb_signal_to_name (oursig);
6361 int name_padding = 13 - strlen (name);
6362
6363 if (name_padding <= 0)
6364 name_padding = 0;
6365
6366 printf_filtered ("%s", name);
6367 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6368 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6369 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6370 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6371 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6372 }
6373
6374 /* Specify how various signals in the inferior should be handled. */
6375
6376 static void
6377 handle_command (char *args, int from_tty)
6378 {
6379 char **argv;
6380 int digits, wordlen;
6381 int sigfirst, signum, siglast;
6382 enum gdb_signal oursig;
6383 int allsigs;
6384 int nsigs;
6385 unsigned char *sigs;
6386 struct cleanup *old_chain;
6387
6388 if (args == NULL)
6389 {
6390 error_no_arg (_("signal to handle"));
6391 }
6392
6393 /* Allocate and zero an array of flags for which signals to handle. */
6394
6395 nsigs = (int) GDB_SIGNAL_LAST;
6396 sigs = (unsigned char *) alloca (nsigs);
6397 memset (sigs, 0, nsigs);
6398
6399 /* Break the command line up into args. */
6400
6401 argv = gdb_buildargv (args);
6402 old_chain = make_cleanup_freeargv (argv);
6403
6404 /* Walk through the args, looking for signal oursigs, signal names, and
6405 actions. Signal numbers and signal names may be interspersed with
6406 actions, with the actions being performed for all signals cumulatively
6407 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6408
6409 while (*argv != NULL)
6410 {
6411 wordlen = strlen (*argv);
6412 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6413 {;
6414 }
6415 allsigs = 0;
6416 sigfirst = siglast = -1;
6417
6418 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6419 {
6420 /* Apply action to all signals except those used by the
6421 debugger. Silently skip those. */
6422 allsigs = 1;
6423 sigfirst = 0;
6424 siglast = nsigs - 1;
6425 }
6426 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6427 {
6428 SET_SIGS (nsigs, sigs, signal_stop);
6429 SET_SIGS (nsigs, sigs, signal_print);
6430 }
6431 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6432 {
6433 UNSET_SIGS (nsigs, sigs, signal_program);
6434 }
6435 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6436 {
6437 SET_SIGS (nsigs, sigs, signal_print);
6438 }
6439 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6440 {
6441 SET_SIGS (nsigs, sigs, signal_program);
6442 }
6443 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6444 {
6445 UNSET_SIGS (nsigs, sigs, signal_stop);
6446 }
6447 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6448 {
6449 SET_SIGS (nsigs, sigs, signal_program);
6450 }
6451 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6452 {
6453 UNSET_SIGS (nsigs, sigs, signal_print);
6454 UNSET_SIGS (nsigs, sigs, signal_stop);
6455 }
6456 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6457 {
6458 UNSET_SIGS (nsigs, sigs, signal_program);
6459 }
6460 else if (digits > 0)
6461 {
6462 /* It is numeric. The numeric signal refers to our own
6463 internal signal numbering from target.h, not to host/target
6464 signal number. This is a feature; users really should be
6465 using symbolic names anyway, and the common ones like
6466 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6467
6468 sigfirst = siglast = (int)
6469 gdb_signal_from_command (atoi (*argv));
6470 if ((*argv)[digits] == '-')
6471 {
6472 siglast = (int)
6473 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6474 }
6475 if (sigfirst > siglast)
6476 {
6477 /* Bet he didn't figure we'd think of this case... */
6478 signum = sigfirst;
6479 sigfirst = siglast;
6480 siglast = signum;
6481 }
6482 }
6483 else
6484 {
6485 oursig = gdb_signal_from_name (*argv);
6486 if (oursig != GDB_SIGNAL_UNKNOWN)
6487 {
6488 sigfirst = siglast = (int) oursig;
6489 }
6490 else
6491 {
6492 /* Not a number and not a recognized flag word => complain. */
6493 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6494 }
6495 }
6496
6497 /* If any signal numbers or symbol names were found, set flags for
6498 which signals to apply actions to. */
6499
6500 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6501 {
6502 switch ((enum gdb_signal) signum)
6503 {
6504 case GDB_SIGNAL_TRAP:
6505 case GDB_SIGNAL_INT:
6506 if (!allsigs && !sigs[signum])
6507 {
6508 if (query (_("%s is used by the debugger.\n\
6509 Are you sure you want to change it? "),
6510 gdb_signal_to_name ((enum gdb_signal) signum)))
6511 {
6512 sigs[signum] = 1;
6513 }
6514 else
6515 {
6516 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6517 gdb_flush (gdb_stdout);
6518 }
6519 }
6520 break;
6521 case GDB_SIGNAL_0:
6522 case GDB_SIGNAL_DEFAULT:
6523 case GDB_SIGNAL_UNKNOWN:
6524 /* Make sure that "all" doesn't print these. */
6525 break;
6526 default:
6527 sigs[signum] = 1;
6528 break;
6529 }
6530 }
6531
6532 argv++;
6533 }
6534
6535 for (signum = 0; signum < nsigs; signum++)
6536 if (sigs[signum])
6537 {
6538 signal_cache_update (-1);
6539 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6540 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6541
6542 if (from_tty)
6543 {
6544 /* Show the results. */
6545 sig_print_header ();
6546 for (; signum < nsigs; signum++)
6547 if (sigs[signum])
6548 sig_print_info (signum);
6549 }
6550
6551 break;
6552 }
6553
6554 do_cleanups (old_chain);
6555 }
6556
6557 /* Complete the "handle" command. */
6558
6559 static VEC (char_ptr) *
6560 handle_completer (struct cmd_list_element *ignore,
6561 const char *text, const char *word)
6562 {
6563 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6564 static const char * const keywords[] =
6565 {
6566 "all",
6567 "stop",
6568 "ignore",
6569 "print",
6570 "pass",
6571 "nostop",
6572 "noignore",
6573 "noprint",
6574 "nopass",
6575 NULL,
6576 };
6577
6578 vec_signals = signal_completer (ignore, text, word);
6579 vec_keywords = complete_on_enum (keywords, word, word);
6580
6581 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6582 VEC_free (char_ptr, vec_signals);
6583 VEC_free (char_ptr, vec_keywords);
6584 return return_val;
6585 }
6586
6587 static void
6588 xdb_handle_command (char *args, int from_tty)
6589 {
6590 char **argv;
6591 struct cleanup *old_chain;
6592
6593 if (args == NULL)
6594 error_no_arg (_("xdb command"));
6595
6596 /* Break the command line up into args. */
6597
6598 argv = gdb_buildargv (args);
6599 old_chain = make_cleanup_freeargv (argv);
6600 if (argv[1] != (char *) NULL)
6601 {
6602 char *argBuf;
6603 int bufLen;
6604
6605 bufLen = strlen (argv[0]) + 20;
6606 argBuf = (char *) xmalloc (bufLen);
6607 if (argBuf)
6608 {
6609 int validFlag = 1;
6610 enum gdb_signal oursig;
6611
6612 oursig = gdb_signal_from_name (argv[0]);
6613 memset (argBuf, 0, bufLen);
6614 if (strcmp (argv[1], "Q") == 0)
6615 sprintf (argBuf, "%s %s", argv[0], "noprint");
6616 else
6617 {
6618 if (strcmp (argv[1], "s") == 0)
6619 {
6620 if (!signal_stop[oursig])
6621 sprintf (argBuf, "%s %s", argv[0], "stop");
6622 else
6623 sprintf (argBuf, "%s %s", argv[0], "nostop");
6624 }
6625 else if (strcmp (argv[1], "i") == 0)
6626 {
6627 if (!signal_program[oursig])
6628 sprintf (argBuf, "%s %s", argv[0], "pass");
6629 else
6630 sprintf (argBuf, "%s %s", argv[0], "nopass");
6631 }
6632 else if (strcmp (argv[1], "r") == 0)
6633 {
6634 if (!signal_print[oursig])
6635 sprintf (argBuf, "%s %s", argv[0], "print");
6636 else
6637 sprintf (argBuf, "%s %s", argv[0], "noprint");
6638 }
6639 else
6640 validFlag = 0;
6641 }
6642 if (validFlag)
6643 handle_command (argBuf, from_tty);
6644 else
6645 printf_filtered (_("Invalid signal handling flag.\n"));
6646 if (argBuf)
6647 xfree (argBuf);
6648 }
6649 }
6650 do_cleanups (old_chain);
6651 }
6652
6653 enum gdb_signal
6654 gdb_signal_from_command (int num)
6655 {
6656 if (num >= 1 && num <= 15)
6657 return (enum gdb_signal) num;
6658 error (_("Only signals 1-15 are valid as numeric signals.\n\
6659 Use \"info signals\" for a list of symbolic signals."));
6660 }
6661
6662 /* Print current contents of the tables set by the handle command.
6663 It is possible we should just be printing signals actually used
6664 by the current target (but for things to work right when switching
6665 targets, all signals should be in the signal tables). */
6666
6667 static void
6668 signals_info (char *signum_exp, int from_tty)
6669 {
6670 enum gdb_signal oursig;
6671
6672 sig_print_header ();
6673
6674 if (signum_exp)
6675 {
6676 /* First see if this is a symbol name. */
6677 oursig = gdb_signal_from_name (signum_exp);
6678 if (oursig == GDB_SIGNAL_UNKNOWN)
6679 {
6680 /* No, try numeric. */
6681 oursig =
6682 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6683 }
6684 sig_print_info (oursig);
6685 return;
6686 }
6687
6688 printf_filtered ("\n");
6689 /* These ugly casts brought to you by the native VAX compiler. */
6690 for (oursig = GDB_SIGNAL_FIRST;
6691 (int) oursig < (int) GDB_SIGNAL_LAST;
6692 oursig = (enum gdb_signal) ((int) oursig + 1))
6693 {
6694 QUIT;
6695
6696 if (oursig != GDB_SIGNAL_UNKNOWN
6697 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6698 sig_print_info (oursig);
6699 }
6700
6701 printf_filtered (_("\nUse the \"handle\" command "
6702 "to change these tables.\n"));
6703 }
6704
6705 /* Check if it makes sense to read $_siginfo from the current thread
6706 at this point. If not, throw an error. */
6707
6708 static void
6709 validate_siginfo_access (void)
6710 {
6711 /* No current inferior, no siginfo. */
6712 if (ptid_equal (inferior_ptid, null_ptid))
6713 error (_("No thread selected."));
6714
6715 /* Don't try to read from a dead thread. */
6716 if (is_exited (inferior_ptid))
6717 error (_("The current thread has terminated"));
6718
6719 /* ... or from a spinning thread. */
6720 if (is_running (inferior_ptid))
6721 error (_("Selected thread is running."));
6722 }
6723
6724 /* The $_siginfo convenience variable is a bit special. We don't know
6725 for sure the type of the value until we actually have a chance to
6726 fetch the data. The type can change depending on gdbarch, so it is
6727 also dependent on which thread you have selected.
6728
6729 1. making $_siginfo be an internalvar that creates a new value on
6730 access.
6731
6732 2. making the value of $_siginfo be an lval_computed value. */
6733
6734 /* This function implements the lval_computed support for reading a
6735 $_siginfo value. */
6736
6737 static void
6738 siginfo_value_read (struct value *v)
6739 {
6740 LONGEST transferred;
6741
6742 validate_siginfo_access ();
6743
6744 transferred =
6745 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6746 NULL,
6747 value_contents_all_raw (v),
6748 value_offset (v),
6749 TYPE_LENGTH (value_type (v)));
6750
6751 if (transferred != TYPE_LENGTH (value_type (v)))
6752 error (_("Unable to read siginfo"));
6753 }
6754
6755 /* This function implements the lval_computed support for writing a
6756 $_siginfo value. */
6757
6758 static void
6759 siginfo_value_write (struct value *v, struct value *fromval)
6760 {
6761 LONGEST transferred;
6762
6763 validate_siginfo_access ();
6764
6765 transferred = target_write (&current_target,
6766 TARGET_OBJECT_SIGNAL_INFO,
6767 NULL,
6768 value_contents_all_raw (fromval),
6769 value_offset (v),
6770 TYPE_LENGTH (value_type (fromval)));
6771
6772 if (transferred != TYPE_LENGTH (value_type (fromval)))
6773 error (_("Unable to write siginfo"));
6774 }
6775
6776 static const struct lval_funcs siginfo_value_funcs =
6777 {
6778 siginfo_value_read,
6779 siginfo_value_write
6780 };
6781
6782 /* Return a new value with the correct type for the siginfo object of
6783 the current thread using architecture GDBARCH. Return a void value
6784 if there's no object available. */
6785
6786 static struct value *
6787 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6788 void *ignore)
6789 {
6790 if (target_has_stack
6791 && !ptid_equal (inferior_ptid, null_ptid)
6792 && gdbarch_get_siginfo_type_p (gdbarch))
6793 {
6794 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6795
6796 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6797 }
6798
6799 return allocate_value (builtin_type (gdbarch)->builtin_void);
6800 }
6801
6802 \f
6803 /* infcall_suspend_state contains state about the program itself like its
6804 registers and any signal it received when it last stopped.
6805 This state must be restored regardless of how the inferior function call
6806 ends (either successfully, or after it hits a breakpoint or signal)
6807 if the program is to properly continue where it left off. */
6808
6809 struct infcall_suspend_state
6810 {
6811 struct thread_suspend_state thread_suspend;
6812 #if 0 /* Currently unused and empty structures are not valid C. */
6813 struct inferior_suspend_state inferior_suspend;
6814 #endif
6815
6816 /* Other fields: */
6817 CORE_ADDR stop_pc;
6818 struct regcache *registers;
6819
6820 /* Format of SIGINFO_DATA or NULL if it is not present. */
6821 struct gdbarch *siginfo_gdbarch;
6822
6823 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6824 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6825 content would be invalid. */
6826 gdb_byte *siginfo_data;
6827 };
6828
6829 struct infcall_suspend_state *
6830 save_infcall_suspend_state (void)
6831 {
6832 struct infcall_suspend_state *inf_state;
6833 struct thread_info *tp = inferior_thread ();
6834 #if 0
6835 struct inferior *inf = current_inferior ();
6836 #endif
6837 struct regcache *regcache = get_current_regcache ();
6838 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6839 gdb_byte *siginfo_data = NULL;
6840
6841 if (gdbarch_get_siginfo_type_p (gdbarch))
6842 {
6843 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6844 size_t len = TYPE_LENGTH (type);
6845 struct cleanup *back_to;
6846
6847 siginfo_data = xmalloc (len);
6848 back_to = make_cleanup (xfree, siginfo_data);
6849
6850 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6851 siginfo_data, 0, len) == len)
6852 discard_cleanups (back_to);
6853 else
6854 {
6855 /* Errors ignored. */
6856 do_cleanups (back_to);
6857 siginfo_data = NULL;
6858 }
6859 }
6860
6861 inf_state = XCNEW (struct infcall_suspend_state);
6862
6863 if (siginfo_data)
6864 {
6865 inf_state->siginfo_gdbarch = gdbarch;
6866 inf_state->siginfo_data = siginfo_data;
6867 }
6868
6869 inf_state->thread_suspend = tp->suspend;
6870 #if 0 /* Currently unused and empty structures are not valid C. */
6871 inf_state->inferior_suspend = inf->suspend;
6872 #endif
6873
6874 /* run_inferior_call will not use the signal due to its `proceed' call with
6875 GDB_SIGNAL_0 anyway. */
6876 tp->suspend.stop_signal = GDB_SIGNAL_0;
6877
6878 inf_state->stop_pc = stop_pc;
6879
6880 inf_state->registers = regcache_dup (regcache);
6881
6882 return inf_state;
6883 }
6884
6885 /* Restore inferior session state to INF_STATE. */
6886
6887 void
6888 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6889 {
6890 struct thread_info *tp = inferior_thread ();
6891 #if 0
6892 struct inferior *inf = current_inferior ();
6893 #endif
6894 struct regcache *regcache = get_current_regcache ();
6895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6896
6897 tp->suspend = inf_state->thread_suspend;
6898 #if 0 /* Currently unused and empty structures are not valid C. */
6899 inf->suspend = inf_state->inferior_suspend;
6900 #endif
6901
6902 stop_pc = inf_state->stop_pc;
6903
6904 if (inf_state->siginfo_gdbarch == gdbarch)
6905 {
6906 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6907
6908 /* Errors ignored. */
6909 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6910 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6911 }
6912
6913 /* The inferior can be gone if the user types "print exit(0)"
6914 (and perhaps other times). */
6915 if (target_has_execution)
6916 /* NB: The register write goes through to the target. */
6917 regcache_cpy (regcache, inf_state->registers);
6918
6919 discard_infcall_suspend_state (inf_state);
6920 }
6921
6922 static void
6923 do_restore_infcall_suspend_state_cleanup (void *state)
6924 {
6925 restore_infcall_suspend_state (state);
6926 }
6927
6928 struct cleanup *
6929 make_cleanup_restore_infcall_suspend_state
6930 (struct infcall_suspend_state *inf_state)
6931 {
6932 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6933 }
6934
6935 void
6936 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6937 {
6938 regcache_xfree (inf_state->registers);
6939 xfree (inf_state->siginfo_data);
6940 xfree (inf_state);
6941 }
6942
6943 struct regcache *
6944 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6945 {
6946 return inf_state->registers;
6947 }
6948
6949 /* infcall_control_state contains state regarding gdb's control of the
6950 inferior itself like stepping control. It also contains session state like
6951 the user's currently selected frame. */
6952
6953 struct infcall_control_state
6954 {
6955 struct thread_control_state thread_control;
6956 struct inferior_control_state inferior_control;
6957
6958 /* Other fields: */
6959 enum stop_stack_kind stop_stack_dummy;
6960 int stopped_by_random_signal;
6961 int stop_after_trap;
6962
6963 /* ID if the selected frame when the inferior function call was made. */
6964 struct frame_id selected_frame_id;
6965 };
6966
6967 /* Save all of the information associated with the inferior<==>gdb
6968 connection. */
6969
6970 struct infcall_control_state *
6971 save_infcall_control_state (void)
6972 {
6973 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6974 struct thread_info *tp = inferior_thread ();
6975 struct inferior *inf = current_inferior ();
6976
6977 inf_status->thread_control = tp->control;
6978 inf_status->inferior_control = inf->control;
6979
6980 tp->control.step_resume_breakpoint = NULL;
6981 tp->control.exception_resume_breakpoint = NULL;
6982
6983 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6984 chain. If caller's caller is walking the chain, they'll be happier if we
6985 hand them back the original chain when restore_infcall_control_state is
6986 called. */
6987 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6988
6989 /* Other fields: */
6990 inf_status->stop_stack_dummy = stop_stack_dummy;
6991 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6992 inf_status->stop_after_trap = stop_after_trap;
6993
6994 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6995
6996 return inf_status;
6997 }
6998
6999 static int
7000 restore_selected_frame (void *args)
7001 {
7002 struct frame_id *fid = (struct frame_id *) args;
7003 struct frame_info *frame;
7004
7005 frame = frame_find_by_id (*fid);
7006
7007 /* If inf_status->selected_frame_id is NULL, there was no previously
7008 selected frame. */
7009 if (frame == NULL)
7010 {
7011 warning (_("Unable to restore previously selected frame."));
7012 return 0;
7013 }
7014
7015 select_frame (frame);
7016
7017 return (1);
7018 }
7019
7020 /* Restore inferior session state to INF_STATUS. */
7021
7022 void
7023 restore_infcall_control_state (struct infcall_control_state *inf_status)
7024 {
7025 struct thread_info *tp = inferior_thread ();
7026 struct inferior *inf = current_inferior ();
7027
7028 if (tp->control.step_resume_breakpoint)
7029 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7030
7031 if (tp->control.exception_resume_breakpoint)
7032 tp->control.exception_resume_breakpoint->disposition
7033 = disp_del_at_next_stop;
7034
7035 /* Handle the bpstat_copy of the chain. */
7036 bpstat_clear (&tp->control.stop_bpstat);
7037
7038 tp->control = inf_status->thread_control;
7039 inf->control = inf_status->inferior_control;
7040
7041 /* Other fields: */
7042 stop_stack_dummy = inf_status->stop_stack_dummy;
7043 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7044 stop_after_trap = inf_status->stop_after_trap;
7045
7046 if (target_has_stack)
7047 {
7048 /* The point of catch_errors is that if the stack is clobbered,
7049 walking the stack might encounter a garbage pointer and
7050 error() trying to dereference it. */
7051 if (catch_errors
7052 (restore_selected_frame, &inf_status->selected_frame_id,
7053 "Unable to restore previously selected frame:\n",
7054 RETURN_MASK_ERROR) == 0)
7055 /* Error in restoring the selected frame. Select the innermost
7056 frame. */
7057 select_frame (get_current_frame ());
7058 }
7059
7060 xfree (inf_status);
7061 }
7062
7063 static void
7064 do_restore_infcall_control_state_cleanup (void *sts)
7065 {
7066 restore_infcall_control_state (sts);
7067 }
7068
7069 struct cleanup *
7070 make_cleanup_restore_infcall_control_state
7071 (struct infcall_control_state *inf_status)
7072 {
7073 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7074 }
7075
7076 void
7077 discard_infcall_control_state (struct infcall_control_state *inf_status)
7078 {
7079 if (inf_status->thread_control.step_resume_breakpoint)
7080 inf_status->thread_control.step_resume_breakpoint->disposition
7081 = disp_del_at_next_stop;
7082
7083 if (inf_status->thread_control.exception_resume_breakpoint)
7084 inf_status->thread_control.exception_resume_breakpoint->disposition
7085 = disp_del_at_next_stop;
7086
7087 /* See save_infcall_control_state for info on stop_bpstat. */
7088 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7089
7090 xfree (inf_status);
7091 }
7092 \f
7093 /* restore_inferior_ptid() will be used by the cleanup machinery
7094 to restore the inferior_ptid value saved in a call to
7095 save_inferior_ptid(). */
7096
7097 static void
7098 restore_inferior_ptid (void *arg)
7099 {
7100 ptid_t *saved_ptid_ptr = arg;
7101
7102 inferior_ptid = *saved_ptid_ptr;
7103 xfree (arg);
7104 }
7105
7106 /* Save the value of inferior_ptid so that it may be restored by a
7107 later call to do_cleanups(). Returns the struct cleanup pointer
7108 needed for later doing the cleanup. */
7109
7110 struct cleanup *
7111 save_inferior_ptid (void)
7112 {
7113 ptid_t *saved_ptid_ptr;
7114
7115 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7116 *saved_ptid_ptr = inferior_ptid;
7117 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7118 }
7119
7120 /* See inferior.h. */
7121
7122 void
7123 clear_exit_convenience_vars (void)
7124 {
7125 clear_internalvar (lookup_internalvar ("_exitsignal"));
7126 clear_internalvar (lookup_internalvar ("_exitcode"));
7127 }
7128 \f
7129
7130 /* User interface for reverse debugging:
7131 Set exec-direction / show exec-direction commands
7132 (returns error unless target implements to_set_exec_direction method). */
7133
7134 int execution_direction = EXEC_FORWARD;
7135 static const char exec_forward[] = "forward";
7136 static const char exec_reverse[] = "reverse";
7137 static const char *exec_direction = exec_forward;
7138 static const char *const exec_direction_names[] = {
7139 exec_forward,
7140 exec_reverse,
7141 NULL
7142 };
7143
7144 static void
7145 set_exec_direction_func (char *args, int from_tty,
7146 struct cmd_list_element *cmd)
7147 {
7148 if (target_can_execute_reverse)
7149 {
7150 if (!strcmp (exec_direction, exec_forward))
7151 execution_direction = EXEC_FORWARD;
7152 else if (!strcmp (exec_direction, exec_reverse))
7153 execution_direction = EXEC_REVERSE;
7154 }
7155 else
7156 {
7157 exec_direction = exec_forward;
7158 error (_("Target does not support this operation."));
7159 }
7160 }
7161
7162 static void
7163 show_exec_direction_func (struct ui_file *out, int from_tty,
7164 struct cmd_list_element *cmd, const char *value)
7165 {
7166 switch (execution_direction) {
7167 case EXEC_FORWARD:
7168 fprintf_filtered (out, _("Forward.\n"));
7169 break;
7170 case EXEC_REVERSE:
7171 fprintf_filtered (out, _("Reverse.\n"));
7172 break;
7173 default:
7174 internal_error (__FILE__, __LINE__,
7175 _("bogus execution_direction value: %d"),
7176 (int) execution_direction);
7177 }
7178 }
7179
7180 static void
7181 show_schedule_multiple (struct ui_file *file, int from_tty,
7182 struct cmd_list_element *c, const char *value)
7183 {
7184 fprintf_filtered (file, _("Resuming the execution of threads "
7185 "of all processes is %s.\n"), value);
7186 }
7187
7188 /* Implementation of `siginfo' variable. */
7189
7190 static const struct internalvar_funcs siginfo_funcs =
7191 {
7192 siginfo_make_value,
7193 NULL,
7194 NULL
7195 };
7196
7197 void
7198 _initialize_infrun (void)
7199 {
7200 int i;
7201 int numsigs;
7202 struct cmd_list_element *c;
7203
7204 add_info ("signals", signals_info, _("\
7205 What debugger does when program gets various signals.\n\
7206 Specify a signal as argument to print info on that signal only."));
7207 add_info_alias ("handle", "signals", 0);
7208
7209 c = add_com ("handle", class_run, handle_command, _("\
7210 Specify how to handle signals.\n\
7211 Usage: handle SIGNAL [ACTIONS]\n\
7212 Args are signals and actions to apply to those signals.\n\
7213 If no actions are specified, the current settings for the specified signals\n\
7214 will be displayed instead.\n\
7215 \n\
7216 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7217 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7218 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7219 The special arg \"all\" is recognized to mean all signals except those\n\
7220 used by the debugger, typically SIGTRAP and SIGINT.\n\
7221 \n\
7222 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7223 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7224 Stop means reenter debugger if this signal happens (implies print).\n\
7225 Print means print a message if this signal happens.\n\
7226 Pass means let program see this signal; otherwise program doesn't know.\n\
7227 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7228 Pass and Stop may be combined.\n\
7229 \n\
7230 Multiple signals may be specified. Signal numbers and signal names\n\
7231 may be interspersed with actions, with the actions being performed for\n\
7232 all signals cumulatively specified."));
7233 set_cmd_completer (c, handle_completer);
7234
7235 if (xdb_commands)
7236 {
7237 add_com ("lz", class_info, signals_info, _("\
7238 What debugger does when program gets various signals.\n\
7239 Specify a signal as argument to print info on that signal only."));
7240 add_com ("z", class_run, xdb_handle_command, _("\
7241 Specify how to handle a signal.\n\
7242 Args are signals and actions to apply to those signals.\n\
7243 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7244 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7245 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7246 The special arg \"all\" is recognized to mean all signals except those\n\
7247 used by the debugger, typically SIGTRAP and SIGINT.\n\
7248 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7249 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7250 nopass), \"Q\" (noprint)\n\
7251 Stop means reenter debugger if this signal happens (implies print).\n\
7252 Print means print a message if this signal happens.\n\
7253 Pass means let program see this signal; otherwise program doesn't know.\n\
7254 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7255 Pass and Stop may be combined."));
7256 }
7257
7258 if (!dbx_commands)
7259 stop_command = add_cmd ("stop", class_obscure,
7260 not_just_help_class_command, _("\
7261 There is no `stop' command, but you can set a hook on `stop'.\n\
7262 This allows you to set a list of commands to be run each time execution\n\
7263 of the program stops."), &cmdlist);
7264
7265 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7266 Set inferior debugging."), _("\
7267 Show inferior debugging."), _("\
7268 When non-zero, inferior specific debugging is enabled."),
7269 NULL,
7270 show_debug_infrun,
7271 &setdebuglist, &showdebuglist);
7272
7273 add_setshow_boolean_cmd ("displaced", class_maintenance,
7274 &debug_displaced, _("\
7275 Set displaced stepping debugging."), _("\
7276 Show displaced stepping debugging."), _("\
7277 When non-zero, displaced stepping specific debugging is enabled."),
7278 NULL,
7279 show_debug_displaced,
7280 &setdebuglist, &showdebuglist);
7281
7282 add_setshow_boolean_cmd ("non-stop", no_class,
7283 &non_stop_1, _("\
7284 Set whether gdb controls the inferior in non-stop mode."), _("\
7285 Show whether gdb controls the inferior in non-stop mode."), _("\
7286 When debugging a multi-threaded program and this setting is\n\
7287 off (the default, also called all-stop mode), when one thread stops\n\
7288 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7289 all other threads in the program while you interact with the thread of\n\
7290 interest. When you continue or step a thread, you can allow the other\n\
7291 threads to run, or have them remain stopped, but while you inspect any\n\
7292 thread's state, all threads stop.\n\
7293 \n\
7294 In non-stop mode, when one thread stops, other threads can continue\n\
7295 to run freely. You'll be able to step each thread independently,\n\
7296 leave it stopped or free to run as needed."),
7297 set_non_stop,
7298 show_non_stop,
7299 &setlist,
7300 &showlist);
7301
7302 numsigs = (int) GDB_SIGNAL_LAST;
7303 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7304 signal_print = (unsigned char *)
7305 xmalloc (sizeof (signal_print[0]) * numsigs);
7306 signal_program = (unsigned char *)
7307 xmalloc (sizeof (signal_program[0]) * numsigs);
7308 signal_catch = (unsigned char *)
7309 xmalloc (sizeof (signal_catch[0]) * numsigs);
7310 signal_pass = (unsigned char *)
7311 xmalloc (sizeof (signal_program[0]) * numsigs);
7312 for (i = 0; i < numsigs; i++)
7313 {
7314 signal_stop[i] = 1;
7315 signal_print[i] = 1;
7316 signal_program[i] = 1;
7317 signal_catch[i] = 0;
7318 }
7319
7320 /* Signals caused by debugger's own actions
7321 should not be given to the program afterwards. */
7322 signal_program[GDB_SIGNAL_TRAP] = 0;
7323 signal_program[GDB_SIGNAL_INT] = 0;
7324
7325 /* Signals that are not errors should not normally enter the debugger. */
7326 signal_stop[GDB_SIGNAL_ALRM] = 0;
7327 signal_print[GDB_SIGNAL_ALRM] = 0;
7328 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7329 signal_print[GDB_SIGNAL_VTALRM] = 0;
7330 signal_stop[GDB_SIGNAL_PROF] = 0;
7331 signal_print[GDB_SIGNAL_PROF] = 0;
7332 signal_stop[GDB_SIGNAL_CHLD] = 0;
7333 signal_print[GDB_SIGNAL_CHLD] = 0;
7334 signal_stop[GDB_SIGNAL_IO] = 0;
7335 signal_print[GDB_SIGNAL_IO] = 0;
7336 signal_stop[GDB_SIGNAL_POLL] = 0;
7337 signal_print[GDB_SIGNAL_POLL] = 0;
7338 signal_stop[GDB_SIGNAL_URG] = 0;
7339 signal_print[GDB_SIGNAL_URG] = 0;
7340 signal_stop[GDB_SIGNAL_WINCH] = 0;
7341 signal_print[GDB_SIGNAL_WINCH] = 0;
7342 signal_stop[GDB_SIGNAL_PRIO] = 0;
7343 signal_print[GDB_SIGNAL_PRIO] = 0;
7344
7345 /* These signals are used internally by user-level thread
7346 implementations. (See signal(5) on Solaris.) Like the above
7347 signals, a healthy program receives and handles them as part of
7348 its normal operation. */
7349 signal_stop[GDB_SIGNAL_LWP] = 0;
7350 signal_print[GDB_SIGNAL_LWP] = 0;
7351 signal_stop[GDB_SIGNAL_WAITING] = 0;
7352 signal_print[GDB_SIGNAL_WAITING] = 0;
7353 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7354 signal_print[GDB_SIGNAL_CANCEL] = 0;
7355
7356 /* Update cached state. */
7357 signal_cache_update (-1);
7358
7359 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7360 &stop_on_solib_events, _("\
7361 Set stopping for shared library events."), _("\
7362 Show stopping for shared library events."), _("\
7363 If nonzero, gdb will give control to the user when the dynamic linker\n\
7364 notifies gdb of shared library events. The most common event of interest\n\
7365 to the user would be loading/unloading of a new library."),
7366 set_stop_on_solib_events,
7367 show_stop_on_solib_events,
7368 &setlist, &showlist);
7369
7370 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7371 follow_fork_mode_kind_names,
7372 &follow_fork_mode_string, _("\
7373 Set debugger response to a program call of fork or vfork."), _("\
7374 Show debugger response to a program call of fork or vfork."), _("\
7375 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7376 parent - the original process is debugged after a fork\n\
7377 child - the new process is debugged after a fork\n\
7378 The unfollowed process will continue to run.\n\
7379 By default, the debugger will follow the parent process."),
7380 NULL,
7381 show_follow_fork_mode_string,
7382 &setlist, &showlist);
7383
7384 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7385 follow_exec_mode_names,
7386 &follow_exec_mode_string, _("\
7387 Set debugger response to a program call of exec."), _("\
7388 Show debugger response to a program call of exec."), _("\
7389 An exec call replaces the program image of a process.\n\
7390 \n\
7391 follow-exec-mode can be:\n\
7392 \n\
7393 new - the debugger creates a new inferior and rebinds the process\n\
7394 to this new inferior. The program the process was running before\n\
7395 the exec call can be restarted afterwards by restarting the original\n\
7396 inferior.\n\
7397 \n\
7398 same - the debugger keeps the process bound to the same inferior.\n\
7399 The new executable image replaces the previous executable loaded in\n\
7400 the inferior. Restarting the inferior after the exec call restarts\n\
7401 the executable the process was running after the exec call.\n\
7402 \n\
7403 By default, the debugger will use the same inferior."),
7404 NULL,
7405 show_follow_exec_mode_string,
7406 &setlist, &showlist);
7407
7408 add_setshow_enum_cmd ("scheduler-locking", class_run,
7409 scheduler_enums, &scheduler_mode, _("\
7410 Set mode for locking scheduler during execution."), _("\
7411 Show mode for locking scheduler during execution."), _("\
7412 off == no locking (threads may preempt at any time)\n\
7413 on == full locking (no thread except the current thread may run)\n\
7414 step == scheduler locked during every single-step operation.\n\
7415 In this mode, no other thread may run during a step command.\n\
7416 Other threads may run while stepping over a function call ('next')."),
7417 set_schedlock_func, /* traps on target vector */
7418 show_scheduler_mode,
7419 &setlist, &showlist);
7420
7421 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7422 Set mode for resuming threads of all processes."), _("\
7423 Show mode for resuming threads of all processes."), _("\
7424 When on, execution commands (such as 'continue' or 'next') resume all\n\
7425 threads of all processes. When off (which is the default), execution\n\
7426 commands only resume the threads of the current process. The set of\n\
7427 threads that are resumed is further refined by the scheduler-locking\n\
7428 mode (see help set scheduler-locking)."),
7429 NULL,
7430 show_schedule_multiple,
7431 &setlist, &showlist);
7432
7433 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7434 Set mode of the step operation."), _("\
7435 Show mode of the step operation."), _("\
7436 When set, doing a step over a function without debug line information\n\
7437 will stop at the first instruction of that function. Otherwise, the\n\
7438 function is skipped and the step command stops at a different source line."),
7439 NULL,
7440 show_step_stop_if_no_debug,
7441 &setlist, &showlist);
7442
7443 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7444 &can_use_displaced_stepping, _("\
7445 Set debugger's willingness to use displaced stepping."), _("\
7446 Show debugger's willingness to use displaced stepping."), _("\
7447 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7448 supported by the target architecture. If off, gdb will not use displaced\n\
7449 stepping to step over breakpoints, even if such is supported by the target\n\
7450 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7451 if the target architecture supports it and non-stop mode is active, but will not\n\
7452 use it in all-stop mode (see help set non-stop)."),
7453 NULL,
7454 show_can_use_displaced_stepping,
7455 &setlist, &showlist);
7456
7457 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7458 &exec_direction, _("Set direction of execution.\n\
7459 Options are 'forward' or 'reverse'."),
7460 _("Show direction of execution (forward/reverse)."),
7461 _("Tells gdb whether to execute forward or backward."),
7462 set_exec_direction_func, show_exec_direction_func,
7463 &setlist, &showlist);
7464
7465 /* Set/show detach-on-fork: user-settable mode. */
7466
7467 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7468 Set whether gdb will detach the child of a fork."), _("\
7469 Show whether gdb will detach the child of a fork."), _("\
7470 Tells gdb whether to detach the child of a fork."),
7471 NULL, NULL, &setlist, &showlist);
7472
7473 /* Set/show disable address space randomization mode. */
7474
7475 add_setshow_boolean_cmd ("disable-randomization", class_support,
7476 &disable_randomization, _("\
7477 Set disabling of debuggee's virtual address space randomization."), _("\
7478 Show disabling of debuggee's virtual address space randomization."), _("\
7479 When this mode is on (which is the default), randomization of the virtual\n\
7480 address space is disabled. Standalone programs run with the randomization\n\
7481 enabled by default on some platforms."),
7482 &set_disable_randomization,
7483 &show_disable_randomization,
7484 &setlist, &showlist);
7485
7486 /* ptid initializations */
7487 inferior_ptid = null_ptid;
7488 target_last_wait_ptid = minus_one_ptid;
7489
7490 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7491 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7492 observer_attach_thread_exit (infrun_thread_thread_exit);
7493 observer_attach_inferior_exit (infrun_inferior_exit);
7494
7495 /* Explicitly create without lookup, since that tries to create a
7496 value with a void typed value, and when we get here, gdbarch
7497 isn't initialized yet. At this point, we're quite sure there
7498 isn't another convenience variable of the same name. */
7499 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7500
7501 add_setshow_boolean_cmd ("observer", no_class,
7502 &observer_mode_1, _("\
7503 Set whether gdb controls the inferior in observer mode."), _("\
7504 Show whether gdb controls the inferior in observer mode."), _("\
7505 In observer mode, GDB can get data from the inferior, but not\n\
7506 affect its execution. Registers and memory may not be changed,\n\
7507 breakpoints may not be set, and the program cannot be interrupted\n\
7508 or signalled."),
7509 set_observer_mode,
7510 show_observer_mode,
7511 &setlist,
7512 &showlist);
7513 }
This page took 0.319925 seconds and 5 git commands to generate.