Rename gdb exception types
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "common/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "common/agent.h"
62 #include "tracepoint.h"
63 #include "common/buffer.h"
64 #include "target-descriptions.h"
65 #include "common/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "common/fileio.h"
69 #include "common/scope-exit.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 /* This comment documents high-level logic of this file.
76
77 Waiting for events in sync mode
78 ===============================
79
80 When waiting for an event in a specific thread, we just use waitpid,
81 passing the specific pid, and not passing WNOHANG.
82
83 When waiting for an event in all threads, waitpid is not quite good:
84
85 - If the thread group leader exits while other threads in the thread
86 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
87 return an exit status until the other threads in the group are
88 reaped.
89
90 - When a non-leader thread execs, that thread just vanishes without
91 reporting an exit (so we'd hang if we waited for it explicitly in
92 that case). The exec event is instead reported to the TGID pid.
93
94 The solution is to always use -1 and WNOHANG, together with
95 sigsuspend.
96
97 First, we use non-blocking waitpid to check for events. If nothing is
98 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
99 it means something happened to a child process. As soon as we know
100 there's an event, we get back to calling nonblocking waitpid.
101
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend
103 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
104 when it's blocked, the signal becomes pending and sigsuspend
105 immediately notices it and returns.
106
107 Waiting for events in async mode (TARGET_WNOHANG)
108 =================================================
109
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options. Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target. We
114 detect asynchronous target events by handling SIGCHLD signals. To
115 notify the event loop about target events, the self-pipe trick is used
116 --- a pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler writes a
119 byte to this pipe. This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad. OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop. Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls. Those waitpid calls, while blocking, are guarantied to
139 return quickly. E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144
145 Use of signals
146 ==============
147
148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it. SIGSTOP's advantage is that it can not be
151 blocked. A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153
154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162
163 We could use a real-time signal instead. This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked.
168
169 Exec events
170 ===========
171
172 The case of a thread group (process) with 3 or more threads, and a
173 thread other than the leader execs is worth detailing:
174
175 On an exec, the Linux kernel destroys all threads except the execing
176 one in the thread group, and resets the execing thread's tid to the
177 tgid. No exit notification is sent for the execing thread -- from the
178 ptracer's perspective, it appears as though the execing thread just
179 vanishes. Until we reap all other threads except the leader and the
180 execing thread, the leader will be zombie, and the execing thread will
181 be in `D (disc sleep)' state. As soon as all other threads are
182 reaped, the execing thread changes its tid to the tgid, and the
183 previous (zombie) leader vanishes, giving place to the "new"
184 leader. */
185
186 #ifndef O_LARGEFILE
187 #define O_LARGEFILE 0
188 #endif
189
190 struct linux_nat_target *linux_target;
191
192 /* Does the current host support PTRACE_GETREGSET? */
193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194
195 static unsigned int debug_linux_nat;
196 static void
197 show_debug_linux_nat (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
201 value);
202 }
203
204 struct simple_pid_list
205 {
206 int pid;
207 int status;
208 struct simple_pid_list *next;
209 };
210 struct simple_pid_list *stopped_pids;
211
212 /* Whether target_thread_events is in effect. */
213 static int report_thread_events;
214
215 /* Async mode support. */
216
217 /* The read/write ends of the pipe registered as waitable file in the
218 event loop. */
219 static int linux_nat_event_pipe[2] = { -1, -1 };
220
221 /* True if we're currently in async mode. */
222 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
223
224 /* Flush the event pipe. */
225
226 static void
227 async_file_flush (void)
228 {
229 int ret;
230 char buf;
231
232 do
233 {
234 ret = read (linux_nat_event_pipe[0], &buf, 1);
235 }
236 while (ret >= 0 || (ret == -1 && errno == EINTR));
237 }
238
239 /* Put something (anything, doesn't matter what, or how much) in event
240 pipe, so that the select/poll in the event-loop realizes we have
241 something to process. */
242
243 static void
244 async_file_mark (void)
245 {
246 int ret;
247
248 /* It doesn't really matter what the pipe contains, as long we end
249 up with something in it. Might as well flush the previous
250 left-overs. */
251 async_file_flush ();
252
253 do
254 {
255 ret = write (linux_nat_event_pipe[1], "+", 1);
256 }
257 while (ret == -1 && errno == EINTR);
258
259 /* Ignore EAGAIN. If the pipe is full, the event loop will already
260 be awakened anyway. */
261 }
262
263 static int kill_lwp (int lwpid, int signo);
264
265 static int stop_callback (struct lwp_info *lp);
266
267 static void block_child_signals (sigset_t *prev_mask);
268 static void restore_child_signals_mask (sigset_t *prev_mask);
269
270 struct lwp_info;
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void purge_lwp_list (int pid);
273 static void delete_lwp (ptid_t ptid);
274 static struct lwp_info *find_lwp_pid (ptid_t ptid);
275
276 static int lwp_status_pending_p (struct lwp_info *lp);
277
278 static void save_stop_reason (struct lwp_info *lp);
279
280 \f
281 /* LWP accessors. */
282
283 /* See nat/linux-nat.h. */
284
285 ptid_t
286 ptid_of_lwp (struct lwp_info *lwp)
287 {
288 return lwp->ptid;
289 }
290
291 /* See nat/linux-nat.h. */
292
293 void
294 lwp_set_arch_private_info (struct lwp_info *lwp,
295 struct arch_lwp_info *info)
296 {
297 lwp->arch_private = info;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 struct arch_lwp_info *
303 lwp_arch_private_info (struct lwp_info *lwp)
304 {
305 return lwp->arch_private;
306 }
307
308 /* See nat/linux-nat.h. */
309
310 int
311 lwp_is_stopped (struct lwp_info *lwp)
312 {
313 return lwp->stopped;
314 }
315
316 /* See nat/linux-nat.h. */
317
318 enum target_stop_reason
319 lwp_stop_reason (struct lwp_info *lwp)
320 {
321 return lwp->stop_reason;
322 }
323
324 /* See nat/linux-nat.h. */
325
326 int
327 lwp_is_stepping (struct lwp_info *lwp)
328 {
329 return lwp->step;
330 }
331
332 \f
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
335 static void
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
337 {
338 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
339
340 new_pid->pid = pid;
341 new_pid->status = status;
342 new_pid->next = *listp;
343 *listp = new_pid;
344 }
345
346 static int
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
348 {
349 struct simple_pid_list **p;
350
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
353 {
354 struct simple_pid_list *next = (*p)->next;
355
356 *statusp = (*p)->status;
357 xfree (*p);
358 *p = next;
359 return 1;
360 }
361 return 0;
362 }
363
364 /* Return the ptrace options that we want to try to enable. */
365
366 static int
367 linux_nat_ptrace_options (int attached)
368 {
369 int options = 0;
370
371 if (!attached)
372 options |= PTRACE_O_EXITKILL;
373
374 options |= (PTRACE_O_TRACESYSGOOD
375 | PTRACE_O_TRACEVFORKDONE
376 | PTRACE_O_TRACEVFORK
377 | PTRACE_O_TRACEFORK
378 | PTRACE_O_TRACEEXEC);
379
380 return options;
381 }
382
383 /* Initialize ptrace and procfs warnings and check for supported
384 ptrace features given PID.
385
386 ATTACHED should be nonzero iff we attached to the inferior. */
387
388 static void
389 linux_init_ptrace_procfs (pid_t pid, int attached)
390 {
391 int options = linux_nat_ptrace_options (attached);
392
393 linux_enable_event_reporting (pid, options);
394 linux_ptrace_init_warnings ();
395 linux_proc_init_warnings ();
396 }
397
398 linux_nat_target::~linux_nat_target ()
399 {}
400
401 void
402 linux_nat_target::post_attach (int pid)
403 {
404 linux_init_ptrace_procfs (pid, 1);
405 }
406
407 void
408 linux_nat_target::post_startup_inferior (ptid_t ptid)
409 {
410 linux_init_ptrace_procfs (ptid.pid (), 0);
411 }
412
413 /* Return the number of known LWPs in the tgid given by PID. */
414
415 static int
416 num_lwps (int pid)
417 {
418 int count = 0;
419 struct lwp_info *lp;
420
421 for (lp = lwp_list; lp; lp = lp->next)
422 if (lp->ptid.pid () == pid)
423 count++;
424
425 return count;
426 }
427
428 /* Deleter for lwp_info unique_ptr specialisation. */
429
430 struct lwp_deleter
431 {
432 void operator() (struct lwp_info *lwp) const
433 {
434 delete_lwp (lwp->ptid);
435 }
436 };
437
438 /* A unique_ptr specialisation for lwp_info. */
439
440 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
441
442 /* Target hook for follow_fork. On entry inferior_ptid must be the
443 ptid of the followed inferior. At return, inferior_ptid will be
444 unchanged. */
445
446 int
447 linux_nat_target::follow_fork (int follow_child, int detach_fork)
448 {
449 if (!follow_child)
450 {
451 struct lwp_info *child_lp = NULL;
452 int has_vforked;
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
455
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = parent_ptid.lwp ();
461 child_pid = child_ptid.lwp ();
462
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
467
468 /* Detach new forked process? */
469 if (detach_fork)
470 {
471 int child_stop_signal = 0;
472 bool detach_child = true;
473
474 /* Move CHILD_LP into a unique_ptr and clear the source pointer
475 to prevent us doing anything stupid with it. */
476 lwp_info_up child_lp_ptr (child_lp);
477 child_lp = nullptr;
478
479 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
480
481 /* When debugging an inferior in an architecture that supports
482 hardware single stepping on a kernel without commit
483 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
484 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
485 set if the parent process had them set.
486 To work around this, single step the child process
487 once before detaching to clear the flags. */
488
489 /* Note that we consult the parent's architecture instead of
490 the child's because there's no inferior for the child at
491 this point. */
492 if (!gdbarch_software_single_step_p (target_thread_architecture
493 (parent_ptid)))
494 {
495 int status;
496
497 linux_disable_event_reporting (child_pid);
498 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
499 perror_with_name (_("Couldn't do single step"));
500 if (my_waitpid (child_pid, &status, 0) < 0)
501 perror_with_name (_("Couldn't wait vfork process"));
502 else
503 {
504 detach_child = WIFSTOPPED (status);
505 child_stop_signal = WSTOPSIG (status);
506 }
507 }
508
509 if (detach_child)
510 {
511 int signo = child_stop_signal;
512
513 if (signo != 0
514 && !signal_pass_state (gdb_signal_from_host (signo)))
515 signo = 0;
516 ptrace (PTRACE_DETACH, child_pid, 0, signo);
517 }
518 }
519 else
520 {
521 scoped_restore save_inferior_ptid
522 = make_scoped_restore (&inferior_ptid);
523 inferior_ptid = child_ptid;
524
525 /* Let the thread_db layer learn about this new process. */
526 check_for_thread_db ();
527 }
528
529 if (has_vforked)
530 {
531 struct lwp_info *parent_lp;
532
533 parent_lp = find_lwp_pid (parent_ptid);
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_is_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct lwp_info *child_lp;
605
606 child_lp = add_lwp (inferior_ptid);
607 child_lp->stopped = 1;
608 child_lp->last_resume_kind = resume_stop;
609
610 /* Let the thread_db layer learn about this new process. */
611 check_for_thread_db ();
612 }
613
614 return 0;
615 }
616
617 \f
618 int
619 linux_nat_target::insert_fork_catchpoint (int pid)
620 {
621 return !linux_supports_tracefork ();
622 }
623
624 int
625 linux_nat_target::remove_fork_catchpoint (int pid)
626 {
627 return 0;
628 }
629
630 int
631 linux_nat_target::insert_vfork_catchpoint (int pid)
632 {
633 return !linux_supports_tracefork ();
634 }
635
636 int
637 linux_nat_target::remove_vfork_catchpoint (int pid)
638 {
639 return 0;
640 }
641
642 int
643 linux_nat_target::insert_exec_catchpoint (int pid)
644 {
645 return !linux_supports_tracefork ();
646 }
647
648 int
649 linux_nat_target::remove_exec_catchpoint (int pid)
650 {
651 return 0;
652 }
653
654 int
655 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
656 gdb::array_view<const int> syscall_counts)
657 {
658 if (!linux_supports_tracesysgood ())
659 return 1;
660
661 /* On GNU/Linux, we ignore the arguments. It means that we only
662 enable the syscall catchpoints, but do not disable them.
663
664 Also, we do not use the `syscall_counts' information because we do not
665 filter system calls here. We let GDB do the logic for us. */
666 return 0;
667 }
668
669 /* List of known LWPs, keyed by LWP PID. This speeds up the common
670 case of mapping a PID returned from the kernel to our corresponding
671 lwp_info data structure. */
672 static htab_t lwp_lwpid_htab;
673
674 /* Calculate a hash from a lwp_info's LWP PID. */
675
676 static hashval_t
677 lwp_info_hash (const void *ap)
678 {
679 const struct lwp_info *lp = (struct lwp_info *) ap;
680 pid_t pid = lp->ptid.lwp ();
681
682 return iterative_hash_object (pid, 0);
683 }
684
685 /* Equality function for the lwp_info hash table. Compares the LWP's
686 PID. */
687
688 static int
689 lwp_lwpid_htab_eq (const void *a, const void *b)
690 {
691 const struct lwp_info *entry = (const struct lwp_info *) a;
692 const struct lwp_info *element = (const struct lwp_info *) b;
693
694 return entry->ptid.lwp () == element->ptid.lwp ();
695 }
696
697 /* Create the lwp_lwpid_htab hash table. */
698
699 static void
700 lwp_lwpid_htab_create (void)
701 {
702 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
703 }
704
705 /* Add LP to the hash table. */
706
707 static void
708 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
709 {
710 void **slot;
711
712 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
713 gdb_assert (slot != NULL && *slot == NULL);
714 *slot = lp;
715 }
716
717 /* Head of doubly-linked list of known LWPs. Sorted by reverse
718 creation order. This order is assumed in some cases. E.g.,
719 reaping status after killing alls lwps of a process: the leader LWP
720 must be reaped last. */
721 struct lwp_info *lwp_list;
722
723 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
724
725 static void
726 lwp_list_add (struct lwp_info *lp)
727 {
728 lp->next = lwp_list;
729 if (lwp_list != NULL)
730 lwp_list->prev = lp;
731 lwp_list = lp;
732 }
733
734 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737 static void
738 lwp_list_remove (struct lwp_info *lp)
739 {
740 /* Remove from sorted-by-creation-order list. */
741 if (lp->next != NULL)
742 lp->next->prev = lp->prev;
743 if (lp->prev != NULL)
744 lp->prev->next = lp->next;
745 if (lp == lwp_list)
746 lwp_list = lp->next;
747 }
748
749 \f
750
751 /* Original signal mask. */
752 static sigset_t normal_mask;
753
754 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
755 _initialize_linux_nat. */
756 static sigset_t suspend_mask;
757
758 /* Signals to block to make that sigsuspend work. */
759 static sigset_t blocked_mask;
760
761 /* SIGCHLD action. */
762 struct sigaction sigchld_action;
763
764 /* Block child signals (SIGCHLD and linux threads signals), and store
765 the previous mask in PREV_MASK. */
766
767 static void
768 block_child_signals (sigset_t *prev_mask)
769 {
770 /* Make sure SIGCHLD is blocked. */
771 if (!sigismember (&blocked_mask, SIGCHLD))
772 sigaddset (&blocked_mask, SIGCHLD);
773
774 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
775 }
776
777 /* Restore child signals mask, previously returned by
778 block_child_signals. */
779
780 static void
781 restore_child_signals_mask (sigset_t *prev_mask)
782 {
783 sigprocmask (SIG_SETMASK, prev_mask, NULL);
784 }
785
786 /* Mask of signals to pass directly to the inferior. */
787 static sigset_t pass_mask;
788
789 /* Update signals to pass to the inferior. */
790 void
791 linux_nat_target::pass_signals
792 (gdb::array_view<const unsigned char> pass_signals)
793 {
794 int signo;
795
796 sigemptyset (&pass_mask);
797
798 for (signo = 1; signo < NSIG; signo++)
799 {
800 int target_signo = gdb_signal_from_host (signo);
801 if (target_signo < pass_signals.size () && pass_signals[target_signo])
802 sigaddset (&pass_mask, signo);
803 }
804 }
805
806 \f
807
808 /* Prototypes for local functions. */
809 static int stop_wait_callback (struct lwp_info *lp);
810 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
811 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
812
813 \f
814
815 /* Destroy and free LP. */
816
817 static void
818 lwp_free (struct lwp_info *lp)
819 {
820 /* Let the arch specific bits release arch_lwp_info. */
821 linux_target->low_delete_thread (lp->arch_private);
822
823 xfree (lp);
824 }
825
826 /* Traversal function for purge_lwp_list. */
827
828 static int
829 lwp_lwpid_htab_remove_pid (void **slot, void *info)
830 {
831 struct lwp_info *lp = (struct lwp_info *) *slot;
832 int pid = *(int *) info;
833
834 if (lp->ptid.pid () == pid)
835 {
836 htab_clear_slot (lwp_lwpid_htab, slot);
837 lwp_list_remove (lp);
838 lwp_free (lp);
839 }
840
841 return 1;
842 }
843
844 /* Remove all LWPs belong to PID from the lwp list. */
845
846 static void
847 purge_lwp_list (int pid)
848 {
849 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
850 }
851
852 /* Add the LWP specified by PTID to the list. PTID is the first LWP
853 in the process. Return a pointer to the structure describing the
854 new LWP.
855
856 This differs from add_lwp in that we don't let the arch specific
857 bits know about this new thread. Current clients of this callback
858 take the opportunity to install watchpoints in the new thread, and
859 we shouldn't do that for the first thread. If we're spawning a
860 child ("run"), the thread executes the shell wrapper first, and we
861 shouldn't touch it until it execs the program we want to debug.
862 For "attach", it'd be okay to call the callback, but it's not
863 necessary, because watchpoints can't yet have been inserted into
864 the inferior. */
865
866 static struct lwp_info *
867 add_initial_lwp (ptid_t ptid)
868 {
869 struct lwp_info *lp;
870
871 gdb_assert (ptid.lwp_p ());
872
873 lp = XNEW (struct lwp_info);
874
875 memset (lp, 0, sizeof (struct lwp_info));
876
877 lp->last_resume_kind = resume_continue;
878 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
879
880 lp->ptid = ptid;
881 lp->core = -1;
882
883 /* Add to sorted-by-reverse-creation-order list. */
884 lwp_list_add (lp);
885
886 /* Add to keyed-by-pid htab. */
887 lwp_lwpid_htab_add_lwp (lp);
888
889 return lp;
890 }
891
892 /* Add the LWP specified by PID to the list. Return a pointer to the
893 structure describing the new LWP. The LWP should already be
894 stopped. */
895
896 static struct lwp_info *
897 add_lwp (ptid_t ptid)
898 {
899 struct lwp_info *lp;
900
901 lp = add_initial_lwp (ptid);
902
903 /* Let the arch specific bits know about this new thread. Current
904 clients of this callback take the opportunity to install
905 watchpoints in the new thread. We don't do this for the first
906 thread though. See add_initial_lwp. */
907 linux_target->low_new_thread (lp);
908
909 return lp;
910 }
911
912 /* Remove the LWP specified by PID from the list. */
913
914 static void
915 delete_lwp (ptid_t ptid)
916 {
917 struct lwp_info *lp;
918 void **slot;
919 struct lwp_info dummy;
920
921 dummy.ptid = ptid;
922 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
923 if (slot == NULL)
924 return;
925
926 lp = *(struct lwp_info **) slot;
927 gdb_assert (lp != NULL);
928
929 htab_clear_slot (lwp_lwpid_htab, slot);
930
931 /* Remove from sorted-by-creation-order list. */
932 lwp_list_remove (lp);
933
934 /* Release. */
935 lwp_free (lp);
936 }
937
938 /* Return a pointer to the structure describing the LWP corresponding
939 to PID. If no corresponding LWP could be found, return NULL. */
940
941 static struct lwp_info *
942 find_lwp_pid (ptid_t ptid)
943 {
944 struct lwp_info *lp;
945 int lwp;
946 struct lwp_info dummy;
947
948 if (ptid.lwp_p ())
949 lwp = ptid.lwp ();
950 else
951 lwp = ptid.pid ();
952
953 dummy.ptid = ptid_t (0, lwp, 0);
954 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
955 return lp;
956 }
957
958 /* See nat/linux-nat.h. */
959
960 struct lwp_info *
961 iterate_over_lwps (ptid_t filter,
962 gdb::function_view<iterate_over_lwps_ftype> callback)
963 {
964 struct lwp_info *lp, *lpnext;
965
966 for (lp = lwp_list; lp; lp = lpnext)
967 {
968 lpnext = lp->next;
969
970 if (lp->ptid.matches (filter))
971 {
972 if (callback (lp) != 0)
973 return lp;
974 }
975 }
976
977 return NULL;
978 }
979
980 /* Update our internal state when changing from one checkpoint to
981 another indicated by NEW_PTID. We can only switch single-threaded
982 applications, so we only create one new LWP, and the previous list
983 is discarded. */
984
985 void
986 linux_nat_switch_fork (ptid_t new_ptid)
987 {
988 struct lwp_info *lp;
989
990 purge_lwp_list (inferior_ptid.pid ());
991
992 lp = add_lwp (new_ptid);
993 lp->stopped = 1;
994
995 /* This changes the thread's ptid while preserving the gdb thread
996 num. Also changes the inferior pid, while preserving the
997 inferior num. */
998 thread_change_ptid (inferior_ptid, new_ptid);
999
1000 /* We've just told GDB core that the thread changed target id, but,
1001 in fact, it really is a different thread, with different register
1002 contents. */
1003 registers_changed ();
1004 }
1005
1006 /* Handle the exit of a single thread LP. */
1007
1008 static void
1009 exit_lwp (struct lwp_info *lp)
1010 {
1011 struct thread_info *th = find_thread_ptid (lp->ptid);
1012
1013 if (th)
1014 {
1015 if (print_thread_events)
1016 printf_unfiltered (_("[%s exited]\n"),
1017 target_pid_to_str (lp->ptid).c_str ());
1018
1019 delete_thread (th);
1020 }
1021
1022 delete_lwp (lp->ptid);
1023 }
1024
1025 /* Wait for the LWP specified by LP, which we have just attached to.
1026 Returns a wait status for that LWP, to cache. */
1027
1028 static int
1029 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1030 {
1031 pid_t new_pid, pid = ptid.lwp ();
1032 int status;
1033
1034 if (linux_proc_pid_is_stopped (pid))
1035 {
1036 if (debug_linux_nat)
1037 fprintf_unfiltered (gdb_stdlog,
1038 "LNPAW: Attaching to a stopped process\n");
1039
1040 /* The process is definitely stopped. It is in a job control
1041 stop, unless the kernel predates the TASK_STOPPED /
1042 TASK_TRACED distinction, in which case it might be in a
1043 ptrace stop. Make sure it is in a ptrace stop; from there we
1044 can kill it, signal it, et cetera.
1045
1046 First make sure there is a pending SIGSTOP. Since we are
1047 already attached, the process can not transition from stopped
1048 to running without a PTRACE_CONT; so we know this signal will
1049 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1050 probably already in the queue (unless this kernel is old
1051 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1052 is not an RT signal, it can only be queued once. */
1053 kill_lwp (pid, SIGSTOP);
1054
1055 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1056 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1057 ptrace (PTRACE_CONT, pid, 0, 0);
1058 }
1059
1060 /* Make sure the initial process is stopped. The user-level threads
1061 layer might want to poke around in the inferior, and that won't
1062 work if things haven't stabilized yet. */
1063 new_pid = my_waitpid (pid, &status, __WALL);
1064 gdb_assert (pid == new_pid);
1065
1066 if (!WIFSTOPPED (status))
1067 {
1068 /* The pid we tried to attach has apparently just exited. */
1069 if (debug_linux_nat)
1070 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1071 pid, status_to_str (status));
1072 return status;
1073 }
1074
1075 if (WSTOPSIG (status) != SIGSTOP)
1076 {
1077 *signalled = 1;
1078 if (debug_linux_nat)
1079 fprintf_unfiltered (gdb_stdlog,
1080 "LNPAW: Received %s after attaching\n",
1081 status_to_str (status));
1082 }
1083
1084 return status;
1085 }
1086
1087 void
1088 linux_nat_target::create_inferior (const char *exec_file,
1089 const std::string &allargs,
1090 char **env, int from_tty)
1091 {
1092 maybe_disable_address_space_randomization restore_personality
1093 (disable_randomization);
1094
1095 /* The fork_child mechanism is synchronous and calls target_wait, so
1096 we have to mask the async mode. */
1097
1098 /* Make sure we report all signals during startup. */
1099 pass_signals ({});
1100
1101 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1102 }
1103
1104 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1105 already attached. Returns true if a new LWP is found, false
1106 otherwise. */
1107
1108 static int
1109 attach_proc_task_lwp_callback (ptid_t ptid)
1110 {
1111 struct lwp_info *lp;
1112
1113 /* Ignore LWPs we're already attached to. */
1114 lp = find_lwp_pid (ptid);
1115 if (lp == NULL)
1116 {
1117 int lwpid = ptid.lwp ();
1118
1119 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1120 {
1121 int err = errno;
1122
1123 /* Be quiet if we simply raced with the thread exiting.
1124 EPERM is returned if the thread's task still exists, and
1125 is marked as exited or zombie, as well as other
1126 conditions, so in that case, confirm the status in
1127 /proc/PID/status. */
1128 if (err == ESRCH
1129 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1130 {
1131 if (debug_linux_nat)
1132 {
1133 fprintf_unfiltered (gdb_stdlog,
1134 "Cannot attach to lwp %d: "
1135 "thread is gone (%d: %s)\n",
1136 lwpid, err, safe_strerror (err));
1137 }
1138 }
1139 else
1140 {
1141 std::string reason
1142 = linux_ptrace_attach_fail_reason_string (ptid, err);
1143
1144 warning (_("Cannot attach to lwp %d: %s"),
1145 lwpid, reason.c_str ());
1146 }
1147 }
1148 else
1149 {
1150 if (debug_linux_nat)
1151 fprintf_unfiltered (gdb_stdlog,
1152 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1153 target_pid_to_str (ptid).c_str ());
1154
1155 lp = add_lwp (ptid);
1156
1157 /* The next time we wait for this LWP we'll see a SIGSTOP as
1158 PTRACE_ATTACH brings it to a halt. */
1159 lp->signalled = 1;
1160
1161 /* We need to wait for a stop before being able to make the
1162 next ptrace call on this LWP. */
1163 lp->must_set_ptrace_flags = 1;
1164
1165 /* So that wait collects the SIGSTOP. */
1166 lp->resumed = 1;
1167
1168 /* Also add the LWP to gdb's thread list, in case a
1169 matching libthread_db is not found (or the process uses
1170 raw clone). */
1171 add_thread (lp->ptid);
1172 set_running (lp->ptid, 1);
1173 set_executing (lp->ptid, 1);
1174 }
1175
1176 return 1;
1177 }
1178 return 0;
1179 }
1180
1181 void
1182 linux_nat_target::attach (const char *args, int from_tty)
1183 {
1184 struct lwp_info *lp;
1185 int status;
1186 ptid_t ptid;
1187
1188 /* Make sure we report all signals during attach. */
1189 pass_signals ({});
1190
1191 try
1192 {
1193 inf_ptrace_target::attach (args, from_tty);
1194 }
1195 catch (const gdb_exception_error &ex)
1196 {
1197 pid_t pid = parse_pid_to_attach (args);
1198 std::string reason = linux_ptrace_attach_fail_reason (pid);
1199
1200 if (!reason.empty ())
1201 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1202 ex.what ());
1203 else
1204 throw_error (ex.error, "%s", ex.what ());
1205 }
1206
1207 /* The ptrace base target adds the main thread with (pid,0,0)
1208 format. Decorate it with lwp info. */
1209 ptid = ptid_t (inferior_ptid.pid (),
1210 inferior_ptid.pid (),
1211 0);
1212 thread_change_ptid (inferior_ptid, ptid);
1213
1214 /* Add the initial process as the first LWP to the list. */
1215 lp = add_initial_lwp (ptid);
1216
1217 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1218 if (!WIFSTOPPED (status))
1219 {
1220 if (WIFEXITED (status))
1221 {
1222 int exit_code = WEXITSTATUS (status);
1223
1224 target_terminal::ours ();
1225 target_mourn_inferior (inferior_ptid);
1226 if (exit_code == 0)
1227 error (_("Unable to attach: program exited normally."));
1228 else
1229 error (_("Unable to attach: program exited with code %d."),
1230 exit_code);
1231 }
1232 else if (WIFSIGNALED (status))
1233 {
1234 enum gdb_signal signo;
1235
1236 target_terminal::ours ();
1237 target_mourn_inferior (inferior_ptid);
1238
1239 signo = gdb_signal_from_host (WTERMSIG (status));
1240 error (_("Unable to attach: program terminated with signal "
1241 "%s, %s."),
1242 gdb_signal_to_name (signo),
1243 gdb_signal_to_string (signo));
1244 }
1245
1246 internal_error (__FILE__, __LINE__,
1247 _("unexpected status %d for PID %ld"),
1248 status, (long) ptid.lwp ());
1249 }
1250
1251 lp->stopped = 1;
1252
1253 /* Save the wait status to report later. */
1254 lp->resumed = 1;
1255 if (debug_linux_nat)
1256 fprintf_unfiltered (gdb_stdlog,
1257 "LNA: waitpid %ld, saving status %s\n",
1258 (long) lp->ptid.pid (), status_to_str (status));
1259
1260 lp->status = status;
1261
1262 /* We must attach to every LWP. If /proc is mounted, use that to
1263 find them now. The inferior may be using raw clone instead of
1264 using pthreads. But even if it is using pthreads, thread_db
1265 walks structures in the inferior's address space to find the list
1266 of threads/LWPs, and those structures may well be corrupted.
1267 Note that once thread_db is loaded, we'll still use it to list
1268 threads and associate pthread info with each LWP. */
1269 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1270 attach_proc_task_lwp_callback);
1271
1272 if (target_can_async_p ())
1273 target_async (1);
1274 }
1275
1276 /* Get pending signal of THREAD as a host signal number, for detaching
1277 purposes. This is the signal the thread last stopped for, which we
1278 need to deliver to the thread when detaching, otherwise, it'd be
1279 suppressed/lost. */
1280
1281 static int
1282 get_detach_signal (struct lwp_info *lp)
1283 {
1284 enum gdb_signal signo = GDB_SIGNAL_0;
1285
1286 /* If we paused threads momentarily, we may have stored pending
1287 events in lp->status or lp->waitstatus (see stop_wait_callback),
1288 and GDB core hasn't seen any signal for those threads.
1289 Otherwise, the last signal reported to the core is found in the
1290 thread object's stop_signal.
1291
1292 There's a corner case that isn't handled here at present. Only
1293 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1294 stop_signal make sense as a real signal to pass to the inferior.
1295 Some catchpoint related events, like
1296 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1297 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1298 those traps are debug API (ptrace in our case) related and
1299 induced; the inferior wouldn't see them if it wasn't being
1300 traced. Hence, we should never pass them to the inferior, even
1301 when set to pass state. Since this corner case isn't handled by
1302 infrun.c when proceeding with a signal, for consistency, neither
1303 do we handle it here (or elsewhere in the file we check for
1304 signal pass state). Normally SIGTRAP isn't set to pass state, so
1305 this is really a corner case. */
1306
1307 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1308 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1309 else if (lp->status)
1310 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1311 else
1312 {
1313 struct thread_info *tp = find_thread_ptid (lp->ptid);
1314
1315 if (target_is_non_stop_p () && !tp->executing)
1316 {
1317 if (tp->suspend.waitstatus_pending_p)
1318 signo = tp->suspend.waitstatus.value.sig;
1319 else
1320 signo = tp->suspend.stop_signal;
1321 }
1322 else if (!target_is_non_stop_p ())
1323 {
1324 struct target_waitstatus last;
1325 ptid_t last_ptid;
1326
1327 get_last_target_status (&last_ptid, &last);
1328
1329 if (lp->ptid.lwp () == last_ptid.lwp ())
1330 signo = tp->suspend.stop_signal;
1331 }
1332 }
1333
1334 if (signo == GDB_SIGNAL_0)
1335 {
1336 if (debug_linux_nat)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "GPT: lwp %s has no pending signal\n",
1339 target_pid_to_str (lp->ptid).c_str ());
1340 }
1341 else if (!signal_pass_state (signo))
1342 {
1343 if (debug_linux_nat)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "GPT: lwp %s had signal %s, "
1346 "but it is in no pass state\n",
1347 target_pid_to_str (lp->ptid).c_str (),
1348 gdb_signal_to_string (signo));
1349 }
1350 else
1351 {
1352 if (debug_linux_nat)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "GPT: lwp %s has pending signal %s\n",
1355 target_pid_to_str (lp->ptid).c_str (),
1356 gdb_signal_to_string (signo));
1357
1358 return gdb_signal_to_host (signo);
1359 }
1360
1361 return 0;
1362 }
1363
1364 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1365 signal number that should be passed to the LWP when detaching.
1366 Otherwise pass any pending signal the LWP may have, if any. */
1367
1368 static void
1369 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1370 {
1371 int lwpid = lp->ptid.lwp ();
1372 int signo;
1373
1374 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1375
1376 if (debug_linux_nat && lp->status)
1377 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1378 strsignal (WSTOPSIG (lp->status)),
1379 target_pid_to_str (lp->ptid).c_str ());
1380
1381 /* If there is a pending SIGSTOP, get rid of it. */
1382 if (lp->signalled)
1383 {
1384 if (debug_linux_nat)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "DC: Sending SIGCONT to %s\n",
1387 target_pid_to_str (lp->ptid).c_str ());
1388
1389 kill_lwp (lwpid, SIGCONT);
1390 lp->signalled = 0;
1391 }
1392
1393 if (signo_p == NULL)
1394 {
1395 /* Pass on any pending signal for this LWP. */
1396 signo = get_detach_signal (lp);
1397 }
1398 else
1399 signo = *signo_p;
1400
1401 /* Preparing to resume may try to write registers, and fail if the
1402 lwp is zombie. If that happens, ignore the error. We'll handle
1403 it below, when detach fails with ESRCH. */
1404 try
1405 {
1406 linux_target->low_prepare_to_resume (lp);
1407 }
1408 catch (const gdb_exception_error &ex)
1409 {
1410 if (!check_ptrace_stopped_lwp_gone (lp))
1411 throw_exception (ex);
1412 }
1413
1414 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1415 {
1416 int save_errno = errno;
1417
1418 /* We know the thread exists, so ESRCH must mean the lwp is
1419 zombie. This can happen if one of the already-detached
1420 threads exits the whole thread group. In that case we're
1421 still attached, and must reap the lwp. */
1422 if (save_errno == ESRCH)
1423 {
1424 int ret, status;
1425
1426 ret = my_waitpid (lwpid, &status, __WALL);
1427 if (ret == -1)
1428 {
1429 warning (_("Couldn't reap LWP %d while detaching: %s"),
1430 lwpid, strerror (errno));
1431 }
1432 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1433 {
1434 warning (_("Reaping LWP %d while detaching "
1435 "returned unexpected status 0x%x"),
1436 lwpid, status);
1437 }
1438 }
1439 else
1440 {
1441 error (_("Can't detach %s: %s"),
1442 target_pid_to_str (lp->ptid).c_str (),
1443 safe_strerror (save_errno));
1444 }
1445 }
1446 else if (debug_linux_nat)
1447 {
1448 fprintf_unfiltered (gdb_stdlog,
1449 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1450 target_pid_to_str (lp->ptid).c_str (),
1451 strsignal (signo));
1452 }
1453
1454 delete_lwp (lp->ptid);
1455 }
1456
1457 static int
1458 detach_callback (struct lwp_info *lp)
1459 {
1460 /* We don't actually detach from the thread group leader just yet.
1461 If the thread group exits, we must reap the zombie clone lwps
1462 before we're able to reap the leader. */
1463 if (lp->ptid.lwp () != lp->ptid.pid ())
1464 detach_one_lwp (lp, NULL);
1465 return 0;
1466 }
1467
1468 void
1469 linux_nat_target::detach (inferior *inf, int from_tty)
1470 {
1471 struct lwp_info *main_lwp;
1472 int pid = inf->pid;
1473
1474 /* Don't unregister from the event loop, as there may be other
1475 inferiors running. */
1476
1477 /* Stop all threads before detaching. ptrace requires that the
1478 thread is stopped to sucessfully detach. */
1479 iterate_over_lwps (ptid_t (pid), stop_callback);
1480 /* ... and wait until all of them have reported back that
1481 they're no longer running. */
1482 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1483
1484 iterate_over_lwps (ptid_t (pid), detach_callback);
1485
1486 /* Only the initial process should be left right now. */
1487 gdb_assert (num_lwps (pid) == 1);
1488
1489 main_lwp = find_lwp_pid (ptid_t (pid));
1490
1491 if (forks_exist_p ())
1492 {
1493 /* Multi-fork case. The current inferior_ptid is being detached
1494 from, but there are other viable forks to debug. Detach from
1495 the current fork, and context-switch to the first
1496 available. */
1497 linux_fork_detach (from_tty);
1498 }
1499 else
1500 {
1501 target_announce_detach (from_tty);
1502
1503 /* Pass on any pending signal for the last LWP. */
1504 int signo = get_detach_signal (main_lwp);
1505
1506 detach_one_lwp (main_lwp, &signo);
1507
1508 detach_success (inf);
1509 }
1510 }
1511
1512 /* Resume execution of the inferior process. If STEP is nonzero,
1513 single-step it. If SIGNAL is nonzero, give it that signal. */
1514
1515 static void
1516 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1517 enum gdb_signal signo)
1518 {
1519 lp->step = step;
1520
1521 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1522 We only presently need that if the LWP is stepped though (to
1523 handle the case of stepping a breakpoint instruction). */
1524 if (step)
1525 {
1526 struct regcache *regcache = get_thread_regcache (lp->ptid);
1527
1528 lp->stop_pc = regcache_read_pc (regcache);
1529 }
1530 else
1531 lp->stop_pc = 0;
1532
1533 linux_target->low_prepare_to_resume (lp);
1534 linux_target->low_resume (lp->ptid, step, signo);
1535
1536 /* Successfully resumed. Clear state that no longer makes sense,
1537 and mark the LWP as running. Must not do this before resuming
1538 otherwise if that fails other code will be confused. E.g., we'd
1539 later try to stop the LWP and hang forever waiting for a stop
1540 status. Note that we must not throw after this is cleared,
1541 otherwise handle_zombie_lwp_error would get confused. */
1542 lp->stopped = 0;
1543 lp->core = -1;
1544 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1545 registers_changed_ptid (lp->ptid);
1546 }
1547
1548 /* Called when we try to resume a stopped LWP and that errors out. If
1549 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1550 or about to become), discard the error, clear any pending status
1551 the LWP may have, and return true (we'll collect the exit status
1552 soon enough). Otherwise, return false. */
1553
1554 static int
1555 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1556 {
1557 /* If we get an error after resuming the LWP successfully, we'd
1558 confuse !T state for the LWP being gone. */
1559 gdb_assert (lp->stopped);
1560
1561 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1562 because even if ptrace failed with ESRCH, the tracee may be "not
1563 yet fully dead", but already refusing ptrace requests. In that
1564 case the tracee has 'R (Running)' state for a little bit
1565 (observed in Linux 3.18). See also the note on ESRCH in the
1566 ptrace(2) man page. Instead, check whether the LWP has any state
1567 other than ptrace-stopped. */
1568
1569 /* Don't assume anything if /proc/PID/status can't be read. */
1570 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1571 {
1572 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1573 lp->status = 0;
1574 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1575 return 1;
1576 }
1577 return 0;
1578 }
1579
1580 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1581 disappears while we try to resume it. */
1582
1583 static void
1584 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1585 {
1586 try
1587 {
1588 linux_resume_one_lwp_throw (lp, step, signo);
1589 }
1590 catch (const gdb_exception_error &ex)
1591 {
1592 if (!check_ptrace_stopped_lwp_gone (lp))
1593 throw_exception (ex);
1594 }
1595 }
1596
1597 /* Resume LP. */
1598
1599 static void
1600 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1601 {
1602 if (lp->stopped)
1603 {
1604 struct inferior *inf = find_inferior_ptid (lp->ptid);
1605
1606 if (inf->vfork_child != NULL)
1607 {
1608 if (debug_linux_nat)
1609 fprintf_unfiltered (gdb_stdlog,
1610 "RC: Not resuming %s (vfork parent)\n",
1611 target_pid_to_str (lp->ptid).c_str ());
1612 }
1613 else if (!lwp_status_pending_p (lp))
1614 {
1615 if (debug_linux_nat)
1616 fprintf_unfiltered (gdb_stdlog,
1617 "RC: Resuming sibling %s, %s, %s\n",
1618 target_pid_to_str (lp->ptid).c_str (),
1619 (signo != GDB_SIGNAL_0
1620 ? strsignal (gdb_signal_to_host (signo))
1621 : "0"),
1622 step ? "step" : "resume");
1623
1624 linux_resume_one_lwp (lp, step, signo);
1625 }
1626 else
1627 {
1628 if (debug_linux_nat)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "RC: Not resuming sibling %s (has pending)\n",
1631 target_pid_to_str (lp->ptid).c_str ());
1632 }
1633 }
1634 else
1635 {
1636 if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "RC: Not resuming sibling %s (not stopped)\n",
1639 target_pid_to_str (lp->ptid).c_str ());
1640 }
1641 }
1642
1643 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1644 Resume LWP with the last stop signal, if it is in pass state. */
1645
1646 static int
1647 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1648 {
1649 enum gdb_signal signo = GDB_SIGNAL_0;
1650
1651 if (lp == except)
1652 return 0;
1653
1654 if (lp->stopped)
1655 {
1656 struct thread_info *thread;
1657
1658 thread = find_thread_ptid (lp->ptid);
1659 if (thread != NULL)
1660 {
1661 signo = thread->suspend.stop_signal;
1662 thread->suspend.stop_signal = GDB_SIGNAL_0;
1663 }
1664 }
1665
1666 resume_lwp (lp, 0, signo);
1667 return 0;
1668 }
1669
1670 static int
1671 resume_clear_callback (struct lwp_info *lp)
1672 {
1673 lp->resumed = 0;
1674 lp->last_resume_kind = resume_stop;
1675 return 0;
1676 }
1677
1678 static int
1679 resume_set_callback (struct lwp_info *lp)
1680 {
1681 lp->resumed = 1;
1682 lp->last_resume_kind = resume_continue;
1683 return 0;
1684 }
1685
1686 void
1687 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1688 {
1689 struct lwp_info *lp;
1690 int resume_many;
1691
1692 if (debug_linux_nat)
1693 fprintf_unfiltered (gdb_stdlog,
1694 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1695 step ? "step" : "resume",
1696 target_pid_to_str (ptid).c_str (),
1697 (signo != GDB_SIGNAL_0
1698 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1699 target_pid_to_str (inferior_ptid).c_str ());
1700
1701 /* A specific PTID means `step only this process id'. */
1702 resume_many = (minus_one_ptid == ptid
1703 || ptid.is_pid ());
1704
1705 /* Mark the lwps we're resuming as resumed. */
1706 iterate_over_lwps (ptid, resume_set_callback);
1707
1708 /* See if it's the current inferior that should be handled
1709 specially. */
1710 if (resume_many)
1711 lp = find_lwp_pid (inferior_ptid);
1712 else
1713 lp = find_lwp_pid (ptid);
1714 gdb_assert (lp != NULL);
1715
1716 /* Remember if we're stepping. */
1717 lp->last_resume_kind = step ? resume_step : resume_continue;
1718
1719 /* If we have a pending wait status for this thread, there is no
1720 point in resuming the process. But first make sure that
1721 linux_nat_wait won't preemptively handle the event - we
1722 should never take this short-circuit if we are going to
1723 leave LP running, since we have skipped resuming all the
1724 other threads. This bit of code needs to be synchronized
1725 with linux_nat_wait. */
1726
1727 if (lp->status && WIFSTOPPED (lp->status))
1728 {
1729 if (!lp->step
1730 && WSTOPSIG (lp->status)
1731 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1732 {
1733 if (debug_linux_nat)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "LLR: Not short circuiting for ignored "
1736 "status 0x%x\n", lp->status);
1737
1738 /* FIXME: What should we do if we are supposed to continue
1739 this thread with a signal? */
1740 gdb_assert (signo == GDB_SIGNAL_0);
1741 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1742 lp->status = 0;
1743 }
1744 }
1745
1746 if (lwp_status_pending_p (lp))
1747 {
1748 /* FIXME: What should we do if we are supposed to continue
1749 this thread with a signal? */
1750 gdb_assert (signo == GDB_SIGNAL_0);
1751
1752 if (debug_linux_nat)
1753 fprintf_unfiltered (gdb_stdlog,
1754 "LLR: Short circuiting for status 0x%x\n",
1755 lp->status);
1756
1757 if (target_can_async_p ())
1758 {
1759 target_async (1);
1760 /* Tell the event loop we have something to process. */
1761 async_file_mark ();
1762 }
1763 return;
1764 }
1765
1766 if (resume_many)
1767 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1768 {
1769 return linux_nat_resume_callback (info, lp);
1770 });
1771
1772 if (debug_linux_nat)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "LLR: %s %s, %s (resume event thread)\n",
1775 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1776 target_pid_to_str (lp->ptid).c_str (),
1777 (signo != GDB_SIGNAL_0
1778 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1779
1780 linux_resume_one_lwp (lp, step, signo);
1781
1782 if (target_can_async_p ())
1783 target_async (1);
1784 }
1785
1786 /* Send a signal to an LWP. */
1787
1788 static int
1789 kill_lwp (int lwpid, int signo)
1790 {
1791 int ret;
1792
1793 errno = 0;
1794 ret = syscall (__NR_tkill, lwpid, signo);
1795 if (errno == ENOSYS)
1796 {
1797 /* If tkill fails, then we are not using nptl threads, a
1798 configuration we no longer support. */
1799 perror_with_name (("tkill"));
1800 }
1801 return ret;
1802 }
1803
1804 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1805 event, check if the core is interested in it: if not, ignore the
1806 event, and keep waiting; otherwise, we need to toggle the LWP's
1807 syscall entry/exit status, since the ptrace event itself doesn't
1808 indicate it, and report the trap to higher layers. */
1809
1810 static int
1811 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1812 {
1813 struct target_waitstatus *ourstatus = &lp->waitstatus;
1814 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1815 thread_info *thread = find_thread_ptid (lp->ptid);
1816 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1817
1818 if (stopping)
1819 {
1820 /* If we're stopping threads, there's a SIGSTOP pending, which
1821 makes it so that the LWP reports an immediate syscall return,
1822 followed by the SIGSTOP. Skip seeing that "return" using
1823 PTRACE_CONT directly, and let stop_wait_callback collect the
1824 SIGSTOP. Later when the thread is resumed, a new syscall
1825 entry event. If we didn't do this (and returned 0), we'd
1826 leave a syscall entry pending, and our caller, by using
1827 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1828 itself. Later, when the user re-resumes this LWP, we'd see
1829 another syscall entry event and we'd mistake it for a return.
1830
1831 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1832 (leaving immediately with LWP->signalled set, without issuing
1833 a PTRACE_CONT), it would still be problematic to leave this
1834 syscall enter pending, as later when the thread is resumed,
1835 it would then see the same syscall exit mentioned above,
1836 followed by the delayed SIGSTOP, while the syscall didn't
1837 actually get to execute. It seems it would be even more
1838 confusing to the user. */
1839
1840 if (debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog,
1842 "LHST: ignoring syscall %d "
1843 "for LWP %ld (stopping threads), "
1844 "resuming with PTRACE_CONT for SIGSTOP\n",
1845 syscall_number,
1846 lp->ptid.lwp ());
1847
1848 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1849 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1850 lp->stopped = 0;
1851 return 1;
1852 }
1853
1854 /* Always update the entry/return state, even if this particular
1855 syscall isn't interesting to the core now. In async mode,
1856 the user could install a new catchpoint for this syscall
1857 between syscall enter/return, and we'll need to know to
1858 report a syscall return if that happens. */
1859 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1860 ? TARGET_WAITKIND_SYSCALL_RETURN
1861 : TARGET_WAITKIND_SYSCALL_ENTRY);
1862
1863 if (catch_syscall_enabled ())
1864 {
1865 if (catching_syscall_number (syscall_number))
1866 {
1867 /* Alright, an event to report. */
1868 ourstatus->kind = lp->syscall_state;
1869 ourstatus->value.syscall_number = syscall_number;
1870
1871 if (debug_linux_nat)
1872 fprintf_unfiltered (gdb_stdlog,
1873 "LHST: stopping for %s of syscall %d"
1874 " for LWP %ld\n",
1875 lp->syscall_state
1876 == TARGET_WAITKIND_SYSCALL_ENTRY
1877 ? "entry" : "return",
1878 syscall_number,
1879 lp->ptid.lwp ());
1880 return 0;
1881 }
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LHST: ignoring %s of syscall %d "
1886 "for LWP %ld\n",
1887 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1888 ? "entry" : "return",
1889 syscall_number,
1890 lp->ptid.lwp ());
1891 }
1892 else
1893 {
1894 /* If we had been syscall tracing, and hence used PT_SYSCALL
1895 before on this LWP, it could happen that the user removes all
1896 syscall catchpoints before we get to process this event.
1897 There are two noteworthy issues here:
1898
1899 - When stopped at a syscall entry event, resuming with
1900 PT_STEP still resumes executing the syscall and reports a
1901 syscall return.
1902
1903 - Only PT_SYSCALL catches syscall enters. If we last
1904 single-stepped this thread, then this event can't be a
1905 syscall enter. If we last single-stepped this thread, this
1906 has to be a syscall exit.
1907
1908 The points above mean that the next resume, be it PT_STEP or
1909 PT_CONTINUE, can not trigger a syscall trace event. */
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: caught syscall event "
1913 "with no syscall catchpoints."
1914 " %d for LWP %ld, ignoring\n",
1915 syscall_number,
1916 lp->ptid.lwp ());
1917 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1918 }
1919
1920 /* The core isn't interested in this event. For efficiency, avoid
1921 stopping all threads only to have the core resume them all again.
1922 Since we're not stopping threads, if we're still syscall tracing
1923 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1924 subsequent syscall. Simply resume using the inf-ptrace layer,
1925 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1926
1927 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1928 return 1;
1929 }
1930
1931 /* Handle a GNU/Linux extended wait response. If we see a clone
1932 event, we need to add the new LWP to our list (and not report the
1933 trap to higher layers). This function returns non-zero if the
1934 event should be ignored and we should wait again. If STOPPING is
1935 true, the new LWP remains stopped, otherwise it is continued. */
1936
1937 static int
1938 linux_handle_extended_wait (struct lwp_info *lp, int status)
1939 {
1940 int pid = lp->ptid.lwp ();
1941 struct target_waitstatus *ourstatus = &lp->waitstatus;
1942 int event = linux_ptrace_get_extended_event (status);
1943
1944 /* All extended events we currently use are mid-syscall. Only
1945 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1946 you have to be using PTRACE_SEIZE to get that. */
1947 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1948
1949 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1950 || event == PTRACE_EVENT_CLONE)
1951 {
1952 unsigned long new_pid;
1953 int ret;
1954
1955 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1956
1957 /* If we haven't already seen the new PID stop, wait for it now. */
1958 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1959 {
1960 /* The new child has a pending SIGSTOP. We can't affect it until it
1961 hits the SIGSTOP, but we're already attached. */
1962 ret = my_waitpid (new_pid, &status, __WALL);
1963 if (ret == -1)
1964 perror_with_name (_("waiting for new child"));
1965 else if (ret != new_pid)
1966 internal_error (__FILE__, __LINE__,
1967 _("wait returned unexpected PID %d"), ret);
1968 else if (!WIFSTOPPED (status))
1969 internal_error (__FILE__, __LINE__,
1970 _("wait returned unexpected status 0x%x"), status);
1971 }
1972
1973 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1974
1975 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1976 {
1977 /* The arch-specific native code may need to know about new
1978 forks even if those end up never mapped to an
1979 inferior. */
1980 linux_target->low_new_fork (lp, new_pid);
1981 }
1982
1983 if (event == PTRACE_EVENT_FORK
1984 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1985 {
1986 /* Handle checkpointing by linux-fork.c here as a special
1987 case. We don't want the follow-fork-mode or 'catch fork'
1988 to interfere with this. */
1989
1990 /* This won't actually modify the breakpoint list, but will
1991 physically remove the breakpoints from the child. */
1992 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1993
1994 /* Retain child fork in ptrace (stopped) state. */
1995 if (!find_fork_pid (new_pid))
1996 add_fork (new_pid);
1997
1998 /* Report as spurious, so that infrun doesn't want to follow
1999 this fork. We're actually doing an infcall in
2000 linux-fork.c. */
2001 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2002
2003 /* Report the stop to the core. */
2004 return 0;
2005 }
2006
2007 if (event == PTRACE_EVENT_FORK)
2008 ourstatus->kind = TARGET_WAITKIND_FORKED;
2009 else if (event == PTRACE_EVENT_VFORK)
2010 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2011 else if (event == PTRACE_EVENT_CLONE)
2012 {
2013 struct lwp_info *new_lp;
2014
2015 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2016
2017 if (debug_linux_nat)
2018 fprintf_unfiltered (gdb_stdlog,
2019 "LHEW: Got clone event "
2020 "from LWP %d, new child is LWP %ld\n",
2021 pid, new_pid);
2022
2023 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2024 new_lp->stopped = 1;
2025 new_lp->resumed = 1;
2026
2027 /* If the thread_db layer is active, let it record the user
2028 level thread id and status, and add the thread to GDB's
2029 list. */
2030 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2031 {
2032 /* The process is not using thread_db. Add the LWP to
2033 GDB's list. */
2034 target_post_attach (new_lp->ptid.lwp ());
2035 add_thread (new_lp->ptid);
2036 }
2037
2038 /* Even if we're stopping the thread for some reason
2039 internal to this module, from the perspective of infrun
2040 and the user/frontend, this new thread is running until
2041 it next reports a stop. */
2042 set_running (new_lp->ptid, 1);
2043 set_executing (new_lp->ptid, 1);
2044
2045 if (WSTOPSIG (status) != SIGSTOP)
2046 {
2047 /* This can happen if someone starts sending signals to
2048 the new thread before it gets a chance to run, which
2049 have a lower number than SIGSTOP (e.g. SIGUSR1).
2050 This is an unlikely case, and harder to handle for
2051 fork / vfork than for clone, so we do not try - but
2052 we handle it for clone events here. */
2053
2054 new_lp->signalled = 1;
2055
2056 /* We created NEW_LP so it cannot yet contain STATUS. */
2057 gdb_assert (new_lp->status == 0);
2058
2059 /* Save the wait status to report later. */
2060 if (debug_linux_nat)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "LHEW: waitpid of new LWP %ld, "
2063 "saving status %s\n",
2064 (long) new_lp->ptid.lwp (),
2065 status_to_str (status));
2066 new_lp->status = status;
2067 }
2068 else if (report_thread_events)
2069 {
2070 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2071 new_lp->status = status;
2072 }
2073
2074 return 1;
2075 }
2076
2077 return 0;
2078 }
2079
2080 if (event == PTRACE_EVENT_EXEC)
2081 {
2082 if (debug_linux_nat)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "LHEW: Got exec event from LWP %ld\n",
2085 lp->ptid.lwp ());
2086
2087 ourstatus->kind = TARGET_WAITKIND_EXECD;
2088 ourstatus->value.execd_pathname
2089 = xstrdup (linux_proc_pid_to_exec_file (pid));
2090
2091 /* The thread that execed must have been resumed, but, when a
2092 thread execs, it changes its tid to the tgid, and the old
2093 tgid thread might have not been resumed. */
2094 lp->resumed = 1;
2095 return 0;
2096 }
2097
2098 if (event == PTRACE_EVENT_VFORK_DONE)
2099 {
2100 if (current_inferior ()->waiting_for_vfork_done)
2101 {
2102 if (debug_linux_nat)
2103 fprintf_unfiltered (gdb_stdlog,
2104 "LHEW: Got expected PTRACE_EVENT_"
2105 "VFORK_DONE from LWP %ld: stopping\n",
2106 lp->ptid.lwp ());
2107
2108 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2109 return 0;
2110 }
2111
2112 if (debug_linux_nat)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2115 "from LWP %ld: ignoring\n",
2116 lp->ptid.lwp ());
2117 return 1;
2118 }
2119
2120 internal_error (__FILE__, __LINE__,
2121 _("unknown ptrace event %d"), event);
2122 }
2123
2124 /* Suspend waiting for a signal. We're mostly interested in
2125 SIGCHLD/SIGINT. */
2126
2127 static void
2128 wait_for_signal ()
2129 {
2130 if (debug_linux_nat)
2131 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2132 sigsuspend (&suspend_mask);
2133
2134 /* If the quit flag is set, it means that the user pressed Ctrl-C
2135 and we're debugging a process that is running on a separate
2136 terminal, so we must forward the Ctrl-C to the inferior. (If the
2137 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2138 inferior directly.) We must do this here because functions that
2139 need to block waiting for a signal loop forever until there's an
2140 event to report before returning back to the event loop. */
2141 if (!target_terminal::is_ours ())
2142 {
2143 if (check_quit_flag ())
2144 target_pass_ctrlc ();
2145 }
2146 }
2147
2148 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2149 exited. */
2150
2151 static int
2152 wait_lwp (struct lwp_info *lp)
2153 {
2154 pid_t pid;
2155 int status = 0;
2156 int thread_dead = 0;
2157 sigset_t prev_mask;
2158
2159 gdb_assert (!lp->stopped);
2160 gdb_assert (lp->status == 0);
2161
2162 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2163 block_child_signals (&prev_mask);
2164
2165 for (;;)
2166 {
2167 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2168 if (pid == -1 && errno == ECHILD)
2169 {
2170 /* The thread has previously exited. We need to delete it
2171 now because if this was a non-leader thread execing, we
2172 won't get an exit event. See comments on exec events at
2173 the top of the file. */
2174 thread_dead = 1;
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2177 target_pid_to_str (lp->ptid).c_str ());
2178 }
2179 if (pid != 0)
2180 break;
2181
2182 /* Bugs 10970, 12702.
2183 Thread group leader may have exited in which case we'll lock up in
2184 waitpid if there are other threads, even if they are all zombies too.
2185 Basically, we're not supposed to use waitpid this way.
2186 tkill(pid,0) cannot be used here as it gets ESRCH for both
2187 for zombie and running processes.
2188
2189 As a workaround, check if we're waiting for the thread group leader and
2190 if it's a zombie, and avoid calling waitpid if it is.
2191
2192 This is racy, what if the tgl becomes a zombie right after we check?
2193 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2194 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2195
2196 if (lp->ptid.pid () == lp->ptid.lwp ()
2197 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2198 {
2199 thread_dead = 1;
2200 if (debug_linux_nat)
2201 fprintf_unfiltered (gdb_stdlog,
2202 "WL: Thread group leader %s vanished.\n",
2203 target_pid_to_str (lp->ptid).c_str ());
2204 break;
2205 }
2206
2207 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2208 get invoked despite our caller had them intentionally blocked by
2209 block_child_signals. This is sensitive only to the loop of
2210 linux_nat_wait_1 and there if we get called my_waitpid gets called
2211 again before it gets to sigsuspend so we can safely let the handlers
2212 get executed here. */
2213 wait_for_signal ();
2214 }
2215
2216 restore_child_signals_mask (&prev_mask);
2217
2218 if (!thread_dead)
2219 {
2220 gdb_assert (pid == lp->ptid.lwp ());
2221
2222 if (debug_linux_nat)
2223 {
2224 fprintf_unfiltered (gdb_stdlog,
2225 "WL: waitpid %s received %s\n",
2226 target_pid_to_str (lp->ptid).c_str (),
2227 status_to_str (status));
2228 }
2229
2230 /* Check if the thread has exited. */
2231 if (WIFEXITED (status) || WIFSIGNALED (status))
2232 {
2233 if (report_thread_events
2234 || lp->ptid.pid () == lp->ptid.lwp ())
2235 {
2236 if (debug_linux_nat)
2237 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2238 lp->ptid.pid ());
2239
2240 /* If this is the leader exiting, it means the whole
2241 process is gone. Store the status to report to the
2242 core. Store it in lp->waitstatus, because lp->status
2243 would be ambiguous (W_EXITCODE(0,0) == 0). */
2244 store_waitstatus (&lp->waitstatus, status);
2245 return 0;
2246 }
2247
2248 thread_dead = 1;
2249 if (debug_linux_nat)
2250 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2251 target_pid_to_str (lp->ptid).c_str ());
2252 }
2253 }
2254
2255 if (thread_dead)
2256 {
2257 exit_lwp (lp);
2258 return 0;
2259 }
2260
2261 gdb_assert (WIFSTOPPED (status));
2262 lp->stopped = 1;
2263
2264 if (lp->must_set_ptrace_flags)
2265 {
2266 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2267 int options = linux_nat_ptrace_options (inf->attach_flag);
2268
2269 linux_enable_event_reporting (lp->ptid.lwp (), options);
2270 lp->must_set_ptrace_flags = 0;
2271 }
2272
2273 /* Handle GNU/Linux's syscall SIGTRAPs. */
2274 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2275 {
2276 /* No longer need the sysgood bit. The ptrace event ends up
2277 recorded in lp->waitstatus if we care for it. We can carry
2278 on handling the event like a regular SIGTRAP from here
2279 on. */
2280 status = W_STOPCODE (SIGTRAP);
2281 if (linux_handle_syscall_trap (lp, 1))
2282 return wait_lwp (lp);
2283 }
2284 else
2285 {
2286 /* Almost all other ptrace-stops are known to be outside of system
2287 calls, with further exceptions in linux_handle_extended_wait. */
2288 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2289 }
2290
2291 /* Handle GNU/Linux's extended waitstatus for trace events. */
2292 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2293 && linux_is_extended_waitstatus (status))
2294 {
2295 if (debug_linux_nat)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "WL: Handling extended status 0x%06x\n",
2298 status);
2299 linux_handle_extended_wait (lp, status);
2300 return 0;
2301 }
2302
2303 return status;
2304 }
2305
2306 /* Send a SIGSTOP to LP. */
2307
2308 static int
2309 stop_callback (struct lwp_info *lp)
2310 {
2311 if (!lp->stopped && !lp->signalled)
2312 {
2313 int ret;
2314
2315 if (debug_linux_nat)
2316 {
2317 fprintf_unfiltered (gdb_stdlog,
2318 "SC: kill %s **<SIGSTOP>**\n",
2319 target_pid_to_str (lp->ptid).c_str ());
2320 }
2321 errno = 0;
2322 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2323 if (debug_linux_nat)
2324 {
2325 fprintf_unfiltered (gdb_stdlog,
2326 "SC: lwp kill %d %s\n",
2327 ret,
2328 errno ? safe_strerror (errno) : "ERRNO-OK");
2329 }
2330
2331 lp->signalled = 1;
2332 gdb_assert (lp->status == 0);
2333 }
2334
2335 return 0;
2336 }
2337
2338 /* Request a stop on LWP. */
2339
2340 void
2341 linux_stop_lwp (struct lwp_info *lwp)
2342 {
2343 stop_callback (lwp);
2344 }
2345
2346 /* See linux-nat.h */
2347
2348 void
2349 linux_stop_and_wait_all_lwps (void)
2350 {
2351 /* Stop all LWP's ... */
2352 iterate_over_lwps (minus_one_ptid, stop_callback);
2353
2354 /* ... and wait until all of them have reported back that
2355 they're no longer running. */
2356 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2357 }
2358
2359 /* See linux-nat.h */
2360
2361 void
2362 linux_unstop_all_lwps (void)
2363 {
2364 iterate_over_lwps (minus_one_ptid,
2365 [] (struct lwp_info *info)
2366 {
2367 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2368 });
2369 }
2370
2371 /* Return non-zero if LWP PID has a pending SIGINT. */
2372
2373 static int
2374 linux_nat_has_pending_sigint (int pid)
2375 {
2376 sigset_t pending, blocked, ignored;
2377
2378 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2379
2380 if (sigismember (&pending, SIGINT)
2381 && !sigismember (&ignored, SIGINT))
2382 return 1;
2383
2384 return 0;
2385 }
2386
2387 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2388
2389 static int
2390 set_ignore_sigint (struct lwp_info *lp)
2391 {
2392 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2393 flag to consume the next one. */
2394 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2395 && WSTOPSIG (lp->status) == SIGINT)
2396 lp->status = 0;
2397 else
2398 lp->ignore_sigint = 1;
2399
2400 return 0;
2401 }
2402
2403 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2404 This function is called after we know the LWP has stopped; if the LWP
2405 stopped before the expected SIGINT was delivered, then it will never have
2406 arrived. Also, if the signal was delivered to a shared queue and consumed
2407 by a different thread, it will never be delivered to this LWP. */
2408
2409 static void
2410 maybe_clear_ignore_sigint (struct lwp_info *lp)
2411 {
2412 if (!lp->ignore_sigint)
2413 return;
2414
2415 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2416 {
2417 if (debug_linux_nat)
2418 fprintf_unfiltered (gdb_stdlog,
2419 "MCIS: Clearing bogus flag for %s\n",
2420 target_pid_to_str (lp->ptid).c_str ());
2421 lp->ignore_sigint = 0;
2422 }
2423 }
2424
2425 /* Fetch the possible triggered data watchpoint info and store it in
2426 LP.
2427
2428 On some archs, like x86, that use debug registers to set
2429 watchpoints, it's possible that the way to know which watched
2430 address trapped, is to check the register that is used to select
2431 which address to watch. Problem is, between setting the watchpoint
2432 and reading back which data address trapped, the user may change
2433 the set of watchpoints, and, as a consequence, GDB changes the
2434 debug registers in the inferior. To avoid reading back a stale
2435 stopped-data-address when that happens, we cache in LP the fact
2436 that a watchpoint trapped, and the corresponding data address, as
2437 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2438 registers meanwhile, we have the cached data we can rely on. */
2439
2440 static int
2441 check_stopped_by_watchpoint (struct lwp_info *lp)
2442 {
2443 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2444 inferior_ptid = lp->ptid;
2445
2446 if (linux_target->low_stopped_by_watchpoint ())
2447 {
2448 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2449 lp->stopped_data_address_p
2450 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2451 }
2452
2453 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2454 }
2455
2456 /* Returns true if the LWP had stopped for a watchpoint. */
2457
2458 bool
2459 linux_nat_target::stopped_by_watchpoint ()
2460 {
2461 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2462
2463 gdb_assert (lp != NULL);
2464
2465 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2466 }
2467
2468 bool
2469 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2470 {
2471 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2472
2473 gdb_assert (lp != NULL);
2474
2475 *addr_p = lp->stopped_data_address;
2476
2477 return lp->stopped_data_address_p;
2478 }
2479
2480 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2481
2482 bool
2483 linux_nat_target::low_status_is_event (int status)
2484 {
2485 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2486 }
2487
2488 /* Wait until LP is stopped. */
2489
2490 static int
2491 stop_wait_callback (struct lwp_info *lp)
2492 {
2493 struct inferior *inf = find_inferior_ptid (lp->ptid);
2494
2495 /* If this is a vfork parent, bail out, it is not going to report
2496 any SIGSTOP until the vfork is done with. */
2497 if (inf->vfork_child != NULL)
2498 return 0;
2499
2500 if (!lp->stopped)
2501 {
2502 int status;
2503
2504 status = wait_lwp (lp);
2505 if (status == 0)
2506 return 0;
2507
2508 if (lp->ignore_sigint && WIFSTOPPED (status)
2509 && WSTOPSIG (status) == SIGINT)
2510 {
2511 lp->ignore_sigint = 0;
2512
2513 errno = 0;
2514 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2515 lp->stopped = 0;
2516 if (debug_linux_nat)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "PTRACE_CONT %s, 0, 0 (%s) "
2519 "(discarding SIGINT)\n",
2520 target_pid_to_str (lp->ptid).c_str (),
2521 errno ? safe_strerror (errno) : "OK");
2522
2523 return stop_wait_callback (lp);
2524 }
2525
2526 maybe_clear_ignore_sigint (lp);
2527
2528 if (WSTOPSIG (status) != SIGSTOP)
2529 {
2530 /* The thread was stopped with a signal other than SIGSTOP. */
2531
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "SWC: Pending event %s in %s\n",
2535 status_to_str ((int) status),
2536 target_pid_to_str (lp->ptid).c_str ());
2537
2538 /* Save the sigtrap event. */
2539 lp->status = status;
2540 gdb_assert (lp->signalled);
2541 save_stop_reason (lp);
2542 }
2543 else
2544 {
2545 /* We caught the SIGSTOP that we intended to catch. */
2546
2547 if (debug_linux_nat)
2548 fprintf_unfiltered (gdb_stdlog,
2549 "SWC: Expected SIGSTOP caught for %s.\n",
2550 target_pid_to_str (lp->ptid).c_str ());
2551
2552 lp->signalled = 0;
2553
2554 /* If we are waiting for this stop so we can report the thread
2555 stopped then we need to record this status. Otherwise, we can
2556 now discard this stop event. */
2557 if (lp->last_resume_kind == resume_stop)
2558 {
2559 lp->status = status;
2560 save_stop_reason (lp);
2561 }
2562 }
2563 }
2564
2565 return 0;
2566 }
2567
2568 /* Return non-zero if LP has a wait status pending. Discard the
2569 pending event and resume the LWP if the event that originally
2570 caused the stop became uninteresting. */
2571
2572 static int
2573 status_callback (struct lwp_info *lp)
2574 {
2575 /* Only report a pending wait status if we pretend that this has
2576 indeed been resumed. */
2577 if (!lp->resumed)
2578 return 0;
2579
2580 if (!lwp_status_pending_p (lp))
2581 return 0;
2582
2583 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2584 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2585 {
2586 struct regcache *regcache = get_thread_regcache (lp->ptid);
2587 CORE_ADDR pc;
2588 int discard = 0;
2589
2590 pc = regcache_read_pc (regcache);
2591
2592 if (pc != lp->stop_pc)
2593 {
2594 if (debug_linux_nat)
2595 fprintf_unfiltered (gdb_stdlog,
2596 "SC: PC of %s changed. was=%s, now=%s\n",
2597 target_pid_to_str (lp->ptid).c_str (),
2598 paddress (target_gdbarch (), lp->stop_pc),
2599 paddress (target_gdbarch (), pc));
2600 discard = 1;
2601 }
2602
2603 #if !USE_SIGTRAP_SIGINFO
2604 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2605 {
2606 if (debug_linux_nat)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "SC: previous breakpoint of %s, at %s gone\n",
2609 target_pid_to_str (lp->ptid).c_str (),
2610 paddress (target_gdbarch (), lp->stop_pc));
2611
2612 discard = 1;
2613 }
2614 #endif
2615
2616 if (discard)
2617 {
2618 if (debug_linux_nat)
2619 fprintf_unfiltered (gdb_stdlog,
2620 "SC: pending event of %s cancelled.\n",
2621 target_pid_to_str (lp->ptid).c_str ());
2622
2623 lp->status = 0;
2624 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2625 return 0;
2626 }
2627 }
2628
2629 return 1;
2630 }
2631
2632 /* Count the LWP's that have had events. */
2633
2634 static int
2635 count_events_callback (struct lwp_info *lp, int *count)
2636 {
2637 gdb_assert (count != NULL);
2638
2639 /* Select only resumed LWPs that have an event pending. */
2640 if (lp->resumed && lwp_status_pending_p (lp))
2641 (*count)++;
2642
2643 return 0;
2644 }
2645
2646 /* Select the LWP (if any) that is currently being single-stepped. */
2647
2648 static int
2649 select_singlestep_lwp_callback (struct lwp_info *lp)
2650 {
2651 if (lp->last_resume_kind == resume_step
2652 && lp->status != 0)
2653 return 1;
2654 else
2655 return 0;
2656 }
2657
2658 /* Returns true if LP has a status pending. */
2659
2660 static int
2661 lwp_status_pending_p (struct lwp_info *lp)
2662 {
2663 /* We check for lp->waitstatus in addition to lp->status, because we
2664 can have pending process exits recorded in lp->status and
2665 W_EXITCODE(0,0) happens to be 0. */
2666 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2667 }
2668
2669 /* Select the Nth LWP that has had an event. */
2670
2671 static int
2672 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2673 {
2674 gdb_assert (selector != NULL);
2675
2676 /* Select only resumed LWPs that have an event pending. */
2677 if (lp->resumed && lwp_status_pending_p (lp))
2678 if ((*selector)-- == 0)
2679 return 1;
2680
2681 return 0;
2682 }
2683
2684 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2685 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2686 and save the result in the LWP's stop_reason field. If it stopped
2687 for a breakpoint, decrement the PC if necessary on the lwp's
2688 architecture. */
2689
2690 static void
2691 save_stop_reason (struct lwp_info *lp)
2692 {
2693 struct regcache *regcache;
2694 struct gdbarch *gdbarch;
2695 CORE_ADDR pc;
2696 CORE_ADDR sw_bp_pc;
2697 #if USE_SIGTRAP_SIGINFO
2698 siginfo_t siginfo;
2699 #endif
2700
2701 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2702 gdb_assert (lp->status != 0);
2703
2704 if (!linux_target->low_status_is_event (lp->status))
2705 return;
2706
2707 regcache = get_thread_regcache (lp->ptid);
2708 gdbarch = regcache->arch ();
2709
2710 pc = regcache_read_pc (regcache);
2711 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2712
2713 #if USE_SIGTRAP_SIGINFO
2714 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2715 {
2716 if (siginfo.si_signo == SIGTRAP)
2717 {
2718 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2719 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2720 {
2721 /* The si_code is ambiguous on this arch -- check debug
2722 registers. */
2723 if (!check_stopped_by_watchpoint (lp))
2724 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2725 }
2726 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2727 {
2728 /* If we determine the LWP stopped for a SW breakpoint,
2729 trust it. Particularly don't check watchpoint
2730 registers, because at least on s390, we'd find
2731 stopped-by-watchpoint as long as there's a watchpoint
2732 set. */
2733 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2734 }
2735 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2736 {
2737 /* This can indicate either a hardware breakpoint or
2738 hardware watchpoint. Check debug registers. */
2739 if (!check_stopped_by_watchpoint (lp))
2740 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2741 }
2742 else if (siginfo.si_code == TRAP_TRACE)
2743 {
2744 if (debug_linux_nat)
2745 fprintf_unfiltered (gdb_stdlog,
2746 "CSBB: %s stopped by trace\n",
2747 target_pid_to_str (lp->ptid).c_str ());
2748
2749 /* We may have single stepped an instruction that
2750 triggered a watchpoint. In that case, on some
2751 architectures (such as x86), instead of TRAP_HWBKPT,
2752 si_code indicates TRAP_TRACE, and we need to check
2753 the debug registers separately. */
2754 check_stopped_by_watchpoint (lp);
2755 }
2756 }
2757 }
2758 #else
2759 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2760 && software_breakpoint_inserted_here_p (regcache->aspace (),
2761 sw_bp_pc))
2762 {
2763 /* The LWP was either continued, or stepped a software
2764 breakpoint instruction. */
2765 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2766 }
2767
2768 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2769 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2770
2771 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2772 check_stopped_by_watchpoint (lp);
2773 #endif
2774
2775 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2776 {
2777 if (debug_linux_nat)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "CSBB: %s stopped by software breakpoint\n",
2780 target_pid_to_str (lp->ptid).c_str ());
2781
2782 /* Back up the PC if necessary. */
2783 if (pc != sw_bp_pc)
2784 regcache_write_pc (regcache, sw_bp_pc);
2785
2786 /* Update this so we record the correct stop PC below. */
2787 pc = sw_bp_pc;
2788 }
2789 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2790 {
2791 if (debug_linux_nat)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "CSBB: %s stopped by hardware breakpoint\n",
2794 target_pid_to_str (lp->ptid).c_str ());
2795 }
2796 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2797 {
2798 if (debug_linux_nat)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "CSBB: %s stopped by hardware watchpoint\n",
2801 target_pid_to_str (lp->ptid).c_str ());
2802 }
2803
2804 lp->stop_pc = pc;
2805 }
2806
2807
2808 /* Returns true if the LWP had stopped for a software breakpoint. */
2809
2810 bool
2811 linux_nat_target::stopped_by_sw_breakpoint ()
2812 {
2813 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2814
2815 gdb_assert (lp != NULL);
2816
2817 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2818 }
2819
2820 /* Implement the supports_stopped_by_sw_breakpoint method. */
2821
2822 bool
2823 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2824 {
2825 return USE_SIGTRAP_SIGINFO;
2826 }
2827
2828 /* Returns true if the LWP had stopped for a hardware
2829 breakpoint/watchpoint. */
2830
2831 bool
2832 linux_nat_target::stopped_by_hw_breakpoint ()
2833 {
2834 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2835
2836 gdb_assert (lp != NULL);
2837
2838 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2839 }
2840
2841 /* Implement the supports_stopped_by_hw_breakpoint method. */
2842
2843 bool
2844 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2845 {
2846 return USE_SIGTRAP_SIGINFO;
2847 }
2848
2849 /* Select one LWP out of those that have events pending. */
2850
2851 static void
2852 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2853 {
2854 int num_events = 0;
2855 int random_selector;
2856 struct lwp_info *event_lp = NULL;
2857
2858 /* Record the wait status for the original LWP. */
2859 (*orig_lp)->status = *status;
2860
2861 /* In all-stop, give preference to the LWP that is being
2862 single-stepped. There will be at most one, and it will be the
2863 LWP that the core is most interested in. If we didn't do this,
2864 then we'd have to handle pending step SIGTRAPs somehow in case
2865 the core later continues the previously-stepped thread, as
2866 otherwise we'd report the pending SIGTRAP then, and the core, not
2867 having stepped the thread, wouldn't understand what the trap was
2868 for, and therefore would report it to the user as a random
2869 signal. */
2870 if (!target_is_non_stop_p ())
2871 {
2872 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2873 if (event_lp != NULL)
2874 {
2875 if (debug_linux_nat)
2876 fprintf_unfiltered (gdb_stdlog,
2877 "SEL: Select single-step %s\n",
2878 target_pid_to_str (event_lp->ptid).c_str ());
2879 }
2880 }
2881
2882 if (event_lp == NULL)
2883 {
2884 /* Pick one at random, out of those which have had events. */
2885
2886 /* First see how many events we have. */
2887 iterate_over_lwps (filter,
2888 [&] (struct lwp_info *info)
2889 {
2890 return count_events_callback (info, &num_events);
2891 });
2892 gdb_assert (num_events > 0);
2893
2894 /* Now randomly pick a LWP out of those that have had
2895 events. */
2896 random_selector = (int)
2897 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2898
2899 if (debug_linux_nat && num_events > 1)
2900 fprintf_unfiltered (gdb_stdlog,
2901 "SEL: Found %d events, selecting #%d\n",
2902 num_events, random_selector);
2903
2904 event_lp
2905 = (iterate_over_lwps
2906 (filter,
2907 [&] (struct lwp_info *info)
2908 {
2909 return select_event_lwp_callback (info,
2910 &random_selector);
2911 }));
2912 }
2913
2914 if (event_lp != NULL)
2915 {
2916 /* Switch the event LWP. */
2917 *orig_lp = event_lp;
2918 *status = event_lp->status;
2919 }
2920
2921 /* Flush the wait status for the event LWP. */
2922 (*orig_lp)->status = 0;
2923 }
2924
2925 /* Return non-zero if LP has been resumed. */
2926
2927 static int
2928 resumed_callback (struct lwp_info *lp)
2929 {
2930 return lp->resumed;
2931 }
2932
2933 /* Check if we should go on and pass this event to common code.
2934 Return the affected lwp if we are, or NULL otherwise. */
2935
2936 static struct lwp_info *
2937 linux_nat_filter_event (int lwpid, int status)
2938 {
2939 struct lwp_info *lp;
2940 int event = linux_ptrace_get_extended_event (status);
2941
2942 lp = find_lwp_pid (ptid_t (lwpid));
2943
2944 /* Check for stop events reported by a process we didn't already
2945 know about - anything not already in our LWP list.
2946
2947 If we're expecting to receive stopped processes after
2948 fork, vfork, and clone events, then we'll just add the
2949 new one to our list and go back to waiting for the event
2950 to be reported - the stopped process might be returned
2951 from waitpid before or after the event is.
2952
2953 But note the case of a non-leader thread exec'ing after the
2954 leader having exited, and gone from our lists. The non-leader
2955 thread changes its tid to the tgid. */
2956
2957 if (WIFSTOPPED (status) && lp == NULL
2958 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2959 {
2960 /* A multi-thread exec after we had seen the leader exiting. */
2961 if (debug_linux_nat)
2962 fprintf_unfiltered (gdb_stdlog,
2963 "LLW: Re-adding thread group leader LWP %d.\n",
2964 lwpid);
2965
2966 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2967 lp->stopped = 1;
2968 lp->resumed = 1;
2969 add_thread (lp->ptid);
2970 }
2971
2972 if (WIFSTOPPED (status) && !lp)
2973 {
2974 if (debug_linux_nat)
2975 fprintf_unfiltered (gdb_stdlog,
2976 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2977 (long) lwpid, status_to_str (status));
2978 add_to_pid_list (&stopped_pids, lwpid, status);
2979 return NULL;
2980 }
2981
2982 /* Make sure we don't report an event for the exit of an LWP not in
2983 our list, i.e. not part of the current process. This can happen
2984 if we detach from a program we originally forked and then it
2985 exits. */
2986 if (!WIFSTOPPED (status) && !lp)
2987 return NULL;
2988
2989 /* This LWP is stopped now. (And if dead, this prevents it from
2990 ever being continued.) */
2991 lp->stopped = 1;
2992
2993 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2994 {
2995 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2996 int options = linux_nat_ptrace_options (inf->attach_flag);
2997
2998 linux_enable_event_reporting (lp->ptid.lwp (), options);
2999 lp->must_set_ptrace_flags = 0;
3000 }
3001
3002 /* Handle GNU/Linux's syscall SIGTRAPs. */
3003 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3004 {
3005 /* No longer need the sysgood bit. The ptrace event ends up
3006 recorded in lp->waitstatus if we care for it. We can carry
3007 on handling the event like a regular SIGTRAP from here
3008 on. */
3009 status = W_STOPCODE (SIGTRAP);
3010 if (linux_handle_syscall_trap (lp, 0))
3011 return NULL;
3012 }
3013 else
3014 {
3015 /* Almost all other ptrace-stops are known to be outside of system
3016 calls, with further exceptions in linux_handle_extended_wait. */
3017 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3018 }
3019
3020 /* Handle GNU/Linux's extended waitstatus for trace events. */
3021 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3022 && linux_is_extended_waitstatus (status))
3023 {
3024 if (debug_linux_nat)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "LLW: Handling extended status 0x%06x\n",
3027 status);
3028 if (linux_handle_extended_wait (lp, status))
3029 return NULL;
3030 }
3031
3032 /* Check if the thread has exited. */
3033 if (WIFEXITED (status) || WIFSIGNALED (status))
3034 {
3035 if (!report_thread_events
3036 && num_lwps (lp->ptid.pid ()) > 1)
3037 {
3038 if (debug_linux_nat)
3039 fprintf_unfiltered (gdb_stdlog,
3040 "LLW: %s exited.\n",
3041 target_pid_to_str (lp->ptid).c_str ());
3042
3043 /* If there is at least one more LWP, then the exit signal
3044 was not the end of the debugged application and should be
3045 ignored. */
3046 exit_lwp (lp);
3047 return NULL;
3048 }
3049
3050 /* Note that even if the leader was ptrace-stopped, it can still
3051 exit, if e.g., some other thread brings down the whole
3052 process (calls `exit'). So don't assert that the lwp is
3053 resumed. */
3054 if (debug_linux_nat)
3055 fprintf_unfiltered (gdb_stdlog,
3056 "LWP %ld exited (resumed=%d)\n",
3057 lp->ptid.lwp (), lp->resumed);
3058
3059 /* Dead LWP's aren't expected to reported a pending sigstop. */
3060 lp->signalled = 0;
3061
3062 /* Store the pending event in the waitstatus, because
3063 W_EXITCODE(0,0) == 0. */
3064 store_waitstatus (&lp->waitstatus, status);
3065 return lp;
3066 }
3067
3068 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3069 an attempt to stop an LWP. */
3070 if (lp->signalled
3071 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3072 {
3073 lp->signalled = 0;
3074
3075 if (lp->last_resume_kind == resume_stop)
3076 {
3077 if (debug_linux_nat)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "LLW: resume_stop SIGSTOP caught for %s.\n",
3080 target_pid_to_str (lp->ptid).c_str ());
3081 }
3082 else
3083 {
3084 /* This is a delayed SIGSTOP. Filter out the event. */
3085
3086 if (debug_linux_nat)
3087 fprintf_unfiltered (gdb_stdlog,
3088 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3089 lp->step ?
3090 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3091 target_pid_to_str (lp->ptid).c_str ());
3092
3093 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3094 gdb_assert (lp->resumed);
3095 return NULL;
3096 }
3097 }
3098
3099 /* Make sure we don't report a SIGINT that we have already displayed
3100 for another thread. */
3101 if (lp->ignore_sigint
3102 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3103 {
3104 if (debug_linux_nat)
3105 fprintf_unfiltered (gdb_stdlog,
3106 "LLW: Delayed SIGINT caught for %s.\n",
3107 target_pid_to_str (lp->ptid).c_str ());
3108
3109 /* This is a delayed SIGINT. */
3110 lp->ignore_sigint = 0;
3111
3112 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3113 if (debug_linux_nat)
3114 fprintf_unfiltered (gdb_stdlog,
3115 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3116 lp->step ?
3117 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3118 target_pid_to_str (lp->ptid).c_str ());
3119 gdb_assert (lp->resumed);
3120
3121 /* Discard the event. */
3122 return NULL;
3123 }
3124
3125 /* Don't report signals that GDB isn't interested in, such as
3126 signals that are neither printed nor stopped upon. Stopping all
3127 threads can be a bit time-consuming so if we want decent
3128 performance with heavily multi-threaded programs, especially when
3129 they're using a high frequency timer, we'd better avoid it if we
3130 can. */
3131 if (WIFSTOPPED (status))
3132 {
3133 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3134
3135 if (!target_is_non_stop_p ())
3136 {
3137 /* Only do the below in all-stop, as we currently use SIGSTOP
3138 to implement target_stop (see linux_nat_stop) in
3139 non-stop. */
3140 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3141 {
3142 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3143 forwarded to the entire process group, that is, all LWPs
3144 will receive it - unless they're using CLONE_THREAD to
3145 share signals. Since we only want to report it once, we
3146 mark it as ignored for all LWPs except this one. */
3147 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3148 lp->ignore_sigint = 0;
3149 }
3150 else
3151 maybe_clear_ignore_sigint (lp);
3152 }
3153
3154 /* When using hardware single-step, we need to report every signal.
3155 Otherwise, signals in pass_mask may be short-circuited
3156 except signals that might be caused by a breakpoint. */
3157 if (!lp->step
3158 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3159 && !linux_wstatus_maybe_breakpoint (status))
3160 {
3161 linux_resume_one_lwp (lp, lp->step, signo);
3162 if (debug_linux_nat)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "LLW: %s %s, %s (preempt 'handle')\n",
3165 lp->step ?
3166 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3167 target_pid_to_str (lp->ptid).c_str (),
3168 (signo != GDB_SIGNAL_0
3169 ? strsignal (gdb_signal_to_host (signo))
3170 : "0"));
3171 return NULL;
3172 }
3173 }
3174
3175 /* An interesting event. */
3176 gdb_assert (lp);
3177 lp->status = status;
3178 save_stop_reason (lp);
3179 return lp;
3180 }
3181
3182 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3183 their exits until all other threads in the group have exited. */
3184
3185 static void
3186 check_zombie_leaders (void)
3187 {
3188 for (inferior *inf : all_inferiors ())
3189 {
3190 struct lwp_info *leader_lp;
3191
3192 if (inf->pid == 0)
3193 continue;
3194
3195 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3196 if (leader_lp != NULL
3197 /* Check if there are other threads in the group, as we may
3198 have raced with the inferior simply exiting. */
3199 && num_lwps (inf->pid) > 1
3200 && linux_proc_pid_is_zombie (inf->pid))
3201 {
3202 if (debug_linux_nat)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "CZL: Thread group leader %d zombie "
3205 "(it exited, or another thread execd).\n",
3206 inf->pid);
3207
3208 /* A leader zombie can mean one of two things:
3209
3210 - It exited, and there's an exit status pending
3211 available, or only the leader exited (not the whole
3212 program). In the latter case, we can't waitpid the
3213 leader's exit status until all other threads are gone.
3214
3215 - There are 3 or more threads in the group, and a thread
3216 other than the leader exec'd. See comments on exec
3217 events at the top of the file. We could try
3218 distinguishing the exit and exec cases, by waiting once
3219 more, and seeing if something comes out, but it doesn't
3220 sound useful. The previous leader _does_ go away, and
3221 we'll re-add the new one once we see the exec event
3222 (which is just the same as what would happen if the
3223 previous leader did exit voluntarily before some other
3224 thread execs). */
3225
3226 if (debug_linux_nat)
3227 fprintf_unfiltered (gdb_stdlog,
3228 "CZL: Thread group leader %d vanished.\n",
3229 inf->pid);
3230 exit_lwp (leader_lp);
3231 }
3232 }
3233 }
3234
3235 /* Convenience function that is called when the kernel reports an exit
3236 event. This decides whether to report the event to GDB as a
3237 process exit event, a thread exit event, or to suppress the
3238 event. */
3239
3240 static ptid_t
3241 filter_exit_event (struct lwp_info *event_child,
3242 struct target_waitstatus *ourstatus)
3243 {
3244 ptid_t ptid = event_child->ptid;
3245
3246 if (num_lwps (ptid.pid ()) > 1)
3247 {
3248 if (report_thread_events)
3249 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3250 else
3251 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3252
3253 exit_lwp (event_child);
3254 }
3255
3256 return ptid;
3257 }
3258
3259 static ptid_t
3260 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3261 int target_options)
3262 {
3263 sigset_t prev_mask;
3264 enum resume_kind last_resume_kind;
3265 struct lwp_info *lp;
3266 int status;
3267
3268 if (debug_linux_nat)
3269 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3270
3271 /* The first time we get here after starting a new inferior, we may
3272 not have added it to the LWP list yet - this is the earliest
3273 moment at which we know its PID. */
3274 if (inferior_ptid.is_pid ())
3275 {
3276 /* Upgrade the main thread's ptid. */
3277 thread_change_ptid (inferior_ptid,
3278 ptid_t (inferior_ptid.pid (),
3279 inferior_ptid.pid (), 0));
3280
3281 lp = add_initial_lwp (inferior_ptid);
3282 lp->resumed = 1;
3283 }
3284
3285 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3286 block_child_signals (&prev_mask);
3287
3288 /* First check if there is a LWP with a wait status pending. */
3289 lp = iterate_over_lwps (ptid, status_callback);
3290 if (lp != NULL)
3291 {
3292 if (debug_linux_nat)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "LLW: Using pending wait status %s for %s.\n",
3295 status_to_str (lp->status),
3296 target_pid_to_str (lp->ptid).c_str ());
3297 }
3298
3299 /* But if we don't find a pending event, we'll have to wait. Always
3300 pull all events out of the kernel. We'll randomly select an
3301 event LWP out of all that have events, to prevent starvation. */
3302
3303 while (lp == NULL)
3304 {
3305 pid_t lwpid;
3306
3307 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3308 quirks:
3309
3310 - If the thread group leader exits while other threads in the
3311 thread group still exist, waitpid(TGID, ...) hangs. That
3312 waitpid won't return an exit status until the other threads
3313 in the group are reapped.
3314
3315 - When a non-leader thread execs, that thread just vanishes
3316 without reporting an exit (so we'd hang if we waited for it
3317 explicitly in that case). The exec event is reported to
3318 the TGID pid. */
3319
3320 errno = 0;
3321 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3322
3323 if (debug_linux_nat)
3324 fprintf_unfiltered (gdb_stdlog,
3325 "LNW: waitpid(-1, ...) returned %d, %s\n",
3326 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3327
3328 if (lwpid > 0)
3329 {
3330 if (debug_linux_nat)
3331 {
3332 fprintf_unfiltered (gdb_stdlog,
3333 "LLW: waitpid %ld received %s\n",
3334 (long) lwpid, status_to_str (status));
3335 }
3336
3337 linux_nat_filter_event (lwpid, status);
3338 /* Retry until nothing comes out of waitpid. A single
3339 SIGCHLD can indicate more than one child stopped. */
3340 continue;
3341 }
3342
3343 /* Now that we've pulled all events out of the kernel, resume
3344 LWPs that don't have an interesting event to report. */
3345 iterate_over_lwps (minus_one_ptid,
3346 [] (struct lwp_info *info)
3347 {
3348 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3349 });
3350
3351 /* ... and find an LWP with a status to report to the core, if
3352 any. */
3353 lp = iterate_over_lwps (ptid, status_callback);
3354 if (lp != NULL)
3355 break;
3356
3357 /* Check for zombie thread group leaders. Those can't be reaped
3358 until all other threads in the thread group are. */
3359 check_zombie_leaders ();
3360
3361 /* If there are no resumed children left, bail. We'd be stuck
3362 forever in the sigsuspend call below otherwise. */
3363 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3364 {
3365 if (debug_linux_nat)
3366 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3367
3368 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3369
3370 restore_child_signals_mask (&prev_mask);
3371 return minus_one_ptid;
3372 }
3373
3374 /* No interesting event to report to the core. */
3375
3376 if (target_options & TARGET_WNOHANG)
3377 {
3378 if (debug_linux_nat)
3379 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3380
3381 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3382 restore_child_signals_mask (&prev_mask);
3383 return minus_one_ptid;
3384 }
3385
3386 /* We shouldn't end up here unless we want to try again. */
3387 gdb_assert (lp == NULL);
3388
3389 /* Block until we get an event reported with SIGCHLD. */
3390 wait_for_signal ();
3391 }
3392
3393 gdb_assert (lp);
3394
3395 status = lp->status;
3396 lp->status = 0;
3397
3398 if (!target_is_non_stop_p ())
3399 {
3400 /* Now stop all other LWP's ... */
3401 iterate_over_lwps (minus_one_ptid, stop_callback);
3402
3403 /* ... and wait until all of them have reported back that
3404 they're no longer running. */
3405 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3406 }
3407
3408 /* If we're not waiting for a specific LWP, choose an event LWP from
3409 among those that have had events. Giving equal priority to all
3410 LWPs that have had events helps prevent starvation. */
3411 if (ptid == minus_one_ptid || ptid.is_pid ())
3412 select_event_lwp (ptid, &lp, &status);
3413
3414 gdb_assert (lp != NULL);
3415
3416 /* Now that we've selected our final event LWP, un-adjust its PC if
3417 it was a software breakpoint, and we can't reliably support the
3418 "stopped by software breakpoint" stop reason. */
3419 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3420 && !USE_SIGTRAP_SIGINFO)
3421 {
3422 struct regcache *regcache = get_thread_regcache (lp->ptid);
3423 struct gdbarch *gdbarch = regcache->arch ();
3424 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3425
3426 if (decr_pc != 0)
3427 {
3428 CORE_ADDR pc;
3429
3430 pc = regcache_read_pc (regcache);
3431 regcache_write_pc (regcache, pc + decr_pc);
3432 }
3433 }
3434
3435 /* We'll need this to determine whether to report a SIGSTOP as
3436 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3437 clears it. */
3438 last_resume_kind = lp->last_resume_kind;
3439
3440 if (!target_is_non_stop_p ())
3441 {
3442 /* In all-stop, from the core's perspective, all LWPs are now
3443 stopped until a new resume action is sent over. */
3444 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3445 }
3446 else
3447 {
3448 resume_clear_callback (lp);
3449 }
3450
3451 if (linux_target->low_status_is_event (status))
3452 {
3453 if (debug_linux_nat)
3454 fprintf_unfiltered (gdb_stdlog,
3455 "LLW: trap ptid is %s.\n",
3456 target_pid_to_str (lp->ptid).c_str ());
3457 }
3458
3459 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3460 {
3461 *ourstatus = lp->waitstatus;
3462 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3463 }
3464 else
3465 store_waitstatus (ourstatus, status);
3466
3467 if (debug_linux_nat)
3468 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3469
3470 restore_child_signals_mask (&prev_mask);
3471
3472 if (last_resume_kind == resume_stop
3473 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3474 && WSTOPSIG (status) == SIGSTOP)
3475 {
3476 /* A thread that has been requested to stop by GDB with
3477 target_stop, and it stopped cleanly, so report as SIG0. The
3478 use of SIGSTOP is an implementation detail. */
3479 ourstatus->value.sig = GDB_SIGNAL_0;
3480 }
3481
3482 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3483 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3484 lp->core = -1;
3485 else
3486 lp->core = linux_common_core_of_thread (lp->ptid);
3487
3488 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3489 return filter_exit_event (lp, ourstatus);
3490
3491 return lp->ptid;
3492 }
3493
3494 /* Resume LWPs that are currently stopped without any pending status
3495 to report, but are resumed from the core's perspective. */
3496
3497 static int
3498 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3499 {
3500 if (!lp->stopped)
3501 {
3502 if (debug_linux_nat)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "RSRL: NOT resuming LWP %s, not stopped\n",
3505 target_pid_to_str (lp->ptid).c_str ());
3506 }
3507 else if (!lp->resumed)
3508 {
3509 if (debug_linux_nat)
3510 fprintf_unfiltered (gdb_stdlog,
3511 "RSRL: NOT resuming LWP %s, not resumed\n",
3512 target_pid_to_str (lp->ptid).c_str ());
3513 }
3514 else if (lwp_status_pending_p (lp))
3515 {
3516 if (debug_linux_nat)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "RSRL: NOT resuming LWP %s, has pending status\n",
3519 target_pid_to_str (lp->ptid).c_str ());
3520 }
3521 else
3522 {
3523 struct regcache *regcache = get_thread_regcache (lp->ptid);
3524 struct gdbarch *gdbarch = regcache->arch ();
3525
3526 try
3527 {
3528 CORE_ADDR pc = regcache_read_pc (regcache);
3529 int leave_stopped = 0;
3530
3531 /* Don't bother if there's a breakpoint at PC that we'd hit
3532 immediately, and we're not waiting for this LWP. */
3533 if (!lp->ptid.matches (wait_ptid))
3534 {
3535 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3536 leave_stopped = 1;
3537 }
3538
3539 if (!leave_stopped)
3540 {
3541 if (debug_linux_nat)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "RSRL: resuming stopped-resumed LWP %s at "
3544 "%s: step=%d\n",
3545 target_pid_to_str (lp->ptid).c_str (),
3546 paddress (gdbarch, pc),
3547 lp->step);
3548
3549 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3550 }
3551 }
3552 catch (const gdb_exception_error &ex)
3553 {
3554 if (!check_ptrace_stopped_lwp_gone (lp))
3555 throw_exception (ex);
3556 }
3557 }
3558
3559 return 0;
3560 }
3561
3562 ptid_t
3563 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3564 int target_options)
3565 {
3566 ptid_t event_ptid;
3567
3568 if (debug_linux_nat)
3569 {
3570 std::string options_string = target_options_to_string (target_options);
3571 fprintf_unfiltered (gdb_stdlog,
3572 "linux_nat_wait: [%s], [%s]\n",
3573 target_pid_to_str (ptid).c_str (),
3574 options_string.c_str ());
3575 }
3576
3577 /* Flush the async file first. */
3578 if (target_is_async_p ())
3579 async_file_flush ();
3580
3581 /* Resume LWPs that are currently stopped without any pending status
3582 to report, but are resumed from the core's perspective. LWPs get
3583 in this state if we find them stopping at a time we're not
3584 interested in reporting the event (target_wait on a
3585 specific_process, for example, see linux_nat_wait_1), and
3586 meanwhile the event became uninteresting. Don't bother resuming
3587 LWPs we're not going to wait for if they'd stop immediately. */
3588 if (target_is_non_stop_p ())
3589 iterate_over_lwps (minus_one_ptid,
3590 [=] (struct lwp_info *info)
3591 {
3592 return resume_stopped_resumed_lwps (info, ptid);
3593 });
3594
3595 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3596
3597 /* If we requested any event, and something came out, assume there
3598 may be more. If we requested a specific lwp or process, also
3599 assume there may be more. */
3600 if (target_is_async_p ()
3601 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3602 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3603 || ptid != minus_one_ptid))
3604 async_file_mark ();
3605
3606 return event_ptid;
3607 }
3608
3609 /* Kill one LWP. */
3610
3611 static void
3612 kill_one_lwp (pid_t pid)
3613 {
3614 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3615
3616 errno = 0;
3617 kill_lwp (pid, SIGKILL);
3618 if (debug_linux_nat)
3619 {
3620 int save_errno = errno;
3621
3622 fprintf_unfiltered (gdb_stdlog,
3623 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3624 save_errno ? safe_strerror (save_errno) : "OK");
3625 }
3626
3627 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3628
3629 errno = 0;
3630 ptrace (PTRACE_KILL, pid, 0, 0);
3631 if (debug_linux_nat)
3632 {
3633 int save_errno = errno;
3634
3635 fprintf_unfiltered (gdb_stdlog,
3636 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3637 save_errno ? safe_strerror (save_errno) : "OK");
3638 }
3639 }
3640
3641 /* Wait for an LWP to die. */
3642
3643 static void
3644 kill_wait_one_lwp (pid_t pid)
3645 {
3646 pid_t res;
3647
3648 /* We must make sure that there are no pending events (delayed
3649 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3650 program doesn't interfere with any following debugging session. */
3651
3652 do
3653 {
3654 res = my_waitpid (pid, NULL, __WALL);
3655 if (res != (pid_t) -1)
3656 {
3657 if (debug_linux_nat)
3658 fprintf_unfiltered (gdb_stdlog,
3659 "KWC: wait %ld received unknown.\n",
3660 (long) pid);
3661 /* The Linux kernel sometimes fails to kill a thread
3662 completely after PTRACE_KILL; that goes from the stop
3663 point in do_fork out to the one in get_signal_to_deliver
3664 and waits again. So kill it again. */
3665 kill_one_lwp (pid);
3666 }
3667 }
3668 while (res == pid);
3669
3670 gdb_assert (res == -1 && errno == ECHILD);
3671 }
3672
3673 /* Callback for iterate_over_lwps. */
3674
3675 static int
3676 kill_callback (struct lwp_info *lp)
3677 {
3678 kill_one_lwp (lp->ptid.lwp ());
3679 return 0;
3680 }
3681
3682 /* Callback for iterate_over_lwps. */
3683
3684 static int
3685 kill_wait_callback (struct lwp_info *lp)
3686 {
3687 kill_wait_one_lwp (lp->ptid.lwp ());
3688 return 0;
3689 }
3690
3691 /* Kill the fork children of any threads of inferior INF that are
3692 stopped at a fork event. */
3693
3694 static void
3695 kill_unfollowed_fork_children (struct inferior *inf)
3696 {
3697 for (thread_info *thread : inf->non_exited_threads ())
3698 {
3699 struct target_waitstatus *ws = &thread->pending_follow;
3700
3701 if (ws->kind == TARGET_WAITKIND_FORKED
3702 || ws->kind == TARGET_WAITKIND_VFORKED)
3703 {
3704 ptid_t child_ptid = ws->value.related_pid;
3705 int child_pid = child_ptid.pid ();
3706 int child_lwp = child_ptid.lwp ();
3707
3708 kill_one_lwp (child_lwp);
3709 kill_wait_one_lwp (child_lwp);
3710
3711 /* Let the arch-specific native code know this process is
3712 gone. */
3713 linux_target->low_forget_process (child_pid);
3714 }
3715 }
3716 }
3717
3718 void
3719 linux_nat_target::kill ()
3720 {
3721 /* If we're stopped while forking and we haven't followed yet,
3722 kill the other task. We need to do this first because the
3723 parent will be sleeping if this is a vfork. */
3724 kill_unfollowed_fork_children (current_inferior ());
3725
3726 if (forks_exist_p ())
3727 linux_fork_killall ();
3728 else
3729 {
3730 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3731
3732 /* Stop all threads before killing them, since ptrace requires
3733 that the thread is stopped to sucessfully PTRACE_KILL. */
3734 iterate_over_lwps (ptid, stop_callback);
3735 /* ... and wait until all of them have reported back that
3736 they're no longer running. */
3737 iterate_over_lwps (ptid, stop_wait_callback);
3738
3739 /* Kill all LWP's ... */
3740 iterate_over_lwps (ptid, kill_callback);
3741
3742 /* ... and wait until we've flushed all events. */
3743 iterate_over_lwps (ptid, kill_wait_callback);
3744 }
3745
3746 target_mourn_inferior (inferior_ptid);
3747 }
3748
3749 void
3750 linux_nat_target::mourn_inferior ()
3751 {
3752 int pid = inferior_ptid.pid ();
3753
3754 purge_lwp_list (pid);
3755
3756 if (! forks_exist_p ())
3757 /* Normal case, no other forks available. */
3758 inf_ptrace_target::mourn_inferior ();
3759 else
3760 /* Multi-fork case. The current inferior_ptid has exited, but
3761 there are other viable forks to debug. Delete the exiting
3762 one and context-switch to the first available. */
3763 linux_fork_mourn_inferior ();
3764
3765 /* Let the arch-specific native code know this process is gone. */
3766 linux_target->low_forget_process (pid);
3767 }
3768
3769 /* Convert a native/host siginfo object, into/from the siginfo in the
3770 layout of the inferiors' architecture. */
3771
3772 static void
3773 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3774 {
3775 /* If the low target didn't do anything, then just do a straight
3776 memcpy. */
3777 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3778 {
3779 if (direction == 1)
3780 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3781 else
3782 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3783 }
3784 }
3785
3786 static enum target_xfer_status
3787 linux_xfer_siginfo (enum target_object object,
3788 const char *annex, gdb_byte *readbuf,
3789 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3790 ULONGEST *xfered_len)
3791 {
3792 int pid;
3793 siginfo_t siginfo;
3794 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3795
3796 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3797 gdb_assert (readbuf || writebuf);
3798
3799 pid = inferior_ptid.lwp ();
3800 if (pid == 0)
3801 pid = inferior_ptid.pid ();
3802
3803 if (offset > sizeof (siginfo))
3804 return TARGET_XFER_E_IO;
3805
3806 errno = 0;
3807 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3808 if (errno != 0)
3809 return TARGET_XFER_E_IO;
3810
3811 /* When GDB is built as a 64-bit application, ptrace writes into
3812 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3813 inferior with a 64-bit GDB should look the same as debugging it
3814 with a 32-bit GDB, we need to convert it. GDB core always sees
3815 the converted layout, so any read/write will have to be done
3816 post-conversion. */
3817 siginfo_fixup (&siginfo, inf_siginfo, 0);
3818
3819 if (offset + len > sizeof (siginfo))
3820 len = sizeof (siginfo) - offset;
3821
3822 if (readbuf != NULL)
3823 memcpy (readbuf, inf_siginfo + offset, len);
3824 else
3825 {
3826 memcpy (inf_siginfo + offset, writebuf, len);
3827
3828 /* Convert back to ptrace layout before flushing it out. */
3829 siginfo_fixup (&siginfo, inf_siginfo, 1);
3830
3831 errno = 0;
3832 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3833 if (errno != 0)
3834 return TARGET_XFER_E_IO;
3835 }
3836
3837 *xfered_len = len;
3838 return TARGET_XFER_OK;
3839 }
3840
3841 static enum target_xfer_status
3842 linux_nat_xfer_osdata (enum target_object object,
3843 const char *annex, gdb_byte *readbuf,
3844 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3845 ULONGEST *xfered_len);
3846
3847 static enum target_xfer_status
3848 linux_proc_xfer_spu (enum target_object object,
3849 const char *annex, gdb_byte *readbuf,
3850 const gdb_byte *writebuf,
3851 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3852
3853 static enum target_xfer_status
3854 linux_proc_xfer_partial (enum target_object object,
3855 const char *annex, gdb_byte *readbuf,
3856 const gdb_byte *writebuf,
3857 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3858
3859 enum target_xfer_status
3860 linux_nat_target::xfer_partial (enum target_object object,
3861 const char *annex, gdb_byte *readbuf,
3862 const gdb_byte *writebuf,
3863 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3864 {
3865 enum target_xfer_status xfer;
3866
3867 if (object == TARGET_OBJECT_SIGNAL_INFO)
3868 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3869 offset, len, xfered_len);
3870
3871 /* The target is connected but no live inferior is selected. Pass
3872 this request down to a lower stratum (e.g., the executable
3873 file). */
3874 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3875 return TARGET_XFER_EOF;
3876
3877 if (object == TARGET_OBJECT_AUXV)
3878 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3879 offset, len, xfered_len);
3880
3881 if (object == TARGET_OBJECT_OSDATA)
3882 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3883 offset, len, xfered_len);
3884
3885 if (object == TARGET_OBJECT_SPU)
3886 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3887 offset, len, xfered_len);
3888
3889 /* GDB calculates all addresses in the largest possible address
3890 width.
3891 The address width must be masked before its final use - either by
3892 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3893
3894 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3895
3896 if (object == TARGET_OBJECT_MEMORY)
3897 {
3898 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3899
3900 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3901 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3902 }
3903
3904 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3905 offset, len, xfered_len);
3906 if (xfer != TARGET_XFER_EOF)
3907 return xfer;
3908
3909 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3910 offset, len, xfered_len);
3911 }
3912
3913 bool
3914 linux_nat_target::thread_alive (ptid_t ptid)
3915 {
3916 /* As long as a PTID is in lwp list, consider it alive. */
3917 return find_lwp_pid (ptid) != NULL;
3918 }
3919
3920 /* Implement the to_update_thread_list target method for this
3921 target. */
3922
3923 void
3924 linux_nat_target::update_thread_list ()
3925 {
3926 struct lwp_info *lwp;
3927
3928 /* We add/delete threads from the list as clone/exit events are
3929 processed, so just try deleting exited threads still in the
3930 thread list. */
3931 delete_exited_threads ();
3932
3933 /* Update the processor core that each lwp/thread was last seen
3934 running on. */
3935 ALL_LWPS (lwp)
3936 {
3937 /* Avoid accessing /proc if the thread hasn't run since we last
3938 time we fetched the thread's core. Accessing /proc becomes
3939 noticeably expensive when we have thousands of LWPs. */
3940 if (lwp->core == -1)
3941 lwp->core = linux_common_core_of_thread (lwp->ptid);
3942 }
3943 }
3944
3945 std::string
3946 linux_nat_target::pid_to_str (ptid_t ptid)
3947 {
3948 if (ptid.lwp_p ()
3949 && (ptid.pid () != ptid.lwp ()
3950 || num_lwps (ptid.pid ()) > 1))
3951 return string_printf ("LWP %ld", ptid.lwp ());
3952
3953 return normal_pid_to_str (ptid);
3954 }
3955
3956 const char *
3957 linux_nat_target::thread_name (struct thread_info *thr)
3958 {
3959 return linux_proc_tid_get_name (thr->ptid);
3960 }
3961
3962 /* Accepts an integer PID; Returns a string representing a file that
3963 can be opened to get the symbols for the child process. */
3964
3965 char *
3966 linux_nat_target::pid_to_exec_file (int pid)
3967 {
3968 return linux_proc_pid_to_exec_file (pid);
3969 }
3970
3971 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3972 Because we can use a single read/write call, this can be much more
3973 efficient than banging away at PTRACE_PEEKTEXT. */
3974
3975 static enum target_xfer_status
3976 linux_proc_xfer_partial (enum target_object object,
3977 const char *annex, gdb_byte *readbuf,
3978 const gdb_byte *writebuf,
3979 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3980 {
3981 LONGEST ret;
3982 int fd;
3983 char filename[64];
3984
3985 if (object != TARGET_OBJECT_MEMORY)
3986 return TARGET_XFER_EOF;
3987
3988 /* Don't bother for one word. */
3989 if (len < 3 * sizeof (long))
3990 return TARGET_XFER_EOF;
3991
3992 /* We could keep this file open and cache it - possibly one per
3993 thread. That requires some juggling, but is even faster. */
3994 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3995 inferior_ptid.lwp ());
3996 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3997 | O_LARGEFILE), 0);
3998 if (fd == -1)
3999 return TARGET_XFER_EOF;
4000
4001 /* Use pread64/pwrite64 if available, since they save a syscall and can
4002 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4003 debugging a SPARC64 application). */
4004 #ifdef HAVE_PREAD64
4005 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4006 : pwrite64 (fd, writebuf, len, offset));
4007 #else
4008 ret = lseek (fd, offset, SEEK_SET);
4009 if (ret != -1)
4010 ret = (readbuf ? read (fd, readbuf, len)
4011 : write (fd, writebuf, len));
4012 #endif
4013
4014 close (fd);
4015
4016 if (ret == -1 || ret == 0)
4017 return TARGET_XFER_EOF;
4018 else
4019 {
4020 *xfered_len = ret;
4021 return TARGET_XFER_OK;
4022 }
4023 }
4024
4025
4026 /* Enumerate spufs IDs for process PID. */
4027 static LONGEST
4028 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4029 {
4030 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4031 LONGEST pos = 0;
4032 LONGEST written = 0;
4033 char path[128];
4034 DIR *dir;
4035 struct dirent *entry;
4036
4037 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4038 dir = opendir (path);
4039 if (!dir)
4040 return -1;
4041
4042 rewinddir (dir);
4043 while ((entry = readdir (dir)) != NULL)
4044 {
4045 struct stat st;
4046 struct statfs stfs;
4047 int fd;
4048
4049 fd = atoi (entry->d_name);
4050 if (!fd)
4051 continue;
4052
4053 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4054 if (stat (path, &st) != 0)
4055 continue;
4056 if (!S_ISDIR (st.st_mode))
4057 continue;
4058
4059 if (statfs (path, &stfs) != 0)
4060 continue;
4061 if (stfs.f_type != SPUFS_MAGIC)
4062 continue;
4063
4064 if (pos >= offset && pos + 4 <= offset + len)
4065 {
4066 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4067 written += 4;
4068 }
4069 pos += 4;
4070 }
4071
4072 closedir (dir);
4073 return written;
4074 }
4075
4076 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4077 object type, using the /proc file system. */
4078
4079 static enum target_xfer_status
4080 linux_proc_xfer_spu (enum target_object object,
4081 const char *annex, gdb_byte *readbuf,
4082 const gdb_byte *writebuf,
4083 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4084 {
4085 char buf[128];
4086 int fd = 0;
4087 int ret = -1;
4088 int pid = inferior_ptid.lwp ();
4089
4090 if (!annex)
4091 {
4092 if (!readbuf)
4093 return TARGET_XFER_E_IO;
4094 else
4095 {
4096 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4097
4098 if (l < 0)
4099 return TARGET_XFER_E_IO;
4100 else if (l == 0)
4101 return TARGET_XFER_EOF;
4102 else
4103 {
4104 *xfered_len = (ULONGEST) l;
4105 return TARGET_XFER_OK;
4106 }
4107 }
4108 }
4109
4110 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4111 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4112 if (fd <= 0)
4113 return TARGET_XFER_E_IO;
4114
4115 if (offset != 0
4116 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4117 {
4118 close (fd);
4119 return TARGET_XFER_EOF;
4120 }
4121
4122 if (writebuf)
4123 ret = write (fd, writebuf, (size_t) len);
4124 else if (readbuf)
4125 ret = read (fd, readbuf, (size_t) len);
4126
4127 close (fd);
4128
4129 if (ret < 0)
4130 return TARGET_XFER_E_IO;
4131 else if (ret == 0)
4132 return TARGET_XFER_EOF;
4133 else
4134 {
4135 *xfered_len = (ULONGEST) ret;
4136 return TARGET_XFER_OK;
4137 }
4138 }
4139
4140
4141 /* Parse LINE as a signal set and add its set bits to SIGS. */
4142
4143 static void
4144 add_line_to_sigset (const char *line, sigset_t *sigs)
4145 {
4146 int len = strlen (line) - 1;
4147 const char *p;
4148 int signum;
4149
4150 if (line[len] != '\n')
4151 error (_("Could not parse signal set: %s"), line);
4152
4153 p = line;
4154 signum = len * 4;
4155 while (len-- > 0)
4156 {
4157 int digit;
4158
4159 if (*p >= '0' && *p <= '9')
4160 digit = *p - '0';
4161 else if (*p >= 'a' && *p <= 'f')
4162 digit = *p - 'a' + 10;
4163 else
4164 error (_("Could not parse signal set: %s"), line);
4165
4166 signum -= 4;
4167
4168 if (digit & 1)
4169 sigaddset (sigs, signum + 1);
4170 if (digit & 2)
4171 sigaddset (sigs, signum + 2);
4172 if (digit & 4)
4173 sigaddset (sigs, signum + 3);
4174 if (digit & 8)
4175 sigaddset (sigs, signum + 4);
4176
4177 p++;
4178 }
4179 }
4180
4181 /* Find process PID's pending signals from /proc/pid/status and set
4182 SIGS to match. */
4183
4184 void
4185 linux_proc_pending_signals (int pid, sigset_t *pending,
4186 sigset_t *blocked, sigset_t *ignored)
4187 {
4188 char buffer[PATH_MAX], fname[PATH_MAX];
4189
4190 sigemptyset (pending);
4191 sigemptyset (blocked);
4192 sigemptyset (ignored);
4193 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4194 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4195 if (procfile == NULL)
4196 error (_("Could not open %s"), fname);
4197
4198 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4199 {
4200 /* Normal queued signals are on the SigPnd line in the status
4201 file. However, 2.6 kernels also have a "shared" pending
4202 queue for delivering signals to a thread group, so check for
4203 a ShdPnd line also.
4204
4205 Unfortunately some Red Hat kernels include the shared pending
4206 queue but not the ShdPnd status field. */
4207
4208 if (startswith (buffer, "SigPnd:\t"))
4209 add_line_to_sigset (buffer + 8, pending);
4210 else if (startswith (buffer, "ShdPnd:\t"))
4211 add_line_to_sigset (buffer + 8, pending);
4212 else if (startswith (buffer, "SigBlk:\t"))
4213 add_line_to_sigset (buffer + 8, blocked);
4214 else if (startswith (buffer, "SigIgn:\t"))
4215 add_line_to_sigset (buffer + 8, ignored);
4216 }
4217 }
4218
4219 static enum target_xfer_status
4220 linux_nat_xfer_osdata (enum target_object object,
4221 const char *annex, gdb_byte *readbuf,
4222 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4223 ULONGEST *xfered_len)
4224 {
4225 gdb_assert (object == TARGET_OBJECT_OSDATA);
4226
4227 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4228 if (*xfered_len == 0)
4229 return TARGET_XFER_EOF;
4230 else
4231 return TARGET_XFER_OK;
4232 }
4233
4234 std::vector<static_tracepoint_marker>
4235 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4236 {
4237 char s[IPA_CMD_BUF_SIZE];
4238 int pid = inferior_ptid.pid ();
4239 std::vector<static_tracepoint_marker> markers;
4240 const char *p = s;
4241 ptid_t ptid = ptid_t (pid, 0, 0);
4242 static_tracepoint_marker marker;
4243
4244 /* Pause all */
4245 target_stop (ptid);
4246
4247 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4248 s[sizeof ("qTfSTM")] = 0;
4249
4250 agent_run_command (pid, s, strlen (s) + 1);
4251
4252 /* Unpause all. */
4253 SCOPE_EXIT { target_continue_no_signal (ptid); };
4254
4255 while (*p++ == 'm')
4256 {
4257 do
4258 {
4259 parse_static_tracepoint_marker_definition (p, &p, &marker);
4260
4261 if (strid == NULL || marker.str_id == strid)
4262 markers.push_back (std::move (marker));
4263 }
4264 while (*p++ == ','); /* comma-separated list */
4265
4266 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4267 s[sizeof ("qTsSTM")] = 0;
4268 agent_run_command (pid, s, strlen (s) + 1);
4269 p = s;
4270 }
4271
4272 return markers;
4273 }
4274
4275 /* target_is_async_p implementation. */
4276
4277 bool
4278 linux_nat_target::is_async_p ()
4279 {
4280 return linux_is_async_p ();
4281 }
4282
4283 /* target_can_async_p implementation. */
4284
4285 bool
4286 linux_nat_target::can_async_p ()
4287 {
4288 /* We're always async, unless the user explicitly prevented it with the
4289 "maint set target-async" command. */
4290 return target_async_permitted;
4291 }
4292
4293 bool
4294 linux_nat_target::supports_non_stop ()
4295 {
4296 return 1;
4297 }
4298
4299 /* to_always_non_stop_p implementation. */
4300
4301 bool
4302 linux_nat_target::always_non_stop_p ()
4303 {
4304 return 1;
4305 }
4306
4307 /* True if we want to support multi-process. To be removed when GDB
4308 supports multi-exec. */
4309
4310 int linux_multi_process = 1;
4311
4312 bool
4313 linux_nat_target::supports_multi_process ()
4314 {
4315 return linux_multi_process;
4316 }
4317
4318 bool
4319 linux_nat_target::supports_disable_randomization ()
4320 {
4321 #ifdef HAVE_PERSONALITY
4322 return 1;
4323 #else
4324 return 0;
4325 #endif
4326 }
4327
4328 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4329 so we notice when any child changes state, and notify the
4330 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4331 above to wait for the arrival of a SIGCHLD. */
4332
4333 static void
4334 sigchld_handler (int signo)
4335 {
4336 int old_errno = errno;
4337
4338 if (debug_linux_nat)
4339 ui_file_write_async_safe (gdb_stdlog,
4340 "sigchld\n", sizeof ("sigchld\n") - 1);
4341
4342 if (signo == SIGCHLD
4343 && linux_nat_event_pipe[0] != -1)
4344 async_file_mark (); /* Let the event loop know that there are
4345 events to handle. */
4346
4347 errno = old_errno;
4348 }
4349
4350 /* Callback registered with the target events file descriptor. */
4351
4352 static void
4353 handle_target_event (int error, gdb_client_data client_data)
4354 {
4355 inferior_event_handler (INF_REG_EVENT, NULL);
4356 }
4357
4358 /* Create/destroy the target events pipe. Returns previous state. */
4359
4360 static int
4361 linux_async_pipe (int enable)
4362 {
4363 int previous = linux_is_async_p ();
4364
4365 if (previous != enable)
4366 {
4367 sigset_t prev_mask;
4368
4369 /* Block child signals while we create/destroy the pipe, as
4370 their handler writes to it. */
4371 block_child_signals (&prev_mask);
4372
4373 if (enable)
4374 {
4375 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4376 internal_error (__FILE__, __LINE__,
4377 "creating event pipe failed.");
4378
4379 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4380 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4381 }
4382 else
4383 {
4384 close (linux_nat_event_pipe[0]);
4385 close (linux_nat_event_pipe[1]);
4386 linux_nat_event_pipe[0] = -1;
4387 linux_nat_event_pipe[1] = -1;
4388 }
4389
4390 restore_child_signals_mask (&prev_mask);
4391 }
4392
4393 return previous;
4394 }
4395
4396 /* target_async implementation. */
4397
4398 void
4399 linux_nat_target::async (int enable)
4400 {
4401 if (enable)
4402 {
4403 if (!linux_async_pipe (1))
4404 {
4405 add_file_handler (linux_nat_event_pipe[0],
4406 handle_target_event, NULL);
4407 /* There may be pending events to handle. Tell the event loop
4408 to poll them. */
4409 async_file_mark ();
4410 }
4411 }
4412 else
4413 {
4414 delete_file_handler (linux_nat_event_pipe[0]);
4415 linux_async_pipe (0);
4416 }
4417 return;
4418 }
4419
4420 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4421 event came out. */
4422
4423 static int
4424 linux_nat_stop_lwp (struct lwp_info *lwp)
4425 {
4426 if (!lwp->stopped)
4427 {
4428 if (debug_linux_nat)
4429 fprintf_unfiltered (gdb_stdlog,
4430 "LNSL: running -> suspending %s\n",
4431 target_pid_to_str (lwp->ptid).c_str ());
4432
4433
4434 if (lwp->last_resume_kind == resume_stop)
4435 {
4436 if (debug_linux_nat)
4437 fprintf_unfiltered (gdb_stdlog,
4438 "linux-nat: already stopping LWP %ld at "
4439 "GDB's request\n",
4440 lwp->ptid.lwp ());
4441 return 0;
4442 }
4443
4444 stop_callback (lwp);
4445 lwp->last_resume_kind = resume_stop;
4446 }
4447 else
4448 {
4449 /* Already known to be stopped; do nothing. */
4450
4451 if (debug_linux_nat)
4452 {
4453 if (find_thread_ptid (lwp->ptid)->stop_requested)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "LNSL: already stopped/stop_requested %s\n",
4456 target_pid_to_str (lwp->ptid).c_str ());
4457 else
4458 fprintf_unfiltered (gdb_stdlog,
4459 "LNSL: already stopped/no "
4460 "stop_requested yet %s\n",
4461 target_pid_to_str (lwp->ptid).c_str ());
4462 }
4463 }
4464 return 0;
4465 }
4466
4467 void
4468 linux_nat_target::stop (ptid_t ptid)
4469 {
4470 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4471 }
4472
4473 void
4474 linux_nat_target::close ()
4475 {
4476 /* Unregister from the event loop. */
4477 if (is_async_p ())
4478 async (0);
4479
4480 inf_ptrace_target::close ();
4481 }
4482
4483 /* When requests are passed down from the linux-nat layer to the
4484 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4485 used. The address space pointer is stored in the inferior object,
4486 but the common code that is passed such ptid can't tell whether
4487 lwpid is a "main" process id or not (it assumes so). We reverse
4488 look up the "main" process id from the lwp here. */
4489
4490 struct address_space *
4491 linux_nat_target::thread_address_space (ptid_t ptid)
4492 {
4493 struct lwp_info *lwp;
4494 struct inferior *inf;
4495 int pid;
4496
4497 if (ptid.lwp () == 0)
4498 {
4499 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4500 tgid. */
4501 lwp = find_lwp_pid (ptid);
4502 pid = lwp->ptid.pid ();
4503 }
4504 else
4505 {
4506 /* A (pid,lwpid,0) ptid. */
4507 pid = ptid.pid ();
4508 }
4509
4510 inf = find_inferior_pid (pid);
4511 gdb_assert (inf != NULL);
4512 return inf->aspace;
4513 }
4514
4515 /* Return the cached value of the processor core for thread PTID. */
4516
4517 int
4518 linux_nat_target::core_of_thread (ptid_t ptid)
4519 {
4520 struct lwp_info *info = find_lwp_pid (ptid);
4521
4522 if (info)
4523 return info->core;
4524 return -1;
4525 }
4526
4527 /* Implementation of to_filesystem_is_local. */
4528
4529 bool
4530 linux_nat_target::filesystem_is_local ()
4531 {
4532 struct inferior *inf = current_inferior ();
4533
4534 if (inf->fake_pid_p || inf->pid == 0)
4535 return true;
4536
4537 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4538 }
4539
4540 /* Convert the INF argument passed to a to_fileio_* method
4541 to a process ID suitable for passing to its corresponding
4542 linux_mntns_* function. If INF is non-NULL then the
4543 caller is requesting the filesystem seen by INF. If INF
4544 is NULL then the caller is requesting the filesystem seen
4545 by the GDB. We fall back to GDB's filesystem in the case
4546 that INF is non-NULL but its PID is unknown. */
4547
4548 static pid_t
4549 linux_nat_fileio_pid_of (struct inferior *inf)
4550 {
4551 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4552 return getpid ();
4553 else
4554 return inf->pid;
4555 }
4556
4557 /* Implementation of to_fileio_open. */
4558
4559 int
4560 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4561 int flags, int mode, int warn_if_slow,
4562 int *target_errno)
4563 {
4564 int nat_flags;
4565 mode_t nat_mode;
4566 int fd;
4567
4568 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4569 || fileio_to_host_mode (mode, &nat_mode) == -1)
4570 {
4571 *target_errno = FILEIO_EINVAL;
4572 return -1;
4573 }
4574
4575 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4576 filename, nat_flags, nat_mode);
4577 if (fd == -1)
4578 *target_errno = host_to_fileio_error (errno);
4579
4580 return fd;
4581 }
4582
4583 /* Implementation of to_fileio_readlink. */
4584
4585 gdb::optional<std::string>
4586 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4587 int *target_errno)
4588 {
4589 char buf[PATH_MAX];
4590 int len;
4591
4592 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4593 filename, buf, sizeof (buf));
4594 if (len < 0)
4595 {
4596 *target_errno = host_to_fileio_error (errno);
4597 return {};
4598 }
4599
4600 return std::string (buf, len);
4601 }
4602
4603 /* Implementation of to_fileio_unlink. */
4604
4605 int
4606 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4607 int *target_errno)
4608 {
4609 int ret;
4610
4611 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4612 filename);
4613 if (ret == -1)
4614 *target_errno = host_to_fileio_error (errno);
4615
4616 return ret;
4617 }
4618
4619 /* Implementation of the to_thread_events method. */
4620
4621 void
4622 linux_nat_target::thread_events (int enable)
4623 {
4624 report_thread_events = enable;
4625 }
4626
4627 linux_nat_target::linux_nat_target ()
4628 {
4629 /* We don't change the stratum; this target will sit at
4630 process_stratum and thread_db will set at thread_stratum. This
4631 is a little strange, since this is a multi-threaded-capable
4632 target, but we want to be on the stack below thread_db, and we
4633 also want to be used for single-threaded processes. */
4634 }
4635
4636 /* See linux-nat.h. */
4637
4638 int
4639 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4640 {
4641 int pid;
4642
4643 pid = ptid.lwp ();
4644 if (pid == 0)
4645 pid = ptid.pid ();
4646
4647 errno = 0;
4648 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4649 if (errno != 0)
4650 {
4651 memset (siginfo, 0, sizeof (*siginfo));
4652 return 0;
4653 }
4654 return 1;
4655 }
4656
4657 /* See nat/linux-nat.h. */
4658
4659 ptid_t
4660 current_lwp_ptid (void)
4661 {
4662 gdb_assert (inferior_ptid.lwp_p ());
4663 return inferior_ptid;
4664 }
4665
4666 void
4667 _initialize_linux_nat (void)
4668 {
4669 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4670 &debug_linux_nat, _("\
4671 Set debugging of GNU/Linux lwp module."), _("\
4672 Show debugging of GNU/Linux lwp module."), _("\
4673 Enables printf debugging output."),
4674 NULL,
4675 show_debug_linux_nat,
4676 &setdebuglist, &showdebuglist);
4677
4678 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4679 &debug_linux_namespaces, _("\
4680 Set debugging of GNU/Linux namespaces module."), _("\
4681 Show debugging of GNU/Linux namespaces module."), _("\
4682 Enables printf debugging output."),
4683 NULL,
4684 NULL,
4685 &setdebuglist, &showdebuglist);
4686
4687 /* Save this mask as the default. */
4688 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4689
4690 /* Install a SIGCHLD handler. */
4691 sigchld_action.sa_handler = sigchld_handler;
4692 sigemptyset (&sigchld_action.sa_mask);
4693 sigchld_action.sa_flags = SA_RESTART;
4694
4695 /* Make it the default. */
4696 sigaction (SIGCHLD, &sigchld_action, NULL);
4697
4698 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4699 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4700 sigdelset (&suspend_mask, SIGCHLD);
4701
4702 sigemptyset (&blocked_mask);
4703
4704 lwp_lwpid_htab_create ();
4705 }
4706 \f
4707
4708 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4709 the GNU/Linux Threads library and therefore doesn't really belong
4710 here. */
4711
4712 /* Return the set of signals used by the threads library in *SET. */
4713
4714 void
4715 lin_thread_get_thread_signals (sigset_t *set)
4716 {
4717 sigemptyset (set);
4718
4719 /* NPTL reserves the first two RT signals, but does not provide any
4720 way for the debugger to query the signal numbers - fortunately
4721 they don't change. */
4722 sigaddset (set, __SIGRTMIN);
4723 sigaddset (set, __SIGRTMIN + 1);
4724 }
This page took 0.156333 seconds and 4 git commands to generate.