2013-03-20 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include "gdb_stat.h"
41 #include "exceptions.h"
42 #include "gdb_bfd.h"
43
44 static const char *jit_reader_dir = NULL;
45
46 static const struct objfile_data *jit_objfile_data;
47
48 static const char *const jit_break_name = "__jit_debug_register_code";
49
50 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
51
52 static const struct program_space_data *jit_program_space_data = NULL;
53
54 static void jit_inferior_init (struct gdbarch *gdbarch);
55
56 /* An unwinder is registered for every gdbarch. This key is used to
57 remember if the unwinder has been registered for a particular
58 gdbarch. */
59
60 static struct gdbarch_data *jit_gdbarch_data;
61
62 /* Non-zero if we want to see trace of jit level stuff. */
63
64 static unsigned int jit_debug = 0;
65
66 static void
67 show_jit_debug (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
71 }
72
73 struct target_buffer
74 {
75 CORE_ADDR base;
76 ULONGEST size;
77 };
78
79 /* Openning the file is a no-op. */
80
81 static void *
82 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
83 {
84 return open_closure;
85 }
86
87 /* Closing the file is just freeing the base/size pair on our side. */
88
89 static int
90 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
91 {
92 xfree (stream);
93 return 1;
94 }
95
96 /* For reading the file, we just need to pass through to target_read_memory and
97 fix up the arguments and return values. */
98
99 static file_ptr
100 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
101 file_ptr nbytes, file_ptr offset)
102 {
103 int err;
104 struct target_buffer *buffer = (struct target_buffer *) stream;
105
106 /* If this read will read all of the file, limit it to just the rest. */
107 if (offset + nbytes > buffer->size)
108 nbytes = buffer->size - offset;
109
110 /* If there are no more bytes left, we've reached EOF. */
111 if (nbytes == 0)
112 return 0;
113
114 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
115 if (err)
116 return -1;
117
118 return nbytes;
119 }
120
121 /* For statting the file, we only support the st_size attribute. */
122
123 static int
124 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
125 {
126 struct target_buffer *buffer = (struct target_buffer*) stream;
127
128 sb->st_size = buffer->size;
129 return 0;
130 }
131
132 /* Open a BFD from the target's memory. */
133
134 static struct bfd *
135 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
136 {
137 struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
138
139 buffer->base = addr;
140 buffer->size = size;
141 return gdb_bfd_openr_iovec ("<in-memory>", target,
142 mem_bfd_iovec_open,
143 buffer,
144 mem_bfd_iovec_pread,
145 mem_bfd_iovec_close,
146 mem_bfd_iovec_stat);
147 }
148
149 /* One reader that has been loaded successfully, and can potentially be used to
150 parse debug info. */
151
152 static struct jit_reader
153 {
154 struct gdb_reader_funcs *functions;
155 void *handle;
156 } *loaded_jit_reader = NULL;
157
158 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
159 static const char *reader_init_fn_sym = "gdb_init_reader";
160
161 /* Try to load FILE_NAME as a JIT debug info reader. */
162
163 static struct jit_reader *
164 jit_reader_load (const char *file_name)
165 {
166 void *so;
167 reader_init_fn_type *init_fn;
168 struct jit_reader *new_reader = NULL;
169 struct gdb_reader_funcs *funcs = NULL;
170 struct cleanup *old_cleanups;
171
172 if (jit_debug)
173 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
174 file_name);
175 so = gdb_dlopen (file_name);
176 old_cleanups = make_cleanup_dlclose (so);
177
178 init_fn = gdb_dlsym (so, reader_init_fn_sym);
179 if (!init_fn)
180 error (_("Could not locate initialization function: %s."),
181 reader_init_fn_sym);
182
183 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
184 error (_("Reader not GPL compatible."));
185
186 funcs = init_fn ();
187 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
188 error (_("Reader version does not match GDB version."));
189
190 new_reader = XZALLOC (struct jit_reader);
191 new_reader->functions = funcs;
192 new_reader->handle = so;
193
194 discard_cleanups (old_cleanups);
195 return new_reader;
196 }
197
198 /* Provides the jit-reader-load command. */
199
200 static void
201 jit_reader_load_command (char *args, int from_tty)
202 {
203 char *so_name;
204 struct cleanup *prev_cleanup;
205
206 if (args == NULL)
207 error (_("No reader name provided."));
208
209 if (loaded_jit_reader != NULL)
210 error (_("JIT reader already loaded. Run jit-reader-unload first."));
211
212 if (IS_ABSOLUTE_PATH (args))
213 so_name = xstrdup (args);
214 else
215 so_name = xstrprintf ("%s%s%s", SLASH_STRING, jit_reader_dir, args);
216 prev_cleanup = make_cleanup (xfree, so_name);
217
218 loaded_jit_reader = jit_reader_load (so_name);
219 do_cleanups (prev_cleanup);
220 }
221
222 /* Provides the jit-reader-unload command. */
223
224 static void
225 jit_reader_unload_command (char *args, int from_tty)
226 {
227 if (!loaded_jit_reader)
228 error (_("No JIT reader loaded."));
229
230 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
231
232 gdb_dlclose (loaded_jit_reader->handle);
233 xfree (loaded_jit_reader);
234 loaded_jit_reader = NULL;
235 }
236
237 /* Per-program space structure recording which objfile has the JIT
238 symbols. */
239
240 struct jit_program_space_data
241 {
242 /* The objfile. This is NULL if no objfile holds the JIT
243 symbols. */
244
245 struct objfile *objfile;
246
247 /* If this program space has __jit_debug_register_code, this is the
248 cached address from the minimal symbol. This is used to detect
249 relocations requiring the breakpoint to be re-created. */
250
251 CORE_ADDR cached_code_address;
252
253 /* This is the JIT event breakpoint, or NULL if it has not been
254 set. */
255
256 struct breakpoint *jit_breakpoint;
257 };
258
259 /* Per-objfile structure recording the addresses in the program space.
260 This object serves two purposes: for ordinary objfiles, it may
261 cache some symbols related to the JIT interface; and for
262 JIT-created objfiles, it holds some information about the
263 jit_code_entry. */
264
265 struct jit_objfile_data
266 {
267 /* Symbol for __jit_debug_register_code. */
268 struct minimal_symbol *register_code;
269
270 /* Symbol for __jit_debug_descriptor. */
271 struct minimal_symbol *descriptor;
272
273 /* Address of struct jit_code_entry in this objfile. This is only
274 non-zero for objfiles that represent code created by the JIT. */
275 CORE_ADDR addr;
276 };
277
278 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
279 yet, make a new structure and attach it. */
280
281 static struct jit_objfile_data *
282 get_jit_objfile_data (struct objfile *objf)
283 {
284 struct jit_objfile_data *objf_data;
285
286 objf_data = objfile_data (objf, jit_objfile_data);
287 if (objf_data == NULL)
288 {
289 objf_data = XZALLOC (struct jit_objfile_data);
290 set_objfile_data (objf, jit_objfile_data, objf_data);
291 }
292
293 return objf_data;
294 }
295
296 /* Remember OBJFILE has been created for struct jit_code_entry located
297 at inferior address ENTRY. */
298
299 static void
300 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
301 {
302 struct jit_objfile_data *objf_data;
303
304 objf_data = get_jit_objfile_data (objfile);
305 objf_data->addr = entry;
306 }
307
308 /* Return jit_program_space_data for current program space. Allocate
309 if not already present. */
310
311 static struct jit_program_space_data *
312 get_jit_program_space_data (void)
313 {
314 struct jit_program_space_data *ps_data;
315
316 ps_data = program_space_data (current_program_space, jit_program_space_data);
317 if (ps_data == NULL)
318 {
319 ps_data = XZALLOC (struct jit_program_space_data);
320 set_program_space_data (current_program_space, jit_program_space_data,
321 ps_data);
322 }
323
324 return ps_data;
325 }
326
327 static void
328 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
329 {
330 xfree (arg);
331 }
332
333 /* Helper function for reading the global JIT descriptor from remote
334 memory. Returns 1 if all went well, 0 otherwise. */
335
336 static int
337 jit_read_descriptor (struct gdbarch *gdbarch,
338 struct jit_descriptor *descriptor,
339 struct jit_program_space_data *ps_data)
340 {
341 int err;
342 struct type *ptr_type;
343 int ptr_size;
344 int desc_size;
345 gdb_byte *desc_buf;
346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
347 struct jit_objfile_data *objf_data;
348
349 if (ps_data->objfile == NULL)
350 return 0;
351 objf_data = get_jit_objfile_data (ps_data->objfile);
352 if (objf_data->descriptor == NULL)
353 return 0;
354
355 if (jit_debug)
356 fprintf_unfiltered (gdb_stdlog,
357 "jit_read_descriptor, descriptor_addr = %s\n",
358 paddress (gdbarch, SYMBOL_VALUE_ADDRESS (objf_data->descriptor)));
359
360 /* Figure out how big the descriptor is on the remote and how to read it. */
361 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
362 ptr_size = TYPE_LENGTH (ptr_type);
363 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
364 desc_buf = alloca (desc_size);
365
366 /* Read the descriptor. */
367 err = target_read_memory (SYMBOL_VALUE_ADDRESS (objf_data->descriptor),
368 desc_buf, desc_size);
369 if (err)
370 {
371 printf_unfiltered (_("Unable to read JIT descriptor from "
372 "remote memory\n"));
373 return 0;
374 }
375
376 /* Fix the endianness to match the host. */
377 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
378 descriptor->action_flag =
379 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
380 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
381 descriptor->first_entry =
382 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
383
384 return 1;
385 }
386
387 /* Helper function for reading a JITed code entry from remote memory. */
388
389 static void
390 jit_read_code_entry (struct gdbarch *gdbarch,
391 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
392 {
393 int err, off;
394 struct type *ptr_type;
395 int ptr_size;
396 int entry_size;
397 int align_bytes;
398 gdb_byte *entry_buf;
399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
400
401 /* Figure out how big the entry is on the remote and how to read it. */
402 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
403 ptr_size = TYPE_LENGTH (ptr_type);
404
405 /* Figure out where the longlong value will be. */
406 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
407 off = 3 * ptr_size;
408 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
409
410 entry_size = off + 8; /* Three pointers and one 64-bit int. */
411 entry_buf = alloca (entry_size);
412
413 /* Read the entry. */
414 err = target_read_memory (code_addr, entry_buf, entry_size);
415 if (err)
416 error (_("Unable to read JIT code entry from remote memory!"));
417
418 /* Fix the endianness to match the host. */
419 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
420 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
421 code_entry->prev_entry =
422 extract_typed_address (&entry_buf[ptr_size], ptr_type);
423 code_entry->symfile_addr =
424 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
425 code_entry->symfile_size =
426 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
427 }
428
429 /* Proxy object for building a block. */
430
431 struct gdb_block
432 {
433 /* gdb_blocks are linked into a tree structure. Next points to the
434 next node at the same depth as this block and parent to the
435 parent gdb_block. */
436 struct gdb_block *next, *parent;
437
438 /* Points to the "real" block that is being built out of this
439 instance. This block will be added to a blockvector, which will
440 then be added to a symtab. */
441 struct block *real_block;
442
443 /* The first and last code address corresponding to this block. */
444 CORE_ADDR begin, end;
445
446 /* The name of this block (if any). If this is non-NULL, the
447 FUNCTION symbol symbol is set to this value. */
448 const char *name;
449 };
450
451 /* Proxy object for building a symtab. */
452
453 struct gdb_symtab
454 {
455 /* The list of blocks in this symtab. These will eventually be
456 converted to real blocks. */
457 struct gdb_block *blocks;
458
459 /* The number of blocks inserted. */
460 int nblocks;
461
462 /* A mapping between line numbers to PC. */
463 struct linetable *linetable;
464
465 /* The source file for this symtab. */
466 const char *file_name;
467 struct gdb_symtab *next;
468 };
469
470 /* Proxy object for building an object. */
471
472 struct gdb_object
473 {
474 struct gdb_symtab *symtabs;
475 };
476
477 /* The type of the `private' data passed around by the callback
478 functions. */
479
480 typedef CORE_ADDR jit_dbg_reader_data;
481
482 /* The reader calls into this function to read data off the targets
483 address space. */
484
485 static enum gdb_status
486 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
487 {
488 int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
489 if (result == 0)
490 return GDB_SUCCESS;
491 else
492 return GDB_FAIL;
493 }
494
495 /* The reader calls into this function to create a new gdb_object
496 which it can then pass around to the other callbacks. Right now,
497 all that is required is allocating the memory. */
498
499 static struct gdb_object *
500 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
501 {
502 /* CB is not required right now, but sometime in the future we might
503 need a handle to it, and we'd like to do that without breaking
504 the ABI. */
505 return XZALLOC (struct gdb_object);
506 }
507
508 /* Readers call into this function to open a new gdb_symtab, which,
509 again, is passed around to other callbacks. */
510
511 static struct gdb_symtab *
512 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
513 struct gdb_object *object,
514 const char *file_name)
515 {
516 struct gdb_symtab *ret;
517
518 /* CB stays unused. See comment in jit_object_open_impl. */
519
520 ret = XZALLOC (struct gdb_symtab);
521 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
522 ret->next = object->symtabs;
523 object->symtabs = ret;
524 return ret;
525 }
526
527 /* Returns true if the block corresponding to old should be placed
528 before the block corresponding to new in the final blockvector. */
529
530 static int
531 compare_block (const struct gdb_block *const old,
532 const struct gdb_block *const new)
533 {
534 if (old == NULL)
535 return 1;
536 if (old->begin < new->begin)
537 return 1;
538 else if (old->begin == new->begin)
539 {
540 if (old->end > new->end)
541 return 1;
542 else
543 return 0;
544 }
545 else
546 return 0;
547 }
548
549 /* Called by readers to open a new gdb_block. This function also
550 inserts the new gdb_block in the correct place in the corresponding
551 gdb_symtab. */
552
553 static struct gdb_block *
554 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
555 struct gdb_symtab *symtab, struct gdb_block *parent,
556 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
557 {
558 struct gdb_block *block = XZALLOC (struct gdb_block);
559
560 block->next = symtab->blocks;
561 block->begin = (CORE_ADDR) begin;
562 block->end = (CORE_ADDR) end;
563 block->name = name ? xstrdup (name) : NULL;
564 block->parent = parent;
565
566 /* Ensure that the blocks are inserted in the correct (reverse of
567 the order expected by blockvector). */
568 if (compare_block (symtab->blocks, block))
569 {
570 symtab->blocks = block;
571 }
572 else
573 {
574 struct gdb_block *i = symtab->blocks;
575
576 for (;; i = i->next)
577 {
578 /* Guaranteed to terminate, since compare_block (NULL, _)
579 returns 1. */
580 if (compare_block (i->next, block))
581 {
582 block->next = i->next;
583 i->next = block;
584 break;
585 }
586 }
587 }
588 symtab->nblocks++;
589
590 return block;
591 }
592
593 /* Readers call this to add a line mapping (from PC to line number) to
594 a gdb_symtab. */
595
596 static void
597 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
598 struct gdb_symtab *stab, int nlines,
599 struct gdb_line_mapping *map)
600 {
601 int i;
602
603 if (nlines < 1)
604 return;
605
606 stab->linetable = xmalloc (sizeof (struct linetable)
607 + (nlines - 1) * sizeof (struct linetable_entry));
608 stab->linetable->nitems = nlines;
609 for (i = 0; i < nlines; i++)
610 {
611 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
612 stab->linetable->item[i].line = map[i].line;
613 }
614 }
615
616 /* Called by readers to close a gdb_symtab. Does not need to do
617 anything as of now. */
618
619 static void
620 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
621 struct gdb_symtab *stab)
622 {
623 /* Right now nothing needs to be done here. We may need to do some
624 cleanup here in the future (again, without breaking the plugin
625 ABI). */
626 }
627
628 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
629
630 static void
631 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
632 {
633 struct symtab *symtab;
634 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
635 struct block *block_iter;
636 int actual_nblocks, i, blockvector_size;
637 CORE_ADDR begin, end;
638
639 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
640
641 symtab = allocate_symtab (stab->file_name, objfile);
642 /* JIT compilers compile in memory. */
643 symtab->dirname = NULL;
644
645 /* Copy over the linetable entry if one was provided. */
646 if (stab->linetable)
647 {
648 int size = ((stab->linetable->nitems - 1)
649 * sizeof (struct linetable_entry)
650 + sizeof (struct linetable));
651 LINETABLE (symtab) = obstack_alloc (&objfile->objfile_obstack, size);
652 memcpy (LINETABLE (symtab), stab->linetable, size);
653 }
654 else
655 {
656 LINETABLE (symtab) = NULL;
657 }
658
659 blockvector_size = (sizeof (struct blockvector)
660 + (actual_nblocks - 1) * sizeof (struct block *));
661 symtab->blockvector = obstack_alloc (&objfile->objfile_obstack,
662 blockvector_size);
663
664 /* (begin, end) will contain the PC range this entire blockvector
665 spans. */
666 symtab->primary = 1;
667 BLOCKVECTOR_MAP (symtab->blockvector) = NULL;
668 begin = stab->blocks->begin;
669 end = stab->blocks->end;
670 BLOCKVECTOR_NBLOCKS (symtab->blockvector) = actual_nblocks;
671
672 /* First run over all the gdb_block objects, creating a real block
673 object for each. Simultaneously, keep setting the real_block
674 fields. */
675 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
676 i >= FIRST_LOCAL_BLOCK;
677 i--, gdb_block_iter = gdb_block_iter->next)
678 {
679 struct block *new_block = allocate_block (&objfile->objfile_obstack);
680 struct symbol *block_name = obstack_alloc (&objfile->objfile_obstack,
681 sizeof (struct symbol));
682 struct type *block_type = arch_type (get_objfile_arch (objfile),
683 TYPE_CODE_VOID,
684 1,
685 "void");
686
687 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
688 NULL);
689 /* The address range. */
690 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
691 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
692
693 /* The name. */
694 memset (block_name, 0, sizeof (struct symbol));
695 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
696 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
697 SYMBOL_SYMTAB (block_name) = symtab;
698 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
699 SYMBOL_BLOCK_VALUE (block_name) = new_block;
700
701 block_name->ginfo.name = obstack_copy0 (&objfile->objfile_obstack,
702 gdb_block_iter->name,
703 strlen (gdb_block_iter->name));
704
705 BLOCK_FUNCTION (new_block) = block_name;
706
707 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
708 if (begin > BLOCK_START (new_block))
709 begin = BLOCK_START (new_block);
710 if (end < BLOCK_END (new_block))
711 end = BLOCK_END (new_block);
712
713 gdb_block_iter->real_block = new_block;
714 }
715
716 /* Now add the special blocks. */
717 block_iter = NULL;
718 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
719 {
720 struct block *new_block;
721
722 new_block = (i == GLOBAL_BLOCK
723 ? allocate_global_block (&objfile->objfile_obstack)
724 : allocate_block (&objfile->objfile_obstack));
725 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
726 NULL);
727 BLOCK_SUPERBLOCK (new_block) = block_iter;
728 block_iter = new_block;
729
730 BLOCK_START (new_block) = (CORE_ADDR) begin;
731 BLOCK_END (new_block) = (CORE_ADDR) end;
732
733 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
734
735 if (i == GLOBAL_BLOCK)
736 set_block_symtab (new_block, symtab);
737 }
738
739 /* Fill up the superblock fields for the real blocks, using the
740 real_block fields populated earlier. */
741 for (gdb_block_iter = stab->blocks;
742 gdb_block_iter;
743 gdb_block_iter = gdb_block_iter->next)
744 {
745 if (gdb_block_iter->parent != NULL)
746 {
747 /* If the plugin specifically mentioned a parent block, we
748 use that. */
749 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
750 gdb_block_iter->parent->real_block;
751 }
752 else
753 {
754 /* And if not, we set a default parent block. */
755 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
756 BLOCKVECTOR_BLOCK (symtab->blockvector, STATIC_BLOCK);
757 }
758 }
759
760 /* Free memory. */
761 gdb_block_iter = stab->blocks;
762
763 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
764 gdb_block_iter;
765 gdb_block_iter = gdb_block_iter_tmp)
766 {
767 xfree ((void *) gdb_block_iter->name);
768 xfree (gdb_block_iter);
769 }
770 xfree (stab->linetable);
771 xfree ((char *) stab->file_name);
772 xfree (stab);
773 }
774
775 /* Called when closing a gdb_objfile. Converts OBJ to a proper
776 objfile. */
777
778 static void
779 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
780 struct gdb_object *obj)
781 {
782 struct gdb_symtab *i, *j;
783 struct objfile *objfile;
784 jit_dbg_reader_data *priv_data;
785
786 priv_data = cb->priv_data;
787
788 objfile = allocate_objfile (NULL, 0);
789 objfile->gdbarch = target_gdbarch ();
790
791 terminate_minimal_symbol_table (objfile);
792
793 objfile->name = "<< JIT compiled code >>";
794
795 j = NULL;
796 for (i = obj->symtabs; i; i = j)
797 {
798 j = i->next;
799 finalize_symtab (i, objfile);
800 }
801 add_objfile_entry (objfile, *priv_data);
802 xfree (obj);
803 }
804
805 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
806 ENTRY_ADDR is the address of the struct jit_code_entry in the
807 inferior address space. */
808
809 static int
810 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
811 CORE_ADDR entry_addr)
812 {
813 void *gdb_mem;
814 int status;
815 jit_dbg_reader_data priv_data;
816 struct gdb_reader_funcs *funcs;
817 volatile struct gdb_exception e;
818 struct gdb_symbol_callbacks callbacks =
819 {
820 jit_object_open_impl,
821 jit_symtab_open_impl,
822 jit_block_open_impl,
823 jit_symtab_close_impl,
824 jit_object_close_impl,
825
826 jit_symtab_line_mapping_add_impl,
827 jit_target_read_impl,
828
829 &priv_data
830 };
831
832 priv_data = entry_addr;
833
834 if (!loaded_jit_reader)
835 return 0;
836
837 gdb_mem = xmalloc (code_entry->symfile_size);
838
839 status = 1;
840 TRY_CATCH (e, RETURN_MASK_ALL)
841 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
842 code_entry->symfile_size))
843 status = 0;
844 if (e.reason < 0)
845 status = 0;
846
847 if (status)
848 {
849 funcs = loaded_jit_reader->functions;
850 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
851 != GDB_SUCCESS)
852 status = 0;
853 }
854
855 xfree (gdb_mem);
856 if (jit_debug && status == 0)
857 fprintf_unfiltered (gdb_stdlog,
858 "Could not read symtab using the loaded JIT reader.\n");
859 return status;
860 }
861
862 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
863 struct jit_code_entry in the inferior address space. */
864
865 static void
866 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
867 CORE_ADDR entry_addr,
868 struct gdbarch *gdbarch)
869 {
870 bfd *nbfd;
871 struct section_addr_info *sai;
872 struct bfd_section *sec;
873 struct objfile *objfile;
874 struct cleanup *old_cleanups;
875 int i;
876 const struct bfd_arch_info *b;
877
878 if (jit_debug)
879 fprintf_unfiltered (gdb_stdlog,
880 "jit_register_code, symfile_addr = %s, "
881 "symfile_size = %s\n",
882 paddress (gdbarch, code_entry->symfile_addr),
883 pulongest (code_entry->symfile_size));
884
885 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
886 code_entry->symfile_size, gnutarget);
887 if (nbfd == NULL)
888 {
889 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
890 return;
891 }
892
893 /* Check the format. NOTE: This initializes important data that GDB uses!
894 We would segfault later without this line. */
895 if (!bfd_check_format (nbfd, bfd_object))
896 {
897 printf_unfiltered (_("\
898 JITed symbol file is not an object file, ignoring it.\n"));
899 gdb_bfd_unref (nbfd);
900 return;
901 }
902
903 /* Check bfd arch. */
904 b = gdbarch_bfd_arch_info (gdbarch);
905 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
906 warning (_("JITed object file architecture %s is not compatible "
907 "with target architecture %s."), bfd_get_arch_info
908 (nbfd)->printable_name, b->printable_name);
909
910 /* Read the section address information out of the symbol file. Since the
911 file is generated by the JIT at runtime, it should all of the absolute
912 addresses that we care about. */
913 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
914 old_cleanups = make_cleanup_free_section_addr_info (sai);
915 i = 0;
916 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
917 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
918 {
919 /* We assume that these virtual addresses are absolute, and do not
920 treat them as offsets. */
921 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
922 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
923 sai->other[i].sectindex = sec->index;
924 ++i;
925 }
926
927 /* This call does not take ownership of SAI. */
928 make_cleanup_bfd_unref (nbfd);
929 objfile = symbol_file_add_from_bfd (nbfd, 0, sai, OBJF_SHARED, NULL);
930
931 do_cleanups (old_cleanups);
932 add_objfile_entry (objfile, entry_addr);
933 }
934
935 /* This function registers code associated with a JIT code entry. It uses the
936 pointer and size pair in the entry to read the symbol file from the remote
937 and then calls symbol_file_add_from_local_memory to add it as though it were
938 a symbol file added by the user. */
939
940 static void
941 jit_register_code (struct gdbarch *gdbarch,
942 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
943 {
944 int success;
945
946 if (jit_debug)
947 fprintf_unfiltered (gdb_stdlog,
948 "jit_register_code, symfile_addr = %s, "
949 "symfile_size = %s\n",
950 paddress (gdbarch, code_entry->symfile_addr),
951 pulongest (code_entry->symfile_size));
952
953 success = jit_reader_try_read_symtab (code_entry, entry_addr);
954
955 if (!success)
956 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
957 }
958
959 /* This function unregisters JITed code and frees the corresponding
960 objfile. */
961
962 static void
963 jit_unregister_code (struct objfile *objfile)
964 {
965 free_objfile (objfile);
966 }
967
968 /* Look up the objfile with this code entry address. */
969
970 static struct objfile *
971 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
972 {
973 struct objfile *objf;
974
975 ALL_OBJFILES (objf)
976 {
977 struct jit_objfile_data *objf_data;
978
979 objf_data = objfile_data (objf, jit_objfile_data);
980 if (objf_data != NULL && objf_data->addr == entry_addr)
981 return objf;
982 }
983 return NULL;
984 }
985
986 /* This is called when a breakpoint is deleted. It updates the
987 inferior's cache, if needed. */
988
989 static void
990 jit_breakpoint_deleted (struct breakpoint *b)
991 {
992 struct bp_location *iter;
993
994 if (b->type != bp_jit_event)
995 return;
996
997 for (iter = b->loc; iter != NULL; iter = iter->next)
998 {
999 struct jit_program_space_data *ps_data;
1000
1001 ps_data = program_space_data (iter->pspace, jit_program_space_data);
1002 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1003 {
1004 ps_data->cached_code_address = 0;
1005 ps_data->jit_breakpoint = NULL;
1006 }
1007 }
1008 }
1009
1010 /* (Re-)Initialize the jit breakpoint if necessary.
1011 Return 0 on success. */
1012
1013 static int
1014 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1015 struct jit_program_space_data *ps_data)
1016 {
1017 struct minimal_symbol *reg_symbol, *desc_symbol;
1018 struct objfile *objf;
1019 struct jit_objfile_data *objf_data;
1020 CORE_ADDR addr;
1021
1022 if (ps_data->objfile == NULL)
1023 {
1024 /* Lookup the registration symbol. If it is missing, then we
1025 assume we are not attached to a JIT. */
1026 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name, &objf);
1027 if (reg_symbol == NULL || SYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1028 return 1;
1029
1030 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL, objf);
1031 if (desc_symbol == NULL || SYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1032 return 1;
1033
1034 objf_data = get_jit_objfile_data (objf);
1035 objf_data->register_code = reg_symbol;
1036 objf_data->descriptor = desc_symbol;
1037
1038 ps_data->objfile = objf;
1039 }
1040 else
1041 objf_data = get_jit_objfile_data (ps_data->objfile);
1042
1043 addr = SYMBOL_VALUE_ADDRESS (objf_data->register_code);
1044
1045 if (jit_debug)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "jit_breakpoint_re_set_internal, "
1048 "breakpoint_addr = %s\n",
1049 paddress (gdbarch, addr));
1050
1051 if (ps_data->cached_code_address == addr)
1052 return 1;
1053
1054 /* Delete the old breakpoint. */
1055 if (ps_data->jit_breakpoint != NULL)
1056 delete_breakpoint (ps_data->jit_breakpoint);
1057
1058 /* Put a breakpoint in the registration symbol. */
1059 ps_data->cached_code_address = addr;
1060 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1061
1062 return 0;
1063 }
1064
1065 /* The private data passed around in the frame unwind callback
1066 functions. */
1067
1068 struct jit_unwind_private
1069 {
1070 /* Cached register values. See jit_frame_sniffer to see how this
1071 works. */
1072 struct gdb_reg_value **registers;
1073
1074 /* The frame being unwound. */
1075 struct frame_info *this_frame;
1076 };
1077
1078 /* Sets the value of a particular register in this frame. */
1079
1080 static void
1081 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1082 struct gdb_reg_value *value)
1083 {
1084 struct jit_unwind_private *priv;
1085 int gdb_reg;
1086
1087 priv = cb->priv_data;
1088
1089 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1090 dwarf_regnum);
1091 if (gdb_reg == -1)
1092 {
1093 if (jit_debug)
1094 fprintf_unfiltered (gdb_stdlog,
1095 _("Could not recognize DWARF regnum %d"),
1096 dwarf_regnum);
1097 return;
1098 }
1099
1100 gdb_assert (priv->registers);
1101 priv->registers[gdb_reg] = value;
1102 }
1103
1104 static void
1105 reg_value_free_impl (struct gdb_reg_value *value)
1106 {
1107 xfree (value);
1108 }
1109
1110 /* Get the value of register REGNUM in the previous frame. */
1111
1112 static struct gdb_reg_value *
1113 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1114 {
1115 struct jit_unwind_private *priv;
1116 struct gdb_reg_value *value;
1117 int gdb_reg, size;
1118 struct gdbarch *frame_arch;
1119
1120 priv = cb->priv_data;
1121 frame_arch = get_frame_arch (priv->this_frame);
1122
1123 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1124 size = register_size (frame_arch, gdb_reg);
1125 value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
1126 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1127 value->value);
1128 value->size = size;
1129 value->free = reg_value_free_impl;
1130 return value;
1131 }
1132
1133 /* gdb_reg_value has a free function, which must be called on each
1134 saved register value. */
1135
1136 static void
1137 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1138 {
1139 struct jit_unwind_private *priv_data = cache;
1140 struct gdbarch *frame_arch;
1141 int i;
1142
1143 gdb_assert (priv_data->registers);
1144 frame_arch = get_frame_arch (priv_data->this_frame);
1145
1146 for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1147 if (priv_data->registers[i] && priv_data->registers[i]->free)
1148 priv_data->registers[i]->free (priv_data->registers[i]);
1149
1150 xfree (priv_data->registers);
1151 xfree (priv_data);
1152 }
1153
1154 /* The frame sniffer for the pseudo unwinder.
1155
1156 While this is nominally a frame sniffer, in the case where the JIT
1157 reader actually recognizes the frame, it does a lot more work -- it
1158 unwinds the frame and saves the corresponding register values in
1159 the cache. jit_frame_prev_register simply returns the saved
1160 register values. */
1161
1162 static int
1163 jit_frame_sniffer (const struct frame_unwind *self,
1164 struct frame_info *this_frame, void **cache)
1165 {
1166 struct jit_unwind_private *priv_data;
1167 struct gdb_unwind_callbacks callbacks;
1168 struct gdb_reader_funcs *funcs;
1169
1170 callbacks.reg_get = jit_unwind_reg_get_impl;
1171 callbacks.reg_set = jit_unwind_reg_set_impl;
1172 callbacks.target_read = jit_target_read_impl;
1173
1174 if (loaded_jit_reader == NULL)
1175 return 0;
1176
1177 funcs = loaded_jit_reader->functions;
1178
1179 gdb_assert (!*cache);
1180
1181 *cache = XZALLOC (struct jit_unwind_private);
1182 priv_data = *cache;
1183 priv_data->registers =
1184 XCALLOC (gdbarch_num_regs (get_frame_arch (this_frame)),
1185 struct gdb_reg_value *);
1186 priv_data->this_frame = this_frame;
1187
1188 callbacks.priv_data = priv_data;
1189
1190 /* Try to coax the provided unwinder to unwind the stack */
1191 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1192 {
1193 if (jit_debug)
1194 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1195 "JIT reader.\n"));
1196 return 1;
1197 }
1198 if (jit_debug)
1199 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1200 "JIT reader.\n"));
1201
1202 jit_dealloc_cache (this_frame, *cache);
1203 *cache = NULL;
1204
1205 return 0;
1206 }
1207
1208
1209 /* The frame_id function for the pseudo unwinder. Relays the call to
1210 the loaded plugin. */
1211
1212 static void
1213 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1214 struct frame_id *this_id)
1215 {
1216 struct jit_unwind_private private;
1217 struct gdb_frame_id frame_id;
1218 struct gdb_reader_funcs *funcs;
1219 struct gdb_unwind_callbacks callbacks;
1220
1221 private.registers = NULL;
1222 private.this_frame = this_frame;
1223
1224 /* We don't expect the frame_id function to set any registers, so we
1225 set reg_set to NULL. */
1226 callbacks.reg_get = jit_unwind_reg_get_impl;
1227 callbacks.reg_set = NULL;
1228 callbacks.target_read = jit_target_read_impl;
1229 callbacks.priv_data = &private;
1230
1231 gdb_assert (loaded_jit_reader);
1232 funcs = loaded_jit_reader->functions;
1233
1234 frame_id = funcs->get_frame_id (funcs, &callbacks);
1235 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1236 }
1237
1238 /* Pseudo unwinder function. Reads the previously fetched value for
1239 the register from the cache. */
1240
1241 static struct value *
1242 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1243 {
1244 struct jit_unwind_private *priv = *cache;
1245 struct gdb_reg_value *value;
1246
1247 if (priv == NULL)
1248 return frame_unwind_got_optimized (this_frame, reg);
1249
1250 gdb_assert (priv->registers);
1251 value = priv->registers[reg];
1252 if (value && value->defined)
1253 return frame_unwind_got_bytes (this_frame, reg, value->value);
1254 else
1255 return frame_unwind_got_optimized (this_frame, reg);
1256 }
1257
1258 /* Relay everything back to the unwinder registered by the JIT debug
1259 info reader.*/
1260
1261 static const struct frame_unwind jit_frame_unwind =
1262 {
1263 NORMAL_FRAME,
1264 default_frame_unwind_stop_reason,
1265 jit_frame_this_id,
1266 jit_frame_prev_register,
1267 NULL,
1268 jit_frame_sniffer,
1269 jit_dealloc_cache
1270 };
1271
1272
1273 /* This is the information that is stored at jit_gdbarch_data for each
1274 architecture. */
1275
1276 struct jit_gdbarch_data_type
1277 {
1278 /* Has the (pseudo) unwinder been prepended? */
1279 int unwinder_registered;
1280 };
1281
1282 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1283
1284 static void
1285 jit_prepend_unwinder (struct gdbarch *gdbarch)
1286 {
1287 struct jit_gdbarch_data_type *data;
1288
1289 data = gdbarch_data (gdbarch, jit_gdbarch_data);
1290 if (!data->unwinder_registered)
1291 {
1292 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1293 data->unwinder_registered = 1;
1294 }
1295 }
1296
1297 /* Register any already created translations. */
1298
1299 static void
1300 jit_inferior_init (struct gdbarch *gdbarch)
1301 {
1302 struct jit_descriptor descriptor;
1303 struct jit_code_entry cur_entry;
1304 struct jit_program_space_data *ps_data;
1305 CORE_ADDR cur_entry_addr;
1306
1307 if (jit_debug)
1308 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1309
1310 jit_prepend_unwinder (gdbarch);
1311
1312 ps_data = get_jit_program_space_data ();
1313 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1314 return;
1315
1316 /* Read the descriptor so we can check the version number and load
1317 any already JITed functions. */
1318 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1319 return;
1320
1321 /* Check that the version number agrees with that we support. */
1322 if (descriptor.version != 1)
1323 {
1324 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1325 "in descriptor (expected 1)\n"),
1326 (long) descriptor.version);
1327 return;
1328 }
1329
1330 /* If we've attached to a running program, we need to check the descriptor
1331 to register any functions that were already generated. */
1332 for (cur_entry_addr = descriptor.first_entry;
1333 cur_entry_addr != 0;
1334 cur_entry_addr = cur_entry.next_entry)
1335 {
1336 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1337
1338 /* This hook may be called many times during setup, so make sure we don't
1339 add the same symbol file twice. */
1340 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1341 continue;
1342
1343 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1344 }
1345 }
1346
1347 /* Exported routine to call when an inferior has been created. */
1348
1349 void
1350 jit_inferior_created_hook (void)
1351 {
1352 jit_inferior_init (target_gdbarch ());
1353 }
1354
1355 /* Exported routine to call to re-set the jit breakpoints,
1356 e.g. when a program is rerun. */
1357
1358 void
1359 jit_breakpoint_re_set (void)
1360 {
1361 jit_breakpoint_re_set_internal (target_gdbarch (),
1362 get_jit_program_space_data ());
1363 }
1364
1365 /* This function cleans up any code entries left over when the
1366 inferior exits. We get left over code when the inferior exits
1367 without unregistering its code, for example when it crashes. */
1368
1369 static void
1370 jit_inferior_exit_hook (struct inferior *inf)
1371 {
1372 struct objfile *objf;
1373 struct objfile *temp;
1374
1375 ALL_OBJFILES_SAFE (objf, temp)
1376 {
1377 struct jit_objfile_data *objf_data = objfile_data (objf,
1378 jit_objfile_data);
1379
1380 if (objf_data != NULL && objf_data->addr != 0)
1381 jit_unregister_code (objf);
1382 }
1383 }
1384
1385 void
1386 jit_event_handler (struct gdbarch *gdbarch)
1387 {
1388 struct jit_descriptor descriptor;
1389 struct jit_code_entry code_entry;
1390 CORE_ADDR entry_addr;
1391 struct objfile *objf;
1392
1393 /* Read the descriptor from remote memory. */
1394 if (!jit_read_descriptor (gdbarch, &descriptor,
1395 get_jit_program_space_data ()))
1396 return;
1397 entry_addr = descriptor.relevant_entry;
1398
1399 /* Do the corresponding action. */
1400 switch (descriptor.action_flag)
1401 {
1402 case JIT_NOACTION:
1403 break;
1404 case JIT_REGISTER:
1405 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1406 jit_register_code (gdbarch, entry_addr, &code_entry);
1407 break;
1408 case JIT_UNREGISTER:
1409 objf = jit_find_objf_with_entry_addr (entry_addr);
1410 if (objf == NULL)
1411 printf_unfiltered (_("Unable to find JITed code "
1412 "entry at address: %s\n"),
1413 paddress (gdbarch, entry_addr));
1414 else
1415 jit_unregister_code (objf);
1416
1417 break;
1418 default:
1419 error (_("Unknown action_flag value in JIT descriptor!"));
1420 break;
1421 }
1422 }
1423
1424 /* Called to free the data allocated to the jit_program_space_data slot. */
1425
1426 static void
1427 free_objfile_data (struct objfile *objfile, void *data)
1428 {
1429 struct jit_objfile_data *objf_data = data;
1430
1431 if (objf_data->register_code != NULL)
1432 {
1433 struct jit_program_space_data *ps_data;
1434
1435 ps_data = program_space_data (objfile->pspace, jit_program_space_data);
1436 if (ps_data != NULL && ps_data->objfile == objfile)
1437 ps_data->objfile = NULL;
1438 }
1439
1440 xfree (data);
1441 }
1442
1443 /* Initialize the jit_gdbarch_data slot with an instance of struct
1444 jit_gdbarch_data_type */
1445
1446 static void *
1447 jit_gdbarch_data_init (struct obstack *obstack)
1448 {
1449 struct jit_gdbarch_data_type *data;
1450
1451 data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1452 data->unwinder_registered = 0;
1453 return data;
1454 }
1455
1456 /* Provide a prototype to silence -Wmissing-prototypes. */
1457
1458 extern void _initialize_jit (void);
1459
1460 void
1461 _initialize_jit (void)
1462 {
1463 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1464 JIT_READER_DIR_RELOCATABLE);
1465 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1466 _("Set JIT debugging."),
1467 _("Show JIT debugging."),
1468 _("When non-zero, JIT debugging is enabled."),
1469 NULL,
1470 show_jit_debug,
1471 &setdebuglist, &showdebuglist);
1472
1473 observer_attach_inferior_exit (jit_inferior_exit_hook);
1474 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1475
1476 jit_objfile_data =
1477 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1478 jit_program_space_data =
1479 register_program_space_data_with_cleanup (NULL,
1480 jit_program_space_data_cleanup);
1481 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1482 if (is_dl_available ())
1483 {
1484 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1485 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1486 Usage: jit-reader-load FILE\n\
1487 Try to load file FILE as a debug info reader (and unwinder) for\n\
1488 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1489 relocated relative to the GDB executable if required."));
1490 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1491 Unload the currently loaded JIT debug info reader.\n\
1492 Usage: jit-reader-unload FILE\n\n\
1493 Do \"help jit-reader-load\" for info on loading debug info readers."));
1494 }
1495 }
This page took 0.059788 seconds and 5 git commands to generate.