gdb/linux-nat: remove check based on current_inferior in linux_handle_extended_wait
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "gdbsupport/common-debug.h"
72
73 /* This comment documents high-level logic of this file.
74
75 Waiting for events in sync mode
76 ===============================
77
78 When waiting for an event in a specific thread, we just use waitpid,
79 passing the specific pid, and not passing WNOHANG.
80
81 When waiting for an event in all threads, waitpid is not quite good:
82
83 - If the thread group leader exits while other threads in the thread
84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
85 return an exit status until the other threads in the group are
86 reaped.
87
88 - When a non-leader thread execs, that thread just vanishes without
89 reporting an exit (so we'd hang if we waited for it explicitly in
90 that case). The exec event is instead reported to the TGID pid.
91
92 The solution is to always use -1 and WNOHANG, together with
93 sigsuspend.
94
95 First, we use non-blocking waitpid to check for events. If nothing is
96 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
97 it means something happened to a child process. As soon as we know
98 there's an event, we get back to calling nonblocking waitpid.
99
100 Note that SIGCHLD should be blocked between waitpid and sigsuspend
101 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
102 when it's blocked, the signal becomes pending and sigsuspend
103 immediately notices it and returns.
104
105 Waiting for events in async mode (TARGET_WNOHANG)
106 =================================================
107
108 In async mode, GDB should always be ready to handle both user input
109 and target events, so neither blocking waitpid nor sigsuspend are
110 viable options. Instead, we should asynchronously notify the GDB main
111 event loop whenever there's an unprocessed event from the target. We
112 detect asynchronous target events by handling SIGCHLD signals. To
113 notify the event loop about target events, the self-pipe trick is used
114 --- a pipe is registered as waitable event source in the event loop,
115 the event loop select/poll's on the read end of this pipe (as well on
116 other event sources, e.g., stdin), and the SIGCHLD handler writes a
117 byte to this pipe. This is more portable than relying on
118 pselect/ppoll, since on kernels that lack those syscalls, libc
119 emulates them with select/poll+sigprocmask, and that is racy
120 (a.k.a. plain broken).
121
122 Obviously, if we fail to notify the event loop if there's a target
123 event, it's bad. OTOH, if we notify the event loop when there's no
124 event from the target, linux_nat_wait will detect that there's no real
125 event to report, and return event of type TARGET_WAITKIND_IGNORE.
126 This is mostly harmless, but it will waste time and is better avoided.
127
128 The main design point is that every time GDB is outside linux-nat.c,
129 we have a SIGCHLD handler installed that is called when something
130 happens to the target and notifies the GDB event loop. Whenever GDB
131 core decides to handle the event, and calls into linux-nat.c, we
132 process things as in sync mode, except that the we never block in
133 sigsuspend.
134
135 While processing an event, we may end up momentarily blocked in
136 waitpid calls. Those waitpid calls, while blocking, are guarantied to
137 return quickly. E.g., in all-stop mode, before reporting to the core
138 that an LWP hit a breakpoint, all LWPs are stopped by sending them
139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140 Note that this is different from blocking indefinitely waiting for the
141 next event --- here, we're already handling an event.
142
143 Use of signals
144 ==============
145
146 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
147 signal is not entirely significant; we just need for a signal to be delivered,
148 so that we can intercept it. SIGSTOP's advantage is that it can not be
149 blocked. A disadvantage is that it is not a real-time signal, so it can only
150 be queued once; we do not keep track of other sources of SIGSTOP.
151
152 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
153 use them, because they have special behavior when the signal is generated -
154 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
155 kills the entire thread group.
156
157 A delivered SIGSTOP would stop the entire thread group, not just the thread we
158 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
159 cancel it (by PTRACE_CONT without passing SIGSTOP).
160
161 We could use a real-time signal instead. This would solve those problems; we
162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164 generates it, and there are races with trying to find a signal that is not
165 blocked.
166
167 Exec events
168 ===========
169
170 The case of a thread group (process) with 3 or more threads, and a
171 thread other than the leader execs is worth detailing:
172
173 On an exec, the Linux kernel destroys all threads except the execing
174 one in the thread group, and resets the execing thread's tid to the
175 tgid. No exit notification is sent for the execing thread -- from the
176 ptracer's perspective, it appears as though the execing thread just
177 vanishes. Until we reap all other threads except the leader and the
178 execing thread, the leader will be zombie, and the execing thread will
179 be in `D (disc sleep)' state. As soon as all other threads are
180 reaped, the execing thread changes its tid to the tgid, and the
181 previous (zombie) leader vanishes, giving place to the "new"
182 leader. */
183
184 #ifndef O_LARGEFILE
185 #define O_LARGEFILE 0
186 #endif
187
188 struct linux_nat_target *linux_target;
189
190 /* Does the current host support PTRACE_GETREGSET? */
191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192
193 static unsigned int debug_linux_nat;
194 static void
195 show_debug_linux_nat (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
199 value);
200 }
201
202 /* Print a linux-nat debug statement. */
203
204 #define linux_nat_debug_printf(fmt, ...) \
205 debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__)
206
207 struct simple_pid_list
208 {
209 int pid;
210 int status;
211 struct simple_pid_list *next;
212 };
213 static struct simple_pid_list *stopped_pids;
214
215 /* Whether target_thread_events is in effect. */
216 static int report_thread_events;
217
218 /* Async mode support. */
219
220 /* The read/write ends of the pipe registered as waitable file in the
221 event loop. */
222 static int linux_nat_event_pipe[2] = { -1, -1 };
223
224 /* True if we're currently in async mode. */
225 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
226
227 /* Flush the event pipe. */
228
229 static void
230 async_file_flush (void)
231 {
232 int ret;
233 char buf;
234
235 do
236 {
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
238 }
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 }
241
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
245
246 static void
247 async_file_mark (void)
248 {
249 int ret;
250
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
253 left-overs. */
254 async_file_flush ();
255
256 do
257 {
258 ret = write (linux_nat_event_pipe[1], "+", 1);
259 }
260 while (ret == -1 && errno == EINTR);
261
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
264 }
265
266 static int kill_lwp (int lwpid, int signo);
267
268 static int stop_callback (struct lwp_info *lp);
269
270 static void block_child_signals (sigset_t *prev_mask);
271 static void restore_child_signals_mask (sigset_t *prev_mask);
272
273 struct lwp_info;
274 static struct lwp_info *add_lwp (ptid_t ptid);
275 static void purge_lwp_list (int pid);
276 static void delete_lwp (ptid_t ptid);
277 static struct lwp_info *find_lwp_pid (ptid_t ptid);
278
279 static int lwp_status_pending_p (struct lwp_info *lp);
280
281 static void save_stop_reason (struct lwp_info *lp);
282
283 static void maybe_close_proc_mem_file (pid_t pid);
284
285 \f
286 /* LWP accessors. */
287
288 /* See nat/linux-nat.h. */
289
290 ptid_t
291 ptid_of_lwp (struct lwp_info *lwp)
292 {
293 return lwp->ptid;
294 }
295
296 /* See nat/linux-nat.h. */
297
298 void
299 lwp_set_arch_private_info (struct lwp_info *lwp,
300 struct arch_lwp_info *info)
301 {
302 lwp->arch_private = info;
303 }
304
305 /* See nat/linux-nat.h. */
306
307 struct arch_lwp_info *
308 lwp_arch_private_info (struct lwp_info *lwp)
309 {
310 return lwp->arch_private;
311 }
312
313 /* See nat/linux-nat.h. */
314
315 int
316 lwp_is_stopped (struct lwp_info *lwp)
317 {
318 return lwp->stopped;
319 }
320
321 /* See nat/linux-nat.h. */
322
323 enum target_stop_reason
324 lwp_stop_reason (struct lwp_info *lwp)
325 {
326 return lwp->stop_reason;
327 }
328
329 /* See nat/linux-nat.h. */
330
331 int
332 lwp_is_stepping (struct lwp_info *lwp)
333 {
334 return lwp->step;
335 }
336
337 \f
338 /* Trivial list manipulation functions to keep track of a list of
339 new stopped processes. */
340 static void
341 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
342 {
343 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
344
345 new_pid->pid = pid;
346 new_pid->status = status;
347 new_pid->next = *listp;
348 *listp = new_pid;
349 }
350
351 static int
352 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
353 {
354 struct simple_pid_list **p;
355
356 for (p = listp; *p != NULL; p = &(*p)->next)
357 if ((*p)->pid == pid)
358 {
359 struct simple_pid_list *next = (*p)->next;
360
361 *statusp = (*p)->status;
362 xfree (*p);
363 *p = next;
364 return 1;
365 }
366 return 0;
367 }
368
369 /* Return the ptrace options that we want to try to enable. */
370
371 static int
372 linux_nat_ptrace_options (int attached)
373 {
374 int options = 0;
375
376 if (!attached)
377 options |= PTRACE_O_EXITKILL;
378
379 options |= (PTRACE_O_TRACESYSGOOD
380 | PTRACE_O_TRACEVFORKDONE
381 | PTRACE_O_TRACEVFORK
382 | PTRACE_O_TRACEFORK
383 | PTRACE_O_TRACEEXEC);
384
385 return options;
386 }
387
388 /* Initialize ptrace and procfs warnings and check for supported
389 ptrace features given PID.
390
391 ATTACHED should be nonzero iff we attached to the inferior. */
392
393 static void
394 linux_init_ptrace_procfs (pid_t pid, int attached)
395 {
396 int options = linux_nat_ptrace_options (attached);
397
398 linux_enable_event_reporting (pid, options);
399 linux_ptrace_init_warnings ();
400 linux_proc_init_warnings ();
401 }
402
403 linux_nat_target::~linux_nat_target ()
404 {}
405
406 void
407 linux_nat_target::post_attach (int pid)
408 {
409 linux_init_ptrace_procfs (pid, 1);
410 }
411
412 void
413 linux_nat_target::post_startup_inferior (ptid_t ptid)
414 {
415 linux_init_ptrace_procfs (ptid.pid (), 0);
416 }
417
418 /* Return the number of known LWPs in the tgid given by PID. */
419
420 static int
421 num_lwps (int pid)
422 {
423 int count = 0;
424 struct lwp_info *lp;
425
426 for (lp = lwp_list; lp; lp = lp->next)
427 if (lp->ptid.pid () == pid)
428 count++;
429
430 return count;
431 }
432
433 /* Deleter for lwp_info unique_ptr specialisation. */
434
435 struct lwp_deleter
436 {
437 void operator() (struct lwp_info *lwp) const
438 {
439 delete_lwp (lwp->ptid);
440 }
441 };
442
443 /* A unique_ptr specialisation for lwp_info. */
444
445 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
446
447 /* Target hook for follow_fork. On entry inferior_ptid must be the
448 ptid of the followed inferior. At return, inferior_ptid will be
449 unchanged. */
450
451 void
452 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
453 {
454 if (!follow_child)
455 {
456 struct lwp_info *child_lp = NULL;
457 int has_vforked;
458 ptid_t parent_ptid, child_ptid;
459 int parent_pid, child_pid;
460
461 has_vforked = (inferior_thread ()->pending_follow.kind
462 == TARGET_WAITKIND_VFORKED);
463 parent_ptid = inferior_ptid;
464 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
465 parent_pid = parent_ptid.lwp ();
466 child_pid = child_ptid.lwp ();
467
468 /* We're already attached to the parent, by default. */
469 child_lp = add_lwp (child_ptid);
470 child_lp->stopped = 1;
471 child_lp->last_resume_kind = resume_stop;
472
473 /* Detach new forked process? */
474 if (detach_fork)
475 {
476 int child_stop_signal = 0;
477 bool detach_child = true;
478
479 /* Move CHILD_LP into a unique_ptr and clear the source pointer
480 to prevent us doing anything stupid with it. */
481 lwp_info_up child_lp_ptr (child_lp);
482 child_lp = nullptr;
483
484 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
485
486 /* When debugging an inferior in an architecture that supports
487 hardware single stepping on a kernel without commit
488 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
489 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
490 set if the parent process had them set.
491 To work around this, single step the child process
492 once before detaching to clear the flags. */
493
494 /* Note that we consult the parent's architecture instead of
495 the child's because there's no inferior for the child at
496 this point. */
497 if (!gdbarch_software_single_step_p (target_thread_architecture
498 (parent_ptid)))
499 {
500 int status;
501
502 linux_disable_event_reporting (child_pid);
503 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
504 perror_with_name (_("Couldn't do single step"));
505 if (my_waitpid (child_pid, &status, 0) < 0)
506 perror_with_name (_("Couldn't wait vfork process"));
507 else
508 {
509 detach_child = WIFSTOPPED (status);
510 child_stop_signal = WSTOPSIG (status);
511 }
512 }
513
514 if (detach_child)
515 {
516 int signo = child_stop_signal;
517
518 if (signo != 0
519 && !signal_pass_state (gdb_signal_from_host (signo)))
520 signo = 0;
521 ptrace (PTRACE_DETACH, child_pid, 0, signo);
522 }
523 }
524 else
525 {
526 /* Switching inferior_ptid is not enough, because then
527 inferior_thread () would crash by not finding the thread
528 in the current inferior. */
529 scoped_restore_current_thread restore_current_thread;
530 thread_info *child = find_thread_ptid (this, child_ptid);
531 switch_to_thread (child);
532
533 /* Let the thread_db layer learn about this new process. */
534 check_for_thread_db ();
535 }
536
537 if (has_vforked)
538 {
539 struct lwp_info *parent_lp;
540
541 parent_lp = find_lwp_pid (parent_ptid);
542 gdb_assert (linux_supports_tracefork () >= 0);
543
544 if (linux_supports_tracevforkdone ())
545 {
546 linux_nat_debug_printf ("waiting for VFORK_DONE on %d",
547 parent_pid);
548 parent_lp->stopped = 1;
549
550 /* We'll handle the VFORK_DONE event like any other
551 event, in target_wait. */
552 }
553 else
554 {
555 /* We can't insert breakpoints until the child has
556 finished with the shared memory region. We need to
557 wait until that happens. Ideal would be to just
558 call:
559 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
560 - waitpid (parent_pid, &status, __WALL);
561 However, most architectures can't handle a syscall
562 being traced on the way out if it wasn't traced on
563 the way in.
564
565 We might also think to loop, continuing the child
566 until it exits or gets a SIGTRAP. One problem is
567 that the child might call ptrace with PTRACE_TRACEME.
568
569 There's no simple and reliable way to figure out when
570 the vforked child will be done with its copy of the
571 shared memory. We could step it out of the syscall,
572 two instructions, let it go, and then single-step the
573 parent once. When we have hardware single-step, this
574 would work; with software single-step it could still
575 be made to work but we'd have to be able to insert
576 single-step breakpoints in the child, and we'd have
577 to insert -just- the single-step breakpoint in the
578 parent. Very awkward.
579
580 In the end, the best we can do is to make sure it
581 runs for a little while. Hopefully it will be out of
582 range of any breakpoints we reinsert. Usually this
583 is only the single-step breakpoint at vfork's return
584 point. */
585
586 linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit");
587
588 usleep (10000);
589
590 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
591 and leave it pending. The next linux_nat_resume call
592 will notice a pending event, and bypasses actually
593 resuming the inferior. */
594 parent_lp->status = 0;
595 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
596 parent_lp->stopped = 1;
597
598 /* If we're in async mode, need to tell the event loop
599 there's something here to process. */
600 if (target_is_async_p ())
601 async_file_mark ();
602 }
603 }
604 }
605 else
606 {
607 struct lwp_info *child_lp;
608
609 child_lp = add_lwp (inferior_ptid);
610 child_lp->stopped = 1;
611 child_lp->last_resume_kind = resume_stop;
612
613 /* Let the thread_db layer learn about this new process. */
614 check_for_thread_db ();
615 }
616 }
617
618 \f
619 int
620 linux_nat_target::insert_fork_catchpoint (int pid)
621 {
622 return !linux_supports_tracefork ();
623 }
624
625 int
626 linux_nat_target::remove_fork_catchpoint (int pid)
627 {
628 return 0;
629 }
630
631 int
632 linux_nat_target::insert_vfork_catchpoint (int pid)
633 {
634 return !linux_supports_tracefork ();
635 }
636
637 int
638 linux_nat_target::remove_vfork_catchpoint (int pid)
639 {
640 return 0;
641 }
642
643 int
644 linux_nat_target::insert_exec_catchpoint (int pid)
645 {
646 return !linux_supports_tracefork ();
647 }
648
649 int
650 linux_nat_target::remove_exec_catchpoint (int pid)
651 {
652 return 0;
653 }
654
655 int
656 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
657 gdb::array_view<const int> syscall_counts)
658 {
659 if (!linux_supports_tracesysgood ())
660 return 1;
661
662 /* On GNU/Linux, we ignore the arguments. It means that we only
663 enable the syscall catchpoints, but do not disable them.
664
665 Also, we do not use the `syscall_counts' information because we do not
666 filter system calls here. We let GDB do the logic for us. */
667 return 0;
668 }
669
670 /* List of known LWPs, keyed by LWP PID. This speeds up the common
671 case of mapping a PID returned from the kernel to our corresponding
672 lwp_info data structure. */
673 static htab_t lwp_lwpid_htab;
674
675 /* Calculate a hash from a lwp_info's LWP PID. */
676
677 static hashval_t
678 lwp_info_hash (const void *ap)
679 {
680 const struct lwp_info *lp = (struct lwp_info *) ap;
681 pid_t pid = lp->ptid.lwp ();
682
683 return iterative_hash_object (pid, 0);
684 }
685
686 /* Equality function for the lwp_info hash table. Compares the LWP's
687 PID. */
688
689 static int
690 lwp_lwpid_htab_eq (const void *a, const void *b)
691 {
692 const struct lwp_info *entry = (const struct lwp_info *) a;
693 const struct lwp_info *element = (const struct lwp_info *) b;
694
695 return entry->ptid.lwp () == element->ptid.lwp ();
696 }
697
698 /* Create the lwp_lwpid_htab hash table. */
699
700 static void
701 lwp_lwpid_htab_create (void)
702 {
703 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
704 }
705
706 /* Add LP to the hash table. */
707
708 static void
709 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
710 {
711 void **slot;
712
713 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
714 gdb_assert (slot != NULL && *slot == NULL);
715 *slot = lp;
716 }
717
718 /* Head of doubly-linked list of known LWPs. Sorted by reverse
719 creation order. This order is assumed in some cases. E.g.,
720 reaping status after killing alls lwps of a process: the leader LWP
721 must be reaped last. */
722 struct lwp_info *lwp_list;
723
724 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
725
726 static void
727 lwp_list_add (struct lwp_info *lp)
728 {
729 lp->next = lwp_list;
730 if (lwp_list != NULL)
731 lwp_list->prev = lp;
732 lwp_list = lp;
733 }
734
735 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
736 list. */
737
738 static void
739 lwp_list_remove (struct lwp_info *lp)
740 {
741 /* Remove from sorted-by-creation-order list. */
742 if (lp->next != NULL)
743 lp->next->prev = lp->prev;
744 if (lp->prev != NULL)
745 lp->prev->next = lp->next;
746 if (lp == lwp_list)
747 lwp_list = lp->next;
748 }
749
750 \f
751
752 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
753 _initialize_linux_nat. */
754 static sigset_t suspend_mask;
755
756 /* Signals to block to make that sigsuspend work. */
757 static sigset_t blocked_mask;
758
759 /* SIGCHLD action. */
760 static struct sigaction sigchld_action;
761
762 /* Block child signals (SIGCHLD and linux threads signals), and store
763 the previous mask in PREV_MASK. */
764
765 static void
766 block_child_signals (sigset_t *prev_mask)
767 {
768 /* Make sure SIGCHLD is blocked. */
769 if (!sigismember (&blocked_mask, SIGCHLD))
770 sigaddset (&blocked_mask, SIGCHLD);
771
772 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
773 }
774
775 /* Restore child signals mask, previously returned by
776 block_child_signals. */
777
778 static void
779 restore_child_signals_mask (sigset_t *prev_mask)
780 {
781 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
782 }
783
784 /* Mask of signals to pass directly to the inferior. */
785 static sigset_t pass_mask;
786
787 /* Update signals to pass to the inferior. */
788 void
789 linux_nat_target::pass_signals
790 (gdb::array_view<const unsigned char> pass_signals)
791 {
792 int signo;
793
794 sigemptyset (&pass_mask);
795
796 for (signo = 1; signo < NSIG; signo++)
797 {
798 int target_signo = gdb_signal_from_host (signo);
799 if (target_signo < pass_signals.size () && pass_signals[target_signo])
800 sigaddset (&pass_mask, signo);
801 }
802 }
803
804 \f
805
806 /* Prototypes for local functions. */
807 static int stop_wait_callback (struct lwp_info *lp);
808 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
809 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
810
811 \f
812
813 /* Destroy and free LP. */
814
815 static void
816 lwp_free (struct lwp_info *lp)
817 {
818 /* Let the arch specific bits release arch_lwp_info. */
819 linux_target->low_delete_thread (lp->arch_private);
820
821 xfree (lp);
822 }
823
824 /* Traversal function for purge_lwp_list. */
825
826 static int
827 lwp_lwpid_htab_remove_pid (void **slot, void *info)
828 {
829 struct lwp_info *lp = (struct lwp_info *) *slot;
830 int pid = *(int *) info;
831
832 if (lp->ptid.pid () == pid)
833 {
834 htab_clear_slot (lwp_lwpid_htab, slot);
835 lwp_list_remove (lp);
836 lwp_free (lp);
837 }
838
839 return 1;
840 }
841
842 /* Remove all LWPs belong to PID from the lwp list. */
843
844 static void
845 purge_lwp_list (int pid)
846 {
847 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
848 }
849
850 /* Add the LWP specified by PTID to the list. PTID is the first LWP
851 in the process. Return a pointer to the structure describing the
852 new LWP.
853
854 This differs from add_lwp in that we don't let the arch specific
855 bits know about this new thread. Current clients of this callback
856 take the opportunity to install watchpoints in the new thread, and
857 we shouldn't do that for the first thread. If we're spawning a
858 child ("run"), the thread executes the shell wrapper first, and we
859 shouldn't touch it until it execs the program we want to debug.
860 For "attach", it'd be okay to call the callback, but it's not
861 necessary, because watchpoints can't yet have been inserted into
862 the inferior. */
863
864 static struct lwp_info *
865 add_initial_lwp (ptid_t ptid)
866 {
867 struct lwp_info *lp;
868
869 gdb_assert (ptid.lwp_p ());
870
871 lp = XNEW (struct lwp_info);
872
873 memset (lp, 0, sizeof (struct lwp_info));
874
875 lp->last_resume_kind = resume_continue;
876 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
877
878 lp->ptid = ptid;
879 lp->core = -1;
880
881 /* Add to sorted-by-reverse-creation-order list. */
882 lwp_list_add (lp);
883
884 /* Add to keyed-by-pid htab. */
885 lwp_lwpid_htab_add_lwp (lp);
886
887 return lp;
888 }
889
890 /* Add the LWP specified by PID to the list. Return a pointer to the
891 structure describing the new LWP. The LWP should already be
892 stopped. */
893
894 static struct lwp_info *
895 add_lwp (ptid_t ptid)
896 {
897 struct lwp_info *lp;
898
899 lp = add_initial_lwp (ptid);
900
901 /* Let the arch specific bits know about this new thread. Current
902 clients of this callback take the opportunity to install
903 watchpoints in the new thread. We don't do this for the first
904 thread though. See add_initial_lwp. */
905 linux_target->low_new_thread (lp);
906
907 return lp;
908 }
909
910 /* Remove the LWP specified by PID from the list. */
911
912 static void
913 delete_lwp (ptid_t ptid)
914 {
915 struct lwp_info *lp;
916 void **slot;
917 struct lwp_info dummy;
918
919 dummy.ptid = ptid;
920 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
921 if (slot == NULL)
922 return;
923
924 lp = *(struct lwp_info **) slot;
925 gdb_assert (lp != NULL);
926
927 htab_clear_slot (lwp_lwpid_htab, slot);
928
929 /* Remove from sorted-by-creation-order list. */
930 lwp_list_remove (lp);
931
932 /* Release. */
933 lwp_free (lp);
934 }
935
936 /* Return a pointer to the structure describing the LWP corresponding
937 to PID. If no corresponding LWP could be found, return NULL. */
938
939 static struct lwp_info *
940 find_lwp_pid (ptid_t ptid)
941 {
942 struct lwp_info *lp;
943 int lwp;
944 struct lwp_info dummy;
945
946 if (ptid.lwp_p ())
947 lwp = ptid.lwp ();
948 else
949 lwp = ptid.pid ();
950
951 dummy.ptid = ptid_t (0, lwp, 0);
952 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
953 return lp;
954 }
955
956 /* See nat/linux-nat.h. */
957
958 struct lwp_info *
959 iterate_over_lwps (ptid_t filter,
960 gdb::function_view<iterate_over_lwps_ftype> callback)
961 {
962 struct lwp_info *lp, *lpnext;
963
964 for (lp = lwp_list; lp; lp = lpnext)
965 {
966 lpnext = lp->next;
967
968 if (lp->ptid.matches (filter))
969 {
970 if (callback (lp) != 0)
971 return lp;
972 }
973 }
974
975 return NULL;
976 }
977
978 /* Update our internal state when changing from one checkpoint to
979 another indicated by NEW_PTID. We can only switch single-threaded
980 applications, so we only create one new LWP, and the previous list
981 is discarded. */
982
983 void
984 linux_nat_switch_fork (ptid_t new_ptid)
985 {
986 struct lwp_info *lp;
987
988 purge_lwp_list (inferior_ptid.pid ());
989
990 lp = add_lwp (new_ptid);
991 lp->stopped = 1;
992
993 /* This changes the thread's ptid while preserving the gdb thread
994 num. Also changes the inferior pid, while preserving the
995 inferior num. */
996 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
997
998 /* We've just told GDB core that the thread changed target id, but,
999 in fact, it really is a different thread, with different register
1000 contents. */
1001 registers_changed ();
1002 }
1003
1004 /* Handle the exit of a single thread LP. */
1005
1006 static void
1007 exit_lwp (struct lwp_info *lp)
1008 {
1009 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1010
1011 if (th)
1012 {
1013 if (print_thread_events)
1014 printf_unfiltered (_("[%s exited]\n"),
1015 target_pid_to_str (lp->ptid).c_str ());
1016
1017 delete_thread (th);
1018 }
1019
1020 delete_lwp (lp->ptid);
1021 }
1022
1023 /* Wait for the LWP specified by LP, which we have just attached to.
1024 Returns a wait status for that LWP, to cache. */
1025
1026 static int
1027 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1028 {
1029 pid_t new_pid, pid = ptid.lwp ();
1030 int status;
1031
1032 if (linux_proc_pid_is_stopped (pid))
1033 {
1034 linux_nat_debug_printf ("Attaching to a stopped process");
1035
1036 /* The process is definitely stopped. It is in a job control
1037 stop, unless the kernel predates the TASK_STOPPED /
1038 TASK_TRACED distinction, in which case it might be in a
1039 ptrace stop. Make sure it is in a ptrace stop; from there we
1040 can kill it, signal it, et cetera.
1041
1042 First make sure there is a pending SIGSTOP. Since we are
1043 already attached, the process can not transition from stopped
1044 to running without a PTRACE_CONT; so we know this signal will
1045 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1046 probably already in the queue (unless this kernel is old
1047 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1048 is not an RT signal, it can only be queued once. */
1049 kill_lwp (pid, SIGSTOP);
1050
1051 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1052 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1053 ptrace (PTRACE_CONT, pid, 0, 0);
1054 }
1055
1056 /* Make sure the initial process is stopped. The user-level threads
1057 layer might want to poke around in the inferior, and that won't
1058 work if things haven't stabilized yet. */
1059 new_pid = my_waitpid (pid, &status, __WALL);
1060 gdb_assert (pid == new_pid);
1061
1062 if (!WIFSTOPPED (status))
1063 {
1064 /* The pid we tried to attach has apparently just exited. */
1065 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1066 status_to_str (status).c_str ());
1067 return status;
1068 }
1069
1070 if (WSTOPSIG (status) != SIGSTOP)
1071 {
1072 *signalled = 1;
1073 linux_nat_debug_printf ("Received %s after attaching",
1074 status_to_str (status).c_str ());
1075 }
1076
1077 return status;
1078 }
1079
1080 void
1081 linux_nat_target::create_inferior (const char *exec_file,
1082 const std::string &allargs,
1083 char **env, int from_tty)
1084 {
1085 maybe_disable_address_space_randomization restore_personality
1086 (disable_randomization);
1087
1088 /* The fork_child mechanism is synchronous and calls target_wait, so
1089 we have to mask the async mode. */
1090
1091 /* Make sure we report all signals during startup. */
1092 pass_signals ({});
1093
1094 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1095 }
1096
1097 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1098 already attached. Returns true if a new LWP is found, false
1099 otherwise. */
1100
1101 static int
1102 attach_proc_task_lwp_callback (ptid_t ptid)
1103 {
1104 struct lwp_info *lp;
1105
1106 /* Ignore LWPs we're already attached to. */
1107 lp = find_lwp_pid (ptid);
1108 if (lp == NULL)
1109 {
1110 int lwpid = ptid.lwp ();
1111
1112 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1113 {
1114 int err = errno;
1115
1116 /* Be quiet if we simply raced with the thread exiting.
1117 EPERM is returned if the thread's task still exists, and
1118 is marked as exited or zombie, as well as other
1119 conditions, so in that case, confirm the status in
1120 /proc/PID/status. */
1121 if (err == ESRCH
1122 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1123 {
1124 linux_nat_debug_printf
1125 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1126 lwpid, err, safe_strerror (err));
1127
1128 }
1129 else
1130 {
1131 std::string reason
1132 = linux_ptrace_attach_fail_reason_string (ptid, err);
1133
1134 warning (_("Cannot attach to lwp %d: %s"),
1135 lwpid, reason.c_str ());
1136 }
1137 }
1138 else
1139 {
1140 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1141 target_pid_to_str (ptid).c_str ());
1142
1143 lp = add_lwp (ptid);
1144
1145 /* The next time we wait for this LWP we'll see a SIGSTOP as
1146 PTRACE_ATTACH brings it to a halt. */
1147 lp->signalled = 1;
1148
1149 /* We need to wait for a stop before being able to make the
1150 next ptrace call on this LWP. */
1151 lp->must_set_ptrace_flags = 1;
1152
1153 /* So that wait collects the SIGSTOP. */
1154 lp->resumed = 1;
1155
1156 /* Also add the LWP to gdb's thread list, in case a
1157 matching libthread_db is not found (or the process uses
1158 raw clone). */
1159 add_thread (linux_target, lp->ptid);
1160 set_running (linux_target, lp->ptid, true);
1161 set_executing (linux_target, lp->ptid, true);
1162 }
1163
1164 return 1;
1165 }
1166 return 0;
1167 }
1168
1169 void
1170 linux_nat_target::attach (const char *args, int from_tty)
1171 {
1172 struct lwp_info *lp;
1173 int status;
1174 ptid_t ptid;
1175
1176 /* Make sure we report all signals during attach. */
1177 pass_signals ({});
1178
1179 try
1180 {
1181 inf_ptrace_target::attach (args, from_tty);
1182 }
1183 catch (const gdb_exception_error &ex)
1184 {
1185 pid_t pid = parse_pid_to_attach (args);
1186 std::string reason = linux_ptrace_attach_fail_reason (pid);
1187
1188 if (!reason.empty ())
1189 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1190 ex.what ());
1191 else
1192 throw_error (ex.error, "%s", ex.what ());
1193 }
1194
1195 /* The ptrace base target adds the main thread with (pid,0,0)
1196 format. Decorate it with lwp info. */
1197 ptid = ptid_t (inferior_ptid.pid (),
1198 inferior_ptid.pid (),
1199 0);
1200 thread_change_ptid (linux_target, inferior_ptid, ptid);
1201
1202 /* Add the initial process as the first LWP to the list. */
1203 lp = add_initial_lwp (ptid);
1204
1205 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1206 if (!WIFSTOPPED (status))
1207 {
1208 if (WIFEXITED (status))
1209 {
1210 int exit_code = WEXITSTATUS (status);
1211
1212 target_terminal::ours ();
1213 target_mourn_inferior (inferior_ptid);
1214 if (exit_code == 0)
1215 error (_("Unable to attach: program exited normally."));
1216 else
1217 error (_("Unable to attach: program exited with code %d."),
1218 exit_code);
1219 }
1220 else if (WIFSIGNALED (status))
1221 {
1222 enum gdb_signal signo;
1223
1224 target_terminal::ours ();
1225 target_mourn_inferior (inferior_ptid);
1226
1227 signo = gdb_signal_from_host (WTERMSIG (status));
1228 error (_("Unable to attach: program terminated with signal "
1229 "%s, %s."),
1230 gdb_signal_to_name (signo),
1231 gdb_signal_to_string (signo));
1232 }
1233
1234 internal_error (__FILE__, __LINE__,
1235 _("unexpected status %d for PID %ld"),
1236 status, (long) ptid.lwp ());
1237 }
1238
1239 lp->stopped = 1;
1240
1241 /* Save the wait status to report later. */
1242 lp->resumed = 1;
1243 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1244 (long) lp->ptid.pid (),
1245 status_to_str (status).c_str ());
1246
1247 lp->status = status;
1248
1249 /* We must attach to every LWP. If /proc is mounted, use that to
1250 find them now. The inferior may be using raw clone instead of
1251 using pthreads. But even if it is using pthreads, thread_db
1252 walks structures in the inferior's address space to find the list
1253 of threads/LWPs, and those structures may well be corrupted.
1254 Note that once thread_db is loaded, we'll still use it to list
1255 threads and associate pthread info with each LWP. */
1256 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1257 attach_proc_task_lwp_callback);
1258
1259 if (target_can_async_p ())
1260 target_async (1);
1261 }
1262
1263 /* Get pending signal of THREAD as a host signal number, for detaching
1264 purposes. This is the signal the thread last stopped for, which we
1265 need to deliver to the thread when detaching, otherwise, it'd be
1266 suppressed/lost. */
1267
1268 static int
1269 get_detach_signal (struct lwp_info *lp)
1270 {
1271 enum gdb_signal signo = GDB_SIGNAL_0;
1272
1273 /* If we paused threads momentarily, we may have stored pending
1274 events in lp->status or lp->waitstatus (see stop_wait_callback),
1275 and GDB core hasn't seen any signal for those threads.
1276 Otherwise, the last signal reported to the core is found in the
1277 thread object's stop_signal.
1278
1279 There's a corner case that isn't handled here at present. Only
1280 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1281 stop_signal make sense as a real signal to pass to the inferior.
1282 Some catchpoint related events, like
1283 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1284 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1285 those traps are debug API (ptrace in our case) related and
1286 induced; the inferior wouldn't see them if it wasn't being
1287 traced. Hence, we should never pass them to the inferior, even
1288 when set to pass state. Since this corner case isn't handled by
1289 infrun.c when proceeding with a signal, for consistency, neither
1290 do we handle it here (or elsewhere in the file we check for
1291 signal pass state). Normally SIGTRAP isn't set to pass state, so
1292 this is really a corner case. */
1293
1294 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1295 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1296 else if (lp->status)
1297 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1298 else
1299 {
1300 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1301
1302 if (target_is_non_stop_p () && !tp->executing)
1303 {
1304 if (tp->suspend.waitstatus_pending_p)
1305 signo = tp->suspend.waitstatus.value.sig;
1306 else
1307 signo = tp->suspend.stop_signal;
1308 }
1309 else if (!target_is_non_stop_p ())
1310 {
1311 ptid_t last_ptid;
1312 process_stratum_target *last_target;
1313
1314 get_last_target_status (&last_target, &last_ptid, nullptr);
1315
1316 if (last_target == linux_target
1317 && lp->ptid.lwp () == last_ptid.lwp ())
1318 signo = tp->suspend.stop_signal;
1319 }
1320 }
1321
1322 if (signo == GDB_SIGNAL_0)
1323 {
1324 linux_nat_debug_printf ("lwp %s has no pending signal",
1325 target_pid_to_str (lp->ptid).c_str ());
1326 }
1327 else if (!signal_pass_state (signo))
1328 {
1329 linux_nat_debug_printf
1330 ("lwp %s had signal %s but it is in no pass state",
1331 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo));
1332 }
1333 else
1334 {
1335 linux_nat_debug_printf ("lwp %s has pending signal %s",
1336 target_pid_to_str (lp->ptid).c_str (),
1337 gdb_signal_to_string (signo));
1338
1339 return gdb_signal_to_host (signo);
1340 }
1341
1342 return 0;
1343 }
1344
1345 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1346 signal number that should be passed to the LWP when detaching.
1347 Otherwise pass any pending signal the LWP may have, if any. */
1348
1349 static void
1350 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1351 {
1352 int lwpid = lp->ptid.lwp ();
1353 int signo;
1354
1355 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1356
1357 if (lp->status != 0)
1358 linux_nat_debug_printf ("Pending %s for %s on detach.",
1359 strsignal (WSTOPSIG (lp->status)),
1360 target_pid_to_str (lp->ptid).c_str ());
1361
1362 /* If there is a pending SIGSTOP, get rid of it. */
1363 if (lp->signalled)
1364 {
1365 linux_nat_debug_printf ("Sending SIGCONT to %s",
1366 target_pid_to_str (lp->ptid).c_str ());
1367
1368 kill_lwp (lwpid, SIGCONT);
1369 lp->signalled = 0;
1370 }
1371
1372 if (signo_p == NULL)
1373 {
1374 /* Pass on any pending signal for this LWP. */
1375 signo = get_detach_signal (lp);
1376 }
1377 else
1378 signo = *signo_p;
1379
1380 /* Preparing to resume may try to write registers, and fail if the
1381 lwp is zombie. If that happens, ignore the error. We'll handle
1382 it below, when detach fails with ESRCH. */
1383 try
1384 {
1385 linux_target->low_prepare_to_resume (lp);
1386 }
1387 catch (const gdb_exception_error &ex)
1388 {
1389 if (!check_ptrace_stopped_lwp_gone (lp))
1390 throw;
1391 }
1392
1393 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1394 {
1395 int save_errno = errno;
1396
1397 /* We know the thread exists, so ESRCH must mean the lwp is
1398 zombie. This can happen if one of the already-detached
1399 threads exits the whole thread group. In that case we're
1400 still attached, and must reap the lwp. */
1401 if (save_errno == ESRCH)
1402 {
1403 int ret, status;
1404
1405 ret = my_waitpid (lwpid, &status, __WALL);
1406 if (ret == -1)
1407 {
1408 warning (_("Couldn't reap LWP %d while detaching: %s"),
1409 lwpid, safe_strerror (errno));
1410 }
1411 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1412 {
1413 warning (_("Reaping LWP %d while detaching "
1414 "returned unexpected status 0x%x"),
1415 lwpid, status);
1416 }
1417 }
1418 else
1419 {
1420 error (_("Can't detach %s: %s"),
1421 target_pid_to_str (lp->ptid).c_str (),
1422 safe_strerror (save_errno));
1423 }
1424 }
1425 else
1426 linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1427 target_pid_to_str (lp->ptid).c_str (),
1428 strsignal (signo));
1429
1430 delete_lwp (lp->ptid);
1431 }
1432
1433 static int
1434 detach_callback (struct lwp_info *lp)
1435 {
1436 /* We don't actually detach from the thread group leader just yet.
1437 If the thread group exits, we must reap the zombie clone lwps
1438 before we're able to reap the leader. */
1439 if (lp->ptid.lwp () != lp->ptid.pid ())
1440 detach_one_lwp (lp, NULL);
1441 return 0;
1442 }
1443
1444 void
1445 linux_nat_target::detach (inferior *inf, int from_tty)
1446 {
1447 struct lwp_info *main_lwp;
1448 int pid = inf->pid;
1449
1450 /* Don't unregister from the event loop, as there may be other
1451 inferiors running. */
1452
1453 /* Stop all threads before detaching. ptrace requires that the
1454 thread is stopped to successfully detach. */
1455 iterate_over_lwps (ptid_t (pid), stop_callback);
1456 /* ... and wait until all of them have reported back that
1457 they're no longer running. */
1458 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1459
1460 /* We can now safely remove breakpoints. We don't this in earlier
1461 in common code because this target doesn't currently support
1462 writing memory while the inferior is running. */
1463 remove_breakpoints_inf (current_inferior ());
1464
1465 iterate_over_lwps (ptid_t (pid), detach_callback);
1466
1467 /* Only the initial process should be left right now. */
1468 gdb_assert (num_lwps (pid) == 1);
1469
1470 main_lwp = find_lwp_pid (ptid_t (pid));
1471
1472 if (forks_exist_p ())
1473 {
1474 /* Multi-fork case. The current inferior_ptid is being detached
1475 from, but there are other viable forks to debug. Detach from
1476 the current fork, and context-switch to the first
1477 available. */
1478 linux_fork_detach (from_tty);
1479 }
1480 else
1481 {
1482 target_announce_detach (from_tty);
1483
1484 /* Pass on any pending signal for the last LWP. */
1485 int signo = get_detach_signal (main_lwp);
1486
1487 detach_one_lwp (main_lwp, &signo);
1488
1489 detach_success (inf);
1490 }
1491
1492 maybe_close_proc_mem_file (pid);
1493 }
1494
1495 /* Resume execution of the inferior process. If STEP is nonzero,
1496 single-step it. If SIGNAL is nonzero, give it that signal. */
1497
1498 static void
1499 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1500 enum gdb_signal signo)
1501 {
1502 lp->step = step;
1503
1504 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1505 We only presently need that if the LWP is stepped though (to
1506 handle the case of stepping a breakpoint instruction). */
1507 if (step)
1508 {
1509 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1510
1511 lp->stop_pc = regcache_read_pc (regcache);
1512 }
1513 else
1514 lp->stop_pc = 0;
1515
1516 linux_target->low_prepare_to_resume (lp);
1517 linux_target->low_resume (lp->ptid, step, signo);
1518
1519 /* Successfully resumed. Clear state that no longer makes sense,
1520 and mark the LWP as running. Must not do this before resuming
1521 otherwise if that fails other code will be confused. E.g., we'd
1522 later try to stop the LWP and hang forever waiting for a stop
1523 status. Note that we must not throw after this is cleared,
1524 otherwise handle_zombie_lwp_error would get confused. */
1525 lp->stopped = 0;
1526 lp->core = -1;
1527 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1528 registers_changed_ptid (linux_target, lp->ptid);
1529 }
1530
1531 /* Called when we try to resume a stopped LWP and that errors out. If
1532 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1533 or about to become), discard the error, clear any pending status
1534 the LWP may have, and return true (we'll collect the exit status
1535 soon enough). Otherwise, return false. */
1536
1537 static int
1538 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1539 {
1540 /* If we get an error after resuming the LWP successfully, we'd
1541 confuse !T state for the LWP being gone. */
1542 gdb_assert (lp->stopped);
1543
1544 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1545 because even if ptrace failed with ESRCH, the tracee may be "not
1546 yet fully dead", but already refusing ptrace requests. In that
1547 case the tracee has 'R (Running)' state for a little bit
1548 (observed in Linux 3.18). See also the note on ESRCH in the
1549 ptrace(2) man page. Instead, check whether the LWP has any state
1550 other than ptrace-stopped. */
1551
1552 /* Don't assume anything if /proc/PID/status can't be read. */
1553 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1554 {
1555 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1556 lp->status = 0;
1557 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1558 return 1;
1559 }
1560 return 0;
1561 }
1562
1563 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1564 disappears while we try to resume it. */
1565
1566 static void
1567 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1568 {
1569 try
1570 {
1571 linux_resume_one_lwp_throw (lp, step, signo);
1572 }
1573 catch (const gdb_exception_error &ex)
1574 {
1575 if (!check_ptrace_stopped_lwp_gone (lp))
1576 throw;
1577 }
1578 }
1579
1580 /* Resume LP. */
1581
1582 static void
1583 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1584 {
1585 if (lp->stopped)
1586 {
1587 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1588
1589 if (inf->vfork_child != NULL)
1590 {
1591 linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1592 target_pid_to_str (lp->ptid).c_str ());
1593 }
1594 else if (!lwp_status_pending_p (lp))
1595 {
1596 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1597 target_pid_to_str (lp->ptid).c_str (),
1598 (signo != GDB_SIGNAL_0
1599 ? strsignal (gdb_signal_to_host (signo))
1600 : "0"),
1601 step ? "step" : "resume");
1602
1603 linux_resume_one_lwp (lp, step, signo);
1604 }
1605 else
1606 {
1607 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1608 target_pid_to_str (lp->ptid).c_str ());
1609 }
1610 }
1611 else
1612 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1613 target_pid_to_str (lp->ptid).c_str ());
1614 }
1615
1616 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1617 Resume LWP with the last stop signal, if it is in pass state. */
1618
1619 static int
1620 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1621 {
1622 enum gdb_signal signo = GDB_SIGNAL_0;
1623
1624 if (lp == except)
1625 return 0;
1626
1627 if (lp->stopped)
1628 {
1629 struct thread_info *thread;
1630
1631 thread = find_thread_ptid (linux_target, lp->ptid);
1632 if (thread != NULL)
1633 {
1634 signo = thread->suspend.stop_signal;
1635 thread->suspend.stop_signal = GDB_SIGNAL_0;
1636 }
1637 }
1638
1639 resume_lwp (lp, 0, signo);
1640 return 0;
1641 }
1642
1643 static int
1644 resume_clear_callback (struct lwp_info *lp)
1645 {
1646 lp->resumed = 0;
1647 lp->last_resume_kind = resume_stop;
1648 return 0;
1649 }
1650
1651 static int
1652 resume_set_callback (struct lwp_info *lp)
1653 {
1654 lp->resumed = 1;
1655 lp->last_resume_kind = resume_continue;
1656 return 0;
1657 }
1658
1659 void
1660 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1661 {
1662 struct lwp_info *lp;
1663 int resume_many;
1664
1665 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1666 step ? "step" : "resume",
1667 target_pid_to_str (ptid).c_str (),
1668 (signo != GDB_SIGNAL_0
1669 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1670 target_pid_to_str (inferior_ptid).c_str ());
1671
1672 /* A specific PTID means `step only this process id'. */
1673 resume_many = (minus_one_ptid == ptid
1674 || ptid.is_pid ());
1675
1676 /* Mark the lwps we're resuming as resumed and update their
1677 last_resume_kind to resume_continue. */
1678 iterate_over_lwps (ptid, resume_set_callback);
1679
1680 /* See if it's the current inferior that should be handled
1681 specially. */
1682 if (resume_many)
1683 lp = find_lwp_pid (inferior_ptid);
1684 else
1685 lp = find_lwp_pid (ptid);
1686 gdb_assert (lp != NULL);
1687
1688 /* Remember if we're stepping. */
1689 lp->last_resume_kind = step ? resume_step : resume_continue;
1690
1691 /* If we have a pending wait status for this thread, there is no
1692 point in resuming the process. But first make sure that
1693 linux_nat_wait won't preemptively handle the event - we
1694 should never take this short-circuit if we are going to
1695 leave LP running, since we have skipped resuming all the
1696 other threads. This bit of code needs to be synchronized
1697 with linux_nat_wait. */
1698
1699 if (lp->status && WIFSTOPPED (lp->status))
1700 {
1701 if (!lp->step
1702 && WSTOPSIG (lp->status)
1703 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1704 {
1705 linux_nat_debug_printf
1706 ("Not short circuiting for ignored status 0x%x", lp->status);
1707
1708 /* FIXME: What should we do if we are supposed to continue
1709 this thread with a signal? */
1710 gdb_assert (signo == GDB_SIGNAL_0);
1711 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1712 lp->status = 0;
1713 }
1714 }
1715
1716 if (lwp_status_pending_p (lp))
1717 {
1718 /* FIXME: What should we do if we are supposed to continue
1719 this thread with a signal? */
1720 gdb_assert (signo == GDB_SIGNAL_0);
1721
1722 linux_nat_debug_printf ("Short circuiting for status 0x%x",
1723 lp->status);
1724
1725 if (target_can_async_p ())
1726 {
1727 target_async (1);
1728 /* Tell the event loop we have something to process. */
1729 async_file_mark ();
1730 }
1731 return;
1732 }
1733
1734 if (resume_many)
1735 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1736 {
1737 return linux_nat_resume_callback (info, lp);
1738 });
1739
1740 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1741 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1742 target_pid_to_str (lp->ptid).c_str (),
1743 (signo != GDB_SIGNAL_0
1744 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1745
1746 linux_resume_one_lwp (lp, step, signo);
1747
1748 if (target_can_async_p ())
1749 target_async (1);
1750 }
1751
1752 /* Send a signal to an LWP. */
1753
1754 static int
1755 kill_lwp (int lwpid, int signo)
1756 {
1757 int ret;
1758
1759 errno = 0;
1760 ret = syscall (__NR_tkill, lwpid, signo);
1761 if (errno == ENOSYS)
1762 {
1763 /* If tkill fails, then we are not using nptl threads, a
1764 configuration we no longer support. */
1765 perror_with_name (("tkill"));
1766 }
1767 return ret;
1768 }
1769
1770 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1771 event, check if the core is interested in it: if not, ignore the
1772 event, and keep waiting; otherwise, we need to toggle the LWP's
1773 syscall entry/exit status, since the ptrace event itself doesn't
1774 indicate it, and report the trap to higher layers. */
1775
1776 static int
1777 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1778 {
1779 struct target_waitstatus *ourstatus = &lp->waitstatus;
1780 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1781 thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1782 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1783
1784 if (stopping)
1785 {
1786 /* If we're stopping threads, there's a SIGSTOP pending, which
1787 makes it so that the LWP reports an immediate syscall return,
1788 followed by the SIGSTOP. Skip seeing that "return" using
1789 PTRACE_CONT directly, and let stop_wait_callback collect the
1790 SIGSTOP. Later when the thread is resumed, a new syscall
1791 entry event. If we didn't do this (and returned 0), we'd
1792 leave a syscall entry pending, and our caller, by using
1793 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1794 itself. Later, when the user re-resumes this LWP, we'd see
1795 another syscall entry event and we'd mistake it for a return.
1796
1797 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1798 (leaving immediately with LWP->signalled set, without issuing
1799 a PTRACE_CONT), it would still be problematic to leave this
1800 syscall enter pending, as later when the thread is resumed,
1801 it would then see the same syscall exit mentioned above,
1802 followed by the delayed SIGSTOP, while the syscall didn't
1803 actually get to execute. It seems it would be even more
1804 confusing to the user. */
1805
1806 linux_nat_debug_printf
1807 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1808 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1809
1810 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1811 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1812 lp->stopped = 0;
1813 return 1;
1814 }
1815
1816 /* Always update the entry/return state, even if this particular
1817 syscall isn't interesting to the core now. In async mode,
1818 the user could install a new catchpoint for this syscall
1819 between syscall enter/return, and we'll need to know to
1820 report a syscall return if that happens. */
1821 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1822 ? TARGET_WAITKIND_SYSCALL_RETURN
1823 : TARGET_WAITKIND_SYSCALL_ENTRY);
1824
1825 if (catch_syscall_enabled ())
1826 {
1827 if (catching_syscall_number (syscall_number))
1828 {
1829 /* Alright, an event to report. */
1830 ourstatus->kind = lp->syscall_state;
1831 ourstatus->value.syscall_number = syscall_number;
1832
1833 linux_nat_debug_printf
1834 ("stopping for %s of syscall %d for LWP %ld",
1835 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1836 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1837
1838 return 0;
1839 }
1840
1841 linux_nat_debug_printf
1842 ("ignoring %s of syscall %d for LWP %ld",
1843 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1844 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1845 }
1846 else
1847 {
1848 /* If we had been syscall tracing, and hence used PT_SYSCALL
1849 before on this LWP, it could happen that the user removes all
1850 syscall catchpoints before we get to process this event.
1851 There are two noteworthy issues here:
1852
1853 - When stopped at a syscall entry event, resuming with
1854 PT_STEP still resumes executing the syscall and reports a
1855 syscall return.
1856
1857 - Only PT_SYSCALL catches syscall enters. If we last
1858 single-stepped this thread, then this event can't be a
1859 syscall enter. If we last single-stepped this thread, this
1860 has to be a syscall exit.
1861
1862 The points above mean that the next resume, be it PT_STEP or
1863 PT_CONTINUE, can not trigger a syscall trace event. */
1864 linux_nat_debug_printf
1865 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1866 "ignoring", syscall_number, lp->ptid.lwp ());
1867 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1868 }
1869
1870 /* The core isn't interested in this event. For efficiency, avoid
1871 stopping all threads only to have the core resume them all again.
1872 Since we're not stopping threads, if we're still syscall tracing
1873 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1874 subsequent syscall. Simply resume using the inf-ptrace layer,
1875 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1876
1877 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1878 return 1;
1879 }
1880
1881 /* Handle a GNU/Linux extended wait response. If we see a clone
1882 event, we need to add the new LWP to our list (and not report the
1883 trap to higher layers). This function returns non-zero if the
1884 event should be ignored and we should wait again. If STOPPING is
1885 true, the new LWP remains stopped, otherwise it is continued. */
1886
1887 static int
1888 linux_handle_extended_wait (struct lwp_info *lp, int status)
1889 {
1890 int pid = lp->ptid.lwp ();
1891 struct target_waitstatus *ourstatus = &lp->waitstatus;
1892 int event = linux_ptrace_get_extended_event (status);
1893
1894 /* All extended events we currently use are mid-syscall. Only
1895 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1896 you have to be using PTRACE_SEIZE to get that. */
1897 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1898
1899 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1900 || event == PTRACE_EVENT_CLONE)
1901 {
1902 unsigned long new_pid;
1903 int ret;
1904
1905 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1906
1907 /* If we haven't already seen the new PID stop, wait for it now. */
1908 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1909 {
1910 /* The new child has a pending SIGSTOP. We can't affect it until it
1911 hits the SIGSTOP, but we're already attached. */
1912 ret = my_waitpid (new_pid, &status, __WALL);
1913 if (ret == -1)
1914 perror_with_name (_("waiting for new child"));
1915 else if (ret != new_pid)
1916 internal_error (__FILE__, __LINE__,
1917 _("wait returned unexpected PID %d"), ret);
1918 else if (!WIFSTOPPED (status))
1919 internal_error (__FILE__, __LINE__,
1920 _("wait returned unexpected status 0x%x"), status);
1921 }
1922
1923 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1924
1925 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1926 {
1927 /* The arch-specific native code may need to know about new
1928 forks even if those end up never mapped to an
1929 inferior. */
1930 linux_target->low_new_fork (lp, new_pid);
1931 }
1932 else if (event == PTRACE_EVENT_CLONE)
1933 {
1934 linux_target->low_new_clone (lp, new_pid);
1935 }
1936
1937 if (event == PTRACE_EVENT_FORK
1938 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1939 {
1940 /* Handle checkpointing by linux-fork.c here as a special
1941 case. We don't want the follow-fork-mode or 'catch fork'
1942 to interfere with this. */
1943
1944 /* This won't actually modify the breakpoint list, but will
1945 physically remove the breakpoints from the child. */
1946 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1947
1948 /* Retain child fork in ptrace (stopped) state. */
1949 if (!find_fork_pid (new_pid))
1950 add_fork (new_pid);
1951
1952 /* Report as spurious, so that infrun doesn't want to follow
1953 this fork. We're actually doing an infcall in
1954 linux-fork.c. */
1955 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1956
1957 /* Report the stop to the core. */
1958 return 0;
1959 }
1960
1961 if (event == PTRACE_EVENT_FORK)
1962 ourstatus->kind = TARGET_WAITKIND_FORKED;
1963 else if (event == PTRACE_EVENT_VFORK)
1964 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1965 else if (event == PTRACE_EVENT_CLONE)
1966 {
1967 struct lwp_info *new_lp;
1968
1969 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1970
1971 linux_nat_debug_printf
1972 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1973
1974 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
1975 new_lp->stopped = 1;
1976 new_lp->resumed = 1;
1977
1978 /* If the thread_db layer is active, let it record the user
1979 level thread id and status, and add the thread to GDB's
1980 list. */
1981 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1982 {
1983 /* The process is not using thread_db. Add the LWP to
1984 GDB's list. */
1985 target_post_attach (new_lp->ptid.lwp ());
1986 add_thread (linux_target, new_lp->ptid);
1987 }
1988
1989 /* Even if we're stopping the thread for some reason
1990 internal to this module, from the perspective of infrun
1991 and the user/frontend, this new thread is running until
1992 it next reports a stop. */
1993 set_running (linux_target, new_lp->ptid, true);
1994 set_executing (linux_target, new_lp->ptid, true);
1995
1996 if (WSTOPSIG (status) != SIGSTOP)
1997 {
1998 /* This can happen if someone starts sending signals to
1999 the new thread before it gets a chance to run, which
2000 have a lower number than SIGSTOP (e.g. SIGUSR1).
2001 This is an unlikely case, and harder to handle for
2002 fork / vfork than for clone, so we do not try - but
2003 we handle it for clone events here. */
2004
2005 new_lp->signalled = 1;
2006
2007 /* We created NEW_LP so it cannot yet contain STATUS. */
2008 gdb_assert (new_lp->status == 0);
2009
2010 /* Save the wait status to report later. */
2011 linux_nat_debug_printf
2012 ("waitpid of new LWP %ld, saving status %s",
2013 (long) new_lp->ptid.lwp (), status_to_str (status).c_str ());
2014 new_lp->status = status;
2015 }
2016 else if (report_thread_events)
2017 {
2018 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2019 new_lp->status = status;
2020 }
2021
2022 return 1;
2023 }
2024
2025 return 0;
2026 }
2027
2028 if (event == PTRACE_EVENT_EXEC)
2029 {
2030 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2031
2032 /* Close the /proc/<pid>/mem file if it was open for this
2033 inferior. */
2034 maybe_close_proc_mem_file (lp->ptid.pid ());
2035
2036 ourstatus->kind = TARGET_WAITKIND_EXECD;
2037 ourstatus->value.execd_pathname
2038 = xstrdup (linux_proc_pid_to_exec_file (pid));
2039
2040 /* The thread that execed must have been resumed, but, when a
2041 thread execs, it changes its tid to the tgid, and the old
2042 tgid thread might have not been resumed. */
2043 lp->resumed = 1;
2044 return 0;
2045 }
2046
2047 if (event == PTRACE_EVENT_VFORK_DONE)
2048 {
2049 linux_nat_debug_printf
2050 ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld",
2051 lp->ptid.lwp ());
2052 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2053 return 0;
2054 }
2055
2056 internal_error (__FILE__, __LINE__,
2057 _("unknown ptrace event %d"), event);
2058 }
2059
2060 /* Suspend waiting for a signal. We're mostly interested in
2061 SIGCHLD/SIGINT. */
2062
2063 static void
2064 wait_for_signal ()
2065 {
2066 linux_nat_debug_printf ("about to sigsuspend");
2067 sigsuspend (&suspend_mask);
2068
2069 /* If the quit flag is set, it means that the user pressed Ctrl-C
2070 and we're debugging a process that is running on a separate
2071 terminal, so we must forward the Ctrl-C to the inferior. (If the
2072 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2073 inferior directly.) We must do this here because functions that
2074 need to block waiting for a signal loop forever until there's an
2075 event to report before returning back to the event loop. */
2076 if (!target_terminal::is_ours ())
2077 {
2078 if (check_quit_flag ())
2079 target_pass_ctrlc ();
2080 }
2081 }
2082
2083 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2084 exited. */
2085
2086 static int
2087 wait_lwp (struct lwp_info *lp)
2088 {
2089 pid_t pid;
2090 int status = 0;
2091 int thread_dead = 0;
2092 sigset_t prev_mask;
2093
2094 gdb_assert (!lp->stopped);
2095 gdb_assert (lp->status == 0);
2096
2097 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2098 block_child_signals (&prev_mask);
2099
2100 for (;;)
2101 {
2102 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2103 if (pid == -1 && errno == ECHILD)
2104 {
2105 /* The thread has previously exited. We need to delete it
2106 now because if this was a non-leader thread execing, we
2107 won't get an exit event. See comments on exec events at
2108 the top of the file. */
2109 thread_dead = 1;
2110 linux_nat_debug_printf ("%s vanished.",
2111 target_pid_to_str (lp->ptid).c_str ());
2112 }
2113 if (pid != 0)
2114 break;
2115
2116 /* Bugs 10970, 12702.
2117 Thread group leader may have exited in which case we'll lock up in
2118 waitpid if there are other threads, even if they are all zombies too.
2119 Basically, we're not supposed to use waitpid this way.
2120 tkill(pid,0) cannot be used here as it gets ESRCH for both
2121 for zombie and running processes.
2122
2123 As a workaround, check if we're waiting for the thread group leader and
2124 if it's a zombie, and avoid calling waitpid if it is.
2125
2126 This is racy, what if the tgl becomes a zombie right after we check?
2127 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2128 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2129
2130 if (lp->ptid.pid () == lp->ptid.lwp ()
2131 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2132 {
2133 thread_dead = 1;
2134 linux_nat_debug_printf ("Thread group leader %s vanished.",
2135 target_pid_to_str (lp->ptid).c_str ());
2136 break;
2137 }
2138
2139 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2140 get invoked despite our caller had them intentionally blocked by
2141 block_child_signals. This is sensitive only to the loop of
2142 linux_nat_wait_1 and there if we get called my_waitpid gets called
2143 again before it gets to sigsuspend so we can safely let the handlers
2144 get executed here. */
2145 wait_for_signal ();
2146 }
2147
2148 restore_child_signals_mask (&prev_mask);
2149
2150 if (!thread_dead)
2151 {
2152 gdb_assert (pid == lp->ptid.lwp ());
2153
2154 linux_nat_debug_printf ("waitpid %s received %s",
2155 target_pid_to_str (lp->ptid).c_str (),
2156 status_to_str (status).c_str ());
2157
2158 /* Check if the thread has exited. */
2159 if (WIFEXITED (status) || WIFSIGNALED (status))
2160 {
2161 if (report_thread_events
2162 || lp->ptid.pid () == lp->ptid.lwp ())
2163 {
2164 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2165
2166 /* If this is the leader exiting, it means the whole
2167 process is gone. Store the status to report to the
2168 core. Store it in lp->waitstatus, because lp->status
2169 would be ambiguous (W_EXITCODE(0,0) == 0). */
2170 store_waitstatus (&lp->waitstatus, status);
2171 return 0;
2172 }
2173
2174 thread_dead = 1;
2175 linux_nat_debug_printf ("%s exited.",
2176 target_pid_to_str (lp->ptid).c_str ());
2177 }
2178 }
2179
2180 if (thread_dead)
2181 {
2182 exit_lwp (lp);
2183 return 0;
2184 }
2185
2186 gdb_assert (WIFSTOPPED (status));
2187 lp->stopped = 1;
2188
2189 if (lp->must_set_ptrace_flags)
2190 {
2191 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2192 int options = linux_nat_ptrace_options (inf->attach_flag);
2193
2194 linux_enable_event_reporting (lp->ptid.lwp (), options);
2195 lp->must_set_ptrace_flags = 0;
2196 }
2197
2198 /* Handle GNU/Linux's syscall SIGTRAPs. */
2199 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2200 {
2201 /* No longer need the sysgood bit. The ptrace event ends up
2202 recorded in lp->waitstatus if we care for it. We can carry
2203 on handling the event like a regular SIGTRAP from here
2204 on. */
2205 status = W_STOPCODE (SIGTRAP);
2206 if (linux_handle_syscall_trap (lp, 1))
2207 return wait_lwp (lp);
2208 }
2209 else
2210 {
2211 /* Almost all other ptrace-stops are known to be outside of system
2212 calls, with further exceptions in linux_handle_extended_wait. */
2213 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2214 }
2215
2216 /* Handle GNU/Linux's extended waitstatus for trace events. */
2217 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2218 && linux_is_extended_waitstatus (status))
2219 {
2220 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2221 linux_handle_extended_wait (lp, status);
2222 return 0;
2223 }
2224
2225 return status;
2226 }
2227
2228 /* Send a SIGSTOP to LP. */
2229
2230 static int
2231 stop_callback (struct lwp_info *lp)
2232 {
2233 if (!lp->stopped && !lp->signalled)
2234 {
2235 int ret;
2236
2237 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2238 target_pid_to_str (lp->ptid).c_str ());
2239
2240 errno = 0;
2241 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2242 linux_nat_debug_printf ("lwp kill %d %s", ret,
2243 errno ? safe_strerror (errno) : "ERRNO-OK");
2244
2245 lp->signalled = 1;
2246 gdb_assert (lp->status == 0);
2247 }
2248
2249 return 0;
2250 }
2251
2252 /* Request a stop on LWP. */
2253
2254 void
2255 linux_stop_lwp (struct lwp_info *lwp)
2256 {
2257 stop_callback (lwp);
2258 }
2259
2260 /* See linux-nat.h */
2261
2262 void
2263 linux_stop_and_wait_all_lwps (void)
2264 {
2265 /* Stop all LWP's ... */
2266 iterate_over_lwps (minus_one_ptid, stop_callback);
2267
2268 /* ... and wait until all of them have reported back that
2269 they're no longer running. */
2270 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2271 }
2272
2273 /* See linux-nat.h */
2274
2275 void
2276 linux_unstop_all_lwps (void)
2277 {
2278 iterate_over_lwps (minus_one_ptid,
2279 [] (struct lwp_info *info)
2280 {
2281 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2282 });
2283 }
2284
2285 /* Return non-zero if LWP PID has a pending SIGINT. */
2286
2287 static int
2288 linux_nat_has_pending_sigint (int pid)
2289 {
2290 sigset_t pending, blocked, ignored;
2291
2292 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2293
2294 if (sigismember (&pending, SIGINT)
2295 && !sigismember (&ignored, SIGINT))
2296 return 1;
2297
2298 return 0;
2299 }
2300
2301 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2302
2303 static int
2304 set_ignore_sigint (struct lwp_info *lp)
2305 {
2306 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2307 flag to consume the next one. */
2308 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2309 && WSTOPSIG (lp->status) == SIGINT)
2310 lp->status = 0;
2311 else
2312 lp->ignore_sigint = 1;
2313
2314 return 0;
2315 }
2316
2317 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2318 This function is called after we know the LWP has stopped; if the LWP
2319 stopped before the expected SIGINT was delivered, then it will never have
2320 arrived. Also, if the signal was delivered to a shared queue and consumed
2321 by a different thread, it will never be delivered to this LWP. */
2322
2323 static void
2324 maybe_clear_ignore_sigint (struct lwp_info *lp)
2325 {
2326 if (!lp->ignore_sigint)
2327 return;
2328
2329 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2330 {
2331 linux_nat_debug_printf ("Clearing bogus flag for %s",
2332 target_pid_to_str (lp->ptid).c_str ());
2333 lp->ignore_sigint = 0;
2334 }
2335 }
2336
2337 /* Fetch the possible triggered data watchpoint info and store it in
2338 LP.
2339
2340 On some archs, like x86, that use debug registers to set
2341 watchpoints, it's possible that the way to know which watched
2342 address trapped, is to check the register that is used to select
2343 which address to watch. Problem is, between setting the watchpoint
2344 and reading back which data address trapped, the user may change
2345 the set of watchpoints, and, as a consequence, GDB changes the
2346 debug registers in the inferior. To avoid reading back a stale
2347 stopped-data-address when that happens, we cache in LP the fact
2348 that a watchpoint trapped, and the corresponding data address, as
2349 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2350 registers meanwhile, we have the cached data we can rely on. */
2351
2352 static int
2353 check_stopped_by_watchpoint (struct lwp_info *lp)
2354 {
2355 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2356 inferior_ptid = lp->ptid;
2357
2358 if (linux_target->low_stopped_by_watchpoint ())
2359 {
2360 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2361 lp->stopped_data_address_p
2362 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2363 }
2364
2365 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2366 }
2367
2368 /* Returns true if the LWP had stopped for a watchpoint. */
2369
2370 bool
2371 linux_nat_target::stopped_by_watchpoint ()
2372 {
2373 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2374
2375 gdb_assert (lp != NULL);
2376
2377 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2378 }
2379
2380 bool
2381 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2382 {
2383 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2384
2385 gdb_assert (lp != NULL);
2386
2387 *addr_p = lp->stopped_data_address;
2388
2389 return lp->stopped_data_address_p;
2390 }
2391
2392 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2393
2394 bool
2395 linux_nat_target::low_status_is_event (int status)
2396 {
2397 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2398 }
2399
2400 /* Wait until LP is stopped. */
2401
2402 static int
2403 stop_wait_callback (struct lwp_info *lp)
2404 {
2405 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2406
2407 /* If this is a vfork parent, bail out, it is not going to report
2408 any SIGSTOP until the vfork is done with. */
2409 if (inf->vfork_child != NULL)
2410 return 0;
2411
2412 if (!lp->stopped)
2413 {
2414 int status;
2415
2416 status = wait_lwp (lp);
2417 if (status == 0)
2418 return 0;
2419
2420 if (lp->ignore_sigint && WIFSTOPPED (status)
2421 && WSTOPSIG (status) == SIGINT)
2422 {
2423 lp->ignore_sigint = 0;
2424
2425 errno = 0;
2426 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2427 lp->stopped = 0;
2428 linux_nat_debug_printf
2429 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2430 target_pid_to_str (lp->ptid).c_str (),
2431 errno ? safe_strerror (errno) : "OK");
2432
2433 return stop_wait_callback (lp);
2434 }
2435
2436 maybe_clear_ignore_sigint (lp);
2437
2438 if (WSTOPSIG (status) != SIGSTOP)
2439 {
2440 /* The thread was stopped with a signal other than SIGSTOP. */
2441
2442 linux_nat_debug_printf ("Pending event %s in %s",
2443 status_to_str ((int) status).c_str (),
2444 target_pid_to_str (lp->ptid).c_str ());
2445
2446 /* Save the sigtrap event. */
2447 lp->status = status;
2448 gdb_assert (lp->signalled);
2449 save_stop_reason (lp);
2450 }
2451 else
2452 {
2453 /* We caught the SIGSTOP that we intended to catch. */
2454
2455 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2456 target_pid_to_str (lp->ptid).c_str ());
2457
2458 lp->signalled = 0;
2459
2460 /* If we are waiting for this stop so we can report the thread
2461 stopped then we need to record this status. Otherwise, we can
2462 now discard this stop event. */
2463 if (lp->last_resume_kind == resume_stop)
2464 {
2465 lp->status = status;
2466 save_stop_reason (lp);
2467 }
2468 }
2469 }
2470
2471 return 0;
2472 }
2473
2474 /* Return non-zero if LP has a wait status pending. Discard the
2475 pending event and resume the LWP if the event that originally
2476 caused the stop became uninteresting. */
2477
2478 static int
2479 status_callback (struct lwp_info *lp)
2480 {
2481 /* Only report a pending wait status if we pretend that this has
2482 indeed been resumed. */
2483 if (!lp->resumed)
2484 return 0;
2485
2486 if (!lwp_status_pending_p (lp))
2487 return 0;
2488
2489 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2490 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2491 {
2492 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2493 CORE_ADDR pc;
2494 int discard = 0;
2495
2496 pc = regcache_read_pc (regcache);
2497
2498 if (pc != lp->stop_pc)
2499 {
2500 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2501 target_pid_to_str (lp->ptid).c_str (),
2502 paddress (target_gdbarch (), lp->stop_pc),
2503 paddress (target_gdbarch (), pc));
2504 discard = 1;
2505 }
2506
2507 #if !USE_SIGTRAP_SIGINFO
2508 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2509 {
2510 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2511 target_pid_to_str (lp->ptid).c_str (),
2512 paddress (target_gdbarch (), lp->stop_pc));
2513
2514 discard = 1;
2515 }
2516 #endif
2517
2518 if (discard)
2519 {
2520 linux_nat_debug_printf ("pending event of %s cancelled.",
2521 target_pid_to_str (lp->ptid).c_str ());
2522
2523 lp->status = 0;
2524 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2525 return 0;
2526 }
2527 }
2528
2529 return 1;
2530 }
2531
2532 /* Count the LWP's that have had events. */
2533
2534 static int
2535 count_events_callback (struct lwp_info *lp, int *count)
2536 {
2537 gdb_assert (count != NULL);
2538
2539 /* Select only resumed LWPs that have an event pending. */
2540 if (lp->resumed && lwp_status_pending_p (lp))
2541 (*count)++;
2542
2543 return 0;
2544 }
2545
2546 /* Select the LWP (if any) that is currently being single-stepped. */
2547
2548 static int
2549 select_singlestep_lwp_callback (struct lwp_info *lp)
2550 {
2551 if (lp->last_resume_kind == resume_step
2552 && lp->status != 0)
2553 return 1;
2554 else
2555 return 0;
2556 }
2557
2558 /* Returns true if LP has a status pending. */
2559
2560 static int
2561 lwp_status_pending_p (struct lwp_info *lp)
2562 {
2563 /* We check for lp->waitstatus in addition to lp->status, because we
2564 can have pending process exits recorded in lp->status and
2565 W_EXITCODE(0,0) happens to be 0. */
2566 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2567 }
2568
2569 /* Select the Nth LWP that has had an event. */
2570
2571 static int
2572 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2573 {
2574 gdb_assert (selector != NULL);
2575
2576 /* Select only resumed LWPs that have an event pending. */
2577 if (lp->resumed && lwp_status_pending_p (lp))
2578 if ((*selector)-- == 0)
2579 return 1;
2580
2581 return 0;
2582 }
2583
2584 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2585 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2586 and save the result in the LWP's stop_reason field. If it stopped
2587 for a breakpoint, decrement the PC if necessary on the lwp's
2588 architecture. */
2589
2590 static void
2591 save_stop_reason (struct lwp_info *lp)
2592 {
2593 struct regcache *regcache;
2594 struct gdbarch *gdbarch;
2595 CORE_ADDR pc;
2596 CORE_ADDR sw_bp_pc;
2597 #if USE_SIGTRAP_SIGINFO
2598 siginfo_t siginfo;
2599 #endif
2600
2601 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2602 gdb_assert (lp->status != 0);
2603
2604 if (!linux_target->low_status_is_event (lp->status))
2605 return;
2606
2607 regcache = get_thread_regcache (linux_target, lp->ptid);
2608 gdbarch = regcache->arch ();
2609
2610 pc = regcache_read_pc (regcache);
2611 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2612
2613 #if USE_SIGTRAP_SIGINFO
2614 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2615 {
2616 if (siginfo.si_signo == SIGTRAP)
2617 {
2618 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2619 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2620 {
2621 /* The si_code is ambiguous on this arch -- check debug
2622 registers. */
2623 if (!check_stopped_by_watchpoint (lp))
2624 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2625 }
2626 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2627 {
2628 /* If we determine the LWP stopped for a SW breakpoint,
2629 trust it. Particularly don't check watchpoint
2630 registers, because, at least on s390, we'd find
2631 stopped-by-watchpoint as long as there's a watchpoint
2632 set. */
2633 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2634 }
2635 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2636 {
2637 /* This can indicate either a hardware breakpoint or
2638 hardware watchpoint. Check debug registers. */
2639 if (!check_stopped_by_watchpoint (lp))
2640 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2641 }
2642 else if (siginfo.si_code == TRAP_TRACE)
2643 {
2644 linux_nat_debug_printf ("%s stopped by trace",
2645 target_pid_to_str (lp->ptid).c_str ());
2646
2647 /* We may have single stepped an instruction that
2648 triggered a watchpoint. In that case, on some
2649 architectures (such as x86), instead of TRAP_HWBKPT,
2650 si_code indicates TRAP_TRACE, and we need to check
2651 the debug registers separately. */
2652 check_stopped_by_watchpoint (lp);
2653 }
2654 }
2655 }
2656 #else
2657 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2658 && software_breakpoint_inserted_here_p (regcache->aspace (),
2659 sw_bp_pc))
2660 {
2661 /* The LWP was either continued, or stepped a software
2662 breakpoint instruction. */
2663 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2664 }
2665
2666 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2667 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2668
2669 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2670 check_stopped_by_watchpoint (lp);
2671 #endif
2672
2673 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2674 {
2675 linux_nat_debug_printf ("%s stopped by software breakpoint",
2676 target_pid_to_str (lp->ptid).c_str ());
2677
2678 /* Back up the PC if necessary. */
2679 if (pc != sw_bp_pc)
2680 regcache_write_pc (regcache, sw_bp_pc);
2681
2682 /* Update this so we record the correct stop PC below. */
2683 pc = sw_bp_pc;
2684 }
2685 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2686 {
2687 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2688 target_pid_to_str (lp->ptid).c_str ());
2689 }
2690 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2691 {
2692 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2693 target_pid_to_str (lp->ptid).c_str ());
2694 }
2695
2696 lp->stop_pc = pc;
2697 }
2698
2699
2700 /* Returns true if the LWP had stopped for a software breakpoint. */
2701
2702 bool
2703 linux_nat_target::stopped_by_sw_breakpoint ()
2704 {
2705 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2706
2707 gdb_assert (lp != NULL);
2708
2709 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2710 }
2711
2712 /* Implement the supports_stopped_by_sw_breakpoint method. */
2713
2714 bool
2715 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2716 {
2717 return USE_SIGTRAP_SIGINFO;
2718 }
2719
2720 /* Returns true if the LWP had stopped for a hardware
2721 breakpoint/watchpoint. */
2722
2723 bool
2724 linux_nat_target::stopped_by_hw_breakpoint ()
2725 {
2726 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2727
2728 gdb_assert (lp != NULL);
2729
2730 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2731 }
2732
2733 /* Implement the supports_stopped_by_hw_breakpoint method. */
2734
2735 bool
2736 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2737 {
2738 return USE_SIGTRAP_SIGINFO;
2739 }
2740
2741 /* Select one LWP out of those that have events pending. */
2742
2743 static void
2744 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2745 {
2746 int num_events = 0;
2747 int random_selector;
2748 struct lwp_info *event_lp = NULL;
2749
2750 /* Record the wait status for the original LWP. */
2751 (*orig_lp)->status = *status;
2752
2753 /* In all-stop, give preference to the LWP that is being
2754 single-stepped. There will be at most one, and it will be the
2755 LWP that the core is most interested in. If we didn't do this,
2756 then we'd have to handle pending step SIGTRAPs somehow in case
2757 the core later continues the previously-stepped thread, as
2758 otherwise we'd report the pending SIGTRAP then, and the core, not
2759 having stepped the thread, wouldn't understand what the trap was
2760 for, and therefore would report it to the user as a random
2761 signal. */
2762 if (!target_is_non_stop_p ())
2763 {
2764 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2765 if (event_lp != NULL)
2766 {
2767 linux_nat_debug_printf ("Select single-step %s",
2768 target_pid_to_str (event_lp->ptid).c_str ());
2769 }
2770 }
2771
2772 if (event_lp == NULL)
2773 {
2774 /* Pick one at random, out of those which have had events. */
2775
2776 /* First see how many events we have. */
2777 iterate_over_lwps (filter,
2778 [&] (struct lwp_info *info)
2779 {
2780 return count_events_callback (info, &num_events);
2781 });
2782 gdb_assert (num_events > 0);
2783
2784 /* Now randomly pick a LWP out of those that have had
2785 events. */
2786 random_selector = (int)
2787 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2788
2789 if (num_events > 1)
2790 linux_nat_debug_printf ("Found %d events, selecting #%d",
2791 num_events, random_selector);
2792
2793 event_lp
2794 = (iterate_over_lwps
2795 (filter,
2796 [&] (struct lwp_info *info)
2797 {
2798 return select_event_lwp_callback (info,
2799 &random_selector);
2800 }));
2801 }
2802
2803 if (event_lp != NULL)
2804 {
2805 /* Switch the event LWP. */
2806 *orig_lp = event_lp;
2807 *status = event_lp->status;
2808 }
2809
2810 /* Flush the wait status for the event LWP. */
2811 (*orig_lp)->status = 0;
2812 }
2813
2814 /* Return non-zero if LP has been resumed. */
2815
2816 static int
2817 resumed_callback (struct lwp_info *lp)
2818 {
2819 return lp->resumed;
2820 }
2821
2822 /* Check if we should go on and pass this event to common code.
2823
2824 If so, save the status to the lwp_info structure associated to LWPID. */
2825
2826 static void
2827 linux_nat_filter_event (int lwpid, int status)
2828 {
2829 struct lwp_info *lp;
2830 int event = linux_ptrace_get_extended_event (status);
2831
2832 lp = find_lwp_pid (ptid_t (lwpid));
2833
2834 /* Check for stop events reported by a process we didn't already
2835 know about - anything not already in our LWP list.
2836
2837 If we're expecting to receive stopped processes after
2838 fork, vfork, and clone events, then we'll just add the
2839 new one to our list and go back to waiting for the event
2840 to be reported - the stopped process might be returned
2841 from waitpid before or after the event is.
2842
2843 But note the case of a non-leader thread exec'ing after the
2844 leader having exited, and gone from our lists. The non-leader
2845 thread changes its tid to the tgid. */
2846
2847 if (WIFSTOPPED (status) && lp == NULL
2848 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2849 {
2850 /* A multi-thread exec after we had seen the leader exiting. */
2851 linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid);
2852
2853 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2854 lp->stopped = 1;
2855 lp->resumed = 1;
2856 add_thread (linux_target, lp->ptid);
2857 }
2858
2859 if (WIFSTOPPED (status) && !lp)
2860 {
2861 linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list",
2862 (long) lwpid, status_to_str (status).c_str ());
2863 add_to_pid_list (&stopped_pids, lwpid, status);
2864 return;
2865 }
2866
2867 /* Make sure we don't report an event for the exit of an LWP not in
2868 our list, i.e. not part of the current process. This can happen
2869 if we detach from a program we originally forked and then it
2870 exits. */
2871 if (!WIFSTOPPED (status) && !lp)
2872 return;
2873
2874 /* This LWP is stopped now. (And if dead, this prevents it from
2875 ever being continued.) */
2876 lp->stopped = 1;
2877
2878 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2879 {
2880 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2881 int options = linux_nat_ptrace_options (inf->attach_flag);
2882
2883 linux_enable_event_reporting (lp->ptid.lwp (), options);
2884 lp->must_set_ptrace_flags = 0;
2885 }
2886
2887 /* Handle GNU/Linux's syscall SIGTRAPs. */
2888 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2889 {
2890 /* No longer need the sysgood bit. The ptrace event ends up
2891 recorded in lp->waitstatus if we care for it. We can carry
2892 on handling the event like a regular SIGTRAP from here
2893 on. */
2894 status = W_STOPCODE (SIGTRAP);
2895 if (linux_handle_syscall_trap (lp, 0))
2896 return;
2897 }
2898 else
2899 {
2900 /* Almost all other ptrace-stops are known to be outside of system
2901 calls, with further exceptions in linux_handle_extended_wait. */
2902 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2903 }
2904
2905 /* Handle GNU/Linux's extended waitstatus for trace events. */
2906 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2907 && linux_is_extended_waitstatus (status))
2908 {
2909 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2910
2911 if (linux_handle_extended_wait (lp, status))
2912 return;
2913 }
2914
2915 /* Check if the thread has exited. */
2916 if (WIFEXITED (status) || WIFSIGNALED (status))
2917 {
2918 if (!report_thread_events
2919 && num_lwps (lp->ptid.pid ()) > 1)
2920 {
2921 linux_nat_debug_printf ("%s exited.",
2922 target_pid_to_str (lp->ptid).c_str ());
2923
2924 /* If there is at least one more LWP, then the exit signal
2925 was not the end of the debugged application and should be
2926 ignored. */
2927 exit_lwp (lp);
2928 return;
2929 }
2930
2931 /* Note that even if the leader was ptrace-stopped, it can still
2932 exit, if e.g., some other thread brings down the whole
2933 process (calls `exit'). So don't assert that the lwp is
2934 resumed. */
2935 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2936 lp->ptid.lwp (), lp->resumed);
2937
2938 /* Dead LWP's aren't expected to reported a pending sigstop. */
2939 lp->signalled = 0;
2940
2941 /* Store the pending event in the waitstatus, because
2942 W_EXITCODE(0,0) == 0. */
2943 store_waitstatus (&lp->waitstatus, status);
2944 return;
2945 }
2946
2947 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2948 an attempt to stop an LWP. */
2949 if (lp->signalled
2950 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2951 {
2952 lp->signalled = 0;
2953
2954 if (lp->last_resume_kind == resume_stop)
2955 {
2956 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2957 target_pid_to_str (lp->ptid).c_str ());
2958 }
2959 else
2960 {
2961 /* This is a delayed SIGSTOP. Filter out the event. */
2962
2963 linux_nat_debug_printf
2964 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2965 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2966 target_pid_to_str (lp->ptid).c_str ());
2967
2968 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2969 gdb_assert (lp->resumed);
2970 return;
2971 }
2972 }
2973
2974 /* Make sure we don't report a SIGINT that we have already displayed
2975 for another thread. */
2976 if (lp->ignore_sigint
2977 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2978 {
2979 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2980 target_pid_to_str (lp->ptid).c_str ());
2981
2982 /* This is a delayed SIGINT. */
2983 lp->ignore_sigint = 0;
2984
2985 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2986 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2987 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2988 target_pid_to_str (lp->ptid).c_str ());
2989 gdb_assert (lp->resumed);
2990
2991 /* Discard the event. */
2992 return;
2993 }
2994
2995 /* Don't report signals that GDB isn't interested in, such as
2996 signals that are neither printed nor stopped upon. Stopping all
2997 threads can be a bit time-consuming, so if we want decent
2998 performance with heavily multi-threaded programs, especially when
2999 they're using a high frequency timer, we'd better avoid it if we
3000 can. */
3001 if (WIFSTOPPED (status))
3002 {
3003 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3004
3005 if (!target_is_non_stop_p ())
3006 {
3007 /* Only do the below in all-stop, as we currently use SIGSTOP
3008 to implement target_stop (see linux_nat_stop) in
3009 non-stop. */
3010 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3011 {
3012 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3013 forwarded to the entire process group, that is, all LWPs
3014 will receive it - unless they're using CLONE_THREAD to
3015 share signals. Since we only want to report it once, we
3016 mark it as ignored for all LWPs except this one. */
3017 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3018 lp->ignore_sigint = 0;
3019 }
3020 else
3021 maybe_clear_ignore_sigint (lp);
3022 }
3023
3024 /* When using hardware single-step, we need to report every signal.
3025 Otherwise, signals in pass_mask may be short-circuited
3026 except signals that might be caused by a breakpoint, or SIGSTOP
3027 if we sent the SIGSTOP and are waiting for it to arrive. */
3028 if (!lp->step
3029 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3030 && (WSTOPSIG (status) != SIGSTOP
3031 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3032 && !linux_wstatus_maybe_breakpoint (status))
3033 {
3034 linux_resume_one_lwp (lp, lp->step, signo);
3035 linux_nat_debug_printf
3036 ("%s %s, %s (preempt 'handle')",
3037 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3038 target_pid_to_str (lp->ptid).c_str (),
3039 (signo != GDB_SIGNAL_0
3040 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3041 return;
3042 }
3043 }
3044
3045 /* An interesting event. */
3046 gdb_assert (lp);
3047 lp->status = status;
3048 save_stop_reason (lp);
3049 }
3050
3051 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3052 their exits until all other threads in the group have exited. */
3053
3054 static void
3055 check_zombie_leaders (void)
3056 {
3057 for (inferior *inf : all_inferiors ())
3058 {
3059 struct lwp_info *leader_lp;
3060
3061 if (inf->pid == 0)
3062 continue;
3063
3064 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3065 if (leader_lp != NULL
3066 /* Check if there are other threads in the group, as we may
3067 have raced with the inferior simply exiting. */
3068 && num_lwps (inf->pid) > 1
3069 && linux_proc_pid_is_zombie (inf->pid))
3070 {
3071 linux_nat_debug_printf ("Thread group leader %d zombie "
3072 "(it exited, or another thread execd).",
3073 inf->pid);
3074
3075 /* A leader zombie can mean one of two things:
3076
3077 - It exited, and there's an exit status pending
3078 available, or only the leader exited (not the whole
3079 program). In the latter case, we can't waitpid the
3080 leader's exit status until all other threads are gone.
3081
3082 - There are 3 or more threads in the group, and a thread
3083 other than the leader exec'd. See comments on exec
3084 events at the top of the file. We could try
3085 distinguishing the exit and exec cases, by waiting once
3086 more, and seeing if something comes out, but it doesn't
3087 sound useful. The previous leader _does_ go away, and
3088 we'll re-add the new one once we see the exec event
3089 (which is just the same as what would happen if the
3090 previous leader did exit voluntarily before some other
3091 thread execs). */
3092
3093 linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid);
3094 exit_lwp (leader_lp);
3095 }
3096 }
3097 }
3098
3099 /* Convenience function that is called when the kernel reports an exit
3100 event. This decides whether to report the event to GDB as a
3101 process exit event, a thread exit event, or to suppress the
3102 event. */
3103
3104 static ptid_t
3105 filter_exit_event (struct lwp_info *event_child,
3106 struct target_waitstatus *ourstatus)
3107 {
3108 ptid_t ptid = event_child->ptid;
3109
3110 if (num_lwps (ptid.pid ()) > 1)
3111 {
3112 if (report_thread_events)
3113 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3114 else
3115 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3116
3117 exit_lwp (event_child);
3118 }
3119
3120 return ptid;
3121 }
3122
3123 static ptid_t
3124 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3125 target_wait_flags target_options)
3126 {
3127 sigset_t prev_mask;
3128 enum resume_kind last_resume_kind;
3129 struct lwp_info *lp;
3130 int status;
3131
3132 linux_nat_debug_printf ("enter");
3133
3134 /* The first time we get here after starting a new inferior, we may
3135 not have added it to the LWP list yet - this is the earliest
3136 moment at which we know its PID. */
3137 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3138 {
3139 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3140
3141 /* Upgrade the main thread's ptid. */
3142 thread_change_ptid (linux_target, ptid, lwp_ptid);
3143 lp = add_initial_lwp (lwp_ptid);
3144 lp->resumed = 1;
3145 }
3146
3147 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3148 block_child_signals (&prev_mask);
3149
3150 /* First check if there is a LWP with a wait status pending. */
3151 lp = iterate_over_lwps (ptid, status_callback);
3152 if (lp != NULL)
3153 {
3154 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3155 status_to_str (lp->status).c_str (),
3156 target_pid_to_str (lp->ptid).c_str ());
3157 }
3158
3159 /* But if we don't find a pending event, we'll have to wait. Always
3160 pull all events out of the kernel. We'll randomly select an
3161 event LWP out of all that have events, to prevent starvation. */
3162
3163 while (lp == NULL)
3164 {
3165 pid_t lwpid;
3166
3167 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3168 quirks:
3169
3170 - If the thread group leader exits while other threads in the
3171 thread group still exist, waitpid(TGID, ...) hangs. That
3172 waitpid won't return an exit status until the other threads
3173 in the group are reaped.
3174
3175 - When a non-leader thread execs, that thread just vanishes
3176 without reporting an exit (so we'd hang if we waited for it
3177 explicitly in that case). The exec event is reported to
3178 the TGID pid. */
3179
3180 errno = 0;
3181 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3182
3183 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3184 lwpid,
3185 errno ? safe_strerror (errno) : "ERRNO-OK");
3186
3187 if (lwpid > 0)
3188 {
3189 linux_nat_debug_printf ("waitpid %ld received %s",
3190 (long) lwpid,
3191 status_to_str (status).c_str ());
3192
3193 linux_nat_filter_event (lwpid, status);
3194 /* Retry until nothing comes out of waitpid. A single
3195 SIGCHLD can indicate more than one child stopped. */
3196 continue;
3197 }
3198
3199 /* Now that we've pulled all events out of the kernel, resume
3200 LWPs that don't have an interesting event to report. */
3201 iterate_over_lwps (minus_one_ptid,
3202 [] (struct lwp_info *info)
3203 {
3204 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3205 });
3206
3207 /* ... and find an LWP with a status to report to the core, if
3208 any. */
3209 lp = iterate_over_lwps (ptid, status_callback);
3210 if (lp != NULL)
3211 break;
3212
3213 /* Check for zombie thread group leaders. Those can't be reaped
3214 until all other threads in the thread group are. */
3215 check_zombie_leaders ();
3216
3217 /* If there are no resumed children left, bail. We'd be stuck
3218 forever in the sigsuspend call below otherwise. */
3219 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3220 {
3221 linux_nat_debug_printf ("exit (no resumed LWP)");
3222
3223 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3224
3225 restore_child_signals_mask (&prev_mask);
3226 return minus_one_ptid;
3227 }
3228
3229 /* No interesting event to report to the core. */
3230
3231 if (target_options & TARGET_WNOHANG)
3232 {
3233 linux_nat_debug_printf ("exit (ignore)");
3234
3235 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3236 restore_child_signals_mask (&prev_mask);
3237 return minus_one_ptid;
3238 }
3239
3240 /* We shouldn't end up here unless we want to try again. */
3241 gdb_assert (lp == NULL);
3242
3243 /* Block until we get an event reported with SIGCHLD. */
3244 wait_for_signal ();
3245 }
3246
3247 gdb_assert (lp);
3248
3249 status = lp->status;
3250 lp->status = 0;
3251
3252 if (!target_is_non_stop_p ())
3253 {
3254 /* Now stop all other LWP's ... */
3255 iterate_over_lwps (minus_one_ptid, stop_callback);
3256
3257 /* ... and wait until all of them have reported back that
3258 they're no longer running. */
3259 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3260 }
3261
3262 /* If we're not waiting for a specific LWP, choose an event LWP from
3263 among those that have had events. Giving equal priority to all
3264 LWPs that have had events helps prevent starvation. */
3265 if (ptid == minus_one_ptid || ptid.is_pid ())
3266 select_event_lwp (ptid, &lp, &status);
3267
3268 gdb_assert (lp != NULL);
3269
3270 /* Now that we've selected our final event LWP, un-adjust its PC if
3271 it was a software breakpoint, and we can't reliably support the
3272 "stopped by software breakpoint" stop reason. */
3273 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3274 && !USE_SIGTRAP_SIGINFO)
3275 {
3276 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3277 struct gdbarch *gdbarch = regcache->arch ();
3278 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3279
3280 if (decr_pc != 0)
3281 {
3282 CORE_ADDR pc;
3283
3284 pc = regcache_read_pc (regcache);
3285 regcache_write_pc (regcache, pc + decr_pc);
3286 }
3287 }
3288
3289 /* We'll need this to determine whether to report a SIGSTOP as
3290 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3291 clears it. */
3292 last_resume_kind = lp->last_resume_kind;
3293
3294 if (!target_is_non_stop_p ())
3295 {
3296 /* In all-stop, from the core's perspective, all LWPs are now
3297 stopped until a new resume action is sent over. */
3298 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3299 }
3300 else
3301 {
3302 resume_clear_callback (lp);
3303 }
3304
3305 if (linux_target->low_status_is_event (status))
3306 {
3307 linux_nat_debug_printf ("trap ptid is %s.",
3308 target_pid_to_str (lp->ptid).c_str ());
3309 }
3310
3311 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3312 {
3313 *ourstatus = lp->waitstatus;
3314 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3315 }
3316 else
3317 store_waitstatus (ourstatus, status);
3318
3319 linux_nat_debug_printf ("exit");
3320
3321 restore_child_signals_mask (&prev_mask);
3322
3323 if (last_resume_kind == resume_stop
3324 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3325 && WSTOPSIG (status) == SIGSTOP)
3326 {
3327 /* A thread that has been requested to stop by GDB with
3328 target_stop, and it stopped cleanly, so report as SIG0. The
3329 use of SIGSTOP is an implementation detail. */
3330 ourstatus->value.sig = GDB_SIGNAL_0;
3331 }
3332
3333 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3334 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3335 lp->core = -1;
3336 else
3337 lp->core = linux_common_core_of_thread (lp->ptid);
3338
3339 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3340 return filter_exit_event (lp, ourstatus);
3341
3342 return lp->ptid;
3343 }
3344
3345 /* Resume LWPs that are currently stopped without any pending status
3346 to report, but are resumed from the core's perspective. */
3347
3348 static int
3349 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3350 {
3351 if (!lp->stopped)
3352 {
3353 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3354 target_pid_to_str (lp->ptid).c_str ());
3355 }
3356 else if (!lp->resumed)
3357 {
3358 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3359 target_pid_to_str (lp->ptid).c_str ());
3360 }
3361 else if (lwp_status_pending_p (lp))
3362 {
3363 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3364 target_pid_to_str (lp->ptid).c_str ());
3365 }
3366 else
3367 {
3368 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3369 struct gdbarch *gdbarch = regcache->arch ();
3370
3371 try
3372 {
3373 CORE_ADDR pc = regcache_read_pc (regcache);
3374 int leave_stopped = 0;
3375
3376 /* Don't bother if there's a breakpoint at PC that we'd hit
3377 immediately, and we're not waiting for this LWP. */
3378 if (!lp->ptid.matches (wait_ptid))
3379 {
3380 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3381 leave_stopped = 1;
3382 }
3383
3384 if (!leave_stopped)
3385 {
3386 linux_nat_debug_printf
3387 ("resuming stopped-resumed LWP %s at %s: step=%d",
3388 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc),
3389 lp->step);
3390
3391 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3392 }
3393 }
3394 catch (const gdb_exception_error &ex)
3395 {
3396 if (!check_ptrace_stopped_lwp_gone (lp))
3397 throw;
3398 }
3399 }
3400
3401 return 0;
3402 }
3403
3404 ptid_t
3405 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3406 target_wait_flags target_options)
3407 {
3408 ptid_t event_ptid;
3409
3410 linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
3411 target_options_to_string (target_options).c_str ());
3412
3413 /* Flush the async file first. */
3414 if (target_is_async_p ())
3415 async_file_flush ();
3416
3417 /* Resume LWPs that are currently stopped without any pending status
3418 to report, but are resumed from the core's perspective. LWPs get
3419 in this state if we find them stopping at a time we're not
3420 interested in reporting the event (target_wait on a
3421 specific_process, for example, see linux_nat_wait_1), and
3422 meanwhile the event became uninteresting. Don't bother resuming
3423 LWPs we're not going to wait for if they'd stop immediately. */
3424 if (target_is_non_stop_p ())
3425 iterate_over_lwps (minus_one_ptid,
3426 [=] (struct lwp_info *info)
3427 {
3428 return resume_stopped_resumed_lwps (info, ptid);
3429 });
3430
3431 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3432
3433 /* If we requested any event, and something came out, assume there
3434 may be more. If we requested a specific lwp or process, also
3435 assume there may be more. */
3436 if (target_is_async_p ()
3437 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3438 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3439 || ptid != minus_one_ptid))
3440 async_file_mark ();
3441
3442 return event_ptid;
3443 }
3444
3445 /* Kill one LWP. */
3446
3447 static void
3448 kill_one_lwp (pid_t pid)
3449 {
3450 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3451
3452 errno = 0;
3453 kill_lwp (pid, SIGKILL);
3454
3455 if (debug_linux_nat)
3456 {
3457 int save_errno = errno;
3458
3459 linux_nat_debug_printf
3460 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3461 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3462 }
3463
3464 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3465
3466 errno = 0;
3467 ptrace (PTRACE_KILL, pid, 0, 0);
3468 if (debug_linux_nat)
3469 {
3470 int save_errno = errno;
3471
3472 linux_nat_debug_printf
3473 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3474 save_errno ? safe_strerror (save_errno) : "OK");
3475 }
3476 }
3477
3478 /* Wait for an LWP to die. */
3479
3480 static void
3481 kill_wait_one_lwp (pid_t pid)
3482 {
3483 pid_t res;
3484
3485 /* We must make sure that there are no pending events (delayed
3486 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3487 program doesn't interfere with any following debugging session. */
3488
3489 do
3490 {
3491 res = my_waitpid (pid, NULL, __WALL);
3492 if (res != (pid_t) -1)
3493 {
3494 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3495
3496 /* The Linux kernel sometimes fails to kill a thread
3497 completely after PTRACE_KILL; that goes from the stop
3498 point in do_fork out to the one in get_signal_to_deliver
3499 and waits again. So kill it again. */
3500 kill_one_lwp (pid);
3501 }
3502 }
3503 while (res == pid);
3504
3505 gdb_assert (res == -1 && errno == ECHILD);
3506 }
3507
3508 /* Callback for iterate_over_lwps. */
3509
3510 static int
3511 kill_callback (struct lwp_info *lp)
3512 {
3513 kill_one_lwp (lp->ptid.lwp ());
3514 return 0;
3515 }
3516
3517 /* Callback for iterate_over_lwps. */
3518
3519 static int
3520 kill_wait_callback (struct lwp_info *lp)
3521 {
3522 kill_wait_one_lwp (lp->ptid.lwp ());
3523 return 0;
3524 }
3525
3526 /* Kill the fork children of any threads of inferior INF that are
3527 stopped at a fork event. */
3528
3529 static void
3530 kill_unfollowed_fork_children (struct inferior *inf)
3531 {
3532 for (thread_info *thread : inf->non_exited_threads ())
3533 {
3534 struct target_waitstatus *ws = &thread->pending_follow;
3535
3536 if (ws->kind == TARGET_WAITKIND_FORKED
3537 || ws->kind == TARGET_WAITKIND_VFORKED)
3538 {
3539 ptid_t child_ptid = ws->value.related_pid;
3540 int child_pid = child_ptid.pid ();
3541 int child_lwp = child_ptid.lwp ();
3542
3543 kill_one_lwp (child_lwp);
3544 kill_wait_one_lwp (child_lwp);
3545
3546 /* Let the arch-specific native code know this process is
3547 gone. */
3548 linux_target->low_forget_process (child_pid);
3549 }
3550 }
3551 }
3552
3553 void
3554 linux_nat_target::kill ()
3555 {
3556 /* If we're stopped while forking and we haven't followed yet,
3557 kill the other task. We need to do this first because the
3558 parent will be sleeping if this is a vfork. */
3559 kill_unfollowed_fork_children (current_inferior ());
3560
3561 if (forks_exist_p ())
3562 linux_fork_killall ();
3563 else
3564 {
3565 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3566
3567 /* Stop all threads before killing them, since ptrace requires
3568 that the thread is stopped to successfully PTRACE_KILL. */
3569 iterate_over_lwps (ptid, stop_callback);
3570 /* ... and wait until all of them have reported back that
3571 they're no longer running. */
3572 iterate_over_lwps (ptid, stop_wait_callback);
3573
3574 /* Kill all LWP's ... */
3575 iterate_over_lwps (ptid, kill_callback);
3576
3577 /* ... and wait until we've flushed all events. */
3578 iterate_over_lwps (ptid, kill_wait_callback);
3579 }
3580
3581 target_mourn_inferior (inferior_ptid);
3582 }
3583
3584 void
3585 linux_nat_target::mourn_inferior ()
3586 {
3587 int pid = inferior_ptid.pid ();
3588
3589 purge_lwp_list (pid);
3590
3591 /* Close the /proc/<pid>/mem file if it was open for this
3592 inferior. */
3593 maybe_close_proc_mem_file (pid);
3594
3595 if (! forks_exist_p ())
3596 /* Normal case, no other forks available. */
3597 inf_ptrace_target::mourn_inferior ();
3598 else
3599 /* Multi-fork case. The current inferior_ptid has exited, but
3600 there are other viable forks to debug. Delete the exiting
3601 one and context-switch to the first available. */
3602 linux_fork_mourn_inferior ();
3603
3604 /* Let the arch-specific native code know this process is gone. */
3605 linux_target->low_forget_process (pid);
3606 }
3607
3608 /* Convert a native/host siginfo object, into/from the siginfo in the
3609 layout of the inferiors' architecture. */
3610
3611 static void
3612 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3613 {
3614 /* If the low target didn't do anything, then just do a straight
3615 memcpy. */
3616 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3617 {
3618 if (direction == 1)
3619 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3620 else
3621 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3622 }
3623 }
3624
3625 static enum target_xfer_status
3626 linux_xfer_siginfo (enum target_object object,
3627 const char *annex, gdb_byte *readbuf,
3628 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3629 ULONGEST *xfered_len)
3630 {
3631 int pid;
3632 siginfo_t siginfo;
3633 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3634
3635 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3636 gdb_assert (readbuf || writebuf);
3637
3638 pid = inferior_ptid.lwp ();
3639 if (pid == 0)
3640 pid = inferior_ptid.pid ();
3641
3642 if (offset > sizeof (siginfo))
3643 return TARGET_XFER_E_IO;
3644
3645 errno = 0;
3646 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3647 if (errno != 0)
3648 return TARGET_XFER_E_IO;
3649
3650 /* When GDB is built as a 64-bit application, ptrace writes into
3651 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3652 inferior with a 64-bit GDB should look the same as debugging it
3653 with a 32-bit GDB, we need to convert it. GDB core always sees
3654 the converted layout, so any read/write will have to be done
3655 post-conversion. */
3656 siginfo_fixup (&siginfo, inf_siginfo, 0);
3657
3658 if (offset + len > sizeof (siginfo))
3659 len = sizeof (siginfo) - offset;
3660
3661 if (readbuf != NULL)
3662 memcpy (readbuf, inf_siginfo + offset, len);
3663 else
3664 {
3665 memcpy (inf_siginfo + offset, writebuf, len);
3666
3667 /* Convert back to ptrace layout before flushing it out. */
3668 siginfo_fixup (&siginfo, inf_siginfo, 1);
3669
3670 errno = 0;
3671 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3672 if (errno != 0)
3673 return TARGET_XFER_E_IO;
3674 }
3675
3676 *xfered_len = len;
3677 return TARGET_XFER_OK;
3678 }
3679
3680 static enum target_xfer_status
3681 linux_nat_xfer_osdata (enum target_object object,
3682 const char *annex, gdb_byte *readbuf,
3683 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3684 ULONGEST *xfered_len);
3685
3686 static enum target_xfer_status
3687 linux_proc_xfer_memory_partial (gdb_byte *readbuf, const gdb_byte *writebuf,
3688 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3689
3690 enum target_xfer_status
3691 linux_nat_target::xfer_partial (enum target_object object,
3692 const char *annex, gdb_byte *readbuf,
3693 const gdb_byte *writebuf,
3694 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3695 {
3696 if (object == TARGET_OBJECT_SIGNAL_INFO)
3697 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3698 offset, len, xfered_len);
3699
3700 /* The target is connected but no live inferior is selected. Pass
3701 this request down to a lower stratum (e.g., the executable
3702 file). */
3703 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3704 return TARGET_XFER_EOF;
3705
3706 if (object == TARGET_OBJECT_AUXV)
3707 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3708 offset, len, xfered_len);
3709
3710 if (object == TARGET_OBJECT_OSDATA)
3711 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3712 offset, len, xfered_len);
3713
3714 if (object == TARGET_OBJECT_MEMORY)
3715 {
3716 /* GDB calculates all addresses in the largest possible address
3717 width. The address width must be masked before its final use
3718 by linux_proc_xfer_partial.
3719
3720 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3721 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3722
3723 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3724 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3725
3726 return linux_proc_xfer_memory_partial (readbuf, writebuf,
3727 offset, len, xfered_len);
3728 }
3729
3730 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3731 offset, len, xfered_len);
3732 }
3733
3734 bool
3735 linux_nat_target::thread_alive (ptid_t ptid)
3736 {
3737 /* As long as a PTID is in lwp list, consider it alive. */
3738 return find_lwp_pid (ptid) != NULL;
3739 }
3740
3741 /* Implement the to_update_thread_list target method for this
3742 target. */
3743
3744 void
3745 linux_nat_target::update_thread_list ()
3746 {
3747 struct lwp_info *lwp;
3748
3749 /* We add/delete threads from the list as clone/exit events are
3750 processed, so just try deleting exited threads still in the
3751 thread list. */
3752 delete_exited_threads ();
3753
3754 /* Update the processor core that each lwp/thread was last seen
3755 running on. */
3756 ALL_LWPS (lwp)
3757 {
3758 /* Avoid accessing /proc if the thread hasn't run since we last
3759 time we fetched the thread's core. Accessing /proc becomes
3760 noticeably expensive when we have thousands of LWPs. */
3761 if (lwp->core == -1)
3762 lwp->core = linux_common_core_of_thread (lwp->ptid);
3763 }
3764 }
3765
3766 std::string
3767 linux_nat_target::pid_to_str (ptid_t ptid)
3768 {
3769 if (ptid.lwp_p ()
3770 && (ptid.pid () != ptid.lwp ()
3771 || num_lwps (ptid.pid ()) > 1))
3772 return string_printf ("LWP %ld", ptid.lwp ());
3773
3774 return normal_pid_to_str (ptid);
3775 }
3776
3777 const char *
3778 linux_nat_target::thread_name (struct thread_info *thr)
3779 {
3780 return linux_proc_tid_get_name (thr->ptid);
3781 }
3782
3783 /* Accepts an integer PID; Returns a string representing a file that
3784 can be opened to get the symbols for the child process. */
3785
3786 char *
3787 linux_nat_target::pid_to_exec_file (int pid)
3788 {
3789 return linux_proc_pid_to_exec_file (pid);
3790 }
3791
3792 /* Keep the /proc/<pid>/mem file open between memory accesses, as a
3793 cache to avoid constantly closing/opening the file in the common
3794 case of multiple memory reads/writes from/to the same inferior.
3795 Note we don't keep a file open per inferior to avoid keeping too
3796 many file descriptors open, which can run into resource limits. */
3797 static struct
3798 {
3799 /* The LWP this open file is for. Note that after opening the file,
3800 even if the thread subsequently exits, the open file is still
3801 usable for accessing memory. It's only when the whole process
3802 exits or execs that the file becomes invalid (at which point
3803 reads/writes return EOF). */
3804 ptid_t ptid;
3805
3806 /* The file descriptor. -1 if file is not open. */
3807 int fd = -1;
3808
3809 /* Close FD and clear it to -1. */
3810 void close ()
3811 {
3812 linux_nat_debug_printf ("closing fd %d for /proc/%d/task/%ld/mem\n",
3813 fd, ptid.pid (), ptid.lwp ());
3814 ::close (fd);
3815 fd = -1;
3816 }
3817 } last_proc_mem_file;
3818
3819 /* Close the /proc/<pid>/mem file if its LWP matches PTID. */
3820
3821 static void
3822 maybe_close_proc_mem_file (pid_t pid)
3823 {
3824 if (last_proc_mem_file.ptid.pid () == pid)
3825 last_proc_mem_file.close ();
3826 }
3827
3828 /* Helper for linux_proc_xfer_memory_partial. Accesses /proc via
3829 PTID. Returns -1 on error, with errno set. Returns number of
3830 read/written bytes otherwise. Returns 0 on EOF, which indicates
3831 the address space is gone (because the process exited or
3832 execed). */
3833
3834 static ssize_t
3835 linux_proc_xfer_memory_partial_pid (ptid_t ptid,
3836 gdb_byte *readbuf, const gdb_byte *writebuf,
3837 ULONGEST offset, LONGEST len)
3838 {
3839 ssize_t ret;
3840
3841 /* As long as we're hitting the same inferior, the previously open
3842 file is good, even if the thread it was open for exits. */
3843 if (last_proc_mem_file.fd != -1
3844 && last_proc_mem_file.ptid.pid () != ptid.pid ())
3845 last_proc_mem_file.close ();
3846
3847 if (last_proc_mem_file.fd == -1)
3848 {
3849 /* Actually use /proc/<pid>/task/<lwp>/mem instead of
3850 /proc/<lwp>/mem to avoid PID-reuse races, as we may be trying
3851 to read memory via a thread which we've already reaped.
3852 /proc/<lwp>/mem could open a file for the wrong process. If
3853 the LWPID is reused for the same process it's OK, we can read
3854 memory through it just fine. If the LWPID is reused for a
3855 different process, then the open will fail because the path
3856 won't exist. */
3857 char filename[64];
3858 xsnprintf (filename, sizeof filename,
3859 "/proc/%d/task/%ld/mem", ptid.pid (), ptid.lwp ());
3860
3861 last_proc_mem_file.fd
3862 = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0);
3863
3864 if (last_proc_mem_file.fd == -1)
3865 {
3866 linux_nat_debug_printf ("opening %s failed: %s (%d)\n",
3867 filename, safe_strerror (errno), errno);
3868 return -1;
3869 }
3870 last_proc_mem_file.ptid = ptid;
3871
3872 linux_nat_debug_printf ("opened fd %d for %s\n",
3873 last_proc_mem_file.fd, filename);
3874 }
3875
3876 int fd = last_proc_mem_file.fd;
3877
3878 /* Use pread64/pwrite64 if available, since they save a syscall and can
3879 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3880 debugging a SPARC64 application). */
3881 #ifdef HAVE_PREAD64
3882 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3883 : pwrite64 (fd, writebuf, len, offset));
3884 #else
3885 ret = lseek (fd, offset, SEEK_SET);
3886 if (ret != -1)
3887 ret = (readbuf ? read (fd, readbuf, len)
3888 : write (fd, writebuf, len));
3889 #endif
3890
3891 if (ret == -1)
3892 {
3893 linux_nat_debug_printf ("accessing fd %d for pid %ld failed: %s (%d)\n",
3894 fd, ptid.lwp (),
3895 safe_strerror (errno), errno);
3896 }
3897 else if (ret == 0)
3898 {
3899 linux_nat_debug_printf ("accessing fd %d for pid %ld got EOF\n",
3900 fd, ptid.lwp ());
3901 }
3902
3903 return ret;
3904 }
3905
3906 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3907 Because we can use a single read/write call, this can be much more
3908 efficient than banging away at PTRACE_PEEKTEXT. Also, unlike
3909 PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running
3910 threads. */
3911
3912 static enum target_xfer_status
3913 linux_proc_xfer_memory_partial (gdb_byte *readbuf, const gdb_byte *writebuf,
3914 ULONGEST offset, LONGEST len,
3915 ULONGEST *xfered_len)
3916 {
3917 /* Unlike PTRACE_PEEKTEXT/PTRACE_POKETEXT, reading/writing from/to
3918 /proc/<pid>/mem works with running threads, and even exited
3919 threads if the file was already open. If we need to open or
3920 reopen the /proc file though, we may get an EACCES error
3921 ("Permission denied"), meaning the thread is gone but its exit
3922 status isn't reaped yet, or ENOENT if the thread is gone and
3923 already reaped. In that case, just try opening the file for
3924 another thread in the process. If all threads fail, then it must
3925 mean the whole process exited, in which case there's nothing else
3926 to do and we just fail the memory access.
3927
3928 Note we don't simply always access via the leader thread because
3929 the leader may exit without exiting the whole process. See
3930 gdb.threads/leader-exit.exp, for example. */
3931
3932 /* It's frequently the case that the selected thread is stopped, and
3933 is thus not likely to exit (unless something kills the process
3934 outside our control, with e.g., SIGKILL). Give that one a try
3935 first.
3936
3937 Also, inferior_ptid may actually point at an LWP not in lwp_list.
3938 This happens when we're detaching from a fork child that we don't
3939 want to debug ("set detach-on-fork on"), and the breakpoints
3940 module uninstalls breakpoints from the fork child. Which process
3941 to access is given by inferior_ptid. */
3942 int res = linux_proc_xfer_memory_partial_pid (inferior_ptid,
3943 readbuf, writebuf,
3944 offset, len);
3945 if (res == 0)
3946 {
3947 /* EOF means the address space is gone, the whole
3948 process exited or execed. */
3949 return TARGET_XFER_EOF;
3950 }
3951 else if (res != -1)
3952 {
3953 *xfered_len = res;
3954 return TARGET_XFER_OK;
3955 }
3956 else
3957 {
3958 /* If we simply raced with the thread exiting (EACCES), or the
3959 current thread is THREAD_EXITED (ENOENT), try some other
3960 thread. It's easier to handle an ENOENT failure than check
3961 for THREAD_EXIT upfront because this function is called
3962 before a thread for inferior_ptid is added to the thread
3963 list. */
3964 if (errno != EACCES && errno != ENOENT)
3965 return TARGET_XFER_EOF;
3966 }
3967
3968 int cur_pid = current_inferior ()->pid;
3969
3970 if (inferior_ptid.pid () != cur_pid)
3971 {
3972 /* We're accessing a fork child, and the access above failed.
3973 Don't bother iterating the LWP list, since there's no other
3974 LWP for this process. */
3975 return TARGET_XFER_EOF;
3976 }
3977
3978 /* Iterate over LWPs of the current inferior, trying to access
3979 memory through one of them. */
3980 for (lwp_info *lp = lwp_list; lp != nullptr; lp = lp->next)
3981 {
3982 if (lp->ptid.pid () != cur_pid)
3983 continue;
3984
3985 res = linux_proc_xfer_memory_partial_pid (lp->ptid,
3986 readbuf, writebuf,
3987 offset, len);
3988
3989 if (res == 0)
3990 {
3991 /* EOF means the address space is gone, the whole process
3992 exited or execed. */
3993 return TARGET_XFER_EOF;
3994 }
3995 else if (res == -1)
3996 {
3997 if (errno == EACCES)
3998 {
3999 /* This LWP is gone, try another one. */
4000 continue;
4001 }
4002
4003 return TARGET_XFER_EOF;
4004 }
4005
4006 *xfered_len = res;
4007 return TARGET_XFER_OK;
4008 }
4009
4010 /* No luck. */
4011 return TARGET_XFER_EOF;
4012 }
4013
4014 /* Parse LINE as a signal set and add its set bits to SIGS. */
4015
4016 static void
4017 add_line_to_sigset (const char *line, sigset_t *sigs)
4018 {
4019 int len = strlen (line) - 1;
4020 const char *p;
4021 int signum;
4022
4023 if (line[len] != '\n')
4024 error (_("Could not parse signal set: %s"), line);
4025
4026 p = line;
4027 signum = len * 4;
4028 while (len-- > 0)
4029 {
4030 int digit;
4031
4032 if (*p >= '0' && *p <= '9')
4033 digit = *p - '0';
4034 else if (*p >= 'a' && *p <= 'f')
4035 digit = *p - 'a' + 10;
4036 else
4037 error (_("Could not parse signal set: %s"), line);
4038
4039 signum -= 4;
4040
4041 if (digit & 1)
4042 sigaddset (sigs, signum + 1);
4043 if (digit & 2)
4044 sigaddset (sigs, signum + 2);
4045 if (digit & 4)
4046 sigaddset (sigs, signum + 3);
4047 if (digit & 8)
4048 sigaddset (sigs, signum + 4);
4049
4050 p++;
4051 }
4052 }
4053
4054 /* Find process PID's pending signals from /proc/pid/status and set
4055 SIGS to match. */
4056
4057 void
4058 linux_proc_pending_signals (int pid, sigset_t *pending,
4059 sigset_t *blocked, sigset_t *ignored)
4060 {
4061 char buffer[PATH_MAX], fname[PATH_MAX];
4062
4063 sigemptyset (pending);
4064 sigemptyset (blocked);
4065 sigemptyset (ignored);
4066 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4067 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4068 if (procfile == NULL)
4069 error (_("Could not open %s"), fname);
4070
4071 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4072 {
4073 /* Normal queued signals are on the SigPnd line in the status
4074 file. However, 2.6 kernels also have a "shared" pending
4075 queue for delivering signals to a thread group, so check for
4076 a ShdPnd line also.
4077
4078 Unfortunately some Red Hat kernels include the shared pending
4079 queue but not the ShdPnd status field. */
4080
4081 if (startswith (buffer, "SigPnd:\t"))
4082 add_line_to_sigset (buffer + 8, pending);
4083 else if (startswith (buffer, "ShdPnd:\t"))
4084 add_line_to_sigset (buffer + 8, pending);
4085 else if (startswith (buffer, "SigBlk:\t"))
4086 add_line_to_sigset (buffer + 8, blocked);
4087 else if (startswith (buffer, "SigIgn:\t"))
4088 add_line_to_sigset (buffer + 8, ignored);
4089 }
4090 }
4091
4092 static enum target_xfer_status
4093 linux_nat_xfer_osdata (enum target_object object,
4094 const char *annex, gdb_byte *readbuf,
4095 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4096 ULONGEST *xfered_len)
4097 {
4098 gdb_assert (object == TARGET_OBJECT_OSDATA);
4099
4100 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4101 if (*xfered_len == 0)
4102 return TARGET_XFER_EOF;
4103 else
4104 return TARGET_XFER_OK;
4105 }
4106
4107 std::vector<static_tracepoint_marker>
4108 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4109 {
4110 char s[IPA_CMD_BUF_SIZE];
4111 int pid = inferior_ptid.pid ();
4112 std::vector<static_tracepoint_marker> markers;
4113 const char *p = s;
4114 ptid_t ptid = ptid_t (pid, 0, 0);
4115 static_tracepoint_marker marker;
4116
4117 /* Pause all */
4118 target_stop (ptid);
4119
4120 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4121 s[sizeof ("qTfSTM")] = 0;
4122
4123 agent_run_command (pid, s, strlen (s) + 1);
4124
4125 /* Unpause all. */
4126 SCOPE_EXIT { target_continue_no_signal (ptid); };
4127
4128 while (*p++ == 'm')
4129 {
4130 do
4131 {
4132 parse_static_tracepoint_marker_definition (p, &p, &marker);
4133
4134 if (strid == NULL || marker.str_id == strid)
4135 markers.push_back (std::move (marker));
4136 }
4137 while (*p++ == ','); /* comma-separated list */
4138
4139 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4140 s[sizeof ("qTsSTM")] = 0;
4141 agent_run_command (pid, s, strlen (s) + 1);
4142 p = s;
4143 }
4144
4145 return markers;
4146 }
4147
4148 /* target_is_async_p implementation. */
4149
4150 bool
4151 linux_nat_target::is_async_p ()
4152 {
4153 return linux_is_async_p ();
4154 }
4155
4156 /* target_can_async_p implementation. */
4157
4158 bool
4159 linux_nat_target::can_async_p ()
4160 {
4161 /* We're always async, unless the user explicitly prevented it with the
4162 "maint set target-async" command. */
4163 return target_async_permitted;
4164 }
4165
4166 bool
4167 linux_nat_target::supports_non_stop ()
4168 {
4169 return true;
4170 }
4171
4172 /* to_always_non_stop_p implementation. */
4173
4174 bool
4175 linux_nat_target::always_non_stop_p ()
4176 {
4177 return true;
4178 }
4179
4180 bool
4181 linux_nat_target::supports_multi_process ()
4182 {
4183 return true;
4184 }
4185
4186 bool
4187 linux_nat_target::supports_disable_randomization ()
4188 {
4189 return true;
4190 }
4191
4192 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4193 so we notice when any child changes state, and notify the
4194 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4195 above to wait for the arrival of a SIGCHLD. */
4196
4197 static void
4198 sigchld_handler (int signo)
4199 {
4200 int old_errno = errno;
4201
4202 if (debug_linux_nat)
4203 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4204
4205 if (signo == SIGCHLD
4206 && linux_nat_event_pipe[0] != -1)
4207 async_file_mark (); /* Let the event loop know that there are
4208 events to handle. */
4209
4210 errno = old_errno;
4211 }
4212
4213 /* Callback registered with the target events file descriptor. */
4214
4215 static void
4216 handle_target_event (int error, gdb_client_data client_data)
4217 {
4218 inferior_event_handler (INF_REG_EVENT);
4219 }
4220
4221 /* Create/destroy the target events pipe. Returns previous state. */
4222
4223 static int
4224 linux_async_pipe (int enable)
4225 {
4226 int previous = linux_is_async_p ();
4227
4228 if (previous != enable)
4229 {
4230 sigset_t prev_mask;
4231
4232 /* Block child signals while we create/destroy the pipe, as
4233 their handler writes to it. */
4234 block_child_signals (&prev_mask);
4235
4236 if (enable)
4237 {
4238 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4239 internal_error (__FILE__, __LINE__,
4240 "creating event pipe failed.");
4241
4242 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4243 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4244 }
4245 else
4246 {
4247 close (linux_nat_event_pipe[0]);
4248 close (linux_nat_event_pipe[1]);
4249 linux_nat_event_pipe[0] = -1;
4250 linux_nat_event_pipe[1] = -1;
4251 }
4252
4253 restore_child_signals_mask (&prev_mask);
4254 }
4255
4256 return previous;
4257 }
4258
4259 int
4260 linux_nat_target::async_wait_fd ()
4261 {
4262 return linux_nat_event_pipe[0];
4263 }
4264
4265 /* target_async implementation. */
4266
4267 void
4268 linux_nat_target::async (int enable)
4269 {
4270 if (enable)
4271 {
4272 if (!linux_async_pipe (1))
4273 {
4274 add_file_handler (linux_nat_event_pipe[0],
4275 handle_target_event, NULL,
4276 "linux-nat");
4277 /* There may be pending events to handle. Tell the event loop
4278 to poll them. */
4279 async_file_mark ();
4280 }
4281 }
4282 else
4283 {
4284 delete_file_handler (linux_nat_event_pipe[0]);
4285 linux_async_pipe (0);
4286 }
4287 return;
4288 }
4289
4290 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4291 event came out. */
4292
4293 static int
4294 linux_nat_stop_lwp (struct lwp_info *lwp)
4295 {
4296 if (!lwp->stopped)
4297 {
4298 linux_nat_debug_printf ("running -> suspending %s",
4299 target_pid_to_str (lwp->ptid).c_str ());
4300
4301
4302 if (lwp->last_resume_kind == resume_stop)
4303 {
4304 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4305 lwp->ptid.lwp ());
4306 return 0;
4307 }
4308
4309 stop_callback (lwp);
4310 lwp->last_resume_kind = resume_stop;
4311 }
4312 else
4313 {
4314 /* Already known to be stopped; do nothing. */
4315
4316 if (debug_linux_nat)
4317 {
4318 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4319 linux_nat_debug_printf ("already stopped/stop_requested %s",
4320 target_pid_to_str (lwp->ptid).c_str ());
4321 else
4322 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4323 target_pid_to_str (lwp->ptid).c_str ());
4324 }
4325 }
4326 return 0;
4327 }
4328
4329 void
4330 linux_nat_target::stop (ptid_t ptid)
4331 {
4332 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4333 }
4334
4335 void
4336 linux_nat_target::close ()
4337 {
4338 /* Unregister from the event loop. */
4339 if (is_async_p ())
4340 async (0);
4341
4342 inf_ptrace_target::close ();
4343 }
4344
4345 /* When requests are passed down from the linux-nat layer to the
4346 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4347 used. The address space pointer is stored in the inferior object,
4348 but the common code that is passed such ptid can't tell whether
4349 lwpid is a "main" process id or not (it assumes so). We reverse
4350 look up the "main" process id from the lwp here. */
4351
4352 struct address_space *
4353 linux_nat_target::thread_address_space (ptid_t ptid)
4354 {
4355 struct lwp_info *lwp;
4356 struct inferior *inf;
4357 int pid;
4358
4359 if (ptid.lwp () == 0)
4360 {
4361 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4362 tgid. */
4363 lwp = find_lwp_pid (ptid);
4364 pid = lwp->ptid.pid ();
4365 }
4366 else
4367 {
4368 /* A (pid,lwpid,0) ptid. */
4369 pid = ptid.pid ();
4370 }
4371
4372 inf = find_inferior_pid (this, pid);
4373 gdb_assert (inf != NULL);
4374 return inf->aspace;
4375 }
4376
4377 /* Return the cached value of the processor core for thread PTID. */
4378
4379 int
4380 linux_nat_target::core_of_thread (ptid_t ptid)
4381 {
4382 struct lwp_info *info = find_lwp_pid (ptid);
4383
4384 if (info)
4385 return info->core;
4386 return -1;
4387 }
4388
4389 /* Implementation of to_filesystem_is_local. */
4390
4391 bool
4392 linux_nat_target::filesystem_is_local ()
4393 {
4394 struct inferior *inf = current_inferior ();
4395
4396 if (inf->fake_pid_p || inf->pid == 0)
4397 return true;
4398
4399 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4400 }
4401
4402 /* Convert the INF argument passed to a to_fileio_* method
4403 to a process ID suitable for passing to its corresponding
4404 linux_mntns_* function. If INF is non-NULL then the
4405 caller is requesting the filesystem seen by INF. If INF
4406 is NULL then the caller is requesting the filesystem seen
4407 by the GDB. We fall back to GDB's filesystem in the case
4408 that INF is non-NULL but its PID is unknown. */
4409
4410 static pid_t
4411 linux_nat_fileio_pid_of (struct inferior *inf)
4412 {
4413 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4414 return getpid ();
4415 else
4416 return inf->pid;
4417 }
4418
4419 /* Implementation of to_fileio_open. */
4420
4421 int
4422 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4423 int flags, int mode, int warn_if_slow,
4424 int *target_errno)
4425 {
4426 int nat_flags;
4427 mode_t nat_mode;
4428 int fd;
4429
4430 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4431 || fileio_to_host_mode (mode, &nat_mode) == -1)
4432 {
4433 *target_errno = FILEIO_EINVAL;
4434 return -1;
4435 }
4436
4437 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4438 filename, nat_flags, nat_mode);
4439 if (fd == -1)
4440 *target_errno = host_to_fileio_error (errno);
4441
4442 return fd;
4443 }
4444
4445 /* Implementation of to_fileio_readlink. */
4446
4447 gdb::optional<std::string>
4448 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4449 int *target_errno)
4450 {
4451 char buf[PATH_MAX];
4452 int len;
4453
4454 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4455 filename, buf, sizeof (buf));
4456 if (len < 0)
4457 {
4458 *target_errno = host_to_fileio_error (errno);
4459 return {};
4460 }
4461
4462 return std::string (buf, len);
4463 }
4464
4465 /* Implementation of to_fileio_unlink. */
4466
4467 int
4468 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4469 int *target_errno)
4470 {
4471 int ret;
4472
4473 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4474 filename);
4475 if (ret == -1)
4476 *target_errno = host_to_fileio_error (errno);
4477
4478 return ret;
4479 }
4480
4481 /* Implementation of the to_thread_events method. */
4482
4483 void
4484 linux_nat_target::thread_events (int enable)
4485 {
4486 report_thread_events = enable;
4487 }
4488
4489 linux_nat_target::linux_nat_target ()
4490 {
4491 /* We don't change the stratum; this target will sit at
4492 process_stratum and thread_db will set at thread_stratum. This
4493 is a little strange, since this is a multi-threaded-capable
4494 target, but we want to be on the stack below thread_db, and we
4495 also want to be used for single-threaded processes. */
4496 }
4497
4498 /* See linux-nat.h. */
4499
4500 int
4501 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4502 {
4503 int pid;
4504
4505 pid = ptid.lwp ();
4506 if (pid == 0)
4507 pid = ptid.pid ();
4508
4509 errno = 0;
4510 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4511 if (errno != 0)
4512 {
4513 memset (siginfo, 0, sizeof (*siginfo));
4514 return 0;
4515 }
4516 return 1;
4517 }
4518
4519 /* See nat/linux-nat.h. */
4520
4521 ptid_t
4522 current_lwp_ptid (void)
4523 {
4524 gdb_assert (inferior_ptid.lwp_p ());
4525 return inferior_ptid;
4526 }
4527
4528 void _initialize_linux_nat ();
4529 void
4530 _initialize_linux_nat ()
4531 {
4532 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4533 &debug_linux_nat, _("\
4534 Set debugging of GNU/Linux lwp module."), _("\
4535 Show debugging of GNU/Linux lwp module."), _("\
4536 Enables printf debugging output."),
4537 NULL,
4538 show_debug_linux_nat,
4539 &setdebuglist, &showdebuglist);
4540
4541 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4542 &debug_linux_namespaces, _("\
4543 Set debugging of GNU/Linux namespaces module."), _("\
4544 Show debugging of GNU/Linux namespaces module."), _("\
4545 Enables printf debugging output."),
4546 NULL,
4547 NULL,
4548 &setdebuglist, &showdebuglist);
4549
4550 /* Install a SIGCHLD handler. */
4551 sigchld_action.sa_handler = sigchld_handler;
4552 sigemptyset (&sigchld_action.sa_mask);
4553 sigchld_action.sa_flags = SA_RESTART;
4554
4555 /* Make it the default. */
4556 sigaction (SIGCHLD, &sigchld_action, NULL);
4557
4558 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4559 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4560 sigdelset (&suspend_mask, SIGCHLD);
4561
4562 sigemptyset (&blocked_mask);
4563
4564 lwp_lwpid_htab_create ();
4565 }
4566 \f
4567
4568 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4569 the GNU/Linux Threads library and therefore doesn't really belong
4570 here. */
4571
4572 /* NPTL reserves the first two RT signals, but does not provide any
4573 way for the debugger to query the signal numbers - fortunately
4574 they don't change. */
4575 static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 };
4576
4577 /* See linux-nat.h. */
4578
4579 unsigned int
4580 lin_thread_get_thread_signal_num (void)
4581 {
4582 return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]);
4583 }
4584
4585 /* See linux-nat.h. */
4586
4587 int
4588 lin_thread_get_thread_signal (unsigned int i)
4589 {
4590 gdb_assert (i < lin_thread_get_thread_signal_num ());
4591 return lin_thread_signals[i];
4592 }
This page took 0.140337 seconds and 4 git commands to generate.