Remove remaining "%ll" uses.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 static int linux_parent_pid;
274
275 struct simple_pid_list
276 {
277 int pid;
278 int status;
279 struct simple_pid_list *next;
280 };
281 struct simple_pid_list *stopped_pids;
282
283 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286 static int linux_supports_tracefork_flag = -1;
287
288 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291 static int linux_supports_tracesysgood_flag = -1;
292
293 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296 static int linux_supports_tracevforkdone_flag = -1;
297
298 /* Async mode support */
299
300 /* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302 static int linux_nat_async_mask_value = 1;
303
304 /* Stores the current used ptrace() options. */
305 static int current_ptrace_options = 0;
306
307 /* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309 static int linux_nat_event_pipe[2] = { -1, -1 };
310
311 /* Flush the event pipe. */
312
313 static void
314 async_file_flush (void)
315 {
316 int ret;
317 char buf;
318
319 do
320 {
321 ret = read (linux_nat_event_pipe[0], &buf, 1);
322 }
323 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 }
325
326 /* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
329
330 static void
331 async_file_mark (void)
332 {
333 int ret;
334
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
339
340 do
341 {
342 ret = write (linux_nat_event_pipe[1], "+", 1);
343 }
344 while (ret == -1 && errno == EINTR);
345
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
348 }
349
350 static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353 static int linux_nat_async_mask (int mask);
354 static int kill_lwp (int lwpid, int signo);
355
356 static int stop_callback (struct lwp_info *lp, void *data);
357
358 static void block_child_signals (sigset_t *prev_mask);
359 static void restore_child_signals_mask (sigset_t *prev_mask);
360
361 struct lwp_info;
362 static struct lwp_info *add_lwp (ptid_t ptid);
363 static void purge_lwp_list (int pid);
364 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
374 new_pid->status = status;
375 new_pid->next = *listp;
376 *listp = new_pid;
377 }
378
379 static int
380 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 {
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
413 _exit (0);
414 }
415
416 /* Wrapper function for waitpid which handles EINTR. */
417
418 static int
419 my_waitpid (int pid, int *status, int flags)
420 {
421 int ret;
422
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430 }
431
432 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
444
445 static void
446 linux_test_for_tracefork (int original_pid)
447 {
448 int child_pid, ret, status;
449 long second_pid;
450 sigset_t prev_mask;
451
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
454
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
464
465 child_pid = fork ();
466 if (child_pid == -1)
467 perror_with_name (("fork"));
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
472 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == -1)
474 perror_with_name (("waitpid"));
475 else if (ret != child_pid)
476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
477 if (! WIFSTOPPED (status))
478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
479
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
486 warning (_("linux_test_for_tracefork: failed to kill child"));
487 restore_child_signals_mask (&prev_mask);
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
494 else if (!WIFSIGNALED (status))
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
497
498 restore_child_signals_mask (&prev_mask);
499 return;
500 }
501
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
509 warning (_("linux_test_for_tracefork: failed to resume child"));
510
511 ret = my_waitpid (child_pid, &status, 0);
512
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
526 warning (_("linux_test_for_tracefork: failed to kill second child"));
527 my_waitpid (second_pid, &status, 0);
528 }
529 }
530 else
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
533
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
536 warning (_("linux_test_for_tracefork: failed to kill child"));
537 my_waitpid (child_pid, &status, 0);
538
539 restore_child_signals_mask (&prev_mask);
540 }
541
542 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548 static void
549 linux_test_for_tracesysgood (int original_pid)
550 {
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564 out:
565 restore_child_signals_mask (&prev_mask);
566 }
567
568 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571 static int
572 linux_supports_tracesysgood (int pid)
573 {
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577 }
578
579 /* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582 static int
583 linux_supports_tracefork (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracefork_flag;
588 }
589
590 static int
591 linux_supports_tracevforkdone (int pid)
592 {
593 if (linux_supports_tracefork_flag == -1)
594 linux_test_for_tracefork (pid);
595 return linux_supports_tracevforkdone_flag;
596 }
597
598 static void
599 linux_enable_tracesysgood (ptid_t ptid)
600 {
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612 }
613
614 \f
615 void
616 linux_enable_event_reporting (ptid_t ptid)
617 {
618 int pid = ptid_get_lwp (ptid);
619
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
623 if (! linux_supports_tracefork (pid))
624 return;
625
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
629 if (linux_supports_tracevforkdone (pid))
630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
634
635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
636 }
637
638 static void
639 linux_child_post_attach (int pid)
640 {
641 linux_enable_event_reporting (pid_to_ptid (pid));
642 check_for_thread_db ();
643 linux_enable_tracesysgood (pid_to_ptid (pid));
644 }
645
646 static void
647 linux_child_post_startup_inferior (ptid_t ptid)
648 {
649 linux_enable_event_reporting (ptid);
650 check_for_thread_db ();
651 linux_enable_tracesysgood (ptid);
652 }
653
654 static int
655 linux_child_follow_fork (struct target_ops *ops, int follow_child)
656 {
657 sigset_t prev_mask;
658 int has_vforked;
659 int parent_pid, child_pid;
660
661 block_child_signals (&prev_mask);
662
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
666 if (parent_pid == 0)
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684 Can not resume the parent process over vfork in the foreground while \n\
685 holding the child stopped. Try \"set detach-on-fork\" or \
686 \"set schedule-multiple\".\n"));
687 return 1;
688 }
689
690 if (! follow_child)
691 {
692 struct lwp_info *child_lp = NULL;
693
694 /* We're already attached to the parent, by default. */
695
696 /* Detach new forked process? */
697 if (detach_fork)
698 {
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
712 if (info_verbose || debug_linux_nat)
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
719
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
724 struct inferior *parent_inf, *child_inf;
725 struct cleanup *old_chain;
726
727 /* Add process to GDB's tables. */
728 child_inf = add_inferior (child_pid);
729
730 parent_inf = current_inferior ();
731 child_inf->attach_flag = parent_inf->attach_flag;
732 copy_terminal_info (child_inf, parent_inf);
733
734 old_chain = save_inferior_ptid ();
735 save_current_program_space ();
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
742
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook (0);
773 }
774
775 /* Let the thread_db layer learn about this new process. */
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
779 }
780
781 if (has_vforked)
782 {
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
801 {
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
809
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
850 usleep (10000);
851
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
866 }
867 }
868 else
869 {
870 struct thread_info *tp;
871 struct inferior *parent_inf, *child_inf;
872 struct lwp_info *lp;
873 struct program_space *parent_pspace;
874
875 if (info_verbose || debug_linux_nat)
876 {
877 target_terminal_ours ();
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880 Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884 Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
886 }
887
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
891 child_inf = add_inferior (child_pid);
892
893 parent_inf = current_inferior ();
894 child_inf->attach_flag = parent_inf->attach_flag;
895 copy_terminal_info (child_inf, parent_inf);
896
897 parent_pspace = parent_inf->pspace;
898
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
908
909 if (has_vforked)
910 {
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
918 }
919 else if (detach_fork)
920 target_detach (NULL, 0);
921
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook (0);
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static void
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 if (! linux_supports_tracefork (pid))
971 error (_("Your system does not support fork catchpoints."));
972 }
973
974 static void
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 if (!linux_supports_tracefork (pid))
978 error (_("Your system does not support vfork catchpoints."));
979 }
980
981 static void
982 linux_child_insert_exec_catchpoint (int pid)
983 {
984 if (!linux_supports_tracefork (pid))
985 error (_("Your system does not support exec catchpoints."));
986 }
987
988 static int
989 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991 {
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000 }
1001
1002 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035 /* List of known LWPs. */
1036 struct lwp_info *lwp_list;
1037 \f
1038
1039 /* Original signal mask. */
1040 static sigset_t normal_mask;
1041
1042 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044 static sigset_t suspend_mask;
1045
1046 /* Signals to block to make that sigsuspend work. */
1047 static sigset_t blocked_mask;
1048
1049 /* SIGCHLD action. */
1050 struct sigaction sigchld_action;
1051
1052 /* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
1054
1055 static void
1056 block_child_signals (sigset_t *prev_mask)
1057 {
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063 }
1064
1065 /* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068 static void
1069 restore_child_signals_mask (sigset_t *prev_mask)
1070 {
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 }
1073 \f
1074
1075 /* Prototypes for local functions. */
1076 static int stop_wait_callback (struct lwp_info *lp, void *data);
1077 static int linux_thread_alive (ptid_t ptid);
1078 static char *linux_child_pid_to_exec_file (int pid);
1079 static int cancel_breakpoint (struct lwp_info *lp);
1080
1081 \f
1082 /* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085 static char *
1086 status_to_str (int status)
1087 {
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
1091 {
1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106 }
1107
1108 /* Remove all LWPs belong to PID from the lwp list. */
1109
1110 static void
1111 purge_lwp_list (int pid)
1112 {
1113 struct lwp_info *lp, *lpprev, *lpnext;
1114
1115 lpprev = NULL;
1116
1117 for (lp = lwp_list; lp; lp = lpnext)
1118 {
1119 lpnext = lp->next;
1120
1121 if (ptid_get_pid (lp->ptid) == pid)
1122 {
1123 if (lp == lwp_list)
1124 lwp_list = lp->next;
1125 else
1126 lpprev->next = lp->next;
1127
1128 xfree (lp);
1129 }
1130 else
1131 lpprev = lp;
1132 }
1133 }
1134
1135 /* Return the number of known LWPs in the tgid given by PID. */
1136
1137 static int
1138 num_lwps (int pid)
1139 {
1140 int count = 0;
1141 struct lwp_info *lp;
1142
1143 for (lp = lwp_list; lp; lp = lp->next)
1144 if (ptid_get_pid (lp->ptid) == pid)
1145 count++;
1146
1147 return count;
1148 }
1149
1150 /* Add the LWP specified by PID to the list. Return a pointer to the
1151 structure describing the new LWP. The LWP should already be stopped
1152 (with an exception for the very first LWP). */
1153
1154 static struct lwp_info *
1155 add_lwp (ptid_t ptid)
1156 {
1157 struct lwp_info *lp;
1158
1159 gdb_assert (is_lwp (ptid));
1160
1161 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1162
1163 memset (lp, 0, sizeof (struct lwp_info));
1164
1165 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1166
1167 lp->ptid = ptid;
1168 lp->core = -1;
1169
1170 lp->next = lwp_list;
1171 lwp_list = lp;
1172
1173 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1174 linux_nat_new_thread (ptid);
1175
1176 return lp;
1177 }
1178
1179 /* Remove the LWP specified by PID from the list. */
1180
1181 static void
1182 delete_lwp (ptid_t ptid)
1183 {
1184 struct lwp_info *lp, *lpprev;
1185
1186 lpprev = NULL;
1187
1188 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1189 if (ptid_equal (lp->ptid, ptid))
1190 break;
1191
1192 if (!lp)
1193 return;
1194
1195 if (lpprev)
1196 lpprev->next = lp->next;
1197 else
1198 lwp_list = lp->next;
1199
1200 xfree (lp);
1201 }
1202
1203 /* Return a pointer to the structure describing the LWP corresponding
1204 to PID. If no corresponding LWP could be found, return NULL. */
1205
1206 static struct lwp_info *
1207 find_lwp_pid (ptid_t ptid)
1208 {
1209 struct lwp_info *lp;
1210 int lwp;
1211
1212 if (is_lwp (ptid))
1213 lwp = GET_LWP (ptid);
1214 else
1215 lwp = GET_PID (ptid);
1216
1217 for (lp = lwp_list; lp; lp = lp->next)
1218 if (lwp == GET_LWP (lp->ptid))
1219 return lp;
1220
1221 return NULL;
1222 }
1223
1224 /* Call CALLBACK with its second argument set to DATA for every LWP in
1225 the list. If CALLBACK returns 1 for a particular LWP, return a
1226 pointer to the structure describing that LWP immediately.
1227 Otherwise return NULL. */
1228
1229 struct lwp_info *
1230 iterate_over_lwps (ptid_t filter,
1231 int (*callback) (struct lwp_info *, void *),
1232 void *data)
1233 {
1234 struct lwp_info *lp, *lpnext;
1235
1236 for (lp = lwp_list; lp; lp = lpnext)
1237 {
1238 lpnext = lp->next;
1239
1240 if (ptid_match (lp->ptid, filter))
1241 {
1242 if ((*callback) (lp, data))
1243 return lp;
1244 }
1245 }
1246
1247 return NULL;
1248 }
1249
1250 /* Update our internal state when changing from one checkpoint to
1251 another indicated by NEW_PTID. We can only switch single-threaded
1252 applications, so we only create one new LWP, and the previous list
1253 is discarded. */
1254
1255 void
1256 linux_nat_switch_fork (ptid_t new_ptid)
1257 {
1258 struct lwp_info *lp;
1259
1260 purge_lwp_list (GET_PID (inferior_ptid));
1261
1262 lp = add_lwp (new_ptid);
1263 lp->stopped = 1;
1264
1265 /* This changes the thread's ptid while preserving the gdb thread
1266 num. Also changes the inferior pid, while preserving the
1267 inferior num. */
1268 thread_change_ptid (inferior_ptid, new_ptid);
1269
1270 /* We've just told GDB core that the thread changed target id, but,
1271 in fact, it really is a different thread, with different register
1272 contents. */
1273 registers_changed ();
1274 }
1275
1276 /* Handle the exit of a single thread LP. */
1277
1278 static void
1279 exit_lwp (struct lwp_info *lp)
1280 {
1281 struct thread_info *th = find_thread_ptid (lp->ptid);
1282
1283 if (th)
1284 {
1285 if (print_thread_events)
1286 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1287
1288 delete_thread (lp->ptid);
1289 }
1290
1291 delete_lwp (lp->ptid);
1292 }
1293
1294 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1295
1296 int
1297 linux_proc_get_tgid (int lwpid)
1298 {
1299 FILE *status_file;
1300 char buf[100];
1301 int tgid = -1;
1302
1303 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1304 status_file = fopen (buf, "r");
1305 if (status_file != NULL)
1306 {
1307 while (fgets (buf, sizeof (buf), status_file))
1308 {
1309 if (strncmp (buf, "Tgid:", 5) == 0)
1310 {
1311 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1312 break;
1313 }
1314 }
1315
1316 fclose (status_file);
1317 }
1318
1319 return tgid;
1320 }
1321
1322 /* Detect `T (stopped)' in `/proc/PID/status'.
1323 Other states including `T (tracing stop)' are reported as false. */
1324
1325 static int
1326 pid_is_stopped (pid_t pid)
1327 {
1328 FILE *status_file;
1329 char buf[100];
1330 int retval = 0;
1331
1332 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1333 status_file = fopen (buf, "r");
1334 if (status_file != NULL)
1335 {
1336 int have_state = 0;
1337
1338 while (fgets (buf, sizeof (buf), status_file))
1339 {
1340 if (strncmp (buf, "State:", 6) == 0)
1341 {
1342 have_state = 1;
1343 break;
1344 }
1345 }
1346 if (have_state && strstr (buf, "T (stopped)") != NULL)
1347 retval = 1;
1348 fclose (status_file);
1349 }
1350 return retval;
1351 }
1352
1353 /* Wait for the LWP specified by LP, which we have just attached to.
1354 Returns a wait status for that LWP, to cache. */
1355
1356 static int
1357 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1358 int *signalled)
1359 {
1360 pid_t new_pid, pid = GET_LWP (ptid);
1361 int status;
1362
1363 if (pid_is_stopped (pid))
1364 {
1365 if (debug_linux_nat)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "LNPAW: Attaching to a stopped process\n");
1368
1369 /* The process is definitely stopped. It is in a job control
1370 stop, unless the kernel predates the TASK_STOPPED /
1371 TASK_TRACED distinction, in which case it might be in a
1372 ptrace stop. Make sure it is in a ptrace stop; from there we
1373 can kill it, signal it, et cetera.
1374
1375 First make sure there is a pending SIGSTOP. Since we are
1376 already attached, the process can not transition from stopped
1377 to running without a PTRACE_CONT; so we know this signal will
1378 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1379 probably already in the queue (unless this kernel is old
1380 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1381 is not an RT signal, it can only be queued once. */
1382 kill_lwp (pid, SIGSTOP);
1383
1384 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1385 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1386 ptrace (PTRACE_CONT, pid, 0, 0);
1387 }
1388
1389 /* Make sure the initial process is stopped. The user-level threads
1390 layer might want to poke around in the inferior, and that won't
1391 work if things haven't stabilized yet. */
1392 new_pid = my_waitpid (pid, &status, 0);
1393 if (new_pid == -1 && errno == ECHILD)
1394 {
1395 if (first)
1396 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1397
1398 /* Try again with __WCLONE to check cloned processes. */
1399 new_pid = my_waitpid (pid, &status, __WCLONE);
1400 *cloned = 1;
1401 }
1402
1403 gdb_assert (pid == new_pid);
1404
1405 if (!WIFSTOPPED (status))
1406 {
1407 /* The pid we tried to attach has apparently just exited. */
1408 if (debug_linux_nat)
1409 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1410 pid, status_to_str (status));
1411 return status;
1412 }
1413
1414 if (WSTOPSIG (status) != SIGSTOP)
1415 {
1416 *signalled = 1;
1417 if (debug_linux_nat)
1418 fprintf_unfiltered (gdb_stdlog,
1419 "LNPAW: Received %s after attaching\n",
1420 status_to_str (status));
1421 }
1422
1423 return status;
1424 }
1425
1426 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1427 if the new LWP could not be attached. */
1428
1429 int
1430 lin_lwp_attach_lwp (ptid_t ptid)
1431 {
1432 struct lwp_info *lp;
1433 sigset_t prev_mask;
1434
1435 gdb_assert (is_lwp (ptid));
1436
1437 block_child_signals (&prev_mask);
1438
1439 lp = find_lwp_pid (ptid);
1440
1441 /* We assume that we're already attached to any LWP that has an id
1442 equal to the overall process id, and to any LWP that is already
1443 in our list of LWPs. If we're not seeing exit events from threads
1444 and we've had PID wraparound since we last tried to stop all threads,
1445 this assumption might be wrong; fortunately, this is very unlikely
1446 to happen. */
1447 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1448 {
1449 int status, cloned = 0, signalled = 0;
1450
1451 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1452 {
1453 /* If we fail to attach to the thread, issue a warning,
1454 but continue. One way this can happen is if thread
1455 creation is interrupted; as of Linux kernel 2.6.19, a
1456 bug may place threads in the thread list and then fail
1457 to create them. */
1458 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1459 safe_strerror (errno));
1460 restore_child_signals_mask (&prev_mask);
1461 return -1;
1462 }
1463
1464 if (debug_linux_nat)
1465 fprintf_unfiltered (gdb_stdlog,
1466 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1467 target_pid_to_str (ptid));
1468
1469 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1470 if (!WIFSTOPPED (status))
1471 return -1;
1472
1473 lp = add_lwp (ptid);
1474 lp->stopped = 1;
1475 lp->cloned = cloned;
1476 lp->signalled = signalled;
1477 if (WSTOPSIG (status) != SIGSTOP)
1478 {
1479 lp->resumed = 1;
1480 lp->status = status;
1481 }
1482
1483 target_post_attach (GET_LWP (lp->ptid));
1484
1485 if (debug_linux_nat)
1486 {
1487 fprintf_unfiltered (gdb_stdlog,
1488 "LLAL: waitpid %s received %s\n",
1489 target_pid_to_str (ptid),
1490 status_to_str (status));
1491 }
1492 }
1493 else
1494 {
1495 /* We assume that the LWP representing the original process is
1496 already stopped. Mark it as stopped in the data structure
1497 that the GNU/linux ptrace layer uses to keep track of
1498 threads. Note that this won't have already been done since
1499 the main thread will have, we assume, been stopped by an
1500 attach from a different layer. */
1501 if (lp == NULL)
1502 lp = add_lwp (ptid);
1503 lp->stopped = 1;
1504 }
1505
1506 restore_child_signals_mask (&prev_mask);
1507 return 0;
1508 }
1509
1510 static void
1511 linux_nat_create_inferior (struct target_ops *ops,
1512 char *exec_file, char *allargs, char **env,
1513 int from_tty)
1514 {
1515 #ifdef HAVE_PERSONALITY
1516 int personality_orig = 0, personality_set = 0;
1517 #endif /* HAVE_PERSONALITY */
1518
1519 /* The fork_child mechanism is synchronous and calls target_wait, so
1520 we have to mask the async mode. */
1521
1522 #ifdef HAVE_PERSONALITY
1523 if (disable_randomization)
1524 {
1525 errno = 0;
1526 personality_orig = personality (0xffffffff);
1527 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1528 {
1529 personality_set = 1;
1530 personality (personality_orig | ADDR_NO_RANDOMIZE);
1531 }
1532 if (errno != 0 || (personality_set
1533 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1534 warning (_("Error disabling address space randomization: %s"),
1535 safe_strerror (errno));
1536 }
1537 #endif /* HAVE_PERSONALITY */
1538
1539 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1540
1541 #ifdef HAVE_PERSONALITY
1542 if (personality_set)
1543 {
1544 errno = 0;
1545 personality (personality_orig);
1546 if (errno != 0)
1547 warning (_("Error restoring address space randomization: %s"),
1548 safe_strerror (errno));
1549 }
1550 #endif /* HAVE_PERSONALITY */
1551 }
1552
1553 static void
1554 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1555 {
1556 struct lwp_info *lp;
1557 int status;
1558 ptid_t ptid;
1559
1560 linux_ops->to_attach (ops, args, from_tty);
1561
1562 /* The ptrace base target adds the main thread with (pid,0,0)
1563 format. Decorate it with lwp info. */
1564 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1565 thread_change_ptid (inferior_ptid, ptid);
1566
1567 /* Add the initial process as the first LWP to the list. */
1568 lp = add_lwp (ptid);
1569
1570 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1571 &lp->signalled);
1572 if (!WIFSTOPPED (status))
1573 {
1574 if (WIFEXITED (status))
1575 {
1576 int exit_code = WEXITSTATUS (status);
1577
1578 target_terminal_ours ();
1579 target_mourn_inferior ();
1580 if (exit_code == 0)
1581 error (_("Unable to attach: program exited normally."));
1582 else
1583 error (_("Unable to attach: program exited with code %d."),
1584 exit_code);
1585 }
1586 else if (WIFSIGNALED (status))
1587 {
1588 enum target_signal signo;
1589
1590 target_terminal_ours ();
1591 target_mourn_inferior ();
1592
1593 signo = target_signal_from_host (WTERMSIG (status));
1594 error (_("Unable to attach: program terminated with signal "
1595 "%s, %s."),
1596 target_signal_to_name (signo),
1597 target_signal_to_string (signo));
1598 }
1599
1600 internal_error (__FILE__, __LINE__,
1601 _("unexpected status %d for PID %ld"),
1602 status, (long) GET_LWP (ptid));
1603 }
1604
1605 lp->stopped = 1;
1606
1607 /* Save the wait status to report later. */
1608 lp->resumed = 1;
1609 if (debug_linux_nat)
1610 fprintf_unfiltered (gdb_stdlog,
1611 "LNA: waitpid %ld, saving status %s\n",
1612 (long) GET_PID (lp->ptid), status_to_str (status));
1613
1614 lp->status = status;
1615
1616 if (target_can_async_p ())
1617 target_async (inferior_event_handler, 0);
1618 }
1619
1620 /* Get pending status of LP. */
1621 static int
1622 get_pending_status (struct lwp_info *lp, int *status)
1623 {
1624 enum target_signal signo = TARGET_SIGNAL_0;
1625
1626 /* If we paused threads momentarily, we may have stored pending
1627 events in lp->status or lp->waitstatus (see stop_wait_callback),
1628 and GDB core hasn't seen any signal for those threads.
1629 Otherwise, the last signal reported to the core is found in the
1630 thread object's stop_signal.
1631
1632 There's a corner case that isn't handled here at present. Only
1633 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1634 stop_signal make sense as a real signal to pass to the inferior.
1635 Some catchpoint related events, like
1636 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1637 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1638 those traps are debug API (ptrace in our case) related and
1639 induced; the inferior wouldn't see them if it wasn't being
1640 traced. Hence, we should never pass them to the inferior, even
1641 when set to pass state. Since this corner case isn't handled by
1642 infrun.c when proceeding with a signal, for consistency, neither
1643 do we handle it here (or elsewhere in the file we check for
1644 signal pass state). Normally SIGTRAP isn't set to pass state, so
1645 this is really a corner case. */
1646
1647 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1648 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1649 else if (lp->status)
1650 signo = target_signal_from_host (WSTOPSIG (lp->status));
1651 else if (non_stop && !is_executing (lp->ptid))
1652 {
1653 struct thread_info *tp = find_thread_ptid (lp->ptid);
1654 signo = tp->stop_signal;
1655 }
1656 else if (!non_stop)
1657 {
1658 struct target_waitstatus last;
1659 ptid_t last_ptid;
1660
1661 get_last_target_status (&last_ptid, &last);
1662
1663 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1664 {
1665 struct thread_info *tp = find_thread_ptid (lp->ptid);
1666 signo = tp->stop_signal;
1667 }
1668 }
1669
1670 *status = 0;
1671
1672 if (signo == TARGET_SIGNAL_0)
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "GPT: lwp %s has no pending signal\n",
1677 target_pid_to_str (lp->ptid));
1678 }
1679 else if (!signal_pass_state (signo))
1680 {
1681 if (debug_linux_nat)
1682 fprintf_unfiltered (gdb_stdlog, "\
1683 GPT: lwp %s had signal %s, but it is in no pass state\n",
1684 target_pid_to_str (lp->ptid),
1685 target_signal_to_string (signo));
1686 }
1687 else
1688 {
1689 *status = W_STOPCODE (target_signal_to_host (signo));
1690
1691 if (debug_linux_nat)
1692 fprintf_unfiltered (gdb_stdlog,
1693 "GPT: lwp %s has pending signal %s\n",
1694 target_pid_to_str (lp->ptid),
1695 target_signal_to_string (signo));
1696 }
1697
1698 return 0;
1699 }
1700
1701 static int
1702 detach_callback (struct lwp_info *lp, void *data)
1703 {
1704 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1705
1706 if (debug_linux_nat && lp->status)
1707 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1708 strsignal (WSTOPSIG (lp->status)),
1709 target_pid_to_str (lp->ptid));
1710
1711 /* If there is a pending SIGSTOP, get rid of it. */
1712 if (lp->signalled)
1713 {
1714 if (debug_linux_nat)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "DC: Sending SIGCONT to %s\n",
1717 target_pid_to_str (lp->ptid));
1718
1719 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1720 lp->signalled = 0;
1721 }
1722
1723 /* We don't actually detach from the LWP that has an id equal to the
1724 overall process id just yet. */
1725 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1726 {
1727 int status = 0;
1728
1729 /* Pass on any pending signal for this LWP. */
1730 get_pending_status (lp, &status);
1731
1732 errno = 0;
1733 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1734 WSTOPSIG (status)) < 0)
1735 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1736 safe_strerror (errno));
1737
1738 if (debug_linux_nat)
1739 fprintf_unfiltered (gdb_stdlog,
1740 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1741 target_pid_to_str (lp->ptid),
1742 strsignal (WSTOPSIG (status)));
1743
1744 delete_lwp (lp->ptid);
1745 }
1746
1747 return 0;
1748 }
1749
1750 static void
1751 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1752 {
1753 int pid;
1754 int status;
1755 enum target_signal sig;
1756 struct lwp_info *main_lwp;
1757
1758 pid = GET_PID (inferior_ptid);
1759
1760 if (target_can_async_p ())
1761 linux_nat_async (NULL, 0);
1762
1763 /* Stop all threads before detaching. ptrace requires that the
1764 thread is stopped to sucessfully detach. */
1765 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1766 /* ... and wait until all of them have reported back that
1767 they're no longer running. */
1768 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1769
1770 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1771
1772 /* Only the initial process should be left right now. */
1773 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1774
1775 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1776
1777 /* Pass on any pending signal for the last LWP. */
1778 if ((args == NULL || *args == '\0')
1779 && get_pending_status (main_lwp, &status) != -1
1780 && WIFSTOPPED (status))
1781 {
1782 /* Put the signal number in ARGS so that inf_ptrace_detach will
1783 pass it along with PTRACE_DETACH. */
1784 args = alloca (8);
1785 sprintf (args, "%d", (int) WSTOPSIG (status));
1786 if (debug_linux_nat)
1787 fprintf_unfiltered (gdb_stdlog,
1788 "LND: Sending signal %s to %s\n",
1789 args,
1790 target_pid_to_str (main_lwp->ptid));
1791 }
1792
1793 delete_lwp (main_lwp->ptid);
1794
1795 if (forks_exist_p ())
1796 {
1797 /* Multi-fork case. The current inferior_ptid is being detached
1798 from, but there are other viable forks to debug. Detach from
1799 the current fork, and context-switch to the first
1800 available. */
1801 linux_fork_detach (args, from_tty);
1802
1803 if (non_stop && target_can_async_p ())
1804 target_async (inferior_event_handler, 0);
1805 }
1806 else
1807 linux_ops->to_detach (ops, args, from_tty);
1808 }
1809
1810 /* Resume LP. */
1811
1812 static int
1813 resume_callback (struct lwp_info *lp, void *data)
1814 {
1815 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1816
1817 if (lp->stopped && inf->vfork_child != NULL)
1818 {
1819 if (debug_linux_nat)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "RC: Not resuming %s (vfork parent)\n",
1822 target_pid_to_str (lp->ptid));
1823 }
1824 else if (lp->stopped && lp->status == 0)
1825 {
1826 if (debug_linux_nat)
1827 fprintf_unfiltered (gdb_stdlog,
1828 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1829 target_pid_to_str (lp->ptid));
1830
1831 linux_ops->to_resume (linux_ops,
1832 pid_to_ptid (GET_LWP (lp->ptid)),
1833 0, TARGET_SIGNAL_0);
1834 if (debug_linux_nat)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1837 target_pid_to_str (lp->ptid));
1838 lp->stopped = 0;
1839 lp->step = 0;
1840 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1841 lp->stopped_by_watchpoint = 0;
1842 }
1843 else if (lp->stopped && debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1845 target_pid_to_str (lp->ptid));
1846 else if (debug_linux_nat)
1847 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1848 target_pid_to_str (lp->ptid));
1849
1850 return 0;
1851 }
1852
1853 static int
1854 resume_clear_callback (struct lwp_info *lp, void *data)
1855 {
1856 lp->resumed = 0;
1857 return 0;
1858 }
1859
1860 static int
1861 resume_set_callback (struct lwp_info *lp, void *data)
1862 {
1863 lp->resumed = 1;
1864 return 0;
1865 }
1866
1867 static void
1868 linux_nat_resume (struct target_ops *ops,
1869 ptid_t ptid, int step, enum target_signal signo)
1870 {
1871 sigset_t prev_mask;
1872 struct lwp_info *lp;
1873 int resume_many;
1874
1875 if (debug_linux_nat)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1878 step ? "step" : "resume",
1879 target_pid_to_str (ptid),
1880 signo ? strsignal (signo) : "0",
1881 target_pid_to_str (inferior_ptid));
1882
1883 block_child_signals (&prev_mask);
1884
1885 /* A specific PTID means `step only this process id'. */
1886 resume_many = (ptid_equal (minus_one_ptid, ptid)
1887 || ptid_is_pid (ptid));
1888
1889 /* Mark the lwps we're resuming as resumed. */
1890 iterate_over_lwps (ptid, resume_set_callback, NULL);
1891
1892 /* See if it's the current inferior that should be handled
1893 specially. */
1894 if (resume_many)
1895 lp = find_lwp_pid (inferior_ptid);
1896 else
1897 lp = find_lwp_pid (ptid);
1898 gdb_assert (lp != NULL);
1899
1900 /* Remember if we're stepping. */
1901 lp->step = step;
1902
1903 /* If we have a pending wait status for this thread, there is no
1904 point in resuming the process. But first make sure that
1905 linux_nat_wait won't preemptively handle the event - we
1906 should never take this short-circuit if we are going to
1907 leave LP running, since we have skipped resuming all the
1908 other threads. This bit of code needs to be synchronized
1909 with linux_nat_wait. */
1910
1911 if (lp->status && WIFSTOPPED (lp->status))
1912 {
1913 int saved_signo;
1914 struct inferior *inf;
1915
1916 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1917 gdb_assert (inf);
1918 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1919
1920 /* Defer to common code if we're gaining control of the
1921 inferior. */
1922 if (inf->stop_soon == NO_STOP_QUIETLY
1923 && signal_stop_state (saved_signo) == 0
1924 && signal_print_state (saved_signo) == 0
1925 && signal_pass_state (saved_signo) == 1)
1926 {
1927 if (debug_linux_nat)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "LLR: Not short circuiting for ignored "
1930 "status 0x%x\n", lp->status);
1931
1932 /* FIXME: What should we do if we are supposed to continue
1933 this thread with a signal? */
1934 gdb_assert (signo == TARGET_SIGNAL_0);
1935 signo = saved_signo;
1936 lp->status = 0;
1937 }
1938 }
1939
1940 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1941 {
1942 /* FIXME: What should we do if we are supposed to continue
1943 this thread with a signal? */
1944 gdb_assert (signo == TARGET_SIGNAL_0);
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LLR: Short circuiting for status 0x%x\n",
1949 lp->status);
1950
1951 restore_child_signals_mask (&prev_mask);
1952 if (target_can_async_p ())
1953 {
1954 target_async (inferior_event_handler, 0);
1955 /* Tell the event loop we have something to process. */
1956 async_file_mark ();
1957 }
1958 return;
1959 }
1960
1961 /* Mark LWP as not stopped to prevent it from being continued by
1962 resume_callback. */
1963 lp->stopped = 0;
1964
1965 if (resume_many)
1966 iterate_over_lwps (ptid, resume_callback, NULL);
1967
1968 /* Convert to something the lower layer understands. */
1969 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1970
1971 linux_ops->to_resume (linux_ops, ptid, step, signo);
1972 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1973 lp->stopped_by_watchpoint = 0;
1974
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LLR: %s %s, %s (resume event thread)\n",
1978 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1979 target_pid_to_str (ptid),
1980 signo ? strsignal (signo) : "0");
1981
1982 restore_child_signals_mask (&prev_mask);
1983 if (target_can_async_p ())
1984 target_async (inferior_event_handler, 0);
1985 }
1986
1987 /* Send a signal to an LWP. */
1988
1989 static int
1990 kill_lwp (int lwpid, int signo)
1991 {
1992 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1993 fails, then we are not using nptl threads and we should be using kill. */
1994
1995 #ifdef HAVE_TKILL_SYSCALL
1996 {
1997 static int tkill_failed;
1998
1999 if (!tkill_failed)
2000 {
2001 int ret;
2002
2003 errno = 0;
2004 ret = syscall (__NR_tkill, lwpid, signo);
2005 if (errno != ENOSYS)
2006 return ret;
2007 tkill_failed = 1;
2008 }
2009 }
2010 #endif
2011
2012 return kill (lwpid, signo);
2013 }
2014
2015 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2016 event, check if the core is interested in it: if not, ignore the
2017 event, and keep waiting; otherwise, we need to toggle the LWP's
2018 syscall entry/exit status, since the ptrace event itself doesn't
2019 indicate it, and report the trap to higher layers. */
2020
2021 static int
2022 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2023 {
2024 struct target_waitstatus *ourstatus = &lp->waitstatus;
2025 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2026 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2027
2028 if (stopping)
2029 {
2030 /* If we're stopping threads, there's a SIGSTOP pending, which
2031 makes it so that the LWP reports an immediate syscall return,
2032 followed by the SIGSTOP. Skip seeing that "return" using
2033 PTRACE_CONT directly, and let stop_wait_callback collect the
2034 SIGSTOP. Later when the thread is resumed, a new syscall
2035 entry event. If we didn't do this (and returned 0), we'd
2036 leave a syscall entry pending, and our caller, by using
2037 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2038 itself. Later, when the user re-resumes this LWP, we'd see
2039 another syscall entry event and we'd mistake it for a return.
2040
2041 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2042 (leaving immediately with LWP->signalled set, without issuing
2043 a PTRACE_CONT), it would still be problematic to leave this
2044 syscall enter pending, as later when the thread is resumed,
2045 it would then see the same syscall exit mentioned above,
2046 followed by the delayed SIGSTOP, while the syscall didn't
2047 actually get to execute. It seems it would be even more
2048 confusing to the user. */
2049
2050 if (debug_linux_nat)
2051 fprintf_unfiltered (gdb_stdlog,
2052 "LHST: ignoring syscall %d "
2053 "for LWP %ld (stopping threads), "
2054 "resuming with PTRACE_CONT for SIGSTOP\n",
2055 syscall_number,
2056 GET_LWP (lp->ptid));
2057
2058 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2059 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2060 return 1;
2061 }
2062
2063 if (catch_syscall_enabled ())
2064 {
2065 /* Always update the entry/return state, even if this particular
2066 syscall isn't interesting to the core now. In async mode,
2067 the user could install a new catchpoint for this syscall
2068 between syscall enter/return, and we'll need to know to
2069 report a syscall return if that happens. */
2070 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2071 ? TARGET_WAITKIND_SYSCALL_RETURN
2072 : TARGET_WAITKIND_SYSCALL_ENTRY);
2073
2074 if (catching_syscall_number (syscall_number))
2075 {
2076 /* Alright, an event to report. */
2077 ourstatus->kind = lp->syscall_state;
2078 ourstatus->value.syscall_number = syscall_number;
2079
2080 if (debug_linux_nat)
2081 fprintf_unfiltered (gdb_stdlog,
2082 "LHST: stopping for %s of syscall %d"
2083 " for LWP %ld\n",
2084 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2085 ? "entry" : "return",
2086 syscall_number,
2087 GET_LWP (lp->ptid));
2088 return 0;
2089 }
2090
2091 if (debug_linux_nat)
2092 fprintf_unfiltered (gdb_stdlog,
2093 "LHST: ignoring %s of syscall %d "
2094 "for LWP %ld\n",
2095 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2096 ? "entry" : "return",
2097 syscall_number,
2098 GET_LWP (lp->ptid));
2099 }
2100 else
2101 {
2102 /* If we had been syscall tracing, and hence used PT_SYSCALL
2103 before on this LWP, it could happen that the user removes all
2104 syscall catchpoints before we get to process this event.
2105 There are two noteworthy issues here:
2106
2107 - When stopped at a syscall entry event, resuming with
2108 PT_STEP still resumes executing the syscall and reports a
2109 syscall return.
2110
2111 - Only PT_SYSCALL catches syscall enters. If we last
2112 single-stepped this thread, then this event can't be a
2113 syscall enter. If we last single-stepped this thread, this
2114 has to be a syscall exit.
2115
2116 The points above mean that the next resume, be it PT_STEP or
2117 PT_CONTINUE, can not trigger a syscall trace event. */
2118 if (debug_linux_nat)
2119 fprintf_unfiltered (gdb_stdlog,
2120 "LHST: caught syscall event with no syscall catchpoints."
2121 " %d for LWP %ld, ignoring\n",
2122 syscall_number,
2123 GET_LWP (lp->ptid));
2124 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2125 }
2126
2127 /* The core isn't interested in this event. For efficiency, avoid
2128 stopping all threads only to have the core resume them all again.
2129 Since we're not stopping threads, if we're still syscall tracing
2130 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2131 subsequent syscall. Simply resume using the inf-ptrace layer,
2132 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2133
2134 /* Note that gdbarch_get_syscall_number may access registers, hence
2135 fill a regcache. */
2136 registers_changed ();
2137 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2138 lp->step, TARGET_SIGNAL_0);
2139 return 1;
2140 }
2141
2142 /* Handle a GNU/Linux extended wait response. If we see a clone
2143 event, we need to add the new LWP to our list (and not report the
2144 trap to higher layers). This function returns non-zero if the
2145 event should be ignored and we should wait again. If STOPPING is
2146 true, the new LWP remains stopped, otherwise it is continued. */
2147
2148 static int
2149 linux_handle_extended_wait (struct lwp_info *lp, int status,
2150 int stopping)
2151 {
2152 int pid = GET_LWP (lp->ptid);
2153 struct target_waitstatus *ourstatus = &lp->waitstatus;
2154 struct lwp_info *new_lp = NULL;
2155 int event = status >> 16;
2156
2157 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2158 || event == PTRACE_EVENT_CLONE)
2159 {
2160 unsigned long new_pid;
2161 int ret;
2162
2163 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2164
2165 /* If we haven't already seen the new PID stop, wait for it now. */
2166 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2167 {
2168 /* The new child has a pending SIGSTOP. We can't affect it until it
2169 hits the SIGSTOP, but we're already attached. */
2170 ret = my_waitpid (new_pid, &status,
2171 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2172 if (ret == -1)
2173 perror_with_name (_("waiting for new child"));
2174 else if (ret != new_pid)
2175 internal_error (__FILE__, __LINE__,
2176 _("wait returned unexpected PID %d"), ret);
2177 else if (!WIFSTOPPED (status))
2178 internal_error (__FILE__, __LINE__,
2179 _("wait returned unexpected status 0x%x"), status);
2180 }
2181
2182 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2183
2184 if (event == PTRACE_EVENT_FORK
2185 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2186 {
2187 struct fork_info *fp;
2188
2189 /* Handle checkpointing by linux-fork.c here as a special
2190 case. We don't want the follow-fork-mode or 'catch fork'
2191 to interfere with this. */
2192
2193 /* This won't actually modify the breakpoint list, but will
2194 physically remove the breakpoints from the child. */
2195 detach_breakpoints (new_pid);
2196
2197 /* Retain child fork in ptrace (stopped) state. */
2198 fp = find_fork_pid (new_pid);
2199 if (!fp)
2200 fp = add_fork (new_pid);
2201
2202 /* Report as spurious, so that infrun doesn't want to follow
2203 this fork. We're actually doing an infcall in
2204 linux-fork.c. */
2205 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2206 linux_enable_event_reporting (pid_to_ptid (new_pid));
2207
2208 /* Report the stop to the core. */
2209 return 0;
2210 }
2211
2212 if (event == PTRACE_EVENT_FORK)
2213 ourstatus->kind = TARGET_WAITKIND_FORKED;
2214 else if (event == PTRACE_EVENT_VFORK)
2215 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2216 else
2217 {
2218 struct cleanup *old_chain;
2219
2220 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2221 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2222 new_lp->cloned = 1;
2223 new_lp->stopped = 1;
2224
2225 if (WSTOPSIG (status) != SIGSTOP)
2226 {
2227 /* This can happen if someone starts sending signals to
2228 the new thread before it gets a chance to run, which
2229 have a lower number than SIGSTOP (e.g. SIGUSR1).
2230 This is an unlikely case, and harder to handle for
2231 fork / vfork than for clone, so we do not try - but
2232 we handle it for clone events here. We'll send
2233 the other signal on to the thread below. */
2234
2235 new_lp->signalled = 1;
2236 }
2237 else
2238 status = 0;
2239
2240 if (non_stop)
2241 {
2242 /* Add the new thread to GDB's lists as soon as possible
2243 so that:
2244
2245 1) the frontend doesn't have to wait for a stop to
2246 display them, and,
2247
2248 2) we tag it with the correct running state. */
2249
2250 /* If the thread_db layer is active, let it know about
2251 this new thread, and add it to GDB's list. */
2252 if (!thread_db_attach_lwp (new_lp->ptid))
2253 {
2254 /* We're not using thread_db. Add it to GDB's
2255 list. */
2256 target_post_attach (GET_LWP (new_lp->ptid));
2257 add_thread (new_lp->ptid);
2258 }
2259
2260 if (!stopping)
2261 {
2262 set_running (new_lp->ptid, 1);
2263 set_executing (new_lp->ptid, 1);
2264 }
2265 }
2266
2267 /* Note the need to use the low target ops to resume, to
2268 handle resuming with PT_SYSCALL if we have syscall
2269 catchpoints. */
2270 if (!stopping)
2271 {
2272 int signo;
2273
2274 new_lp->stopped = 0;
2275 new_lp->resumed = 1;
2276
2277 signo = (status
2278 ? target_signal_from_host (WSTOPSIG (status))
2279 : TARGET_SIGNAL_0);
2280
2281 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2282 0, signo);
2283 }
2284
2285 if (debug_linux_nat)
2286 fprintf_unfiltered (gdb_stdlog,
2287 "LHEW: Got clone event from LWP %ld, resuming\n",
2288 GET_LWP (lp->ptid));
2289 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2290 0, TARGET_SIGNAL_0);
2291
2292 return 1;
2293 }
2294
2295 return 0;
2296 }
2297
2298 if (event == PTRACE_EVENT_EXEC)
2299 {
2300 if (debug_linux_nat)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "LHEW: Got exec event from LWP %ld\n",
2303 GET_LWP (lp->ptid));
2304
2305 ourstatus->kind = TARGET_WAITKIND_EXECD;
2306 ourstatus->value.execd_pathname
2307 = xstrdup (linux_child_pid_to_exec_file (pid));
2308
2309 return 0;
2310 }
2311
2312 if (event == PTRACE_EVENT_VFORK_DONE)
2313 {
2314 if (current_inferior ()->waiting_for_vfork_done)
2315 {
2316 if (debug_linux_nat)
2317 fprintf_unfiltered (gdb_stdlog, "\
2318 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2319 GET_LWP (lp->ptid));
2320
2321 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2322 return 0;
2323 }
2324
2325 if (debug_linux_nat)
2326 fprintf_unfiltered (gdb_stdlog, "\
2327 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2328 GET_LWP (lp->ptid));
2329 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2330 return 1;
2331 }
2332
2333 internal_error (__FILE__, __LINE__,
2334 _("unknown ptrace event %d"), event);
2335 }
2336
2337 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2338 exited. */
2339
2340 static int
2341 wait_lwp (struct lwp_info *lp)
2342 {
2343 pid_t pid;
2344 int status;
2345 int thread_dead = 0;
2346
2347 gdb_assert (!lp->stopped);
2348 gdb_assert (lp->status == 0);
2349
2350 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2351 if (pid == -1 && errno == ECHILD)
2352 {
2353 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2354 if (pid == -1 && errno == ECHILD)
2355 {
2356 /* The thread has previously exited. We need to delete it
2357 now because, for some vendor 2.4 kernels with NPTL
2358 support backported, there won't be an exit event unless
2359 it is the main thread. 2.6 kernels will report an exit
2360 event for each thread that exits, as expected. */
2361 thread_dead = 1;
2362 if (debug_linux_nat)
2363 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2364 target_pid_to_str (lp->ptid));
2365 }
2366 }
2367
2368 if (!thread_dead)
2369 {
2370 gdb_assert (pid == GET_LWP (lp->ptid));
2371
2372 if (debug_linux_nat)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
2375 "WL: waitpid %s received %s\n",
2376 target_pid_to_str (lp->ptid),
2377 status_to_str (status));
2378 }
2379 }
2380
2381 /* Check if the thread has exited. */
2382 if (WIFEXITED (status) || WIFSIGNALED (status))
2383 {
2384 thread_dead = 1;
2385 if (debug_linux_nat)
2386 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2387 target_pid_to_str (lp->ptid));
2388 }
2389
2390 if (thread_dead)
2391 {
2392 exit_lwp (lp);
2393 return 0;
2394 }
2395
2396 gdb_assert (WIFSTOPPED (status));
2397
2398 /* Handle GNU/Linux's syscall SIGTRAPs. */
2399 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2400 {
2401 /* No longer need the sysgood bit. The ptrace event ends up
2402 recorded in lp->waitstatus if we care for it. We can carry
2403 on handling the event like a regular SIGTRAP from here
2404 on. */
2405 status = W_STOPCODE (SIGTRAP);
2406 if (linux_handle_syscall_trap (lp, 1))
2407 return wait_lwp (lp);
2408 }
2409
2410 /* Handle GNU/Linux's extended waitstatus for trace events. */
2411 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2412 {
2413 if (debug_linux_nat)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "WL: Handling extended status 0x%06x\n",
2416 status);
2417 if (linux_handle_extended_wait (lp, status, 1))
2418 return wait_lwp (lp);
2419 }
2420
2421 return status;
2422 }
2423
2424 /* Save the most recent siginfo for LP. This is currently only called
2425 for SIGTRAP; some ports use the si_addr field for
2426 target_stopped_data_address. In the future, it may also be used to
2427 restore the siginfo of requeued signals. */
2428
2429 static void
2430 save_siginfo (struct lwp_info *lp)
2431 {
2432 errno = 0;
2433 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2434 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2435
2436 if (errno != 0)
2437 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2438 }
2439
2440 /* Send a SIGSTOP to LP. */
2441
2442 static int
2443 stop_callback (struct lwp_info *lp, void *data)
2444 {
2445 if (!lp->stopped && !lp->signalled)
2446 {
2447 int ret;
2448
2449 if (debug_linux_nat)
2450 {
2451 fprintf_unfiltered (gdb_stdlog,
2452 "SC: kill %s **<SIGSTOP>**\n",
2453 target_pid_to_str (lp->ptid));
2454 }
2455 errno = 0;
2456 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2457 if (debug_linux_nat)
2458 {
2459 fprintf_unfiltered (gdb_stdlog,
2460 "SC: lwp kill %d %s\n",
2461 ret,
2462 errno ? safe_strerror (errno) : "ERRNO-OK");
2463 }
2464
2465 lp->signalled = 1;
2466 gdb_assert (lp->status == 0);
2467 }
2468
2469 return 0;
2470 }
2471
2472 /* Return non-zero if LWP PID has a pending SIGINT. */
2473
2474 static int
2475 linux_nat_has_pending_sigint (int pid)
2476 {
2477 sigset_t pending, blocked, ignored;
2478 int i;
2479
2480 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2481
2482 if (sigismember (&pending, SIGINT)
2483 && !sigismember (&ignored, SIGINT))
2484 return 1;
2485
2486 return 0;
2487 }
2488
2489 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2490
2491 static int
2492 set_ignore_sigint (struct lwp_info *lp, void *data)
2493 {
2494 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2495 flag to consume the next one. */
2496 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2497 && WSTOPSIG (lp->status) == SIGINT)
2498 lp->status = 0;
2499 else
2500 lp->ignore_sigint = 1;
2501
2502 return 0;
2503 }
2504
2505 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2506 This function is called after we know the LWP has stopped; if the LWP
2507 stopped before the expected SIGINT was delivered, then it will never have
2508 arrived. Also, if the signal was delivered to a shared queue and consumed
2509 by a different thread, it will never be delivered to this LWP. */
2510
2511 static void
2512 maybe_clear_ignore_sigint (struct lwp_info *lp)
2513 {
2514 if (!lp->ignore_sigint)
2515 return;
2516
2517 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2518 {
2519 if (debug_linux_nat)
2520 fprintf_unfiltered (gdb_stdlog,
2521 "MCIS: Clearing bogus flag for %s\n",
2522 target_pid_to_str (lp->ptid));
2523 lp->ignore_sigint = 0;
2524 }
2525 }
2526
2527 /* Fetch the possible triggered data watchpoint info and store it in
2528 LP.
2529
2530 On some archs, like x86, that use debug registers to set
2531 watchpoints, it's possible that the way to know which watched
2532 address trapped, is to check the register that is used to select
2533 which address to watch. Problem is, between setting the watchpoint
2534 and reading back which data address trapped, the user may change
2535 the set of watchpoints, and, as a consequence, GDB changes the
2536 debug registers in the inferior. To avoid reading back a stale
2537 stopped-data-address when that happens, we cache in LP the fact
2538 that a watchpoint trapped, and the corresponding data address, as
2539 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2540 registers meanwhile, we have the cached data we can rely on. */
2541
2542 static void
2543 save_sigtrap (struct lwp_info *lp)
2544 {
2545 struct cleanup *old_chain;
2546
2547 if (linux_ops->to_stopped_by_watchpoint == NULL)
2548 {
2549 lp->stopped_by_watchpoint = 0;
2550 return;
2551 }
2552
2553 old_chain = save_inferior_ptid ();
2554 inferior_ptid = lp->ptid;
2555
2556 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2557
2558 if (lp->stopped_by_watchpoint)
2559 {
2560 if (linux_ops->to_stopped_data_address != NULL)
2561 lp->stopped_data_address_p =
2562 linux_ops->to_stopped_data_address (&current_target,
2563 &lp->stopped_data_address);
2564 else
2565 lp->stopped_data_address_p = 0;
2566 }
2567
2568 do_cleanups (old_chain);
2569 }
2570
2571 /* See save_sigtrap. */
2572
2573 static int
2574 linux_nat_stopped_by_watchpoint (void)
2575 {
2576 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2577
2578 gdb_assert (lp != NULL);
2579
2580 return lp->stopped_by_watchpoint;
2581 }
2582
2583 static int
2584 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2585 {
2586 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2587
2588 gdb_assert (lp != NULL);
2589
2590 *addr_p = lp->stopped_data_address;
2591
2592 return lp->stopped_data_address_p;
2593 }
2594
2595 /* Wait until LP is stopped. */
2596
2597 static int
2598 stop_wait_callback (struct lwp_info *lp, void *data)
2599 {
2600 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2601
2602 /* If this is a vfork parent, bail out, it is not going to report
2603 any SIGSTOP until the vfork is done with. */
2604 if (inf->vfork_child != NULL)
2605 return 0;
2606
2607 if (!lp->stopped)
2608 {
2609 int status;
2610
2611 status = wait_lwp (lp);
2612 if (status == 0)
2613 return 0;
2614
2615 if (lp->ignore_sigint && WIFSTOPPED (status)
2616 && WSTOPSIG (status) == SIGINT)
2617 {
2618 lp->ignore_sigint = 0;
2619
2620 errno = 0;
2621 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2622 if (debug_linux_nat)
2623 fprintf_unfiltered (gdb_stdlog,
2624 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2625 target_pid_to_str (lp->ptid),
2626 errno ? safe_strerror (errno) : "OK");
2627
2628 return stop_wait_callback (lp, NULL);
2629 }
2630
2631 maybe_clear_ignore_sigint (lp);
2632
2633 if (WSTOPSIG (status) != SIGSTOP)
2634 {
2635 if (WSTOPSIG (status) == SIGTRAP)
2636 {
2637 /* If a LWP other than the LWP that we're reporting an
2638 event for has hit a GDB breakpoint (as opposed to
2639 some random trap signal), then just arrange for it to
2640 hit it again later. We don't keep the SIGTRAP status
2641 and don't forward the SIGTRAP signal to the LWP. We
2642 will handle the current event, eventually we will
2643 resume all LWPs, and this one will get its breakpoint
2644 trap again.
2645
2646 If we do not do this, then we run the risk that the
2647 user will delete or disable the breakpoint, but the
2648 thread will have already tripped on it. */
2649
2650 /* Save the trap's siginfo in case we need it later. */
2651 save_siginfo (lp);
2652
2653 save_sigtrap (lp);
2654
2655 /* Now resume this LWP and get the SIGSTOP event. */
2656 errno = 0;
2657 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2658 if (debug_linux_nat)
2659 {
2660 fprintf_unfiltered (gdb_stdlog,
2661 "PTRACE_CONT %s, 0, 0 (%s)\n",
2662 target_pid_to_str (lp->ptid),
2663 errno ? safe_strerror (errno) : "OK");
2664
2665 fprintf_unfiltered (gdb_stdlog,
2666 "SWC: Candidate SIGTRAP event in %s\n",
2667 target_pid_to_str (lp->ptid));
2668 }
2669 /* Hold this event/waitstatus while we check to see if
2670 there are any more (we still want to get that SIGSTOP). */
2671 stop_wait_callback (lp, NULL);
2672
2673 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2674 there's another event, throw it back into the
2675 queue. */
2676 if (lp->status)
2677 {
2678 if (debug_linux_nat)
2679 fprintf_unfiltered (gdb_stdlog,
2680 "SWC: kill %s, %s\n",
2681 target_pid_to_str (lp->ptid),
2682 status_to_str ((int) status));
2683 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2684 }
2685
2686 /* Save the sigtrap event. */
2687 lp->status = status;
2688 return 0;
2689 }
2690 else
2691 {
2692 /* The thread was stopped with a signal other than
2693 SIGSTOP, and didn't accidentally trip a breakpoint. */
2694
2695 if (debug_linux_nat)
2696 {
2697 fprintf_unfiltered (gdb_stdlog,
2698 "SWC: Pending event %s in %s\n",
2699 status_to_str ((int) status),
2700 target_pid_to_str (lp->ptid));
2701 }
2702 /* Now resume this LWP and get the SIGSTOP event. */
2703 errno = 0;
2704 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2705 if (debug_linux_nat)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2708 target_pid_to_str (lp->ptid),
2709 errno ? safe_strerror (errno) : "OK");
2710
2711 /* Hold this event/waitstatus while we check to see if
2712 there are any more (we still want to get that SIGSTOP). */
2713 stop_wait_callback (lp, NULL);
2714
2715 /* If the lp->status field is still empty, use it to
2716 hold this event. If not, then this event must be
2717 returned to the event queue of the LWP. */
2718 if (lp->status)
2719 {
2720 if (debug_linux_nat)
2721 {
2722 fprintf_unfiltered (gdb_stdlog,
2723 "SWC: kill %s, %s\n",
2724 target_pid_to_str (lp->ptid),
2725 status_to_str ((int) status));
2726 }
2727 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2728 }
2729 else
2730 lp->status = status;
2731 return 0;
2732 }
2733 }
2734 else
2735 {
2736 /* We caught the SIGSTOP that we intended to catch, so
2737 there's no SIGSTOP pending. */
2738 lp->stopped = 1;
2739 lp->signalled = 0;
2740 }
2741 }
2742
2743 return 0;
2744 }
2745
2746 /* Return non-zero if LP has a wait status pending. */
2747
2748 static int
2749 status_callback (struct lwp_info *lp, void *data)
2750 {
2751 /* Only report a pending wait status if we pretend that this has
2752 indeed been resumed. */
2753 if (!lp->resumed)
2754 return 0;
2755
2756 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2757 {
2758 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2759 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2760 0', so a clean process exit can not be stored pending in
2761 lp->status, it is indistinguishable from
2762 no-pending-status. */
2763 return 1;
2764 }
2765
2766 if (lp->status != 0)
2767 return 1;
2768
2769 return 0;
2770 }
2771
2772 /* Return non-zero if LP isn't stopped. */
2773
2774 static int
2775 running_callback (struct lwp_info *lp, void *data)
2776 {
2777 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2778 }
2779
2780 /* Count the LWP's that have had events. */
2781
2782 static int
2783 count_events_callback (struct lwp_info *lp, void *data)
2784 {
2785 int *count = data;
2786
2787 gdb_assert (count != NULL);
2788
2789 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2790 if (lp->status != 0 && lp->resumed
2791 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2792 (*count)++;
2793
2794 return 0;
2795 }
2796
2797 /* Select the LWP (if any) that is currently being single-stepped. */
2798
2799 static int
2800 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2801 {
2802 if (lp->step && lp->status != 0)
2803 return 1;
2804 else
2805 return 0;
2806 }
2807
2808 /* Select the Nth LWP that has had a SIGTRAP event. */
2809
2810 static int
2811 select_event_lwp_callback (struct lwp_info *lp, void *data)
2812 {
2813 int *selector = data;
2814
2815 gdb_assert (selector != NULL);
2816
2817 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2818 if (lp->status != 0 && lp->resumed
2819 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2820 if ((*selector)-- == 0)
2821 return 1;
2822
2823 return 0;
2824 }
2825
2826 static int
2827 cancel_breakpoint (struct lwp_info *lp)
2828 {
2829 /* Arrange for a breakpoint to be hit again later. We don't keep
2830 the SIGTRAP status and don't forward the SIGTRAP signal to the
2831 LWP. We will handle the current event, eventually we will resume
2832 this LWP, and this breakpoint will trap again.
2833
2834 If we do not do this, then we run the risk that the user will
2835 delete or disable the breakpoint, but the LWP will have already
2836 tripped on it. */
2837
2838 struct regcache *regcache = get_thread_regcache (lp->ptid);
2839 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2840 CORE_ADDR pc;
2841
2842 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2843 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2844 {
2845 if (debug_linux_nat)
2846 fprintf_unfiltered (gdb_stdlog,
2847 "CB: Push back breakpoint for %s\n",
2848 target_pid_to_str (lp->ptid));
2849
2850 /* Back up the PC if necessary. */
2851 if (gdbarch_decr_pc_after_break (gdbarch))
2852 regcache_write_pc (regcache, pc);
2853
2854 return 1;
2855 }
2856 return 0;
2857 }
2858
2859 static int
2860 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2861 {
2862 struct lwp_info *event_lp = data;
2863
2864 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2865 if (lp == event_lp)
2866 return 0;
2867
2868 /* If a LWP other than the LWP that we're reporting an event for has
2869 hit a GDB breakpoint (as opposed to some random trap signal),
2870 then just arrange for it to hit it again later. We don't keep
2871 the SIGTRAP status and don't forward the SIGTRAP signal to the
2872 LWP. We will handle the current event, eventually we will resume
2873 all LWPs, and this one will get its breakpoint trap again.
2874
2875 If we do not do this, then we run the risk that the user will
2876 delete or disable the breakpoint, but the LWP will have already
2877 tripped on it. */
2878
2879 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2880 && lp->status != 0
2881 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2882 && cancel_breakpoint (lp))
2883 /* Throw away the SIGTRAP. */
2884 lp->status = 0;
2885
2886 return 0;
2887 }
2888
2889 /* Select one LWP out of those that have events pending. */
2890
2891 static void
2892 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2893 {
2894 int num_events = 0;
2895 int random_selector;
2896 struct lwp_info *event_lp;
2897
2898 /* Record the wait status for the original LWP. */
2899 (*orig_lp)->status = *status;
2900
2901 /* Give preference to any LWP that is being single-stepped. */
2902 event_lp = iterate_over_lwps (filter,
2903 select_singlestep_lwp_callback, NULL);
2904 if (event_lp != NULL)
2905 {
2906 if (debug_linux_nat)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "SEL: Select single-step %s\n",
2909 target_pid_to_str (event_lp->ptid));
2910 }
2911 else
2912 {
2913 /* No single-stepping LWP. Select one at random, out of those
2914 which have had SIGTRAP events. */
2915
2916 /* First see how many SIGTRAP events we have. */
2917 iterate_over_lwps (filter, count_events_callback, &num_events);
2918
2919 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2920 random_selector = (int)
2921 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2922
2923 if (debug_linux_nat && num_events > 1)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2926 num_events, random_selector);
2927
2928 event_lp = iterate_over_lwps (filter,
2929 select_event_lwp_callback,
2930 &random_selector);
2931 }
2932
2933 if (event_lp != NULL)
2934 {
2935 /* Switch the event LWP. */
2936 *orig_lp = event_lp;
2937 *status = event_lp->status;
2938 }
2939
2940 /* Flush the wait status for the event LWP. */
2941 (*orig_lp)->status = 0;
2942 }
2943
2944 /* Return non-zero if LP has been resumed. */
2945
2946 static int
2947 resumed_callback (struct lwp_info *lp, void *data)
2948 {
2949 return lp->resumed;
2950 }
2951
2952 /* Stop an active thread, verify it still exists, then resume it. */
2953
2954 static int
2955 stop_and_resume_callback (struct lwp_info *lp, void *data)
2956 {
2957 struct lwp_info *ptr;
2958
2959 if (!lp->stopped && !lp->signalled)
2960 {
2961 stop_callback (lp, NULL);
2962 stop_wait_callback (lp, NULL);
2963 /* Resume if the lwp still exists. */
2964 for (ptr = lwp_list; ptr; ptr = ptr->next)
2965 if (lp == ptr)
2966 {
2967 resume_callback (lp, NULL);
2968 resume_set_callback (lp, NULL);
2969 }
2970 }
2971 return 0;
2972 }
2973
2974 /* Check if we should go on and pass this event to common code.
2975 Return the affected lwp if we are, or NULL otherwise. */
2976 static struct lwp_info *
2977 linux_nat_filter_event (int lwpid, int status, int options)
2978 {
2979 struct lwp_info *lp;
2980
2981 lp = find_lwp_pid (pid_to_ptid (lwpid));
2982
2983 /* Check for stop events reported by a process we didn't already
2984 know about - anything not already in our LWP list.
2985
2986 If we're expecting to receive stopped processes after
2987 fork, vfork, and clone events, then we'll just add the
2988 new one to our list and go back to waiting for the event
2989 to be reported - the stopped process might be returned
2990 from waitpid before or after the event is. */
2991 if (WIFSTOPPED (status) && !lp)
2992 {
2993 linux_record_stopped_pid (lwpid, status);
2994 return NULL;
2995 }
2996
2997 /* Make sure we don't report an event for the exit of an LWP not in
2998 our list, i.e. not part of the current process. This can happen
2999 if we detach from a program we original forked and then it
3000 exits. */
3001 if (!WIFSTOPPED (status) && !lp)
3002 return NULL;
3003
3004 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3005 CLONE_PTRACE processes which do not use the thread library -
3006 otherwise we wouldn't find the new LWP this way. That doesn't
3007 currently work, and the following code is currently unreachable
3008 due to the two blocks above. If it's fixed some day, this code
3009 should be broken out into a function so that we can also pick up
3010 LWPs from the new interface. */
3011 if (!lp)
3012 {
3013 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3014 if (options & __WCLONE)
3015 lp->cloned = 1;
3016
3017 gdb_assert (WIFSTOPPED (status)
3018 && WSTOPSIG (status) == SIGSTOP);
3019 lp->signalled = 1;
3020
3021 if (!in_thread_list (inferior_ptid))
3022 {
3023 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3024 GET_PID (inferior_ptid));
3025 add_thread (inferior_ptid);
3026 }
3027
3028 add_thread (lp->ptid);
3029 }
3030
3031 /* Handle GNU/Linux's syscall SIGTRAPs. */
3032 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3033 {
3034 /* No longer need the sysgood bit. The ptrace event ends up
3035 recorded in lp->waitstatus if we care for it. We can carry
3036 on handling the event like a regular SIGTRAP from here
3037 on. */
3038 status = W_STOPCODE (SIGTRAP);
3039 if (linux_handle_syscall_trap (lp, 0))
3040 return NULL;
3041 }
3042
3043 /* Handle GNU/Linux's extended waitstatus for trace events. */
3044 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3045 {
3046 if (debug_linux_nat)
3047 fprintf_unfiltered (gdb_stdlog,
3048 "LLW: Handling extended status 0x%06x\n",
3049 status);
3050 if (linux_handle_extended_wait (lp, status, 0))
3051 return NULL;
3052 }
3053
3054 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3055 {
3056 /* Save the trap's siginfo in case we need it later. */
3057 save_siginfo (lp);
3058
3059 save_sigtrap (lp);
3060 }
3061
3062 /* Check if the thread has exited. */
3063 if ((WIFEXITED (status) || WIFSIGNALED (status))
3064 && num_lwps (GET_PID (lp->ptid)) > 1)
3065 {
3066 /* If this is the main thread, we must stop all threads and verify
3067 if they are still alive. This is because in the nptl thread model
3068 on Linux 2.4, there is no signal issued for exiting LWPs
3069 other than the main thread. We only get the main thread exit
3070 signal once all child threads have already exited. If we
3071 stop all the threads and use the stop_wait_callback to check
3072 if they have exited we can determine whether this signal
3073 should be ignored or whether it means the end of the debugged
3074 application, regardless of which threading model is being
3075 used. */
3076 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3077 {
3078 lp->stopped = 1;
3079 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3080 stop_and_resume_callback, NULL);
3081 }
3082
3083 if (debug_linux_nat)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "LLW: %s exited.\n",
3086 target_pid_to_str (lp->ptid));
3087
3088 if (num_lwps (GET_PID (lp->ptid)) > 1)
3089 {
3090 /* If there is at least one more LWP, then the exit signal
3091 was not the end of the debugged application and should be
3092 ignored. */
3093 exit_lwp (lp);
3094 return NULL;
3095 }
3096 }
3097
3098 /* Check if the current LWP has previously exited. In the nptl
3099 thread model, LWPs other than the main thread do not issue
3100 signals when they exit so we must check whenever the thread has
3101 stopped. A similar check is made in stop_wait_callback(). */
3102 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3103 {
3104 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3105
3106 if (debug_linux_nat)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "LLW: %s exited.\n",
3109 target_pid_to_str (lp->ptid));
3110
3111 exit_lwp (lp);
3112
3113 /* Make sure there is at least one thread running. */
3114 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3115
3116 /* Discard the event. */
3117 return NULL;
3118 }
3119
3120 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3121 an attempt to stop an LWP. */
3122 if (lp->signalled
3123 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3124 {
3125 if (debug_linux_nat)
3126 fprintf_unfiltered (gdb_stdlog,
3127 "LLW: Delayed SIGSTOP caught for %s.\n",
3128 target_pid_to_str (lp->ptid));
3129
3130 /* This is a delayed SIGSTOP. */
3131 lp->signalled = 0;
3132
3133 registers_changed ();
3134
3135 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3136 lp->step, TARGET_SIGNAL_0);
3137 if (debug_linux_nat)
3138 fprintf_unfiltered (gdb_stdlog,
3139 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3140 lp->step ?
3141 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3142 target_pid_to_str (lp->ptid));
3143
3144 lp->stopped = 0;
3145 gdb_assert (lp->resumed);
3146
3147 /* Discard the event. */
3148 return NULL;
3149 }
3150
3151 /* Make sure we don't report a SIGINT that we have already displayed
3152 for another thread. */
3153 if (lp->ignore_sigint
3154 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3155 {
3156 if (debug_linux_nat)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "LLW: Delayed SIGINT caught for %s.\n",
3159 target_pid_to_str (lp->ptid));
3160
3161 /* This is a delayed SIGINT. */
3162 lp->ignore_sigint = 0;
3163
3164 registers_changed ();
3165 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3166 lp->step, TARGET_SIGNAL_0);
3167 if (debug_linux_nat)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3170 lp->step ?
3171 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3172 target_pid_to_str (lp->ptid));
3173
3174 lp->stopped = 0;
3175 gdb_assert (lp->resumed);
3176
3177 /* Discard the event. */
3178 return NULL;
3179 }
3180
3181 /* An interesting event. */
3182 gdb_assert (lp);
3183 lp->status = status;
3184 return lp;
3185 }
3186
3187 static ptid_t
3188 linux_nat_wait_1 (struct target_ops *ops,
3189 ptid_t ptid, struct target_waitstatus *ourstatus,
3190 int target_options)
3191 {
3192 static sigset_t prev_mask;
3193 struct lwp_info *lp = NULL;
3194 int options = 0;
3195 int status = 0;
3196 pid_t pid;
3197
3198 if (debug_linux_nat_async)
3199 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3200
3201 /* The first time we get here after starting a new inferior, we may
3202 not have added it to the LWP list yet - this is the earliest
3203 moment at which we know its PID. */
3204 if (ptid_is_pid (inferior_ptid))
3205 {
3206 /* Upgrade the main thread's ptid. */
3207 thread_change_ptid (inferior_ptid,
3208 BUILD_LWP (GET_PID (inferior_ptid),
3209 GET_PID (inferior_ptid)));
3210
3211 lp = add_lwp (inferior_ptid);
3212 lp->resumed = 1;
3213 }
3214
3215 /* Make sure SIGCHLD is blocked. */
3216 block_child_signals (&prev_mask);
3217
3218 if (ptid_equal (ptid, minus_one_ptid))
3219 pid = -1;
3220 else if (ptid_is_pid (ptid))
3221 /* A request to wait for a specific tgid. This is not possible
3222 with waitpid, so instead, we wait for any child, and leave
3223 children we're not interested in right now with a pending
3224 status to report later. */
3225 pid = -1;
3226 else
3227 pid = GET_LWP (ptid);
3228
3229 retry:
3230 lp = NULL;
3231 status = 0;
3232
3233 /* Make sure that of those LWPs we want to get an event from, there
3234 is at least one LWP that has been resumed. If there's none, just
3235 bail out. The core may just be flushing asynchronously all
3236 events. */
3237 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3238 {
3239 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3240
3241 if (debug_linux_nat_async)
3242 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3243
3244 restore_child_signals_mask (&prev_mask);
3245 return minus_one_ptid;
3246 }
3247
3248 /* First check if there is a LWP with a wait status pending. */
3249 if (pid == -1)
3250 {
3251 /* Any LWP that's been resumed will do. */
3252 lp = iterate_over_lwps (ptid, status_callback, NULL);
3253 if (lp)
3254 {
3255 if (debug_linux_nat && lp->status)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "LLW: Using pending wait status %s for %s.\n",
3258 status_to_str (lp->status),
3259 target_pid_to_str (lp->ptid));
3260 }
3261
3262 /* But if we don't find one, we'll have to wait, and check both
3263 cloned and uncloned processes. We start with the cloned
3264 processes. */
3265 options = __WCLONE | WNOHANG;
3266 }
3267 else if (is_lwp (ptid))
3268 {
3269 if (debug_linux_nat)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "LLW: Waiting for specific LWP %s.\n",
3272 target_pid_to_str (ptid));
3273
3274 /* We have a specific LWP to check. */
3275 lp = find_lwp_pid (ptid);
3276 gdb_assert (lp);
3277
3278 if (debug_linux_nat && lp->status)
3279 fprintf_unfiltered (gdb_stdlog,
3280 "LLW: Using pending wait status %s for %s.\n",
3281 status_to_str (lp->status),
3282 target_pid_to_str (lp->ptid));
3283
3284 /* If we have to wait, take into account whether PID is a cloned
3285 process or not. And we have to convert it to something that
3286 the layer beneath us can understand. */
3287 options = lp->cloned ? __WCLONE : 0;
3288 pid = GET_LWP (ptid);
3289
3290 /* We check for lp->waitstatus in addition to lp->status,
3291 because we can have pending process exits recorded in
3292 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3293 an additional lp->status_p flag. */
3294 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3295 lp = NULL;
3296 }
3297
3298 if (lp && lp->signalled)
3299 {
3300 /* A pending SIGSTOP may interfere with the normal stream of
3301 events. In a typical case where interference is a problem,
3302 we have a SIGSTOP signal pending for LWP A while
3303 single-stepping it, encounter an event in LWP B, and take the
3304 pending SIGSTOP while trying to stop LWP A. After processing
3305 the event in LWP B, LWP A is continued, and we'll never see
3306 the SIGTRAP associated with the last time we were
3307 single-stepping LWP A. */
3308
3309 /* Resume the thread. It should halt immediately returning the
3310 pending SIGSTOP. */
3311 registers_changed ();
3312 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3313 lp->step, TARGET_SIGNAL_0);
3314 if (debug_linux_nat)
3315 fprintf_unfiltered (gdb_stdlog,
3316 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3317 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3318 target_pid_to_str (lp->ptid));
3319 lp->stopped = 0;
3320 gdb_assert (lp->resumed);
3321
3322 /* Catch the pending SIGSTOP. */
3323 status = lp->status;
3324 lp->status = 0;
3325
3326 stop_wait_callback (lp, NULL);
3327
3328 /* If the lp->status field isn't empty, we caught another signal
3329 while flushing the SIGSTOP. Return it back to the event
3330 queue of the LWP, as we already have an event to handle. */
3331 if (lp->status)
3332 {
3333 if (debug_linux_nat)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "LLW: kill %s, %s\n",
3336 target_pid_to_str (lp->ptid),
3337 status_to_str (lp->status));
3338 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3339 }
3340
3341 lp->status = status;
3342 }
3343
3344 if (!target_can_async_p ())
3345 {
3346 /* Causes SIGINT to be passed on to the attached process. */
3347 set_sigint_trap ();
3348 }
3349
3350 /* Translate generic target_wait options into waitpid options. */
3351 if (target_options & TARGET_WNOHANG)
3352 options |= WNOHANG;
3353
3354 while (lp == NULL)
3355 {
3356 pid_t lwpid;
3357
3358 lwpid = my_waitpid (pid, &status, options);
3359
3360 if (lwpid > 0)
3361 {
3362 gdb_assert (pid == -1 || lwpid == pid);
3363
3364 if (debug_linux_nat)
3365 {
3366 fprintf_unfiltered (gdb_stdlog,
3367 "LLW: waitpid %ld received %s\n",
3368 (long) lwpid, status_to_str (status));
3369 }
3370
3371 lp = linux_nat_filter_event (lwpid, status, options);
3372
3373 if (lp
3374 && ptid_is_pid (ptid)
3375 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3376 {
3377 gdb_assert (lp->resumed);
3378
3379 if (debug_linux_nat)
3380 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3381 ptid_get_lwp (lp->ptid), status);
3382
3383 if (WIFSTOPPED (lp->status))
3384 {
3385 if (WSTOPSIG (lp->status) != SIGSTOP)
3386 {
3387 /* Cancel breakpoint hits. The breakpoint may
3388 be removed before we fetch events from this
3389 process to report to the core. It is best
3390 not to assume the moribund breakpoints
3391 heuristic always handles these cases --- it
3392 could be too many events go through to the
3393 core before this one is handled. All-stop
3394 always cancels breakpoint hits in all
3395 threads. */
3396 if (non_stop
3397 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3398 && WSTOPSIG (lp->status) == SIGTRAP
3399 && cancel_breakpoint (lp))
3400 {
3401 /* Throw away the SIGTRAP. */
3402 lp->status = 0;
3403
3404 if (debug_linux_nat)
3405 fprintf (stderr,
3406 "LLW: LWP %ld hit a breakpoint while waiting "
3407 "for another process; cancelled it\n",
3408 ptid_get_lwp (lp->ptid));
3409 }
3410 lp->stopped = 1;
3411 }
3412 else
3413 {
3414 lp->stopped = 1;
3415 lp->signalled = 0;
3416 }
3417 }
3418 else if (WIFEXITED (status) || WIFSIGNALED (status))
3419 {
3420 if (debug_linux_nat)
3421 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3422 ptid_get_lwp (lp->ptid));
3423
3424 /* This was the last lwp in the process. Since
3425 events are serialized to GDB core, and we can't
3426 report this one right now, but GDB core and the
3427 other target layers will want to be notified
3428 about the exit code/signal, leave the status
3429 pending for the next time we're able to report
3430 it. */
3431
3432 /* Prevent trying to stop this thread again. We'll
3433 never try to resume it because it has a pending
3434 status. */
3435 lp->stopped = 1;
3436
3437 /* Dead LWP's aren't expected to reported a pending
3438 sigstop. */
3439 lp->signalled = 0;
3440
3441 /* Store the pending event in the waitstatus as
3442 well, because W_EXITCODE(0,0) == 0. */
3443 store_waitstatus (&lp->waitstatus, lp->status);
3444 }
3445
3446 /* Keep looking. */
3447 lp = NULL;
3448 continue;
3449 }
3450
3451 if (lp)
3452 break;
3453 else
3454 {
3455 if (pid == -1)
3456 {
3457 /* waitpid did return something. Restart over. */
3458 options |= __WCLONE;
3459 }
3460 continue;
3461 }
3462 }
3463
3464 if (pid == -1)
3465 {
3466 /* Alternate between checking cloned and uncloned processes. */
3467 options ^= __WCLONE;
3468
3469 /* And every time we have checked both:
3470 In async mode, return to event loop;
3471 In sync mode, suspend waiting for a SIGCHLD signal. */
3472 if (options & __WCLONE)
3473 {
3474 if (target_options & TARGET_WNOHANG)
3475 {
3476 /* No interesting event. */
3477 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3478
3479 if (debug_linux_nat_async)
3480 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3481
3482 restore_child_signals_mask (&prev_mask);
3483 return minus_one_ptid;
3484 }
3485
3486 sigsuspend (&suspend_mask);
3487 }
3488 }
3489 else if (target_options & TARGET_WNOHANG)
3490 {
3491 /* No interesting event for PID yet. */
3492 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3493
3494 if (debug_linux_nat_async)
3495 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3496
3497 restore_child_signals_mask (&prev_mask);
3498 return minus_one_ptid;
3499 }
3500
3501 /* We shouldn't end up here unless we want to try again. */
3502 gdb_assert (lp == NULL);
3503 }
3504
3505 if (!target_can_async_p ())
3506 clear_sigint_trap ();
3507
3508 gdb_assert (lp);
3509
3510 status = lp->status;
3511 lp->status = 0;
3512
3513 /* Don't report signals that GDB isn't interested in, such as
3514 signals that are neither printed nor stopped upon. Stopping all
3515 threads can be a bit time-consuming so if we want decent
3516 performance with heavily multi-threaded programs, especially when
3517 they're using a high frequency timer, we'd better avoid it if we
3518 can. */
3519
3520 if (WIFSTOPPED (status))
3521 {
3522 int signo = target_signal_from_host (WSTOPSIG (status));
3523 struct inferior *inf;
3524
3525 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3526 gdb_assert (inf);
3527
3528 /* Defer to common code if we get a signal while
3529 single-stepping, since that may need special care, e.g. to
3530 skip the signal handler, or, if we're gaining control of the
3531 inferior. */
3532 if (!lp->step
3533 && inf->stop_soon == NO_STOP_QUIETLY
3534 && signal_stop_state (signo) == 0
3535 && signal_print_state (signo) == 0
3536 && signal_pass_state (signo) == 1)
3537 {
3538 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3539 here? It is not clear we should. GDB may not expect
3540 other threads to run. On the other hand, not resuming
3541 newly attached threads may cause an unwanted delay in
3542 getting them running. */
3543 registers_changed ();
3544 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3545 lp->step, signo);
3546 if (debug_linux_nat)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "LLW: %s %s, %s (preempt 'handle')\n",
3549 lp->step ?
3550 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3551 target_pid_to_str (lp->ptid),
3552 signo ? strsignal (signo) : "0");
3553 lp->stopped = 0;
3554 goto retry;
3555 }
3556
3557 if (!non_stop)
3558 {
3559 /* Only do the below in all-stop, as we currently use SIGINT
3560 to implement target_stop (see linux_nat_stop) in
3561 non-stop. */
3562 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3563 {
3564 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3565 forwarded to the entire process group, that is, all LWPs
3566 will receive it - unless they're using CLONE_THREAD to
3567 share signals. Since we only want to report it once, we
3568 mark it as ignored for all LWPs except this one. */
3569 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3570 set_ignore_sigint, NULL);
3571 lp->ignore_sigint = 0;
3572 }
3573 else
3574 maybe_clear_ignore_sigint (lp);
3575 }
3576 }
3577
3578 /* This LWP is stopped now. */
3579 lp->stopped = 1;
3580
3581 if (debug_linux_nat)
3582 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3583 status_to_str (status), target_pid_to_str (lp->ptid));
3584
3585 if (!non_stop)
3586 {
3587 /* Now stop all other LWP's ... */
3588 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3589
3590 /* ... and wait until all of them have reported back that
3591 they're no longer running. */
3592 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3593
3594 /* If we're not waiting for a specific LWP, choose an event LWP
3595 from among those that have had events. Giving equal priority
3596 to all LWPs that have had events helps prevent
3597 starvation. */
3598 if (pid == -1)
3599 select_event_lwp (ptid, &lp, &status);
3600
3601 /* Now that we've selected our final event LWP, cancel any
3602 breakpoints in other LWPs that have hit a GDB breakpoint.
3603 See the comment in cancel_breakpoints_callback to find out
3604 why. */
3605 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3606
3607 /* In all-stop, from the core's perspective, all LWPs are now
3608 stopped until a new resume action is sent over. */
3609 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3610 }
3611 else
3612 lp->resumed = 0;
3613
3614 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3615 {
3616 if (debug_linux_nat)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "LLW: trap ptid is %s.\n",
3619 target_pid_to_str (lp->ptid));
3620 }
3621
3622 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3623 {
3624 *ourstatus = lp->waitstatus;
3625 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3626 }
3627 else
3628 store_waitstatus (ourstatus, status);
3629
3630 if (debug_linux_nat_async)
3631 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3632
3633 restore_child_signals_mask (&prev_mask);
3634 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3635 return lp->ptid;
3636 }
3637
3638 /* Resume LWPs that are currently stopped without any pending status
3639 to report, but are resumed from the core's perspective. */
3640
3641 static int
3642 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3643 {
3644 ptid_t *wait_ptid_p = data;
3645
3646 if (lp->stopped
3647 && lp->resumed
3648 && lp->status == 0
3649 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3650 {
3651 gdb_assert (is_executing (lp->ptid));
3652
3653 /* Don't bother if there's a breakpoint at PC that we'd hit
3654 immediately, and we're not waiting for this LWP. */
3655 if (!ptid_match (lp->ptid, *wait_ptid_p))
3656 {
3657 struct regcache *regcache = get_thread_regcache (lp->ptid);
3658 CORE_ADDR pc = regcache_read_pc (regcache);
3659
3660 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3661 return 0;
3662 }
3663
3664 if (debug_linux_nat)
3665 fprintf_unfiltered (gdb_stdlog,
3666 "RSRL: resuming stopped-resumed LWP %s\n",
3667 target_pid_to_str (lp->ptid));
3668
3669 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3670 lp->step, TARGET_SIGNAL_0);
3671 lp->stopped = 0;
3672 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3673 lp->stopped_by_watchpoint = 0;
3674 }
3675
3676 return 0;
3677 }
3678
3679 static ptid_t
3680 linux_nat_wait (struct target_ops *ops,
3681 ptid_t ptid, struct target_waitstatus *ourstatus,
3682 int target_options)
3683 {
3684 ptid_t event_ptid;
3685
3686 if (debug_linux_nat)
3687 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3688
3689 /* Flush the async file first. */
3690 if (target_can_async_p ())
3691 async_file_flush ();
3692
3693 /* Resume LWPs that are currently stopped without any pending status
3694 to report, but are resumed from the core's perspective. LWPs get
3695 in this state if we find them stopping at a time we're not
3696 interested in reporting the event (target_wait on a
3697 specific_process, for example, see linux_nat_wait_1), and
3698 meanwhile the event became uninteresting. Don't bother resuming
3699 LWPs we're not going to wait for if they'd stop immediately. */
3700 if (non_stop)
3701 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3702
3703 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3704
3705 /* If we requested any event, and something came out, assume there
3706 may be more. If we requested a specific lwp or process, also
3707 assume there may be more. */
3708 if (target_can_async_p ()
3709 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3710 || !ptid_equal (ptid, minus_one_ptid)))
3711 async_file_mark ();
3712
3713 /* Get ready for the next event. */
3714 if (target_can_async_p ())
3715 target_async (inferior_event_handler, 0);
3716
3717 return event_ptid;
3718 }
3719
3720 static int
3721 kill_callback (struct lwp_info *lp, void *data)
3722 {
3723 errno = 0;
3724 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3725 if (debug_linux_nat)
3726 fprintf_unfiltered (gdb_stdlog,
3727 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3728 target_pid_to_str (lp->ptid),
3729 errno ? safe_strerror (errno) : "OK");
3730
3731 return 0;
3732 }
3733
3734 static int
3735 kill_wait_callback (struct lwp_info *lp, void *data)
3736 {
3737 pid_t pid;
3738
3739 /* We must make sure that there are no pending events (delayed
3740 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3741 program doesn't interfere with any following debugging session. */
3742
3743 /* For cloned processes we must check both with __WCLONE and
3744 without, since the exit status of a cloned process isn't reported
3745 with __WCLONE. */
3746 if (lp->cloned)
3747 {
3748 do
3749 {
3750 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3751 if (pid != (pid_t) -1)
3752 {
3753 if (debug_linux_nat)
3754 fprintf_unfiltered (gdb_stdlog,
3755 "KWC: wait %s received unknown.\n",
3756 target_pid_to_str (lp->ptid));
3757 /* The Linux kernel sometimes fails to kill a thread
3758 completely after PTRACE_KILL; that goes from the stop
3759 point in do_fork out to the one in
3760 get_signal_to_deliever and waits again. So kill it
3761 again. */
3762 kill_callback (lp, NULL);
3763 }
3764 }
3765 while (pid == GET_LWP (lp->ptid));
3766
3767 gdb_assert (pid == -1 && errno == ECHILD);
3768 }
3769
3770 do
3771 {
3772 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3773 if (pid != (pid_t) -1)
3774 {
3775 if (debug_linux_nat)
3776 fprintf_unfiltered (gdb_stdlog,
3777 "KWC: wait %s received unk.\n",
3778 target_pid_to_str (lp->ptid));
3779 /* See the call to kill_callback above. */
3780 kill_callback (lp, NULL);
3781 }
3782 }
3783 while (pid == GET_LWP (lp->ptid));
3784
3785 gdb_assert (pid == -1 && errno == ECHILD);
3786 return 0;
3787 }
3788
3789 static void
3790 linux_nat_kill (struct target_ops *ops)
3791 {
3792 struct target_waitstatus last;
3793 ptid_t last_ptid;
3794 int status;
3795
3796 /* If we're stopped while forking and we haven't followed yet,
3797 kill the other task. We need to do this first because the
3798 parent will be sleeping if this is a vfork. */
3799
3800 get_last_target_status (&last_ptid, &last);
3801
3802 if (last.kind == TARGET_WAITKIND_FORKED
3803 || last.kind == TARGET_WAITKIND_VFORKED)
3804 {
3805 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3806 wait (&status);
3807 }
3808
3809 if (forks_exist_p ())
3810 linux_fork_killall ();
3811 else
3812 {
3813 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3814 /* Stop all threads before killing them, since ptrace requires
3815 that the thread is stopped to sucessfully PTRACE_KILL. */
3816 iterate_over_lwps (ptid, stop_callback, NULL);
3817 /* ... and wait until all of them have reported back that
3818 they're no longer running. */
3819 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3820
3821 /* Kill all LWP's ... */
3822 iterate_over_lwps (ptid, kill_callback, NULL);
3823
3824 /* ... and wait until we've flushed all events. */
3825 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3826 }
3827
3828 target_mourn_inferior ();
3829 }
3830
3831 static void
3832 linux_nat_mourn_inferior (struct target_ops *ops)
3833 {
3834 purge_lwp_list (ptid_get_pid (inferior_ptid));
3835
3836 if (! forks_exist_p ())
3837 /* Normal case, no other forks available. */
3838 linux_ops->to_mourn_inferior (ops);
3839 else
3840 /* Multi-fork case. The current inferior_ptid has exited, but
3841 there are other viable forks to debug. Delete the exiting
3842 one and context-switch to the first available. */
3843 linux_fork_mourn_inferior ();
3844 }
3845
3846 /* Convert a native/host siginfo object, into/from the siginfo in the
3847 layout of the inferiors' architecture. */
3848
3849 static void
3850 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3851 {
3852 int done = 0;
3853
3854 if (linux_nat_siginfo_fixup != NULL)
3855 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3856
3857 /* If there was no callback, or the callback didn't do anything,
3858 then just do a straight memcpy. */
3859 if (!done)
3860 {
3861 if (direction == 1)
3862 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3863 else
3864 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3865 }
3866 }
3867
3868 static LONGEST
3869 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3870 const char *annex, gdb_byte *readbuf,
3871 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3872 {
3873 int pid;
3874 struct siginfo siginfo;
3875 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3876
3877 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3878 gdb_assert (readbuf || writebuf);
3879
3880 pid = GET_LWP (inferior_ptid);
3881 if (pid == 0)
3882 pid = GET_PID (inferior_ptid);
3883
3884 if (offset > sizeof (siginfo))
3885 return -1;
3886
3887 errno = 0;
3888 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3889 if (errno != 0)
3890 return -1;
3891
3892 /* When GDB is built as a 64-bit application, ptrace writes into
3893 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3894 inferior with a 64-bit GDB should look the same as debugging it
3895 with a 32-bit GDB, we need to convert it. GDB core always sees
3896 the converted layout, so any read/write will have to be done
3897 post-conversion. */
3898 siginfo_fixup (&siginfo, inf_siginfo, 0);
3899
3900 if (offset + len > sizeof (siginfo))
3901 len = sizeof (siginfo) - offset;
3902
3903 if (readbuf != NULL)
3904 memcpy (readbuf, inf_siginfo + offset, len);
3905 else
3906 {
3907 memcpy (inf_siginfo + offset, writebuf, len);
3908
3909 /* Convert back to ptrace layout before flushing it out. */
3910 siginfo_fixup (&siginfo, inf_siginfo, 1);
3911
3912 errno = 0;
3913 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3914 if (errno != 0)
3915 return -1;
3916 }
3917
3918 return len;
3919 }
3920
3921 static LONGEST
3922 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3923 const char *annex, gdb_byte *readbuf,
3924 const gdb_byte *writebuf,
3925 ULONGEST offset, LONGEST len)
3926 {
3927 struct cleanup *old_chain;
3928 LONGEST xfer;
3929
3930 if (object == TARGET_OBJECT_SIGNAL_INFO)
3931 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3932 offset, len);
3933
3934 /* The target is connected but no live inferior is selected. Pass
3935 this request down to a lower stratum (e.g., the executable
3936 file). */
3937 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3938 return 0;
3939
3940 old_chain = save_inferior_ptid ();
3941
3942 if (is_lwp (inferior_ptid))
3943 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3944
3945 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3946 offset, len);
3947
3948 do_cleanups (old_chain);
3949 return xfer;
3950 }
3951
3952 static int
3953 linux_thread_alive (ptid_t ptid)
3954 {
3955 int err;
3956
3957 gdb_assert (is_lwp (ptid));
3958
3959 /* Send signal 0 instead of anything ptrace, because ptracing a
3960 running thread errors out claiming that the thread doesn't
3961 exist. */
3962 err = kill_lwp (GET_LWP (ptid), 0);
3963
3964 if (debug_linux_nat)
3965 fprintf_unfiltered (gdb_stdlog,
3966 "LLTA: KILL(SIG0) %s (%s)\n",
3967 target_pid_to_str (ptid),
3968 err ? safe_strerror (err) : "OK");
3969
3970 if (err != 0)
3971 return 0;
3972
3973 return 1;
3974 }
3975
3976 static int
3977 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3978 {
3979 return linux_thread_alive (ptid);
3980 }
3981
3982 static char *
3983 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3984 {
3985 static char buf[64];
3986
3987 if (is_lwp (ptid)
3988 && (GET_PID (ptid) != GET_LWP (ptid)
3989 || num_lwps (GET_PID (ptid)) > 1))
3990 {
3991 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3992 return buf;
3993 }
3994
3995 return normal_pid_to_str (ptid);
3996 }
3997
3998 /* Accepts an integer PID; Returns a string representing a file that
3999 can be opened to get the symbols for the child process. */
4000
4001 static char *
4002 linux_child_pid_to_exec_file (int pid)
4003 {
4004 char *name1, *name2;
4005
4006 name1 = xmalloc (MAXPATHLEN);
4007 name2 = xmalloc (MAXPATHLEN);
4008 make_cleanup (xfree, name1);
4009 make_cleanup (xfree, name2);
4010 memset (name2, 0, MAXPATHLEN);
4011
4012 sprintf (name1, "/proc/%d/exe", pid);
4013 if (readlink (name1, name2, MAXPATHLEN) > 0)
4014 return name2;
4015 else
4016 return name1;
4017 }
4018
4019 /* Service function for corefiles and info proc. */
4020
4021 static int
4022 read_mapping (FILE *mapfile,
4023 long long *addr,
4024 long long *endaddr,
4025 char *permissions,
4026 long long *offset,
4027 char *device, long long *inode, char *filename)
4028 {
4029 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4030 addr, endaddr, permissions, offset, device, inode);
4031
4032 filename[0] = '\0';
4033 if (ret > 0 && ret != EOF)
4034 {
4035 /* Eat everything up to EOL for the filename. This will prevent
4036 weird filenames (such as one with embedded whitespace) from
4037 confusing this code. It also makes this code more robust in
4038 respect to annotations the kernel may add after the filename.
4039
4040 Note the filename is used for informational purposes
4041 only. */
4042 ret += fscanf (mapfile, "%[^\n]\n", filename);
4043 }
4044
4045 return (ret != 0 && ret != EOF);
4046 }
4047
4048 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4049 regions in the inferior for a corefile. */
4050
4051 static int
4052 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4053 unsigned long,
4054 int, int, int, void *), void *obfd)
4055 {
4056 int pid = PIDGET (inferior_ptid);
4057 char mapsfilename[MAXPATHLEN];
4058 FILE *mapsfile;
4059 long long addr, endaddr, size, offset, inode;
4060 char permissions[8], device[8], filename[MAXPATHLEN];
4061 int read, write, exec;
4062 int ret;
4063 struct cleanup *cleanup;
4064
4065 /* Compose the filename for the /proc memory map, and open it. */
4066 sprintf (mapsfilename, "/proc/%d/maps", pid);
4067 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4068 error (_("Could not open %s."), mapsfilename);
4069 cleanup = make_cleanup_fclose (mapsfile);
4070
4071 if (info_verbose)
4072 fprintf_filtered (gdb_stdout,
4073 "Reading memory regions from %s\n", mapsfilename);
4074
4075 /* Now iterate until end-of-file. */
4076 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4077 &offset, &device[0], &inode, &filename[0]))
4078 {
4079 size = endaddr - addr;
4080
4081 /* Get the segment's permissions. */
4082 read = (strchr (permissions, 'r') != 0);
4083 write = (strchr (permissions, 'w') != 0);
4084 exec = (strchr (permissions, 'x') != 0);
4085
4086 if (info_verbose)
4087 {
4088 fprintf_filtered (gdb_stdout,
4089 "Save segment, %s bytes at %s (%c%c%c)",
4090 plongest (size), paddress (target_gdbarch, addr),
4091 read ? 'r' : ' ',
4092 write ? 'w' : ' ', exec ? 'x' : ' ');
4093 if (filename[0])
4094 fprintf_filtered (gdb_stdout, " for %s", filename);
4095 fprintf_filtered (gdb_stdout, "\n");
4096 }
4097
4098 /* Invoke the callback function to create the corefile
4099 segment. */
4100 func (addr, size, read, write, exec, obfd);
4101 }
4102 do_cleanups (cleanup);
4103 return 0;
4104 }
4105
4106 static int
4107 find_signalled_thread (struct thread_info *info, void *data)
4108 {
4109 if (info->stop_signal != TARGET_SIGNAL_0
4110 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4111 return 1;
4112
4113 return 0;
4114 }
4115
4116 static enum target_signal
4117 find_stop_signal (void)
4118 {
4119 struct thread_info *info =
4120 iterate_over_threads (find_signalled_thread, NULL);
4121
4122 if (info)
4123 return info->stop_signal;
4124 else
4125 return TARGET_SIGNAL_0;
4126 }
4127
4128 /* Records the thread's register state for the corefile note
4129 section. */
4130
4131 static char *
4132 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4133 char *note_data, int *note_size,
4134 enum target_signal stop_signal)
4135 {
4136 gdb_gregset_t gregs;
4137 gdb_fpregset_t fpregs;
4138 unsigned long lwp = ptid_get_lwp (ptid);
4139 struct gdbarch *gdbarch = target_gdbarch;
4140 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4141 const struct regset *regset;
4142 int core_regset_p;
4143 struct cleanup *old_chain;
4144 struct core_regset_section *sect_list;
4145 char *gdb_regset;
4146
4147 old_chain = save_inferior_ptid ();
4148 inferior_ptid = ptid;
4149 target_fetch_registers (regcache, -1);
4150 do_cleanups (old_chain);
4151
4152 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4153 sect_list = gdbarch_core_regset_sections (gdbarch);
4154
4155 if (core_regset_p
4156 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4157 sizeof (gregs))) != NULL
4158 && regset->collect_regset != NULL)
4159 regset->collect_regset (regset, regcache, -1,
4160 &gregs, sizeof (gregs));
4161 else
4162 fill_gregset (regcache, &gregs, -1);
4163
4164 note_data = (char *) elfcore_write_prstatus (obfd,
4165 note_data,
4166 note_size,
4167 lwp,
4168 stop_signal, &gregs);
4169
4170 /* The loop below uses the new struct core_regset_section, which stores
4171 the supported section names and sizes for the core file. Note that
4172 note PRSTATUS needs to be treated specially. But the other notes are
4173 structurally the same, so they can benefit from the new struct. */
4174 if (core_regset_p && sect_list != NULL)
4175 while (sect_list->sect_name != NULL)
4176 {
4177 /* .reg was already handled above. */
4178 if (strcmp (sect_list->sect_name, ".reg") == 0)
4179 {
4180 sect_list++;
4181 continue;
4182 }
4183 regset = gdbarch_regset_from_core_section (gdbarch,
4184 sect_list->sect_name,
4185 sect_list->size);
4186 gdb_assert (regset && regset->collect_regset);
4187 gdb_regset = xmalloc (sect_list->size);
4188 regset->collect_regset (regset, regcache, -1,
4189 gdb_regset, sect_list->size);
4190 note_data = (char *) elfcore_write_register_note (obfd,
4191 note_data,
4192 note_size,
4193 sect_list->sect_name,
4194 gdb_regset,
4195 sect_list->size);
4196 xfree (gdb_regset);
4197 sect_list++;
4198 }
4199
4200 /* For architectures that does not have the struct core_regset_section
4201 implemented, we use the old method. When all the architectures have
4202 the new support, the code below should be deleted. */
4203 else
4204 {
4205 if (core_regset_p
4206 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4207 sizeof (fpregs))) != NULL
4208 && regset->collect_regset != NULL)
4209 regset->collect_regset (regset, regcache, -1,
4210 &fpregs, sizeof (fpregs));
4211 else
4212 fill_fpregset (regcache, &fpregs, -1);
4213
4214 note_data = (char *) elfcore_write_prfpreg (obfd,
4215 note_data,
4216 note_size,
4217 &fpregs, sizeof (fpregs));
4218 }
4219
4220 return note_data;
4221 }
4222
4223 struct linux_nat_corefile_thread_data
4224 {
4225 bfd *obfd;
4226 char *note_data;
4227 int *note_size;
4228 int num_notes;
4229 enum target_signal stop_signal;
4230 };
4231
4232 /* Called by gdbthread.c once per thread. Records the thread's
4233 register state for the corefile note section. */
4234
4235 static int
4236 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4237 {
4238 struct linux_nat_corefile_thread_data *args = data;
4239
4240 args->note_data = linux_nat_do_thread_registers (args->obfd,
4241 ti->ptid,
4242 args->note_data,
4243 args->note_size,
4244 args->stop_signal);
4245 args->num_notes++;
4246
4247 return 0;
4248 }
4249
4250 /* Enumerate spufs IDs for process PID. */
4251
4252 static void
4253 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4254 {
4255 char path[128];
4256 DIR *dir;
4257 struct dirent *entry;
4258
4259 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4260 dir = opendir (path);
4261 if (!dir)
4262 return;
4263
4264 rewinddir (dir);
4265 while ((entry = readdir (dir)) != NULL)
4266 {
4267 struct stat st;
4268 struct statfs stfs;
4269 int fd;
4270
4271 fd = atoi (entry->d_name);
4272 if (!fd)
4273 continue;
4274
4275 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4276 if (stat (path, &st) != 0)
4277 continue;
4278 if (!S_ISDIR (st.st_mode))
4279 continue;
4280
4281 if (statfs (path, &stfs) != 0)
4282 continue;
4283 if (stfs.f_type != SPUFS_MAGIC)
4284 continue;
4285
4286 callback (data, fd);
4287 }
4288
4289 closedir (dir);
4290 }
4291
4292 /* Generate corefile notes for SPU contexts. */
4293
4294 struct linux_spu_corefile_data
4295 {
4296 bfd *obfd;
4297 char *note_data;
4298 int *note_size;
4299 };
4300
4301 static void
4302 linux_spu_corefile_callback (void *data, int fd)
4303 {
4304 struct linux_spu_corefile_data *args = data;
4305 int i;
4306
4307 static const char *spu_files[] =
4308 {
4309 "object-id",
4310 "mem",
4311 "regs",
4312 "fpcr",
4313 "lslr",
4314 "decr",
4315 "decr_status",
4316 "signal1",
4317 "signal1_type",
4318 "signal2",
4319 "signal2_type",
4320 "event_mask",
4321 "event_status",
4322 "mbox_info",
4323 "ibox_info",
4324 "wbox_info",
4325 "dma_info",
4326 "proxydma_info",
4327 };
4328
4329 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4330 {
4331 char annex[32], note_name[32];
4332 gdb_byte *spu_data;
4333 LONGEST spu_len;
4334
4335 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4336 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4337 annex, &spu_data);
4338 if (spu_len > 0)
4339 {
4340 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4341 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4342 args->note_size, note_name,
4343 NT_SPU, spu_data, spu_len);
4344 xfree (spu_data);
4345 }
4346 }
4347 }
4348
4349 static char *
4350 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4351 {
4352 struct linux_spu_corefile_data args;
4353 args.obfd = obfd;
4354 args.note_data = note_data;
4355 args.note_size = note_size;
4356
4357 iterate_over_spus (PIDGET (inferior_ptid),
4358 linux_spu_corefile_callback, &args);
4359
4360 return args.note_data;
4361 }
4362
4363 /* Fills the "to_make_corefile_note" target vector. Builds the note
4364 section for a corefile, and returns it in a malloc buffer. */
4365
4366 static char *
4367 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4368 {
4369 struct linux_nat_corefile_thread_data thread_args;
4370 struct cleanup *old_chain;
4371 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4372 char fname[16] = { '\0' };
4373 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4374 char psargs[80] = { '\0' };
4375 char *note_data = NULL;
4376 ptid_t current_ptid = inferior_ptid;
4377 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4378 gdb_byte *auxv;
4379 int auxv_len;
4380
4381 if (get_exec_file (0))
4382 {
4383 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4384 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4385 if (get_inferior_args ())
4386 {
4387 char *string_end;
4388 char *psargs_end = psargs + sizeof (psargs);
4389
4390 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4391 strings fine. */
4392 string_end = memchr (psargs, 0, sizeof (psargs));
4393 if (string_end != NULL)
4394 {
4395 *string_end++ = ' ';
4396 strncpy (string_end, get_inferior_args (),
4397 psargs_end - string_end);
4398 }
4399 }
4400 note_data = (char *) elfcore_write_prpsinfo (obfd,
4401 note_data,
4402 note_size, fname, psargs);
4403 }
4404
4405 /* Dump information for threads. */
4406 thread_args.obfd = obfd;
4407 thread_args.note_data = note_data;
4408 thread_args.note_size = note_size;
4409 thread_args.num_notes = 0;
4410 thread_args.stop_signal = find_stop_signal ();
4411 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4412 gdb_assert (thread_args.num_notes != 0);
4413 note_data = thread_args.note_data;
4414
4415 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4416 NULL, &auxv);
4417 if (auxv_len > 0)
4418 {
4419 note_data = elfcore_write_note (obfd, note_data, note_size,
4420 "CORE", NT_AUXV, auxv, auxv_len);
4421 xfree (auxv);
4422 }
4423
4424 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4425
4426 make_cleanup (xfree, note_data);
4427 return note_data;
4428 }
4429
4430 /* Implement the "info proc" command. */
4431
4432 static void
4433 linux_nat_info_proc_cmd (char *args, int from_tty)
4434 {
4435 /* A long is used for pid instead of an int to avoid a loss of precision
4436 compiler warning from the output of strtoul. */
4437 long pid = PIDGET (inferior_ptid);
4438 FILE *procfile;
4439 char **argv = NULL;
4440 char buffer[MAXPATHLEN];
4441 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4442 int cmdline_f = 1;
4443 int cwd_f = 1;
4444 int exe_f = 1;
4445 int mappings_f = 0;
4446 int environ_f = 0;
4447 int status_f = 0;
4448 int stat_f = 0;
4449 int all = 0;
4450 struct stat dummy;
4451
4452 if (args)
4453 {
4454 /* Break up 'args' into an argv array. */
4455 argv = gdb_buildargv (args);
4456 make_cleanup_freeargv (argv);
4457 }
4458 while (argv != NULL && *argv != NULL)
4459 {
4460 if (isdigit (argv[0][0]))
4461 {
4462 pid = strtoul (argv[0], NULL, 10);
4463 }
4464 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4465 {
4466 mappings_f = 1;
4467 }
4468 else if (strcmp (argv[0], "status") == 0)
4469 {
4470 status_f = 1;
4471 }
4472 else if (strcmp (argv[0], "stat") == 0)
4473 {
4474 stat_f = 1;
4475 }
4476 else if (strcmp (argv[0], "cmd") == 0)
4477 {
4478 cmdline_f = 1;
4479 }
4480 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4481 {
4482 exe_f = 1;
4483 }
4484 else if (strcmp (argv[0], "cwd") == 0)
4485 {
4486 cwd_f = 1;
4487 }
4488 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4489 {
4490 all = 1;
4491 }
4492 else
4493 {
4494 /* [...] (future options here) */
4495 }
4496 argv++;
4497 }
4498 if (pid == 0)
4499 error (_("No current process: you must name one."));
4500
4501 sprintf (fname1, "/proc/%ld", pid);
4502 if (stat (fname1, &dummy) != 0)
4503 error (_("No /proc directory: '%s'"), fname1);
4504
4505 printf_filtered (_("process %ld\n"), pid);
4506 if (cmdline_f || all)
4507 {
4508 sprintf (fname1, "/proc/%ld/cmdline", pid);
4509 if ((procfile = fopen (fname1, "r")) != NULL)
4510 {
4511 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4512 if (fgets (buffer, sizeof (buffer), procfile))
4513 printf_filtered ("cmdline = '%s'\n", buffer);
4514 else
4515 warning (_("unable to read '%s'"), fname1);
4516 do_cleanups (cleanup);
4517 }
4518 else
4519 warning (_("unable to open /proc file '%s'"), fname1);
4520 }
4521 if (cwd_f || all)
4522 {
4523 sprintf (fname1, "/proc/%ld/cwd", pid);
4524 memset (fname2, 0, sizeof (fname2));
4525 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4526 printf_filtered ("cwd = '%s'\n", fname2);
4527 else
4528 warning (_("unable to read link '%s'"), fname1);
4529 }
4530 if (exe_f || all)
4531 {
4532 sprintf (fname1, "/proc/%ld/exe", pid);
4533 memset (fname2, 0, sizeof (fname2));
4534 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4535 printf_filtered ("exe = '%s'\n", fname2);
4536 else
4537 warning (_("unable to read link '%s'"), fname1);
4538 }
4539 if (mappings_f || all)
4540 {
4541 sprintf (fname1, "/proc/%ld/maps", pid);
4542 if ((procfile = fopen (fname1, "r")) != NULL)
4543 {
4544 long long addr, endaddr, size, offset, inode;
4545 char permissions[8], device[8], filename[MAXPATHLEN];
4546 struct cleanup *cleanup;
4547
4548 cleanup = make_cleanup_fclose (procfile);
4549 printf_filtered (_("Mapped address spaces:\n\n"));
4550 if (gdbarch_addr_bit (target_gdbarch) == 32)
4551 {
4552 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4553 "Start Addr",
4554 " End Addr",
4555 " Size", " Offset", "objfile");
4556 }
4557 else
4558 {
4559 printf_filtered (" %18s %18s %10s %10s %7s\n",
4560 "Start Addr",
4561 " End Addr",
4562 " Size", " Offset", "objfile");
4563 }
4564
4565 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4566 &offset, &device[0], &inode, &filename[0]))
4567 {
4568 size = endaddr - addr;
4569
4570 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4571 calls here (and possibly above) should be abstracted
4572 out into their own functions? Andrew suggests using
4573 a generic local_address_string instead to print out
4574 the addresses; that makes sense to me, too. */
4575
4576 if (gdbarch_addr_bit (target_gdbarch) == 32)
4577 {
4578 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4579 (unsigned long) addr, /* FIXME: pr_addr */
4580 (unsigned long) endaddr,
4581 (int) size,
4582 (unsigned int) offset,
4583 filename[0] ? filename : "");
4584 }
4585 else
4586 {
4587 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4588 (unsigned long) addr, /* FIXME: pr_addr */
4589 (unsigned long) endaddr,
4590 (int) size,
4591 (unsigned int) offset,
4592 filename[0] ? filename : "");
4593 }
4594 }
4595
4596 do_cleanups (cleanup);
4597 }
4598 else
4599 warning (_("unable to open /proc file '%s'"), fname1);
4600 }
4601 if (status_f || all)
4602 {
4603 sprintf (fname1, "/proc/%ld/status", pid);
4604 if ((procfile = fopen (fname1, "r")) != NULL)
4605 {
4606 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4607 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4608 puts_filtered (buffer);
4609 do_cleanups (cleanup);
4610 }
4611 else
4612 warning (_("unable to open /proc file '%s'"), fname1);
4613 }
4614 if (stat_f || all)
4615 {
4616 sprintf (fname1, "/proc/%ld/stat", pid);
4617 if ((procfile = fopen (fname1, "r")) != NULL)
4618 {
4619 int itmp;
4620 char ctmp;
4621 long ltmp;
4622 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4623
4624 if (fscanf (procfile, "%d ", &itmp) > 0)
4625 printf_filtered (_("Process: %d\n"), itmp);
4626 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4627 printf_filtered (_("Exec file: %s\n"), buffer);
4628 if (fscanf (procfile, "%c ", &ctmp) > 0)
4629 printf_filtered (_("State: %c\n"), ctmp);
4630 if (fscanf (procfile, "%d ", &itmp) > 0)
4631 printf_filtered (_("Parent process: %d\n"), itmp);
4632 if (fscanf (procfile, "%d ", &itmp) > 0)
4633 printf_filtered (_("Process group: %d\n"), itmp);
4634 if (fscanf (procfile, "%d ", &itmp) > 0)
4635 printf_filtered (_("Session id: %d\n"), itmp);
4636 if (fscanf (procfile, "%d ", &itmp) > 0)
4637 printf_filtered (_("TTY: %d\n"), itmp);
4638 if (fscanf (procfile, "%d ", &itmp) > 0)
4639 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4640 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4641 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4642 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4643 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4644 (unsigned long) ltmp);
4645 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4646 printf_filtered (_("Minor faults, children: %lu\n"),
4647 (unsigned long) ltmp);
4648 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4649 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4650 (unsigned long) ltmp);
4651 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4652 printf_filtered (_("Major faults, children: %lu\n"),
4653 (unsigned long) ltmp);
4654 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4655 printf_filtered (_("utime: %ld\n"), ltmp);
4656 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4657 printf_filtered (_("stime: %ld\n"), ltmp);
4658 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4659 printf_filtered (_("utime, children: %ld\n"), ltmp);
4660 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4661 printf_filtered (_("stime, children: %ld\n"), ltmp);
4662 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4663 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4664 ltmp);
4665 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4666 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4667 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4668 printf_filtered (_("jiffies until next timeout: %lu\n"),
4669 (unsigned long) ltmp);
4670 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4671 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4672 (unsigned long) ltmp);
4673 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4674 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4675 ltmp);
4676 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4677 printf_filtered (_("Virtual memory size: %lu\n"),
4678 (unsigned long) ltmp);
4679 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4680 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4681 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4682 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4683 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4684 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4685 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4686 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4687 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4688 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4689 #if 0 /* Don't know how architecture-dependent the rest is...
4690 Anyway the signal bitmap info is available from "status". */
4691 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4692 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4693 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4694 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4695 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4696 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4697 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4698 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4699 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4700 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4701 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4702 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4703 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4704 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4705 #endif
4706 do_cleanups (cleanup);
4707 }
4708 else
4709 warning (_("unable to open /proc file '%s'"), fname1);
4710 }
4711 }
4712
4713 /* Implement the to_xfer_partial interface for memory reads using the /proc
4714 filesystem. Because we can use a single read() call for /proc, this
4715 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4716 but it doesn't support writes. */
4717
4718 static LONGEST
4719 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4720 const char *annex, gdb_byte *readbuf,
4721 const gdb_byte *writebuf,
4722 ULONGEST offset, LONGEST len)
4723 {
4724 LONGEST ret;
4725 int fd;
4726 char filename[64];
4727
4728 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4729 return 0;
4730
4731 /* Don't bother for one word. */
4732 if (len < 3 * sizeof (long))
4733 return 0;
4734
4735 /* We could keep this file open and cache it - possibly one per
4736 thread. That requires some juggling, but is even faster. */
4737 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4738 fd = open (filename, O_RDONLY | O_LARGEFILE);
4739 if (fd == -1)
4740 return 0;
4741
4742 /* If pread64 is available, use it. It's faster if the kernel
4743 supports it (only one syscall), and it's 64-bit safe even on
4744 32-bit platforms (for instance, SPARC debugging a SPARC64
4745 application). */
4746 #ifdef HAVE_PREAD64
4747 if (pread64 (fd, readbuf, len, offset) != len)
4748 #else
4749 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4750 #endif
4751 ret = 0;
4752 else
4753 ret = len;
4754
4755 close (fd);
4756 return ret;
4757 }
4758
4759
4760 /* Enumerate spufs IDs for process PID. */
4761 static LONGEST
4762 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4763 {
4764 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4765 LONGEST pos = 0;
4766 LONGEST written = 0;
4767 char path[128];
4768 DIR *dir;
4769 struct dirent *entry;
4770
4771 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4772 dir = opendir (path);
4773 if (!dir)
4774 return -1;
4775
4776 rewinddir (dir);
4777 while ((entry = readdir (dir)) != NULL)
4778 {
4779 struct stat st;
4780 struct statfs stfs;
4781 int fd;
4782
4783 fd = atoi (entry->d_name);
4784 if (!fd)
4785 continue;
4786
4787 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4788 if (stat (path, &st) != 0)
4789 continue;
4790 if (!S_ISDIR (st.st_mode))
4791 continue;
4792
4793 if (statfs (path, &stfs) != 0)
4794 continue;
4795 if (stfs.f_type != SPUFS_MAGIC)
4796 continue;
4797
4798 if (pos >= offset && pos + 4 <= offset + len)
4799 {
4800 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4801 written += 4;
4802 }
4803 pos += 4;
4804 }
4805
4806 closedir (dir);
4807 return written;
4808 }
4809
4810 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4811 object type, using the /proc file system. */
4812 static LONGEST
4813 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4814 const char *annex, gdb_byte *readbuf,
4815 const gdb_byte *writebuf,
4816 ULONGEST offset, LONGEST len)
4817 {
4818 char buf[128];
4819 int fd = 0;
4820 int ret = -1;
4821 int pid = PIDGET (inferior_ptid);
4822
4823 if (!annex)
4824 {
4825 if (!readbuf)
4826 return -1;
4827 else
4828 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4829 }
4830
4831 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4832 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4833 if (fd <= 0)
4834 return -1;
4835
4836 if (offset != 0
4837 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4838 {
4839 close (fd);
4840 return 0;
4841 }
4842
4843 if (writebuf)
4844 ret = write (fd, writebuf, (size_t) len);
4845 else if (readbuf)
4846 ret = read (fd, readbuf, (size_t) len);
4847
4848 close (fd);
4849 return ret;
4850 }
4851
4852
4853 /* Parse LINE as a signal set and add its set bits to SIGS. */
4854
4855 static void
4856 add_line_to_sigset (const char *line, sigset_t *sigs)
4857 {
4858 int len = strlen (line) - 1;
4859 const char *p;
4860 int signum;
4861
4862 if (line[len] != '\n')
4863 error (_("Could not parse signal set: %s"), line);
4864
4865 p = line;
4866 signum = len * 4;
4867 while (len-- > 0)
4868 {
4869 int digit;
4870
4871 if (*p >= '0' && *p <= '9')
4872 digit = *p - '0';
4873 else if (*p >= 'a' && *p <= 'f')
4874 digit = *p - 'a' + 10;
4875 else
4876 error (_("Could not parse signal set: %s"), line);
4877
4878 signum -= 4;
4879
4880 if (digit & 1)
4881 sigaddset (sigs, signum + 1);
4882 if (digit & 2)
4883 sigaddset (sigs, signum + 2);
4884 if (digit & 4)
4885 sigaddset (sigs, signum + 3);
4886 if (digit & 8)
4887 sigaddset (sigs, signum + 4);
4888
4889 p++;
4890 }
4891 }
4892
4893 /* Find process PID's pending signals from /proc/pid/status and set
4894 SIGS to match. */
4895
4896 void
4897 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4898 {
4899 FILE *procfile;
4900 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4901 int signum;
4902 struct cleanup *cleanup;
4903
4904 sigemptyset (pending);
4905 sigemptyset (blocked);
4906 sigemptyset (ignored);
4907 sprintf (fname, "/proc/%d/status", pid);
4908 procfile = fopen (fname, "r");
4909 if (procfile == NULL)
4910 error (_("Could not open %s"), fname);
4911 cleanup = make_cleanup_fclose (procfile);
4912
4913 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4914 {
4915 /* Normal queued signals are on the SigPnd line in the status
4916 file. However, 2.6 kernels also have a "shared" pending
4917 queue for delivering signals to a thread group, so check for
4918 a ShdPnd line also.
4919
4920 Unfortunately some Red Hat kernels include the shared pending
4921 queue but not the ShdPnd status field. */
4922
4923 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4924 add_line_to_sigset (buffer + 8, pending);
4925 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4926 add_line_to_sigset (buffer + 8, pending);
4927 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4928 add_line_to_sigset (buffer + 8, blocked);
4929 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4930 add_line_to_sigset (buffer + 8, ignored);
4931 }
4932
4933 do_cleanups (cleanup);
4934 }
4935
4936 static LONGEST
4937 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4938 const char *annex, gdb_byte *readbuf,
4939 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4940 {
4941 /* We make the process list snapshot when the object starts to be
4942 read. */
4943 static const char *buf;
4944 static LONGEST len_avail = -1;
4945 static struct obstack obstack;
4946
4947 DIR *dirp;
4948
4949 gdb_assert (object == TARGET_OBJECT_OSDATA);
4950
4951 if (strcmp (annex, "processes") != 0)
4952 return 0;
4953
4954 gdb_assert (readbuf && !writebuf);
4955
4956 if (offset == 0)
4957 {
4958 if (len_avail != -1 && len_avail != 0)
4959 obstack_free (&obstack, NULL);
4960 len_avail = 0;
4961 buf = NULL;
4962 obstack_init (&obstack);
4963 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4964
4965 dirp = opendir ("/proc");
4966 if (dirp)
4967 {
4968 struct dirent *dp;
4969 while ((dp = readdir (dirp)) != NULL)
4970 {
4971 struct stat statbuf;
4972 char procentry[sizeof ("/proc/4294967295")];
4973
4974 if (!isdigit (dp->d_name[0])
4975 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4976 continue;
4977
4978 sprintf (procentry, "/proc/%s", dp->d_name);
4979 if (stat (procentry, &statbuf) == 0
4980 && S_ISDIR (statbuf.st_mode))
4981 {
4982 char *pathname;
4983 FILE *f;
4984 char cmd[MAXPATHLEN + 1];
4985 struct passwd *entry;
4986
4987 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4988 entry = getpwuid (statbuf.st_uid);
4989
4990 if ((f = fopen (pathname, "r")) != NULL)
4991 {
4992 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4993 if (len > 0)
4994 {
4995 int i;
4996 for (i = 0; i < len; i++)
4997 if (cmd[i] == '\0')
4998 cmd[i] = ' ';
4999 cmd[len] = '\0';
5000
5001 obstack_xml_printf (
5002 &obstack,
5003 "<item>"
5004 "<column name=\"pid\">%s</column>"
5005 "<column name=\"user\">%s</column>"
5006 "<column name=\"command\">%s</column>"
5007 "</item>",
5008 dp->d_name,
5009 entry ? entry->pw_name : "?",
5010 cmd);
5011 }
5012 fclose (f);
5013 }
5014
5015 xfree (pathname);
5016 }
5017 }
5018
5019 closedir (dirp);
5020 }
5021
5022 obstack_grow_str0 (&obstack, "</osdata>\n");
5023 buf = obstack_finish (&obstack);
5024 len_avail = strlen (buf);
5025 }
5026
5027 if (offset >= len_avail)
5028 {
5029 /* Done. Get rid of the obstack. */
5030 obstack_free (&obstack, NULL);
5031 buf = NULL;
5032 len_avail = 0;
5033 return 0;
5034 }
5035
5036 if (len > len_avail - offset)
5037 len = len_avail - offset;
5038 memcpy (readbuf, buf + offset, len);
5039
5040 return len;
5041 }
5042
5043 static LONGEST
5044 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5045 const char *annex, gdb_byte *readbuf,
5046 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5047 {
5048 LONGEST xfer;
5049
5050 if (object == TARGET_OBJECT_AUXV)
5051 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5052 offset, len);
5053
5054 if (object == TARGET_OBJECT_OSDATA)
5055 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5056 offset, len);
5057
5058 if (object == TARGET_OBJECT_SPU)
5059 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5060 offset, len);
5061
5062 /* GDB calculates all the addresses in possibly larget width of the address.
5063 Address width needs to be masked before its final use - either by
5064 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5065
5066 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5067
5068 if (object == TARGET_OBJECT_MEMORY)
5069 {
5070 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5071
5072 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5073 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5074 }
5075
5076 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5077 offset, len);
5078 if (xfer != 0)
5079 return xfer;
5080
5081 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5082 offset, len);
5083 }
5084
5085 /* Create a prototype generic GNU/Linux target. The client can override
5086 it with local methods. */
5087
5088 static void
5089 linux_target_install_ops (struct target_ops *t)
5090 {
5091 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5092 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5093 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5094 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5095 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5096 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5097 t->to_post_attach = linux_child_post_attach;
5098 t->to_follow_fork = linux_child_follow_fork;
5099 t->to_find_memory_regions = linux_nat_find_memory_regions;
5100 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5101
5102 super_xfer_partial = t->to_xfer_partial;
5103 t->to_xfer_partial = linux_xfer_partial;
5104 }
5105
5106 struct target_ops *
5107 linux_target (void)
5108 {
5109 struct target_ops *t;
5110
5111 t = inf_ptrace_target ();
5112 linux_target_install_ops (t);
5113
5114 return t;
5115 }
5116
5117 struct target_ops *
5118 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5119 {
5120 struct target_ops *t;
5121
5122 t = inf_ptrace_trad_target (register_u_offset);
5123 linux_target_install_ops (t);
5124
5125 return t;
5126 }
5127
5128 /* target_is_async_p implementation. */
5129
5130 static int
5131 linux_nat_is_async_p (void)
5132 {
5133 /* NOTE: palves 2008-03-21: We're only async when the user requests
5134 it explicitly with the "set target-async" command.
5135 Someday, linux will always be async. */
5136 if (!target_async_permitted)
5137 return 0;
5138
5139 /* See target.h/target_async_mask. */
5140 return linux_nat_async_mask_value;
5141 }
5142
5143 /* target_can_async_p implementation. */
5144
5145 static int
5146 linux_nat_can_async_p (void)
5147 {
5148 /* NOTE: palves 2008-03-21: We're only async when the user requests
5149 it explicitly with the "set target-async" command.
5150 Someday, linux will always be async. */
5151 if (!target_async_permitted)
5152 return 0;
5153
5154 /* See target.h/target_async_mask. */
5155 return linux_nat_async_mask_value;
5156 }
5157
5158 static int
5159 linux_nat_supports_non_stop (void)
5160 {
5161 return 1;
5162 }
5163
5164 /* True if we want to support multi-process. To be removed when GDB
5165 supports multi-exec. */
5166
5167 int linux_multi_process = 1;
5168
5169 static int
5170 linux_nat_supports_multi_process (void)
5171 {
5172 return linux_multi_process;
5173 }
5174
5175 /* target_async_mask implementation. */
5176
5177 static int
5178 linux_nat_async_mask (int new_mask)
5179 {
5180 int curr_mask = linux_nat_async_mask_value;
5181
5182 if (curr_mask != new_mask)
5183 {
5184 if (new_mask == 0)
5185 {
5186 linux_nat_async (NULL, 0);
5187 linux_nat_async_mask_value = new_mask;
5188 }
5189 else
5190 {
5191 linux_nat_async_mask_value = new_mask;
5192
5193 /* If we're going out of async-mask in all-stop, then the
5194 inferior is stopped. The next resume will call
5195 target_async. In non-stop, the target event source
5196 should be always registered in the event loop. Do so
5197 now. */
5198 if (non_stop)
5199 linux_nat_async (inferior_event_handler, 0);
5200 }
5201 }
5202
5203 return curr_mask;
5204 }
5205
5206 static int async_terminal_is_ours = 1;
5207
5208 /* target_terminal_inferior implementation. */
5209
5210 static void
5211 linux_nat_terminal_inferior (void)
5212 {
5213 if (!target_is_async_p ())
5214 {
5215 /* Async mode is disabled. */
5216 terminal_inferior ();
5217 return;
5218 }
5219
5220 terminal_inferior ();
5221
5222 /* Calls to target_terminal_*() are meant to be idempotent. */
5223 if (!async_terminal_is_ours)
5224 return;
5225
5226 delete_file_handler (input_fd);
5227 async_terminal_is_ours = 0;
5228 set_sigint_trap ();
5229 }
5230
5231 /* target_terminal_ours implementation. */
5232
5233 static void
5234 linux_nat_terminal_ours (void)
5235 {
5236 if (!target_is_async_p ())
5237 {
5238 /* Async mode is disabled. */
5239 terminal_ours ();
5240 return;
5241 }
5242
5243 /* GDB should never give the terminal to the inferior if the
5244 inferior is running in the background (run&, continue&, etc.),
5245 but claiming it sure should. */
5246 terminal_ours ();
5247
5248 if (async_terminal_is_ours)
5249 return;
5250
5251 clear_sigint_trap ();
5252 add_file_handler (input_fd, stdin_event_handler, 0);
5253 async_terminal_is_ours = 1;
5254 }
5255
5256 static void (*async_client_callback) (enum inferior_event_type event_type,
5257 void *context);
5258 static void *async_client_context;
5259
5260 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5261 so we notice when any child changes state, and notify the
5262 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5263 above to wait for the arrival of a SIGCHLD. */
5264
5265 static void
5266 sigchld_handler (int signo)
5267 {
5268 int old_errno = errno;
5269
5270 if (debug_linux_nat_async)
5271 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5272
5273 if (signo == SIGCHLD
5274 && linux_nat_event_pipe[0] != -1)
5275 async_file_mark (); /* Let the event loop know that there are
5276 events to handle. */
5277
5278 errno = old_errno;
5279 }
5280
5281 /* Callback registered with the target events file descriptor. */
5282
5283 static void
5284 handle_target_event (int error, gdb_client_data client_data)
5285 {
5286 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5287 }
5288
5289 /* Create/destroy the target events pipe. Returns previous state. */
5290
5291 static int
5292 linux_async_pipe (int enable)
5293 {
5294 int previous = (linux_nat_event_pipe[0] != -1);
5295
5296 if (previous != enable)
5297 {
5298 sigset_t prev_mask;
5299
5300 block_child_signals (&prev_mask);
5301
5302 if (enable)
5303 {
5304 if (pipe (linux_nat_event_pipe) == -1)
5305 internal_error (__FILE__, __LINE__,
5306 "creating event pipe failed.");
5307
5308 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5309 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5310 }
5311 else
5312 {
5313 close (linux_nat_event_pipe[0]);
5314 close (linux_nat_event_pipe[1]);
5315 linux_nat_event_pipe[0] = -1;
5316 linux_nat_event_pipe[1] = -1;
5317 }
5318
5319 restore_child_signals_mask (&prev_mask);
5320 }
5321
5322 return previous;
5323 }
5324
5325 /* target_async implementation. */
5326
5327 static void
5328 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5329 void *context), void *context)
5330 {
5331 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5332 internal_error (__FILE__, __LINE__,
5333 "Calling target_async when async is masked");
5334
5335 if (callback != NULL)
5336 {
5337 async_client_callback = callback;
5338 async_client_context = context;
5339 if (!linux_async_pipe (1))
5340 {
5341 add_file_handler (linux_nat_event_pipe[0],
5342 handle_target_event, NULL);
5343 /* There may be pending events to handle. Tell the event loop
5344 to poll them. */
5345 async_file_mark ();
5346 }
5347 }
5348 else
5349 {
5350 async_client_callback = callback;
5351 async_client_context = context;
5352 delete_file_handler (linux_nat_event_pipe[0]);
5353 linux_async_pipe (0);
5354 }
5355 return;
5356 }
5357
5358 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5359 event came out. */
5360
5361 static int
5362 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5363 {
5364 if (!lwp->stopped)
5365 {
5366 int pid, status;
5367 ptid_t ptid = lwp->ptid;
5368
5369 if (debug_linux_nat)
5370 fprintf_unfiltered (gdb_stdlog,
5371 "LNSL: running -> suspending %s\n",
5372 target_pid_to_str (lwp->ptid));
5373
5374
5375 stop_callback (lwp, NULL);
5376 stop_wait_callback (lwp, NULL);
5377
5378 /* If the lwp exits while we try to stop it, there's nothing
5379 else to do. */
5380 lwp = find_lwp_pid (ptid);
5381 if (lwp == NULL)
5382 return 0;
5383
5384 /* If we didn't collect any signal other than SIGSTOP while
5385 stopping the LWP, push a SIGNAL_0 event. In either case, the
5386 event-loop will end up calling target_wait which will collect
5387 these. */
5388 if (lwp->status == 0)
5389 lwp->status = W_STOPCODE (0);
5390 async_file_mark ();
5391 }
5392 else
5393 {
5394 /* Already known to be stopped; do nothing. */
5395
5396 if (debug_linux_nat)
5397 {
5398 if (find_thread_ptid (lwp->ptid)->stop_requested)
5399 fprintf_unfiltered (gdb_stdlog, "\
5400 LNSL: already stopped/stop_requested %s\n",
5401 target_pid_to_str (lwp->ptid));
5402 else
5403 fprintf_unfiltered (gdb_stdlog, "\
5404 LNSL: already stopped/no stop_requested yet %s\n",
5405 target_pid_to_str (lwp->ptid));
5406 }
5407 }
5408 return 0;
5409 }
5410
5411 static void
5412 linux_nat_stop (ptid_t ptid)
5413 {
5414 if (non_stop)
5415 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5416 else
5417 linux_ops->to_stop (ptid);
5418 }
5419
5420 static void
5421 linux_nat_close (int quitting)
5422 {
5423 /* Unregister from the event loop. */
5424 if (target_is_async_p ())
5425 target_async (NULL, 0);
5426
5427 /* Reset the async_masking. */
5428 linux_nat_async_mask_value = 1;
5429
5430 if (linux_ops->to_close)
5431 linux_ops->to_close (quitting);
5432 }
5433
5434 /* When requests are passed down from the linux-nat layer to the
5435 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5436 used. The address space pointer is stored in the inferior object,
5437 but the common code that is passed such ptid can't tell whether
5438 lwpid is a "main" process id or not (it assumes so). We reverse
5439 look up the "main" process id from the lwp here. */
5440
5441 struct address_space *
5442 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5443 {
5444 struct lwp_info *lwp;
5445 struct inferior *inf;
5446 int pid;
5447
5448 pid = GET_LWP (ptid);
5449 if (GET_LWP (ptid) == 0)
5450 {
5451 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5452 tgid. */
5453 lwp = find_lwp_pid (ptid);
5454 pid = GET_PID (lwp->ptid);
5455 }
5456 else
5457 {
5458 /* A (pid,lwpid,0) ptid. */
5459 pid = GET_PID (ptid);
5460 }
5461
5462 inf = find_inferior_pid (pid);
5463 gdb_assert (inf != NULL);
5464 return inf->aspace;
5465 }
5466
5467 int
5468 linux_nat_core_of_thread_1 (ptid_t ptid)
5469 {
5470 struct cleanup *back_to;
5471 char *filename;
5472 FILE *f;
5473 char *content = NULL;
5474 char *p;
5475 char *ts = 0;
5476 int content_read = 0;
5477 int i;
5478 int core;
5479
5480 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5481 GET_PID (ptid), GET_LWP (ptid));
5482 back_to = make_cleanup (xfree, filename);
5483
5484 f = fopen (filename, "r");
5485 if (!f)
5486 {
5487 do_cleanups (back_to);
5488 return -1;
5489 }
5490
5491 make_cleanup_fclose (f);
5492
5493 for (;;)
5494 {
5495 int n;
5496 content = xrealloc (content, content_read + 1024);
5497 n = fread (content + content_read, 1, 1024, f);
5498 content_read += n;
5499 if (n < 1024)
5500 {
5501 content[content_read] = '\0';
5502 break;
5503 }
5504 }
5505
5506 make_cleanup (xfree, content);
5507
5508 p = strchr (content, '(');
5509 p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
5510
5511 /* If the first field after program name has index 0, then core number is
5512 the field with index 36. There's no constant for that anywhere. */
5513 p = strtok_r (p, " ", &ts);
5514 for (i = 0; i != 36; ++i)
5515 p = strtok_r (NULL, " ", &ts);
5516
5517 if (sscanf (p, "%d", &core) == 0)
5518 core = -1;
5519
5520 do_cleanups (back_to);
5521
5522 return core;
5523 }
5524
5525 /* Return the cached value of the processor core for thread PTID. */
5526
5527 int
5528 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5529 {
5530 struct lwp_info *info = find_lwp_pid (ptid);
5531 if (info)
5532 return info->core;
5533 return -1;
5534 }
5535
5536 void
5537 linux_nat_add_target (struct target_ops *t)
5538 {
5539 /* Save the provided single-threaded target. We save this in a separate
5540 variable because another target we've inherited from (e.g. inf-ptrace)
5541 may have saved a pointer to T; we want to use it for the final
5542 process stratum target. */
5543 linux_ops_saved = *t;
5544 linux_ops = &linux_ops_saved;
5545
5546 /* Override some methods for multithreading. */
5547 t->to_create_inferior = linux_nat_create_inferior;
5548 t->to_attach = linux_nat_attach;
5549 t->to_detach = linux_nat_detach;
5550 t->to_resume = linux_nat_resume;
5551 t->to_wait = linux_nat_wait;
5552 t->to_xfer_partial = linux_nat_xfer_partial;
5553 t->to_kill = linux_nat_kill;
5554 t->to_mourn_inferior = linux_nat_mourn_inferior;
5555 t->to_thread_alive = linux_nat_thread_alive;
5556 t->to_pid_to_str = linux_nat_pid_to_str;
5557 t->to_has_thread_control = tc_schedlock;
5558 t->to_thread_address_space = linux_nat_thread_address_space;
5559 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5560 t->to_stopped_data_address = linux_nat_stopped_data_address;
5561
5562 t->to_can_async_p = linux_nat_can_async_p;
5563 t->to_is_async_p = linux_nat_is_async_p;
5564 t->to_supports_non_stop = linux_nat_supports_non_stop;
5565 t->to_async = linux_nat_async;
5566 t->to_async_mask = linux_nat_async_mask;
5567 t->to_terminal_inferior = linux_nat_terminal_inferior;
5568 t->to_terminal_ours = linux_nat_terminal_ours;
5569 t->to_close = linux_nat_close;
5570
5571 /* Methods for non-stop support. */
5572 t->to_stop = linux_nat_stop;
5573
5574 t->to_supports_multi_process = linux_nat_supports_multi_process;
5575
5576 t->to_core_of_thread = linux_nat_core_of_thread;
5577
5578 /* We don't change the stratum; this target will sit at
5579 process_stratum and thread_db will set at thread_stratum. This
5580 is a little strange, since this is a multi-threaded-capable
5581 target, but we want to be on the stack below thread_db, and we
5582 also want to be used for single-threaded processes. */
5583
5584 add_target (t);
5585 }
5586
5587 /* Register a method to call whenever a new thread is attached. */
5588 void
5589 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5590 {
5591 /* Save the pointer. We only support a single registered instance
5592 of the GNU/Linux native target, so we do not need to map this to
5593 T. */
5594 linux_nat_new_thread = new_thread;
5595 }
5596
5597 /* Register a method that converts a siginfo object between the layout
5598 that ptrace returns, and the layout in the architecture of the
5599 inferior. */
5600 void
5601 linux_nat_set_siginfo_fixup (struct target_ops *t,
5602 int (*siginfo_fixup) (struct siginfo *,
5603 gdb_byte *,
5604 int))
5605 {
5606 /* Save the pointer. */
5607 linux_nat_siginfo_fixup = siginfo_fixup;
5608 }
5609
5610 /* Return the saved siginfo associated with PTID. */
5611 struct siginfo *
5612 linux_nat_get_siginfo (ptid_t ptid)
5613 {
5614 struct lwp_info *lp = find_lwp_pid (ptid);
5615
5616 gdb_assert (lp != NULL);
5617
5618 return &lp->siginfo;
5619 }
5620
5621 /* Provide a prototype to silence -Wmissing-prototypes. */
5622 extern initialize_file_ftype _initialize_linux_nat;
5623
5624 void
5625 _initialize_linux_nat (void)
5626 {
5627 sigset_t mask;
5628
5629 add_info ("proc", linux_nat_info_proc_cmd, _("\
5630 Show /proc process information about any running process.\n\
5631 Specify any process id, or use the program being debugged by default.\n\
5632 Specify any of the following keywords for detailed info:\n\
5633 mappings -- list of mapped memory regions.\n\
5634 stat -- list a bunch of random process info.\n\
5635 status -- list a different bunch of random process info.\n\
5636 all -- list all available /proc info."));
5637
5638 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5639 &debug_linux_nat, _("\
5640 Set debugging of GNU/Linux lwp module."), _("\
5641 Show debugging of GNU/Linux lwp module."), _("\
5642 Enables printf debugging output."),
5643 NULL,
5644 show_debug_linux_nat,
5645 &setdebuglist, &showdebuglist);
5646
5647 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5648 &debug_linux_nat_async, _("\
5649 Set debugging of GNU/Linux async lwp module."), _("\
5650 Show debugging of GNU/Linux async lwp module."), _("\
5651 Enables printf debugging output."),
5652 NULL,
5653 show_debug_linux_nat_async,
5654 &setdebuglist, &showdebuglist);
5655
5656 /* Save this mask as the default. */
5657 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5658
5659 /* Install a SIGCHLD handler. */
5660 sigchld_action.sa_handler = sigchld_handler;
5661 sigemptyset (&sigchld_action.sa_mask);
5662 sigchld_action.sa_flags = SA_RESTART;
5663
5664 /* Make it the default. */
5665 sigaction (SIGCHLD, &sigchld_action, NULL);
5666
5667 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5668 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5669 sigdelset (&suspend_mask, SIGCHLD);
5670
5671 sigemptyset (&blocked_mask);
5672
5673 add_setshow_boolean_cmd ("disable-randomization", class_support,
5674 &disable_randomization, _("\
5675 Set disabling of debuggee's virtual address space randomization."), _("\
5676 Show disabling of debuggee's virtual address space randomization."), _("\
5677 When this mode is on (which is the default), randomization of the virtual\n\
5678 address space is disabled. Standalone programs run with the randomization\n\
5679 enabled by default on some platforms."),
5680 &set_disable_randomization,
5681 &show_disable_randomization,
5682 &setlist, &showlist);
5683 }
5684 \f
5685
5686 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5687 the GNU/Linux Threads library and therefore doesn't really belong
5688 here. */
5689
5690 /* Read variable NAME in the target and return its value if found.
5691 Otherwise return zero. It is assumed that the type of the variable
5692 is `int'. */
5693
5694 static int
5695 get_signo (const char *name)
5696 {
5697 struct minimal_symbol *ms;
5698 int signo;
5699
5700 ms = lookup_minimal_symbol (name, NULL, NULL);
5701 if (ms == NULL)
5702 return 0;
5703
5704 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5705 sizeof (signo)) != 0)
5706 return 0;
5707
5708 return signo;
5709 }
5710
5711 /* Return the set of signals used by the threads library in *SET. */
5712
5713 void
5714 lin_thread_get_thread_signals (sigset_t *set)
5715 {
5716 struct sigaction action;
5717 int restart, cancel;
5718
5719 sigemptyset (&blocked_mask);
5720 sigemptyset (set);
5721
5722 restart = get_signo ("__pthread_sig_restart");
5723 cancel = get_signo ("__pthread_sig_cancel");
5724
5725 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5726 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5727 not provide any way for the debugger to query the signal numbers -
5728 fortunately they don't change! */
5729
5730 if (restart == 0)
5731 restart = __SIGRTMIN;
5732
5733 if (cancel == 0)
5734 cancel = __SIGRTMIN + 1;
5735
5736 sigaddset (set, restart);
5737 sigaddset (set, cancel);
5738
5739 /* The GNU/Linux Threads library makes terminating threads send a
5740 special "cancel" signal instead of SIGCHLD. Make sure we catch
5741 those (to prevent them from terminating GDB itself, which is
5742 likely to be their default action) and treat them the same way as
5743 SIGCHLD. */
5744
5745 action.sa_handler = sigchld_handler;
5746 sigemptyset (&action.sa_mask);
5747 action.sa_flags = SA_RESTART;
5748 sigaction (cancel, &action, NULL);
5749
5750 /* We block the "cancel" signal throughout this code ... */
5751 sigaddset (&blocked_mask, cancel);
5752 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5753
5754 /* ... except during a sigsuspend. */
5755 sigdelset (&suspend_mask, cancel);
5756 }
This page took 0.232349 seconds and 4 git commands to generate.