windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
268
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
271
272 struct lwp_info;
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
277
278 static int lwp_status_pending_p (struct lwp_info *lp);
279
280 static int check_stopped_by_breakpoint (struct lwp_info *lp);
281 static int sigtrap_is_event (int status);
282 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
283
284 \f
285 /* LWP accessors. */
286
287 /* See nat/linux-nat.h. */
288
289 ptid_t
290 ptid_of_lwp (struct lwp_info *lwp)
291 {
292 return lwp->ptid;
293 }
294
295 /* See nat/linux-nat.h. */
296
297 void
298 lwp_set_arch_private_info (struct lwp_info *lwp,
299 struct arch_lwp_info *info)
300 {
301 lwp->arch_private = info;
302 }
303
304 /* See nat/linux-nat.h. */
305
306 struct arch_lwp_info *
307 lwp_arch_private_info (struct lwp_info *lwp)
308 {
309 return lwp->arch_private;
310 }
311
312 /* See nat/linux-nat.h. */
313
314 int
315 lwp_is_stopped (struct lwp_info *lwp)
316 {
317 return lwp->stopped;
318 }
319
320 /* See nat/linux-nat.h. */
321
322 enum target_stop_reason
323 lwp_stop_reason (struct lwp_info *lwp)
324 {
325 return lwp->stop_reason;
326 }
327
328 \f
329 /* Trivial list manipulation functions to keep track of a list of
330 new stopped processes. */
331 static void
332 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
333 {
334 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
335
336 new_pid->pid = pid;
337 new_pid->status = status;
338 new_pid->next = *listp;
339 *listp = new_pid;
340 }
341
342 static int
343 in_pid_list_p (struct simple_pid_list *list, int pid)
344 {
345 struct simple_pid_list *p;
346
347 for (p = list; p != NULL; p = p->next)
348 if (p->pid == pid)
349 return 1;
350 return 0;
351 }
352
353 static int
354 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
355 {
356 struct simple_pid_list **p;
357
358 for (p = listp; *p != NULL; p = &(*p)->next)
359 if ((*p)->pid == pid)
360 {
361 struct simple_pid_list *next = (*p)->next;
362
363 *statusp = (*p)->status;
364 xfree (*p);
365 *p = next;
366 return 1;
367 }
368 return 0;
369 }
370
371 /* Initialize ptrace warnings and check for supported ptrace
372 features given PID.
373
374 ATTACHED should be nonzero iff we attached to the inferior. */
375
376 static void
377 linux_init_ptrace (pid_t pid, int attached)
378 {
379 linux_enable_event_reporting (pid, attached);
380 linux_ptrace_init_warnings ();
381 }
382
383 static void
384 linux_child_post_attach (struct target_ops *self, int pid)
385 {
386 linux_init_ptrace (pid, 1);
387 }
388
389 static void
390 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
391 {
392 linux_init_ptrace (ptid_get_pid (ptid), 0);
393 }
394
395 /* Return the number of known LWPs in the tgid given by PID. */
396
397 static int
398 num_lwps (int pid)
399 {
400 int count = 0;
401 struct lwp_info *lp;
402
403 for (lp = lwp_list; lp; lp = lp->next)
404 if (ptid_get_pid (lp->ptid) == pid)
405 count++;
406
407 return count;
408 }
409
410 /* Call delete_lwp with prototype compatible for make_cleanup. */
411
412 static void
413 delete_lwp_cleanup (void *lp_voidp)
414 {
415 struct lwp_info *lp = lp_voidp;
416
417 delete_lwp (lp->ptid);
418 }
419
420 /* Target hook for follow_fork. On entry inferior_ptid must be the
421 ptid of the followed inferior. At return, inferior_ptid will be
422 unchanged. */
423
424 static int
425 linux_child_follow_fork (struct target_ops *ops, int follow_child,
426 int detach_fork)
427 {
428 if (!follow_child)
429 {
430 struct lwp_info *child_lp = NULL;
431 int status = W_STOPCODE (0);
432 struct cleanup *old_chain;
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435 int parent_pid, child_pid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441 parent_pid = ptid_get_lwp (parent_ptid);
442 child_pid = ptid_get_lwp (child_ptid);
443
444 /* We're already attached to the parent, by default. */
445 old_chain = save_inferior_ptid ();
446 inferior_ptid = child_ptid;
447 child_lp = add_lwp (inferior_ptid);
448 child_lp->stopped = 1;
449 child_lp->last_resume_kind = resume_stop;
450
451 /* Detach new forked process? */
452 if (detach_fork)
453 {
454 make_cleanup (delete_lwp_cleanup, child_lp);
455
456 if (linux_nat_prepare_to_resume != NULL)
457 linux_nat_prepare_to_resume (child_lp);
458
459 /* When debugging an inferior in an architecture that supports
460 hardware single stepping on a kernel without commit
461 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
462 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
463 set if the parent process had them set.
464 To work around this, single step the child process
465 once before detaching to clear the flags. */
466
467 if (!gdbarch_software_single_step_p (target_thread_architecture
468 (child_lp->ptid)))
469 {
470 linux_disable_event_reporting (child_pid);
471 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
472 perror_with_name (_("Couldn't do single step"));
473 if (my_waitpid (child_pid, &status, 0) < 0)
474 perror_with_name (_("Couldn't wait vfork process"));
475 }
476
477 if (WIFSTOPPED (status))
478 {
479 int signo;
480
481 signo = WSTOPSIG (status);
482 if (signo != 0
483 && !signal_pass_state (gdb_signal_from_host (signo)))
484 signo = 0;
485 ptrace (PTRACE_DETACH, child_pid, 0, signo);
486 }
487
488 /* Resets value of inferior_ptid to parent ptid. */
489 do_cleanups (old_chain);
490 }
491 else
492 {
493 /* Let the thread_db layer learn about this new process. */
494 check_for_thread_db ();
495 }
496
497 do_cleanups (old_chain);
498
499 if (has_vforked)
500 {
501 struct lwp_info *parent_lp;
502
503 parent_lp = find_lwp_pid (parent_ptid);
504 gdb_assert (linux_supports_tracefork () >= 0);
505
506 if (linux_supports_tracevforkdone ())
507 {
508 if (debug_linux_nat)
509 fprintf_unfiltered (gdb_stdlog,
510 "LCFF: waiting for VFORK_DONE on %d\n",
511 parent_pid);
512 parent_lp->stopped = 1;
513
514 /* We'll handle the VFORK_DONE event like any other
515 event, in target_wait. */
516 }
517 else
518 {
519 /* We can't insert breakpoints until the child has
520 finished with the shared memory region. We need to
521 wait until that happens. Ideal would be to just
522 call:
523 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
524 - waitpid (parent_pid, &status, __WALL);
525 However, most architectures can't handle a syscall
526 being traced on the way out if it wasn't traced on
527 the way in.
528
529 We might also think to loop, continuing the child
530 until it exits or gets a SIGTRAP. One problem is
531 that the child might call ptrace with PTRACE_TRACEME.
532
533 There's no simple and reliable way to figure out when
534 the vforked child will be done with its copy of the
535 shared memory. We could step it out of the syscall,
536 two instructions, let it go, and then single-step the
537 parent once. When we have hardware single-step, this
538 would work; with software single-step it could still
539 be made to work but we'd have to be able to insert
540 single-step breakpoints in the child, and we'd have
541 to insert -just- the single-step breakpoint in the
542 parent. Very awkward.
543
544 In the end, the best we can do is to make sure it
545 runs for a little while. Hopefully it will be out of
546 range of any breakpoints we reinsert. Usually this
547 is only the single-step breakpoint at vfork's return
548 point. */
549
550 if (debug_linux_nat)
551 fprintf_unfiltered (gdb_stdlog,
552 "LCFF: no VFORK_DONE "
553 "support, sleeping a bit\n");
554
555 usleep (10000);
556
557 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
558 and leave it pending. The next linux_nat_resume call
559 will notice a pending event, and bypasses actually
560 resuming the inferior. */
561 parent_lp->status = 0;
562 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
563 parent_lp->stopped = 1;
564
565 /* If we're in async mode, need to tell the event loop
566 there's something here to process. */
567 if (target_is_async_p ())
568 async_file_mark ();
569 }
570 }
571 }
572 else
573 {
574 struct lwp_info *child_lp;
575
576 child_lp = add_lwp (inferior_ptid);
577 child_lp->stopped = 1;
578 child_lp->last_resume_kind = resume_stop;
579
580 /* Let the thread_db layer learn about this new process. */
581 check_for_thread_db ();
582 }
583
584 return 0;
585 }
586
587 \f
588 static int
589 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
590 {
591 return !linux_supports_tracefork ();
592 }
593
594 static int
595 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
596 {
597 return 0;
598 }
599
600 static int
601 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
602 {
603 return !linux_supports_tracefork ();
604 }
605
606 static int
607 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
608 {
609 return 0;
610 }
611
612 static int
613 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
614 {
615 return !linux_supports_tracefork ();
616 }
617
618 static int
619 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
620 {
621 return 0;
622 }
623
624 static int
625 linux_child_set_syscall_catchpoint (struct target_ops *self,
626 int pid, int needed, int any_count,
627 int table_size, int *table)
628 {
629 if (!linux_supports_tracesysgood ())
630 return 1;
631
632 /* On GNU/Linux, we ignore the arguments. It means that we only
633 enable the syscall catchpoints, but do not disable them.
634
635 Also, we do not use the `table' information because we do not
636 filter system calls here. We let GDB do the logic for us. */
637 return 0;
638 }
639
640 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
641 are processes sharing the same VM space. A multi-threaded process
642 is basically a group of such processes. However, such a grouping
643 is almost entirely a user-space issue; the kernel doesn't enforce
644 such a grouping at all (this might change in the future). In
645 general, we'll rely on the threads library (i.e. the GNU/Linux
646 Threads library) to provide such a grouping.
647
648 It is perfectly well possible to write a multi-threaded application
649 without the assistance of a threads library, by using the clone
650 system call directly. This module should be able to give some
651 rudimentary support for debugging such applications if developers
652 specify the CLONE_PTRACE flag in the clone system call, and are
653 using the Linux kernel 2.4 or above.
654
655 Note that there are some peculiarities in GNU/Linux that affect
656 this code:
657
658 - In general one should specify the __WCLONE flag to waitpid in
659 order to make it report events for any of the cloned processes
660 (and leave it out for the initial process). However, if a cloned
661 process has exited the exit status is only reported if the
662 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
663 we cannot use it since GDB must work on older systems too.
664
665 - When a traced, cloned process exits and is waited for by the
666 debugger, the kernel reassigns it to the original parent and
667 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
668 library doesn't notice this, which leads to the "zombie problem":
669 When debugged a multi-threaded process that spawns a lot of
670 threads will run out of processes, even if the threads exit,
671 because the "zombies" stay around. */
672
673 /* List of known LWPs. */
674 struct lwp_info *lwp_list;
675 \f
676
677 /* Original signal mask. */
678 static sigset_t normal_mask;
679
680 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
681 _initialize_linux_nat. */
682 static sigset_t suspend_mask;
683
684 /* Signals to block to make that sigsuspend work. */
685 static sigset_t blocked_mask;
686
687 /* SIGCHLD action. */
688 struct sigaction sigchld_action;
689
690 /* Block child signals (SIGCHLD and linux threads signals), and store
691 the previous mask in PREV_MASK. */
692
693 static void
694 block_child_signals (sigset_t *prev_mask)
695 {
696 /* Make sure SIGCHLD is blocked. */
697 if (!sigismember (&blocked_mask, SIGCHLD))
698 sigaddset (&blocked_mask, SIGCHLD);
699
700 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
701 }
702
703 /* Restore child signals mask, previously returned by
704 block_child_signals. */
705
706 static void
707 restore_child_signals_mask (sigset_t *prev_mask)
708 {
709 sigprocmask (SIG_SETMASK, prev_mask, NULL);
710 }
711
712 /* Mask of signals to pass directly to the inferior. */
713 static sigset_t pass_mask;
714
715 /* Update signals to pass to the inferior. */
716 static void
717 linux_nat_pass_signals (struct target_ops *self,
718 int numsigs, unsigned char *pass_signals)
719 {
720 int signo;
721
722 sigemptyset (&pass_mask);
723
724 for (signo = 1; signo < NSIG; signo++)
725 {
726 int target_signo = gdb_signal_from_host (signo);
727 if (target_signo < numsigs && pass_signals[target_signo])
728 sigaddset (&pass_mask, signo);
729 }
730 }
731
732 \f
733
734 /* Prototypes for local functions. */
735 static int stop_wait_callback (struct lwp_info *lp, void *data);
736 static int linux_thread_alive (ptid_t ptid);
737 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
738 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
739
740 \f
741
742 /* Destroy and free LP. */
743
744 static void
745 lwp_free (struct lwp_info *lp)
746 {
747 xfree (lp->arch_private);
748 xfree (lp);
749 }
750
751 /* Remove all LWPs belong to PID from the lwp list. */
752
753 static void
754 purge_lwp_list (int pid)
755 {
756 struct lwp_info *lp, *lpprev, *lpnext;
757
758 lpprev = NULL;
759
760 for (lp = lwp_list; lp; lp = lpnext)
761 {
762 lpnext = lp->next;
763
764 if (ptid_get_pid (lp->ptid) == pid)
765 {
766 if (lp == lwp_list)
767 lwp_list = lp->next;
768 else
769 lpprev->next = lp->next;
770
771 lwp_free (lp);
772 }
773 else
774 lpprev = lp;
775 }
776 }
777
778 /* Add the LWP specified by PTID to the list. PTID is the first LWP
779 in the process. Return a pointer to the structure describing the
780 new LWP.
781
782 This differs from add_lwp in that we don't let the arch specific
783 bits know about this new thread. Current clients of this callback
784 take the opportunity to install watchpoints in the new thread, and
785 we shouldn't do that for the first thread. If we're spawning a
786 child ("run"), the thread executes the shell wrapper first, and we
787 shouldn't touch it until it execs the program we want to debug.
788 For "attach", it'd be okay to call the callback, but it's not
789 necessary, because watchpoints can't yet have been inserted into
790 the inferior. */
791
792 static struct lwp_info *
793 add_initial_lwp (ptid_t ptid)
794 {
795 struct lwp_info *lp;
796
797 gdb_assert (ptid_lwp_p (ptid));
798
799 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
800
801 memset (lp, 0, sizeof (struct lwp_info));
802
803 lp->last_resume_kind = resume_continue;
804 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
805
806 lp->ptid = ptid;
807 lp->core = -1;
808
809 lp->next = lwp_list;
810 lwp_list = lp;
811
812 return lp;
813 }
814
815 /* Add the LWP specified by PID to the list. Return a pointer to the
816 structure describing the new LWP. The LWP should already be
817 stopped. */
818
819 static struct lwp_info *
820 add_lwp (ptid_t ptid)
821 {
822 struct lwp_info *lp;
823
824 lp = add_initial_lwp (ptid);
825
826 /* Let the arch specific bits know about this new thread. Current
827 clients of this callback take the opportunity to install
828 watchpoints in the new thread. We don't do this for the first
829 thread though. See add_initial_lwp. */
830 if (linux_nat_new_thread != NULL)
831 linux_nat_new_thread (lp);
832
833 return lp;
834 }
835
836 /* Remove the LWP specified by PID from the list. */
837
838 static void
839 delete_lwp (ptid_t ptid)
840 {
841 struct lwp_info *lp, *lpprev;
842
843 lpprev = NULL;
844
845 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
846 if (ptid_equal (lp->ptid, ptid))
847 break;
848
849 if (!lp)
850 return;
851
852 if (lpprev)
853 lpprev->next = lp->next;
854 else
855 lwp_list = lp->next;
856
857 lwp_free (lp);
858 }
859
860 /* Return a pointer to the structure describing the LWP corresponding
861 to PID. If no corresponding LWP could be found, return NULL. */
862
863 static struct lwp_info *
864 find_lwp_pid (ptid_t ptid)
865 {
866 struct lwp_info *lp;
867 int lwp;
868
869 if (ptid_lwp_p (ptid))
870 lwp = ptid_get_lwp (ptid);
871 else
872 lwp = ptid_get_pid (ptid);
873
874 for (lp = lwp_list; lp; lp = lp->next)
875 if (lwp == ptid_get_lwp (lp->ptid))
876 return lp;
877
878 return NULL;
879 }
880
881 /* See nat/linux-nat.h. */
882
883 struct lwp_info *
884 iterate_over_lwps (ptid_t filter,
885 iterate_over_lwps_ftype callback,
886 void *data)
887 {
888 struct lwp_info *lp, *lpnext;
889
890 for (lp = lwp_list; lp; lp = lpnext)
891 {
892 lpnext = lp->next;
893
894 if (ptid_match (lp->ptid, filter))
895 {
896 if ((*callback) (lp, data) != 0)
897 return lp;
898 }
899 }
900
901 return NULL;
902 }
903
904 /* Update our internal state when changing from one checkpoint to
905 another indicated by NEW_PTID. We can only switch single-threaded
906 applications, so we only create one new LWP, and the previous list
907 is discarded. */
908
909 void
910 linux_nat_switch_fork (ptid_t new_ptid)
911 {
912 struct lwp_info *lp;
913
914 purge_lwp_list (ptid_get_pid (inferior_ptid));
915
916 lp = add_lwp (new_ptid);
917 lp->stopped = 1;
918
919 /* This changes the thread's ptid while preserving the gdb thread
920 num. Also changes the inferior pid, while preserving the
921 inferior num. */
922 thread_change_ptid (inferior_ptid, new_ptid);
923
924 /* We've just told GDB core that the thread changed target id, but,
925 in fact, it really is a different thread, with different register
926 contents. */
927 registers_changed ();
928 }
929
930 /* Handle the exit of a single thread LP. */
931
932 static void
933 exit_lwp (struct lwp_info *lp)
934 {
935 struct thread_info *th = find_thread_ptid (lp->ptid);
936
937 if (th)
938 {
939 if (print_thread_events)
940 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
941
942 delete_thread (lp->ptid);
943 }
944
945 delete_lwp (lp->ptid);
946 }
947
948 /* Wait for the LWP specified by LP, which we have just attached to.
949 Returns a wait status for that LWP, to cache. */
950
951 static int
952 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
953 int *signalled)
954 {
955 pid_t new_pid, pid = ptid_get_lwp (ptid);
956 int status;
957
958 if (linux_proc_pid_is_stopped (pid))
959 {
960 if (debug_linux_nat)
961 fprintf_unfiltered (gdb_stdlog,
962 "LNPAW: Attaching to a stopped process\n");
963
964 /* The process is definitely stopped. It is in a job control
965 stop, unless the kernel predates the TASK_STOPPED /
966 TASK_TRACED distinction, in which case it might be in a
967 ptrace stop. Make sure it is in a ptrace stop; from there we
968 can kill it, signal it, et cetera.
969
970 First make sure there is a pending SIGSTOP. Since we are
971 already attached, the process can not transition from stopped
972 to running without a PTRACE_CONT; so we know this signal will
973 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
974 probably already in the queue (unless this kernel is old
975 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
976 is not an RT signal, it can only be queued once. */
977 kill_lwp (pid, SIGSTOP);
978
979 /* Finally, resume the stopped process. This will deliver the SIGSTOP
980 (or a higher priority signal, just like normal PTRACE_ATTACH). */
981 ptrace (PTRACE_CONT, pid, 0, 0);
982 }
983
984 /* Make sure the initial process is stopped. The user-level threads
985 layer might want to poke around in the inferior, and that won't
986 work if things haven't stabilized yet. */
987 new_pid = my_waitpid (pid, &status, 0);
988 if (new_pid == -1 && errno == ECHILD)
989 {
990 if (first)
991 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
992
993 /* Try again with __WCLONE to check cloned processes. */
994 new_pid = my_waitpid (pid, &status, __WCLONE);
995 *cloned = 1;
996 }
997
998 gdb_assert (pid == new_pid);
999
1000 if (!WIFSTOPPED (status))
1001 {
1002 /* The pid we tried to attach has apparently just exited. */
1003 if (debug_linux_nat)
1004 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1005 pid, status_to_str (status));
1006 return status;
1007 }
1008
1009 if (WSTOPSIG (status) != SIGSTOP)
1010 {
1011 *signalled = 1;
1012 if (debug_linux_nat)
1013 fprintf_unfiltered (gdb_stdlog,
1014 "LNPAW: Received %s after attaching\n",
1015 status_to_str (status));
1016 }
1017
1018 return status;
1019 }
1020
1021 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1022 the new LWP could not be attached, or 1 if we're already auto
1023 attached to this thread, but haven't processed the
1024 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1025 its existance, without considering it an error. */
1026
1027 int
1028 lin_lwp_attach_lwp (ptid_t ptid)
1029 {
1030 struct lwp_info *lp;
1031 int lwpid;
1032
1033 gdb_assert (ptid_lwp_p (ptid));
1034
1035 lp = find_lwp_pid (ptid);
1036 lwpid = ptid_get_lwp (ptid);
1037
1038 /* We assume that we're already attached to any LWP that is already
1039 in our list of LWPs. If we're not seeing exit events from threads
1040 and we've had PID wraparound since we last tried to stop all threads,
1041 this assumption might be wrong; fortunately, this is very unlikely
1042 to happen. */
1043 if (lp == NULL)
1044 {
1045 int status, cloned = 0, signalled = 0;
1046
1047 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1048 {
1049 if (linux_supports_tracefork ())
1050 {
1051 /* If we haven't stopped all threads when we get here,
1052 we may have seen a thread listed in thread_db's list,
1053 but not processed the PTRACE_EVENT_CLONE yet. If
1054 that's the case, ignore this new thread, and let
1055 normal event handling discover it later. */
1056 if (in_pid_list_p (stopped_pids, lwpid))
1057 {
1058 /* We've already seen this thread stop, but we
1059 haven't seen the PTRACE_EVENT_CLONE extended
1060 event yet. */
1061 if (debug_linux_nat)
1062 fprintf_unfiltered (gdb_stdlog,
1063 "LLAL: attach failed, but already seen "
1064 "this thread %s stop\n",
1065 target_pid_to_str (ptid));
1066 return 1;
1067 }
1068 else
1069 {
1070 int new_pid;
1071 int status;
1072
1073 if (debug_linux_nat)
1074 fprintf_unfiltered (gdb_stdlog,
1075 "LLAL: attach failed, and haven't seen "
1076 "this thread %s stop yet\n",
1077 target_pid_to_str (ptid));
1078
1079 /* We may or may not be attached to the LWP already.
1080 Try waitpid on it. If that errors, we're not
1081 attached to the LWP yet. Otherwise, we're
1082 already attached. */
1083 gdb_assert (lwpid > 0);
1084 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1085 if (new_pid == -1 && errno == ECHILD)
1086 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1087 if (new_pid != -1)
1088 {
1089 if (new_pid == 0)
1090 {
1091 /* The child hasn't stopped for its initial
1092 SIGSTOP stop yet. */
1093 if (debug_linux_nat)
1094 fprintf_unfiltered (gdb_stdlog,
1095 "LLAL: child hasn't "
1096 "stopped yet\n");
1097 }
1098 else if (WIFSTOPPED (status))
1099 {
1100 if (debug_linux_nat)
1101 fprintf_unfiltered (gdb_stdlog,
1102 "LLAL: adding to stopped_pids\n");
1103 add_to_pid_list (&stopped_pids, lwpid, status);
1104 }
1105 return 1;
1106 }
1107 }
1108 }
1109
1110 /* If we fail to attach to the thread, issue a warning,
1111 but continue. One way this can happen is if thread
1112 creation is interrupted; as of Linux kernel 2.6.19, a
1113 bug may place threads in the thread list and then fail
1114 to create them. */
1115 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1116 safe_strerror (errno));
1117 return -1;
1118 }
1119
1120 if (debug_linux_nat)
1121 fprintf_unfiltered (gdb_stdlog,
1122 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1123 target_pid_to_str (ptid));
1124
1125 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1126 if (!WIFSTOPPED (status))
1127 return 1;
1128
1129 lp = add_lwp (ptid);
1130 lp->stopped = 1;
1131 lp->last_resume_kind = resume_stop;
1132 lp->cloned = cloned;
1133 lp->signalled = signalled;
1134 if (WSTOPSIG (status) != SIGSTOP)
1135 {
1136 lp->resumed = 1;
1137 lp->status = status;
1138 }
1139
1140 target_post_attach (ptid_get_lwp (lp->ptid));
1141
1142 if (debug_linux_nat)
1143 {
1144 fprintf_unfiltered (gdb_stdlog,
1145 "LLAL: waitpid %s received %s\n",
1146 target_pid_to_str (ptid),
1147 status_to_str (status));
1148 }
1149 }
1150
1151 return 0;
1152 }
1153
1154 static void
1155 linux_nat_create_inferior (struct target_ops *ops,
1156 char *exec_file, char *allargs, char **env,
1157 int from_tty)
1158 {
1159 struct cleanup *restore_personality
1160 = maybe_disable_address_space_randomization (disable_randomization);
1161
1162 /* The fork_child mechanism is synchronous and calls target_wait, so
1163 we have to mask the async mode. */
1164
1165 /* Make sure we report all signals during startup. */
1166 linux_nat_pass_signals (ops, 0, NULL);
1167
1168 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1169
1170 do_cleanups (restore_personality);
1171 }
1172
1173 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1174 already attached. Returns true if a new LWP is found, false
1175 otherwise. */
1176
1177 static int
1178 attach_proc_task_lwp_callback (ptid_t ptid)
1179 {
1180 struct lwp_info *lp;
1181
1182 /* Ignore LWPs we're already attached to. */
1183 lp = find_lwp_pid (ptid);
1184 if (lp == NULL)
1185 {
1186 int lwpid = ptid_get_lwp (ptid);
1187
1188 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1189 {
1190 int err = errno;
1191
1192 /* Be quiet if we simply raced with the thread exiting.
1193 EPERM is returned if the thread's task still exists, and
1194 is marked as exited or zombie, as well as other
1195 conditions, so in that case, confirm the status in
1196 /proc/PID/status. */
1197 if (err == ESRCH
1198 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1199 {
1200 if (debug_linux_nat)
1201 {
1202 fprintf_unfiltered (gdb_stdlog,
1203 "Cannot attach to lwp %d: "
1204 "thread is gone (%d: %s)\n",
1205 lwpid, err, safe_strerror (err));
1206 }
1207 }
1208 else
1209 {
1210 warning (_("Cannot attach to lwp %d: %s"),
1211 lwpid,
1212 linux_ptrace_attach_fail_reason_string (ptid,
1213 err));
1214 }
1215 }
1216 else
1217 {
1218 if (debug_linux_nat)
1219 fprintf_unfiltered (gdb_stdlog,
1220 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1221 target_pid_to_str (ptid));
1222
1223 lp = add_lwp (ptid);
1224 lp->cloned = 1;
1225
1226 /* The next time we wait for this LWP we'll see a SIGSTOP as
1227 PTRACE_ATTACH brings it to a halt. */
1228 lp->signalled = 1;
1229
1230 /* We need to wait for a stop before being able to make the
1231 next ptrace call on this LWP. */
1232 lp->must_set_ptrace_flags = 1;
1233 }
1234
1235 return 1;
1236 }
1237 return 0;
1238 }
1239
1240 static void
1241 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1242 {
1243 struct lwp_info *lp;
1244 int status;
1245 ptid_t ptid;
1246
1247 /* Make sure we report all signals during attach. */
1248 linux_nat_pass_signals (ops, 0, NULL);
1249
1250 TRY
1251 {
1252 linux_ops->to_attach (ops, args, from_tty);
1253 }
1254 CATCH (ex, RETURN_MASK_ERROR)
1255 {
1256 pid_t pid = parse_pid_to_attach (args);
1257 struct buffer buffer;
1258 char *message, *buffer_s;
1259
1260 message = xstrdup (ex.message);
1261 make_cleanup (xfree, message);
1262
1263 buffer_init (&buffer);
1264 linux_ptrace_attach_fail_reason (pid, &buffer);
1265
1266 buffer_grow_str0 (&buffer, "");
1267 buffer_s = buffer_finish (&buffer);
1268 make_cleanup (xfree, buffer_s);
1269
1270 if (*buffer_s != '\0')
1271 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1272 else
1273 throw_error (ex.error, "%s", message);
1274 }
1275 END_CATCH
1276
1277 /* The ptrace base target adds the main thread with (pid,0,0)
1278 format. Decorate it with lwp info. */
1279 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1280 ptid_get_pid (inferior_ptid),
1281 0);
1282 thread_change_ptid (inferior_ptid, ptid);
1283
1284 /* Add the initial process as the first LWP to the list. */
1285 lp = add_initial_lwp (ptid);
1286
1287 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1288 &lp->signalled);
1289 if (!WIFSTOPPED (status))
1290 {
1291 if (WIFEXITED (status))
1292 {
1293 int exit_code = WEXITSTATUS (status);
1294
1295 target_terminal_ours ();
1296 target_mourn_inferior ();
1297 if (exit_code == 0)
1298 error (_("Unable to attach: program exited normally."));
1299 else
1300 error (_("Unable to attach: program exited with code %d."),
1301 exit_code);
1302 }
1303 else if (WIFSIGNALED (status))
1304 {
1305 enum gdb_signal signo;
1306
1307 target_terminal_ours ();
1308 target_mourn_inferior ();
1309
1310 signo = gdb_signal_from_host (WTERMSIG (status));
1311 error (_("Unable to attach: program terminated with signal "
1312 "%s, %s."),
1313 gdb_signal_to_name (signo),
1314 gdb_signal_to_string (signo));
1315 }
1316
1317 internal_error (__FILE__, __LINE__,
1318 _("unexpected status %d for PID %ld"),
1319 status, (long) ptid_get_lwp (ptid));
1320 }
1321
1322 lp->stopped = 1;
1323
1324 /* Save the wait status to report later. */
1325 lp->resumed = 1;
1326 if (debug_linux_nat)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "LNA: waitpid %ld, saving status %s\n",
1329 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1330
1331 lp->status = status;
1332
1333 /* We must attach to every LWP. If /proc is mounted, use that to
1334 find them now. The inferior may be using raw clone instead of
1335 using pthreads. But even if it is using pthreads, thread_db
1336 walks structures in the inferior's address space to find the list
1337 of threads/LWPs, and those structures may well be corrupted.
1338 Note that once thread_db is loaded, we'll still use it to list
1339 threads and associate pthread info with each LWP. */
1340 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1341 attach_proc_task_lwp_callback);
1342
1343 if (target_can_async_p ())
1344 target_async (1);
1345 }
1346
1347 /* Get pending status of LP. */
1348 static int
1349 get_pending_status (struct lwp_info *lp, int *status)
1350 {
1351 enum gdb_signal signo = GDB_SIGNAL_0;
1352
1353 /* If we paused threads momentarily, we may have stored pending
1354 events in lp->status or lp->waitstatus (see stop_wait_callback),
1355 and GDB core hasn't seen any signal for those threads.
1356 Otherwise, the last signal reported to the core is found in the
1357 thread object's stop_signal.
1358
1359 There's a corner case that isn't handled here at present. Only
1360 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1361 stop_signal make sense as a real signal to pass to the inferior.
1362 Some catchpoint related events, like
1363 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1364 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1365 those traps are debug API (ptrace in our case) related and
1366 induced; the inferior wouldn't see them if it wasn't being
1367 traced. Hence, we should never pass them to the inferior, even
1368 when set to pass state. Since this corner case isn't handled by
1369 infrun.c when proceeding with a signal, for consistency, neither
1370 do we handle it here (or elsewhere in the file we check for
1371 signal pass state). Normally SIGTRAP isn't set to pass state, so
1372 this is really a corner case. */
1373
1374 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1375 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1376 else if (lp->status)
1377 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1378 else if (non_stop && !is_executing (lp->ptid))
1379 {
1380 struct thread_info *tp = find_thread_ptid (lp->ptid);
1381
1382 signo = tp->suspend.stop_signal;
1383 }
1384 else if (!non_stop)
1385 {
1386 struct target_waitstatus last;
1387 ptid_t last_ptid;
1388
1389 get_last_target_status (&last_ptid, &last);
1390
1391 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1392 {
1393 struct thread_info *tp = find_thread_ptid (lp->ptid);
1394
1395 signo = tp->suspend.stop_signal;
1396 }
1397 }
1398
1399 *status = 0;
1400
1401 if (signo == GDB_SIGNAL_0)
1402 {
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "GPT: lwp %s has no pending signal\n",
1406 target_pid_to_str (lp->ptid));
1407 }
1408 else if (!signal_pass_state (signo))
1409 {
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "GPT: lwp %s had signal %s, "
1413 "but it is in no pass state\n",
1414 target_pid_to_str (lp->ptid),
1415 gdb_signal_to_string (signo));
1416 }
1417 else
1418 {
1419 *status = W_STOPCODE (gdb_signal_to_host (signo));
1420
1421 if (debug_linux_nat)
1422 fprintf_unfiltered (gdb_stdlog,
1423 "GPT: lwp %s has pending signal %s\n",
1424 target_pid_to_str (lp->ptid),
1425 gdb_signal_to_string (signo));
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int
1432 detach_callback (struct lwp_info *lp, void *data)
1433 {
1434 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1435
1436 if (debug_linux_nat && lp->status)
1437 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1438 strsignal (WSTOPSIG (lp->status)),
1439 target_pid_to_str (lp->ptid));
1440
1441 /* If there is a pending SIGSTOP, get rid of it. */
1442 if (lp->signalled)
1443 {
1444 if (debug_linux_nat)
1445 fprintf_unfiltered (gdb_stdlog,
1446 "DC: Sending SIGCONT to %s\n",
1447 target_pid_to_str (lp->ptid));
1448
1449 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1450 lp->signalled = 0;
1451 }
1452
1453 /* We don't actually detach from the LWP that has an id equal to the
1454 overall process id just yet. */
1455 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1456 {
1457 int status = 0;
1458
1459 /* Pass on any pending signal for this LWP. */
1460 get_pending_status (lp, &status);
1461
1462 if (linux_nat_prepare_to_resume != NULL)
1463 linux_nat_prepare_to_resume (lp);
1464 errno = 0;
1465 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1466 WSTOPSIG (status)) < 0)
1467 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1468 safe_strerror (errno));
1469
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1473 target_pid_to_str (lp->ptid),
1474 strsignal (WSTOPSIG (status)));
1475
1476 delete_lwp (lp->ptid);
1477 }
1478
1479 return 0;
1480 }
1481
1482 static void
1483 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1484 {
1485 int pid;
1486 int status;
1487 struct lwp_info *main_lwp;
1488
1489 pid = ptid_get_pid (inferior_ptid);
1490
1491 /* Don't unregister from the event loop, as there may be other
1492 inferiors running. */
1493
1494 /* Stop all threads before detaching. ptrace requires that the
1495 thread is stopped to sucessfully detach. */
1496 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1497 /* ... and wait until all of them have reported back that
1498 they're no longer running. */
1499 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1500
1501 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1502
1503 /* Only the initial process should be left right now. */
1504 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1505
1506 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1507
1508 /* Pass on any pending signal for the last LWP. */
1509 if ((args == NULL || *args == '\0')
1510 && get_pending_status (main_lwp, &status) != -1
1511 && WIFSTOPPED (status))
1512 {
1513 char *tem;
1514
1515 /* Put the signal number in ARGS so that inf_ptrace_detach will
1516 pass it along with PTRACE_DETACH. */
1517 tem = alloca (8);
1518 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1519 args = tem;
1520 if (debug_linux_nat)
1521 fprintf_unfiltered (gdb_stdlog,
1522 "LND: Sending signal %s to %s\n",
1523 args,
1524 target_pid_to_str (main_lwp->ptid));
1525 }
1526
1527 if (linux_nat_prepare_to_resume != NULL)
1528 linux_nat_prepare_to_resume (main_lwp);
1529 delete_lwp (main_lwp->ptid);
1530
1531 if (forks_exist_p ())
1532 {
1533 /* Multi-fork case. The current inferior_ptid is being detached
1534 from, but there are other viable forks to debug. Detach from
1535 the current fork, and context-switch to the first
1536 available. */
1537 linux_fork_detach (args, from_tty);
1538 }
1539 else
1540 linux_ops->to_detach (ops, args, from_tty);
1541 }
1542
1543 /* Resume execution of the inferior process. If STEP is nonzero,
1544 single-step it. If SIGNAL is nonzero, give it that signal. */
1545
1546 static void
1547 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1548 enum gdb_signal signo)
1549 {
1550 lp->step = step;
1551
1552 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1553 We only presently need that if the LWP is stepped though (to
1554 handle the case of stepping a breakpoint instruction). */
1555 if (step)
1556 {
1557 struct regcache *regcache = get_thread_regcache (lp->ptid);
1558
1559 lp->stop_pc = regcache_read_pc (regcache);
1560 }
1561 else
1562 lp->stop_pc = 0;
1563
1564 if (linux_nat_prepare_to_resume != NULL)
1565 linux_nat_prepare_to_resume (lp);
1566 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1567
1568 /* Successfully resumed. Clear state that no longer makes sense,
1569 and mark the LWP as running. Must not do this before resuming
1570 otherwise if that fails other code will be confused. E.g., we'd
1571 later try to stop the LWP and hang forever waiting for a stop
1572 status. Note that we must not throw after this is cleared,
1573 otherwise handle_zombie_lwp_error would get confused. */
1574 lp->stopped = 0;
1575 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1576 registers_changed_ptid (lp->ptid);
1577 }
1578
1579 /* Called when we try to resume a stopped LWP and that errors out. If
1580 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1581 or about to become), discard the error, clear any pending status
1582 the LWP may have, and return true (we'll collect the exit status
1583 soon enough). Otherwise, return false. */
1584
1585 static int
1586 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1587 {
1588 /* If we get an error after resuming the LWP successfully, we'd
1589 confuse !T state for the LWP being gone. */
1590 gdb_assert (lp->stopped);
1591
1592 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1593 because even if ptrace failed with ESRCH, the tracee may be "not
1594 yet fully dead", but already refusing ptrace requests. In that
1595 case the tracee has 'R (Running)' state for a little bit
1596 (observed in Linux 3.18). See also the note on ESRCH in the
1597 ptrace(2) man page. Instead, check whether the LWP has any state
1598 other than ptrace-stopped. */
1599
1600 /* Don't assume anything if /proc/PID/status can't be read. */
1601 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1602 {
1603 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1604 lp->status = 0;
1605 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1606 return 1;
1607 }
1608 return 0;
1609 }
1610
1611 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1612 disappears while we try to resume it. */
1613
1614 static void
1615 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1616 {
1617 TRY
1618 {
1619 linux_resume_one_lwp_throw (lp, step, signo);
1620 }
1621 CATCH (ex, RETURN_MASK_ERROR)
1622 {
1623 if (!check_ptrace_stopped_lwp_gone (lp))
1624 throw_exception (ex);
1625 }
1626 END_CATCH
1627 }
1628
1629 /* Resume LP. */
1630
1631 static void
1632 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1633 {
1634 if (lp->stopped)
1635 {
1636 struct inferior *inf = find_inferior_ptid (lp->ptid);
1637
1638 if (inf->vfork_child != NULL)
1639 {
1640 if (debug_linux_nat)
1641 fprintf_unfiltered (gdb_stdlog,
1642 "RC: Not resuming %s (vfork parent)\n",
1643 target_pid_to_str (lp->ptid));
1644 }
1645 else if (!lwp_status_pending_p (lp))
1646 {
1647 if (debug_linux_nat)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "RC: Resuming sibling %s, %s, %s\n",
1650 target_pid_to_str (lp->ptid),
1651 (signo != GDB_SIGNAL_0
1652 ? strsignal (gdb_signal_to_host (signo))
1653 : "0"),
1654 step ? "step" : "resume");
1655
1656 linux_resume_one_lwp (lp, step, signo);
1657 }
1658 else
1659 {
1660 if (debug_linux_nat)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "RC: Not resuming sibling %s (has pending)\n",
1663 target_pid_to_str (lp->ptid));
1664 }
1665 }
1666 else
1667 {
1668 if (debug_linux_nat)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "RC: Not resuming sibling %s (not stopped)\n",
1671 target_pid_to_str (lp->ptid));
1672 }
1673 }
1674
1675 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1676 Resume LWP with the last stop signal, if it is in pass state. */
1677
1678 static int
1679 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1680 {
1681 enum gdb_signal signo = GDB_SIGNAL_0;
1682
1683 if (lp == except)
1684 return 0;
1685
1686 if (lp->stopped)
1687 {
1688 struct thread_info *thread;
1689
1690 thread = find_thread_ptid (lp->ptid);
1691 if (thread != NULL)
1692 {
1693 signo = thread->suspend.stop_signal;
1694 thread->suspend.stop_signal = GDB_SIGNAL_0;
1695 }
1696 }
1697
1698 resume_lwp (lp, 0, signo);
1699 return 0;
1700 }
1701
1702 static int
1703 resume_clear_callback (struct lwp_info *lp, void *data)
1704 {
1705 lp->resumed = 0;
1706 lp->last_resume_kind = resume_stop;
1707 return 0;
1708 }
1709
1710 static int
1711 resume_set_callback (struct lwp_info *lp, void *data)
1712 {
1713 lp->resumed = 1;
1714 lp->last_resume_kind = resume_continue;
1715 return 0;
1716 }
1717
1718 static void
1719 linux_nat_resume (struct target_ops *ops,
1720 ptid_t ptid, int step, enum gdb_signal signo)
1721 {
1722 struct lwp_info *lp;
1723 int resume_many;
1724
1725 if (debug_linux_nat)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1728 step ? "step" : "resume",
1729 target_pid_to_str (ptid),
1730 (signo != GDB_SIGNAL_0
1731 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1732 target_pid_to_str (inferior_ptid));
1733
1734 /* A specific PTID means `step only this process id'. */
1735 resume_many = (ptid_equal (minus_one_ptid, ptid)
1736 || ptid_is_pid (ptid));
1737
1738 /* Mark the lwps we're resuming as resumed. */
1739 iterate_over_lwps (ptid, resume_set_callback, NULL);
1740
1741 /* See if it's the current inferior that should be handled
1742 specially. */
1743 if (resume_many)
1744 lp = find_lwp_pid (inferior_ptid);
1745 else
1746 lp = find_lwp_pid (ptid);
1747 gdb_assert (lp != NULL);
1748
1749 /* Remember if we're stepping. */
1750 lp->last_resume_kind = step ? resume_step : resume_continue;
1751
1752 /* If we have a pending wait status for this thread, there is no
1753 point in resuming the process. But first make sure that
1754 linux_nat_wait won't preemptively handle the event - we
1755 should never take this short-circuit if we are going to
1756 leave LP running, since we have skipped resuming all the
1757 other threads. This bit of code needs to be synchronized
1758 with linux_nat_wait. */
1759
1760 if (lp->status && WIFSTOPPED (lp->status))
1761 {
1762 if (!lp->step
1763 && WSTOPSIG (lp->status)
1764 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1765 {
1766 if (debug_linux_nat)
1767 fprintf_unfiltered (gdb_stdlog,
1768 "LLR: Not short circuiting for ignored "
1769 "status 0x%x\n", lp->status);
1770
1771 /* FIXME: What should we do if we are supposed to continue
1772 this thread with a signal? */
1773 gdb_assert (signo == GDB_SIGNAL_0);
1774 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1775 lp->status = 0;
1776 }
1777 }
1778
1779 if (lwp_status_pending_p (lp))
1780 {
1781 /* FIXME: What should we do if we are supposed to continue
1782 this thread with a signal? */
1783 gdb_assert (signo == GDB_SIGNAL_0);
1784
1785 if (debug_linux_nat)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "LLR: Short circuiting for status 0x%x\n",
1788 lp->status);
1789
1790 if (target_can_async_p ())
1791 {
1792 target_async (1);
1793 /* Tell the event loop we have something to process. */
1794 async_file_mark ();
1795 }
1796 return;
1797 }
1798
1799 if (resume_many)
1800 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1801
1802 if (debug_linux_nat)
1803 fprintf_unfiltered (gdb_stdlog,
1804 "LLR: %s %s, %s (resume event thread)\n",
1805 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1806 target_pid_to_str (lp->ptid),
1807 (signo != GDB_SIGNAL_0
1808 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1809
1810 linux_resume_one_lwp (lp, step, signo);
1811
1812 if (target_can_async_p ())
1813 target_async (1);
1814 }
1815
1816 /* Send a signal to an LWP. */
1817
1818 static int
1819 kill_lwp (int lwpid, int signo)
1820 {
1821 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1822 fails, then we are not using nptl threads and we should be using kill. */
1823
1824 #ifdef HAVE_TKILL_SYSCALL
1825 {
1826 static int tkill_failed;
1827
1828 if (!tkill_failed)
1829 {
1830 int ret;
1831
1832 errno = 0;
1833 ret = syscall (__NR_tkill, lwpid, signo);
1834 if (errno != ENOSYS)
1835 return ret;
1836 tkill_failed = 1;
1837 }
1838 }
1839 #endif
1840
1841 return kill (lwpid, signo);
1842 }
1843
1844 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1845 event, check if the core is interested in it: if not, ignore the
1846 event, and keep waiting; otherwise, we need to toggle the LWP's
1847 syscall entry/exit status, since the ptrace event itself doesn't
1848 indicate it, and report the trap to higher layers. */
1849
1850 static int
1851 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1852 {
1853 struct target_waitstatus *ourstatus = &lp->waitstatus;
1854 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1855 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1856
1857 if (stopping)
1858 {
1859 /* If we're stopping threads, there's a SIGSTOP pending, which
1860 makes it so that the LWP reports an immediate syscall return,
1861 followed by the SIGSTOP. Skip seeing that "return" using
1862 PTRACE_CONT directly, and let stop_wait_callback collect the
1863 SIGSTOP. Later when the thread is resumed, a new syscall
1864 entry event. If we didn't do this (and returned 0), we'd
1865 leave a syscall entry pending, and our caller, by using
1866 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1867 itself. Later, when the user re-resumes this LWP, we'd see
1868 another syscall entry event and we'd mistake it for a return.
1869
1870 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1871 (leaving immediately with LWP->signalled set, without issuing
1872 a PTRACE_CONT), it would still be problematic to leave this
1873 syscall enter pending, as later when the thread is resumed,
1874 it would then see the same syscall exit mentioned above,
1875 followed by the delayed SIGSTOP, while the syscall didn't
1876 actually get to execute. It seems it would be even more
1877 confusing to the user. */
1878
1879 if (debug_linux_nat)
1880 fprintf_unfiltered (gdb_stdlog,
1881 "LHST: ignoring syscall %d "
1882 "for LWP %ld (stopping threads), "
1883 "resuming with PTRACE_CONT for SIGSTOP\n",
1884 syscall_number,
1885 ptid_get_lwp (lp->ptid));
1886
1887 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1888 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1889 lp->stopped = 0;
1890 return 1;
1891 }
1892
1893 if (catch_syscall_enabled ())
1894 {
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY);
1903
1904 if (catching_syscall_number (syscall_number))
1905 {
1906 /* Alright, an event to report. */
1907 ourstatus->kind = lp->syscall_state;
1908 ourstatus->value.syscall_number = syscall_number;
1909
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: stopping for %s of syscall %d"
1913 " for LWP %ld\n",
1914 lp->syscall_state
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1917 syscall_number,
1918 ptid_get_lwp (lp->ptid));
1919 return 0;
1920 }
1921
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: ignoring %s of syscall %d "
1925 "for LWP %ld\n",
1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1928 syscall_number,
1929 ptid_get_lwp (lp->ptid));
1930 }
1931 else
1932 {
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1937
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1940 syscall return.
1941
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1946
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1954 syscall_number,
1955 ptid_get_lwp (lp->ptid));
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1957 }
1958
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1965
1966 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1967 return 1;
1968 }
1969
1970 /* Handle a GNU/Linux extended wait response. If we see a clone
1971 event, we need to add the new LWP to our list (and not report the
1972 trap to higher layers). This function returns non-zero if the
1973 event should be ignored and we should wait again. If STOPPING is
1974 true, the new LWP remains stopped, otherwise it is continued. */
1975
1976 static int
1977 linux_handle_extended_wait (struct lwp_info *lp, int status,
1978 int stopping)
1979 {
1980 int pid = ptid_get_lwp (lp->ptid);
1981 struct target_waitstatus *ourstatus = &lp->waitstatus;
1982 int event = linux_ptrace_get_extended_event (status);
1983
1984 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1985 || event == PTRACE_EVENT_CLONE)
1986 {
1987 unsigned long new_pid;
1988 int ret;
1989
1990 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1991
1992 /* If we haven't already seen the new PID stop, wait for it now. */
1993 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1994 {
1995 /* The new child has a pending SIGSTOP. We can't affect it until it
1996 hits the SIGSTOP, but we're already attached. */
1997 ret = my_waitpid (new_pid, &status,
1998 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1999 if (ret == -1)
2000 perror_with_name (_("waiting for new child"));
2001 else if (ret != new_pid)
2002 internal_error (__FILE__, __LINE__,
2003 _("wait returned unexpected PID %d"), ret);
2004 else if (!WIFSTOPPED (status))
2005 internal_error (__FILE__, __LINE__,
2006 _("wait returned unexpected status 0x%x"), status);
2007 }
2008
2009 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2010
2011 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2012 {
2013 /* The arch-specific native code may need to know about new
2014 forks even if those end up never mapped to an
2015 inferior. */
2016 if (linux_nat_new_fork != NULL)
2017 linux_nat_new_fork (lp, new_pid);
2018 }
2019
2020 if (event == PTRACE_EVENT_FORK
2021 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2022 {
2023 /* Handle checkpointing by linux-fork.c here as a special
2024 case. We don't want the follow-fork-mode or 'catch fork'
2025 to interfere with this. */
2026
2027 /* This won't actually modify the breakpoint list, but will
2028 physically remove the breakpoints from the child. */
2029 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2030
2031 /* Retain child fork in ptrace (stopped) state. */
2032 if (!find_fork_pid (new_pid))
2033 add_fork (new_pid);
2034
2035 /* Report as spurious, so that infrun doesn't want to follow
2036 this fork. We're actually doing an infcall in
2037 linux-fork.c. */
2038 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2039
2040 /* Report the stop to the core. */
2041 return 0;
2042 }
2043
2044 if (event == PTRACE_EVENT_FORK)
2045 ourstatus->kind = TARGET_WAITKIND_FORKED;
2046 else if (event == PTRACE_EVENT_VFORK)
2047 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2048 else
2049 {
2050 struct lwp_info *new_lp;
2051
2052 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2053
2054 if (debug_linux_nat)
2055 fprintf_unfiltered (gdb_stdlog,
2056 "LHEW: Got clone event "
2057 "from LWP %d, new child is LWP %ld\n",
2058 pid, new_pid);
2059
2060 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2061 new_lp->cloned = 1;
2062 new_lp->stopped = 1;
2063
2064 if (WSTOPSIG (status) != SIGSTOP)
2065 {
2066 /* This can happen if someone starts sending signals to
2067 the new thread before it gets a chance to run, which
2068 have a lower number than SIGSTOP (e.g. SIGUSR1).
2069 This is an unlikely case, and harder to handle for
2070 fork / vfork than for clone, so we do not try - but
2071 we handle it for clone events here. We'll send
2072 the other signal on to the thread below. */
2073
2074 new_lp->signalled = 1;
2075 }
2076 else
2077 {
2078 struct thread_info *tp;
2079
2080 /* When we stop for an event in some other thread, and
2081 pull the thread list just as this thread has cloned,
2082 we'll have seen the new thread in the thread_db list
2083 before handling the CLONE event (glibc's
2084 pthread_create adds the new thread to the thread list
2085 before clone'ing, and has the kernel fill in the
2086 thread's tid on the clone call with
2087 CLONE_PARENT_SETTID). If that happened, and the core
2088 had requested the new thread to stop, we'll have
2089 killed it with SIGSTOP. But since SIGSTOP is not an
2090 RT signal, it can only be queued once. We need to be
2091 careful to not resume the LWP if we wanted it to
2092 stop. In that case, we'll leave the SIGSTOP pending.
2093 It will later be reported as GDB_SIGNAL_0. */
2094 tp = find_thread_ptid (new_lp->ptid);
2095 if (tp != NULL && tp->stop_requested)
2096 new_lp->last_resume_kind = resume_stop;
2097 else
2098 status = 0;
2099 }
2100
2101 /* If the thread_db layer is active, let it record the user
2102 level thread id and status, and add the thread to GDB's
2103 list. */
2104 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2105 {
2106 /* The process is not using thread_db. Add the LWP to
2107 GDB's list. */
2108 target_post_attach (ptid_get_lwp (new_lp->ptid));
2109 add_thread (new_lp->ptid);
2110 }
2111
2112 /* Even if we're stopping the thread for some reason
2113 internal to this module, from the user/frontend's
2114 perspective, this new thread is running. */
2115 set_running (new_lp->ptid, 1);
2116 if (!stopping)
2117 {
2118 set_executing (new_lp->ptid, 1);
2119 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2120 resume_stop. */
2121 new_lp->last_resume_kind = resume_continue;
2122 }
2123
2124 if (status != 0)
2125 {
2126 /* We created NEW_LP so it cannot yet contain STATUS. */
2127 gdb_assert (new_lp->status == 0);
2128
2129 /* Save the wait status to report later. */
2130 if (debug_linux_nat)
2131 fprintf_unfiltered (gdb_stdlog,
2132 "LHEW: waitpid of new LWP %ld, "
2133 "saving status %s\n",
2134 (long) ptid_get_lwp (new_lp->ptid),
2135 status_to_str (status));
2136 new_lp->status = status;
2137 }
2138
2139 new_lp->resumed = !stopping;
2140 return 1;
2141 }
2142
2143 return 0;
2144 }
2145
2146 if (event == PTRACE_EVENT_EXEC)
2147 {
2148 if (debug_linux_nat)
2149 fprintf_unfiltered (gdb_stdlog,
2150 "LHEW: Got exec event from LWP %ld\n",
2151 ptid_get_lwp (lp->ptid));
2152
2153 ourstatus->kind = TARGET_WAITKIND_EXECD;
2154 ourstatus->value.execd_pathname
2155 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2156
2157 /* The thread that execed must have been resumed, but, when a
2158 thread execs, it changes its tid to the tgid, and the old
2159 tgid thread might have not been resumed. */
2160 lp->resumed = 1;
2161 return 0;
2162 }
2163
2164 if (event == PTRACE_EVENT_VFORK_DONE)
2165 {
2166 if (current_inferior ()->waiting_for_vfork_done)
2167 {
2168 if (debug_linux_nat)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "LHEW: Got expected PTRACE_EVENT_"
2171 "VFORK_DONE from LWP %ld: stopping\n",
2172 ptid_get_lwp (lp->ptid));
2173
2174 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2175 return 0;
2176 }
2177
2178 if (debug_linux_nat)
2179 fprintf_unfiltered (gdb_stdlog,
2180 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2181 "from LWP %ld: ignoring\n",
2182 ptid_get_lwp (lp->ptid));
2183 return 1;
2184 }
2185
2186 internal_error (__FILE__, __LINE__,
2187 _("unknown ptrace event %d"), event);
2188 }
2189
2190 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2191 exited. */
2192
2193 static int
2194 wait_lwp (struct lwp_info *lp)
2195 {
2196 pid_t pid;
2197 int status = 0;
2198 int thread_dead = 0;
2199 sigset_t prev_mask;
2200
2201 gdb_assert (!lp->stopped);
2202 gdb_assert (lp->status == 0);
2203
2204 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2205 block_child_signals (&prev_mask);
2206
2207 for (;;)
2208 {
2209 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2210 was right and we should just call sigsuspend. */
2211
2212 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2213 if (pid == -1 && errno == ECHILD)
2214 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2215 if (pid == -1 && errno == ECHILD)
2216 {
2217 /* The thread has previously exited. We need to delete it
2218 now because, for some vendor 2.4 kernels with NPTL
2219 support backported, there won't be an exit event unless
2220 it is the main thread. 2.6 kernels will report an exit
2221 event for each thread that exits, as expected. */
2222 thread_dead = 1;
2223 if (debug_linux_nat)
2224 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2225 target_pid_to_str (lp->ptid));
2226 }
2227 if (pid != 0)
2228 break;
2229
2230 /* Bugs 10970, 12702.
2231 Thread group leader may have exited in which case we'll lock up in
2232 waitpid if there are other threads, even if they are all zombies too.
2233 Basically, we're not supposed to use waitpid this way.
2234 __WCLONE is not applicable for the leader so we can't use that.
2235 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2236 process; it gets ESRCH both for the zombie and for running processes.
2237
2238 As a workaround, check if we're waiting for the thread group leader and
2239 if it's a zombie, and avoid calling waitpid if it is.
2240
2241 This is racy, what if the tgl becomes a zombie right after we check?
2242 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2243 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2244
2245 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2246 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2247 {
2248 thread_dead = 1;
2249 if (debug_linux_nat)
2250 fprintf_unfiltered (gdb_stdlog,
2251 "WL: Thread group leader %s vanished.\n",
2252 target_pid_to_str (lp->ptid));
2253 break;
2254 }
2255
2256 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2257 get invoked despite our caller had them intentionally blocked by
2258 block_child_signals. This is sensitive only to the loop of
2259 linux_nat_wait_1 and there if we get called my_waitpid gets called
2260 again before it gets to sigsuspend so we can safely let the handlers
2261 get executed here. */
2262
2263 if (debug_linux_nat)
2264 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2265 sigsuspend (&suspend_mask);
2266 }
2267
2268 restore_child_signals_mask (&prev_mask);
2269
2270 if (!thread_dead)
2271 {
2272 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2273
2274 if (debug_linux_nat)
2275 {
2276 fprintf_unfiltered (gdb_stdlog,
2277 "WL: waitpid %s received %s\n",
2278 target_pid_to_str (lp->ptid),
2279 status_to_str (status));
2280 }
2281
2282 /* Check if the thread has exited. */
2283 if (WIFEXITED (status) || WIFSIGNALED (status))
2284 {
2285 thread_dead = 1;
2286 if (debug_linux_nat)
2287 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2288 target_pid_to_str (lp->ptid));
2289 }
2290 }
2291
2292 if (thread_dead)
2293 {
2294 exit_lwp (lp);
2295 return 0;
2296 }
2297
2298 gdb_assert (WIFSTOPPED (status));
2299 lp->stopped = 1;
2300
2301 if (lp->must_set_ptrace_flags)
2302 {
2303 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2304
2305 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2306 lp->must_set_ptrace_flags = 0;
2307 }
2308
2309 /* Handle GNU/Linux's syscall SIGTRAPs. */
2310 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2311 {
2312 /* No longer need the sysgood bit. The ptrace event ends up
2313 recorded in lp->waitstatus if we care for it. We can carry
2314 on handling the event like a regular SIGTRAP from here
2315 on. */
2316 status = W_STOPCODE (SIGTRAP);
2317 if (linux_handle_syscall_trap (lp, 1))
2318 return wait_lwp (lp);
2319 }
2320
2321 /* Handle GNU/Linux's extended waitstatus for trace events. */
2322 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2323 && linux_is_extended_waitstatus (status))
2324 {
2325 if (debug_linux_nat)
2326 fprintf_unfiltered (gdb_stdlog,
2327 "WL: Handling extended status 0x%06x\n",
2328 status);
2329 linux_handle_extended_wait (lp, status, 1);
2330 return 0;
2331 }
2332
2333 return status;
2334 }
2335
2336 /* Send a SIGSTOP to LP. */
2337
2338 static int
2339 stop_callback (struct lwp_info *lp, void *data)
2340 {
2341 if (!lp->stopped && !lp->signalled)
2342 {
2343 int ret;
2344
2345 if (debug_linux_nat)
2346 {
2347 fprintf_unfiltered (gdb_stdlog,
2348 "SC: kill %s **<SIGSTOP>**\n",
2349 target_pid_to_str (lp->ptid));
2350 }
2351 errno = 0;
2352 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2353 if (debug_linux_nat)
2354 {
2355 fprintf_unfiltered (gdb_stdlog,
2356 "SC: lwp kill %d %s\n",
2357 ret,
2358 errno ? safe_strerror (errno) : "ERRNO-OK");
2359 }
2360
2361 lp->signalled = 1;
2362 gdb_assert (lp->status == 0);
2363 }
2364
2365 return 0;
2366 }
2367
2368 /* Request a stop on LWP. */
2369
2370 void
2371 linux_stop_lwp (struct lwp_info *lwp)
2372 {
2373 stop_callback (lwp, NULL);
2374 }
2375
2376 /* See linux-nat.h */
2377
2378 void
2379 linux_stop_and_wait_all_lwps (void)
2380 {
2381 /* Stop all LWP's ... */
2382 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2383
2384 /* ... and wait until all of them have reported back that
2385 they're no longer running. */
2386 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2387 }
2388
2389 /* See linux-nat.h */
2390
2391 void
2392 linux_unstop_all_lwps (void)
2393 {
2394 iterate_over_lwps (minus_one_ptid,
2395 resume_stopped_resumed_lwps, &minus_one_ptid);
2396 }
2397
2398 /* Return non-zero if LWP PID has a pending SIGINT. */
2399
2400 static int
2401 linux_nat_has_pending_sigint (int pid)
2402 {
2403 sigset_t pending, blocked, ignored;
2404
2405 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2406
2407 if (sigismember (&pending, SIGINT)
2408 && !sigismember (&ignored, SIGINT))
2409 return 1;
2410
2411 return 0;
2412 }
2413
2414 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2415
2416 static int
2417 set_ignore_sigint (struct lwp_info *lp, void *data)
2418 {
2419 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2420 flag to consume the next one. */
2421 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2422 && WSTOPSIG (lp->status) == SIGINT)
2423 lp->status = 0;
2424 else
2425 lp->ignore_sigint = 1;
2426
2427 return 0;
2428 }
2429
2430 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2431 This function is called after we know the LWP has stopped; if the LWP
2432 stopped before the expected SIGINT was delivered, then it will never have
2433 arrived. Also, if the signal was delivered to a shared queue and consumed
2434 by a different thread, it will never be delivered to this LWP. */
2435
2436 static void
2437 maybe_clear_ignore_sigint (struct lwp_info *lp)
2438 {
2439 if (!lp->ignore_sigint)
2440 return;
2441
2442 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2443 {
2444 if (debug_linux_nat)
2445 fprintf_unfiltered (gdb_stdlog,
2446 "MCIS: Clearing bogus flag for %s\n",
2447 target_pid_to_str (lp->ptid));
2448 lp->ignore_sigint = 0;
2449 }
2450 }
2451
2452 /* Fetch the possible triggered data watchpoint info and store it in
2453 LP.
2454
2455 On some archs, like x86, that use debug registers to set
2456 watchpoints, it's possible that the way to know which watched
2457 address trapped, is to check the register that is used to select
2458 which address to watch. Problem is, between setting the watchpoint
2459 and reading back which data address trapped, the user may change
2460 the set of watchpoints, and, as a consequence, GDB changes the
2461 debug registers in the inferior. To avoid reading back a stale
2462 stopped-data-address when that happens, we cache in LP the fact
2463 that a watchpoint trapped, and the corresponding data address, as
2464 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2465 registers meanwhile, we have the cached data we can rely on. */
2466
2467 static int
2468 check_stopped_by_watchpoint (struct lwp_info *lp)
2469 {
2470 struct cleanup *old_chain;
2471
2472 if (linux_ops->to_stopped_by_watchpoint == NULL)
2473 return 0;
2474
2475 old_chain = save_inferior_ptid ();
2476 inferior_ptid = lp->ptid;
2477
2478 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2479 {
2480 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2481
2482 if (linux_ops->to_stopped_data_address != NULL)
2483 lp->stopped_data_address_p =
2484 linux_ops->to_stopped_data_address (&current_target,
2485 &lp->stopped_data_address);
2486 else
2487 lp->stopped_data_address_p = 0;
2488 }
2489
2490 do_cleanups (old_chain);
2491
2492 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2493 }
2494
2495 /* Called when the LWP stopped for a trap that could be explained by a
2496 watchpoint or a breakpoint. */
2497
2498 static void
2499 save_sigtrap (struct lwp_info *lp)
2500 {
2501 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2502 gdb_assert (lp->status != 0);
2503
2504 /* Check first if this was a SW/HW breakpoint before checking
2505 watchpoints, because at least s390 can't tell the data address of
2506 hardware watchpoint hits, and the kernel returns
2507 stopped-by-watchpoint as long as there's a watchpoint set. */
2508 if (linux_nat_status_is_event (lp->status))
2509 check_stopped_by_breakpoint (lp);
2510
2511 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2512 or hardware watchpoint. Check which is which if we got
2513 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2514 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2515 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2516 check_stopped_by_watchpoint (lp);
2517 }
2518
2519 /* Returns true if the LWP had stopped for a watchpoint. */
2520
2521 static int
2522 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2523 {
2524 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2525
2526 gdb_assert (lp != NULL);
2527
2528 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2529 }
2530
2531 static int
2532 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2533 {
2534 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2535
2536 gdb_assert (lp != NULL);
2537
2538 *addr_p = lp->stopped_data_address;
2539
2540 return lp->stopped_data_address_p;
2541 }
2542
2543 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2544
2545 static int
2546 sigtrap_is_event (int status)
2547 {
2548 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2549 }
2550
2551 /* Set alternative SIGTRAP-like events recognizer. If
2552 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2553 applied. */
2554
2555 void
2556 linux_nat_set_status_is_event (struct target_ops *t,
2557 int (*status_is_event) (int status))
2558 {
2559 linux_nat_status_is_event = status_is_event;
2560 }
2561
2562 /* Wait until LP is stopped. */
2563
2564 static int
2565 stop_wait_callback (struct lwp_info *lp, void *data)
2566 {
2567 struct inferior *inf = find_inferior_ptid (lp->ptid);
2568
2569 /* If this is a vfork parent, bail out, it is not going to report
2570 any SIGSTOP until the vfork is done with. */
2571 if (inf->vfork_child != NULL)
2572 return 0;
2573
2574 if (!lp->stopped)
2575 {
2576 int status;
2577
2578 status = wait_lwp (lp);
2579 if (status == 0)
2580 return 0;
2581
2582 if (lp->ignore_sigint && WIFSTOPPED (status)
2583 && WSTOPSIG (status) == SIGINT)
2584 {
2585 lp->ignore_sigint = 0;
2586
2587 errno = 0;
2588 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2589 lp->stopped = 0;
2590 if (debug_linux_nat)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "PTRACE_CONT %s, 0, 0 (%s) "
2593 "(discarding SIGINT)\n",
2594 target_pid_to_str (lp->ptid),
2595 errno ? safe_strerror (errno) : "OK");
2596
2597 return stop_wait_callback (lp, NULL);
2598 }
2599
2600 maybe_clear_ignore_sigint (lp);
2601
2602 if (WSTOPSIG (status) != SIGSTOP)
2603 {
2604 /* The thread was stopped with a signal other than SIGSTOP. */
2605
2606 if (debug_linux_nat)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "SWC: Pending event %s in %s\n",
2609 status_to_str ((int) status),
2610 target_pid_to_str (lp->ptid));
2611
2612 /* Save the sigtrap event. */
2613 lp->status = status;
2614 gdb_assert (lp->signalled);
2615 save_sigtrap (lp);
2616 }
2617 else
2618 {
2619 /* We caught the SIGSTOP that we intended to catch, so
2620 there's no SIGSTOP pending. */
2621
2622 if (debug_linux_nat)
2623 fprintf_unfiltered (gdb_stdlog,
2624 "SWC: Expected SIGSTOP caught for %s.\n",
2625 target_pid_to_str (lp->ptid));
2626
2627 /* Reset SIGNALLED only after the stop_wait_callback call
2628 above as it does gdb_assert on SIGNALLED. */
2629 lp->signalled = 0;
2630 }
2631 }
2632
2633 return 0;
2634 }
2635
2636 /* Return non-zero if LP has a wait status pending. Discard the
2637 pending event and resume the LWP if the event that originally
2638 caused the stop became uninteresting. */
2639
2640 static int
2641 status_callback (struct lwp_info *lp, void *data)
2642 {
2643 /* Only report a pending wait status if we pretend that this has
2644 indeed been resumed. */
2645 if (!lp->resumed)
2646 return 0;
2647
2648 if (!lwp_status_pending_p (lp))
2649 return 0;
2650
2651 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2652 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2653 {
2654 struct regcache *regcache = get_thread_regcache (lp->ptid);
2655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2656 CORE_ADDR pc;
2657 int discard = 0;
2658
2659 pc = regcache_read_pc (regcache);
2660
2661 if (pc != lp->stop_pc)
2662 {
2663 if (debug_linux_nat)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "SC: PC of %s changed. was=%s, now=%s\n",
2666 target_pid_to_str (lp->ptid),
2667 paddress (target_gdbarch (), lp->stop_pc),
2668 paddress (target_gdbarch (), pc));
2669 discard = 1;
2670 }
2671
2672 #if !USE_SIGTRAP_SIGINFO
2673 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2674 {
2675 if (debug_linux_nat)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "SC: previous breakpoint of %s, at %s gone\n",
2678 target_pid_to_str (lp->ptid),
2679 paddress (target_gdbarch (), lp->stop_pc));
2680
2681 discard = 1;
2682 }
2683 #endif
2684
2685 if (discard)
2686 {
2687 if (debug_linux_nat)
2688 fprintf_unfiltered (gdb_stdlog,
2689 "SC: pending event of %s cancelled.\n",
2690 target_pid_to_str (lp->ptid));
2691
2692 lp->status = 0;
2693 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2694 return 0;
2695 }
2696 }
2697
2698 return 1;
2699 }
2700
2701 /* Return non-zero if LP isn't stopped. */
2702
2703 static int
2704 running_callback (struct lwp_info *lp, void *data)
2705 {
2706 return (!lp->stopped
2707 || (lwp_status_pending_p (lp) && lp->resumed));
2708 }
2709
2710 /* Count the LWP's that have had events. */
2711
2712 static int
2713 count_events_callback (struct lwp_info *lp, void *data)
2714 {
2715 int *count = data;
2716
2717 gdb_assert (count != NULL);
2718
2719 /* Select only resumed LWPs that have an event pending. */
2720 if (lp->resumed && lwp_status_pending_p (lp))
2721 (*count)++;
2722
2723 return 0;
2724 }
2725
2726 /* Select the LWP (if any) that is currently being single-stepped. */
2727
2728 static int
2729 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2730 {
2731 if (lp->last_resume_kind == resume_step
2732 && lp->status != 0)
2733 return 1;
2734 else
2735 return 0;
2736 }
2737
2738 /* Returns true if LP has a status pending. */
2739
2740 static int
2741 lwp_status_pending_p (struct lwp_info *lp)
2742 {
2743 /* We check for lp->waitstatus in addition to lp->status, because we
2744 can have pending process exits recorded in lp->status and
2745 W_EXITCODE(0,0) happens to be 0. */
2746 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2747 }
2748
2749 /* Select the Nth LWP that has had an event. */
2750
2751 static int
2752 select_event_lwp_callback (struct lwp_info *lp, void *data)
2753 {
2754 int *selector = data;
2755
2756 gdb_assert (selector != NULL);
2757
2758 /* Select only resumed LWPs that have an event pending. */
2759 if (lp->resumed && lwp_status_pending_p (lp))
2760 if ((*selector)-- == 0)
2761 return 1;
2762
2763 return 0;
2764 }
2765
2766 /* Called when the LWP got a signal/trap that could be explained by a
2767 software or hardware breakpoint. */
2768
2769 static int
2770 check_stopped_by_breakpoint (struct lwp_info *lp)
2771 {
2772 /* Arrange for a breakpoint to be hit again later. We don't keep
2773 the SIGTRAP status and don't forward the SIGTRAP signal to the
2774 LWP. We will handle the current event, eventually we will resume
2775 this LWP, and this breakpoint will trap again.
2776
2777 If we do not do this, then we run the risk that the user will
2778 delete or disable the breakpoint, but the LWP will have already
2779 tripped on it. */
2780
2781 struct regcache *regcache = get_thread_regcache (lp->ptid);
2782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2783 CORE_ADDR pc;
2784 CORE_ADDR sw_bp_pc;
2785 #if USE_SIGTRAP_SIGINFO
2786 siginfo_t siginfo;
2787 #endif
2788
2789 pc = regcache_read_pc (regcache);
2790 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2791
2792 #if USE_SIGTRAP_SIGINFO
2793 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2794 {
2795 if (siginfo.si_signo == SIGTRAP)
2796 {
2797 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2798 {
2799 if (debug_linux_nat)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "CSBB: %s stopped by software "
2802 "breakpoint\n",
2803 target_pid_to_str (lp->ptid));
2804
2805 /* Back up the PC if necessary. */
2806 if (pc != sw_bp_pc)
2807 regcache_write_pc (regcache, sw_bp_pc);
2808
2809 lp->stop_pc = sw_bp_pc;
2810 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2811 return 1;
2812 }
2813 else if (siginfo.si_code == TRAP_HWBKPT)
2814 {
2815 if (debug_linux_nat)
2816 fprintf_unfiltered (gdb_stdlog,
2817 "CSBB: %s stopped by hardware "
2818 "breakpoint/watchpoint\n",
2819 target_pid_to_str (lp->ptid));
2820
2821 lp->stop_pc = pc;
2822 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2823 return 1;
2824 }
2825 else if (siginfo.si_code == TRAP_TRACE)
2826 {
2827 if (debug_linux_nat)
2828 fprintf_unfiltered (gdb_stdlog,
2829 "CSBB: %s stopped by trace\n",
2830 target_pid_to_str (lp->ptid));
2831 }
2832 }
2833 }
2834 #else
2835 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2836 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2837 sw_bp_pc))
2838 {
2839 /* The LWP was either continued, or stepped a software
2840 breakpoint instruction. */
2841 if (debug_linux_nat)
2842 fprintf_unfiltered (gdb_stdlog,
2843 "CSBB: %s stopped by software breakpoint\n",
2844 target_pid_to_str (lp->ptid));
2845
2846 /* Back up the PC if necessary. */
2847 if (pc != sw_bp_pc)
2848 regcache_write_pc (regcache, sw_bp_pc);
2849
2850 lp->stop_pc = sw_bp_pc;
2851 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2852 return 1;
2853 }
2854
2855 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2856 {
2857 if (debug_linux_nat)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "CSBB: stopped by hardware breakpoint %s\n",
2860 target_pid_to_str (lp->ptid));
2861
2862 lp->stop_pc = pc;
2863 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2864 return 1;
2865 }
2866 #endif
2867
2868 return 0;
2869 }
2870
2871
2872 /* Returns true if the LWP had stopped for a software breakpoint. */
2873
2874 static int
2875 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2876 {
2877 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2878
2879 gdb_assert (lp != NULL);
2880
2881 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2882 }
2883
2884 /* Implement the supports_stopped_by_sw_breakpoint method. */
2885
2886 static int
2887 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2888 {
2889 return USE_SIGTRAP_SIGINFO;
2890 }
2891
2892 /* Returns true if the LWP had stopped for a hardware
2893 breakpoint/watchpoint. */
2894
2895 static int
2896 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2897 {
2898 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2899
2900 gdb_assert (lp != NULL);
2901
2902 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2903 }
2904
2905 /* Implement the supports_stopped_by_hw_breakpoint method. */
2906
2907 static int
2908 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2909 {
2910 return USE_SIGTRAP_SIGINFO;
2911 }
2912
2913 /* Select one LWP out of those that have events pending. */
2914
2915 static void
2916 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2917 {
2918 int num_events = 0;
2919 int random_selector;
2920 struct lwp_info *event_lp = NULL;
2921
2922 /* Record the wait status for the original LWP. */
2923 (*orig_lp)->status = *status;
2924
2925 /* In all-stop, give preference to the LWP that is being
2926 single-stepped. There will be at most one, and it will be the
2927 LWP that the core is most interested in. If we didn't do this,
2928 then we'd have to handle pending step SIGTRAPs somehow in case
2929 the core later continues the previously-stepped thread, as
2930 otherwise we'd report the pending SIGTRAP then, and the core, not
2931 having stepped the thread, wouldn't understand what the trap was
2932 for, and therefore would report it to the user as a random
2933 signal. */
2934 if (!non_stop)
2935 {
2936 event_lp = iterate_over_lwps (filter,
2937 select_singlestep_lwp_callback, NULL);
2938 if (event_lp != NULL)
2939 {
2940 if (debug_linux_nat)
2941 fprintf_unfiltered (gdb_stdlog,
2942 "SEL: Select single-step %s\n",
2943 target_pid_to_str (event_lp->ptid));
2944 }
2945 }
2946
2947 if (event_lp == NULL)
2948 {
2949 /* Pick one at random, out of those which have had events. */
2950
2951 /* First see how many events we have. */
2952 iterate_over_lwps (filter, count_events_callback, &num_events);
2953 gdb_assert (num_events > 0);
2954
2955 /* Now randomly pick a LWP out of those that have had
2956 events. */
2957 random_selector = (int)
2958 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2959
2960 if (debug_linux_nat && num_events > 1)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "SEL: Found %d events, selecting #%d\n",
2963 num_events, random_selector);
2964
2965 event_lp = iterate_over_lwps (filter,
2966 select_event_lwp_callback,
2967 &random_selector);
2968 }
2969
2970 if (event_lp != NULL)
2971 {
2972 /* Switch the event LWP. */
2973 *orig_lp = event_lp;
2974 *status = event_lp->status;
2975 }
2976
2977 /* Flush the wait status for the event LWP. */
2978 (*orig_lp)->status = 0;
2979 }
2980
2981 /* Return non-zero if LP has been resumed. */
2982
2983 static int
2984 resumed_callback (struct lwp_info *lp, void *data)
2985 {
2986 return lp->resumed;
2987 }
2988
2989 /* Stop an active thread, verify it still exists, then resume it. If
2990 the thread ends up with a pending status, then it is not resumed,
2991 and *DATA (really a pointer to int), is set. */
2992
2993 static int
2994 stop_and_resume_callback (struct lwp_info *lp, void *data)
2995 {
2996 if (!lp->stopped)
2997 {
2998 ptid_t ptid = lp->ptid;
2999
3000 stop_callback (lp, NULL);
3001 stop_wait_callback (lp, NULL);
3002
3003 /* Resume if the lwp still exists, and the core wanted it
3004 running. */
3005 lp = find_lwp_pid (ptid);
3006 if (lp != NULL)
3007 {
3008 if (lp->last_resume_kind == resume_stop
3009 && !lwp_status_pending_p (lp))
3010 {
3011 /* The core wanted the LWP to stop. Even if it stopped
3012 cleanly (with SIGSTOP), leave the event pending. */
3013 if (debug_linux_nat)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "SARC: core wanted LWP %ld stopped "
3016 "(leaving SIGSTOP pending)\n",
3017 ptid_get_lwp (lp->ptid));
3018 lp->status = W_STOPCODE (SIGSTOP);
3019 }
3020
3021 if (!lwp_status_pending_p (lp))
3022 {
3023 if (debug_linux_nat)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "SARC: re-resuming LWP %ld\n",
3026 ptid_get_lwp (lp->ptid));
3027 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3028 }
3029 else
3030 {
3031 if (debug_linux_nat)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "SARC: not re-resuming LWP %ld "
3034 "(has pending)\n",
3035 ptid_get_lwp (lp->ptid));
3036 }
3037 }
3038 }
3039 return 0;
3040 }
3041
3042 /* Check if we should go on and pass this event to common code.
3043 Return the affected lwp if we are, or NULL otherwise. */
3044
3045 static struct lwp_info *
3046 linux_nat_filter_event (int lwpid, int status)
3047 {
3048 struct lwp_info *lp;
3049 int event = linux_ptrace_get_extended_event (status);
3050
3051 lp = find_lwp_pid (pid_to_ptid (lwpid));
3052
3053 /* Check for stop events reported by a process we didn't already
3054 know about - anything not already in our LWP list.
3055
3056 If we're expecting to receive stopped processes after
3057 fork, vfork, and clone events, then we'll just add the
3058 new one to our list and go back to waiting for the event
3059 to be reported - the stopped process might be returned
3060 from waitpid before or after the event is.
3061
3062 But note the case of a non-leader thread exec'ing after the
3063 leader having exited, and gone from our lists. The non-leader
3064 thread changes its tid to the tgid. */
3065
3066 if (WIFSTOPPED (status) && lp == NULL
3067 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3068 {
3069 /* A multi-thread exec after we had seen the leader exiting. */
3070 if (debug_linux_nat)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "LLW: Re-adding thread group leader LWP %d.\n",
3073 lwpid);
3074
3075 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3076 lp->stopped = 1;
3077 lp->resumed = 1;
3078 add_thread (lp->ptid);
3079 }
3080
3081 if (WIFSTOPPED (status) && !lp)
3082 {
3083 if (debug_linux_nat)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3086 (long) lwpid, status_to_str (status));
3087 add_to_pid_list (&stopped_pids, lwpid, status);
3088 return NULL;
3089 }
3090
3091 /* Make sure we don't report an event for the exit of an LWP not in
3092 our list, i.e. not part of the current process. This can happen
3093 if we detach from a program we originally forked and then it
3094 exits. */
3095 if (!WIFSTOPPED (status) && !lp)
3096 return NULL;
3097
3098 /* This LWP is stopped now. (And if dead, this prevents it from
3099 ever being continued.) */
3100 lp->stopped = 1;
3101
3102 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3103 {
3104 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3105
3106 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
3107 lp->must_set_ptrace_flags = 0;
3108 }
3109
3110 /* Handle GNU/Linux's syscall SIGTRAPs. */
3111 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3112 {
3113 /* No longer need the sysgood bit. The ptrace event ends up
3114 recorded in lp->waitstatus if we care for it. We can carry
3115 on handling the event like a regular SIGTRAP from here
3116 on. */
3117 status = W_STOPCODE (SIGTRAP);
3118 if (linux_handle_syscall_trap (lp, 0))
3119 return NULL;
3120 }
3121
3122 /* Handle GNU/Linux's extended waitstatus for trace events. */
3123 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3124 && linux_is_extended_waitstatus (status))
3125 {
3126 if (debug_linux_nat)
3127 fprintf_unfiltered (gdb_stdlog,
3128 "LLW: Handling extended status 0x%06x\n",
3129 status);
3130 if (linux_handle_extended_wait (lp, status, 0))
3131 return NULL;
3132 }
3133
3134 /* Check if the thread has exited. */
3135 if (WIFEXITED (status) || WIFSIGNALED (status))
3136 {
3137 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3138 {
3139 /* If this is the main thread, we must stop all threads and
3140 verify if they are still alive. This is because in the
3141 nptl thread model on Linux 2.4, there is no signal issued
3142 for exiting LWPs other than the main thread. We only get
3143 the main thread exit signal once all child threads have
3144 already exited. If we stop all the threads and use the
3145 stop_wait_callback to check if they have exited we can
3146 determine whether this signal should be ignored or
3147 whether it means the end of the debugged application,
3148 regardless of which threading model is being used. */
3149 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3150 {
3151 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3152 stop_and_resume_callback, NULL);
3153 }
3154
3155 if (debug_linux_nat)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "LLW: %s exited.\n",
3158 target_pid_to_str (lp->ptid));
3159
3160 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3161 {
3162 /* If there is at least one more LWP, then the exit signal
3163 was not the end of the debugged application and should be
3164 ignored. */
3165 exit_lwp (lp);
3166 return NULL;
3167 }
3168 }
3169
3170 gdb_assert (lp->resumed);
3171
3172 if (debug_linux_nat)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "Process %ld exited\n",
3175 ptid_get_lwp (lp->ptid));
3176
3177 /* This was the last lwp in the process. Since events are
3178 serialized to GDB core, we may not be able report this one
3179 right now, but GDB core and the other target layers will want
3180 to be notified about the exit code/signal, leave the status
3181 pending for the next time we're able to report it. */
3182
3183 /* Dead LWP's aren't expected to reported a pending sigstop. */
3184 lp->signalled = 0;
3185
3186 /* Store the pending event in the waitstatus, because
3187 W_EXITCODE(0,0) == 0. */
3188 store_waitstatus (&lp->waitstatus, status);
3189 return lp;
3190 }
3191
3192 /* Check if the current LWP has previously exited. In the nptl
3193 thread model, LWPs other than the main thread do not issue
3194 signals when they exit so we must check whenever the thread has
3195 stopped. A similar check is made in stop_wait_callback(). */
3196 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3197 {
3198 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3199
3200 if (debug_linux_nat)
3201 fprintf_unfiltered (gdb_stdlog,
3202 "LLW: %s exited.\n",
3203 target_pid_to_str (lp->ptid));
3204
3205 exit_lwp (lp);
3206
3207 /* Make sure there is at least one thread running. */
3208 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3209
3210 /* Discard the event. */
3211 return NULL;
3212 }
3213
3214 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3215 an attempt to stop an LWP. */
3216 if (lp->signalled
3217 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3218 {
3219 lp->signalled = 0;
3220
3221 if (lp->last_resume_kind == resume_stop)
3222 {
3223 if (debug_linux_nat)
3224 fprintf_unfiltered (gdb_stdlog,
3225 "LLW: resume_stop SIGSTOP caught for %s.\n",
3226 target_pid_to_str (lp->ptid));
3227 }
3228 else
3229 {
3230 /* This is a delayed SIGSTOP. Filter out the event. */
3231
3232 if (debug_linux_nat)
3233 fprintf_unfiltered (gdb_stdlog,
3234 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3235 lp->step ?
3236 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3237 target_pid_to_str (lp->ptid));
3238
3239 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3240 gdb_assert (lp->resumed);
3241 return NULL;
3242 }
3243 }
3244
3245 /* Make sure we don't report a SIGINT that we have already displayed
3246 for another thread. */
3247 if (lp->ignore_sigint
3248 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3249 {
3250 if (debug_linux_nat)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "LLW: Delayed SIGINT caught for %s.\n",
3253 target_pid_to_str (lp->ptid));
3254
3255 /* This is a delayed SIGINT. */
3256 lp->ignore_sigint = 0;
3257
3258 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3259 if (debug_linux_nat)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3262 lp->step ?
3263 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3264 target_pid_to_str (lp->ptid));
3265 gdb_assert (lp->resumed);
3266
3267 /* Discard the event. */
3268 return NULL;
3269 }
3270
3271 /* Don't report signals that GDB isn't interested in, such as
3272 signals that are neither printed nor stopped upon. Stopping all
3273 threads can be a bit time-consuming so if we want decent
3274 performance with heavily multi-threaded programs, especially when
3275 they're using a high frequency timer, we'd better avoid it if we
3276 can. */
3277 if (WIFSTOPPED (status))
3278 {
3279 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3280
3281 if (!non_stop)
3282 {
3283 /* Only do the below in all-stop, as we currently use SIGSTOP
3284 to implement target_stop (see linux_nat_stop) in
3285 non-stop. */
3286 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3287 {
3288 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3289 forwarded to the entire process group, that is, all LWPs
3290 will receive it - unless they're using CLONE_THREAD to
3291 share signals. Since we only want to report it once, we
3292 mark it as ignored for all LWPs except this one. */
3293 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3294 set_ignore_sigint, NULL);
3295 lp->ignore_sigint = 0;
3296 }
3297 else
3298 maybe_clear_ignore_sigint (lp);
3299 }
3300
3301 /* When using hardware single-step, we need to report every signal.
3302 Otherwise, signals in pass_mask may be short-circuited
3303 except signals that might be caused by a breakpoint. */
3304 if (!lp->step
3305 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3306 && !linux_wstatus_maybe_breakpoint (status))
3307 {
3308 linux_resume_one_lwp (lp, lp->step, signo);
3309 if (debug_linux_nat)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "LLW: %s %s, %s (preempt 'handle')\n",
3312 lp->step ?
3313 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3314 target_pid_to_str (lp->ptid),
3315 (signo != GDB_SIGNAL_0
3316 ? strsignal (gdb_signal_to_host (signo))
3317 : "0"));
3318 return NULL;
3319 }
3320 }
3321
3322 /* An interesting event. */
3323 gdb_assert (lp);
3324 lp->status = status;
3325 save_sigtrap (lp);
3326 return lp;
3327 }
3328
3329 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3330 their exits until all other threads in the group have exited. */
3331
3332 static void
3333 check_zombie_leaders (void)
3334 {
3335 struct inferior *inf;
3336
3337 ALL_INFERIORS (inf)
3338 {
3339 struct lwp_info *leader_lp;
3340
3341 if (inf->pid == 0)
3342 continue;
3343
3344 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3345 if (leader_lp != NULL
3346 /* Check if there are other threads in the group, as we may
3347 have raced with the inferior simply exiting. */
3348 && num_lwps (inf->pid) > 1
3349 && linux_proc_pid_is_zombie (inf->pid))
3350 {
3351 if (debug_linux_nat)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "CZL: Thread group leader %d zombie "
3354 "(it exited, or another thread execd).\n",
3355 inf->pid);
3356
3357 /* A leader zombie can mean one of two things:
3358
3359 - It exited, and there's an exit status pending
3360 available, or only the leader exited (not the whole
3361 program). In the latter case, we can't waitpid the
3362 leader's exit status until all other threads are gone.
3363
3364 - There are 3 or more threads in the group, and a thread
3365 other than the leader exec'd. On an exec, the Linux
3366 kernel destroys all other threads (except the execing
3367 one) in the thread group, and resets the execing thread's
3368 tid to the tgid. No exit notification is sent for the
3369 execing thread -- from the ptracer's perspective, it
3370 appears as though the execing thread just vanishes.
3371 Until we reap all other threads except the leader and the
3372 execing thread, the leader will be zombie, and the
3373 execing thread will be in `D (disc sleep)'. As soon as
3374 all other threads are reaped, the execing thread changes
3375 it's tid to the tgid, and the previous (zombie) leader
3376 vanishes, giving place to the "new" leader. We could try
3377 distinguishing the exit and exec cases, by waiting once
3378 more, and seeing if something comes out, but it doesn't
3379 sound useful. The previous leader _does_ go away, and
3380 we'll re-add the new one once we see the exec event
3381 (which is just the same as what would happen if the
3382 previous leader did exit voluntarily before some other
3383 thread execs). */
3384
3385 if (debug_linux_nat)
3386 fprintf_unfiltered (gdb_stdlog,
3387 "CZL: Thread group leader %d vanished.\n",
3388 inf->pid);
3389 exit_lwp (leader_lp);
3390 }
3391 }
3392 }
3393
3394 static ptid_t
3395 linux_nat_wait_1 (struct target_ops *ops,
3396 ptid_t ptid, struct target_waitstatus *ourstatus,
3397 int target_options)
3398 {
3399 sigset_t prev_mask;
3400 enum resume_kind last_resume_kind;
3401 struct lwp_info *lp;
3402 int status;
3403
3404 if (debug_linux_nat)
3405 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3406
3407 /* The first time we get here after starting a new inferior, we may
3408 not have added it to the LWP list yet - this is the earliest
3409 moment at which we know its PID. */
3410 if (ptid_is_pid (inferior_ptid))
3411 {
3412 /* Upgrade the main thread's ptid. */
3413 thread_change_ptid (inferior_ptid,
3414 ptid_build (ptid_get_pid (inferior_ptid),
3415 ptid_get_pid (inferior_ptid), 0));
3416
3417 lp = add_initial_lwp (inferior_ptid);
3418 lp->resumed = 1;
3419 }
3420
3421 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3422 block_child_signals (&prev_mask);
3423
3424 /* First check if there is a LWP with a wait status pending. */
3425 lp = iterate_over_lwps (ptid, status_callback, NULL);
3426 if (lp != NULL)
3427 {
3428 if (debug_linux_nat)
3429 fprintf_unfiltered (gdb_stdlog,
3430 "LLW: Using pending wait status %s for %s.\n",
3431 status_to_str (lp->status),
3432 target_pid_to_str (lp->ptid));
3433 }
3434
3435 if (!target_is_async_p ())
3436 {
3437 /* Causes SIGINT to be passed on to the attached process. */
3438 set_sigint_trap ();
3439 }
3440
3441 /* But if we don't find a pending event, we'll have to wait. Always
3442 pull all events out of the kernel. We'll randomly select an
3443 event LWP out of all that have events, to prevent starvation. */
3444
3445 while (lp == NULL)
3446 {
3447 pid_t lwpid;
3448
3449 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3450 quirks:
3451
3452 - If the thread group leader exits while other threads in the
3453 thread group still exist, waitpid(TGID, ...) hangs. That
3454 waitpid won't return an exit status until the other threads
3455 in the group are reapped.
3456
3457 - When a non-leader thread execs, that thread just vanishes
3458 without reporting an exit (so we'd hang if we waited for it
3459 explicitly in that case). The exec event is reported to
3460 the TGID pid. */
3461
3462 errno = 0;
3463 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3464 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3465 lwpid = my_waitpid (-1, &status, WNOHANG);
3466
3467 if (debug_linux_nat)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "LNW: waitpid(-1, ...) returned %d, %s\n",
3470 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3471
3472 if (lwpid > 0)
3473 {
3474 if (debug_linux_nat)
3475 {
3476 fprintf_unfiltered (gdb_stdlog,
3477 "LLW: waitpid %ld received %s\n",
3478 (long) lwpid, status_to_str (status));
3479 }
3480
3481 linux_nat_filter_event (lwpid, status);
3482 /* Retry until nothing comes out of waitpid. A single
3483 SIGCHLD can indicate more than one child stopped. */
3484 continue;
3485 }
3486
3487 /* Now that we've pulled all events out of the kernel, resume
3488 LWPs that don't have an interesting event to report. */
3489 iterate_over_lwps (minus_one_ptid,
3490 resume_stopped_resumed_lwps, &minus_one_ptid);
3491
3492 /* ... and find an LWP with a status to report to the core, if
3493 any. */
3494 lp = iterate_over_lwps (ptid, status_callback, NULL);
3495 if (lp != NULL)
3496 break;
3497
3498 /* Check for zombie thread group leaders. Those can't be reaped
3499 until all other threads in the thread group are. */
3500 check_zombie_leaders ();
3501
3502 /* If there are no resumed children left, bail. We'd be stuck
3503 forever in the sigsuspend call below otherwise. */
3504 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3505 {
3506 if (debug_linux_nat)
3507 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3508
3509 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3510
3511 if (!target_is_async_p ())
3512 clear_sigint_trap ();
3513
3514 restore_child_signals_mask (&prev_mask);
3515 return minus_one_ptid;
3516 }
3517
3518 /* No interesting event to report to the core. */
3519
3520 if (target_options & TARGET_WNOHANG)
3521 {
3522 if (debug_linux_nat)
3523 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3524
3525 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3526 restore_child_signals_mask (&prev_mask);
3527 return minus_one_ptid;
3528 }
3529
3530 /* We shouldn't end up here unless we want to try again. */
3531 gdb_assert (lp == NULL);
3532
3533 /* Block until we get an event reported with SIGCHLD. */
3534 if (debug_linux_nat)
3535 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3536 sigsuspend (&suspend_mask);
3537 }
3538
3539 if (!target_is_async_p ())
3540 clear_sigint_trap ();
3541
3542 gdb_assert (lp);
3543
3544 status = lp->status;
3545 lp->status = 0;
3546
3547 if (!non_stop)
3548 {
3549 /* Now stop all other LWP's ... */
3550 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3551
3552 /* ... and wait until all of them have reported back that
3553 they're no longer running. */
3554 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3555 }
3556
3557 /* If we're not waiting for a specific LWP, choose an event LWP from
3558 among those that have had events. Giving equal priority to all
3559 LWPs that have had events helps prevent starvation. */
3560 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3561 select_event_lwp (ptid, &lp, &status);
3562
3563 gdb_assert (lp != NULL);
3564
3565 /* Now that we've selected our final event LWP, un-adjust its PC if
3566 it was a software breakpoint, and we can't reliably support the
3567 "stopped by software breakpoint" stop reason. */
3568 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3569 && !USE_SIGTRAP_SIGINFO)
3570 {
3571 struct regcache *regcache = get_thread_regcache (lp->ptid);
3572 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3573 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574
3575 if (decr_pc != 0)
3576 {
3577 CORE_ADDR pc;
3578
3579 pc = regcache_read_pc (regcache);
3580 regcache_write_pc (regcache, pc + decr_pc);
3581 }
3582 }
3583
3584 /* We'll need this to determine whether to report a SIGSTOP as
3585 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3586 clears it. */
3587 last_resume_kind = lp->last_resume_kind;
3588
3589 if (!non_stop)
3590 {
3591 /* In all-stop, from the core's perspective, all LWPs are now
3592 stopped until a new resume action is sent over. */
3593 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3594 }
3595 else
3596 {
3597 resume_clear_callback (lp, NULL);
3598 }
3599
3600 if (linux_nat_status_is_event (status))
3601 {
3602 if (debug_linux_nat)
3603 fprintf_unfiltered (gdb_stdlog,
3604 "LLW: trap ptid is %s.\n",
3605 target_pid_to_str (lp->ptid));
3606 }
3607
3608 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3609 {
3610 *ourstatus = lp->waitstatus;
3611 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3612 }
3613 else
3614 store_waitstatus (ourstatus, status);
3615
3616 if (debug_linux_nat)
3617 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3618
3619 restore_child_signals_mask (&prev_mask);
3620
3621 if (last_resume_kind == resume_stop
3622 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3623 && WSTOPSIG (status) == SIGSTOP)
3624 {
3625 /* A thread that has been requested to stop by GDB with
3626 target_stop, and it stopped cleanly, so report as SIG0. The
3627 use of SIGSTOP is an implementation detail. */
3628 ourstatus->value.sig = GDB_SIGNAL_0;
3629 }
3630
3631 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3632 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3633 lp->core = -1;
3634 else
3635 lp->core = linux_common_core_of_thread (lp->ptid);
3636
3637 return lp->ptid;
3638 }
3639
3640 /* Resume LWPs that are currently stopped without any pending status
3641 to report, but are resumed from the core's perspective. */
3642
3643 static int
3644 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3645 {
3646 ptid_t *wait_ptid_p = data;
3647
3648 if (lp->stopped
3649 && lp->resumed
3650 && !lwp_status_pending_p (lp))
3651 {
3652 struct regcache *regcache = get_thread_regcache (lp->ptid);
3653 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3654
3655 TRY
3656 {
3657 CORE_ADDR pc = regcache_read_pc (regcache);
3658 int leave_stopped = 0;
3659
3660 /* Don't bother if there's a breakpoint at PC that we'd hit
3661 immediately, and we're not waiting for this LWP. */
3662 if (!ptid_match (lp->ptid, *wait_ptid_p))
3663 {
3664 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3665 leave_stopped = 1;
3666 }
3667
3668 if (!leave_stopped)
3669 {
3670 if (debug_linux_nat)
3671 fprintf_unfiltered (gdb_stdlog,
3672 "RSRL: resuming stopped-resumed LWP %s at "
3673 "%s: step=%d\n",
3674 target_pid_to_str (lp->ptid),
3675 paddress (gdbarch, pc),
3676 lp->step);
3677
3678 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3679 }
3680 }
3681 CATCH (ex, RETURN_MASK_ERROR)
3682 {
3683 if (!check_ptrace_stopped_lwp_gone (lp))
3684 throw_exception (ex);
3685 }
3686 END_CATCH
3687 }
3688
3689 return 0;
3690 }
3691
3692 static ptid_t
3693 linux_nat_wait (struct target_ops *ops,
3694 ptid_t ptid, struct target_waitstatus *ourstatus,
3695 int target_options)
3696 {
3697 ptid_t event_ptid;
3698
3699 if (debug_linux_nat)
3700 {
3701 char *options_string;
3702
3703 options_string = target_options_to_string (target_options);
3704 fprintf_unfiltered (gdb_stdlog,
3705 "linux_nat_wait: [%s], [%s]\n",
3706 target_pid_to_str (ptid),
3707 options_string);
3708 xfree (options_string);
3709 }
3710
3711 /* Flush the async file first. */
3712 if (target_is_async_p ())
3713 async_file_flush ();
3714
3715 /* Resume LWPs that are currently stopped without any pending status
3716 to report, but are resumed from the core's perspective. LWPs get
3717 in this state if we find them stopping at a time we're not
3718 interested in reporting the event (target_wait on a
3719 specific_process, for example, see linux_nat_wait_1), and
3720 meanwhile the event became uninteresting. Don't bother resuming
3721 LWPs we're not going to wait for if they'd stop immediately. */
3722 if (non_stop)
3723 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3724
3725 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3726
3727 /* If we requested any event, and something came out, assume there
3728 may be more. If we requested a specific lwp or process, also
3729 assume there may be more. */
3730 if (target_is_async_p ()
3731 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3732 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3733 || !ptid_equal (ptid, minus_one_ptid)))
3734 async_file_mark ();
3735
3736 return event_ptid;
3737 }
3738
3739 static int
3740 kill_callback (struct lwp_info *lp, void *data)
3741 {
3742 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3743
3744 errno = 0;
3745 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3746 if (debug_linux_nat)
3747 {
3748 int save_errno = errno;
3749
3750 fprintf_unfiltered (gdb_stdlog,
3751 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3752 target_pid_to_str (lp->ptid),
3753 save_errno ? safe_strerror (save_errno) : "OK");
3754 }
3755
3756 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3757
3758 errno = 0;
3759 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3760 if (debug_linux_nat)
3761 {
3762 int save_errno = errno;
3763
3764 fprintf_unfiltered (gdb_stdlog,
3765 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3766 target_pid_to_str (lp->ptid),
3767 save_errno ? safe_strerror (save_errno) : "OK");
3768 }
3769
3770 return 0;
3771 }
3772
3773 static int
3774 kill_wait_callback (struct lwp_info *lp, void *data)
3775 {
3776 pid_t pid;
3777
3778 /* We must make sure that there are no pending events (delayed
3779 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3780 program doesn't interfere with any following debugging session. */
3781
3782 /* For cloned processes we must check both with __WCLONE and
3783 without, since the exit status of a cloned process isn't reported
3784 with __WCLONE. */
3785 if (lp->cloned)
3786 {
3787 do
3788 {
3789 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3790 if (pid != (pid_t) -1)
3791 {
3792 if (debug_linux_nat)
3793 fprintf_unfiltered (gdb_stdlog,
3794 "KWC: wait %s received unknown.\n",
3795 target_pid_to_str (lp->ptid));
3796 /* The Linux kernel sometimes fails to kill a thread
3797 completely after PTRACE_KILL; that goes from the stop
3798 point in do_fork out to the one in
3799 get_signal_to_deliever and waits again. So kill it
3800 again. */
3801 kill_callback (lp, NULL);
3802 }
3803 }
3804 while (pid == ptid_get_lwp (lp->ptid));
3805
3806 gdb_assert (pid == -1 && errno == ECHILD);
3807 }
3808
3809 do
3810 {
3811 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3812 if (pid != (pid_t) -1)
3813 {
3814 if (debug_linux_nat)
3815 fprintf_unfiltered (gdb_stdlog,
3816 "KWC: wait %s received unk.\n",
3817 target_pid_to_str (lp->ptid));
3818 /* See the call to kill_callback above. */
3819 kill_callback (lp, NULL);
3820 }
3821 }
3822 while (pid == ptid_get_lwp (lp->ptid));
3823
3824 gdb_assert (pid == -1 && errno == ECHILD);
3825 return 0;
3826 }
3827
3828 static void
3829 linux_nat_kill (struct target_ops *ops)
3830 {
3831 struct target_waitstatus last;
3832 ptid_t last_ptid;
3833 int status;
3834
3835 /* If we're stopped while forking and we haven't followed yet,
3836 kill the other task. We need to do this first because the
3837 parent will be sleeping if this is a vfork. */
3838
3839 get_last_target_status (&last_ptid, &last);
3840
3841 if (last.kind == TARGET_WAITKIND_FORKED
3842 || last.kind == TARGET_WAITKIND_VFORKED)
3843 {
3844 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3845 wait (&status);
3846
3847 /* Let the arch-specific native code know this process is
3848 gone. */
3849 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3850 }
3851
3852 if (forks_exist_p ())
3853 linux_fork_killall ();
3854 else
3855 {
3856 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3857
3858 /* Stop all threads before killing them, since ptrace requires
3859 that the thread is stopped to sucessfully PTRACE_KILL. */
3860 iterate_over_lwps (ptid, stop_callback, NULL);
3861 /* ... and wait until all of them have reported back that
3862 they're no longer running. */
3863 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3864
3865 /* Kill all LWP's ... */
3866 iterate_over_lwps (ptid, kill_callback, NULL);
3867
3868 /* ... and wait until we've flushed all events. */
3869 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3870 }
3871
3872 target_mourn_inferior ();
3873 }
3874
3875 static void
3876 linux_nat_mourn_inferior (struct target_ops *ops)
3877 {
3878 int pid = ptid_get_pid (inferior_ptid);
3879
3880 purge_lwp_list (pid);
3881
3882 if (! forks_exist_p ())
3883 /* Normal case, no other forks available. */
3884 linux_ops->to_mourn_inferior (ops);
3885 else
3886 /* Multi-fork case. The current inferior_ptid has exited, but
3887 there are other viable forks to debug. Delete the exiting
3888 one and context-switch to the first available. */
3889 linux_fork_mourn_inferior ();
3890
3891 /* Let the arch-specific native code know this process is gone. */
3892 linux_nat_forget_process (pid);
3893 }
3894
3895 /* Convert a native/host siginfo object, into/from the siginfo in the
3896 layout of the inferiors' architecture. */
3897
3898 static void
3899 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3900 {
3901 int done = 0;
3902
3903 if (linux_nat_siginfo_fixup != NULL)
3904 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3905
3906 /* If there was no callback, or the callback didn't do anything,
3907 then just do a straight memcpy. */
3908 if (!done)
3909 {
3910 if (direction == 1)
3911 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3912 else
3913 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3914 }
3915 }
3916
3917 static enum target_xfer_status
3918 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3919 const char *annex, gdb_byte *readbuf,
3920 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3921 ULONGEST *xfered_len)
3922 {
3923 int pid;
3924 siginfo_t siginfo;
3925 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3926
3927 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3928 gdb_assert (readbuf || writebuf);
3929
3930 pid = ptid_get_lwp (inferior_ptid);
3931 if (pid == 0)
3932 pid = ptid_get_pid (inferior_ptid);
3933
3934 if (offset > sizeof (siginfo))
3935 return TARGET_XFER_E_IO;
3936
3937 errno = 0;
3938 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3939 if (errno != 0)
3940 return TARGET_XFER_E_IO;
3941
3942 /* When GDB is built as a 64-bit application, ptrace writes into
3943 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3944 inferior with a 64-bit GDB should look the same as debugging it
3945 with a 32-bit GDB, we need to convert it. GDB core always sees
3946 the converted layout, so any read/write will have to be done
3947 post-conversion. */
3948 siginfo_fixup (&siginfo, inf_siginfo, 0);
3949
3950 if (offset + len > sizeof (siginfo))
3951 len = sizeof (siginfo) - offset;
3952
3953 if (readbuf != NULL)
3954 memcpy (readbuf, inf_siginfo + offset, len);
3955 else
3956 {
3957 memcpy (inf_siginfo + offset, writebuf, len);
3958
3959 /* Convert back to ptrace layout before flushing it out. */
3960 siginfo_fixup (&siginfo, inf_siginfo, 1);
3961
3962 errno = 0;
3963 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3964 if (errno != 0)
3965 return TARGET_XFER_E_IO;
3966 }
3967
3968 *xfered_len = len;
3969 return TARGET_XFER_OK;
3970 }
3971
3972 static enum target_xfer_status
3973 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3974 const char *annex, gdb_byte *readbuf,
3975 const gdb_byte *writebuf,
3976 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3977 {
3978 struct cleanup *old_chain;
3979 enum target_xfer_status xfer;
3980
3981 if (object == TARGET_OBJECT_SIGNAL_INFO)
3982 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3983 offset, len, xfered_len);
3984
3985 /* The target is connected but no live inferior is selected. Pass
3986 this request down to a lower stratum (e.g., the executable
3987 file). */
3988 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3989 return TARGET_XFER_EOF;
3990
3991 old_chain = save_inferior_ptid ();
3992
3993 if (ptid_lwp_p (inferior_ptid))
3994 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3995
3996 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3997 offset, len, xfered_len);
3998
3999 do_cleanups (old_chain);
4000 return xfer;
4001 }
4002
4003 static int
4004 linux_thread_alive (ptid_t ptid)
4005 {
4006 int err, tmp_errno;
4007
4008 gdb_assert (ptid_lwp_p (ptid));
4009
4010 /* Send signal 0 instead of anything ptrace, because ptracing a
4011 running thread errors out claiming that the thread doesn't
4012 exist. */
4013 err = kill_lwp (ptid_get_lwp (ptid), 0);
4014 tmp_errno = errno;
4015 if (debug_linux_nat)
4016 fprintf_unfiltered (gdb_stdlog,
4017 "LLTA: KILL(SIG0) %s (%s)\n",
4018 target_pid_to_str (ptid),
4019 err ? safe_strerror (tmp_errno) : "OK");
4020
4021 if (err != 0)
4022 return 0;
4023
4024 return 1;
4025 }
4026
4027 static int
4028 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4029 {
4030 return linux_thread_alive (ptid);
4031 }
4032
4033 /* Implement the to_update_thread_list target method for this
4034 target. */
4035
4036 static void
4037 linux_nat_update_thread_list (struct target_ops *ops)
4038 {
4039 if (linux_supports_traceclone ())
4040 {
4041 /* With support for clone events, we add/delete threads from the
4042 list as clone/exit events are processed, so just try deleting
4043 exited threads still in the thread list. */
4044 delete_exited_threads ();
4045 }
4046 else
4047 prune_threads ();
4048 }
4049
4050 static char *
4051 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4052 {
4053 static char buf[64];
4054
4055 if (ptid_lwp_p (ptid)
4056 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4057 || num_lwps (ptid_get_pid (ptid)) > 1))
4058 {
4059 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4060 return buf;
4061 }
4062
4063 return normal_pid_to_str (ptid);
4064 }
4065
4066 static char *
4067 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4068 {
4069 int pid = ptid_get_pid (thr->ptid);
4070 long lwp = ptid_get_lwp (thr->ptid);
4071 #define FORMAT "/proc/%d/task/%ld/comm"
4072 char buf[sizeof (FORMAT) + 30];
4073 FILE *comm_file;
4074 char *result = NULL;
4075
4076 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4077 comm_file = gdb_fopen_cloexec (buf, "r");
4078 if (comm_file)
4079 {
4080 /* Not exported by the kernel, so we define it here. */
4081 #define COMM_LEN 16
4082 static char line[COMM_LEN + 1];
4083
4084 if (fgets (line, sizeof (line), comm_file))
4085 {
4086 char *nl = strchr (line, '\n');
4087
4088 if (nl)
4089 *nl = '\0';
4090 if (*line != '\0')
4091 result = line;
4092 }
4093
4094 fclose (comm_file);
4095 }
4096
4097 #undef COMM_LEN
4098 #undef FORMAT
4099
4100 return result;
4101 }
4102
4103 /* Accepts an integer PID; Returns a string representing a file that
4104 can be opened to get the symbols for the child process. */
4105
4106 static char *
4107 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4108 {
4109 return linux_proc_pid_to_exec_file (pid);
4110 }
4111
4112 /* Implement the to_xfer_partial interface for memory reads using the /proc
4113 filesystem. Because we can use a single read() call for /proc, this
4114 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4115 but it doesn't support writes. */
4116
4117 static enum target_xfer_status
4118 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4119 const char *annex, gdb_byte *readbuf,
4120 const gdb_byte *writebuf,
4121 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4122 {
4123 LONGEST ret;
4124 int fd;
4125 char filename[64];
4126
4127 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4128 return 0;
4129
4130 /* Don't bother for one word. */
4131 if (len < 3 * sizeof (long))
4132 return TARGET_XFER_EOF;
4133
4134 /* We could keep this file open and cache it - possibly one per
4135 thread. That requires some juggling, but is even faster. */
4136 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4137 ptid_get_pid (inferior_ptid));
4138 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4139 if (fd == -1)
4140 return TARGET_XFER_EOF;
4141
4142 /* If pread64 is available, use it. It's faster if the kernel
4143 supports it (only one syscall), and it's 64-bit safe even on
4144 32-bit platforms (for instance, SPARC debugging a SPARC64
4145 application). */
4146 #ifdef HAVE_PREAD64
4147 if (pread64 (fd, readbuf, len, offset) != len)
4148 #else
4149 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4150 #endif
4151 ret = 0;
4152 else
4153 ret = len;
4154
4155 close (fd);
4156
4157 if (ret == 0)
4158 return TARGET_XFER_EOF;
4159 else
4160 {
4161 *xfered_len = ret;
4162 return TARGET_XFER_OK;
4163 }
4164 }
4165
4166
4167 /* Enumerate spufs IDs for process PID. */
4168 static LONGEST
4169 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4170 {
4171 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4172 LONGEST pos = 0;
4173 LONGEST written = 0;
4174 char path[128];
4175 DIR *dir;
4176 struct dirent *entry;
4177
4178 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4179 dir = opendir (path);
4180 if (!dir)
4181 return -1;
4182
4183 rewinddir (dir);
4184 while ((entry = readdir (dir)) != NULL)
4185 {
4186 struct stat st;
4187 struct statfs stfs;
4188 int fd;
4189
4190 fd = atoi (entry->d_name);
4191 if (!fd)
4192 continue;
4193
4194 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4195 if (stat (path, &st) != 0)
4196 continue;
4197 if (!S_ISDIR (st.st_mode))
4198 continue;
4199
4200 if (statfs (path, &stfs) != 0)
4201 continue;
4202 if (stfs.f_type != SPUFS_MAGIC)
4203 continue;
4204
4205 if (pos >= offset && pos + 4 <= offset + len)
4206 {
4207 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4208 written += 4;
4209 }
4210 pos += 4;
4211 }
4212
4213 closedir (dir);
4214 return written;
4215 }
4216
4217 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4218 object type, using the /proc file system. */
4219
4220 static enum target_xfer_status
4221 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4222 const char *annex, gdb_byte *readbuf,
4223 const gdb_byte *writebuf,
4224 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4225 {
4226 char buf[128];
4227 int fd = 0;
4228 int ret = -1;
4229 int pid = ptid_get_pid (inferior_ptid);
4230
4231 if (!annex)
4232 {
4233 if (!readbuf)
4234 return TARGET_XFER_E_IO;
4235 else
4236 {
4237 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4238
4239 if (l < 0)
4240 return TARGET_XFER_E_IO;
4241 else if (l == 0)
4242 return TARGET_XFER_EOF;
4243 else
4244 {
4245 *xfered_len = (ULONGEST) l;
4246 return TARGET_XFER_OK;
4247 }
4248 }
4249 }
4250
4251 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4252 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4253 if (fd <= 0)
4254 return TARGET_XFER_E_IO;
4255
4256 if (offset != 0
4257 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4258 {
4259 close (fd);
4260 return TARGET_XFER_EOF;
4261 }
4262
4263 if (writebuf)
4264 ret = write (fd, writebuf, (size_t) len);
4265 else if (readbuf)
4266 ret = read (fd, readbuf, (size_t) len);
4267
4268 close (fd);
4269
4270 if (ret < 0)
4271 return TARGET_XFER_E_IO;
4272 else if (ret == 0)
4273 return TARGET_XFER_EOF;
4274 else
4275 {
4276 *xfered_len = (ULONGEST) ret;
4277 return TARGET_XFER_OK;
4278 }
4279 }
4280
4281
4282 /* Parse LINE as a signal set and add its set bits to SIGS. */
4283
4284 static void
4285 add_line_to_sigset (const char *line, sigset_t *sigs)
4286 {
4287 int len = strlen (line) - 1;
4288 const char *p;
4289 int signum;
4290
4291 if (line[len] != '\n')
4292 error (_("Could not parse signal set: %s"), line);
4293
4294 p = line;
4295 signum = len * 4;
4296 while (len-- > 0)
4297 {
4298 int digit;
4299
4300 if (*p >= '0' && *p <= '9')
4301 digit = *p - '0';
4302 else if (*p >= 'a' && *p <= 'f')
4303 digit = *p - 'a' + 10;
4304 else
4305 error (_("Could not parse signal set: %s"), line);
4306
4307 signum -= 4;
4308
4309 if (digit & 1)
4310 sigaddset (sigs, signum + 1);
4311 if (digit & 2)
4312 sigaddset (sigs, signum + 2);
4313 if (digit & 4)
4314 sigaddset (sigs, signum + 3);
4315 if (digit & 8)
4316 sigaddset (sigs, signum + 4);
4317
4318 p++;
4319 }
4320 }
4321
4322 /* Find process PID's pending signals from /proc/pid/status and set
4323 SIGS to match. */
4324
4325 void
4326 linux_proc_pending_signals (int pid, sigset_t *pending,
4327 sigset_t *blocked, sigset_t *ignored)
4328 {
4329 FILE *procfile;
4330 char buffer[PATH_MAX], fname[PATH_MAX];
4331 struct cleanup *cleanup;
4332
4333 sigemptyset (pending);
4334 sigemptyset (blocked);
4335 sigemptyset (ignored);
4336 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4337 procfile = gdb_fopen_cloexec (fname, "r");
4338 if (procfile == NULL)
4339 error (_("Could not open %s"), fname);
4340 cleanup = make_cleanup_fclose (procfile);
4341
4342 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4343 {
4344 /* Normal queued signals are on the SigPnd line in the status
4345 file. However, 2.6 kernels also have a "shared" pending
4346 queue for delivering signals to a thread group, so check for
4347 a ShdPnd line also.
4348
4349 Unfortunately some Red Hat kernels include the shared pending
4350 queue but not the ShdPnd status field. */
4351
4352 if (startswith (buffer, "SigPnd:\t"))
4353 add_line_to_sigset (buffer + 8, pending);
4354 else if (startswith (buffer, "ShdPnd:\t"))
4355 add_line_to_sigset (buffer + 8, pending);
4356 else if (startswith (buffer, "SigBlk:\t"))
4357 add_line_to_sigset (buffer + 8, blocked);
4358 else if (startswith (buffer, "SigIgn:\t"))
4359 add_line_to_sigset (buffer + 8, ignored);
4360 }
4361
4362 do_cleanups (cleanup);
4363 }
4364
4365 static enum target_xfer_status
4366 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4367 const char *annex, gdb_byte *readbuf,
4368 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4369 ULONGEST *xfered_len)
4370 {
4371 gdb_assert (object == TARGET_OBJECT_OSDATA);
4372
4373 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4374 if (*xfered_len == 0)
4375 return TARGET_XFER_EOF;
4376 else
4377 return TARGET_XFER_OK;
4378 }
4379
4380 static enum target_xfer_status
4381 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4382 const char *annex, gdb_byte *readbuf,
4383 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4384 ULONGEST *xfered_len)
4385 {
4386 enum target_xfer_status xfer;
4387
4388 if (object == TARGET_OBJECT_AUXV)
4389 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4390 offset, len, xfered_len);
4391
4392 if (object == TARGET_OBJECT_OSDATA)
4393 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4394 offset, len, xfered_len);
4395
4396 if (object == TARGET_OBJECT_SPU)
4397 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4398 offset, len, xfered_len);
4399
4400 /* GDB calculates all the addresses in possibly larget width of the address.
4401 Address width needs to be masked before its final use - either by
4402 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4403
4404 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4405
4406 if (object == TARGET_OBJECT_MEMORY)
4407 {
4408 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4409
4410 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4411 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4412 }
4413
4414 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4415 offset, len, xfered_len);
4416 if (xfer != TARGET_XFER_EOF)
4417 return xfer;
4418
4419 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4420 offset, len, xfered_len);
4421 }
4422
4423 static void
4424 cleanup_target_stop (void *arg)
4425 {
4426 ptid_t *ptid = (ptid_t *) arg;
4427
4428 gdb_assert (arg != NULL);
4429
4430 /* Unpause all */
4431 target_resume (*ptid, 0, GDB_SIGNAL_0);
4432 }
4433
4434 static VEC(static_tracepoint_marker_p) *
4435 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4436 const char *strid)
4437 {
4438 char s[IPA_CMD_BUF_SIZE];
4439 struct cleanup *old_chain;
4440 int pid = ptid_get_pid (inferior_ptid);
4441 VEC(static_tracepoint_marker_p) *markers = NULL;
4442 struct static_tracepoint_marker *marker = NULL;
4443 char *p = s;
4444 ptid_t ptid = ptid_build (pid, 0, 0);
4445
4446 /* Pause all */
4447 target_stop (ptid);
4448
4449 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4450 s[sizeof ("qTfSTM")] = 0;
4451
4452 agent_run_command (pid, s, strlen (s) + 1);
4453
4454 old_chain = make_cleanup (free_current_marker, &marker);
4455 make_cleanup (cleanup_target_stop, &ptid);
4456
4457 while (*p++ == 'm')
4458 {
4459 if (marker == NULL)
4460 marker = XCNEW (struct static_tracepoint_marker);
4461
4462 do
4463 {
4464 parse_static_tracepoint_marker_definition (p, &p, marker);
4465
4466 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4467 {
4468 VEC_safe_push (static_tracepoint_marker_p,
4469 markers, marker);
4470 marker = NULL;
4471 }
4472 else
4473 {
4474 release_static_tracepoint_marker (marker);
4475 memset (marker, 0, sizeof (*marker));
4476 }
4477 }
4478 while (*p++ == ','); /* comma-separated list */
4479
4480 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4481 s[sizeof ("qTsSTM")] = 0;
4482 agent_run_command (pid, s, strlen (s) + 1);
4483 p = s;
4484 }
4485
4486 do_cleanups (old_chain);
4487
4488 return markers;
4489 }
4490
4491 /* Create a prototype generic GNU/Linux target. The client can override
4492 it with local methods. */
4493
4494 static void
4495 linux_target_install_ops (struct target_ops *t)
4496 {
4497 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4498 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4499 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4500 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4501 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4502 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4503 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4504 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4505 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4506 t->to_post_attach = linux_child_post_attach;
4507 t->to_follow_fork = linux_child_follow_fork;
4508
4509 super_xfer_partial = t->to_xfer_partial;
4510 t->to_xfer_partial = linux_xfer_partial;
4511
4512 t->to_static_tracepoint_markers_by_strid
4513 = linux_child_static_tracepoint_markers_by_strid;
4514 }
4515
4516 struct target_ops *
4517 linux_target (void)
4518 {
4519 struct target_ops *t;
4520
4521 t = inf_ptrace_target ();
4522 linux_target_install_ops (t);
4523
4524 return t;
4525 }
4526
4527 struct target_ops *
4528 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4529 {
4530 struct target_ops *t;
4531
4532 t = inf_ptrace_trad_target (register_u_offset);
4533 linux_target_install_ops (t);
4534
4535 return t;
4536 }
4537
4538 /* target_is_async_p implementation. */
4539
4540 static int
4541 linux_nat_is_async_p (struct target_ops *ops)
4542 {
4543 return linux_is_async_p ();
4544 }
4545
4546 /* target_can_async_p implementation. */
4547
4548 static int
4549 linux_nat_can_async_p (struct target_ops *ops)
4550 {
4551 /* NOTE: palves 2008-03-21: We're only async when the user requests
4552 it explicitly with the "set target-async" command.
4553 Someday, linux will always be async. */
4554 return target_async_permitted;
4555 }
4556
4557 static int
4558 linux_nat_supports_non_stop (struct target_ops *self)
4559 {
4560 return 1;
4561 }
4562
4563 /* True if we want to support multi-process. To be removed when GDB
4564 supports multi-exec. */
4565
4566 int linux_multi_process = 1;
4567
4568 static int
4569 linux_nat_supports_multi_process (struct target_ops *self)
4570 {
4571 return linux_multi_process;
4572 }
4573
4574 static int
4575 linux_nat_supports_disable_randomization (struct target_ops *self)
4576 {
4577 #ifdef HAVE_PERSONALITY
4578 return 1;
4579 #else
4580 return 0;
4581 #endif
4582 }
4583
4584 static int async_terminal_is_ours = 1;
4585
4586 /* target_terminal_inferior implementation.
4587
4588 This is a wrapper around child_terminal_inferior to add async support. */
4589
4590 static void
4591 linux_nat_terminal_inferior (struct target_ops *self)
4592 {
4593 /* Like target_terminal_inferior, use target_can_async_p, not
4594 target_is_async_p, since at this point the target is not async
4595 yet. If it can async, then we know it will become async prior to
4596 resume. */
4597 if (!target_can_async_p ())
4598 {
4599 /* Async mode is disabled. */
4600 child_terminal_inferior (self);
4601 return;
4602 }
4603
4604 child_terminal_inferior (self);
4605
4606 /* Calls to target_terminal_*() are meant to be idempotent. */
4607 if (!async_terminal_is_ours)
4608 return;
4609
4610 delete_file_handler (input_fd);
4611 async_terminal_is_ours = 0;
4612 set_sigint_trap ();
4613 }
4614
4615 /* target_terminal_ours implementation.
4616
4617 This is a wrapper around child_terminal_ours to add async support (and
4618 implement the target_terminal_ours vs target_terminal_ours_for_output
4619 distinction). child_terminal_ours is currently no different than
4620 child_terminal_ours_for_output.
4621 We leave target_terminal_ours_for_output alone, leaving it to
4622 child_terminal_ours_for_output. */
4623
4624 static void
4625 linux_nat_terminal_ours (struct target_ops *self)
4626 {
4627 /* GDB should never give the terminal to the inferior if the
4628 inferior is running in the background (run&, continue&, etc.),
4629 but claiming it sure should. */
4630 child_terminal_ours (self);
4631
4632 if (async_terminal_is_ours)
4633 return;
4634
4635 clear_sigint_trap ();
4636 add_file_handler (input_fd, stdin_event_handler, 0);
4637 async_terminal_is_ours = 1;
4638 }
4639
4640 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4641 so we notice when any child changes state, and notify the
4642 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4643 above to wait for the arrival of a SIGCHLD. */
4644
4645 static void
4646 sigchld_handler (int signo)
4647 {
4648 int old_errno = errno;
4649
4650 if (debug_linux_nat)
4651 ui_file_write_async_safe (gdb_stdlog,
4652 "sigchld\n", sizeof ("sigchld\n") - 1);
4653
4654 if (signo == SIGCHLD
4655 && linux_nat_event_pipe[0] != -1)
4656 async_file_mark (); /* Let the event loop know that there are
4657 events to handle. */
4658
4659 errno = old_errno;
4660 }
4661
4662 /* Callback registered with the target events file descriptor. */
4663
4664 static void
4665 handle_target_event (int error, gdb_client_data client_data)
4666 {
4667 inferior_event_handler (INF_REG_EVENT, NULL);
4668 }
4669
4670 /* Create/destroy the target events pipe. Returns previous state. */
4671
4672 static int
4673 linux_async_pipe (int enable)
4674 {
4675 int previous = linux_is_async_p ();
4676
4677 if (previous != enable)
4678 {
4679 sigset_t prev_mask;
4680
4681 /* Block child signals while we create/destroy the pipe, as
4682 their handler writes to it. */
4683 block_child_signals (&prev_mask);
4684
4685 if (enable)
4686 {
4687 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4688 internal_error (__FILE__, __LINE__,
4689 "creating event pipe failed.");
4690
4691 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4692 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4693 }
4694 else
4695 {
4696 close (linux_nat_event_pipe[0]);
4697 close (linux_nat_event_pipe[1]);
4698 linux_nat_event_pipe[0] = -1;
4699 linux_nat_event_pipe[1] = -1;
4700 }
4701
4702 restore_child_signals_mask (&prev_mask);
4703 }
4704
4705 return previous;
4706 }
4707
4708 /* target_async implementation. */
4709
4710 static void
4711 linux_nat_async (struct target_ops *ops, int enable)
4712 {
4713 if (enable)
4714 {
4715 if (!linux_async_pipe (1))
4716 {
4717 add_file_handler (linux_nat_event_pipe[0],
4718 handle_target_event, NULL);
4719 /* There may be pending events to handle. Tell the event loop
4720 to poll them. */
4721 async_file_mark ();
4722 }
4723 }
4724 else
4725 {
4726 delete_file_handler (linux_nat_event_pipe[0]);
4727 linux_async_pipe (0);
4728 }
4729 return;
4730 }
4731
4732 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4733 event came out. */
4734
4735 static int
4736 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4737 {
4738 if (!lwp->stopped)
4739 {
4740 if (debug_linux_nat)
4741 fprintf_unfiltered (gdb_stdlog,
4742 "LNSL: running -> suspending %s\n",
4743 target_pid_to_str (lwp->ptid));
4744
4745
4746 if (lwp->last_resume_kind == resume_stop)
4747 {
4748 if (debug_linux_nat)
4749 fprintf_unfiltered (gdb_stdlog,
4750 "linux-nat: already stopping LWP %ld at "
4751 "GDB's request\n",
4752 ptid_get_lwp (lwp->ptid));
4753 return 0;
4754 }
4755
4756 stop_callback (lwp, NULL);
4757 lwp->last_resume_kind = resume_stop;
4758 }
4759 else
4760 {
4761 /* Already known to be stopped; do nothing. */
4762
4763 if (debug_linux_nat)
4764 {
4765 if (find_thread_ptid (lwp->ptid)->stop_requested)
4766 fprintf_unfiltered (gdb_stdlog,
4767 "LNSL: already stopped/stop_requested %s\n",
4768 target_pid_to_str (lwp->ptid));
4769 else
4770 fprintf_unfiltered (gdb_stdlog,
4771 "LNSL: already stopped/no "
4772 "stop_requested yet %s\n",
4773 target_pid_to_str (lwp->ptid));
4774 }
4775 }
4776 return 0;
4777 }
4778
4779 static void
4780 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4781 {
4782 if (non_stop)
4783 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4784 else
4785 linux_ops->to_stop (linux_ops, ptid);
4786 }
4787
4788 static void
4789 linux_nat_close (struct target_ops *self)
4790 {
4791 /* Unregister from the event loop. */
4792 if (linux_nat_is_async_p (self))
4793 linux_nat_async (self, 0);
4794
4795 if (linux_ops->to_close)
4796 linux_ops->to_close (linux_ops);
4797
4798 super_close (self);
4799 }
4800
4801 /* When requests are passed down from the linux-nat layer to the
4802 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4803 used. The address space pointer is stored in the inferior object,
4804 but the common code that is passed such ptid can't tell whether
4805 lwpid is a "main" process id or not (it assumes so). We reverse
4806 look up the "main" process id from the lwp here. */
4807
4808 static struct address_space *
4809 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4810 {
4811 struct lwp_info *lwp;
4812 struct inferior *inf;
4813 int pid;
4814
4815 if (ptid_get_lwp (ptid) == 0)
4816 {
4817 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4818 tgid. */
4819 lwp = find_lwp_pid (ptid);
4820 pid = ptid_get_pid (lwp->ptid);
4821 }
4822 else
4823 {
4824 /* A (pid,lwpid,0) ptid. */
4825 pid = ptid_get_pid (ptid);
4826 }
4827
4828 inf = find_inferior_pid (pid);
4829 gdb_assert (inf != NULL);
4830 return inf->aspace;
4831 }
4832
4833 /* Return the cached value of the processor core for thread PTID. */
4834
4835 static int
4836 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4837 {
4838 struct lwp_info *info = find_lwp_pid (ptid);
4839
4840 if (info)
4841 return info->core;
4842 return -1;
4843 }
4844
4845 void
4846 linux_nat_add_target (struct target_ops *t)
4847 {
4848 /* Save the provided single-threaded target. We save this in a separate
4849 variable because another target we've inherited from (e.g. inf-ptrace)
4850 may have saved a pointer to T; we want to use it for the final
4851 process stratum target. */
4852 linux_ops_saved = *t;
4853 linux_ops = &linux_ops_saved;
4854
4855 /* Override some methods for multithreading. */
4856 t->to_create_inferior = linux_nat_create_inferior;
4857 t->to_attach = linux_nat_attach;
4858 t->to_detach = linux_nat_detach;
4859 t->to_resume = linux_nat_resume;
4860 t->to_wait = linux_nat_wait;
4861 t->to_pass_signals = linux_nat_pass_signals;
4862 t->to_xfer_partial = linux_nat_xfer_partial;
4863 t->to_kill = linux_nat_kill;
4864 t->to_mourn_inferior = linux_nat_mourn_inferior;
4865 t->to_thread_alive = linux_nat_thread_alive;
4866 t->to_update_thread_list = linux_nat_update_thread_list;
4867 t->to_pid_to_str = linux_nat_pid_to_str;
4868 t->to_thread_name = linux_nat_thread_name;
4869 t->to_has_thread_control = tc_schedlock;
4870 t->to_thread_address_space = linux_nat_thread_address_space;
4871 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4872 t->to_stopped_data_address = linux_nat_stopped_data_address;
4873 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4874 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4875 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4876 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4877
4878 t->to_can_async_p = linux_nat_can_async_p;
4879 t->to_is_async_p = linux_nat_is_async_p;
4880 t->to_supports_non_stop = linux_nat_supports_non_stop;
4881 t->to_async = linux_nat_async;
4882 t->to_terminal_inferior = linux_nat_terminal_inferior;
4883 t->to_terminal_ours = linux_nat_terminal_ours;
4884
4885 super_close = t->to_close;
4886 t->to_close = linux_nat_close;
4887
4888 /* Methods for non-stop support. */
4889 t->to_stop = linux_nat_stop;
4890
4891 t->to_supports_multi_process = linux_nat_supports_multi_process;
4892
4893 t->to_supports_disable_randomization
4894 = linux_nat_supports_disable_randomization;
4895
4896 t->to_core_of_thread = linux_nat_core_of_thread;
4897
4898 /* We don't change the stratum; this target will sit at
4899 process_stratum and thread_db will set at thread_stratum. This
4900 is a little strange, since this is a multi-threaded-capable
4901 target, but we want to be on the stack below thread_db, and we
4902 also want to be used for single-threaded processes. */
4903
4904 add_target (t);
4905 }
4906
4907 /* Register a method to call whenever a new thread is attached. */
4908 void
4909 linux_nat_set_new_thread (struct target_ops *t,
4910 void (*new_thread) (struct lwp_info *))
4911 {
4912 /* Save the pointer. We only support a single registered instance
4913 of the GNU/Linux native target, so we do not need to map this to
4914 T. */
4915 linux_nat_new_thread = new_thread;
4916 }
4917
4918 /* See declaration in linux-nat.h. */
4919
4920 void
4921 linux_nat_set_new_fork (struct target_ops *t,
4922 linux_nat_new_fork_ftype *new_fork)
4923 {
4924 /* Save the pointer. */
4925 linux_nat_new_fork = new_fork;
4926 }
4927
4928 /* See declaration in linux-nat.h. */
4929
4930 void
4931 linux_nat_set_forget_process (struct target_ops *t,
4932 linux_nat_forget_process_ftype *fn)
4933 {
4934 /* Save the pointer. */
4935 linux_nat_forget_process_hook = fn;
4936 }
4937
4938 /* See declaration in linux-nat.h. */
4939
4940 void
4941 linux_nat_forget_process (pid_t pid)
4942 {
4943 if (linux_nat_forget_process_hook != NULL)
4944 linux_nat_forget_process_hook (pid);
4945 }
4946
4947 /* Register a method that converts a siginfo object between the layout
4948 that ptrace returns, and the layout in the architecture of the
4949 inferior. */
4950 void
4951 linux_nat_set_siginfo_fixup (struct target_ops *t,
4952 int (*siginfo_fixup) (siginfo_t *,
4953 gdb_byte *,
4954 int))
4955 {
4956 /* Save the pointer. */
4957 linux_nat_siginfo_fixup = siginfo_fixup;
4958 }
4959
4960 /* Register a method to call prior to resuming a thread. */
4961
4962 void
4963 linux_nat_set_prepare_to_resume (struct target_ops *t,
4964 void (*prepare_to_resume) (struct lwp_info *))
4965 {
4966 /* Save the pointer. */
4967 linux_nat_prepare_to_resume = prepare_to_resume;
4968 }
4969
4970 /* See linux-nat.h. */
4971
4972 int
4973 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4974 {
4975 int pid;
4976
4977 pid = ptid_get_lwp (ptid);
4978 if (pid == 0)
4979 pid = ptid_get_pid (ptid);
4980
4981 errno = 0;
4982 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4983 if (errno != 0)
4984 {
4985 memset (siginfo, 0, sizeof (*siginfo));
4986 return 0;
4987 }
4988 return 1;
4989 }
4990
4991 /* See nat/linux-nat.h. */
4992
4993 ptid_t
4994 current_lwp_ptid (void)
4995 {
4996 gdb_assert (ptid_lwp_p (inferior_ptid));
4997 return inferior_ptid;
4998 }
4999
5000 /* Provide a prototype to silence -Wmissing-prototypes. */
5001 extern initialize_file_ftype _initialize_linux_nat;
5002
5003 void
5004 _initialize_linux_nat (void)
5005 {
5006 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5007 &debug_linux_nat, _("\
5008 Set debugging of GNU/Linux lwp module."), _("\
5009 Show debugging of GNU/Linux lwp module."), _("\
5010 Enables printf debugging output."),
5011 NULL,
5012 show_debug_linux_nat,
5013 &setdebuglist, &showdebuglist);
5014
5015 /* Save this mask as the default. */
5016 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5017
5018 /* Install a SIGCHLD handler. */
5019 sigchld_action.sa_handler = sigchld_handler;
5020 sigemptyset (&sigchld_action.sa_mask);
5021 sigchld_action.sa_flags = SA_RESTART;
5022
5023 /* Make it the default. */
5024 sigaction (SIGCHLD, &sigchld_action, NULL);
5025
5026 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5027 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5028 sigdelset (&suspend_mask, SIGCHLD);
5029
5030 sigemptyset (&blocked_mask);
5031
5032 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
5033 support read-only process state. */
5034 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
5035 | PTRACE_O_TRACEVFORKDONE
5036 | PTRACE_O_TRACEVFORK
5037 | PTRACE_O_TRACEFORK
5038 | PTRACE_O_TRACEEXEC);
5039 }
5040 \f
5041
5042 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5043 the GNU/Linux Threads library and therefore doesn't really belong
5044 here. */
5045
5046 /* Read variable NAME in the target and return its value if found.
5047 Otherwise return zero. It is assumed that the type of the variable
5048 is `int'. */
5049
5050 static int
5051 get_signo (const char *name)
5052 {
5053 struct bound_minimal_symbol ms;
5054 int signo;
5055
5056 ms = lookup_minimal_symbol (name, NULL, NULL);
5057 if (ms.minsym == NULL)
5058 return 0;
5059
5060 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5061 sizeof (signo)) != 0)
5062 return 0;
5063
5064 return signo;
5065 }
5066
5067 /* Return the set of signals used by the threads library in *SET. */
5068
5069 void
5070 lin_thread_get_thread_signals (sigset_t *set)
5071 {
5072 struct sigaction action;
5073 int restart, cancel;
5074
5075 sigemptyset (&blocked_mask);
5076 sigemptyset (set);
5077
5078 restart = get_signo ("__pthread_sig_restart");
5079 cancel = get_signo ("__pthread_sig_cancel");
5080
5081 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5082 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5083 not provide any way for the debugger to query the signal numbers -
5084 fortunately they don't change! */
5085
5086 if (restart == 0)
5087 restart = __SIGRTMIN;
5088
5089 if (cancel == 0)
5090 cancel = __SIGRTMIN + 1;
5091
5092 sigaddset (set, restart);
5093 sigaddset (set, cancel);
5094
5095 /* The GNU/Linux Threads library makes terminating threads send a
5096 special "cancel" signal instead of SIGCHLD. Make sure we catch
5097 those (to prevent them from terminating GDB itself, which is
5098 likely to be their default action) and treat them the same way as
5099 SIGCHLD. */
5100
5101 action.sa_handler = sigchld_handler;
5102 sigemptyset (&action.sa_mask);
5103 action.sa_flags = SA_RESTART;
5104 sigaction (cancel, &action, NULL);
5105
5106 /* We block the "cancel" signal throughout this code ... */
5107 sigaddset (&blocked_mask, cancel);
5108 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5109
5110 /* ... except during a sigsuspend. */
5111 sigdelset (&suspend_mask, cancel);
5112 }
This page took 0.198799 seconds and 4 git commands to generate.