gdb/remote: Use true/false instead of 1/0
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "gdbsupport/common-debug.h"
72
73 /* This comment documents high-level logic of this file.
74
75 Waiting for events in sync mode
76 ===============================
77
78 When waiting for an event in a specific thread, we just use waitpid,
79 passing the specific pid, and not passing WNOHANG.
80
81 When waiting for an event in all threads, waitpid is not quite good:
82
83 - If the thread group leader exits while other threads in the thread
84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
85 return an exit status until the other threads in the group are
86 reaped.
87
88 - When a non-leader thread execs, that thread just vanishes without
89 reporting an exit (so we'd hang if we waited for it explicitly in
90 that case). The exec event is instead reported to the TGID pid.
91
92 The solution is to always use -1 and WNOHANG, together with
93 sigsuspend.
94
95 First, we use non-blocking waitpid to check for events. If nothing is
96 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
97 it means something happened to a child process. As soon as we know
98 there's an event, we get back to calling nonblocking waitpid.
99
100 Note that SIGCHLD should be blocked between waitpid and sigsuspend
101 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
102 when it's blocked, the signal becomes pending and sigsuspend
103 immediately notices it and returns.
104
105 Waiting for events in async mode (TARGET_WNOHANG)
106 =================================================
107
108 In async mode, GDB should always be ready to handle both user input
109 and target events, so neither blocking waitpid nor sigsuspend are
110 viable options. Instead, we should asynchronously notify the GDB main
111 event loop whenever there's an unprocessed event from the target. We
112 detect asynchronous target events by handling SIGCHLD signals. To
113 notify the event loop about target events, the self-pipe trick is used
114 --- a pipe is registered as waitable event source in the event loop,
115 the event loop select/poll's on the read end of this pipe (as well on
116 other event sources, e.g., stdin), and the SIGCHLD handler writes a
117 byte to this pipe. This is more portable than relying on
118 pselect/ppoll, since on kernels that lack those syscalls, libc
119 emulates them with select/poll+sigprocmask, and that is racy
120 (a.k.a. plain broken).
121
122 Obviously, if we fail to notify the event loop if there's a target
123 event, it's bad. OTOH, if we notify the event loop when there's no
124 event from the target, linux_nat_wait will detect that there's no real
125 event to report, and return event of type TARGET_WAITKIND_IGNORE.
126 This is mostly harmless, but it will waste time and is better avoided.
127
128 The main design point is that every time GDB is outside linux-nat.c,
129 we have a SIGCHLD handler installed that is called when something
130 happens to the target and notifies the GDB event loop. Whenever GDB
131 core decides to handle the event, and calls into linux-nat.c, we
132 process things as in sync mode, except that the we never block in
133 sigsuspend.
134
135 While processing an event, we may end up momentarily blocked in
136 waitpid calls. Those waitpid calls, while blocking, are guarantied to
137 return quickly. E.g., in all-stop mode, before reporting to the core
138 that an LWP hit a breakpoint, all LWPs are stopped by sending them
139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140 Note that this is different from blocking indefinitely waiting for the
141 next event --- here, we're already handling an event.
142
143 Use of signals
144 ==============
145
146 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
147 signal is not entirely significant; we just need for a signal to be delivered,
148 so that we can intercept it. SIGSTOP's advantage is that it can not be
149 blocked. A disadvantage is that it is not a real-time signal, so it can only
150 be queued once; we do not keep track of other sources of SIGSTOP.
151
152 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
153 use them, because they have special behavior when the signal is generated -
154 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
155 kills the entire thread group.
156
157 A delivered SIGSTOP would stop the entire thread group, not just the thread we
158 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
159 cancel it (by PTRACE_CONT without passing SIGSTOP).
160
161 We could use a real-time signal instead. This would solve those problems; we
162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164 generates it, and there are races with trying to find a signal that is not
165 blocked.
166
167 Exec events
168 ===========
169
170 The case of a thread group (process) with 3 or more threads, and a
171 thread other than the leader execs is worth detailing:
172
173 On an exec, the Linux kernel destroys all threads except the execing
174 one in the thread group, and resets the execing thread's tid to the
175 tgid. No exit notification is sent for the execing thread -- from the
176 ptracer's perspective, it appears as though the execing thread just
177 vanishes. Until we reap all other threads except the leader and the
178 execing thread, the leader will be zombie, and the execing thread will
179 be in `D (disc sleep)' state. As soon as all other threads are
180 reaped, the execing thread changes its tid to the tgid, and the
181 previous (zombie) leader vanishes, giving place to the "new"
182 leader. */
183
184 #ifndef O_LARGEFILE
185 #define O_LARGEFILE 0
186 #endif
187
188 struct linux_nat_target *linux_target;
189
190 /* Does the current host support PTRACE_GETREGSET? */
191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192
193 static unsigned int debug_linux_nat;
194 static void
195 show_debug_linux_nat (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
199 value);
200 }
201
202 /* Print a linux-nat debug statement. */
203
204 #define linux_nat_debug_printf(fmt, ...) \
205 debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__)
206
207 struct simple_pid_list
208 {
209 int pid;
210 int status;
211 struct simple_pid_list *next;
212 };
213 static struct simple_pid_list *stopped_pids;
214
215 /* Whether target_thread_events is in effect. */
216 static int report_thread_events;
217
218 /* Async mode support. */
219
220 /* The read/write ends of the pipe registered as waitable file in the
221 event loop. */
222 static int linux_nat_event_pipe[2] = { -1, -1 };
223
224 /* True if we're currently in async mode. */
225 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
226
227 /* Flush the event pipe. */
228
229 static void
230 async_file_flush (void)
231 {
232 int ret;
233 char buf;
234
235 do
236 {
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
238 }
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 }
241
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
245
246 static void
247 async_file_mark (void)
248 {
249 int ret;
250
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
253 left-overs. */
254 async_file_flush ();
255
256 do
257 {
258 ret = write (linux_nat_event_pipe[1], "+", 1);
259 }
260 while (ret == -1 && errno == EINTR);
261
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
264 }
265
266 static int kill_lwp (int lwpid, int signo);
267
268 static int stop_callback (struct lwp_info *lp);
269
270 static void block_child_signals (sigset_t *prev_mask);
271 static void restore_child_signals_mask (sigset_t *prev_mask);
272
273 struct lwp_info;
274 static struct lwp_info *add_lwp (ptid_t ptid);
275 static void purge_lwp_list (int pid);
276 static void delete_lwp (ptid_t ptid);
277 static struct lwp_info *find_lwp_pid (ptid_t ptid);
278
279 static int lwp_status_pending_p (struct lwp_info *lp);
280
281 static void save_stop_reason (struct lwp_info *lp);
282
283 \f
284 /* LWP accessors. */
285
286 /* See nat/linux-nat.h. */
287
288 ptid_t
289 ptid_of_lwp (struct lwp_info *lwp)
290 {
291 return lwp->ptid;
292 }
293
294 /* See nat/linux-nat.h. */
295
296 void
297 lwp_set_arch_private_info (struct lwp_info *lwp,
298 struct arch_lwp_info *info)
299 {
300 lwp->arch_private = info;
301 }
302
303 /* See nat/linux-nat.h. */
304
305 struct arch_lwp_info *
306 lwp_arch_private_info (struct lwp_info *lwp)
307 {
308 return lwp->arch_private;
309 }
310
311 /* See nat/linux-nat.h. */
312
313 int
314 lwp_is_stopped (struct lwp_info *lwp)
315 {
316 return lwp->stopped;
317 }
318
319 /* See nat/linux-nat.h. */
320
321 enum target_stop_reason
322 lwp_stop_reason (struct lwp_info *lwp)
323 {
324 return lwp->stop_reason;
325 }
326
327 /* See nat/linux-nat.h. */
328
329 int
330 lwp_is_stepping (struct lwp_info *lwp)
331 {
332 return lwp->step;
333 }
334
335 \f
336 /* Trivial list manipulation functions to keep track of a list of
337 new stopped processes. */
338 static void
339 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
340 {
341 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
342
343 new_pid->pid = pid;
344 new_pid->status = status;
345 new_pid->next = *listp;
346 *listp = new_pid;
347 }
348
349 static int
350 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
351 {
352 struct simple_pid_list **p;
353
354 for (p = listp; *p != NULL; p = &(*p)->next)
355 if ((*p)->pid == pid)
356 {
357 struct simple_pid_list *next = (*p)->next;
358
359 *statusp = (*p)->status;
360 xfree (*p);
361 *p = next;
362 return 1;
363 }
364 return 0;
365 }
366
367 /* Return the ptrace options that we want to try to enable. */
368
369 static int
370 linux_nat_ptrace_options (int attached)
371 {
372 int options = 0;
373
374 if (!attached)
375 options |= PTRACE_O_EXITKILL;
376
377 options |= (PTRACE_O_TRACESYSGOOD
378 | PTRACE_O_TRACEVFORKDONE
379 | PTRACE_O_TRACEVFORK
380 | PTRACE_O_TRACEFORK
381 | PTRACE_O_TRACEEXEC);
382
383 return options;
384 }
385
386 /* Initialize ptrace and procfs warnings and check for supported
387 ptrace features given PID.
388
389 ATTACHED should be nonzero iff we attached to the inferior. */
390
391 static void
392 linux_init_ptrace_procfs (pid_t pid, int attached)
393 {
394 int options = linux_nat_ptrace_options (attached);
395
396 linux_enable_event_reporting (pid, options);
397 linux_ptrace_init_warnings ();
398 linux_proc_init_warnings ();
399 }
400
401 linux_nat_target::~linux_nat_target ()
402 {}
403
404 void
405 linux_nat_target::post_attach (int pid)
406 {
407 linux_init_ptrace_procfs (pid, 1);
408 }
409
410 void
411 linux_nat_target::post_startup_inferior (ptid_t ptid)
412 {
413 linux_init_ptrace_procfs (ptid.pid (), 0);
414 }
415
416 /* Return the number of known LWPs in the tgid given by PID. */
417
418 static int
419 num_lwps (int pid)
420 {
421 int count = 0;
422 struct lwp_info *lp;
423
424 for (lp = lwp_list; lp; lp = lp->next)
425 if (lp->ptid.pid () == pid)
426 count++;
427
428 return count;
429 }
430
431 /* Deleter for lwp_info unique_ptr specialisation. */
432
433 struct lwp_deleter
434 {
435 void operator() (struct lwp_info *lwp) const
436 {
437 delete_lwp (lwp->ptid);
438 }
439 };
440
441 /* A unique_ptr specialisation for lwp_info. */
442
443 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
444
445 /* Target hook for follow_fork. On entry inferior_ptid must be the
446 ptid of the followed inferior. At return, inferior_ptid will be
447 unchanged. */
448
449 void
450 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
451 {
452 if (!follow_child)
453 {
454 struct lwp_info *child_lp = NULL;
455 int has_vforked;
456 ptid_t parent_ptid, child_ptid;
457 int parent_pid, child_pid;
458
459 has_vforked = (inferior_thread ()->pending_follow.kind
460 == TARGET_WAITKIND_VFORKED);
461 parent_ptid = inferior_ptid;
462 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
463 parent_pid = parent_ptid.lwp ();
464 child_pid = child_ptid.lwp ();
465
466 /* We're already attached to the parent, by default. */
467 child_lp = add_lwp (child_ptid);
468 child_lp->stopped = 1;
469 child_lp->last_resume_kind = resume_stop;
470
471 /* Detach new forked process? */
472 if (detach_fork)
473 {
474 int child_stop_signal = 0;
475 bool detach_child = true;
476
477 /* Move CHILD_LP into a unique_ptr and clear the source pointer
478 to prevent us doing anything stupid with it. */
479 lwp_info_up child_lp_ptr (child_lp);
480 child_lp = nullptr;
481
482 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
483
484 /* When debugging an inferior in an architecture that supports
485 hardware single stepping on a kernel without commit
486 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
487 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
488 set if the parent process had them set.
489 To work around this, single step the child process
490 once before detaching to clear the flags. */
491
492 /* Note that we consult the parent's architecture instead of
493 the child's because there's no inferior for the child at
494 this point. */
495 if (!gdbarch_software_single_step_p (target_thread_architecture
496 (parent_ptid)))
497 {
498 int status;
499
500 linux_disable_event_reporting (child_pid);
501 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
502 perror_with_name (_("Couldn't do single step"));
503 if (my_waitpid (child_pid, &status, 0) < 0)
504 perror_with_name (_("Couldn't wait vfork process"));
505 else
506 {
507 detach_child = WIFSTOPPED (status);
508 child_stop_signal = WSTOPSIG (status);
509 }
510 }
511
512 if (detach_child)
513 {
514 int signo = child_stop_signal;
515
516 if (signo != 0
517 && !signal_pass_state (gdb_signal_from_host (signo)))
518 signo = 0;
519 ptrace (PTRACE_DETACH, child_pid, 0, signo);
520 }
521 }
522 else
523 {
524 /* Switching inferior_ptid is not enough, because then
525 inferior_thread () would crash by not finding the thread
526 in the current inferior. */
527 scoped_restore_current_thread restore_current_thread;
528 thread_info *child = find_thread_ptid (this, child_ptid);
529 switch_to_thread (child);
530
531 /* Let the thread_db layer learn about this new process. */
532 check_for_thread_db ();
533 }
534
535 if (has_vforked)
536 {
537 struct lwp_info *parent_lp;
538
539 parent_lp = find_lwp_pid (parent_ptid);
540 gdb_assert (linux_supports_tracefork () >= 0);
541
542 if (linux_supports_tracevforkdone ())
543 {
544 linux_nat_debug_printf ("waiting for VFORK_DONE on %d",
545 parent_pid);
546 parent_lp->stopped = 1;
547
548 /* We'll handle the VFORK_DONE event like any other
549 event, in target_wait. */
550 }
551 else
552 {
553 /* We can't insert breakpoints until the child has
554 finished with the shared memory region. We need to
555 wait until that happens. Ideal would be to just
556 call:
557 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
558 - waitpid (parent_pid, &status, __WALL);
559 However, most architectures can't handle a syscall
560 being traced on the way out if it wasn't traced on
561 the way in.
562
563 We might also think to loop, continuing the child
564 until it exits or gets a SIGTRAP. One problem is
565 that the child might call ptrace with PTRACE_TRACEME.
566
567 There's no simple and reliable way to figure out when
568 the vforked child will be done with its copy of the
569 shared memory. We could step it out of the syscall,
570 two instructions, let it go, and then single-step the
571 parent once. When we have hardware single-step, this
572 would work; with software single-step it could still
573 be made to work but we'd have to be able to insert
574 single-step breakpoints in the child, and we'd have
575 to insert -just- the single-step breakpoint in the
576 parent. Very awkward.
577
578 In the end, the best we can do is to make sure it
579 runs for a little while. Hopefully it will be out of
580 range of any breakpoints we reinsert. Usually this
581 is only the single-step breakpoint at vfork's return
582 point. */
583
584 linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit");
585
586 usleep (10000);
587
588 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
589 and leave it pending. The next linux_nat_resume call
590 will notice a pending event, and bypasses actually
591 resuming the inferior. */
592 parent_lp->status = 0;
593 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
594 parent_lp->stopped = 1;
595
596 /* If we're in async mode, need to tell the event loop
597 there's something here to process. */
598 if (target_is_async_p ())
599 async_file_mark ();
600 }
601 }
602 }
603 else
604 {
605 struct lwp_info *child_lp;
606
607 child_lp = add_lwp (inferior_ptid);
608 child_lp->stopped = 1;
609 child_lp->last_resume_kind = resume_stop;
610
611 /* Let the thread_db layer learn about this new process. */
612 check_for_thread_db ();
613 }
614 }
615
616 \f
617 int
618 linux_nat_target::insert_fork_catchpoint (int pid)
619 {
620 return !linux_supports_tracefork ();
621 }
622
623 int
624 linux_nat_target::remove_fork_catchpoint (int pid)
625 {
626 return 0;
627 }
628
629 int
630 linux_nat_target::insert_vfork_catchpoint (int pid)
631 {
632 return !linux_supports_tracefork ();
633 }
634
635 int
636 linux_nat_target::remove_vfork_catchpoint (int pid)
637 {
638 return 0;
639 }
640
641 int
642 linux_nat_target::insert_exec_catchpoint (int pid)
643 {
644 return !linux_supports_tracefork ();
645 }
646
647 int
648 linux_nat_target::remove_exec_catchpoint (int pid)
649 {
650 return 0;
651 }
652
653 int
654 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
655 gdb::array_view<const int> syscall_counts)
656 {
657 if (!linux_supports_tracesysgood ())
658 return 1;
659
660 /* On GNU/Linux, we ignore the arguments. It means that we only
661 enable the syscall catchpoints, but do not disable them.
662
663 Also, we do not use the `syscall_counts' information because we do not
664 filter system calls here. We let GDB do the logic for us. */
665 return 0;
666 }
667
668 /* List of known LWPs, keyed by LWP PID. This speeds up the common
669 case of mapping a PID returned from the kernel to our corresponding
670 lwp_info data structure. */
671 static htab_t lwp_lwpid_htab;
672
673 /* Calculate a hash from a lwp_info's LWP PID. */
674
675 static hashval_t
676 lwp_info_hash (const void *ap)
677 {
678 const struct lwp_info *lp = (struct lwp_info *) ap;
679 pid_t pid = lp->ptid.lwp ();
680
681 return iterative_hash_object (pid, 0);
682 }
683
684 /* Equality function for the lwp_info hash table. Compares the LWP's
685 PID. */
686
687 static int
688 lwp_lwpid_htab_eq (const void *a, const void *b)
689 {
690 const struct lwp_info *entry = (const struct lwp_info *) a;
691 const struct lwp_info *element = (const struct lwp_info *) b;
692
693 return entry->ptid.lwp () == element->ptid.lwp ();
694 }
695
696 /* Create the lwp_lwpid_htab hash table. */
697
698 static void
699 lwp_lwpid_htab_create (void)
700 {
701 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
702 }
703
704 /* Add LP to the hash table. */
705
706 static void
707 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
708 {
709 void **slot;
710
711 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
712 gdb_assert (slot != NULL && *slot == NULL);
713 *slot = lp;
714 }
715
716 /* Head of doubly-linked list of known LWPs. Sorted by reverse
717 creation order. This order is assumed in some cases. E.g.,
718 reaping status after killing alls lwps of a process: the leader LWP
719 must be reaped last. */
720 struct lwp_info *lwp_list;
721
722 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
723
724 static void
725 lwp_list_add (struct lwp_info *lp)
726 {
727 lp->next = lwp_list;
728 if (lwp_list != NULL)
729 lwp_list->prev = lp;
730 lwp_list = lp;
731 }
732
733 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
734 list. */
735
736 static void
737 lwp_list_remove (struct lwp_info *lp)
738 {
739 /* Remove from sorted-by-creation-order list. */
740 if (lp->next != NULL)
741 lp->next->prev = lp->prev;
742 if (lp->prev != NULL)
743 lp->prev->next = lp->next;
744 if (lp == lwp_list)
745 lwp_list = lp->next;
746 }
747
748 \f
749
750 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
751 _initialize_linux_nat. */
752 static sigset_t suspend_mask;
753
754 /* Signals to block to make that sigsuspend work. */
755 static sigset_t blocked_mask;
756
757 /* SIGCHLD action. */
758 static struct sigaction sigchld_action;
759
760 /* Block child signals (SIGCHLD and linux threads signals), and store
761 the previous mask in PREV_MASK. */
762
763 static void
764 block_child_signals (sigset_t *prev_mask)
765 {
766 /* Make sure SIGCHLD is blocked. */
767 if (!sigismember (&blocked_mask, SIGCHLD))
768 sigaddset (&blocked_mask, SIGCHLD);
769
770 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
771 }
772
773 /* Restore child signals mask, previously returned by
774 block_child_signals. */
775
776 static void
777 restore_child_signals_mask (sigset_t *prev_mask)
778 {
779 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
780 }
781
782 /* Mask of signals to pass directly to the inferior. */
783 static sigset_t pass_mask;
784
785 /* Update signals to pass to the inferior. */
786 void
787 linux_nat_target::pass_signals
788 (gdb::array_view<const unsigned char> pass_signals)
789 {
790 int signo;
791
792 sigemptyset (&pass_mask);
793
794 for (signo = 1; signo < NSIG; signo++)
795 {
796 int target_signo = gdb_signal_from_host (signo);
797 if (target_signo < pass_signals.size () && pass_signals[target_signo])
798 sigaddset (&pass_mask, signo);
799 }
800 }
801
802 \f
803
804 /* Prototypes for local functions. */
805 static int stop_wait_callback (struct lwp_info *lp);
806 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
807 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
808
809 \f
810
811 /* Destroy and free LP. */
812
813 static void
814 lwp_free (struct lwp_info *lp)
815 {
816 /* Let the arch specific bits release arch_lwp_info. */
817 linux_target->low_delete_thread (lp->arch_private);
818
819 xfree (lp);
820 }
821
822 /* Traversal function for purge_lwp_list. */
823
824 static int
825 lwp_lwpid_htab_remove_pid (void **slot, void *info)
826 {
827 struct lwp_info *lp = (struct lwp_info *) *slot;
828 int pid = *(int *) info;
829
830 if (lp->ptid.pid () == pid)
831 {
832 htab_clear_slot (lwp_lwpid_htab, slot);
833 lwp_list_remove (lp);
834 lwp_free (lp);
835 }
836
837 return 1;
838 }
839
840 /* Remove all LWPs belong to PID from the lwp list. */
841
842 static void
843 purge_lwp_list (int pid)
844 {
845 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
846 }
847
848 /* Add the LWP specified by PTID to the list. PTID is the first LWP
849 in the process. Return a pointer to the structure describing the
850 new LWP.
851
852 This differs from add_lwp in that we don't let the arch specific
853 bits know about this new thread. Current clients of this callback
854 take the opportunity to install watchpoints in the new thread, and
855 we shouldn't do that for the first thread. If we're spawning a
856 child ("run"), the thread executes the shell wrapper first, and we
857 shouldn't touch it until it execs the program we want to debug.
858 For "attach", it'd be okay to call the callback, but it's not
859 necessary, because watchpoints can't yet have been inserted into
860 the inferior. */
861
862 static struct lwp_info *
863 add_initial_lwp (ptid_t ptid)
864 {
865 struct lwp_info *lp;
866
867 gdb_assert (ptid.lwp_p ());
868
869 lp = XNEW (struct lwp_info);
870
871 memset (lp, 0, sizeof (struct lwp_info));
872
873 lp->last_resume_kind = resume_continue;
874 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
875
876 lp->ptid = ptid;
877 lp->core = -1;
878
879 /* Add to sorted-by-reverse-creation-order list. */
880 lwp_list_add (lp);
881
882 /* Add to keyed-by-pid htab. */
883 lwp_lwpid_htab_add_lwp (lp);
884
885 return lp;
886 }
887
888 /* Add the LWP specified by PID to the list. Return a pointer to the
889 structure describing the new LWP. The LWP should already be
890 stopped. */
891
892 static struct lwp_info *
893 add_lwp (ptid_t ptid)
894 {
895 struct lwp_info *lp;
896
897 lp = add_initial_lwp (ptid);
898
899 /* Let the arch specific bits know about this new thread. Current
900 clients of this callback take the opportunity to install
901 watchpoints in the new thread. We don't do this for the first
902 thread though. See add_initial_lwp. */
903 linux_target->low_new_thread (lp);
904
905 return lp;
906 }
907
908 /* Remove the LWP specified by PID from the list. */
909
910 static void
911 delete_lwp (ptid_t ptid)
912 {
913 struct lwp_info *lp;
914 void **slot;
915 struct lwp_info dummy;
916
917 dummy.ptid = ptid;
918 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
919 if (slot == NULL)
920 return;
921
922 lp = *(struct lwp_info **) slot;
923 gdb_assert (lp != NULL);
924
925 htab_clear_slot (lwp_lwpid_htab, slot);
926
927 /* Remove from sorted-by-creation-order list. */
928 lwp_list_remove (lp);
929
930 /* Release. */
931 lwp_free (lp);
932 }
933
934 /* Return a pointer to the structure describing the LWP corresponding
935 to PID. If no corresponding LWP could be found, return NULL. */
936
937 static struct lwp_info *
938 find_lwp_pid (ptid_t ptid)
939 {
940 struct lwp_info *lp;
941 int lwp;
942 struct lwp_info dummy;
943
944 if (ptid.lwp_p ())
945 lwp = ptid.lwp ();
946 else
947 lwp = ptid.pid ();
948
949 dummy.ptid = ptid_t (0, lwp, 0);
950 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
951 return lp;
952 }
953
954 /* See nat/linux-nat.h. */
955
956 struct lwp_info *
957 iterate_over_lwps (ptid_t filter,
958 gdb::function_view<iterate_over_lwps_ftype> callback)
959 {
960 struct lwp_info *lp, *lpnext;
961
962 for (lp = lwp_list; lp; lp = lpnext)
963 {
964 lpnext = lp->next;
965
966 if (lp->ptid.matches (filter))
967 {
968 if (callback (lp) != 0)
969 return lp;
970 }
971 }
972
973 return NULL;
974 }
975
976 /* Update our internal state when changing from one checkpoint to
977 another indicated by NEW_PTID. We can only switch single-threaded
978 applications, so we only create one new LWP, and the previous list
979 is discarded. */
980
981 void
982 linux_nat_switch_fork (ptid_t new_ptid)
983 {
984 struct lwp_info *lp;
985
986 purge_lwp_list (inferior_ptid.pid ());
987
988 lp = add_lwp (new_ptid);
989 lp->stopped = 1;
990
991 /* This changes the thread's ptid while preserving the gdb thread
992 num. Also changes the inferior pid, while preserving the
993 inferior num. */
994 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
995
996 /* We've just told GDB core that the thread changed target id, but,
997 in fact, it really is a different thread, with different register
998 contents. */
999 registers_changed ();
1000 }
1001
1002 /* Handle the exit of a single thread LP. */
1003
1004 static void
1005 exit_lwp (struct lwp_info *lp)
1006 {
1007 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1008
1009 if (th)
1010 {
1011 if (print_thread_events)
1012 printf_unfiltered (_("[%s exited]\n"),
1013 target_pid_to_str (lp->ptid).c_str ());
1014
1015 delete_thread (th);
1016 }
1017
1018 delete_lwp (lp->ptid);
1019 }
1020
1021 /* Wait for the LWP specified by LP, which we have just attached to.
1022 Returns a wait status for that LWP, to cache. */
1023
1024 static int
1025 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1026 {
1027 pid_t new_pid, pid = ptid.lwp ();
1028 int status;
1029
1030 if (linux_proc_pid_is_stopped (pid))
1031 {
1032 linux_nat_debug_printf ("Attaching to a stopped process");
1033
1034 /* The process is definitely stopped. It is in a job control
1035 stop, unless the kernel predates the TASK_STOPPED /
1036 TASK_TRACED distinction, in which case it might be in a
1037 ptrace stop. Make sure it is in a ptrace stop; from there we
1038 can kill it, signal it, et cetera.
1039
1040 First make sure there is a pending SIGSTOP. Since we are
1041 already attached, the process can not transition from stopped
1042 to running without a PTRACE_CONT; so we know this signal will
1043 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1044 probably already in the queue (unless this kernel is old
1045 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1046 is not an RT signal, it can only be queued once. */
1047 kill_lwp (pid, SIGSTOP);
1048
1049 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1050 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1051 ptrace (PTRACE_CONT, pid, 0, 0);
1052 }
1053
1054 /* Make sure the initial process is stopped. The user-level threads
1055 layer might want to poke around in the inferior, and that won't
1056 work if things haven't stabilized yet. */
1057 new_pid = my_waitpid (pid, &status, __WALL);
1058 gdb_assert (pid == new_pid);
1059
1060 if (!WIFSTOPPED (status))
1061 {
1062 /* The pid we tried to attach has apparently just exited. */
1063 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1064 status_to_str (status).c_str ());
1065 return status;
1066 }
1067
1068 if (WSTOPSIG (status) != SIGSTOP)
1069 {
1070 *signalled = 1;
1071 linux_nat_debug_printf ("Received %s after attaching",
1072 status_to_str (status).c_str ());
1073 }
1074
1075 return status;
1076 }
1077
1078 void
1079 linux_nat_target::create_inferior (const char *exec_file,
1080 const std::string &allargs,
1081 char **env, int from_tty)
1082 {
1083 maybe_disable_address_space_randomization restore_personality
1084 (disable_randomization);
1085
1086 /* The fork_child mechanism is synchronous and calls target_wait, so
1087 we have to mask the async mode. */
1088
1089 /* Make sure we report all signals during startup. */
1090 pass_signals ({});
1091
1092 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1093 }
1094
1095 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1096 already attached. Returns true if a new LWP is found, false
1097 otherwise. */
1098
1099 static int
1100 attach_proc_task_lwp_callback (ptid_t ptid)
1101 {
1102 struct lwp_info *lp;
1103
1104 /* Ignore LWPs we're already attached to. */
1105 lp = find_lwp_pid (ptid);
1106 if (lp == NULL)
1107 {
1108 int lwpid = ptid.lwp ();
1109
1110 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1111 {
1112 int err = errno;
1113
1114 /* Be quiet if we simply raced with the thread exiting.
1115 EPERM is returned if the thread's task still exists, and
1116 is marked as exited or zombie, as well as other
1117 conditions, so in that case, confirm the status in
1118 /proc/PID/status. */
1119 if (err == ESRCH
1120 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1121 {
1122 linux_nat_debug_printf
1123 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1124 lwpid, err, safe_strerror (err));
1125
1126 }
1127 else
1128 {
1129 std::string reason
1130 = linux_ptrace_attach_fail_reason_string (ptid, err);
1131
1132 warning (_("Cannot attach to lwp %d: %s"),
1133 lwpid, reason.c_str ());
1134 }
1135 }
1136 else
1137 {
1138 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1139 target_pid_to_str (ptid).c_str ());
1140
1141 lp = add_lwp (ptid);
1142
1143 /* The next time we wait for this LWP we'll see a SIGSTOP as
1144 PTRACE_ATTACH brings it to a halt. */
1145 lp->signalled = 1;
1146
1147 /* We need to wait for a stop before being able to make the
1148 next ptrace call on this LWP. */
1149 lp->must_set_ptrace_flags = 1;
1150
1151 /* So that wait collects the SIGSTOP. */
1152 lp->resumed = 1;
1153
1154 /* Also add the LWP to gdb's thread list, in case a
1155 matching libthread_db is not found (or the process uses
1156 raw clone). */
1157 add_thread (linux_target, lp->ptid);
1158 set_running (linux_target, lp->ptid, true);
1159 set_executing (linux_target, lp->ptid, true);
1160 }
1161
1162 return 1;
1163 }
1164 return 0;
1165 }
1166
1167 void
1168 linux_nat_target::attach (const char *args, int from_tty)
1169 {
1170 struct lwp_info *lp;
1171 int status;
1172 ptid_t ptid;
1173
1174 /* Make sure we report all signals during attach. */
1175 pass_signals ({});
1176
1177 try
1178 {
1179 inf_ptrace_target::attach (args, from_tty);
1180 }
1181 catch (const gdb_exception_error &ex)
1182 {
1183 pid_t pid = parse_pid_to_attach (args);
1184 std::string reason = linux_ptrace_attach_fail_reason (pid);
1185
1186 if (!reason.empty ())
1187 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1188 ex.what ());
1189 else
1190 throw_error (ex.error, "%s", ex.what ());
1191 }
1192
1193 /* The ptrace base target adds the main thread with (pid,0,0)
1194 format. Decorate it with lwp info. */
1195 ptid = ptid_t (inferior_ptid.pid (),
1196 inferior_ptid.pid (),
1197 0);
1198 thread_change_ptid (linux_target, inferior_ptid, ptid);
1199
1200 /* Add the initial process as the first LWP to the list. */
1201 lp = add_initial_lwp (ptid);
1202
1203 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1204 if (!WIFSTOPPED (status))
1205 {
1206 if (WIFEXITED (status))
1207 {
1208 int exit_code = WEXITSTATUS (status);
1209
1210 target_terminal::ours ();
1211 target_mourn_inferior (inferior_ptid);
1212 if (exit_code == 0)
1213 error (_("Unable to attach: program exited normally."));
1214 else
1215 error (_("Unable to attach: program exited with code %d."),
1216 exit_code);
1217 }
1218 else if (WIFSIGNALED (status))
1219 {
1220 enum gdb_signal signo;
1221
1222 target_terminal::ours ();
1223 target_mourn_inferior (inferior_ptid);
1224
1225 signo = gdb_signal_from_host (WTERMSIG (status));
1226 error (_("Unable to attach: program terminated with signal "
1227 "%s, %s."),
1228 gdb_signal_to_name (signo),
1229 gdb_signal_to_string (signo));
1230 }
1231
1232 internal_error (__FILE__, __LINE__,
1233 _("unexpected status %d for PID %ld"),
1234 status, (long) ptid.lwp ());
1235 }
1236
1237 lp->stopped = 1;
1238
1239 /* Save the wait status to report later. */
1240 lp->resumed = 1;
1241 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1242 (long) lp->ptid.pid (),
1243 status_to_str (status).c_str ());
1244
1245 lp->status = status;
1246
1247 /* We must attach to every LWP. If /proc is mounted, use that to
1248 find them now. The inferior may be using raw clone instead of
1249 using pthreads. But even if it is using pthreads, thread_db
1250 walks structures in the inferior's address space to find the list
1251 of threads/LWPs, and those structures may well be corrupted.
1252 Note that once thread_db is loaded, we'll still use it to list
1253 threads and associate pthread info with each LWP. */
1254 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1255 attach_proc_task_lwp_callback);
1256
1257 if (target_can_async_p ())
1258 target_async (1);
1259 }
1260
1261 /* Get pending signal of THREAD as a host signal number, for detaching
1262 purposes. This is the signal the thread last stopped for, which we
1263 need to deliver to the thread when detaching, otherwise, it'd be
1264 suppressed/lost. */
1265
1266 static int
1267 get_detach_signal (struct lwp_info *lp)
1268 {
1269 enum gdb_signal signo = GDB_SIGNAL_0;
1270
1271 /* If we paused threads momentarily, we may have stored pending
1272 events in lp->status or lp->waitstatus (see stop_wait_callback),
1273 and GDB core hasn't seen any signal for those threads.
1274 Otherwise, the last signal reported to the core is found in the
1275 thread object's stop_signal.
1276
1277 There's a corner case that isn't handled here at present. Only
1278 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1279 stop_signal make sense as a real signal to pass to the inferior.
1280 Some catchpoint related events, like
1281 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1282 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1283 those traps are debug API (ptrace in our case) related and
1284 induced; the inferior wouldn't see them if it wasn't being
1285 traced. Hence, we should never pass them to the inferior, even
1286 when set to pass state. Since this corner case isn't handled by
1287 infrun.c when proceeding with a signal, for consistency, neither
1288 do we handle it here (or elsewhere in the file we check for
1289 signal pass state). Normally SIGTRAP isn't set to pass state, so
1290 this is really a corner case. */
1291
1292 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1293 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1294 else if (lp->status)
1295 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1296 else
1297 {
1298 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1299
1300 if (target_is_non_stop_p () && !tp->executing)
1301 {
1302 if (tp->suspend.waitstatus_pending_p)
1303 signo = tp->suspend.waitstatus.value.sig;
1304 else
1305 signo = tp->suspend.stop_signal;
1306 }
1307 else if (!target_is_non_stop_p ())
1308 {
1309 ptid_t last_ptid;
1310 process_stratum_target *last_target;
1311
1312 get_last_target_status (&last_target, &last_ptid, nullptr);
1313
1314 if (last_target == linux_target
1315 && lp->ptid.lwp () == last_ptid.lwp ())
1316 signo = tp->suspend.stop_signal;
1317 }
1318 }
1319
1320 if (signo == GDB_SIGNAL_0)
1321 {
1322 linux_nat_debug_printf ("lwp %s has no pending signal",
1323 target_pid_to_str (lp->ptid).c_str ());
1324 }
1325 else if (!signal_pass_state (signo))
1326 {
1327 linux_nat_debug_printf
1328 ("lwp %s had signal %s but it is in no pass state",
1329 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo));
1330 }
1331 else
1332 {
1333 linux_nat_debug_printf ("lwp %s has pending signal %s",
1334 target_pid_to_str (lp->ptid).c_str (),
1335 gdb_signal_to_string (signo));
1336
1337 return gdb_signal_to_host (signo);
1338 }
1339
1340 return 0;
1341 }
1342
1343 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1344 signal number that should be passed to the LWP when detaching.
1345 Otherwise pass any pending signal the LWP may have, if any. */
1346
1347 static void
1348 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1349 {
1350 int lwpid = lp->ptid.lwp ();
1351 int signo;
1352
1353 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1354
1355 if (lp->status != 0)
1356 linux_nat_debug_printf ("Pending %s for %s on detach.",
1357 strsignal (WSTOPSIG (lp->status)),
1358 target_pid_to_str (lp->ptid).c_str ());
1359
1360 /* If there is a pending SIGSTOP, get rid of it. */
1361 if (lp->signalled)
1362 {
1363 linux_nat_debug_printf ("Sending SIGCONT to %s",
1364 target_pid_to_str (lp->ptid).c_str ());
1365
1366 kill_lwp (lwpid, SIGCONT);
1367 lp->signalled = 0;
1368 }
1369
1370 if (signo_p == NULL)
1371 {
1372 /* Pass on any pending signal for this LWP. */
1373 signo = get_detach_signal (lp);
1374 }
1375 else
1376 signo = *signo_p;
1377
1378 /* Preparing to resume may try to write registers, and fail if the
1379 lwp is zombie. If that happens, ignore the error. We'll handle
1380 it below, when detach fails with ESRCH. */
1381 try
1382 {
1383 linux_target->low_prepare_to_resume (lp);
1384 }
1385 catch (const gdb_exception_error &ex)
1386 {
1387 if (!check_ptrace_stopped_lwp_gone (lp))
1388 throw;
1389 }
1390
1391 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1392 {
1393 int save_errno = errno;
1394
1395 /* We know the thread exists, so ESRCH must mean the lwp is
1396 zombie. This can happen if one of the already-detached
1397 threads exits the whole thread group. In that case we're
1398 still attached, and must reap the lwp. */
1399 if (save_errno == ESRCH)
1400 {
1401 int ret, status;
1402
1403 ret = my_waitpid (lwpid, &status, __WALL);
1404 if (ret == -1)
1405 {
1406 warning (_("Couldn't reap LWP %d while detaching: %s"),
1407 lwpid, safe_strerror (errno));
1408 }
1409 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1410 {
1411 warning (_("Reaping LWP %d while detaching "
1412 "returned unexpected status 0x%x"),
1413 lwpid, status);
1414 }
1415 }
1416 else
1417 {
1418 error (_("Can't detach %s: %s"),
1419 target_pid_to_str (lp->ptid).c_str (),
1420 safe_strerror (save_errno));
1421 }
1422 }
1423 else
1424 linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1425 target_pid_to_str (lp->ptid).c_str (),
1426 strsignal (signo));
1427
1428 delete_lwp (lp->ptid);
1429 }
1430
1431 static int
1432 detach_callback (struct lwp_info *lp)
1433 {
1434 /* We don't actually detach from the thread group leader just yet.
1435 If the thread group exits, we must reap the zombie clone lwps
1436 before we're able to reap the leader. */
1437 if (lp->ptid.lwp () != lp->ptid.pid ())
1438 detach_one_lwp (lp, NULL);
1439 return 0;
1440 }
1441
1442 void
1443 linux_nat_target::detach (inferior *inf, int from_tty)
1444 {
1445 struct lwp_info *main_lwp;
1446 int pid = inf->pid;
1447
1448 /* Don't unregister from the event loop, as there may be other
1449 inferiors running. */
1450
1451 /* Stop all threads before detaching. ptrace requires that the
1452 thread is stopped to successfully detach. */
1453 iterate_over_lwps (ptid_t (pid), stop_callback);
1454 /* ... and wait until all of them have reported back that
1455 they're no longer running. */
1456 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1457
1458 /* We can now safely remove breakpoints. We don't this in earlier
1459 in common code because this target doesn't currently support
1460 writing memory while the inferior is running. */
1461 remove_breakpoints_inf (current_inferior ());
1462
1463 iterate_over_lwps (ptid_t (pid), detach_callback);
1464
1465 /* Only the initial process should be left right now. */
1466 gdb_assert (num_lwps (pid) == 1);
1467
1468 main_lwp = find_lwp_pid (ptid_t (pid));
1469
1470 if (forks_exist_p ())
1471 {
1472 /* Multi-fork case. The current inferior_ptid is being detached
1473 from, but there are other viable forks to debug. Detach from
1474 the current fork, and context-switch to the first
1475 available. */
1476 linux_fork_detach (from_tty);
1477 }
1478 else
1479 {
1480 target_announce_detach (from_tty);
1481
1482 /* Pass on any pending signal for the last LWP. */
1483 int signo = get_detach_signal (main_lwp);
1484
1485 detach_one_lwp (main_lwp, &signo);
1486
1487 detach_success (inf);
1488 }
1489 }
1490
1491 /* Resume execution of the inferior process. If STEP is nonzero,
1492 single-step it. If SIGNAL is nonzero, give it that signal. */
1493
1494 static void
1495 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1496 enum gdb_signal signo)
1497 {
1498 lp->step = step;
1499
1500 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1501 We only presently need that if the LWP is stepped though (to
1502 handle the case of stepping a breakpoint instruction). */
1503 if (step)
1504 {
1505 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1506
1507 lp->stop_pc = regcache_read_pc (regcache);
1508 }
1509 else
1510 lp->stop_pc = 0;
1511
1512 linux_target->low_prepare_to_resume (lp);
1513 linux_target->low_resume (lp->ptid, step, signo);
1514
1515 /* Successfully resumed. Clear state that no longer makes sense,
1516 and mark the LWP as running. Must not do this before resuming
1517 otherwise if that fails other code will be confused. E.g., we'd
1518 later try to stop the LWP and hang forever waiting for a stop
1519 status. Note that we must not throw after this is cleared,
1520 otherwise handle_zombie_lwp_error would get confused. */
1521 lp->stopped = 0;
1522 lp->core = -1;
1523 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1524 registers_changed_ptid (linux_target, lp->ptid);
1525 }
1526
1527 /* Called when we try to resume a stopped LWP and that errors out. If
1528 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1529 or about to become), discard the error, clear any pending status
1530 the LWP may have, and return true (we'll collect the exit status
1531 soon enough). Otherwise, return false. */
1532
1533 static int
1534 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1535 {
1536 /* If we get an error after resuming the LWP successfully, we'd
1537 confuse !T state for the LWP being gone. */
1538 gdb_assert (lp->stopped);
1539
1540 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1541 because even if ptrace failed with ESRCH, the tracee may be "not
1542 yet fully dead", but already refusing ptrace requests. In that
1543 case the tracee has 'R (Running)' state for a little bit
1544 (observed in Linux 3.18). See also the note on ESRCH in the
1545 ptrace(2) man page. Instead, check whether the LWP has any state
1546 other than ptrace-stopped. */
1547
1548 /* Don't assume anything if /proc/PID/status can't be read. */
1549 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1550 {
1551 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1552 lp->status = 0;
1553 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1554 return 1;
1555 }
1556 return 0;
1557 }
1558
1559 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1560 disappears while we try to resume it. */
1561
1562 static void
1563 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1564 {
1565 try
1566 {
1567 linux_resume_one_lwp_throw (lp, step, signo);
1568 }
1569 catch (const gdb_exception_error &ex)
1570 {
1571 if (!check_ptrace_stopped_lwp_gone (lp))
1572 throw;
1573 }
1574 }
1575
1576 /* Resume LP. */
1577
1578 static void
1579 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1580 {
1581 if (lp->stopped)
1582 {
1583 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1584
1585 if (inf->vfork_child != NULL)
1586 {
1587 linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1588 target_pid_to_str (lp->ptid).c_str ());
1589 }
1590 else if (!lwp_status_pending_p (lp))
1591 {
1592 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1593 target_pid_to_str (lp->ptid).c_str (),
1594 (signo != GDB_SIGNAL_0
1595 ? strsignal (gdb_signal_to_host (signo))
1596 : "0"),
1597 step ? "step" : "resume");
1598
1599 linux_resume_one_lwp (lp, step, signo);
1600 }
1601 else
1602 {
1603 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1604 target_pid_to_str (lp->ptid).c_str ());
1605 }
1606 }
1607 else
1608 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1609 target_pid_to_str (lp->ptid).c_str ());
1610 }
1611
1612 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1613 Resume LWP with the last stop signal, if it is in pass state. */
1614
1615 static int
1616 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1617 {
1618 enum gdb_signal signo = GDB_SIGNAL_0;
1619
1620 if (lp == except)
1621 return 0;
1622
1623 if (lp->stopped)
1624 {
1625 struct thread_info *thread;
1626
1627 thread = find_thread_ptid (linux_target, lp->ptid);
1628 if (thread != NULL)
1629 {
1630 signo = thread->suspend.stop_signal;
1631 thread->suspend.stop_signal = GDB_SIGNAL_0;
1632 }
1633 }
1634
1635 resume_lwp (lp, 0, signo);
1636 return 0;
1637 }
1638
1639 static int
1640 resume_clear_callback (struct lwp_info *lp)
1641 {
1642 lp->resumed = 0;
1643 lp->last_resume_kind = resume_stop;
1644 return 0;
1645 }
1646
1647 static int
1648 resume_set_callback (struct lwp_info *lp)
1649 {
1650 lp->resumed = 1;
1651 lp->last_resume_kind = resume_continue;
1652 return 0;
1653 }
1654
1655 void
1656 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1657 {
1658 struct lwp_info *lp;
1659 int resume_many;
1660
1661 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1662 step ? "step" : "resume",
1663 target_pid_to_str (ptid).c_str (),
1664 (signo != GDB_SIGNAL_0
1665 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1666 target_pid_to_str (inferior_ptid).c_str ());
1667
1668 /* A specific PTID means `step only this process id'. */
1669 resume_many = (minus_one_ptid == ptid
1670 || ptid.is_pid ());
1671
1672 /* Mark the lwps we're resuming as resumed and update their
1673 last_resume_kind to resume_continue. */
1674 iterate_over_lwps (ptid, resume_set_callback);
1675
1676 /* See if it's the current inferior that should be handled
1677 specially. */
1678 if (resume_many)
1679 lp = find_lwp_pid (inferior_ptid);
1680 else
1681 lp = find_lwp_pid (ptid);
1682 gdb_assert (lp != NULL);
1683
1684 /* Remember if we're stepping. */
1685 lp->last_resume_kind = step ? resume_step : resume_continue;
1686
1687 /* If we have a pending wait status for this thread, there is no
1688 point in resuming the process. But first make sure that
1689 linux_nat_wait won't preemptively handle the event - we
1690 should never take this short-circuit if we are going to
1691 leave LP running, since we have skipped resuming all the
1692 other threads. This bit of code needs to be synchronized
1693 with linux_nat_wait. */
1694
1695 if (lp->status && WIFSTOPPED (lp->status))
1696 {
1697 if (!lp->step
1698 && WSTOPSIG (lp->status)
1699 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1700 {
1701 linux_nat_debug_printf
1702 ("Not short circuiting for ignored status 0x%x", lp->status);
1703
1704 /* FIXME: What should we do if we are supposed to continue
1705 this thread with a signal? */
1706 gdb_assert (signo == GDB_SIGNAL_0);
1707 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1708 lp->status = 0;
1709 }
1710 }
1711
1712 if (lwp_status_pending_p (lp))
1713 {
1714 /* FIXME: What should we do if we are supposed to continue
1715 this thread with a signal? */
1716 gdb_assert (signo == GDB_SIGNAL_0);
1717
1718 linux_nat_debug_printf ("Short circuiting for status 0x%x",
1719 lp->status);
1720
1721 if (target_can_async_p ())
1722 {
1723 target_async (1);
1724 /* Tell the event loop we have something to process. */
1725 async_file_mark ();
1726 }
1727 return;
1728 }
1729
1730 if (resume_many)
1731 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1732 {
1733 return linux_nat_resume_callback (info, lp);
1734 });
1735
1736 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1737 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1738 target_pid_to_str (lp->ptid).c_str (),
1739 (signo != GDB_SIGNAL_0
1740 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1741
1742 linux_resume_one_lwp (lp, step, signo);
1743
1744 if (target_can_async_p ())
1745 target_async (1);
1746 }
1747
1748 /* Send a signal to an LWP. */
1749
1750 static int
1751 kill_lwp (int lwpid, int signo)
1752 {
1753 int ret;
1754
1755 errno = 0;
1756 ret = syscall (__NR_tkill, lwpid, signo);
1757 if (errno == ENOSYS)
1758 {
1759 /* If tkill fails, then we are not using nptl threads, a
1760 configuration we no longer support. */
1761 perror_with_name (("tkill"));
1762 }
1763 return ret;
1764 }
1765
1766 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1767 event, check if the core is interested in it: if not, ignore the
1768 event, and keep waiting; otherwise, we need to toggle the LWP's
1769 syscall entry/exit status, since the ptrace event itself doesn't
1770 indicate it, and report the trap to higher layers. */
1771
1772 static int
1773 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1774 {
1775 struct target_waitstatus *ourstatus = &lp->waitstatus;
1776 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1777 thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1778 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1779
1780 if (stopping)
1781 {
1782 /* If we're stopping threads, there's a SIGSTOP pending, which
1783 makes it so that the LWP reports an immediate syscall return,
1784 followed by the SIGSTOP. Skip seeing that "return" using
1785 PTRACE_CONT directly, and let stop_wait_callback collect the
1786 SIGSTOP. Later when the thread is resumed, a new syscall
1787 entry event. If we didn't do this (and returned 0), we'd
1788 leave a syscall entry pending, and our caller, by using
1789 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1790 itself. Later, when the user re-resumes this LWP, we'd see
1791 another syscall entry event and we'd mistake it for a return.
1792
1793 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1794 (leaving immediately with LWP->signalled set, without issuing
1795 a PTRACE_CONT), it would still be problematic to leave this
1796 syscall enter pending, as later when the thread is resumed,
1797 it would then see the same syscall exit mentioned above,
1798 followed by the delayed SIGSTOP, while the syscall didn't
1799 actually get to execute. It seems it would be even more
1800 confusing to the user. */
1801
1802 linux_nat_debug_printf
1803 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1804 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1805
1806 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1807 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1808 lp->stopped = 0;
1809 return 1;
1810 }
1811
1812 /* Always update the entry/return state, even if this particular
1813 syscall isn't interesting to the core now. In async mode,
1814 the user could install a new catchpoint for this syscall
1815 between syscall enter/return, and we'll need to know to
1816 report a syscall return if that happens. */
1817 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1818 ? TARGET_WAITKIND_SYSCALL_RETURN
1819 : TARGET_WAITKIND_SYSCALL_ENTRY);
1820
1821 if (catch_syscall_enabled ())
1822 {
1823 if (catching_syscall_number (syscall_number))
1824 {
1825 /* Alright, an event to report. */
1826 ourstatus->kind = lp->syscall_state;
1827 ourstatus->value.syscall_number = syscall_number;
1828
1829 linux_nat_debug_printf
1830 ("stopping for %s of syscall %d for LWP %ld",
1831 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1832 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1833
1834 return 0;
1835 }
1836
1837 linux_nat_debug_printf
1838 ("ignoring %s of syscall %d for LWP %ld",
1839 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1840 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1841 }
1842 else
1843 {
1844 /* If we had been syscall tracing, and hence used PT_SYSCALL
1845 before on this LWP, it could happen that the user removes all
1846 syscall catchpoints before we get to process this event.
1847 There are two noteworthy issues here:
1848
1849 - When stopped at a syscall entry event, resuming with
1850 PT_STEP still resumes executing the syscall and reports a
1851 syscall return.
1852
1853 - Only PT_SYSCALL catches syscall enters. If we last
1854 single-stepped this thread, then this event can't be a
1855 syscall enter. If we last single-stepped this thread, this
1856 has to be a syscall exit.
1857
1858 The points above mean that the next resume, be it PT_STEP or
1859 PT_CONTINUE, can not trigger a syscall trace event. */
1860 linux_nat_debug_printf
1861 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1862 "ignoring", syscall_number, lp->ptid.lwp ());
1863 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1864 }
1865
1866 /* The core isn't interested in this event. For efficiency, avoid
1867 stopping all threads only to have the core resume them all again.
1868 Since we're not stopping threads, if we're still syscall tracing
1869 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1870 subsequent syscall. Simply resume using the inf-ptrace layer,
1871 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1872
1873 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1874 return 1;
1875 }
1876
1877 /* Handle a GNU/Linux extended wait response. If we see a clone
1878 event, we need to add the new LWP to our list (and not report the
1879 trap to higher layers). This function returns non-zero if the
1880 event should be ignored and we should wait again. If STOPPING is
1881 true, the new LWP remains stopped, otherwise it is continued. */
1882
1883 static int
1884 linux_handle_extended_wait (struct lwp_info *lp, int status)
1885 {
1886 int pid = lp->ptid.lwp ();
1887 struct target_waitstatus *ourstatus = &lp->waitstatus;
1888 int event = linux_ptrace_get_extended_event (status);
1889
1890 /* All extended events we currently use are mid-syscall. Only
1891 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1892 you have to be using PTRACE_SEIZE to get that. */
1893 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1894
1895 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1896 || event == PTRACE_EVENT_CLONE)
1897 {
1898 unsigned long new_pid;
1899 int ret;
1900
1901 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1902
1903 /* If we haven't already seen the new PID stop, wait for it now. */
1904 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1905 {
1906 /* The new child has a pending SIGSTOP. We can't affect it until it
1907 hits the SIGSTOP, but we're already attached. */
1908 ret = my_waitpid (new_pid, &status, __WALL);
1909 if (ret == -1)
1910 perror_with_name (_("waiting for new child"));
1911 else if (ret != new_pid)
1912 internal_error (__FILE__, __LINE__,
1913 _("wait returned unexpected PID %d"), ret);
1914 else if (!WIFSTOPPED (status))
1915 internal_error (__FILE__, __LINE__,
1916 _("wait returned unexpected status 0x%x"), status);
1917 }
1918
1919 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1920
1921 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1922 {
1923 /* The arch-specific native code may need to know about new
1924 forks even if those end up never mapped to an
1925 inferior. */
1926 linux_target->low_new_fork (lp, new_pid);
1927 }
1928 else if (event == PTRACE_EVENT_CLONE)
1929 {
1930 linux_target->low_new_clone (lp, new_pid);
1931 }
1932
1933 if (event == PTRACE_EVENT_FORK
1934 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1935 {
1936 /* Handle checkpointing by linux-fork.c here as a special
1937 case. We don't want the follow-fork-mode or 'catch fork'
1938 to interfere with this. */
1939
1940 /* This won't actually modify the breakpoint list, but will
1941 physically remove the breakpoints from the child. */
1942 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1943
1944 /* Retain child fork in ptrace (stopped) state. */
1945 if (!find_fork_pid (new_pid))
1946 add_fork (new_pid);
1947
1948 /* Report as spurious, so that infrun doesn't want to follow
1949 this fork. We're actually doing an infcall in
1950 linux-fork.c. */
1951 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1952
1953 /* Report the stop to the core. */
1954 return 0;
1955 }
1956
1957 if (event == PTRACE_EVENT_FORK)
1958 ourstatus->kind = TARGET_WAITKIND_FORKED;
1959 else if (event == PTRACE_EVENT_VFORK)
1960 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1961 else if (event == PTRACE_EVENT_CLONE)
1962 {
1963 struct lwp_info *new_lp;
1964
1965 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1966
1967 linux_nat_debug_printf
1968 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1969
1970 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
1971 new_lp->stopped = 1;
1972 new_lp->resumed = 1;
1973
1974 /* If the thread_db layer is active, let it record the user
1975 level thread id and status, and add the thread to GDB's
1976 list. */
1977 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1978 {
1979 /* The process is not using thread_db. Add the LWP to
1980 GDB's list. */
1981 target_post_attach (new_lp->ptid.lwp ());
1982 add_thread (linux_target, new_lp->ptid);
1983 }
1984
1985 /* Even if we're stopping the thread for some reason
1986 internal to this module, from the perspective of infrun
1987 and the user/frontend, this new thread is running until
1988 it next reports a stop. */
1989 set_running (linux_target, new_lp->ptid, true);
1990 set_executing (linux_target, new_lp->ptid, true);
1991
1992 if (WSTOPSIG (status) != SIGSTOP)
1993 {
1994 /* This can happen if someone starts sending signals to
1995 the new thread before it gets a chance to run, which
1996 have a lower number than SIGSTOP (e.g. SIGUSR1).
1997 This is an unlikely case, and harder to handle for
1998 fork / vfork than for clone, so we do not try - but
1999 we handle it for clone events here. */
2000
2001 new_lp->signalled = 1;
2002
2003 /* We created NEW_LP so it cannot yet contain STATUS. */
2004 gdb_assert (new_lp->status == 0);
2005
2006 /* Save the wait status to report later. */
2007 linux_nat_debug_printf
2008 ("waitpid of new LWP %ld, saving status %s",
2009 (long) new_lp->ptid.lwp (), status_to_str (status).c_str ());
2010 new_lp->status = status;
2011 }
2012 else if (report_thread_events)
2013 {
2014 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2015 new_lp->status = status;
2016 }
2017
2018 return 1;
2019 }
2020
2021 return 0;
2022 }
2023
2024 if (event == PTRACE_EVENT_EXEC)
2025 {
2026 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2027
2028 ourstatus->kind = TARGET_WAITKIND_EXECD;
2029 ourstatus->value.execd_pathname
2030 = xstrdup (linux_proc_pid_to_exec_file (pid));
2031
2032 /* The thread that execed must have been resumed, but, when a
2033 thread execs, it changes its tid to the tgid, and the old
2034 tgid thread might have not been resumed. */
2035 lp->resumed = 1;
2036 return 0;
2037 }
2038
2039 if (event == PTRACE_EVENT_VFORK_DONE)
2040 {
2041 if (current_inferior ()->waiting_for_vfork_done)
2042 {
2043 linux_nat_debug_printf
2044 ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping",
2045 lp->ptid.lwp ());
2046
2047 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2048 return 0;
2049 }
2050
2051 linux_nat_debug_printf
2052 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld: ignoring", lp->ptid.lwp ());
2053
2054 return 1;
2055 }
2056
2057 internal_error (__FILE__, __LINE__,
2058 _("unknown ptrace event %d"), event);
2059 }
2060
2061 /* Suspend waiting for a signal. We're mostly interested in
2062 SIGCHLD/SIGINT. */
2063
2064 static void
2065 wait_for_signal ()
2066 {
2067 linux_nat_debug_printf ("about to sigsuspend");
2068 sigsuspend (&suspend_mask);
2069
2070 /* If the quit flag is set, it means that the user pressed Ctrl-C
2071 and we're debugging a process that is running on a separate
2072 terminal, so we must forward the Ctrl-C to the inferior. (If the
2073 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2074 inferior directly.) We must do this here because functions that
2075 need to block waiting for a signal loop forever until there's an
2076 event to report before returning back to the event loop. */
2077 if (!target_terminal::is_ours ())
2078 {
2079 if (check_quit_flag ())
2080 target_pass_ctrlc ();
2081 }
2082 }
2083
2084 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2085 exited. */
2086
2087 static int
2088 wait_lwp (struct lwp_info *lp)
2089 {
2090 pid_t pid;
2091 int status = 0;
2092 int thread_dead = 0;
2093 sigset_t prev_mask;
2094
2095 gdb_assert (!lp->stopped);
2096 gdb_assert (lp->status == 0);
2097
2098 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2099 block_child_signals (&prev_mask);
2100
2101 for (;;)
2102 {
2103 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2104 if (pid == -1 && errno == ECHILD)
2105 {
2106 /* The thread has previously exited. We need to delete it
2107 now because if this was a non-leader thread execing, we
2108 won't get an exit event. See comments on exec events at
2109 the top of the file. */
2110 thread_dead = 1;
2111 linux_nat_debug_printf ("%s vanished.",
2112 target_pid_to_str (lp->ptid).c_str ());
2113 }
2114 if (pid != 0)
2115 break;
2116
2117 /* Bugs 10970, 12702.
2118 Thread group leader may have exited in which case we'll lock up in
2119 waitpid if there are other threads, even if they are all zombies too.
2120 Basically, we're not supposed to use waitpid this way.
2121 tkill(pid,0) cannot be used here as it gets ESRCH for both
2122 for zombie and running processes.
2123
2124 As a workaround, check if we're waiting for the thread group leader and
2125 if it's a zombie, and avoid calling waitpid if it is.
2126
2127 This is racy, what if the tgl becomes a zombie right after we check?
2128 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2129 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2130
2131 if (lp->ptid.pid () == lp->ptid.lwp ()
2132 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2133 {
2134 thread_dead = 1;
2135 linux_nat_debug_printf ("Thread group leader %s vanished.",
2136 target_pid_to_str (lp->ptid).c_str ());
2137 break;
2138 }
2139
2140 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2141 get invoked despite our caller had them intentionally blocked by
2142 block_child_signals. This is sensitive only to the loop of
2143 linux_nat_wait_1 and there if we get called my_waitpid gets called
2144 again before it gets to sigsuspend so we can safely let the handlers
2145 get executed here. */
2146 wait_for_signal ();
2147 }
2148
2149 restore_child_signals_mask (&prev_mask);
2150
2151 if (!thread_dead)
2152 {
2153 gdb_assert (pid == lp->ptid.lwp ());
2154
2155 linux_nat_debug_printf ("waitpid %s received %s",
2156 target_pid_to_str (lp->ptid).c_str (),
2157 status_to_str (status).c_str ());
2158
2159 /* Check if the thread has exited. */
2160 if (WIFEXITED (status) || WIFSIGNALED (status))
2161 {
2162 if (report_thread_events
2163 || lp->ptid.pid () == lp->ptid.lwp ())
2164 {
2165 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2166
2167 /* If this is the leader exiting, it means the whole
2168 process is gone. Store the status to report to the
2169 core. Store it in lp->waitstatus, because lp->status
2170 would be ambiguous (W_EXITCODE(0,0) == 0). */
2171 store_waitstatus (&lp->waitstatus, status);
2172 return 0;
2173 }
2174
2175 thread_dead = 1;
2176 linux_nat_debug_printf ("%s exited.",
2177 target_pid_to_str (lp->ptid).c_str ());
2178 }
2179 }
2180
2181 if (thread_dead)
2182 {
2183 exit_lwp (lp);
2184 return 0;
2185 }
2186
2187 gdb_assert (WIFSTOPPED (status));
2188 lp->stopped = 1;
2189
2190 if (lp->must_set_ptrace_flags)
2191 {
2192 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2193 int options = linux_nat_ptrace_options (inf->attach_flag);
2194
2195 linux_enable_event_reporting (lp->ptid.lwp (), options);
2196 lp->must_set_ptrace_flags = 0;
2197 }
2198
2199 /* Handle GNU/Linux's syscall SIGTRAPs. */
2200 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2201 {
2202 /* No longer need the sysgood bit. The ptrace event ends up
2203 recorded in lp->waitstatus if we care for it. We can carry
2204 on handling the event like a regular SIGTRAP from here
2205 on. */
2206 status = W_STOPCODE (SIGTRAP);
2207 if (linux_handle_syscall_trap (lp, 1))
2208 return wait_lwp (lp);
2209 }
2210 else
2211 {
2212 /* Almost all other ptrace-stops are known to be outside of system
2213 calls, with further exceptions in linux_handle_extended_wait. */
2214 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2215 }
2216
2217 /* Handle GNU/Linux's extended waitstatus for trace events. */
2218 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2219 && linux_is_extended_waitstatus (status))
2220 {
2221 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2222 linux_handle_extended_wait (lp, status);
2223 return 0;
2224 }
2225
2226 return status;
2227 }
2228
2229 /* Send a SIGSTOP to LP. */
2230
2231 static int
2232 stop_callback (struct lwp_info *lp)
2233 {
2234 if (!lp->stopped && !lp->signalled)
2235 {
2236 int ret;
2237
2238 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2239 target_pid_to_str (lp->ptid).c_str ());
2240
2241 errno = 0;
2242 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2243 linux_nat_debug_printf ("lwp kill %d %s", ret,
2244 errno ? safe_strerror (errno) : "ERRNO-OK");
2245
2246 lp->signalled = 1;
2247 gdb_assert (lp->status == 0);
2248 }
2249
2250 return 0;
2251 }
2252
2253 /* Request a stop on LWP. */
2254
2255 void
2256 linux_stop_lwp (struct lwp_info *lwp)
2257 {
2258 stop_callback (lwp);
2259 }
2260
2261 /* See linux-nat.h */
2262
2263 void
2264 linux_stop_and_wait_all_lwps (void)
2265 {
2266 /* Stop all LWP's ... */
2267 iterate_over_lwps (minus_one_ptid, stop_callback);
2268
2269 /* ... and wait until all of them have reported back that
2270 they're no longer running. */
2271 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2272 }
2273
2274 /* See linux-nat.h */
2275
2276 void
2277 linux_unstop_all_lwps (void)
2278 {
2279 iterate_over_lwps (minus_one_ptid,
2280 [] (struct lwp_info *info)
2281 {
2282 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2283 });
2284 }
2285
2286 /* Return non-zero if LWP PID has a pending SIGINT. */
2287
2288 static int
2289 linux_nat_has_pending_sigint (int pid)
2290 {
2291 sigset_t pending, blocked, ignored;
2292
2293 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2294
2295 if (sigismember (&pending, SIGINT)
2296 && !sigismember (&ignored, SIGINT))
2297 return 1;
2298
2299 return 0;
2300 }
2301
2302 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2303
2304 static int
2305 set_ignore_sigint (struct lwp_info *lp)
2306 {
2307 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2308 flag to consume the next one. */
2309 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2310 && WSTOPSIG (lp->status) == SIGINT)
2311 lp->status = 0;
2312 else
2313 lp->ignore_sigint = 1;
2314
2315 return 0;
2316 }
2317
2318 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2319 This function is called after we know the LWP has stopped; if the LWP
2320 stopped before the expected SIGINT was delivered, then it will never have
2321 arrived. Also, if the signal was delivered to a shared queue and consumed
2322 by a different thread, it will never be delivered to this LWP. */
2323
2324 static void
2325 maybe_clear_ignore_sigint (struct lwp_info *lp)
2326 {
2327 if (!lp->ignore_sigint)
2328 return;
2329
2330 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2331 {
2332 linux_nat_debug_printf ("Clearing bogus flag for %s",
2333 target_pid_to_str (lp->ptid).c_str ());
2334 lp->ignore_sigint = 0;
2335 }
2336 }
2337
2338 /* Fetch the possible triggered data watchpoint info and store it in
2339 LP.
2340
2341 On some archs, like x86, that use debug registers to set
2342 watchpoints, it's possible that the way to know which watched
2343 address trapped, is to check the register that is used to select
2344 which address to watch. Problem is, between setting the watchpoint
2345 and reading back which data address trapped, the user may change
2346 the set of watchpoints, and, as a consequence, GDB changes the
2347 debug registers in the inferior. To avoid reading back a stale
2348 stopped-data-address when that happens, we cache in LP the fact
2349 that a watchpoint trapped, and the corresponding data address, as
2350 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2351 registers meanwhile, we have the cached data we can rely on. */
2352
2353 static int
2354 check_stopped_by_watchpoint (struct lwp_info *lp)
2355 {
2356 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2357 inferior_ptid = lp->ptid;
2358
2359 if (linux_target->low_stopped_by_watchpoint ())
2360 {
2361 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2362 lp->stopped_data_address_p
2363 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2364 }
2365
2366 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2367 }
2368
2369 /* Returns true if the LWP had stopped for a watchpoint. */
2370
2371 bool
2372 linux_nat_target::stopped_by_watchpoint ()
2373 {
2374 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2375
2376 gdb_assert (lp != NULL);
2377
2378 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2379 }
2380
2381 bool
2382 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2383 {
2384 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2385
2386 gdb_assert (lp != NULL);
2387
2388 *addr_p = lp->stopped_data_address;
2389
2390 return lp->stopped_data_address_p;
2391 }
2392
2393 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2394
2395 bool
2396 linux_nat_target::low_status_is_event (int status)
2397 {
2398 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2399 }
2400
2401 /* Wait until LP is stopped. */
2402
2403 static int
2404 stop_wait_callback (struct lwp_info *lp)
2405 {
2406 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2407
2408 /* If this is a vfork parent, bail out, it is not going to report
2409 any SIGSTOP until the vfork is done with. */
2410 if (inf->vfork_child != NULL)
2411 return 0;
2412
2413 if (!lp->stopped)
2414 {
2415 int status;
2416
2417 status = wait_lwp (lp);
2418 if (status == 0)
2419 return 0;
2420
2421 if (lp->ignore_sigint && WIFSTOPPED (status)
2422 && WSTOPSIG (status) == SIGINT)
2423 {
2424 lp->ignore_sigint = 0;
2425
2426 errno = 0;
2427 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2428 lp->stopped = 0;
2429 linux_nat_debug_printf
2430 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2431 target_pid_to_str (lp->ptid).c_str (),
2432 errno ? safe_strerror (errno) : "OK");
2433
2434 return stop_wait_callback (lp);
2435 }
2436
2437 maybe_clear_ignore_sigint (lp);
2438
2439 if (WSTOPSIG (status) != SIGSTOP)
2440 {
2441 /* The thread was stopped with a signal other than SIGSTOP. */
2442
2443 linux_nat_debug_printf ("Pending event %s in %s",
2444 status_to_str ((int) status).c_str (),
2445 target_pid_to_str (lp->ptid).c_str ());
2446
2447 /* Save the sigtrap event. */
2448 lp->status = status;
2449 gdb_assert (lp->signalled);
2450 save_stop_reason (lp);
2451 }
2452 else
2453 {
2454 /* We caught the SIGSTOP that we intended to catch. */
2455
2456 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2457 target_pid_to_str (lp->ptid).c_str ());
2458
2459 lp->signalled = 0;
2460
2461 /* If we are waiting for this stop so we can report the thread
2462 stopped then we need to record this status. Otherwise, we can
2463 now discard this stop event. */
2464 if (lp->last_resume_kind == resume_stop)
2465 {
2466 lp->status = status;
2467 save_stop_reason (lp);
2468 }
2469 }
2470 }
2471
2472 return 0;
2473 }
2474
2475 /* Return non-zero if LP has a wait status pending. Discard the
2476 pending event and resume the LWP if the event that originally
2477 caused the stop became uninteresting. */
2478
2479 static int
2480 status_callback (struct lwp_info *lp)
2481 {
2482 /* Only report a pending wait status if we pretend that this has
2483 indeed been resumed. */
2484 if (!lp->resumed)
2485 return 0;
2486
2487 if (!lwp_status_pending_p (lp))
2488 return 0;
2489
2490 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2491 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2492 {
2493 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2494 CORE_ADDR pc;
2495 int discard = 0;
2496
2497 pc = regcache_read_pc (regcache);
2498
2499 if (pc != lp->stop_pc)
2500 {
2501 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2502 target_pid_to_str (lp->ptid).c_str (),
2503 paddress (target_gdbarch (), lp->stop_pc),
2504 paddress (target_gdbarch (), pc));
2505 discard = 1;
2506 }
2507
2508 #if !USE_SIGTRAP_SIGINFO
2509 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2510 {
2511 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2512 target_pid_to_str (lp->ptid).c_str (),
2513 paddress (target_gdbarch (), lp->stop_pc));
2514
2515 discard = 1;
2516 }
2517 #endif
2518
2519 if (discard)
2520 {
2521 linux_nat_debug_printf ("pending event of %s cancelled.",
2522 target_pid_to_str (lp->ptid).c_str ());
2523
2524 lp->status = 0;
2525 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2526 return 0;
2527 }
2528 }
2529
2530 return 1;
2531 }
2532
2533 /* Count the LWP's that have had events. */
2534
2535 static int
2536 count_events_callback (struct lwp_info *lp, int *count)
2537 {
2538 gdb_assert (count != NULL);
2539
2540 /* Select only resumed LWPs that have an event pending. */
2541 if (lp->resumed && lwp_status_pending_p (lp))
2542 (*count)++;
2543
2544 return 0;
2545 }
2546
2547 /* Select the LWP (if any) that is currently being single-stepped. */
2548
2549 static int
2550 select_singlestep_lwp_callback (struct lwp_info *lp)
2551 {
2552 if (lp->last_resume_kind == resume_step
2553 && lp->status != 0)
2554 return 1;
2555 else
2556 return 0;
2557 }
2558
2559 /* Returns true if LP has a status pending. */
2560
2561 static int
2562 lwp_status_pending_p (struct lwp_info *lp)
2563 {
2564 /* We check for lp->waitstatus in addition to lp->status, because we
2565 can have pending process exits recorded in lp->status and
2566 W_EXITCODE(0,0) happens to be 0. */
2567 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2568 }
2569
2570 /* Select the Nth LWP that has had an event. */
2571
2572 static int
2573 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2574 {
2575 gdb_assert (selector != NULL);
2576
2577 /* Select only resumed LWPs that have an event pending. */
2578 if (lp->resumed && lwp_status_pending_p (lp))
2579 if ((*selector)-- == 0)
2580 return 1;
2581
2582 return 0;
2583 }
2584
2585 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2586 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2587 and save the result in the LWP's stop_reason field. If it stopped
2588 for a breakpoint, decrement the PC if necessary on the lwp's
2589 architecture. */
2590
2591 static void
2592 save_stop_reason (struct lwp_info *lp)
2593 {
2594 struct regcache *regcache;
2595 struct gdbarch *gdbarch;
2596 CORE_ADDR pc;
2597 CORE_ADDR sw_bp_pc;
2598 #if USE_SIGTRAP_SIGINFO
2599 siginfo_t siginfo;
2600 #endif
2601
2602 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2603 gdb_assert (lp->status != 0);
2604
2605 if (!linux_target->low_status_is_event (lp->status))
2606 return;
2607
2608 regcache = get_thread_regcache (linux_target, lp->ptid);
2609 gdbarch = regcache->arch ();
2610
2611 pc = regcache_read_pc (regcache);
2612 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2613
2614 #if USE_SIGTRAP_SIGINFO
2615 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2616 {
2617 if (siginfo.si_signo == SIGTRAP)
2618 {
2619 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2620 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2621 {
2622 /* The si_code is ambiguous on this arch -- check debug
2623 registers. */
2624 if (!check_stopped_by_watchpoint (lp))
2625 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2626 }
2627 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2628 {
2629 /* If we determine the LWP stopped for a SW breakpoint,
2630 trust it. Particularly don't check watchpoint
2631 registers, because, at least on s390, we'd find
2632 stopped-by-watchpoint as long as there's a watchpoint
2633 set. */
2634 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2635 }
2636 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2637 {
2638 /* This can indicate either a hardware breakpoint or
2639 hardware watchpoint. Check debug registers. */
2640 if (!check_stopped_by_watchpoint (lp))
2641 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2642 }
2643 else if (siginfo.si_code == TRAP_TRACE)
2644 {
2645 linux_nat_debug_printf ("%s stopped by trace",
2646 target_pid_to_str (lp->ptid).c_str ());
2647
2648 /* We may have single stepped an instruction that
2649 triggered a watchpoint. In that case, on some
2650 architectures (such as x86), instead of TRAP_HWBKPT,
2651 si_code indicates TRAP_TRACE, and we need to check
2652 the debug registers separately. */
2653 check_stopped_by_watchpoint (lp);
2654 }
2655 }
2656 }
2657 #else
2658 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2659 && software_breakpoint_inserted_here_p (regcache->aspace (),
2660 sw_bp_pc))
2661 {
2662 /* The LWP was either continued, or stepped a software
2663 breakpoint instruction. */
2664 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2665 }
2666
2667 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2668 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2669
2670 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2671 check_stopped_by_watchpoint (lp);
2672 #endif
2673
2674 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2675 {
2676 linux_nat_debug_printf ("%s stopped by software breakpoint",
2677 target_pid_to_str (lp->ptid).c_str ());
2678
2679 /* Back up the PC if necessary. */
2680 if (pc != sw_bp_pc)
2681 regcache_write_pc (regcache, sw_bp_pc);
2682
2683 /* Update this so we record the correct stop PC below. */
2684 pc = sw_bp_pc;
2685 }
2686 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2687 {
2688 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2689 target_pid_to_str (lp->ptid).c_str ());
2690 }
2691 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2692 {
2693 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2694 target_pid_to_str (lp->ptid).c_str ());
2695 }
2696
2697 lp->stop_pc = pc;
2698 }
2699
2700
2701 /* Returns true if the LWP had stopped for a software breakpoint. */
2702
2703 bool
2704 linux_nat_target::stopped_by_sw_breakpoint ()
2705 {
2706 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2707
2708 gdb_assert (lp != NULL);
2709
2710 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2711 }
2712
2713 /* Implement the supports_stopped_by_sw_breakpoint method. */
2714
2715 bool
2716 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2717 {
2718 return USE_SIGTRAP_SIGINFO;
2719 }
2720
2721 /* Returns true if the LWP had stopped for a hardware
2722 breakpoint/watchpoint. */
2723
2724 bool
2725 linux_nat_target::stopped_by_hw_breakpoint ()
2726 {
2727 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2728
2729 gdb_assert (lp != NULL);
2730
2731 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2732 }
2733
2734 /* Implement the supports_stopped_by_hw_breakpoint method. */
2735
2736 bool
2737 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2738 {
2739 return USE_SIGTRAP_SIGINFO;
2740 }
2741
2742 /* Select one LWP out of those that have events pending. */
2743
2744 static void
2745 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2746 {
2747 int num_events = 0;
2748 int random_selector;
2749 struct lwp_info *event_lp = NULL;
2750
2751 /* Record the wait status for the original LWP. */
2752 (*orig_lp)->status = *status;
2753
2754 /* In all-stop, give preference to the LWP that is being
2755 single-stepped. There will be at most one, and it will be the
2756 LWP that the core is most interested in. If we didn't do this,
2757 then we'd have to handle pending step SIGTRAPs somehow in case
2758 the core later continues the previously-stepped thread, as
2759 otherwise we'd report the pending SIGTRAP then, and the core, not
2760 having stepped the thread, wouldn't understand what the trap was
2761 for, and therefore would report it to the user as a random
2762 signal. */
2763 if (!target_is_non_stop_p ())
2764 {
2765 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2766 if (event_lp != NULL)
2767 {
2768 linux_nat_debug_printf ("Select single-step %s",
2769 target_pid_to_str (event_lp->ptid).c_str ());
2770 }
2771 }
2772
2773 if (event_lp == NULL)
2774 {
2775 /* Pick one at random, out of those which have had events. */
2776
2777 /* First see how many events we have. */
2778 iterate_over_lwps (filter,
2779 [&] (struct lwp_info *info)
2780 {
2781 return count_events_callback (info, &num_events);
2782 });
2783 gdb_assert (num_events > 0);
2784
2785 /* Now randomly pick a LWP out of those that have had
2786 events. */
2787 random_selector = (int)
2788 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2789
2790 if (num_events > 1)
2791 linux_nat_debug_printf ("Found %d events, selecting #%d",
2792 num_events, random_selector);
2793
2794 event_lp
2795 = (iterate_over_lwps
2796 (filter,
2797 [&] (struct lwp_info *info)
2798 {
2799 return select_event_lwp_callback (info,
2800 &random_selector);
2801 }));
2802 }
2803
2804 if (event_lp != NULL)
2805 {
2806 /* Switch the event LWP. */
2807 *orig_lp = event_lp;
2808 *status = event_lp->status;
2809 }
2810
2811 /* Flush the wait status for the event LWP. */
2812 (*orig_lp)->status = 0;
2813 }
2814
2815 /* Return non-zero if LP has been resumed. */
2816
2817 static int
2818 resumed_callback (struct lwp_info *lp)
2819 {
2820 return lp->resumed;
2821 }
2822
2823 /* Check if we should go on and pass this event to common code.
2824
2825 If so, save the status to the lwp_info structure associated to LWPID. */
2826
2827 static void
2828 linux_nat_filter_event (int lwpid, int status)
2829 {
2830 struct lwp_info *lp;
2831 int event = linux_ptrace_get_extended_event (status);
2832
2833 lp = find_lwp_pid (ptid_t (lwpid));
2834
2835 /* Check for stop events reported by a process we didn't already
2836 know about - anything not already in our LWP list.
2837
2838 If we're expecting to receive stopped processes after
2839 fork, vfork, and clone events, then we'll just add the
2840 new one to our list and go back to waiting for the event
2841 to be reported - the stopped process might be returned
2842 from waitpid before or after the event is.
2843
2844 But note the case of a non-leader thread exec'ing after the
2845 leader having exited, and gone from our lists. The non-leader
2846 thread changes its tid to the tgid. */
2847
2848 if (WIFSTOPPED (status) && lp == NULL
2849 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2850 {
2851 /* A multi-thread exec after we had seen the leader exiting. */
2852 linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid);
2853
2854 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2855 lp->stopped = 1;
2856 lp->resumed = 1;
2857 add_thread (linux_target, lp->ptid);
2858 }
2859
2860 if (WIFSTOPPED (status) && !lp)
2861 {
2862 linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list",
2863 (long) lwpid, status_to_str (status).c_str ());
2864 add_to_pid_list (&stopped_pids, lwpid, status);
2865 return;
2866 }
2867
2868 /* Make sure we don't report an event for the exit of an LWP not in
2869 our list, i.e. not part of the current process. This can happen
2870 if we detach from a program we originally forked and then it
2871 exits. */
2872 if (!WIFSTOPPED (status) && !lp)
2873 return;
2874
2875 /* This LWP is stopped now. (And if dead, this prevents it from
2876 ever being continued.) */
2877 lp->stopped = 1;
2878
2879 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2880 {
2881 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2882 int options = linux_nat_ptrace_options (inf->attach_flag);
2883
2884 linux_enable_event_reporting (lp->ptid.lwp (), options);
2885 lp->must_set_ptrace_flags = 0;
2886 }
2887
2888 /* Handle GNU/Linux's syscall SIGTRAPs. */
2889 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2890 {
2891 /* No longer need the sysgood bit. The ptrace event ends up
2892 recorded in lp->waitstatus if we care for it. We can carry
2893 on handling the event like a regular SIGTRAP from here
2894 on. */
2895 status = W_STOPCODE (SIGTRAP);
2896 if (linux_handle_syscall_trap (lp, 0))
2897 return;
2898 }
2899 else
2900 {
2901 /* Almost all other ptrace-stops are known to be outside of system
2902 calls, with further exceptions in linux_handle_extended_wait. */
2903 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2904 }
2905
2906 /* Handle GNU/Linux's extended waitstatus for trace events. */
2907 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2908 && linux_is_extended_waitstatus (status))
2909 {
2910 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2911
2912 if (linux_handle_extended_wait (lp, status))
2913 return;
2914 }
2915
2916 /* Check if the thread has exited. */
2917 if (WIFEXITED (status) || WIFSIGNALED (status))
2918 {
2919 if (!report_thread_events
2920 && num_lwps (lp->ptid.pid ()) > 1)
2921 {
2922 linux_nat_debug_printf ("%s exited.",
2923 target_pid_to_str (lp->ptid).c_str ());
2924
2925 /* If there is at least one more LWP, then the exit signal
2926 was not the end of the debugged application and should be
2927 ignored. */
2928 exit_lwp (lp);
2929 return;
2930 }
2931
2932 /* Note that even if the leader was ptrace-stopped, it can still
2933 exit, if e.g., some other thread brings down the whole
2934 process (calls `exit'). So don't assert that the lwp is
2935 resumed. */
2936 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2937 lp->ptid.lwp (), lp->resumed);
2938
2939 /* Dead LWP's aren't expected to reported a pending sigstop. */
2940 lp->signalled = 0;
2941
2942 /* Store the pending event in the waitstatus, because
2943 W_EXITCODE(0,0) == 0. */
2944 store_waitstatus (&lp->waitstatus, status);
2945 return;
2946 }
2947
2948 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2949 an attempt to stop an LWP. */
2950 if (lp->signalled
2951 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2952 {
2953 lp->signalled = 0;
2954
2955 if (lp->last_resume_kind == resume_stop)
2956 {
2957 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2958 target_pid_to_str (lp->ptid).c_str ());
2959 }
2960 else
2961 {
2962 /* This is a delayed SIGSTOP. Filter out the event. */
2963
2964 linux_nat_debug_printf
2965 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2966 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2967 target_pid_to_str (lp->ptid).c_str ());
2968
2969 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2970 gdb_assert (lp->resumed);
2971 return;
2972 }
2973 }
2974
2975 /* Make sure we don't report a SIGINT that we have already displayed
2976 for another thread. */
2977 if (lp->ignore_sigint
2978 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2979 {
2980 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2981 target_pid_to_str (lp->ptid).c_str ());
2982
2983 /* This is a delayed SIGINT. */
2984 lp->ignore_sigint = 0;
2985
2986 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2987 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2988 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2989 target_pid_to_str (lp->ptid).c_str ());
2990 gdb_assert (lp->resumed);
2991
2992 /* Discard the event. */
2993 return;
2994 }
2995
2996 /* Don't report signals that GDB isn't interested in, such as
2997 signals that are neither printed nor stopped upon. Stopping all
2998 threads can be a bit time-consuming, so if we want decent
2999 performance with heavily multi-threaded programs, especially when
3000 they're using a high frequency timer, we'd better avoid it if we
3001 can. */
3002 if (WIFSTOPPED (status))
3003 {
3004 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3005
3006 if (!target_is_non_stop_p ())
3007 {
3008 /* Only do the below in all-stop, as we currently use SIGSTOP
3009 to implement target_stop (see linux_nat_stop) in
3010 non-stop. */
3011 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3012 {
3013 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3014 forwarded to the entire process group, that is, all LWPs
3015 will receive it - unless they're using CLONE_THREAD to
3016 share signals. Since we only want to report it once, we
3017 mark it as ignored for all LWPs except this one. */
3018 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3019 lp->ignore_sigint = 0;
3020 }
3021 else
3022 maybe_clear_ignore_sigint (lp);
3023 }
3024
3025 /* When using hardware single-step, we need to report every signal.
3026 Otherwise, signals in pass_mask may be short-circuited
3027 except signals that might be caused by a breakpoint, or SIGSTOP
3028 if we sent the SIGSTOP and are waiting for it to arrive. */
3029 if (!lp->step
3030 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3031 && (WSTOPSIG (status) != SIGSTOP
3032 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3033 && !linux_wstatus_maybe_breakpoint (status))
3034 {
3035 linux_resume_one_lwp (lp, lp->step, signo);
3036 linux_nat_debug_printf
3037 ("%s %s, %s (preempt 'handle')",
3038 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3039 target_pid_to_str (lp->ptid).c_str (),
3040 (signo != GDB_SIGNAL_0
3041 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3042 return;
3043 }
3044 }
3045
3046 /* An interesting event. */
3047 gdb_assert (lp);
3048 lp->status = status;
3049 save_stop_reason (lp);
3050 }
3051
3052 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3053 their exits until all other threads in the group have exited. */
3054
3055 static void
3056 check_zombie_leaders (void)
3057 {
3058 for (inferior *inf : all_inferiors ())
3059 {
3060 struct lwp_info *leader_lp;
3061
3062 if (inf->pid == 0)
3063 continue;
3064
3065 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3066 if (leader_lp != NULL
3067 /* Check if there are other threads in the group, as we may
3068 have raced with the inferior simply exiting. */
3069 && num_lwps (inf->pid) > 1
3070 && linux_proc_pid_is_zombie (inf->pid))
3071 {
3072 linux_nat_debug_printf ("Thread group leader %d zombie "
3073 "(it exited, or another thread execd).",
3074 inf->pid);
3075
3076 /* A leader zombie can mean one of two things:
3077
3078 - It exited, and there's an exit status pending
3079 available, or only the leader exited (not the whole
3080 program). In the latter case, we can't waitpid the
3081 leader's exit status until all other threads are gone.
3082
3083 - There are 3 or more threads in the group, and a thread
3084 other than the leader exec'd. See comments on exec
3085 events at the top of the file. We could try
3086 distinguishing the exit and exec cases, by waiting once
3087 more, and seeing if something comes out, but it doesn't
3088 sound useful. The previous leader _does_ go away, and
3089 we'll re-add the new one once we see the exec event
3090 (which is just the same as what would happen if the
3091 previous leader did exit voluntarily before some other
3092 thread execs). */
3093
3094 linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid);
3095 exit_lwp (leader_lp);
3096 }
3097 }
3098 }
3099
3100 /* Convenience function that is called when the kernel reports an exit
3101 event. This decides whether to report the event to GDB as a
3102 process exit event, a thread exit event, or to suppress the
3103 event. */
3104
3105 static ptid_t
3106 filter_exit_event (struct lwp_info *event_child,
3107 struct target_waitstatus *ourstatus)
3108 {
3109 ptid_t ptid = event_child->ptid;
3110
3111 if (num_lwps (ptid.pid ()) > 1)
3112 {
3113 if (report_thread_events)
3114 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3115 else
3116 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3117
3118 exit_lwp (event_child);
3119 }
3120
3121 return ptid;
3122 }
3123
3124 static ptid_t
3125 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3126 target_wait_flags target_options)
3127 {
3128 sigset_t prev_mask;
3129 enum resume_kind last_resume_kind;
3130 struct lwp_info *lp;
3131 int status;
3132
3133 linux_nat_debug_printf ("enter");
3134
3135 /* The first time we get here after starting a new inferior, we may
3136 not have added it to the LWP list yet - this is the earliest
3137 moment at which we know its PID. */
3138 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3139 {
3140 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3141
3142 /* Upgrade the main thread's ptid. */
3143 thread_change_ptid (linux_target, ptid, lwp_ptid);
3144 lp = add_initial_lwp (lwp_ptid);
3145 lp->resumed = 1;
3146 }
3147
3148 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3149 block_child_signals (&prev_mask);
3150
3151 /* First check if there is a LWP with a wait status pending. */
3152 lp = iterate_over_lwps (ptid, status_callback);
3153 if (lp != NULL)
3154 {
3155 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3156 status_to_str (lp->status).c_str (),
3157 target_pid_to_str (lp->ptid).c_str ());
3158 }
3159
3160 /* But if we don't find a pending event, we'll have to wait. Always
3161 pull all events out of the kernel. We'll randomly select an
3162 event LWP out of all that have events, to prevent starvation. */
3163
3164 while (lp == NULL)
3165 {
3166 pid_t lwpid;
3167
3168 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3169 quirks:
3170
3171 - If the thread group leader exits while other threads in the
3172 thread group still exist, waitpid(TGID, ...) hangs. That
3173 waitpid won't return an exit status until the other threads
3174 in the group are reaped.
3175
3176 - When a non-leader thread execs, that thread just vanishes
3177 without reporting an exit (so we'd hang if we waited for it
3178 explicitly in that case). The exec event is reported to
3179 the TGID pid. */
3180
3181 errno = 0;
3182 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3183
3184 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3185 lwpid,
3186 errno ? safe_strerror (errno) : "ERRNO-OK");
3187
3188 if (lwpid > 0)
3189 {
3190 linux_nat_debug_printf ("waitpid %ld received %s",
3191 (long) lwpid,
3192 status_to_str (status).c_str ());
3193
3194 linux_nat_filter_event (lwpid, status);
3195 /* Retry until nothing comes out of waitpid. A single
3196 SIGCHLD can indicate more than one child stopped. */
3197 continue;
3198 }
3199
3200 /* Now that we've pulled all events out of the kernel, resume
3201 LWPs that don't have an interesting event to report. */
3202 iterate_over_lwps (minus_one_ptid,
3203 [] (struct lwp_info *info)
3204 {
3205 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3206 });
3207
3208 /* ... and find an LWP with a status to report to the core, if
3209 any. */
3210 lp = iterate_over_lwps (ptid, status_callback);
3211 if (lp != NULL)
3212 break;
3213
3214 /* Check for zombie thread group leaders. Those can't be reaped
3215 until all other threads in the thread group are. */
3216 check_zombie_leaders ();
3217
3218 /* If there are no resumed children left, bail. We'd be stuck
3219 forever in the sigsuspend call below otherwise. */
3220 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3221 {
3222 linux_nat_debug_printf ("exit (no resumed LWP)");
3223
3224 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3225
3226 restore_child_signals_mask (&prev_mask);
3227 return minus_one_ptid;
3228 }
3229
3230 /* No interesting event to report to the core. */
3231
3232 if (target_options & TARGET_WNOHANG)
3233 {
3234 linux_nat_debug_printf ("exit (ignore)");
3235
3236 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3237 restore_child_signals_mask (&prev_mask);
3238 return minus_one_ptid;
3239 }
3240
3241 /* We shouldn't end up here unless we want to try again. */
3242 gdb_assert (lp == NULL);
3243
3244 /* Block until we get an event reported with SIGCHLD. */
3245 wait_for_signal ();
3246 }
3247
3248 gdb_assert (lp);
3249
3250 status = lp->status;
3251 lp->status = 0;
3252
3253 if (!target_is_non_stop_p ())
3254 {
3255 /* Now stop all other LWP's ... */
3256 iterate_over_lwps (minus_one_ptid, stop_callback);
3257
3258 /* ... and wait until all of them have reported back that
3259 they're no longer running. */
3260 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3261 }
3262
3263 /* If we're not waiting for a specific LWP, choose an event LWP from
3264 among those that have had events. Giving equal priority to all
3265 LWPs that have had events helps prevent starvation. */
3266 if (ptid == minus_one_ptid || ptid.is_pid ())
3267 select_event_lwp (ptid, &lp, &status);
3268
3269 gdb_assert (lp != NULL);
3270
3271 /* Now that we've selected our final event LWP, un-adjust its PC if
3272 it was a software breakpoint, and we can't reliably support the
3273 "stopped by software breakpoint" stop reason. */
3274 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3275 && !USE_SIGTRAP_SIGINFO)
3276 {
3277 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3278 struct gdbarch *gdbarch = regcache->arch ();
3279 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3280
3281 if (decr_pc != 0)
3282 {
3283 CORE_ADDR pc;
3284
3285 pc = regcache_read_pc (regcache);
3286 regcache_write_pc (regcache, pc + decr_pc);
3287 }
3288 }
3289
3290 /* We'll need this to determine whether to report a SIGSTOP as
3291 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3292 clears it. */
3293 last_resume_kind = lp->last_resume_kind;
3294
3295 if (!target_is_non_stop_p ())
3296 {
3297 /* In all-stop, from the core's perspective, all LWPs are now
3298 stopped until a new resume action is sent over. */
3299 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3300 }
3301 else
3302 {
3303 resume_clear_callback (lp);
3304 }
3305
3306 if (linux_target->low_status_is_event (status))
3307 {
3308 linux_nat_debug_printf ("trap ptid is %s.",
3309 target_pid_to_str (lp->ptid).c_str ());
3310 }
3311
3312 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3313 {
3314 *ourstatus = lp->waitstatus;
3315 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3316 }
3317 else
3318 store_waitstatus (ourstatus, status);
3319
3320 linux_nat_debug_printf ("exit");
3321
3322 restore_child_signals_mask (&prev_mask);
3323
3324 if (last_resume_kind == resume_stop
3325 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3326 && WSTOPSIG (status) == SIGSTOP)
3327 {
3328 /* A thread that has been requested to stop by GDB with
3329 target_stop, and it stopped cleanly, so report as SIG0. The
3330 use of SIGSTOP is an implementation detail. */
3331 ourstatus->value.sig = GDB_SIGNAL_0;
3332 }
3333
3334 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3335 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3336 lp->core = -1;
3337 else
3338 lp->core = linux_common_core_of_thread (lp->ptid);
3339
3340 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3341 return filter_exit_event (lp, ourstatus);
3342
3343 return lp->ptid;
3344 }
3345
3346 /* Resume LWPs that are currently stopped without any pending status
3347 to report, but are resumed from the core's perspective. */
3348
3349 static int
3350 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3351 {
3352 if (!lp->stopped)
3353 {
3354 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3355 target_pid_to_str (lp->ptid).c_str ());
3356 }
3357 else if (!lp->resumed)
3358 {
3359 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3360 target_pid_to_str (lp->ptid).c_str ());
3361 }
3362 else if (lwp_status_pending_p (lp))
3363 {
3364 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3365 target_pid_to_str (lp->ptid).c_str ());
3366 }
3367 else
3368 {
3369 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3370 struct gdbarch *gdbarch = regcache->arch ();
3371
3372 try
3373 {
3374 CORE_ADDR pc = regcache_read_pc (regcache);
3375 int leave_stopped = 0;
3376
3377 /* Don't bother if there's a breakpoint at PC that we'd hit
3378 immediately, and we're not waiting for this LWP. */
3379 if (!lp->ptid.matches (wait_ptid))
3380 {
3381 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3382 leave_stopped = 1;
3383 }
3384
3385 if (!leave_stopped)
3386 {
3387 linux_nat_debug_printf
3388 ("resuming stopped-resumed LWP %s at %s: step=%d",
3389 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc),
3390 lp->step);
3391
3392 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3393 }
3394 }
3395 catch (const gdb_exception_error &ex)
3396 {
3397 if (!check_ptrace_stopped_lwp_gone (lp))
3398 throw;
3399 }
3400 }
3401
3402 return 0;
3403 }
3404
3405 ptid_t
3406 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3407 target_wait_flags target_options)
3408 {
3409 ptid_t event_ptid;
3410
3411 linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
3412 target_options_to_string (target_options).c_str ());
3413
3414 /* Flush the async file first. */
3415 if (target_is_async_p ())
3416 async_file_flush ();
3417
3418 /* Resume LWPs that are currently stopped without any pending status
3419 to report, but are resumed from the core's perspective. LWPs get
3420 in this state if we find them stopping at a time we're not
3421 interested in reporting the event (target_wait on a
3422 specific_process, for example, see linux_nat_wait_1), and
3423 meanwhile the event became uninteresting. Don't bother resuming
3424 LWPs we're not going to wait for if they'd stop immediately. */
3425 if (target_is_non_stop_p ())
3426 iterate_over_lwps (minus_one_ptid,
3427 [=] (struct lwp_info *info)
3428 {
3429 return resume_stopped_resumed_lwps (info, ptid);
3430 });
3431
3432 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3433
3434 /* If we requested any event, and something came out, assume there
3435 may be more. If we requested a specific lwp or process, also
3436 assume there may be more. */
3437 if (target_is_async_p ()
3438 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3439 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3440 || ptid != minus_one_ptid))
3441 async_file_mark ();
3442
3443 return event_ptid;
3444 }
3445
3446 /* Kill one LWP. */
3447
3448 static void
3449 kill_one_lwp (pid_t pid)
3450 {
3451 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3452
3453 errno = 0;
3454 kill_lwp (pid, SIGKILL);
3455
3456 if (debug_linux_nat)
3457 {
3458 int save_errno = errno;
3459
3460 linux_nat_debug_printf
3461 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3462 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3463 }
3464
3465 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3466
3467 errno = 0;
3468 ptrace (PTRACE_KILL, pid, 0, 0);
3469 if (debug_linux_nat)
3470 {
3471 int save_errno = errno;
3472
3473 linux_nat_debug_printf
3474 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3475 save_errno ? safe_strerror (save_errno) : "OK");
3476 }
3477 }
3478
3479 /* Wait for an LWP to die. */
3480
3481 static void
3482 kill_wait_one_lwp (pid_t pid)
3483 {
3484 pid_t res;
3485
3486 /* We must make sure that there are no pending events (delayed
3487 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3488 program doesn't interfere with any following debugging session. */
3489
3490 do
3491 {
3492 res = my_waitpid (pid, NULL, __WALL);
3493 if (res != (pid_t) -1)
3494 {
3495 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3496
3497 /* The Linux kernel sometimes fails to kill a thread
3498 completely after PTRACE_KILL; that goes from the stop
3499 point in do_fork out to the one in get_signal_to_deliver
3500 and waits again. So kill it again. */
3501 kill_one_lwp (pid);
3502 }
3503 }
3504 while (res == pid);
3505
3506 gdb_assert (res == -1 && errno == ECHILD);
3507 }
3508
3509 /* Callback for iterate_over_lwps. */
3510
3511 static int
3512 kill_callback (struct lwp_info *lp)
3513 {
3514 kill_one_lwp (lp->ptid.lwp ());
3515 return 0;
3516 }
3517
3518 /* Callback for iterate_over_lwps. */
3519
3520 static int
3521 kill_wait_callback (struct lwp_info *lp)
3522 {
3523 kill_wait_one_lwp (lp->ptid.lwp ());
3524 return 0;
3525 }
3526
3527 /* Kill the fork children of any threads of inferior INF that are
3528 stopped at a fork event. */
3529
3530 static void
3531 kill_unfollowed_fork_children (struct inferior *inf)
3532 {
3533 for (thread_info *thread : inf->non_exited_threads ())
3534 {
3535 struct target_waitstatus *ws = &thread->pending_follow;
3536
3537 if (ws->kind == TARGET_WAITKIND_FORKED
3538 || ws->kind == TARGET_WAITKIND_VFORKED)
3539 {
3540 ptid_t child_ptid = ws->value.related_pid;
3541 int child_pid = child_ptid.pid ();
3542 int child_lwp = child_ptid.lwp ();
3543
3544 kill_one_lwp (child_lwp);
3545 kill_wait_one_lwp (child_lwp);
3546
3547 /* Let the arch-specific native code know this process is
3548 gone. */
3549 linux_target->low_forget_process (child_pid);
3550 }
3551 }
3552 }
3553
3554 void
3555 linux_nat_target::kill ()
3556 {
3557 /* If we're stopped while forking and we haven't followed yet,
3558 kill the other task. We need to do this first because the
3559 parent will be sleeping if this is a vfork. */
3560 kill_unfollowed_fork_children (current_inferior ());
3561
3562 if (forks_exist_p ())
3563 linux_fork_killall ();
3564 else
3565 {
3566 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3567
3568 /* Stop all threads before killing them, since ptrace requires
3569 that the thread is stopped to successfully PTRACE_KILL. */
3570 iterate_over_lwps (ptid, stop_callback);
3571 /* ... and wait until all of them have reported back that
3572 they're no longer running. */
3573 iterate_over_lwps (ptid, stop_wait_callback);
3574
3575 /* Kill all LWP's ... */
3576 iterate_over_lwps (ptid, kill_callback);
3577
3578 /* ... and wait until we've flushed all events. */
3579 iterate_over_lwps (ptid, kill_wait_callback);
3580 }
3581
3582 target_mourn_inferior (inferior_ptid);
3583 }
3584
3585 void
3586 linux_nat_target::mourn_inferior ()
3587 {
3588 int pid = inferior_ptid.pid ();
3589
3590 purge_lwp_list (pid);
3591
3592 if (! forks_exist_p ())
3593 /* Normal case, no other forks available. */
3594 inf_ptrace_target::mourn_inferior ();
3595 else
3596 /* Multi-fork case. The current inferior_ptid has exited, but
3597 there are other viable forks to debug. Delete the exiting
3598 one and context-switch to the first available. */
3599 linux_fork_mourn_inferior ();
3600
3601 /* Let the arch-specific native code know this process is gone. */
3602 linux_target->low_forget_process (pid);
3603 }
3604
3605 /* Convert a native/host siginfo object, into/from the siginfo in the
3606 layout of the inferiors' architecture. */
3607
3608 static void
3609 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3610 {
3611 /* If the low target didn't do anything, then just do a straight
3612 memcpy. */
3613 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3614 {
3615 if (direction == 1)
3616 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3617 else
3618 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3619 }
3620 }
3621
3622 static enum target_xfer_status
3623 linux_xfer_siginfo (enum target_object object,
3624 const char *annex, gdb_byte *readbuf,
3625 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3626 ULONGEST *xfered_len)
3627 {
3628 int pid;
3629 siginfo_t siginfo;
3630 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3631
3632 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3633 gdb_assert (readbuf || writebuf);
3634
3635 pid = inferior_ptid.lwp ();
3636 if (pid == 0)
3637 pid = inferior_ptid.pid ();
3638
3639 if (offset > sizeof (siginfo))
3640 return TARGET_XFER_E_IO;
3641
3642 errno = 0;
3643 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3644 if (errno != 0)
3645 return TARGET_XFER_E_IO;
3646
3647 /* When GDB is built as a 64-bit application, ptrace writes into
3648 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3649 inferior with a 64-bit GDB should look the same as debugging it
3650 with a 32-bit GDB, we need to convert it. GDB core always sees
3651 the converted layout, so any read/write will have to be done
3652 post-conversion. */
3653 siginfo_fixup (&siginfo, inf_siginfo, 0);
3654
3655 if (offset + len > sizeof (siginfo))
3656 len = sizeof (siginfo) - offset;
3657
3658 if (readbuf != NULL)
3659 memcpy (readbuf, inf_siginfo + offset, len);
3660 else
3661 {
3662 memcpy (inf_siginfo + offset, writebuf, len);
3663
3664 /* Convert back to ptrace layout before flushing it out. */
3665 siginfo_fixup (&siginfo, inf_siginfo, 1);
3666
3667 errno = 0;
3668 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3669 if (errno != 0)
3670 return TARGET_XFER_E_IO;
3671 }
3672
3673 *xfered_len = len;
3674 return TARGET_XFER_OK;
3675 }
3676
3677 static enum target_xfer_status
3678 linux_nat_xfer_osdata (enum target_object object,
3679 const char *annex, gdb_byte *readbuf,
3680 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3681 ULONGEST *xfered_len);
3682
3683 static enum target_xfer_status
3684 linux_proc_xfer_partial (enum target_object object,
3685 const char *annex, gdb_byte *readbuf,
3686 const gdb_byte *writebuf,
3687 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3688
3689 enum target_xfer_status
3690 linux_nat_target::xfer_partial (enum target_object object,
3691 const char *annex, gdb_byte *readbuf,
3692 const gdb_byte *writebuf,
3693 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3694 {
3695 enum target_xfer_status xfer;
3696
3697 if (object == TARGET_OBJECT_SIGNAL_INFO)
3698 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3699 offset, len, xfered_len);
3700
3701 /* The target is connected but no live inferior is selected. Pass
3702 this request down to a lower stratum (e.g., the executable
3703 file). */
3704 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3705 return TARGET_XFER_EOF;
3706
3707 if (object == TARGET_OBJECT_AUXV)
3708 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3709 offset, len, xfered_len);
3710
3711 if (object == TARGET_OBJECT_OSDATA)
3712 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3713 offset, len, xfered_len);
3714
3715 /* GDB calculates all addresses in the largest possible address
3716 width.
3717 The address width must be masked before its final use - either by
3718 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3719
3720 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3721
3722 if (object == TARGET_OBJECT_MEMORY)
3723 {
3724 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3725
3726 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3727 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3728 }
3729
3730 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3731 offset, len, xfered_len);
3732 if (xfer != TARGET_XFER_EOF)
3733 return xfer;
3734
3735 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3736 offset, len, xfered_len);
3737 }
3738
3739 bool
3740 linux_nat_target::thread_alive (ptid_t ptid)
3741 {
3742 /* As long as a PTID is in lwp list, consider it alive. */
3743 return find_lwp_pid (ptid) != NULL;
3744 }
3745
3746 /* Implement the to_update_thread_list target method for this
3747 target. */
3748
3749 void
3750 linux_nat_target::update_thread_list ()
3751 {
3752 struct lwp_info *lwp;
3753
3754 /* We add/delete threads from the list as clone/exit events are
3755 processed, so just try deleting exited threads still in the
3756 thread list. */
3757 delete_exited_threads ();
3758
3759 /* Update the processor core that each lwp/thread was last seen
3760 running on. */
3761 ALL_LWPS (lwp)
3762 {
3763 /* Avoid accessing /proc if the thread hasn't run since we last
3764 time we fetched the thread's core. Accessing /proc becomes
3765 noticeably expensive when we have thousands of LWPs. */
3766 if (lwp->core == -1)
3767 lwp->core = linux_common_core_of_thread (lwp->ptid);
3768 }
3769 }
3770
3771 std::string
3772 linux_nat_target::pid_to_str (ptid_t ptid)
3773 {
3774 if (ptid.lwp_p ()
3775 && (ptid.pid () != ptid.lwp ()
3776 || num_lwps (ptid.pid ()) > 1))
3777 return string_printf ("LWP %ld", ptid.lwp ());
3778
3779 return normal_pid_to_str (ptid);
3780 }
3781
3782 const char *
3783 linux_nat_target::thread_name (struct thread_info *thr)
3784 {
3785 return linux_proc_tid_get_name (thr->ptid);
3786 }
3787
3788 /* Accepts an integer PID; Returns a string representing a file that
3789 can be opened to get the symbols for the child process. */
3790
3791 char *
3792 linux_nat_target::pid_to_exec_file (int pid)
3793 {
3794 return linux_proc_pid_to_exec_file (pid);
3795 }
3796
3797 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3798 Because we can use a single read/write call, this can be much more
3799 efficient than banging away at PTRACE_PEEKTEXT. */
3800
3801 static enum target_xfer_status
3802 linux_proc_xfer_partial (enum target_object object,
3803 const char *annex, gdb_byte *readbuf,
3804 const gdb_byte *writebuf,
3805 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3806 {
3807 LONGEST ret;
3808 int fd;
3809 char filename[64];
3810
3811 if (object != TARGET_OBJECT_MEMORY)
3812 return TARGET_XFER_EOF;
3813
3814 /* Don't bother for one word. */
3815 if (len < 3 * sizeof (long))
3816 return TARGET_XFER_EOF;
3817
3818 /* We could keep this file open and cache it - possibly one per
3819 thread. That requires some juggling, but is even faster. */
3820 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3821 inferior_ptid.lwp ());
3822 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3823 | O_LARGEFILE), 0);
3824 if (fd == -1)
3825 return TARGET_XFER_EOF;
3826
3827 /* Use pread64/pwrite64 if available, since they save a syscall and can
3828 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3829 debugging a SPARC64 application). */
3830 #ifdef HAVE_PREAD64
3831 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3832 : pwrite64 (fd, writebuf, len, offset));
3833 #else
3834 ret = lseek (fd, offset, SEEK_SET);
3835 if (ret != -1)
3836 ret = (readbuf ? read (fd, readbuf, len)
3837 : write (fd, writebuf, len));
3838 #endif
3839
3840 close (fd);
3841
3842 if (ret == -1 || ret == 0)
3843 return TARGET_XFER_EOF;
3844 else
3845 {
3846 *xfered_len = ret;
3847 return TARGET_XFER_OK;
3848 }
3849 }
3850
3851
3852 /* Parse LINE as a signal set and add its set bits to SIGS. */
3853
3854 static void
3855 add_line_to_sigset (const char *line, sigset_t *sigs)
3856 {
3857 int len = strlen (line) - 1;
3858 const char *p;
3859 int signum;
3860
3861 if (line[len] != '\n')
3862 error (_("Could not parse signal set: %s"), line);
3863
3864 p = line;
3865 signum = len * 4;
3866 while (len-- > 0)
3867 {
3868 int digit;
3869
3870 if (*p >= '0' && *p <= '9')
3871 digit = *p - '0';
3872 else if (*p >= 'a' && *p <= 'f')
3873 digit = *p - 'a' + 10;
3874 else
3875 error (_("Could not parse signal set: %s"), line);
3876
3877 signum -= 4;
3878
3879 if (digit & 1)
3880 sigaddset (sigs, signum + 1);
3881 if (digit & 2)
3882 sigaddset (sigs, signum + 2);
3883 if (digit & 4)
3884 sigaddset (sigs, signum + 3);
3885 if (digit & 8)
3886 sigaddset (sigs, signum + 4);
3887
3888 p++;
3889 }
3890 }
3891
3892 /* Find process PID's pending signals from /proc/pid/status and set
3893 SIGS to match. */
3894
3895 void
3896 linux_proc_pending_signals (int pid, sigset_t *pending,
3897 sigset_t *blocked, sigset_t *ignored)
3898 {
3899 char buffer[PATH_MAX], fname[PATH_MAX];
3900
3901 sigemptyset (pending);
3902 sigemptyset (blocked);
3903 sigemptyset (ignored);
3904 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
3905 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
3906 if (procfile == NULL)
3907 error (_("Could not open %s"), fname);
3908
3909 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
3910 {
3911 /* Normal queued signals are on the SigPnd line in the status
3912 file. However, 2.6 kernels also have a "shared" pending
3913 queue for delivering signals to a thread group, so check for
3914 a ShdPnd line also.
3915
3916 Unfortunately some Red Hat kernels include the shared pending
3917 queue but not the ShdPnd status field. */
3918
3919 if (startswith (buffer, "SigPnd:\t"))
3920 add_line_to_sigset (buffer + 8, pending);
3921 else if (startswith (buffer, "ShdPnd:\t"))
3922 add_line_to_sigset (buffer + 8, pending);
3923 else if (startswith (buffer, "SigBlk:\t"))
3924 add_line_to_sigset (buffer + 8, blocked);
3925 else if (startswith (buffer, "SigIgn:\t"))
3926 add_line_to_sigset (buffer + 8, ignored);
3927 }
3928 }
3929
3930 static enum target_xfer_status
3931 linux_nat_xfer_osdata (enum target_object object,
3932 const char *annex, gdb_byte *readbuf,
3933 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3934 ULONGEST *xfered_len)
3935 {
3936 gdb_assert (object == TARGET_OBJECT_OSDATA);
3937
3938 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
3939 if (*xfered_len == 0)
3940 return TARGET_XFER_EOF;
3941 else
3942 return TARGET_XFER_OK;
3943 }
3944
3945 std::vector<static_tracepoint_marker>
3946 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
3947 {
3948 char s[IPA_CMD_BUF_SIZE];
3949 int pid = inferior_ptid.pid ();
3950 std::vector<static_tracepoint_marker> markers;
3951 const char *p = s;
3952 ptid_t ptid = ptid_t (pid, 0, 0);
3953 static_tracepoint_marker marker;
3954
3955 /* Pause all */
3956 target_stop (ptid);
3957
3958 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
3959 s[sizeof ("qTfSTM")] = 0;
3960
3961 agent_run_command (pid, s, strlen (s) + 1);
3962
3963 /* Unpause all. */
3964 SCOPE_EXIT { target_continue_no_signal (ptid); };
3965
3966 while (*p++ == 'm')
3967 {
3968 do
3969 {
3970 parse_static_tracepoint_marker_definition (p, &p, &marker);
3971
3972 if (strid == NULL || marker.str_id == strid)
3973 markers.push_back (std::move (marker));
3974 }
3975 while (*p++ == ','); /* comma-separated list */
3976
3977 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
3978 s[sizeof ("qTsSTM")] = 0;
3979 agent_run_command (pid, s, strlen (s) + 1);
3980 p = s;
3981 }
3982
3983 return markers;
3984 }
3985
3986 /* target_is_async_p implementation. */
3987
3988 bool
3989 linux_nat_target::is_async_p ()
3990 {
3991 return linux_is_async_p ();
3992 }
3993
3994 /* target_can_async_p implementation. */
3995
3996 bool
3997 linux_nat_target::can_async_p ()
3998 {
3999 /* We're always async, unless the user explicitly prevented it with the
4000 "maint set target-async" command. */
4001 return target_async_permitted;
4002 }
4003
4004 bool
4005 linux_nat_target::supports_non_stop ()
4006 {
4007 return true;
4008 }
4009
4010 /* to_always_non_stop_p implementation. */
4011
4012 bool
4013 linux_nat_target::always_non_stop_p ()
4014 {
4015 return true;
4016 }
4017
4018 bool
4019 linux_nat_target::supports_multi_process ()
4020 {
4021 return true;
4022 }
4023
4024 bool
4025 linux_nat_target::supports_disable_randomization ()
4026 {
4027 return true;
4028 }
4029
4030 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4031 so we notice when any child changes state, and notify the
4032 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4033 above to wait for the arrival of a SIGCHLD. */
4034
4035 static void
4036 sigchld_handler (int signo)
4037 {
4038 int old_errno = errno;
4039
4040 if (debug_linux_nat)
4041 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4042
4043 if (signo == SIGCHLD
4044 && linux_nat_event_pipe[0] != -1)
4045 async_file_mark (); /* Let the event loop know that there are
4046 events to handle. */
4047
4048 errno = old_errno;
4049 }
4050
4051 /* Callback registered with the target events file descriptor. */
4052
4053 static void
4054 handle_target_event (int error, gdb_client_data client_data)
4055 {
4056 inferior_event_handler (INF_REG_EVENT);
4057 }
4058
4059 /* Create/destroy the target events pipe. Returns previous state. */
4060
4061 static int
4062 linux_async_pipe (int enable)
4063 {
4064 int previous = linux_is_async_p ();
4065
4066 if (previous != enable)
4067 {
4068 sigset_t prev_mask;
4069
4070 /* Block child signals while we create/destroy the pipe, as
4071 their handler writes to it. */
4072 block_child_signals (&prev_mask);
4073
4074 if (enable)
4075 {
4076 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4077 internal_error (__FILE__, __LINE__,
4078 "creating event pipe failed.");
4079
4080 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4081 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4082 }
4083 else
4084 {
4085 close (linux_nat_event_pipe[0]);
4086 close (linux_nat_event_pipe[1]);
4087 linux_nat_event_pipe[0] = -1;
4088 linux_nat_event_pipe[1] = -1;
4089 }
4090
4091 restore_child_signals_mask (&prev_mask);
4092 }
4093
4094 return previous;
4095 }
4096
4097 int
4098 linux_nat_target::async_wait_fd ()
4099 {
4100 return linux_nat_event_pipe[0];
4101 }
4102
4103 /* target_async implementation. */
4104
4105 void
4106 linux_nat_target::async (int enable)
4107 {
4108 if (enable)
4109 {
4110 if (!linux_async_pipe (1))
4111 {
4112 add_file_handler (linux_nat_event_pipe[0],
4113 handle_target_event, NULL,
4114 "linux-nat");
4115 /* There may be pending events to handle. Tell the event loop
4116 to poll them. */
4117 async_file_mark ();
4118 }
4119 }
4120 else
4121 {
4122 delete_file_handler (linux_nat_event_pipe[0]);
4123 linux_async_pipe (0);
4124 }
4125 return;
4126 }
4127
4128 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4129 event came out. */
4130
4131 static int
4132 linux_nat_stop_lwp (struct lwp_info *lwp)
4133 {
4134 if (!lwp->stopped)
4135 {
4136 linux_nat_debug_printf ("running -> suspending %s",
4137 target_pid_to_str (lwp->ptid).c_str ());
4138
4139
4140 if (lwp->last_resume_kind == resume_stop)
4141 {
4142 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4143 lwp->ptid.lwp ());
4144 return 0;
4145 }
4146
4147 stop_callback (lwp);
4148 lwp->last_resume_kind = resume_stop;
4149 }
4150 else
4151 {
4152 /* Already known to be stopped; do nothing. */
4153
4154 if (debug_linux_nat)
4155 {
4156 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4157 linux_nat_debug_printf ("already stopped/stop_requested %s",
4158 target_pid_to_str (lwp->ptid).c_str ());
4159 else
4160 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4161 target_pid_to_str (lwp->ptid).c_str ());
4162 }
4163 }
4164 return 0;
4165 }
4166
4167 void
4168 linux_nat_target::stop (ptid_t ptid)
4169 {
4170 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4171 }
4172
4173 void
4174 linux_nat_target::close ()
4175 {
4176 /* Unregister from the event loop. */
4177 if (is_async_p ())
4178 async (0);
4179
4180 inf_ptrace_target::close ();
4181 }
4182
4183 /* When requests are passed down from the linux-nat layer to the
4184 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4185 used. The address space pointer is stored in the inferior object,
4186 but the common code that is passed such ptid can't tell whether
4187 lwpid is a "main" process id or not (it assumes so). We reverse
4188 look up the "main" process id from the lwp here. */
4189
4190 struct address_space *
4191 linux_nat_target::thread_address_space (ptid_t ptid)
4192 {
4193 struct lwp_info *lwp;
4194 struct inferior *inf;
4195 int pid;
4196
4197 if (ptid.lwp () == 0)
4198 {
4199 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4200 tgid. */
4201 lwp = find_lwp_pid (ptid);
4202 pid = lwp->ptid.pid ();
4203 }
4204 else
4205 {
4206 /* A (pid,lwpid,0) ptid. */
4207 pid = ptid.pid ();
4208 }
4209
4210 inf = find_inferior_pid (this, pid);
4211 gdb_assert (inf != NULL);
4212 return inf->aspace;
4213 }
4214
4215 /* Return the cached value of the processor core for thread PTID. */
4216
4217 int
4218 linux_nat_target::core_of_thread (ptid_t ptid)
4219 {
4220 struct lwp_info *info = find_lwp_pid (ptid);
4221
4222 if (info)
4223 return info->core;
4224 return -1;
4225 }
4226
4227 /* Implementation of to_filesystem_is_local. */
4228
4229 bool
4230 linux_nat_target::filesystem_is_local ()
4231 {
4232 struct inferior *inf = current_inferior ();
4233
4234 if (inf->fake_pid_p || inf->pid == 0)
4235 return true;
4236
4237 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4238 }
4239
4240 /* Convert the INF argument passed to a to_fileio_* method
4241 to a process ID suitable for passing to its corresponding
4242 linux_mntns_* function. If INF is non-NULL then the
4243 caller is requesting the filesystem seen by INF. If INF
4244 is NULL then the caller is requesting the filesystem seen
4245 by the GDB. We fall back to GDB's filesystem in the case
4246 that INF is non-NULL but its PID is unknown. */
4247
4248 static pid_t
4249 linux_nat_fileio_pid_of (struct inferior *inf)
4250 {
4251 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4252 return getpid ();
4253 else
4254 return inf->pid;
4255 }
4256
4257 /* Implementation of to_fileio_open. */
4258
4259 int
4260 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4261 int flags, int mode, int warn_if_slow,
4262 int *target_errno)
4263 {
4264 int nat_flags;
4265 mode_t nat_mode;
4266 int fd;
4267
4268 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4269 || fileio_to_host_mode (mode, &nat_mode) == -1)
4270 {
4271 *target_errno = FILEIO_EINVAL;
4272 return -1;
4273 }
4274
4275 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4276 filename, nat_flags, nat_mode);
4277 if (fd == -1)
4278 *target_errno = host_to_fileio_error (errno);
4279
4280 return fd;
4281 }
4282
4283 /* Implementation of to_fileio_readlink. */
4284
4285 gdb::optional<std::string>
4286 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4287 int *target_errno)
4288 {
4289 char buf[PATH_MAX];
4290 int len;
4291
4292 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4293 filename, buf, sizeof (buf));
4294 if (len < 0)
4295 {
4296 *target_errno = host_to_fileio_error (errno);
4297 return {};
4298 }
4299
4300 return std::string (buf, len);
4301 }
4302
4303 /* Implementation of to_fileio_unlink. */
4304
4305 int
4306 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4307 int *target_errno)
4308 {
4309 int ret;
4310
4311 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4312 filename);
4313 if (ret == -1)
4314 *target_errno = host_to_fileio_error (errno);
4315
4316 return ret;
4317 }
4318
4319 /* Implementation of the to_thread_events method. */
4320
4321 void
4322 linux_nat_target::thread_events (int enable)
4323 {
4324 report_thread_events = enable;
4325 }
4326
4327 linux_nat_target::linux_nat_target ()
4328 {
4329 /* We don't change the stratum; this target will sit at
4330 process_stratum and thread_db will set at thread_stratum. This
4331 is a little strange, since this is a multi-threaded-capable
4332 target, but we want to be on the stack below thread_db, and we
4333 also want to be used for single-threaded processes. */
4334 }
4335
4336 /* See linux-nat.h. */
4337
4338 int
4339 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4340 {
4341 int pid;
4342
4343 pid = ptid.lwp ();
4344 if (pid == 0)
4345 pid = ptid.pid ();
4346
4347 errno = 0;
4348 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4349 if (errno != 0)
4350 {
4351 memset (siginfo, 0, sizeof (*siginfo));
4352 return 0;
4353 }
4354 return 1;
4355 }
4356
4357 /* See nat/linux-nat.h. */
4358
4359 ptid_t
4360 current_lwp_ptid (void)
4361 {
4362 gdb_assert (inferior_ptid.lwp_p ());
4363 return inferior_ptid;
4364 }
4365
4366 void _initialize_linux_nat ();
4367 void
4368 _initialize_linux_nat ()
4369 {
4370 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4371 &debug_linux_nat, _("\
4372 Set debugging of GNU/Linux lwp module."), _("\
4373 Show debugging of GNU/Linux lwp module."), _("\
4374 Enables printf debugging output."),
4375 NULL,
4376 show_debug_linux_nat,
4377 &setdebuglist, &showdebuglist);
4378
4379 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4380 &debug_linux_namespaces, _("\
4381 Set debugging of GNU/Linux namespaces module."), _("\
4382 Show debugging of GNU/Linux namespaces module."), _("\
4383 Enables printf debugging output."),
4384 NULL,
4385 NULL,
4386 &setdebuglist, &showdebuglist);
4387
4388 /* Install a SIGCHLD handler. */
4389 sigchld_action.sa_handler = sigchld_handler;
4390 sigemptyset (&sigchld_action.sa_mask);
4391 sigchld_action.sa_flags = SA_RESTART;
4392
4393 /* Make it the default. */
4394 sigaction (SIGCHLD, &sigchld_action, NULL);
4395
4396 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4397 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4398 sigdelset (&suspend_mask, SIGCHLD);
4399
4400 sigemptyset (&blocked_mask);
4401
4402 lwp_lwpid_htab_create ();
4403 }
4404 \f
4405
4406 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4407 the GNU/Linux Threads library and therefore doesn't really belong
4408 here. */
4409
4410 /* NPTL reserves the first two RT signals, but does not provide any
4411 way for the debugger to query the signal numbers - fortunately
4412 they don't change. */
4413 static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 };
4414
4415 /* See linux-nat.h. */
4416
4417 unsigned int
4418 lin_thread_get_thread_signal_num (void)
4419 {
4420 return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]);
4421 }
4422
4423 /* See linux-nat.h. */
4424
4425 int
4426 lin_thread_get_thread_signal (unsigned int i)
4427 {
4428 gdb_assert (i < lin_thread_get_thread_signal_num ());
4429 return lin_thread_signals[i];
4430 }
This page took 0.169593 seconds and 4 git commands to generate.