Remove regcache_xmalloc
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44
45 static const char *jit_reader_dir = NULL;
46
47 static const struct objfile_data *jit_objfile_data;
48
49 static const char *const jit_break_name = "__jit_debug_register_code";
50
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52
53 static const struct program_space_data *jit_program_space_data = NULL;
54
55 static void jit_inferior_init (struct gdbarch *gdbarch);
56 static void jit_inferior_exit_hook (struct inferior *inf);
57
58 /* An unwinder is registered for every gdbarch. This key is used to
59 remember if the unwinder has been registered for a particular
60 gdbarch. */
61
62 static struct gdbarch_data *jit_gdbarch_data;
63
64 /* Non-zero if we want to see trace of jit level stuff. */
65
66 static unsigned int jit_debug = 0;
67
68 static void
69 show_jit_debug (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
73 }
74
75 struct target_buffer
76 {
77 CORE_ADDR base;
78 ULONGEST size;
79 };
80
81 /* Openning the file is a no-op. */
82
83 static void *
84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
85 {
86 return open_closure;
87 }
88
89 /* Closing the file is just freeing the base/size pair on our side. */
90
91 static int
92 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
93 {
94 xfree (stream);
95
96 /* Zero means success. */
97 return 0;
98 }
99
100 /* For reading the file, we just need to pass through to target_read_memory and
101 fix up the arguments and return values. */
102
103 static file_ptr
104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
105 file_ptr nbytes, file_ptr offset)
106 {
107 int err;
108 struct target_buffer *buffer = (struct target_buffer *) stream;
109
110 /* If this read will read all of the file, limit it to just the rest. */
111 if (offset + nbytes > buffer->size)
112 nbytes = buffer->size - offset;
113
114 /* If there are no more bytes left, we've reached EOF. */
115 if (nbytes == 0)
116 return 0;
117
118 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
119 if (err)
120 return -1;
121
122 return nbytes;
123 }
124
125 /* For statting the file, we only support the st_size attribute. */
126
127 static int
128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
129 {
130 struct target_buffer *buffer = (struct target_buffer*) stream;
131
132 memset (sb, 0, sizeof (struct stat));
133 sb->st_size = buffer->size;
134 return 0;
135 }
136
137 /* Open a BFD from the target's memory. */
138
139 static gdb_bfd_ref_ptr
140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
141 {
142 struct target_buffer *buffer = XNEW (struct target_buffer);
143
144 buffer->base = addr;
145 buffer->size = size;
146 return gdb_bfd_openr_iovec ("<in-memory>", target,
147 mem_bfd_iovec_open,
148 buffer,
149 mem_bfd_iovec_pread,
150 mem_bfd_iovec_close,
151 mem_bfd_iovec_stat);
152 }
153
154 struct jit_reader
155 {
156 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
157 : functions (f), handle (std::move (h))
158 {
159 }
160
161 ~jit_reader ()
162 {
163 functions->destroy (functions);
164 }
165
166 DISABLE_COPY_AND_ASSIGN (jit_reader);
167
168 struct gdb_reader_funcs *functions;
169 gdb_dlhandle_up handle;
170 };
171
172 /* One reader that has been loaded successfully, and can potentially be used to
173 parse debug info. */
174
175 static struct jit_reader *loaded_jit_reader = NULL;
176
177 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
178 static const char *reader_init_fn_sym = "gdb_init_reader";
179
180 /* Try to load FILE_NAME as a JIT debug info reader. */
181
182 static struct jit_reader *
183 jit_reader_load (const char *file_name)
184 {
185 reader_init_fn_type *init_fn;
186 struct gdb_reader_funcs *funcs = NULL;
187
188 if (jit_debug)
189 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
190 file_name);
191 gdb_dlhandle_up so = gdb_dlopen (file_name);
192
193 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
194 if (!init_fn)
195 error (_("Could not locate initialization function: %s."),
196 reader_init_fn_sym);
197
198 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
199 error (_("Reader not GPL compatible."));
200
201 funcs = init_fn ();
202 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
203 error (_("Reader version does not match GDB version."));
204
205 return new jit_reader (funcs, std::move (so));
206 }
207
208 /* Provides the jit-reader-load command. */
209
210 static void
211 jit_reader_load_command (char *args, int from_tty)
212 {
213 if (args == NULL)
214 error (_("No reader name provided."));
215 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
216
217 if (loaded_jit_reader != NULL)
218 error (_("JIT reader already loaded. Run jit-reader-unload first."));
219
220 if (!IS_ABSOLUTE_PATH (file.get ()))
221 file.reset (xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING,
222 file.get ()));
223
224 loaded_jit_reader = jit_reader_load (file.get ());
225 reinit_frame_cache ();
226 jit_inferior_created_hook ();
227 }
228
229 /* Provides the jit-reader-unload command. */
230
231 static void
232 jit_reader_unload_command (char *args, int from_tty)
233 {
234 if (!loaded_jit_reader)
235 error (_("No JIT reader loaded."));
236
237 reinit_frame_cache ();
238 jit_inferior_exit_hook (current_inferior ());
239
240 delete loaded_jit_reader;
241 loaded_jit_reader = NULL;
242 }
243
244 /* Per-program space structure recording which objfile has the JIT
245 symbols. */
246
247 struct jit_program_space_data
248 {
249 /* The objfile. This is NULL if no objfile holds the JIT
250 symbols. */
251
252 struct objfile *objfile;
253
254 /* If this program space has __jit_debug_register_code, this is the
255 cached address from the minimal symbol. This is used to detect
256 relocations requiring the breakpoint to be re-created. */
257
258 CORE_ADDR cached_code_address;
259
260 /* This is the JIT event breakpoint, or NULL if it has not been
261 set. */
262
263 struct breakpoint *jit_breakpoint;
264 };
265
266 /* Per-objfile structure recording the addresses in the program space.
267 This object serves two purposes: for ordinary objfiles, it may
268 cache some symbols related to the JIT interface; and for
269 JIT-created objfiles, it holds some information about the
270 jit_code_entry. */
271
272 struct jit_objfile_data
273 {
274 /* Symbol for __jit_debug_register_code. */
275 struct minimal_symbol *register_code;
276
277 /* Symbol for __jit_debug_descriptor. */
278 struct minimal_symbol *descriptor;
279
280 /* Address of struct jit_code_entry in this objfile. This is only
281 non-zero for objfiles that represent code created by the JIT. */
282 CORE_ADDR addr;
283 };
284
285 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
286 yet, make a new structure and attach it. */
287
288 static struct jit_objfile_data *
289 get_jit_objfile_data (struct objfile *objf)
290 {
291 struct jit_objfile_data *objf_data;
292
293 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
294 if (objf_data == NULL)
295 {
296 objf_data = XCNEW (struct jit_objfile_data);
297 set_objfile_data (objf, jit_objfile_data, objf_data);
298 }
299
300 return objf_data;
301 }
302
303 /* Remember OBJFILE has been created for struct jit_code_entry located
304 at inferior address ENTRY. */
305
306 static void
307 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
308 {
309 struct jit_objfile_data *objf_data;
310
311 objf_data = get_jit_objfile_data (objfile);
312 objf_data->addr = entry;
313 }
314
315 /* Return jit_program_space_data for current program space. Allocate
316 if not already present. */
317
318 static struct jit_program_space_data *
319 get_jit_program_space_data (void)
320 {
321 struct jit_program_space_data *ps_data;
322
323 ps_data
324 = ((struct jit_program_space_data *)
325 program_space_data (current_program_space, jit_program_space_data));
326 if (ps_data == NULL)
327 {
328 ps_data = XCNEW (struct jit_program_space_data);
329 set_program_space_data (current_program_space, jit_program_space_data,
330 ps_data);
331 }
332
333 return ps_data;
334 }
335
336 static void
337 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
338 {
339 xfree (arg);
340 }
341
342 /* Helper function for reading the global JIT descriptor from remote
343 memory. Returns 1 if all went well, 0 otherwise. */
344
345 static int
346 jit_read_descriptor (struct gdbarch *gdbarch,
347 struct jit_descriptor *descriptor,
348 struct jit_program_space_data *ps_data)
349 {
350 int err;
351 struct type *ptr_type;
352 int ptr_size;
353 int desc_size;
354 gdb_byte *desc_buf;
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356 struct jit_objfile_data *objf_data;
357
358 if (ps_data->objfile == NULL)
359 return 0;
360 objf_data = get_jit_objfile_data (ps_data->objfile);
361 if (objf_data->descriptor == NULL)
362 return 0;
363
364 if (jit_debug)
365 fprintf_unfiltered (gdb_stdlog,
366 "jit_read_descriptor, descriptor_addr = %s\n",
367 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
368 objf_data->descriptor)));
369
370 /* Figure out how big the descriptor is on the remote and how to read it. */
371 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
372 ptr_size = TYPE_LENGTH (ptr_type);
373 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
374 desc_buf = (gdb_byte *) alloca (desc_size);
375
376 /* Read the descriptor. */
377 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
378 objf_data->descriptor),
379 desc_buf, desc_size);
380 if (err)
381 {
382 printf_unfiltered (_("Unable to read JIT descriptor from "
383 "remote memory\n"));
384 return 0;
385 }
386
387 /* Fix the endianness to match the host. */
388 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
389 descriptor->action_flag =
390 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
391 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
392 descriptor->first_entry =
393 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
394
395 return 1;
396 }
397
398 /* Helper function for reading a JITed code entry from remote memory. */
399
400 static void
401 jit_read_code_entry (struct gdbarch *gdbarch,
402 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
403 {
404 int err, off;
405 struct type *ptr_type;
406 int ptr_size;
407 int entry_size;
408 int align_bytes;
409 gdb_byte *entry_buf;
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411
412 /* Figure out how big the entry is on the remote and how to read it. */
413 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
414 ptr_size = TYPE_LENGTH (ptr_type);
415
416 /* Figure out where the longlong value will be. */
417 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
418 off = 3 * ptr_size;
419 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
420
421 entry_size = off + 8; /* Three pointers and one 64-bit int. */
422 entry_buf = (gdb_byte *) alloca (entry_size);
423
424 /* Read the entry. */
425 err = target_read_memory (code_addr, entry_buf, entry_size);
426 if (err)
427 error (_("Unable to read JIT code entry from remote memory!"));
428
429 /* Fix the endianness to match the host. */
430 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
431 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
432 code_entry->prev_entry =
433 extract_typed_address (&entry_buf[ptr_size], ptr_type);
434 code_entry->symfile_addr =
435 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
436 code_entry->symfile_size =
437 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
438 }
439
440 /* Proxy object for building a block. */
441
442 struct gdb_block
443 {
444 /* gdb_blocks are linked into a tree structure. Next points to the
445 next node at the same depth as this block and parent to the
446 parent gdb_block. */
447 struct gdb_block *next, *parent;
448
449 /* Points to the "real" block that is being built out of this
450 instance. This block will be added to a blockvector, which will
451 then be added to a symtab. */
452 struct block *real_block;
453
454 /* The first and last code address corresponding to this block. */
455 CORE_ADDR begin, end;
456
457 /* The name of this block (if any). If this is non-NULL, the
458 FUNCTION symbol symbol is set to this value. */
459 const char *name;
460 };
461
462 /* Proxy object for building a symtab. */
463
464 struct gdb_symtab
465 {
466 /* The list of blocks in this symtab. These will eventually be
467 converted to real blocks. */
468 struct gdb_block *blocks;
469
470 /* The number of blocks inserted. */
471 int nblocks;
472
473 /* A mapping between line numbers to PC. */
474 struct linetable *linetable;
475
476 /* The source file for this symtab. */
477 const char *file_name;
478 struct gdb_symtab *next;
479 };
480
481 /* Proxy object for building an object. */
482
483 struct gdb_object
484 {
485 struct gdb_symtab *symtabs;
486 };
487
488 /* The type of the `private' data passed around by the callback
489 functions. */
490
491 typedef CORE_ADDR jit_dbg_reader_data;
492
493 /* The reader calls into this function to read data off the targets
494 address space. */
495
496 static enum gdb_status
497 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
498 {
499 int result = target_read_memory ((CORE_ADDR) target_mem,
500 (gdb_byte *) gdb_buf, len);
501 if (result == 0)
502 return GDB_SUCCESS;
503 else
504 return GDB_FAIL;
505 }
506
507 /* The reader calls into this function to create a new gdb_object
508 which it can then pass around to the other callbacks. Right now,
509 all that is required is allocating the memory. */
510
511 static struct gdb_object *
512 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
513 {
514 /* CB is not required right now, but sometime in the future we might
515 need a handle to it, and we'd like to do that without breaking
516 the ABI. */
517 return XCNEW (struct gdb_object);
518 }
519
520 /* Readers call into this function to open a new gdb_symtab, which,
521 again, is passed around to other callbacks. */
522
523 static struct gdb_symtab *
524 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
525 struct gdb_object *object,
526 const char *file_name)
527 {
528 struct gdb_symtab *ret;
529
530 /* CB stays unused. See comment in jit_object_open_impl. */
531
532 ret = XCNEW (struct gdb_symtab);
533 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
534 ret->next = object->symtabs;
535 object->symtabs = ret;
536 return ret;
537 }
538
539 /* Returns true if the block corresponding to old should be placed
540 before the block corresponding to new in the final blockvector. */
541
542 static int
543 compare_block (const struct gdb_block *const old,
544 const struct gdb_block *const newobj)
545 {
546 if (old == NULL)
547 return 1;
548 if (old->begin < newobj->begin)
549 return 1;
550 else if (old->begin == newobj->begin)
551 {
552 if (old->end > newobj->end)
553 return 1;
554 else
555 return 0;
556 }
557 else
558 return 0;
559 }
560
561 /* Called by readers to open a new gdb_block. This function also
562 inserts the new gdb_block in the correct place in the corresponding
563 gdb_symtab. */
564
565 static struct gdb_block *
566 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
567 struct gdb_symtab *symtab, struct gdb_block *parent,
568 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
569 {
570 struct gdb_block *block = XCNEW (struct gdb_block);
571
572 block->next = symtab->blocks;
573 block->begin = (CORE_ADDR) begin;
574 block->end = (CORE_ADDR) end;
575 block->name = name ? xstrdup (name) : NULL;
576 block->parent = parent;
577
578 /* Ensure that the blocks are inserted in the correct (reverse of
579 the order expected by blockvector). */
580 if (compare_block (symtab->blocks, block))
581 {
582 symtab->blocks = block;
583 }
584 else
585 {
586 struct gdb_block *i = symtab->blocks;
587
588 for (;; i = i->next)
589 {
590 /* Guaranteed to terminate, since compare_block (NULL, _)
591 returns 1. */
592 if (compare_block (i->next, block))
593 {
594 block->next = i->next;
595 i->next = block;
596 break;
597 }
598 }
599 }
600 symtab->nblocks++;
601
602 return block;
603 }
604
605 /* Readers call this to add a line mapping (from PC to line number) to
606 a gdb_symtab. */
607
608 static void
609 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
610 struct gdb_symtab *stab, int nlines,
611 struct gdb_line_mapping *map)
612 {
613 int i;
614 int alloc_len;
615
616 if (nlines < 1)
617 return;
618
619 alloc_len = sizeof (struct linetable)
620 + (nlines - 1) * sizeof (struct linetable_entry);
621 stab->linetable = (struct linetable *) xmalloc (alloc_len);
622 stab->linetable->nitems = nlines;
623 for (i = 0; i < nlines; i++)
624 {
625 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
626 stab->linetable->item[i].line = map[i].line;
627 }
628 }
629
630 /* Called by readers to close a gdb_symtab. Does not need to do
631 anything as of now. */
632
633 static void
634 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
635 struct gdb_symtab *stab)
636 {
637 /* Right now nothing needs to be done here. We may need to do some
638 cleanup here in the future (again, without breaking the plugin
639 ABI). */
640 }
641
642 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
643
644 static void
645 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
646 {
647 struct compunit_symtab *cust;
648 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
649 struct block *block_iter;
650 int actual_nblocks, i;
651 size_t blockvector_size;
652 CORE_ADDR begin, end;
653 struct blockvector *bv;
654
655 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
656
657 cust = allocate_compunit_symtab (objfile, stab->file_name);
658 allocate_symtab (cust, stab->file_name);
659 add_compunit_symtab_to_objfile (cust);
660
661 /* JIT compilers compile in memory. */
662 COMPUNIT_DIRNAME (cust) = NULL;
663
664 /* Copy over the linetable entry if one was provided. */
665 if (stab->linetable)
666 {
667 size_t size = ((stab->linetable->nitems - 1)
668 * sizeof (struct linetable_entry)
669 + sizeof (struct linetable));
670 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
671 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
672 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
673 size);
674 }
675
676 blockvector_size = (sizeof (struct blockvector)
677 + (actual_nblocks - 1) * sizeof (struct block *));
678 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
679 blockvector_size);
680 COMPUNIT_BLOCKVECTOR (cust) = bv;
681
682 /* (begin, end) will contain the PC range this entire blockvector
683 spans. */
684 BLOCKVECTOR_MAP (bv) = NULL;
685 begin = stab->blocks->begin;
686 end = stab->blocks->end;
687 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
688
689 /* First run over all the gdb_block objects, creating a real block
690 object for each. Simultaneously, keep setting the real_block
691 fields. */
692 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
693 i >= FIRST_LOCAL_BLOCK;
694 i--, gdb_block_iter = gdb_block_iter->next)
695 {
696 struct block *new_block = allocate_block (&objfile->objfile_obstack);
697 struct symbol *block_name = allocate_symbol (objfile);
698 struct type *block_type = arch_type (get_objfile_arch (objfile),
699 TYPE_CODE_VOID,
700 1,
701 "void");
702
703 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
704 NULL);
705 /* The address range. */
706 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
707 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
708
709 /* The name. */
710 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
711 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
712 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
713 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
714 SYMBOL_BLOCK_VALUE (block_name) = new_block;
715
716 block_name->ginfo.name
717 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
718 gdb_block_iter->name,
719 strlen (gdb_block_iter->name));
720
721 BLOCK_FUNCTION (new_block) = block_name;
722
723 BLOCKVECTOR_BLOCK (bv, i) = new_block;
724 if (begin > BLOCK_START (new_block))
725 begin = BLOCK_START (new_block);
726 if (end < BLOCK_END (new_block))
727 end = BLOCK_END (new_block);
728
729 gdb_block_iter->real_block = new_block;
730 }
731
732 /* Now add the special blocks. */
733 block_iter = NULL;
734 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
735 {
736 struct block *new_block;
737
738 new_block = (i == GLOBAL_BLOCK
739 ? allocate_global_block (&objfile->objfile_obstack)
740 : allocate_block (&objfile->objfile_obstack));
741 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
742 NULL);
743 BLOCK_SUPERBLOCK (new_block) = block_iter;
744 block_iter = new_block;
745
746 BLOCK_START (new_block) = (CORE_ADDR) begin;
747 BLOCK_END (new_block) = (CORE_ADDR) end;
748
749 BLOCKVECTOR_BLOCK (bv, i) = new_block;
750
751 if (i == GLOBAL_BLOCK)
752 set_block_compunit_symtab (new_block, cust);
753 }
754
755 /* Fill up the superblock fields for the real blocks, using the
756 real_block fields populated earlier. */
757 for (gdb_block_iter = stab->blocks;
758 gdb_block_iter;
759 gdb_block_iter = gdb_block_iter->next)
760 {
761 if (gdb_block_iter->parent != NULL)
762 {
763 /* If the plugin specifically mentioned a parent block, we
764 use that. */
765 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
766 gdb_block_iter->parent->real_block;
767 }
768 else
769 {
770 /* And if not, we set a default parent block. */
771 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
772 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
773 }
774 }
775
776 /* Free memory. */
777 gdb_block_iter = stab->blocks;
778
779 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
780 gdb_block_iter;
781 gdb_block_iter = gdb_block_iter_tmp)
782 {
783 xfree ((void *) gdb_block_iter->name);
784 xfree (gdb_block_iter);
785 }
786 xfree (stab->linetable);
787 xfree ((char *) stab->file_name);
788 xfree (stab);
789 }
790
791 /* Called when closing a gdb_objfile. Converts OBJ to a proper
792 objfile. */
793
794 static void
795 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
796 struct gdb_object *obj)
797 {
798 struct gdb_symtab *i, *j;
799 struct objfile *objfile;
800 jit_dbg_reader_data *priv_data;
801
802 priv_data = (jit_dbg_reader_data *) cb->priv_data;
803
804 objfile = allocate_objfile (NULL, "<< JIT compiled code >>",
805 OBJF_NOT_FILENAME);
806 objfile->per_bfd->gdbarch = target_gdbarch ();
807
808 terminate_minimal_symbol_table (objfile);
809
810 j = NULL;
811 for (i = obj->symtabs; i; i = j)
812 {
813 j = i->next;
814 finalize_symtab (i, objfile);
815 }
816 add_objfile_entry (objfile, *priv_data);
817 xfree (obj);
818 }
819
820 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
821 ENTRY_ADDR is the address of the struct jit_code_entry in the
822 inferior address space. */
823
824 static int
825 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
826 CORE_ADDR entry_addr)
827 {
828 gdb_byte *gdb_mem;
829 int status;
830 jit_dbg_reader_data priv_data;
831 struct gdb_reader_funcs *funcs;
832 struct gdb_symbol_callbacks callbacks =
833 {
834 jit_object_open_impl,
835 jit_symtab_open_impl,
836 jit_block_open_impl,
837 jit_symtab_close_impl,
838 jit_object_close_impl,
839
840 jit_symtab_line_mapping_add_impl,
841 jit_target_read_impl,
842
843 &priv_data
844 };
845
846 priv_data = entry_addr;
847
848 if (!loaded_jit_reader)
849 return 0;
850
851 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
852
853 status = 1;
854 TRY
855 {
856 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
857 code_entry->symfile_size))
858 status = 0;
859 }
860 CATCH (e, RETURN_MASK_ALL)
861 {
862 status = 0;
863 }
864 END_CATCH
865
866 if (status)
867 {
868 funcs = loaded_jit_reader->functions;
869 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
870 != GDB_SUCCESS)
871 status = 0;
872 }
873
874 xfree (gdb_mem);
875 if (jit_debug && status == 0)
876 fprintf_unfiltered (gdb_stdlog,
877 "Could not read symtab using the loaded JIT reader.\n");
878 return status;
879 }
880
881 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
882 struct jit_code_entry in the inferior address space. */
883
884 static void
885 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
886 CORE_ADDR entry_addr,
887 struct gdbarch *gdbarch)
888 {
889 struct section_addr_info *sai;
890 struct bfd_section *sec;
891 struct objfile *objfile;
892 struct cleanup *old_cleanups;
893 int i;
894 const struct bfd_arch_info *b;
895
896 if (jit_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "jit_register_code, symfile_addr = %s, "
899 "symfile_size = %s\n",
900 paddress (gdbarch, code_entry->symfile_addr),
901 pulongest (code_entry->symfile_size));
902
903 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
904 code_entry->symfile_size,
905 gnutarget));
906 if (nbfd == NULL)
907 {
908 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
909 return;
910 }
911
912 /* Check the format. NOTE: This initializes important data that GDB uses!
913 We would segfault later without this line. */
914 if (!bfd_check_format (nbfd.get (), bfd_object))
915 {
916 printf_unfiltered (_("\
917 JITed symbol file is not an object file, ignoring it.\n"));
918 return;
919 }
920
921 /* Check bfd arch. */
922 b = gdbarch_bfd_arch_info (gdbarch);
923 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
924 warning (_("JITed object file architecture %s is not compatible "
925 "with target architecture %s."),
926 bfd_get_arch_info (nbfd.get ())->printable_name,
927 b->printable_name);
928
929 /* Read the section address information out of the symbol file. Since the
930 file is generated by the JIT at runtime, it should all of the absolute
931 addresses that we care about. */
932 sai = alloc_section_addr_info (bfd_count_sections (nbfd.get ()));
933 old_cleanups = make_cleanup_free_section_addr_info (sai);
934 i = 0;
935 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
936 if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
937 {
938 /* We assume that these virtual addresses are absolute, and do not
939 treat them as offsets. */
940 sai->other[i].addr = bfd_get_section_vma (nbfd.get (), sec);
941 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd.get (), sec));
942 sai->other[i].sectindex = sec->index;
943 ++i;
944 }
945 sai->num_sections = i;
946
947 /* This call does not take ownership of SAI. */
948 objfile = symbol_file_add_from_bfd (nbfd.get (),
949 bfd_get_filename (nbfd.get ()), 0, sai,
950 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
951
952 do_cleanups (old_cleanups);
953 add_objfile_entry (objfile, entry_addr);
954 }
955
956 /* This function registers code associated with a JIT code entry. It uses the
957 pointer and size pair in the entry to read the symbol file from the remote
958 and then calls symbol_file_add_from_local_memory to add it as though it were
959 a symbol file added by the user. */
960
961 static void
962 jit_register_code (struct gdbarch *gdbarch,
963 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
964 {
965 int success;
966
967 if (jit_debug)
968 fprintf_unfiltered (gdb_stdlog,
969 "jit_register_code, symfile_addr = %s, "
970 "symfile_size = %s\n",
971 paddress (gdbarch, code_entry->symfile_addr),
972 pulongest (code_entry->symfile_size));
973
974 success = jit_reader_try_read_symtab (code_entry, entry_addr);
975
976 if (!success)
977 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
978 }
979
980 /* This function unregisters JITed code and frees the corresponding
981 objfile. */
982
983 static void
984 jit_unregister_code (struct objfile *objfile)
985 {
986 free_objfile (objfile);
987 }
988
989 /* Look up the objfile with this code entry address. */
990
991 static struct objfile *
992 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
993 {
994 struct objfile *objf;
995
996 ALL_OBJFILES (objf)
997 {
998 struct jit_objfile_data *objf_data;
999
1000 objf_data
1001 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1002 if (objf_data != NULL && objf_data->addr == entry_addr)
1003 return objf;
1004 }
1005 return NULL;
1006 }
1007
1008 /* This is called when a breakpoint is deleted. It updates the
1009 inferior's cache, if needed. */
1010
1011 static void
1012 jit_breakpoint_deleted (struct breakpoint *b)
1013 {
1014 struct bp_location *iter;
1015
1016 if (b->type != bp_jit_event)
1017 return;
1018
1019 for (iter = b->loc; iter != NULL; iter = iter->next)
1020 {
1021 struct jit_program_space_data *ps_data;
1022
1023 ps_data = ((struct jit_program_space_data *)
1024 program_space_data (iter->pspace, jit_program_space_data));
1025 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1026 {
1027 ps_data->cached_code_address = 0;
1028 ps_data->jit_breakpoint = NULL;
1029 }
1030 }
1031 }
1032
1033 /* (Re-)Initialize the jit breakpoint if necessary.
1034 Return 0 if the jit breakpoint has been successfully initialized. */
1035
1036 static int
1037 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1038 struct jit_program_space_data *ps_data)
1039 {
1040 struct bound_minimal_symbol reg_symbol;
1041 struct bound_minimal_symbol desc_symbol;
1042 struct jit_objfile_data *objf_data;
1043 CORE_ADDR addr;
1044
1045 if (ps_data->objfile == NULL)
1046 {
1047 /* Lookup the registration symbol. If it is missing, then we
1048 assume we are not attached to a JIT. */
1049 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1050 if (reg_symbol.minsym == NULL
1051 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1052 return 1;
1053
1054 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1055 reg_symbol.objfile);
1056 if (desc_symbol.minsym == NULL
1057 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1058 return 1;
1059
1060 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1061 objf_data->register_code = reg_symbol.minsym;
1062 objf_data->descriptor = desc_symbol.minsym;
1063
1064 ps_data->objfile = reg_symbol.objfile;
1065 }
1066 else
1067 objf_data = get_jit_objfile_data (ps_data->objfile);
1068
1069 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1070
1071 if (jit_debug)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "jit_breakpoint_re_set_internal, "
1074 "breakpoint_addr = %s\n",
1075 paddress (gdbarch, addr));
1076
1077 if (ps_data->cached_code_address == addr)
1078 return 0;
1079
1080 /* Delete the old breakpoint. */
1081 if (ps_data->jit_breakpoint != NULL)
1082 delete_breakpoint (ps_data->jit_breakpoint);
1083
1084 /* Put a breakpoint in the registration symbol. */
1085 ps_data->cached_code_address = addr;
1086 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1087
1088 return 0;
1089 }
1090
1091 /* The private data passed around in the frame unwind callback
1092 functions. */
1093
1094 struct jit_unwind_private
1095 {
1096 /* Cached register values. See jit_frame_sniffer to see how this
1097 works. */
1098 struct regcache *regcache;
1099
1100 /* The frame being unwound. */
1101 struct frame_info *this_frame;
1102 };
1103
1104 /* Sets the value of a particular register in this frame. */
1105
1106 static void
1107 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1108 struct gdb_reg_value *value)
1109 {
1110 struct jit_unwind_private *priv;
1111 int gdb_reg;
1112
1113 priv = (struct jit_unwind_private *) cb->priv_data;
1114
1115 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1116 dwarf_regnum);
1117 if (gdb_reg == -1)
1118 {
1119 if (jit_debug)
1120 fprintf_unfiltered (gdb_stdlog,
1121 _("Could not recognize DWARF regnum %d"),
1122 dwarf_regnum);
1123 value->free (value);
1124 return;
1125 }
1126
1127 regcache_raw_set_cached_value (priv->regcache, gdb_reg, value->value);
1128 value->free (value);
1129 }
1130
1131 static void
1132 reg_value_free_impl (struct gdb_reg_value *value)
1133 {
1134 xfree (value);
1135 }
1136
1137 /* Get the value of register REGNUM in the previous frame. */
1138
1139 static struct gdb_reg_value *
1140 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1141 {
1142 struct jit_unwind_private *priv;
1143 struct gdb_reg_value *value;
1144 int gdb_reg, size;
1145 struct gdbarch *frame_arch;
1146
1147 priv = (struct jit_unwind_private *) cb->priv_data;
1148 frame_arch = get_frame_arch (priv->this_frame);
1149
1150 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1151 size = register_size (frame_arch, gdb_reg);
1152 value = ((struct gdb_reg_value *)
1153 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1154 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1155 value->value);
1156 value->size = size;
1157 value->free = reg_value_free_impl;
1158 return value;
1159 }
1160
1161 /* gdb_reg_value has a free function, which must be called on each
1162 saved register value. */
1163
1164 static void
1165 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1166 {
1167 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1168
1169 gdb_assert (priv_data->regcache != NULL);
1170 regcache_xfree (priv_data->regcache);
1171 xfree (priv_data);
1172 }
1173
1174 /* The frame sniffer for the pseudo unwinder.
1175
1176 While this is nominally a frame sniffer, in the case where the JIT
1177 reader actually recognizes the frame, it does a lot more work -- it
1178 unwinds the frame and saves the corresponding register values in
1179 the cache. jit_frame_prev_register simply returns the saved
1180 register values. */
1181
1182 static int
1183 jit_frame_sniffer (const struct frame_unwind *self,
1184 struct frame_info *this_frame, void **cache)
1185 {
1186 struct jit_unwind_private *priv_data;
1187 struct gdb_unwind_callbacks callbacks;
1188 struct gdb_reader_funcs *funcs;
1189 struct address_space *aspace;
1190 struct gdbarch *gdbarch;
1191
1192 callbacks.reg_get = jit_unwind_reg_get_impl;
1193 callbacks.reg_set = jit_unwind_reg_set_impl;
1194 callbacks.target_read = jit_target_read_impl;
1195
1196 if (loaded_jit_reader == NULL)
1197 return 0;
1198
1199 funcs = loaded_jit_reader->functions;
1200
1201 gdb_assert (!*cache);
1202
1203 aspace = get_frame_address_space (this_frame);
1204 gdbarch = get_frame_arch (this_frame);
1205
1206 *cache = XCNEW (struct jit_unwind_private);
1207 priv_data = (struct jit_unwind_private *) *cache;
1208 priv_data->regcache = new regcache (gdbarch, aspace);
1209 priv_data->this_frame = this_frame;
1210
1211 callbacks.priv_data = priv_data;
1212
1213 /* Try to coax the provided unwinder to unwind the stack */
1214 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1215 {
1216 if (jit_debug)
1217 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1218 "JIT reader.\n"));
1219 return 1;
1220 }
1221 if (jit_debug)
1222 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1223 "JIT reader.\n"));
1224
1225 jit_dealloc_cache (this_frame, *cache);
1226 *cache = NULL;
1227
1228 return 0;
1229 }
1230
1231
1232 /* The frame_id function for the pseudo unwinder. Relays the call to
1233 the loaded plugin. */
1234
1235 static void
1236 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1237 struct frame_id *this_id)
1238 {
1239 struct jit_unwind_private priv;
1240 struct gdb_frame_id frame_id;
1241 struct gdb_reader_funcs *funcs;
1242 struct gdb_unwind_callbacks callbacks;
1243
1244 priv.regcache = NULL;
1245 priv.this_frame = this_frame;
1246
1247 /* We don't expect the frame_id function to set any registers, so we
1248 set reg_set to NULL. */
1249 callbacks.reg_get = jit_unwind_reg_get_impl;
1250 callbacks.reg_set = NULL;
1251 callbacks.target_read = jit_target_read_impl;
1252 callbacks.priv_data = &priv;
1253
1254 gdb_assert (loaded_jit_reader);
1255 funcs = loaded_jit_reader->functions;
1256
1257 frame_id = funcs->get_frame_id (funcs, &callbacks);
1258 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1259 }
1260
1261 /* Pseudo unwinder function. Reads the previously fetched value for
1262 the register from the cache. */
1263
1264 static struct value *
1265 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1266 {
1267 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1268 struct gdbarch *gdbarch;
1269
1270 if (priv == NULL)
1271 return frame_unwind_got_optimized (this_frame, reg);
1272
1273 gdbarch = get_regcache_arch (priv->regcache);
1274 if (reg < gdbarch_num_regs (gdbarch))
1275 {
1276 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1277 enum register_status status;
1278
1279 status = regcache_raw_read (priv->regcache, reg, buf);
1280 if (status == REG_VALID)
1281 return frame_unwind_got_bytes (this_frame, reg, buf);
1282 else
1283 return frame_unwind_got_optimized (this_frame, reg);
1284 }
1285 else
1286 return gdbarch_pseudo_register_read_value (gdbarch, priv->regcache, reg);
1287 }
1288
1289 /* Relay everything back to the unwinder registered by the JIT debug
1290 info reader.*/
1291
1292 static const struct frame_unwind jit_frame_unwind =
1293 {
1294 NORMAL_FRAME,
1295 default_frame_unwind_stop_reason,
1296 jit_frame_this_id,
1297 jit_frame_prev_register,
1298 NULL,
1299 jit_frame_sniffer,
1300 jit_dealloc_cache
1301 };
1302
1303
1304 /* This is the information that is stored at jit_gdbarch_data for each
1305 architecture. */
1306
1307 struct jit_gdbarch_data_type
1308 {
1309 /* Has the (pseudo) unwinder been prepended? */
1310 int unwinder_registered;
1311 };
1312
1313 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1314
1315 static void
1316 jit_prepend_unwinder (struct gdbarch *gdbarch)
1317 {
1318 struct jit_gdbarch_data_type *data;
1319
1320 data
1321 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1322 if (!data->unwinder_registered)
1323 {
1324 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1325 data->unwinder_registered = 1;
1326 }
1327 }
1328
1329 /* Register any already created translations. */
1330
1331 static void
1332 jit_inferior_init (struct gdbarch *gdbarch)
1333 {
1334 struct jit_descriptor descriptor;
1335 struct jit_code_entry cur_entry;
1336 struct jit_program_space_data *ps_data;
1337 CORE_ADDR cur_entry_addr;
1338
1339 if (jit_debug)
1340 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1341
1342 jit_prepend_unwinder (gdbarch);
1343
1344 ps_data = get_jit_program_space_data ();
1345 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1346 return;
1347
1348 /* Read the descriptor so we can check the version number and load
1349 any already JITed functions. */
1350 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1351 return;
1352
1353 /* Check that the version number agrees with that we support. */
1354 if (descriptor.version != 1)
1355 {
1356 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1357 "in descriptor (expected 1)\n"),
1358 (long) descriptor.version);
1359 return;
1360 }
1361
1362 /* If we've attached to a running program, we need to check the descriptor
1363 to register any functions that were already generated. */
1364 for (cur_entry_addr = descriptor.first_entry;
1365 cur_entry_addr != 0;
1366 cur_entry_addr = cur_entry.next_entry)
1367 {
1368 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1369
1370 /* This hook may be called many times during setup, so make sure we don't
1371 add the same symbol file twice. */
1372 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1373 continue;
1374
1375 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1376 }
1377 }
1378
1379 /* inferior_created observer. */
1380
1381 static void
1382 jit_inferior_created (struct target_ops *ops, int from_tty)
1383 {
1384 jit_inferior_created_hook ();
1385 }
1386
1387 /* Exported routine to call when an inferior has been created. */
1388
1389 void
1390 jit_inferior_created_hook (void)
1391 {
1392 jit_inferior_init (target_gdbarch ());
1393 }
1394
1395 /* Exported routine to call to re-set the jit breakpoints,
1396 e.g. when a program is rerun. */
1397
1398 void
1399 jit_breakpoint_re_set (void)
1400 {
1401 jit_breakpoint_re_set_internal (target_gdbarch (),
1402 get_jit_program_space_data ());
1403 }
1404
1405 /* This function cleans up any code entries left over when the
1406 inferior exits. We get left over code when the inferior exits
1407 without unregistering its code, for example when it crashes. */
1408
1409 static void
1410 jit_inferior_exit_hook (struct inferior *inf)
1411 {
1412 struct objfile *objf;
1413 struct objfile *temp;
1414
1415 ALL_OBJFILES_SAFE (objf, temp)
1416 {
1417 struct jit_objfile_data *objf_data
1418 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1419
1420 if (objf_data != NULL && objf_data->addr != 0)
1421 jit_unregister_code (objf);
1422 }
1423 }
1424
1425 void
1426 jit_event_handler (struct gdbarch *gdbarch)
1427 {
1428 struct jit_descriptor descriptor;
1429 struct jit_code_entry code_entry;
1430 CORE_ADDR entry_addr;
1431 struct objfile *objf;
1432
1433 /* Read the descriptor from remote memory. */
1434 if (!jit_read_descriptor (gdbarch, &descriptor,
1435 get_jit_program_space_data ()))
1436 return;
1437 entry_addr = descriptor.relevant_entry;
1438
1439 /* Do the corresponding action. */
1440 switch (descriptor.action_flag)
1441 {
1442 case JIT_NOACTION:
1443 break;
1444 case JIT_REGISTER:
1445 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1446 jit_register_code (gdbarch, entry_addr, &code_entry);
1447 break;
1448 case JIT_UNREGISTER:
1449 objf = jit_find_objf_with_entry_addr (entry_addr);
1450 if (objf == NULL)
1451 printf_unfiltered (_("Unable to find JITed code "
1452 "entry at address: %s\n"),
1453 paddress (gdbarch, entry_addr));
1454 else
1455 jit_unregister_code (objf);
1456
1457 break;
1458 default:
1459 error (_("Unknown action_flag value in JIT descriptor!"));
1460 break;
1461 }
1462 }
1463
1464 /* Called to free the data allocated to the jit_program_space_data slot. */
1465
1466 static void
1467 free_objfile_data (struct objfile *objfile, void *data)
1468 {
1469 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1470
1471 if (objf_data->register_code != NULL)
1472 {
1473 struct jit_program_space_data *ps_data;
1474
1475 ps_data
1476 = ((struct jit_program_space_data *)
1477 program_space_data (objfile->pspace, jit_program_space_data));
1478 if (ps_data != NULL && ps_data->objfile == objfile)
1479 {
1480 ps_data->objfile = NULL;
1481 delete_breakpoint (ps_data->jit_breakpoint);
1482 ps_data->cached_code_address = 0;
1483 }
1484 }
1485
1486 xfree (data);
1487 }
1488
1489 /* Initialize the jit_gdbarch_data slot with an instance of struct
1490 jit_gdbarch_data_type */
1491
1492 static void *
1493 jit_gdbarch_data_init (struct obstack *obstack)
1494 {
1495 struct jit_gdbarch_data_type *data =
1496 XOBNEW (obstack, struct jit_gdbarch_data_type);
1497
1498 data->unwinder_registered = 0;
1499
1500 return data;
1501 }
1502
1503 void
1504 _initialize_jit (void)
1505 {
1506 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1507 JIT_READER_DIR_RELOCATABLE);
1508 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1509 _("Set JIT debugging."),
1510 _("Show JIT debugging."),
1511 _("When non-zero, JIT debugging is enabled."),
1512 NULL,
1513 show_jit_debug,
1514 &setdebuglist, &showdebuglist);
1515
1516 observer_attach_inferior_created (jit_inferior_created);
1517 observer_attach_inferior_exit (jit_inferior_exit_hook);
1518 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1519
1520 jit_objfile_data =
1521 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1522 jit_program_space_data =
1523 register_program_space_data_with_cleanup (NULL,
1524 jit_program_space_data_cleanup);
1525 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1526 if (is_dl_available ())
1527 {
1528 struct cmd_list_element *c;
1529
1530 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1531 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1532 Usage: jit-reader-load FILE\n\
1533 Try to load file FILE as a debug info reader (and unwinder) for\n\
1534 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1535 relocated relative to the GDB executable if required."));
1536 set_cmd_completer (c, filename_completer);
1537
1538 c = add_com ("jit-reader-unload", no_class,
1539 jit_reader_unload_command, _("\
1540 Unload the currently loaded JIT debug info reader.\n\
1541 Usage: jit-reader-unload\n\n\
1542 Do \"help jit-reader-load\" for info on loading debug info readers."));
1543 set_cmd_completer (c, noop_completer);
1544 }
1545 }
This page took 0.063363 seconds and 5 git commands to generate.