Rename gdb exception types
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44
45 static const char *jit_reader_dir = NULL;
46
47 static const struct objfile_data *jit_objfile_data;
48
49 static const char *const jit_break_name = "__jit_debug_register_code";
50
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52
53 static const struct program_space_data *jit_program_space_data = NULL;
54
55 static void jit_inferior_init (struct gdbarch *gdbarch);
56 static void jit_inferior_exit_hook (struct inferior *inf);
57
58 /* An unwinder is registered for every gdbarch. This key is used to
59 remember if the unwinder has been registered for a particular
60 gdbarch. */
61
62 static struct gdbarch_data *jit_gdbarch_data;
63
64 /* Non-zero if we want to see trace of jit level stuff. */
65
66 static unsigned int jit_debug = 0;
67
68 static void
69 show_jit_debug (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
73 }
74
75 struct target_buffer
76 {
77 CORE_ADDR base;
78 ULONGEST size;
79 };
80
81 /* Openning the file is a no-op. */
82
83 static void *
84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
85 {
86 return open_closure;
87 }
88
89 /* Closing the file is just freeing the base/size pair on our side. */
90
91 static int
92 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
93 {
94 xfree (stream);
95
96 /* Zero means success. */
97 return 0;
98 }
99
100 /* For reading the file, we just need to pass through to target_read_memory and
101 fix up the arguments and return values. */
102
103 static file_ptr
104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
105 file_ptr nbytes, file_ptr offset)
106 {
107 int err;
108 struct target_buffer *buffer = (struct target_buffer *) stream;
109
110 /* If this read will read all of the file, limit it to just the rest. */
111 if (offset + nbytes > buffer->size)
112 nbytes = buffer->size - offset;
113
114 /* If there are no more bytes left, we've reached EOF. */
115 if (nbytes == 0)
116 return 0;
117
118 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
119 if (err)
120 return -1;
121
122 return nbytes;
123 }
124
125 /* For statting the file, we only support the st_size attribute. */
126
127 static int
128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
129 {
130 struct target_buffer *buffer = (struct target_buffer*) stream;
131
132 memset (sb, 0, sizeof (struct stat));
133 sb->st_size = buffer->size;
134 return 0;
135 }
136
137 /* Open a BFD from the target's memory. */
138
139 static gdb_bfd_ref_ptr
140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
141 {
142 struct target_buffer *buffer = XNEW (struct target_buffer);
143
144 buffer->base = addr;
145 buffer->size = size;
146 return gdb_bfd_openr_iovec ("<in-memory>", target,
147 mem_bfd_iovec_open,
148 buffer,
149 mem_bfd_iovec_pread,
150 mem_bfd_iovec_close,
151 mem_bfd_iovec_stat);
152 }
153
154 struct jit_reader
155 {
156 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
157 : functions (f), handle (std::move (h))
158 {
159 }
160
161 ~jit_reader ()
162 {
163 functions->destroy (functions);
164 }
165
166 DISABLE_COPY_AND_ASSIGN (jit_reader);
167
168 struct gdb_reader_funcs *functions;
169 gdb_dlhandle_up handle;
170 };
171
172 /* One reader that has been loaded successfully, and can potentially be used to
173 parse debug info. */
174
175 static struct jit_reader *loaded_jit_reader = NULL;
176
177 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
178 static const char *reader_init_fn_sym = "gdb_init_reader";
179
180 /* Try to load FILE_NAME as a JIT debug info reader. */
181
182 static struct jit_reader *
183 jit_reader_load (const char *file_name)
184 {
185 reader_init_fn_type *init_fn;
186 struct gdb_reader_funcs *funcs = NULL;
187
188 if (jit_debug)
189 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
190 file_name);
191 gdb_dlhandle_up so = gdb_dlopen (file_name);
192
193 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
194 if (!init_fn)
195 error (_("Could not locate initialization function: %s."),
196 reader_init_fn_sym);
197
198 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
199 error (_("Reader not GPL compatible."));
200
201 funcs = init_fn ();
202 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
203 error (_("Reader version does not match GDB version."));
204
205 return new jit_reader (funcs, std::move (so));
206 }
207
208 /* Provides the jit-reader-load command. */
209
210 static void
211 jit_reader_load_command (const char *args, int from_tty)
212 {
213 if (args == NULL)
214 error (_("No reader name provided."));
215 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
216
217 if (loaded_jit_reader != NULL)
218 error (_("JIT reader already loaded. Run jit-reader-unload first."));
219
220 if (!IS_ABSOLUTE_PATH (file.get ()))
221 file.reset (xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING,
222 file.get ()));
223
224 loaded_jit_reader = jit_reader_load (file.get ());
225 reinit_frame_cache ();
226 jit_inferior_created_hook ();
227 }
228
229 /* Provides the jit-reader-unload command. */
230
231 static void
232 jit_reader_unload_command (const char *args, int from_tty)
233 {
234 if (!loaded_jit_reader)
235 error (_("No JIT reader loaded."));
236
237 reinit_frame_cache ();
238 jit_inferior_exit_hook (current_inferior ());
239
240 delete loaded_jit_reader;
241 loaded_jit_reader = NULL;
242 }
243
244 /* Per-program space structure recording which objfile has the JIT
245 symbols. */
246
247 struct jit_program_space_data
248 {
249 /* The objfile. This is NULL if no objfile holds the JIT
250 symbols. */
251
252 struct objfile *objfile;
253
254 /* If this program space has __jit_debug_register_code, this is the
255 cached address from the minimal symbol. This is used to detect
256 relocations requiring the breakpoint to be re-created. */
257
258 CORE_ADDR cached_code_address;
259
260 /* This is the JIT event breakpoint, or NULL if it has not been
261 set. */
262
263 struct breakpoint *jit_breakpoint;
264 };
265
266 /* Per-objfile structure recording the addresses in the program space.
267 This object serves two purposes: for ordinary objfiles, it may
268 cache some symbols related to the JIT interface; and for
269 JIT-created objfiles, it holds some information about the
270 jit_code_entry. */
271
272 struct jit_objfile_data
273 {
274 /* Symbol for __jit_debug_register_code. */
275 struct minimal_symbol *register_code;
276
277 /* Symbol for __jit_debug_descriptor. */
278 struct minimal_symbol *descriptor;
279
280 /* Address of struct jit_code_entry in this objfile. This is only
281 non-zero for objfiles that represent code created by the JIT. */
282 CORE_ADDR addr;
283 };
284
285 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
286 yet, make a new structure and attach it. */
287
288 static struct jit_objfile_data *
289 get_jit_objfile_data (struct objfile *objf)
290 {
291 struct jit_objfile_data *objf_data;
292
293 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
294 if (objf_data == NULL)
295 {
296 objf_data = XCNEW (struct jit_objfile_data);
297 set_objfile_data (objf, jit_objfile_data, objf_data);
298 }
299
300 return objf_data;
301 }
302
303 /* Remember OBJFILE has been created for struct jit_code_entry located
304 at inferior address ENTRY. */
305
306 static void
307 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
308 {
309 struct jit_objfile_data *objf_data;
310
311 objf_data = get_jit_objfile_data (objfile);
312 objf_data->addr = entry;
313 }
314
315 /* Return jit_program_space_data for current program space. Allocate
316 if not already present. */
317
318 static struct jit_program_space_data *
319 get_jit_program_space_data (void)
320 {
321 struct jit_program_space_data *ps_data;
322
323 ps_data
324 = ((struct jit_program_space_data *)
325 program_space_data (current_program_space, jit_program_space_data));
326 if (ps_data == NULL)
327 {
328 ps_data = XCNEW (struct jit_program_space_data);
329 set_program_space_data (current_program_space, jit_program_space_data,
330 ps_data);
331 }
332
333 return ps_data;
334 }
335
336 static void
337 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
338 {
339 xfree (arg);
340 }
341
342 /* Helper function for reading the global JIT descriptor from remote
343 memory. Returns 1 if all went well, 0 otherwise. */
344
345 static int
346 jit_read_descriptor (struct gdbarch *gdbarch,
347 struct jit_descriptor *descriptor,
348 struct jit_program_space_data *ps_data)
349 {
350 int err;
351 struct type *ptr_type;
352 int ptr_size;
353 int desc_size;
354 gdb_byte *desc_buf;
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356 struct jit_objfile_data *objf_data;
357
358 if (ps_data->objfile == NULL)
359 return 0;
360 objf_data = get_jit_objfile_data (ps_data->objfile);
361 if (objf_data->descriptor == NULL)
362 return 0;
363
364 if (jit_debug)
365 fprintf_unfiltered (gdb_stdlog,
366 "jit_read_descriptor, descriptor_addr = %s\n",
367 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
368 objf_data->descriptor)));
369
370 /* Figure out how big the descriptor is on the remote and how to read it. */
371 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
372 ptr_size = TYPE_LENGTH (ptr_type);
373 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
374 desc_buf = (gdb_byte *) alloca (desc_size);
375
376 /* Read the descriptor. */
377 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
378 objf_data->descriptor),
379 desc_buf, desc_size);
380 if (err)
381 {
382 printf_unfiltered (_("Unable to read JIT descriptor from "
383 "remote memory\n"));
384 return 0;
385 }
386
387 /* Fix the endianness to match the host. */
388 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
389 descriptor->action_flag =
390 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
391 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
392 descriptor->first_entry =
393 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
394
395 return 1;
396 }
397
398 /* Helper function for reading a JITed code entry from remote memory. */
399
400 static void
401 jit_read_code_entry (struct gdbarch *gdbarch,
402 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
403 {
404 int err, off;
405 struct type *ptr_type;
406 int ptr_size;
407 int entry_size;
408 int align_bytes;
409 gdb_byte *entry_buf;
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411
412 /* Figure out how big the entry is on the remote and how to read it. */
413 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
414 ptr_size = TYPE_LENGTH (ptr_type);
415
416 /* Figure out where the uint64_t value will be. */
417 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
418 off = 3 * ptr_size;
419 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
420
421 entry_size = off + 8; /* Three pointers and one 64-bit int. */
422 entry_buf = (gdb_byte *) alloca (entry_size);
423
424 /* Read the entry. */
425 err = target_read_memory (code_addr, entry_buf, entry_size);
426 if (err)
427 error (_("Unable to read JIT code entry from remote memory!"));
428
429 /* Fix the endianness to match the host. */
430 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
431 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
432 code_entry->prev_entry =
433 extract_typed_address (&entry_buf[ptr_size], ptr_type);
434 code_entry->symfile_addr =
435 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
436 code_entry->symfile_size =
437 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
438 }
439
440 /* Proxy object for building a block. */
441
442 struct gdb_block
443 {
444 /* gdb_blocks are linked into a tree structure. Next points to the
445 next node at the same depth as this block and parent to the
446 parent gdb_block. */
447 struct gdb_block *next, *parent;
448
449 /* Points to the "real" block that is being built out of this
450 instance. This block will be added to a blockvector, which will
451 then be added to a symtab. */
452 struct block *real_block;
453
454 /* The first and last code address corresponding to this block. */
455 CORE_ADDR begin, end;
456
457 /* The name of this block (if any). If this is non-NULL, the
458 FUNCTION symbol symbol is set to this value. */
459 const char *name;
460 };
461
462 /* Proxy object for building a symtab. */
463
464 struct gdb_symtab
465 {
466 /* The list of blocks in this symtab. These will eventually be
467 converted to real blocks. */
468 struct gdb_block *blocks;
469
470 /* The number of blocks inserted. */
471 int nblocks;
472
473 /* A mapping between line numbers to PC. */
474 struct linetable *linetable;
475
476 /* The source file for this symtab. */
477 const char *file_name;
478 struct gdb_symtab *next;
479 };
480
481 /* Proxy object for building an object. */
482
483 struct gdb_object
484 {
485 struct gdb_symtab *symtabs;
486 };
487
488 /* The type of the `private' data passed around by the callback
489 functions. */
490
491 typedef CORE_ADDR jit_dbg_reader_data;
492
493 /* The reader calls into this function to read data off the targets
494 address space. */
495
496 static enum gdb_status
497 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
498 {
499 int result = target_read_memory ((CORE_ADDR) target_mem,
500 (gdb_byte *) gdb_buf, len);
501 if (result == 0)
502 return GDB_SUCCESS;
503 else
504 return GDB_FAIL;
505 }
506
507 /* The reader calls into this function to create a new gdb_object
508 which it can then pass around to the other callbacks. Right now,
509 all that is required is allocating the memory. */
510
511 static struct gdb_object *
512 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
513 {
514 /* CB is not required right now, but sometime in the future we might
515 need a handle to it, and we'd like to do that without breaking
516 the ABI. */
517 return XCNEW (struct gdb_object);
518 }
519
520 /* Readers call into this function to open a new gdb_symtab, which,
521 again, is passed around to other callbacks. */
522
523 static struct gdb_symtab *
524 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
525 struct gdb_object *object,
526 const char *file_name)
527 {
528 struct gdb_symtab *ret;
529
530 /* CB stays unused. See comment in jit_object_open_impl. */
531
532 ret = XCNEW (struct gdb_symtab);
533 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
534 ret->next = object->symtabs;
535 object->symtabs = ret;
536 return ret;
537 }
538
539 /* Returns true if the block corresponding to old should be placed
540 before the block corresponding to new in the final blockvector. */
541
542 static int
543 compare_block (const struct gdb_block *const old,
544 const struct gdb_block *const newobj)
545 {
546 if (old == NULL)
547 return 1;
548 if (old->begin < newobj->begin)
549 return 1;
550 else if (old->begin == newobj->begin)
551 {
552 if (old->end > newobj->end)
553 return 1;
554 else
555 return 0;
556 }
557 else
558 return 0;
559 }
560
561 /* Called by readers to open a new gdb_block. This function also
562 inserts the new gdb_block in the correct place in the corresponding
563 gdb_symtab. */
564
565 static struct gdb_block *
566 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
567 struct gdb_symtab *symtab, struct gdb_block *parent,
568 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
569 {
570 struct gdb_block *block = XCNEW (struct gdb_block);
571
572 block->next = symtab->blocks;
573 block->begin = (CORE_ADDR) begin;
574 block->end = (CORE_ADDR) end;
575 block->name = name ? xstrdup (name) : NULL;
576 block->parent = parent;
577
578 /* Ensure that the blocks are inserted in the correct (reverse of
579 the order expected by blockvector). */
580 if (compare_block (symtab->blocks, block))
581 {
582 symtab->blocks = block;
583 }
584 else
585 {
586 struct gdb_block *i = symtab->blocks;
587
588 for (;; i = i->next)
589 {
590 /* Guaranteed to terminate, since compare_block (NULL, _)
591 returns 1. */
592 if (compare_block (i->next, block))
593 {
594 block->next = i->next;
595 i->next = block;
596 break;
597 }
598 }
599 }
600 symtab->nblocks++;
601
602 return block;
603 }
604
605 /* Readers call this to add a line mapping (from PC to line number) to
606 a gdb_symtab. */
607
608 static void
609 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
610 struct gdb_symtab *stab, int nlines,
611 struct gdb_line_mapping *map)
612 {
613 int i;
614 int alloc_len;
615
616 if (nlines < 1)
617 return;
618
619 alloc_len = sizeof (struct linetable)
620 + (nlines - 1) * sizeof (struct linetable_entry);
621 stab->linetable = (struct linetable *) xmalloc (alloc_len);
622 stab->linetable->nitems = nlines;
623 for (i = 0; i < nlines; i++)
624 {
625 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
626 stab->linetable->item[i].line = map[i].line;
627 }
628 }
629
630 /* Called by readers to close a gdb_symtab. Does not need to do
631 anything as of now. */
632
633 static void
634 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
635 struct gdb_symtab *stab)
636 {
637 /* Right now nothing needs to be done here. We may need to do some
638 cleanup here in the future (again, without breaking the plugin
639 ABI). */
640 }
641
642 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
643
644 static void
645 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
646 {
647 struct compunit_symtab *cust;
648 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
649 struct block *block_iter;
650 int actual_nblocks, i;
651 size_t blockvector_size;
652 CORE_ADDR begin, end;
653 struct blockvector *bv;
654
655 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
656
657 cust = allocate_compunit_symtab (objfile, stab->file_name);
658 allocate_symtab (cust, stab->file_name);
659 add_compunit_symtab_to_objfile (cust);
660
661 /* JIT compilers compile in memory. */
662 COMPUNIT_DIRNAME (cust) = NULL;
663
664 /* Copy over the linetable entry if one was provided. */
665 if (stab->linetable)
666 {
667 size_t size = ((stab->linetable->nitems - 1)
668 * sizeof (struct linetable_entry)
669 + sizeof (struct linetable));
670 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
671 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
672 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
673 size);
674 }
675
676 blockvector_size = (sizeof (struct blockvector)
677 + (actual_nblocks - 1) * sizeof (struct block *));
678 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
679 blockvector_size);
680 COMPUNIT_BLOCKVECTOR (cust) = bv;
681
682 /* (begin, end) will contain the PC range this entire blockvector
683 spans. */
684 BLOCKVECTOR_MAP (bv) = NULL;
685 begin = stab->blocks->begin;
686 end = stab->blocks->end;
687 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
688
689 /* First run over all the gdb_block objects, creating a real block
690 object for each. Simultaneously, keep setting the real_block
691 fields. */
692 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
693 i >= FIRST_LOCAL_BLOCK;
694 i--, gdb_block_iter = gdb_block_iter->next)
695 {
696 struct block *new_block = allocate_block (&objfile->objfile_obstack);
697 struct symbol *block_name = allocate_symbol (objfile);
698 struct type *block_type = arch_type (get_objfile_arch (objfile),
699 TYPE_CODE_VOID,
700 TARGET_CHAR_BIT,
701 "void");
702
703 BLOCK_MULTIDICT (new_block)
704 = mdict_create_linear (&objfile->objfile_obstack, NULL);
705 /* The address range. */
706 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
707 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
708
709 /* The name. */
710 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
711 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
712 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
713 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
714 SYMBOL_BLOCK_VALUE (block_name) = new_block;
715
716 block_name->ginfo.name
717 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
718 gdb_block_iter->name,
719 strlen (gdb_block_iter->name));
720
721 BLOCK_FUNCTION (new_block) = block_name;
722
723 BLOCKVECTOR_BLOCK (bv, i) = new_block;
724 if (begin > BLOCK_START (new_block))
725 begin = BLOCK_START (new_block);
726 if (end < BLOCK_END (new_block))
727 end = BLOCK_END (new_block);
728
729 gdb_block_iter->real_block = new_block;
730 }
731
732 /* Now add the special blocks. */
733 block_iter = NULL;
734 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
735 {
736 struct block *new_block;
737
738 new_block = (i == GLOBAL_BLOCK
739 ? allocate_global_block (&objfile->objfile_obstack)
740 : allocate_block (&objfile->objfile_obstack));
741 BLOCK_MULTIDICT (new_block)
742 = mdict_create_linear (&objfile->objfile_obstack, NULL);
743 BLOCK_SUPERBLOCK (new_block) = block_iter;
744 block_iter = new_block;
745
746 BLOCK_START (new_block) = (CORE_ADDR) begin;
747 BLOCK_END (new_block) = (CORE_ADDR) end;
748
749 BLOCKVECTOR_BLOCK (bv, i) = new_block;
750
751 if (i == GLOBAL_BLOCK)
752 set_block_compunit_symtab (new_block, cust);
753 }
754
755 /* Fill up the superblock fields for the real blocks, using the
756 real_block fields populated earlier. */
757 for (gdb_block_iter = stab->blocks;
758 gdb_block_iter;
759 gdb_block_iter = gdb_block_iter->next)
760 {
761 if (gdb_block_iter->parent != NULL)
762 {
763 /* If the plugin specifically mentioned a parent block, we
764 use that. */
765 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
766 gdb_block_iter->parent->real_block;
767 }
768 else
769 {
770 /* And if not, we set a default parent block. */
771 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
772 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
773 }
774 }
775
776 /* Free memory. */
777 gdb_block_iter = stab->blocks;
778
779 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
780 gdb_block_iter;
781 gdb_block_iter = gdb_block_iter_tmp)
782 {
783 xfree ((void *) gdb_block_iter->name);
784 xfree (gdb_block_iter);
785 }
786 xfree (stab->linetable);
787 xfree ((char *) stab->file_name);
788 xfree (stab);
789 }
790
791 /* Called when closing a gdb_objfile. Converts OBJ to a proper
792 objfile. */
793
794 static void
795 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
796 struct gdb_object *obj)
797 {
798 struct gdb_symtab *i, *j;
799 struct objfile *objfile;
800 jit_dbg_reader_data *priv_data;
801
802 priv_data = (jit_dbg_reader_data *) cb->priv_data;
803
804 objfile = new struct objfile (NULL, "<< JIT compiled code >>",
805 OBJF_NOT_FILENAME);
806 objfile->per_bfd->gdbarch = target_gdbarch ();
807
808 j = NULL;
809 for (i = obj->symtabs; i; i = j)
810 {
811 j = i->next;
812 finalize_symtab (i, objfile);
813 }
814 add_objfile_entry (objfile, *priv_data);
815 xfree (obj);
816 }
817
818 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
819 ENTRY_ADDR is the address of the struct jit_code_entry in the
820 inferior address space. */
821
822 static int
823 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
824 CORE_ADDR entry_addr)
825 {
826 gdb_byte *gdb_mem;
827 int status;
828 jit_dbg_reader_data priv_data;
829 struct gdb_reader_funcs *funcs;
830 struct gdb_symbol_callbacks callbacks =
831 {
832 jit_object_open_impl,
833 jit_symtab_open_impl,
834 jit_block_open_impl,
835 jit_symtab_close_impl,
836 jit_object_close_impl,
837
838 jit_symtab_line_mapping_add_impl,
839 jit_target_read_impl,
840
841 &priv_data
842 };
843
844 priv_data = entry_addr;
845
846 if (!loaded_jit_reader)
847 return 0;
848
849 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
850
851 status = 1;
852 try
853 {
854 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
855 code_entry->symfile_size))
856 status = 0;
857 }
858 catch (const gdb_exception &e)
859 {
860 status = 0;
861 }
862
863 if (status)
864 {
865 funcs = loaded_jit_reader->functions;
866 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
867 != GDB_SUCCESS)
868 status = 0;
869 }
870
871 xfree (gdb_mem);
872 if (jit_debug && status == 0)
873 fprintf_unfiltered (gdb_stdlog,
874 "Could not read symtab using the loaded JIT reader.\n");
875 return status;
876 }
877
878 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
879 struct jit_code_entry in the inferior address space. */
880
881 static void
882 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
883 CORE_ADDR entry_addr,
884 struct gdbarch *gdbarch)
885 {
886 struct bfd_section *sec;
887 struct objfile *objfile;
888 const struct bfd_arch_info *b;
889
890 if (jit_debug)
891 fprintf_unfiltered (gdb_stdlog,
892 "jit_register_code, symfile_addr = %s, "
893 "symfile_size = %s\n",
894 paddress (gdbarch, code_entry->symfile_addr),
895 pulongest (code_entry->symfile_size));
896
897 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
898 code_entry->symfile_size,
899 gnutarget));
900 if (nbfd == NULL)
901 {
902 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
903 return;
904 }
905
906 /* Check the format. NOTE: This initializes important data that GDB uses!
907 We would segfault later without this line. */
908 if (!bfd_check_format (nbfd.get (), bfd_object))
909 {
910 printf_unfiltered (_("\
911 JITed symbol file is not an object file, ignoring it.\n"));
912 return;
913 }
914
915 /* Check bfd arch. */
916 b = gdbarch_bfd_arch_info (gdbarch);
917 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
918 warning (_("JITed object file architecture %s is not compatible "
919 "with target architecture %s."),
920 bfd_get_arch_info (nbfd.get ())->printable_name,
921 b->printable_name);
922
923 /* Read the section address information out of the symbol file. Since the
924 file is generated by the JIT at runtime, it should all of the absolute
925 addresses that we care about. */
926 section_addr_info sai;
927 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
928 if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
929 {
930 /* We assume that these virtual addresses are absolute, and do not
931 treat them as offsets. */
932 sai.emplace_back (bfd_get_section_vma (nbfd.get (), sec),
933 bfd_get_section_name (nbfd.get (), sec),
934 sec->index);
935 }
936
937 /* This call does not take ownership of SAI. */
938 objfile = symbol_file_add_from_bfd (nbfd.get (),
939 bfd_get_filename (nbfd.get ()), 0,
940 &sai,
941 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
942
943 add_objfile_entry (objfile, entry_addr);
944 }
945
946 /* This function registers code associated with a JIT code entry. It uses the
947 pointer and size pair in the entry to read the symbol file from the remote
948 and then calls symbol_file_add_from_local_memory to add it as though it were
949 a symbol file added by the user. */
950
951 static void
952 jit_register_code (struct gdbarch *gdbarch,
953 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
954 {
955 int success;
956
957 if (jit_debug)
958 fprintf_unfiltered (gdb_stdlog,
959 "jit_register_code, symfile_addr = %s, "
960 "symfile_size = %s\n",
961 paddress (gdbarch, code_entry->symfile_addr),
962 pulongest (code_entry->symfile_size));
963
964 success = jit_reader_try_read_symtab (code_entry, entry_addr);
965
966 if (!success)
967 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
968 }
969
970 /* This function unregisters JITed code and frees the corresponding
971 objfile. */
972
973 static void
974 jit_unregister_code (struct objfile *objfile)
975 {
976 delete objfile;
977 }
978
979 /* Look up the objfile with this code entry address. */
980
981 static struct objfile *
982 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
983 {
984 for (objfile *objf : current_program_space->objfiles ())
985 {
986 struct jit_objfile_data *objf_data;
987
988 objf_data
989 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
990 if (objf_data != NULL && objf_data->addr == entry_addr)
991 return objf;
992 }
993 return NULL;
994 }
995
996 /* This is called when a breakpoint is deleted. It updates the
997 inferior's cache, if needed. */
998
999 static void
1000 jit_breakpoint_deleted (struct breakpoint *b)
1001 {
1002 struct bp_location *iter;
1003
1004 if (b->type != bp_jit_event)
1005 return;
1006
1007 for (iter = b->loc; iter != NULL; iter = iter->next)
1008 {
1009 struct jit_program_space_data *ps_data;
1010
1011 ps_data = ((struct jit_program_space_data *)
1012 program_space_data (iter->pspace, jit_program_space_data));
1013 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1014 {
1015 ps_data->cached_code_address = 0;
1016 ps_data->jit_breakpoint = NULL;
1017 }
1018 }
1019 }
1020
1021 /* (Re-)Initialize the jit breakpoint if necessary.
1022 Return 0 if the jit breakpoint has been successfully initialized. */
1023
1024 static int
1025 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1026 struct jit_program_space_data *ps_data)
1027 {
1028 struct bound_minimal_symbol reg_symbol;
1029 struct bound_minimal_symbol desc_symbol;
1030 struct jit_objfile_data *objf_data;
1031 CORE_ADDR addr;
1032
1033 if (ps_data->objfile == NULL)
1034 {
1035 /* Lookup the registration symbol. If it is missing, then we
1036 assume we are not attached to a JIT. */
1037 reg_symbol = lookup_bound_minimal_symbol (jit_break_name);
1038 if (reg_symbol.minsym == NULL
1039 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1040 return 1;
1041
1042 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1043 reg_symbol.objfile);
1044 if (desc_symbol.minsym == NULL
1045 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1046 return 1;
1047
1048 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1049 objf_data->register_code = reg_symbol.minsym;
1050 objf_data->descriptor = desc_symbol.minsym;
1051
1052 ps_data->objfile = reg_symbol.objfile;
1053 }
1054 else
1055 objf_data = get_jit_objfile_data (ps_data->objfile);
1056
1057 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1058
1059 if (jit_debug)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "jit_breakpoint_re_set_internal, "
1062 "breakpoint_addr = %s\n",
1063 paddress (gdbarch, addr));
1064
1065 if (ps_data->cached_code_address == addr)
1066 return 0;
1067
1068 /* Delete the old breakpoint. */
1069 if (ps_data->jit_breakpoint != NULL)
1070 delete_breakpoint (ps_data->jit_breakpoint);
1071
1072 /* Put a breakpoint in the registration symbol. */
1073 ps_data->cached_code_address = addr;
1074 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1075
1076 return 0;
1077 }
1078
1079 /* The private data passed around in the frame unwind callback
1080 functions. */
1081
1082 struct jit_unwind_private
1083 {
1084 /* Cached register values. See jit_frame_sniffer to see how this
1085 works. */
1086 detached_regcache *regcache;
1087
1088 /* The frame being unwound. */
1089 struct frame_info *this_frame;
1090 };
1091
1092 /* Sets the value of a particular register in this frame. */
1093
1094 static void
1095 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1096 struct gdb_reg_value *value)
1097 {
1098 struct jit_unwind_private *priv;
1099 int gdb_reg;
1100
1101 priv = (struct jit_unwind_private *) cb->priv_data;
1102
1103 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1104 dwarf_regnum);
1105 if (gdb_reg == -1)
1106 {
1107 if (jit_debug)
1108 fprintf_unfiltered (gdb_stdlog,
1109 _("Could not recognize DWARF regnum %d"),
1110 dwarf_regnum);
1111 value->free (value);
1112 return;
1113 }
1114
1115 priv->regcache->raw_supply (gdb_reg, value->value);
1116 value->free (value);
1117 }
1118
1119 static void
1120 reg_value_free_impl (struct gdb_reg_value *value)
1121 {
1122 xfree (value);
1123 }
1124
1125 /* Get the value of register REGNUM in the previous frame. */
1126
1127 static struct gdb_reg_value *
1128 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1129 {
1130 struct jit_unwind_private *priv;
1131 struct gdb_reg_value *value;
1132 int gdb_reg, size;
1133 struct gdbarch *frame_arch;
1134
1135 priv = (struct jit_unwind_private *) cb->priv_data;
1136 frame_arch = get_frame_arch (priv->this_frame);
1137
1138 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1139 size = register_size (frame_arch, gdb_reg);
1140 value = ((struct gdb_reg_value *)
1141 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1142 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1143 value->value);
1144 value->size = size;
1145 value->free = reg_value_free_impl;
1146 return value;
1147 }
1148
1149 /* gdb_reg_value has a free function, which must be called on each
1150 saved register value. */
1151
1152 static void
1153 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1154 {
1155 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1156
1157 gdb_assert (priv_data->regcache != NULL);
1158 delete priv_data->regcache;
1159 xfree (priv_data);
1160 }
1161
1162 /* The frame sniffer for the pseudo unwinder.
1163
1164 While this is nominally a frame sniffer, in the case where the JIT
1165 reader actually recognizes the frame, it does a lot more work -- it
1166 unwinds the frame and saves the corresponding register values in
1167 the cache. jit_frame_prev_register simply returns the saved
1168 register values. */
1169
1170 static int
1171 jit_frame_sniffer (const struct frame_unwind *self,
1172 struct frame_info *this_frame, void **cache)
1173 {
1174 struct jit_unwind_private *priv_data;
1175 struct gdb_unwind_callbacks callbacks;
1176 struct gdb_reader_funcs *funcs;
1177
1178 callbacks.reg_get = jit_unwind_reg_get_impl;
1179 callbacks.reg_set = jit_unwind_reg_set_impl;
1180 callbacks.target_read = jit_target_read_impl;
1181
1182 if (loaded_jit_reader == NULL)
1183 return 0;
1184
1185 funcs = loaded_jit_reader->functions;
1186
1187 gdb_assert (!*cache);
1188
1189 *cache = XCNEW (struct jit_unwind_private);
1190 priv_data = (struct jit_unwind_private *) *cache;
1191 /* Take a snapshot of current regcache. */
1192 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1193 true);
1194 priv_data->this_frame = this_frame;
1195
1196 callbacks.priv_data = priv_data;
1197
1198 /* Try to coax the provided unwinder to unwind the stack */
1199 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1200 {
1201 if (jit_debug)
1202 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1203 "JIT reader.\n"));
1204 return 1;
1205 }
1206 if (jit_debug)
1207 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1208 "JIT reader.\n"));
1209
1210 jit_dealloc_cache (this_frame, *cache);
1211 *cache = NULL;
1212
1213 return 0;
1214 }
1215
1216
1217 /* The frame_id function for the pseudo unwinder. Relays the call to
1218 the loaded plugin. */
1219
1220 static void
1221 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1222 struct frame_id *this_id)
1223 {
1224 struct jit_unwind_private priv;
1225 struct gdb_frame_id frame_id;
1226 struct gdb_reader_funcs *funcs;
1227 struct gdb_unwind_callbacks callbacks;
1228
1229 priv.regcache = NULL;
1230 priv.this_frame = this_frame;
1231
1232 /* We don't expect the frame_id function to set any registers, so we
1233 set reg_set to NULL. */
1234 callbacks.reg_get = jit_unwind_reg_get_impl;
1235 callbacks.reg_set = NULL;
1236 callbacks.target_read = jit_target_read_impl;
1237 callbacks.priv_data = &priv;
1238
1239 gdb_assert (loaded_jit_reader);
1240 funcs = loaded_jit_reader->functions;
1241
1242 frame_id = funcs->get_frame_id (funcs, &callbacks);
1243 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1244 }
1245
1246 /* Pseudo unwinder function. Reads the previously fetched value for
1247 the register from the cache. */
1248
1249 static struct value *
1250 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1251 {
1252 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1253 struct gdbarch *gdbarch;
1254
1255 if (priv == NULL)
1256 return frame_unwind_got_optimized (this_frame, reg);
1257
1258 gdbarch = priv->regcache->arch ();
1259 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1260 enum register_status status = priv->regcache->cooked_read (reg, buf);
1261
1262 if (status == REG_VALID)
1263 return frame_unwind_got_bytes (this_frame, reg, buf);
1264 else
1265 return frame_unwind_got_optimized (this_frame, reg);
1266 }
1267
1268 /* Relay everything back to the unwinder registered by the JIT debug
1269 info reader.*/
1270
1271 static const struct frame_unwind jit_frame_unwind =
1272 {
1273 NORMAL_FRAME,
1274 default_frame_unwind_stop_reason,
1275 jit_frame_this_id,
1276 jit_frame_prev_register,
1277 NULL,
1278 jit_frame_sniffer,
1279 jit_dealloc_cache
1280 };
1281
1282
1283 /* This is the information that is stored at jit_gdbarch_data for each
1284 architecture. */
1285
1286 struct jit_gdbarch_data_type
1287 {
1288 /* Has the (pseudo) unwinder been prepended? */
1289 int unwinder_registered;
1290 };
1291
1292 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1293
1294 static void
1295 jit_prepend_unwinder (struct gdbarch *gdbarch)
1296 {
1297 struct jit_gdbarch_data_type *data;
1298
1299 data
1300 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1301 if (!data->unwinder_registered)
1302 {
1303 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1304 data->unwinder_registered = 1;
1305 }
1306 }
1307
1308 /* Register any already created translations. */
1309
1310 static void
1311 jit_inferior_init (struct gdbarch *gdbarch)
1312 {
1313 struct jit_descriptor descriptor;
1314 struct jit_code_entry cur_entry;
1315 struct jit_program_space_data *ps_data;
1316 CORE_ADDR cur_entry_addr;
1317
1318 if (jit_debug)
1319 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1320
1321 jit_prepend_unwinder (gdbarch);
1322
1323 ps_data = get_jit_program_space_data ();
1324 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1325 return;
1326
1327 /* Read the descriptor so we can check the version number and load
1328 any already JITed functions. */
1329 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1330 return;
1331
1332 /* Check that the version number agrees with that we support. */
1333 if (descriptor.version != 1)
1334 {
1335 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1336 "in descriptor (expected 1)\n"),
1337 (long) descriptor.version);
1338 return;
1339 }
1340
1341 /* If we've attached to a running program, we need to check the descriptor
1342 to register any functions that were already generated. */
1343 for (cur_entry_addr = descriptor.first_entry;
1344 cur_entry_addr != 0;
1345 cur_entry_addr = cur_entry.next_entry)
1346 {
1347 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1348
1349 /* This hook may be called many times during setup, so make sure we don't
1350 add the same symbol file twice. */
1351 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1352 continue;
1353
1354 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1355 }
1356 }
1357
1358 /* inferior_created observer. */
1359
1360 static void
1361 jit_inferior_created (struct target_ops *ops, int from_tty)
1362 {
1363 jit_inferior_created_hook ();
1364 }
1365
1366 /* Exported routine to call when an inferior has been created. */
1367
1368 void
1369 jit_inferior_created_hook (void)
1370 {
1371 jit_inferior_init (target_gdbarch ());
1372 }
1373
1374 /* Exported routine to call to re-set the jit breakpoints,
1375 e.g. when a program is rerun. */
1376
1377 void
1378 jit_breakpoint_re_set (void)
1379 {
1380 jit_breakpoint_re_set_internal (target_gdbarch (),
1381 get_jit_program_space_data ());
1382 }
1383
1384 /* This function cleans up any code entries left over when the
1385 inferior exits. We get left over code when the inferior exits
1386 without unregistering its code, for example when it crashes. */
1387
1388 static void
1389 jit_inferior_exit_hook (struct inferior *inf)
1390 {
1391 for (objfile *objf : current_program_space->objfiles_safe ())
1392 {
1393 struct jit_objfile_data *objf_data
1394 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1395
1396 if (objf_data != NULL && objf_data->addr != 0)
1397 jit_unregister_code (objf);
1398 }
1399 }
1400
1401 void
1402 jit_event_handler (struct gdbarch *gdbarch)
1403 {
1404 struct jit_descriptor descriptor;
1405 struct jit_code_entry code_entry;
1406 CORE_ADDR entry_addr;
1407 struct objfile *objf;
1408
1409 /* Read the descriptor from remote memory. */
1410 if (!jit_read_descriptor (gdbarch, &descriptor,
1411 get_jit_program_space_data ()))
1412 return;
1413 entry_addr = descriptor.relevant_entry;
1414
1415 /* Do the corresponding action. */
1416 switch (descriptor.action_flag)
1417 {
1418 case JIT_NOACTION:
1419 break;
1420 case JIT_REGISTER:
1421 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1422 jit_register_code (gdbarch, entry_addr, &code_entry);
1423 break;
1424 case JIT_UNREGISTER:
1425 objf = jit_find_objf_with_entry_addr (entry_addr);
1426 if (objf == NULL)
1427 printf_unfiltered (_("Unable to find JITed code "
1428 "entry at address: %s\n"),
1429 paddress (gdbarch, entry_addr));
1430 else
1431 jit_unregister_code (objf);
1432
1433 break;
1434 default:
1435 error (_("Unknown action_flag value in JIT descriptor!"));
1436 break;
1437 }
1438 }
1439
1440 /* Called to free the data allocated to the jit_program_space_data slot. */
1441
1442 static void
1443 free_objfile_data (struct objfile *objfile, void *data)
1444 {
1445 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1446
1447 if (objf_data->register_code != NULL)
1448 {
1449 struct jit_program_space_data *ps_data;
1450
1451 ps_data
1452 = ((struct jit_program_space_data *)
1453 program_space_data (objfile->pspace, jit_program_space_data));
1454 if (ps_data != NULL && ps_data->objfile == objfile)
1455 {
1456 ps_data->objfile = NULL;
1457 if (ps_data->jit_breakpoint != NULL)
1458 delete_breakpoint (ps_data->jit_breakpoint);
1459 ps_data->cached_code_address = 0;
1460 }
1461 }
1462
1463 xfree (data);
1464 }
1465
1466 /* Initialize the jit_gdbarch_data slot with an instance of struct
1467 jit_gdbarch_data_type */
1468
1469 static void *
1470 jit_gdbarch_data_init (struct obstack *obstack)
1471 {
1472 struct jit_gdbarch_data_type *data =
1473 XOBNEW (obstack, struct jit_gdbarch_data_type);
1474
1475 data->unwinder_registered = 0;
1476
1477 return data;
1478 }
1479
1480 void
1481 _initialize_jit (void)
1482 {
1483 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1484 JIT_READER_DIR_RELOCATABLE);
1485 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1486 _("Set JIT debugging."),
1487 _("Show JIT debugging."),
1488 _("When non-zero, JIT debugging is enabled."),
1489 NULL,
1490 show_jit_debug,
1491 &setdebuglist, &showdebuglist);
1492
1493 gdb::observers::inferior_created.attach (jit_inferior_created);
1494 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1495 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1496
1497 jit_objfile_data =
1498 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1499 jit_program_space_data =
1500 register_program_space_data_with_cleanup (NULL,
1501 jit_program_space_data_cleanup);
1502 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1503 if (is_dl_available ())
1504 {
1505 struct cmd_list_element *c;
1506
1507 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1508 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1509 Usage: jit-reader-load FILE\n\
1510 Try to load file FILE as a debug info reader (and unwinder) for\n\
1511 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1512 relocated relative to the GDB executable if required."));
1513 set_cmd_completer (c, filename_completer);
1514
1515 c = add_com ("jit-reader-unload", no_class,
1516 jit_reader_unload_command, _("\
1517 Unload the currently loaded JIT debug info reader.\n\
1518 Usage: jit-reader-unload\n\n\
1519 Do \"help jit-reader-load\" for info on loading debug info readers."));
1520 set_cmd_completer (c, noop_completer);
1521 }
1522 }
This page took 0.080419 seconds and 4 git commands to generate.