Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000-2016 Free Software Foundation, Inc.
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
35
36 enum gdb_regnum
37 {
38 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
39 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
40 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
41 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46 E_PC_REGNUM,
47 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
48 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
49 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
50 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
51 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
52 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
53 E_NUM_REGS = E_PC_REGNUM + 1
54 };
55
56 /* Use an invalid address value as 'not available' marker. */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
58
59 struct iq2000_frame_cache
60 {
61 /* Base address. */
62 CORE_ADDR base;
63 CORE_ADDR pc;
64 LONGEST framesize;
65 int using_fp;
66 CORE_ADDR saved_sp;
67 CORE_ADDR saved_regs [E_NUM_REGS];
68 };
69
70 /* Harvard methods: */
71
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
74 {
75 return addr & 0x7fffffffL;
76 }
77
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
80 {
81 return (ptr & 0x7fffffffL) | 0x80000000L;
82 }
83
84 /* Function: pointer_to_address
85 Convert a target pointer to an address in host (CORE_ADDR) format. */
86
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 struct type * type, const gdb_byte * buf)
90 {
91 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
93 CORE_ADDR addr
94 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
95
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
99 addr = insn_addr_from_ptr (addr);
100
101 return addr;
102 }
103
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
106
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 struct type *type, gdb_byte *buf, CORE_ADDR addr)
110 {
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
113
114 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115 addr = insn_ptr_from_addr (addr);
116 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
117 }
118
119 /* Real register methods: */
120
121 /* Function: register_name
122 Returns the name of the iq2000 register number N. */
123
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
126 {
127 static const char * names[E_NUM_REGS] =
128 {
129 "r0", "r1", "r2", "r3", "r4",
130 "r5", "r6", "r7", "r8", "r9",
131 "r10", "r11", "r12", "r13", "r14",
132 "r15", "r16", "r17", "r18", "r19",
133 "r20", "r21", "r22", "r23", "r24",
134 "r25", "r26", "r27", "r28", "r29",
135 "r30", "r31",
136 "pc"
137 };
138 if (regnum < 0 || regnum >= E_NUM_REGS)
139 return NULL;
140 return names[regnum];
141 }
142
143 /* Prologue analysis methods: */
144
145 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
146 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
147 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
148 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
149 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
150
151 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
152 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
153 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
154 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
155
156 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
157 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
158 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
159 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
160 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
161
162 /* Function: find_last_line_symbol
163
164 Given an address range, first find a line symbol corresponding to
165 the starting address. Then find the last line symbol within the
166 range that has a line number less than or equal to the first line.
167
168 For optimized code with code motion, this finds the last address
169 for the lowest-numbered line within the address range. */
170
171 static struct symtab_and_line
172 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
173 {
174 struct symtab_and_line sal = find_pc_line (start, notcurrent);
175 struct symtab_and_line best_sal = sal;
176
177 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
178 return sal;
179
180 do
181 {
182 if (sal.line && sal.line <= best_sal.line)
183 best_sal = sal;
184 sal = find_pc_line (sal.end, notcurrent);
185 }
186 while (sal.pc && sal.pc < end);
187
188 return best_sal;
189 }
190
191 /* Function: scan_prologue
192 Decode the instructions within the given address range.
193 Decide when we must have reached the end of the function prologue.
194 If a frame_info pointer is provided, fill in its prologue information.
195
196 Returns the address of the first instruction after the prologue. */
197
198 static CORE_ADDR
199 iq2000_scan_prologue (struct gdbarch *gdbarch,
200 CORE_ADDR scan_start,
201 CORE_ADDR scan_end,
202 struct frame_info *fi,
203 struct iq2000_frame_cache *cache)
204 {
205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
206 struct symtab_and_line sal;
207 CORE_ADDR pc;
208 CORE_ADDR loop_end;
209 int srcreg;
210 int tgtreg;
211 signed short offset;
212
213 if (scan_end == (CORE_ADDR) 0)
214 {
215 loop_end = scan_start + 100;
216 sal.end = sal.pc = 0;
217 }
218 else
219 {
220 loop_end = scan_end;
221 if (fi)
222 sal = find_last_line_symbol (scan_start, scan_end, 0);
223 else
224 sal.end = 0; /* Avoid GCC false warning. */
225 }
226
227 /* Saved registers:
228 We first have to save the saved register's offset, and
229 only later do we compute its actual address. Since the
230 offset can be zero, we must first initialize all the
231 saved regs to minus one (so we can later distinguish
232 between one that's not saved, and one that's saved at zero). */
233 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
234 cache->saved_regs[srcreg] = -1;
235 cache->using_fp = 0;
236 cache->framesize = 0;
237
238 for (pc = scan_start; pc < loop_end; pc += 4)
239 {
240 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
241 /* Skip any instructions writing to (sp) or decrementing the
242 SP. */
243 if ((insn & 0xffe00000) == 0xac200000)
244 {
245 /* sw using SP/%1 as base. */
246 /* LEGACY -- from assembly-only port. */
247 tgtreg = ((insn >> 16) & 0x1f);
248 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
249 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
250
251 continue;
252 }
253
254 if ((insn & 0xffff8000) == 0x20218000)
255 {
256 /* addi %1, %1, -N == addi %sp, %sp, -N */
257 /* LEGACY -- from assembly-only port. */
258 cache->framesize = -((signed short) (insn & 0xffff));
259 continue;
260 }
261
262 if (INSN_IS_ADDIU (insn))
263 {
264 srcreg = ADDIU_REG_SRC (insn);
265 tgtreg = ADDIU_REG_TGT (insn);
266 offset = ADDIU_IMMEDIATE (insn);
267 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
268 cache->framesize = -offset;
269 continue;
270 }
271
272 if (INSN_IS_STORE_WORD (insn))
273 {
274 srcreg = SW_REG_SRC (insn);
275 tgtreg = SW_REG_INDEX (insn);
276 offset = SW_OFFSET (insn);
277
278 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
279 {
280 /* "push" to stack (via SP or FP reg). */
281 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
282 cache->saved_regs[srcreg] = offset;
283 continue;
284 }
285 }
286
287 if (INSN_IS_MOVE (insn))
288 {
289 srcreg = MOVE_REG_SRC (insn);
290 tgtreg = MOVE_REG_TGT (insn);
291
292 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
293 {
294 /* Copy sp to fp. */
295 cache->using_fp = 1;
296 continue;
297 }
298 }
299
300 /* Unknown instruction encountered in frame. Bail out?
301 1) If we have a subsequent line symbol, we can keep going.
302 2) If not, we need to bail out and quit scanning instructions. */
303
304 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
305 continue;
306 else /* bail */
307 break;
308 }
309
310 return pc;
311 }
312
313 static void
314 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
315 {
316 int i;
317
318 cache->base = 0;
319 cache->framesize = 0;
320 cache->using_fp = 0;
321 cache->saved_sp = 0;
322 for (i = 0; i < E_NUM_REGS; i++)
323 cache->saved_regs[i] = -1;
324 }
325
326 /* Function: iq2000_skip_prologue
327 If the input address is in a function prologue,
328 returns the address of the end of the prologue;
329 else returns the input address.
330
331 Note: the input address is likely to be the function start,
332 since this function is mainly used for advancing a breakpoint
333 to the first line, or stepping to the first line when we have
334 stepped into a function call. */
335
336 static CORE_ADDR
337 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
338 {
339 CORE_ADDR func_addr = 0 , func_end = 0;
340
341 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
342 {
343 struct symtab_and_line sal;
344 struct iq2000_frame_cache cache;
345
346 /* Found a function. */
347 sal = find_pc_line (func_addr, 0);
348 if (sal.end && sal.end < func_end)
349 /* Found a line number, use it as end of prologue. */
350 return sal.end;
351
352 /* No useable line symbol. Use prologue parsing method. */
353 iq2000_init_frame_cache (&cache);
354 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
355 }
356
357 /* No function symbol -- just return the PC. */
358 return (CORE_ADDR) pc;
359 }
360
361 static struct iq2000_frame_cache *
362 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
363 {
364 struct gdbarch *gdbarch = get_frame_arch (this_frame);
365 struct iq2000_frame_cache *cache;
366 CORE_ADDR current_pc;
367 int i;
368
369 if (*this_cache)
370 return (struct iq2000_frame_cache *) *this_cache;
371
372 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
373 iq2000_init_frame_cache (cache);
374 *this_cache = cache;
375
376 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
377
378 current_pc = get_frame_pc (this_frame);
379 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
380 if (cache->pc != 0)
381 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
382 if (!cache->using_fp)
383 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
384
385 cache->saved_sp = cache->base + cache->framesize;
386
387 for (i = 0; i < E_NUM_REGS; i++)
388 if (cache->saved_regs[i] != -1)
389 cache->saved_regs[i] += cache->base;
390
391 return cache;
392 }
393
394 static struct value *
395 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
396 int regnum)
397 {
398 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
399 this_cache);
400
401 if (regnum == E_SP_REGNUM && cache->saved_sp)
402 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
403
404 if (regnum == E_PC_REGNUM)
405 regnum = E_LR_REGNUM;
406
407 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
408 return frame_unwind_got_memory (this_frame, regnum,
409 cache->saved_regs[regnum]);
410
411 return frame_unwind_got_register (this_frame, regnum, regnum);
412 }
413
414 static void
415 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
417 {
418 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
419 this_cache);
420
421 /* This marks the outermost frame. */
422 if (cache->base == 0)
423 return;
424
425 *this_id = frame_id_build (cache->saved_sp, cache->pc);
426 }
427
428 static const struct frame_unwind iq2000_frame_unwind = {
429 NORMAL_FRAME,
430 default_frame_unwind_stop_reason,
431 iq2000_frame_this_id,
432 iq2000_frame_prev_register,
433 NULL,
434 default_frame_sniffer
435 };
436
437 static CORE_ADDR
438 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
439 {
440 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
441 }
442
443 static CORE_ADDR
444 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
445 {
446 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
447 }
448
449 static struct frame_id
450 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
451 {
452 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
453 return frame_id_build (sp, get_frame_pc (this_frame));
454 }
455
456 static CORE_ADDR
457 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
458 {
459 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
460 this_cache);
461
462 return cache->base;
463 }
464
465 static const struct frame_base iq2000_frame_base = {
466 &iq2000_frame_unwind,
467 iq2000_frame_base_address,
468 iq2000_frame_base_address,
469 iq2000_frame_base_address
470 };
471
472 static int
473 iq2000_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
474 {
475 if ((*pcptr & 3) != 0)
476 error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
477 (long) *pcptr);
478
479 return 4;
480 }
481
482 static const gdb_byte *
483 iq2000_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
484 {
485 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
486 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
487 *size = kind;
488
489 return (gdbarch_byte_order (gdbarch)
490 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
491 }
492
493 GDBARCH_BREAKPOINT_FROM_PC (iq2000)
494
495 /* Target function return value methods: */
496
497 /* Function: store_return_value
498 Copy the function return value from VALBUF into the
499 proper location for a function return. */
500
501 static void
502 iq2000_store_return_value (struct type *type, struct regcache *regcache,
503 const void *valbuf)
504 {
505 int len = TYPE_LENGTH (type);
506 int regno = E_FN_RETURN_REGNUM;
507
508 while (len > 0)
509 {
510 gdb_byte buf[4];
511 int size = len % 4 ?: 4;
512
513 memset (buf, 0, 4);
514 memcpy (buf + 4 - size, valbuf, size);
515 regcache_raw_write (regcache, regno++, buf);
516 len -= size;
517 valbuf = ((char *) valbuf) + size;
518 }
519 }
520
521 /* Function: use_struct_convention
522 Returns non-zero if the given struct type will be returned using
523 a special convention, rather than the normal function return method. */
524
525 static int
526 iq2000_use_struct_convention (struct type *type)
527 {
528 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
529 || (TYPE_CODE (type) == TYPE_CODE_UNION))
530 && TYPE_LENGTH (type) > 8;
531 }
532
533 /* Function: extract_return_value
534 Copy the function's return value into VALBUF.
535 This function is called only in the context of "target function calls",
536 ie. when the debugger forces a function to be called in the child, and
537 when the debugger forces a function to return prematurely via the
538 "return" command. */
539
540 static void
541 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
542 gdb_byte *valbuf)
543 {
544 struct gdbarch *gdbarch = get_regcache_arch (regcache);
545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546
547 /* If the function's return value is 8 bytes or less, it is
548 returned in a register, and if larger than 8 bytes, it is
549 returned in a stack location which is pointed to by the same
550 register. */
551 int len = TYPE_LENGTH (type);
552
553 if (len <= (2 * 4))
554 {
555 int regno = E_FN_RETURN_REGNUM;
556
557 /* Return values of <= 8 bytes are returned in
558 FN_RETURN_REGNUM. */
559 while (len > 0)
560 {
561 ULONGEST tmp;
562 int size = len % 4 ?: 4;
563
564 /* By using store_unsigned_integer we avoid having to
565 do anything special for small big-endian values. */
566 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
567 store_unsigned_integer (valbuf, size, byte_order, tmp);
568 len -= size;
569 valbuf += size;
570 }
571 }
572 else
573 {
574 /* Return values > 8 bytes are returned in memory,
575 pointed to by FN_RETURN_REGNUM. */
576 ULONGEST return_buffer;
577 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
578 &return_buffer);
579 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
580 }
581 }
582
583 static enum return_value_convention
584 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
585 struct type *type, struct regcache *regcache,
586 gdb_byte *readbuf, const gdb_byte *writebuf)
587 {
588 if (iq2000_use_struct_convention (type))
589 return RETURN_VALUE_STRUCT_CONVENTION;
590 if (writebuf)
591 iq2000_store_return_value (type, regcache, writebuf);
592 else if (readbuf)
593 iq2000_extract_return_value (type, regcache, readbuf);
594 return RETURN_VALUE_REGISTER_CONVENTION;
595 }
596
597 /* Function: register_virtual_type
598 Returns the default type for register N. */
599
600 static struct type *
601 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
602 {
603 return builtin_type (gdbarch)->builtin_int32;
604 }
605
606 static CORE_ADDR
607 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
608 {
609 /* This is the same frame alignment used by gcc. */
610 return ((sp + 7) & ~7);
611 }
612
613 /* Convenience function to check 8-byte types for being a scalar type
614 or a struct with only one long long or double member. */
615 static int
616 iq2000_pass_8bytetype_by_address (struct type *type)
617 {
618 struct type *ftype;
619
620 /* Skip typedefs. */
621 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
622 type = TYPE_TARGET_TYPE (type);
623 /* Non-struct and non-union types are always passed by value. */
624 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
625 && TYPE_CODE (type) != TYPE_CODE_UNION)
626 return 0;
627 /* Structs with more than 1 field are always passed by address. */
628 if (TYPE_NFIELDS (type) != 1)
629 return 1;
630 /* Get field type. */
631 ftype = (TYPE_FIELDS (type))[0].type;
632 /* The field type must have size 8, otherwise pass by address. */
633 if (TYPE_LENGTH (ftype) != 8)
634 return 1;
635 /* Skip typedefs of field type. */
636 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
637 ftype = TYPE_TARGET_TYPE (ftype);
638 /* If field is int or float, pass by value. */
639 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
640 || TYPE_CODE (ftype) == TYPE_CODE_INT)
641 return 0;
642 /* Everything else, pass by address. */
643 return 1;
644 }
645
646 static CORE_ADDR
647 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
648 struct regcache *regcache, CORE_ADDR bp_addr,
649 int nargs, struct value **args, CORE_ADDR sp,
650 int struct_return, CORE_ADDR struct_addr)
651 {
652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
653 const bfd_byte *val;
654 bfd_byte buf[4];
655 struct type *type;
656 int i, argreg, typelen, slacklen;
657 int stackspace = 0;
658 /* Used to copy struct arguments into the stack. */
659 CORE_ADDR struct_ptr;
660
661 /* First determine how much stack space we will need. */
662 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
663 {
664 type = value_type (args[i]);
665 typelen = TYPE_LENGTH (type);
666 if (typelen <= 4)
667 {
668 /* Scalars of up to 4 bytes,
669 structs of up to 4 bytes, and
670 pointers. */
671 if (argreg <= E_LAST_ARGREG)
672 argreg++;
673 else
674 stackspace += 4;
675 }
676 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
677 {
678 /* long long,
679 double, and possibly
680 structs with a single field of long long or double. */
681 if (argreg <= E_LAST_ARGREG - 1)
682 {
683 /* 8-byte arg goes into a register pair
684 (must start with an even-numbered reg). */
685 if (((argreg - E_1ST_ARGREG) % 2) != 0)
686 argreg ++;
687 argreg += 2;
688 }
689 else
690 {
691 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
692 /* 8-byte arg goes on stack, must be 8-byte aligned. */
693 stackspace = ((stackspace + 7) & ~7);
694 stackspace += 8;
695 }
696 }
697 else
698 {
699 /* Structs are passed as pointer to a copy of the struct.
700 So we need room on the stack for a copy of the struct
701 plus for the argument pointer. */
702 if (argreg <= E_LAST_ARGREG)
703 argreg++;
704 else
705 stackspace += 4;
706 /* Care for 8-byte alignment of structs saved on stack. */
707 stackspace += ((typelen + 7) & ~7);
708 }
709 }
710
711 /* Now copy params, in ascending order, into their assigned location
712 (either in a register or on the stack). */
713
714 sp -= (sp % 8); /* align */
715 struct_ptr = sp;
716 sp -= stackspace;
717 sp -= (sp % 8); /* align again */
718 stackspace = 0;
719
720 argreg = E_1ST_ARGREG;
721 if (struct_return)
722 {
723 /* A function that returns a struct will consume one argreg to do so.
724 */
725 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
726 }
727
728 for (i = 0; i < nargs; i++)
729 {
730 type = value_type (args[i]);
731 typelen = TYPE_LENGTH (type);
732 val = value_contents (args[i]);
733 if (typelen <= 4)
734 {
735 /* Char, short, int, float, pointer, and structs <= four bytes. */
736 slacklen = (4 - (typelen % 4)) % 4;
737 memset (buf, 0, sizeof (buf));
738 memcpy (buf + slacklen, val, typelen);
739 if (argreg <= E_LAST_ARGREG)
740 {
741 /* Passed in a register. */
742 regcache_raw_write (regcache, argreg++, buf);
743 }
744 else
745 {
746 /* Passed on the stack. */
747 write_memory (sp + stackspace, buf, 4);
748 stackspace += 4;
749 }
750 }
751 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
752 {
753 /* (long long), (double), or struct consisting of
754 a single (long long) or (double). */
755 if (argreg <= E_LAST_ARGREG - 1)
756 {
757 /* 8-byte arg goes into a register pair
758 (must start with an even-numbered reg). */
759 if (((argreg - E_1ST_ARGREG) % 2) != 0)
760 argreg++;
761 regcache_raw_write (regcache, argreg++, val);
762 regcache_raw_write (regcache, argreg++, val + 4);
763 }
764 else
765 {
766 /* 8-byte arg goes on stack, must be 8-byte aligned. */
767 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
768 stackspace = ((stackspace + 7) & ~7);
769 write_memory (sp + stackspace, val, typelen);
770 stackspace += 8;
771 }
772 }
773 else
774 {
775 /* Store struct beginning at the upper end of the previously
776 computed stack space. Then store the address of the struct
777 using the usual rules for a 4 byte value. */
778 struct_ptr -= ((typelen + 7) & ~7);
779 write_memory (struct_ptr, val, typelen);
780 if (argreg <= E_LAST_ARGREG)
781 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
782 else
783 {
784 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
785 write_memory (sp + stackspace, buf, 4);
786 stackspace += 4;
787 }
788 }
789 }
790
791 /* Store return address. */
792 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
793
794 /* Update stack pointer. */
795 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
796
797 /* And that should do it. Return the new stack pointer. */
798 return sp;
799 }
800
801 /* Function: gdbarch_init
802 Initializer function for the iq2000 gdbarch vector.
803 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
804
805 static struct gdbarch *
806 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
807 {
808 struct gdbarch *gdbarch;
809
810 /* Look up list for candidates - only one. */
811 arches = gdbarch_list_lookup_by_info (arches, &info);
812 if (arches != NULL)
813 return arches->gdbarch;
814
815 gdbarch = gdbarch_alloc (&info, NULL);
816
817 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
818 set_gdbarch_num_pseudo_regs (gdbarch, 0);
819 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
820 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
821 set_gdbarch_register_name (gdbarch, iq2000_register_name);
822 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
823 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
824 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
825 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
826 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
827 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
828 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
829 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
830 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
831 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
832 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
833 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
834 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
835 set_gdbarch_return_value (gdbarch, iq2000_return_value);
836 SET_GDBARCH_BREAKPOINT_MANIPULATION (iq2000);
837 set_gdbarch_frame_args_skip (gdbarch, 0);
838 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
839 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
840 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
841 set_gdbarch_register_type (gdbarch, iq2000_register_type);
842 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
843 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
844 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
845 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
846 frame_base_set_default (gdbarch, &iq2000_frame_base);
847 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
848
849 gdbarch_init_osabi (info, gdbarch);
850
851 dwarf2_append_unwinders (gdbarch);
852 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
853
854 return gdbarch;
855 }
856
857 /* Function: _initialize_iq2000_tdep
858 Initializer function for the iq2000 module.
859 Called by gdb at start-up. */
860
861 /* Provide a prototype to silence -Wmissing-prototypes. */
862 extern initialize_file_ftype _initialize_iq2000_tdep;
863
864 void
865 _initialize_iq2000_tdep (void)
866 {
867 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
868 }
This page took 0.055503 seconds and 5 git commands to generate.