remove trivialy unused variables
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000-2016 Free Software Foundation, Inc.
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
35
36 enum gdb_regnum
37 {
38 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
39 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
40 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
41 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46 E_PC_REGNUM,
47 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
48 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
49 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
50 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
51 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
52 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
53 E_NUM_REGS = E_PC_REGNUM + 1
54 };
55
56 /* Use an invalid address value as 'not available' marker. */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
58
59 struct iq2000_frame_cache
60 {
61 /* Base address. */
62 CORE_ADDR base;
63 CORE_ADDR pc;
64 LONGEST framesize;
65 int using_fp;
66 CORE_ADDR saved_sp;
67 CORE_ADDR saved_regs [E_NUM_REGS];
68 };
69
70 /* Harvard methods: */
71
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
74 {
75 return addr & 0x7fffffffL;
76 }
77
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
80 {
81 return (ptr & 0x7fffffffL) | 0x80000000L;
82 }
83
84 /* Function: pointer_to_address
85 Convert a target pointer to an address in host (CORE_ADDR) format. */
86
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 struct type * type, const gdb_byte * buf)
90 {
91 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
93 CORE_ADDR addr
94 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
95
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
99 addr = insn_addr_from_ptr (addr);
100
101 return addr;
102 }
103
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
106
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 struct type *type, gdb_byte *buf, CORE_ADDR addr)
110 {
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
113
114 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115 addr = insn_ptr_from_addr (addr);
116 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
117 }
118
119 /* Real register methods: */
120
121 /* Function: register_name
122 Returns the name of the iq2000 register number N. */
123
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
126 {
127 static const char * names[E_NUM_REGS] =
128 {
129 "r0", "r1", "r2", "r3", "r4",
130 "r5", "r6", "r7", "r8", "r9",
131 "r10", "r11", "r12", "r13", "r14",
132 "r15", "r16", "r17", "r18", "r19",
133 "r20", "r21", "r22", "r23", "r24",
134 "r25", "r26", "r27", "r28", "r29",
135 "r30", "r31",
136 "pc"
137 };
138 if (regnum < 0 || regnum >= E_NUM_REGS)
139 return NULL;
140 return names[regnum];
141 }
142
143 /* Prologue analysis methods: */
144
145 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
146 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
147 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
148 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
149 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
150
151 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
152 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
153 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
154 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
155
156 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
157 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
158 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
159 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
160 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
161
162 /* Function: find_last_line_symbol
163
164 Given an address range, first find a line symbol corresponding to
165 the starting address. Then find the last line symbol within the
166 range that has a line number less than or equal to the first line.
167
168 For optimized code with code motion, this finds the last address
169 for the lowest-numbered line within the address range. */
170
171 static struct symtab_and_line
172 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
173 {
174 struct symtab_and_line sal = find_pc_line (start, notcurrent);
175 struct symtab_and_line best_sal = sal;
176
177 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
178 return sal;
179
180 do
181 {
182 if (sal.line && sal.line <= best_sal.line)
183 best_sal = sal;
184 sal = find_pc_line (sal.end, notcurrent);
185 }
186 while (sal.pc && sal.pc < end);
187
188 return best_sal;
189 }
190
191 /* Function: scan_prologue
192 Decode the instructions within the given address range.
193 Decide when we must have reached the end of the function prologue.
194 If a frame_info pointer is provided, fill in its prologue information.
195
196 Returns the address of the first instruction after the prologue. */
197
198 static CORE_ADDR
199 iq2000_scan_prologue (struct gdbarch *gdbarch,
200 CORE_ADDR scan_start,
201 CORE_ADDR scan_end,
202 struct frame_info *fi,
203 struct iq2000_frame_cache *cache)
204 {
205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
206 struct symtab_and_line sal;
207 CORE_ADDR pc;
208 CORE_ADDR loop_end;
209 int srcreg;
210 int tgtreg;
211 signed short offset;
212
213 if (scan_end == (CORE_ADDR) 0)
214 {
215 loop_end = scan_start + 100;
216 sal.end = sal.pc = 0;
217 }
218 else
219 {
220 loop_end = scan_end;
221 if (fi)
222 sal = find_last_line_symbol (scan_start, scan_end, 0);
223 else
224 sal.end = 0; /* Avoid GCC false warning. */
225 }
226
227 /* Saved registers:
228 We first have to save the saved register's offset, and
229 only later do we compute its actual address. Since the
230 offset can be zero, we must first initialize all the
231 saved regs to minus one (so we can later distinguish
232 between one that's not saved, and one that's saved at zero). */
233 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
234 cache->saved_regs[srcreg] = -1;
235 cache->using_fp = 0;
236 cache->framesize = 0;
237
238 for (pc = scan_start; pc < loop_end; pc += 4)
239 {
240 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
241 /* Skip any instructions writing to (sp) or decrementing the
242 SP. */
243 if ((insn & 0xffe00000) == 0xac200000)
244 {
245 /* sw using SP/%1 as base. */
246 /* LEGACY -- from assembly-only port. */
247 tgtreg = ((insn >> 16) & 0x1f);
248 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
249 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
250
251 if (tgtreg == E_LR_REGNUM)
252 continue;
253 }
254
255 if ((insn & 0xffff8000) == 0x20218000)
256 {
257 /* addi %1, %1, -N == addi %sp, %sp, -N */
258 /* LEGACY -- from assembly-only port. */
259 cache->framesize = -((signed short) (insn & 0xffff));
260 continue;
261 }
262
263 if (INSN_IS_ADDIU (insn))
264 {
265 srcreg = ADDIU_REG_SRC (insn);
266 tgtreg = ADDIU_REG_TGT (insn);
267 offset = ADDIU_IMMEDIATE (insn);
268 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
269 cache->framesize = -offset;
270 continue;
271 }
272
273 if (INSN_IS_STORE_WORD (insn))
274 {
275 srcreg = SW_REG_SRC (insn);
276 tgtreg = SW_REG_INDEX (insn);
277 offset = SW_OFFSET (insn);
278
279 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
280 {
281 /* "push" to stack (via SP or FP reg). */
282 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
283 cache->saved_regs[srcreg] = offset;
284 continue;
285 }
286 }
287
288 if (INSN_IS_MOVE (insn))
289 {
290 srcreg = MOVE_REG_SRC (insn);
291 tgtreg = MOVE_REG_TGT (insn);
292
293 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
294 {
295 /* Copy sp to fp. */
296 cache->using_fp = 1;
297 continue;
298 }
299 }
300
301 /* Unknown instruction encountered in frame. Bail out?
302 1) If we have a subsequent line symbol, we can keep going.
303 2) If not, we need to bail out and quit scanning instructions. */
304
305 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
306 continue;
307 else /* bail */
308 break;
309 }
310
311 return pc;
312 }
313
314 static void
315 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
316 {
317 int i;
318
319 cache->base = 0;
320 cache->framesize = 0;
321 cache->using_fp = 0;
322 cache->saved_sp = 0;
323 for (i = 0; i < E_NUM_REGS; i++)
324 cache->saved_regs[i] = -1;
325 }
326
327 /* Function: iq2000_skip_prologue
328 If the input address is in a function prologue,
329 returns the address of the end of the prologue;
330 else returns the input address.
331
332 Note: the input address is likely to be the function start,
333 since this function is mainly used for advancing a breakpoint
334 to the first line, or stepping to the first line when we have
335 stepped into a function call. */
336
337 static CORE_ADDR
338 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
339 {
340 CORE_ADDR func_addr = 0 , func_end = 0;
341
342 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
343 {
344 struct symtab_and_line sal;
345 struct iq2000_frame_cache cache;
346
347 /* Found a function. */
348 sal = find_pc_line (func_addr, 0);
349 if (sal.end && sal.end < func_end)
350 /* Found a line number, use it as end of prologue. */
351 return sal.end;
352
353 /* No useable line symbol. Use prologue parsing method. */
354 iq2000_init_frame_cache (&cache);
355 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
356 }
357
358 /* No function symbol -- just return the PC. */
359 return (CORE_ADDR) pc;
360 }
361
362 static struct iq2000_frame_cache *
363 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
364 {
365 struct gdbarch *gdbarch = get_frame_arch (this_frame);
366 struct iq2000_frame_cache *cache;
367 CORE_ADDR current_pc;
368 int i;
369
370 if (*this_cache)
371 return (struct iq2000_frame_cache *) *this_cache;
372
373 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
374 iq2000_init_frame_cache (cache);
375 *this_cache = cache;
376
377 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
378
379 current_pc = get_frame_pc (this_frame);
380 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
381 if (cache->pc != 0)
382 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
383 if (!cache->using_fp)
384 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
385
386 cache->saved_sp = cache->base + cache->framesize;
387
388 for (i = 0; i < E_NUM_REGS; i++)
389 if (cache->saved_regs[i] != -1)
390 cache->saved_regs[i] += cache->base;
391
392 return cache;
393 }
394
395 static struct value *
396 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
397 int regnum)
398 {
399 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
400 this_cache);
401
402 if (regnum == E_SP_REGNUM && cache->saved_sp)
403 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
404
405 if (regnum == E_PC_REGNUM)
406 regnum = E_LR_REGNUM;
407
408 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
409 return frame_unwind_got_memory (this_frame, regnum,
410 cache->saved_regs[regnum]);
411
412 return frame_unwind_got_register (this_frame, regnum, regnum);
413 }
414
415 static void
416 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
417 struct frame_id *this_id)
418 {
419 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
420 this_cache);
421
422 /* This marks the outermost frame. */
423 if (cache->base == 0)
424 return;
425
426 *this_id = frame_id_build (cache->saved_sp, cache->pc);
427 }
428
429 static const struct frame_unwind iq2000_frame_unwind = {
430 NORMAL_FRAME,
431 default_frame_unwind_stop_reason,
432 iq2000_frame_this_id,
433 iq2000_frame_prev_register,
434 NULL,
435 default_frame_sniffer
436 };
437
438 static CORE_ADDR
439 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
440 {
441 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
442 }
443
444 static CORE_ADDR
445 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
446 {
447 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
448 }
449
450 static struct frame_id
451 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
452 {
453 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
454 return frame_id_build (sp, get_frame_pc (this_frame));
455 }
456
457 static CORE_ADDR
458 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
459 {
460 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
461 this_cache);
462
463 return cache->base;
464 }
465
466 static const struct frame_base iq2000_frame_base = {
467 &iq2000_frame_unwind,
468 iq2000_frame_base_address,
469 iq2000_frame_base_address,
470 iq2000_frame_base_address
471 };
472
473 static const unsigned char *
474 iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
475 int *lenptr)
476 {
477 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
478 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
479
480 if ((*pcptr & 3) != 0)
481 error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
482 (long) *pcptr);
483
484 *lenptr = 4;
485 return (gdbarch_byte_order (gdbarch)
486 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
487 }
488
489 /* Target function return value methods: */
490
491 /* Function: store_return_value
492 Copy the function return value from VALBUF into the
493 proper location for a function return. */
494
495 static void
496 iq2000_store_return_value (struct type *type, struct regcache *regcache,
497 const void *valbuf)
498 {
499 int len = TYPE_LENGTH (type);
500 int regno = E_FN_RETURN_REGNUM;
501
502 while (len > 0)
503 {
504 gdb_byte buf[4];
505 int size = len % 4 ?: 4;
506
507 memset (buf, 0, 4);
508 memcpy (buf + 4 - size, valbuf, size);
509 regcache_raw_write (regcache, regno++, buf);
510 len -= size;
511 valbuf = ((char *) valbuf) + size;
512 }
513 }
514
515 /* Function: use_struct_convention
516 Returns non-zero if the given struct type will be returned using
517 a special convention, rather than the normal function return method. */
518
519 static int
520 iq2000_use_struct_convention (struct type *type)
521 {
522 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
523 || (TYPE_CODE (type) == TYPE_CODE_UNION))
524 && TYPE_LENGTH (type) > 8;
525 }
526
527 /* Function: extract_return_value
528 Copy the function's return value into VALBUF.
529 This function is called only in the context of "target function calls",
530 ie. when the debugger forces a function to be called in the child, and
531 when the debugger forces a function to return prematurely via the
532 "return" command. */
533
534 static void
535 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
536 gdb_byte *valbuf)
537 {
538 struct gdbarch *gdbarch = get_regcache_arch (regcache);
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540
541 /* If the function's return value is 8 bytes or less, it is
542 returned in a register, and if larger than 8 bytes, it is
543 returned in a stack location which is pointed to by the same
544 register. */
545 int len = TYPE_LENGTH (type);
546
547 if (len <= (2 * 4))
548 {
549 int regno = E_FN_RETURN_REGNUM;
550
551 /* Return values of <= 8 bytes are returned in
552 FN_RETURN_REGNUM. */
553 while (len > 0)
554 {
555 ULONGEST tmp;
556 int size = len % 4 ?: 4;
557
558 /* By using store_unsigned_integer we avoid having to
559 do anything special for small big-endian values. */
560 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
561 store_unsigned_integer (valbuf, size, byte_order, tmp);
562 len -= size;
563 valbuf += size;
564 }
565 }
566 else
567 {
568 /* Return values > 8 bytes are returned in memory,
569 pointed to by FN_RETURN_REGNUM. */
570 ULONGEST return_buffer;
571 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
572 &return_buffer);
573 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
574 }
575 }
576
577 static enum return_value_convention
578 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
579 struct type *type, struct regcache *regcache,
580 gdb_byte *readbuf, const gdb_byte *writebuf)
581 {
582 if (iq2000_use_struct_convention (type))
583 return RETURN_VALUE_STRUCT_CONVENTION;
584 if (writebuf)
585 iq2000_store_return_value (type, regcache, writebuf);
586 else if (readbuf)
587 iq2000_extract_return_value (type, regcache, readbuf);
588 return RETURN_VALUE_REGISTER_CONVENTION;
589 }
590
591 /* Function: register_virtual_type
592 Returns the default type for register N. */
593
594 static struct type *
595 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
596 {
597 return builtin_type (gdbarch)->builtin_int32;
598 }
599
600 static CORE_ADDR
601 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
602 {
603 /* This is the same frame alignment used by gcc. */
604 return ((sp + 7) & ~7);
605 }
606
607 /* Convenience function to check 8-byte types for being a scalar type
608 or a struct with only one long long or double member. */
609 static int
610 iq2000_pass_8bytetype_by_address (struct type *type)
611 {
612 struct type *ftype;
613
614 /* Skip typedefs. */
615 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
616 type = TYPE_TARGET_TYPE (type);
617 /* Non-struct and non-union types are always passed by value. */
618 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
619 && TYPE_CODE (type) != TYPE_CODE_UNION)
620 return 0;
621 /* Structs with more than 1 field are always passed by address. */
622 if (TYPE_NFIELDS (type) != 1)
623 return 1;
624 /* Get field type. */
625 ftype = (TYPE_FIELDS (type))[0].type;
626 /* The field type must have size 8, otherwise pass by address. */
627 if (TYPE_LENGTH (ftype) != 8)
628 return 1;
629 /* Skip typedefs of field type. */
630 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
631 ftype = TYPE_TARGET_TYPE (ftype);
632 /* If field is int or float, pass by value. */
633 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
634 || TYPE_CODE (ftype) == TYPE_CODE_INT)
635 return 0;
636 /* Everything else, pass by address. */
637 return 1;
638 }
639
640 static CORE_ADDR
641 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
642 struct regcache *regcache, CORE_ADDR bp_addr,
643 int nargs, struct value **args, CORE_ADDR sp,
644 int struct_return, CORE_ADDR struct_addr)
645 {
646 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
647 const bfd_byte *val;
648 bfd_byte buf[4];
649 struct type *type;
650 int i, argreg, typelen, slacklen;
651 int stackspace = 0;
652 /* Used to copy struct arguments into the stack. */
653 CORE_ADDR struct_ptr;
654
655 /* First determine how much stack space we will need. */
656 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
657 {
658 type = value_type (args[i]);
659 typelen = TYPE_LENGTH (type);
660 if (typelen <= 4)
661 {
662 /* Scalars of up to 4 bytes,
663 structs of up to 4 bytes, and
664 pointers. */
665 if (argreg <= E_LAST_ARGREG)
666 argreg++;
667 else
668 stackspace += 4;
669 }
670 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
671 {
672 /* long long,
673 double, and possibly
674 structs with a single field of long long or double. */
675 if (argreg <= E_LAST_ARGREG - 1)
676 {
677 /* 8-byte arg goes into a register pair
678 (must start with an even-numbered reg). */
679 if (((argreg - E_1ST_ARGREG) % 2) != 0)
680 argreg ++;
681 argreg += 2;
682 }
683 else
684 {
685 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
686 /* 8-byte arg goes on stack, must be 8-byte aligned. */
687 stackspace = ((stackspace + 7) & ~7);
688 stackspace += 8;
689 }
690 }
691 else
692 {
693 /* Structs are passed as pointer to a copy of the struct.
694 So we need room on the stack for a copy of the struct
695 plus for the argument pointer. */
696 if (argreg <= E_LAST_ARGREG)
697 argreg++;
698 else
699 stackspace += 4;
700 /* Care for 8-byte alignment of structs saved on stack. */
701 stackspace += ((typelen + 7) & ~7);
702 }
703 }
704
705 /* Now copy params, in ascending order, into their assigned location
706 (either in a register or on the stack). */
707
708 sp -= (sp % 8); /* align */
709 struct_ptr = sp;
710 sp -= stackspace;
711 sp -= (sp % 8); /* align again */
712 stackspace = 0;
713
714 argreg = E_1ST_ARGREG;
715 if (struct_return)
716 {
717 /* A function that returns a struct will consume one argreg to do so.
718 */
719 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
720 }
721
722 for (i = 0; i < nargs; i++)
723 {
724 type = value_type (args[i]);
725 typelen = TYPE_LENGTH (type);
726 val = value_contents (args[i]);
727 if (typelen <= 4)
728 {
729 /* Char, short, int, float, pointer, and structs <= four bytes. */
730 slacklen = (4 - (typelen % 4)) % 4;
731 memset (buf, 0, sizeof (buf));
732 memcpy (buf + slacklen, val, typelen);
733 if (argreg <= E_LAST_ARGREG)
734 {
735 /* Passed in a register. */
736 regcache_raw_write (regcache, argreg++, buf);
737 }
738 else
739 {
740 /* Passed on the stack. */
741 write_memory (sp + stackspace, buf, 4);
742 stackspace += 4;
743 }
744 }
745 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
746 {
747 /* (long long), (double), or struct consisting of
748 a single (long long) or (double). */
749 if (argreg <= E_LAST_ARGREG - 1)
750 {
751 /* 8-byte arg goes into a register pair
752 (must start with an even-numbered reg). */
753 if (((argreg - E_1ST_ARGREG) % 2) != 0)
754 argreg++;
755 regcache_raw_write (regcache, argreg++, val);
756 regcache_raw_write (regcache, argreg++, val + 4);
757 }
758 else
759 {
760 /* 8-byte arg goes on stack, must be 8-byte aligned. */
761 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
762 stackspace = ((stackspace + 7) & ~7);
763 write_memory (sp + stackspace, val, typelen);
764 stackspace += 8;
765 }
766 }
767 else
768 {
769 /* Store struct beginning at the upper end of the previously
770 computed stack space. Then store the address of the struct
771 using the usual rules for a 4 byte value. */
772 struct_ptr -= ((typelen + 7) & ~7);
773 write_memory (struct_ptr, val, typelen);
774 if (argreg <= E_LAST_ARGREG)
775 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
776 else
777 {
778 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
779 write_memory (sp + stackspace, buf, 4);
780 stackspace += 4;
781 }
782 }
783 }
784
785 /* Store return address. */
786 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
787
788 /* Update stack pointer. */
789 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
790
791 /* And that should do it. Return the new stack pointer. */
792 return sp;
793 }
794
795 /* Function: gdbarch_init
796 Initializer function for the iq2000 gdbarch vector.
797 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
798
799 static struct gdbarch *
800 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
801 {
802 struct gdbarch *gdbarch;
803
804 /* Look up list for candidates - only one. */
805 arches = gdbarch_list_lookup_by_info (arches, &info);
806 if (arches != NULL)
807 return arches->gdbarch;
808
809 gdbarch = gdbarch_alloc (&info, NULL);
810
811 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
812 set_gdbarch_num_pseudo_regs (gdbarch, 0);
813 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
814 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
815 set_gdbarch_register_name (gdbarch, iq2000_register_name);
816 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
817 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
818 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
819 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
820 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
821 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
822 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
823 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
824 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
825 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
826 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
827 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
828 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
829 set_gdbarch_return_value (gdbarch, iq2000_return_value);
830 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
831 set_gdbarch_frame_args_skip (gdbarch, 0);
832 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
833 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
834 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
835 set_gdbarch_register_type (gdbarch, iq2000_register_type);
836 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
837 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
838 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
839 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
840 frame_base_set_default (gdbarch, &iq2000_frame_base);
841 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
842
843 gdbarch_init_osabi (info, gdbarch);
844
845 dwarf2_append_unwinders (gdbarch);
846 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
847
848 return gdbarch;
849 }
850
851 /* Function: _initialize_iq2000_tdep
852 Initializer function for the iq2000 module.
853 Called by gdb at start-up. */
854
855 /* Provide a prototype to silence -Wmissing-prototypes. */
856 extern initialize_file_ftype _initialize_iq2000_tdep;
857
858 void
859 _initialize_iq2000_tdep (void)
860 {
861 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
862 }
This page took 0.056754 seconds and 5 git commands to generate.