linux_nat_target: More low methods
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 struct linux_nat_target *linux_target;
190
191 /* Does the current host support PTRACE_GETREGSET? */
192 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
193
194 /* The saved to_close method, inherited from inf-ptrace.c.
195 Called by our to_close. */
196 static void (*super_close) (struct target_ops *);
197
198 static unsigned int debug_linux_nat;
199 static void
200 show_debug_linux_nat (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
202 {
203 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
204 value);
205 }
206
207 struct simple_pid_list
208 {
209 int pid;
210 int status;
211 struct simple_pid_list *next;
212 };
213 struct simple_pid_list *stopped_pids;
214
215 /* Whether target_thread_events is in effect. */
216 static int report_thread_events;
217
218 /* Async mode support. */
219
220 /* The read/write ends of the pipe registered as waitable file in the
221 event loop. */
222 static int linux_nat_event_pipe[2] = { -1, -1 };
223
224 /* True if we're currently in async mode. */
225 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
226
227 /* Flush the event pipe. */
228
229 static void
230 async_file_flush (void)
231 {
232 int ret;
233 char buf;
234
235 do
236 {
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
238 }
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 }
241
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
245
246 static void
247 async_file_mark (void)
248 {
249 int ret;
250
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
253 left-overs. */
254 async_file_flush ();
255
256 do
257 {
258 ret = write (linux_nat_event_pipe[1], "+", 1);
259 }
260 while (ret == -1 && errno == EINTR);
261
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
264 }
265
266 static int kill_lwp (int lwpid, int signo);
267
268 static int stop_callback (struct lwp_info *lp, void *data);
269 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
270
271 static void block_child_signals (sigset_t *prev_mask);
272 static void restore_child_signals_mask (sigset_t *prev_mask);
273
274 struct lwp_info;
275 static struct lwp_info *add_lwp (ptid_t ptid);
276 static void purge_lwp_list (int pid);
277 static void delete_lwp (ptid_t ptid);
278 static struct lwp_info *find_lwp_pid (ptid_t ptid);
279
280 static int lwp_status_pending_p (struct lwp_info *lp);
281
282 static void save_stop_reason (struct lwp_info *lp);
283
284 \f
285 /* LWP accessors. */
286
287 /* See nat/linux-nat.h. */
288
289 ptid_t
290 ptid_of_lwp (struct lwp_info *lwp)
291 {
292 return lwp->ptid;
293 }
294
295 /* See nat/linux-nat.h. */
296
297 void
298 lwp_set_arch_private_info (struct lwp_info *lwp,
299 struct arch_lwp_info *info)
300 {
301 lwp->arch_private = info;
302 }
303
304 /* See nat/linux-nat.h. */
305
306 struct arch_lwp_info *
307 lwp_arch_private_info (struct lwp_info *lwp)
308 {
309 return lwp->arch_private;
310 }
311
312 /* See nat/linux-nat.h. */
313
314 int
315 lwp_is_stopped (struct lwp_info *lwp)
316 {
317 return lwp->stopped;
318 }
319
320 /* See nat/linux-nat.h. */
321
322 enum target_stop_reason
323 lwp_stop_reason (struct lwp_info *lwp)
324 {
325 return lwp->stop_reason;
326 }
327
328 /* See nat/linux-nat.h. */
329
330 int
331 lwp_is_stepping (struct lwp_info *lwp)
332 {
333 return lwp->step;
334 }
335
336 \f
337 /* Trivial list manipulation functions to keep track of a list of
338 new stopped processes. */
339 static void
340 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
341 {
342 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
343
344 new_pid->pid = pid;
345 new_pid->status = status;
346 new_pid->next = *listp;
347 *listp = new_pid;
348 }
349
350 static int
351 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
352 {
353 struct simple_pid_list **p;
354
355 for (p = listp; *p != NULL; p = &(*p)->next)
356 if ((*p)->pid == pid)
357 {
358 struct simple_pid_list *next = (*p)->next;
359
360 *statusp = (*p)->status;
361 xfree (*p);
362 *p = next;
363 return 1;
364 }
365 return 0;
366 }
367
368 /* Return the ptrace options that we want to try to enable. */
369
370 static int
371 linux_nat_ptrace_options (int attached)
372 {
373 int options = 0;
374
375 if (!attached)
376 options |= PTRACE_O_EXITKILL;
377
378 options |= (PTRACE_O_TRACESYSGOOD
379 | PTRACE_O_TRACEVFORKDONE
380 | PTRACE_O_TRACEVFORK
381 | PTRACE_O_TRACEFORK
382 | PTRACE_O_TRACEEXEC);
383
384 return options;
385 }
386
387 /* Initialize ptrace warnings and check for supported ptrace
388 features given PID.
389
390 ATTACHED should be nonzero iff we attached to the inferior. */
391
392 static void
393 linux_init_ptrace (pid_t pid, int attached)
394 {
395 int options = linux_nat_ptrace_options (attached);
396
397 linux_enable_event_reporting (pid, options);
398 linux_ptrace_init_warnings ();
399 }
400
401 linux_nat_target::~linux_nat_target ()
402 {}
403
404 void
405 linux_nat_target::post_attach (int pid)
406 {
407 linux_init_ptrace (pid, 1);
408 }
409
410 void
411 linux_nat_target::post_startup_inferior (ptid_t ptid)
412 {
413 linux_init_ptrace (ptid_get_pid (ptid), 0);
414 }
415
416 /* Return the number of known LWPs in the tgid given by PID. */
417
418 static int
419 num_lwps (int pid)
420 {
421 int count = 0;
422 struct lwp_info *lp;
423
424 for (lp = lwp_list; lp; lp = lp->next)
425 if (ptid_get_pid (lp->ptid) == pid)
426 count++;
427
428 return count;
429 }
430
431 /* Call delete_lwp with prototype compatible for make_cleanup. */
432
433 static void
434 delete_lwp_cleanup (void *lp_voidp)
435 {
436 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
437
438 delete_lwp (lp->ptid);
439 }
440
441 /* Target hook for follow_fork. On entry inferior_ptid must be the
442 ptid of the followed inferior. At return, inferior_ptid will be
443 unchanged. */
444
445 int
446 linux_nat_target::follow_fork (int follow_child, int detach_fork)
447 {
448 if (!follow_child)
449 {
450 struct lwp_info *child_lp = NULL;
451 int status = W_STOPCODE (0);
452 int has_vforked;
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
455
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = ptid_get_lwp (parent_ptid);
461 child_pid = ptid_get_lwp (child_ptid);
462
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
467
468 /* Detach new forked process? */
469 if (detach_fork)
470 {
471 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
472 child_lp);
473
474 linux_target->low_prepare_to_resume (child_lp);
475
476 /* When debugging an inferior in an architecture that supports
477 hardware single stepping on a kernel without commit
478 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
479 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
480 set if the parent process had them set.
481 To work around this, single step the child process
482 once before detaching to clear the flags. */
483
484 /* Note that we consult the parent's architecture instead of
485 the child's because there's no inferior for the child at
486 this point. */
487 if (!gdbarch_software_single_step_p (target_thread_architecture
488 (parent_ptid)))
489 {
490 linux_disable_event_reporting (child_pid);
491 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
492 perror_with_name (_("Couldn't do single step"));
493 if (my_waitpid (child_pid, &status, 0) < 0)
494 perror_with_name (_("Couldn't wait vfork process"));
495 }
496
497 if (WIFSTOPPED (status))
498 {
499 int signo;
500
501 signo = WSTOPSIG (status);
502 if (signo != 0
503 && !signal_pass_state (gdb_signal_from_host (signo)))
504 signo = 0;
505 ptrace (PTRACE_DETACH, child_pid, 0, signo);
506 }
507
508 do_cleanups (old_chain);
509 }
510 else
511 {
512 scoped_restore save_inferior_ptid
513 = make_scoped_restore (&inferior_ptid);
514 inferior_ptid = child_ptid;
515
516 /* Let the thread_db layer learn about this new process. */
517 check_for_thread_db ();
518 }
519
520 if (has_vforked)
521 {
522 struct lwp_info *parent_lp;
523
524 parent_lp = find_lwp_pid (parent_ptid);
525 gdb_assert (linux_supports_tracefork () >= 0);
526
527 if (linux_supports_tracevforkdone ())
528 {
529 if (debug_linux_nat)
530 fprintf_unfiltered (gdb_stdlog,
531 "LCFF: waiting for VFORK_DONE on %d\n",
532 parent_pid);
533 parent_lp->stopped = 1;
534
535 /* We'll handle the VFORK_DONE event like any other
536 event, in target_wait. */
537 }
538 else
539 {
540 /* We can't insert breakpoints until the child has
541 finished with the shared memory region. We need to
542 wait until that happens. Ideal would be to just
543 call:
544 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
545 - waitpid (parent_pid, &status, __WALL);
546 However, most architectures can't handle a syscall
547 being traced on the way out if it wasn't traced on
548 the way in.
549
550 We might also think to loop, continuing the child
551 until it exits or gets a SIGTRAP. One problem is
552 that the child might call ptrace with PTRACE_TRACEME.
553
554 There's no simple and reliable way to figure out when
555 the vforked child will be done with its copy of the
556 shared memory. We could step it out of the syscall,
557 two instructions, let it go, and then single-step the
558 parent once. When we have hardware single-step, this
559 would work; with software single-step it could still
560 be made to work but we'd have to be able to insert
561 single-step breakpoints in the child, and we'd have
562 to insert -just- the single-step breakpoint in the
563 parent. Very awkward.
564
565 In the end, the best we can do is to make sure it
566 runs for a little while. Hopefully it will be out of
567 range of any breakpoints we reinsert. Usually this
568 is only the single-step breakpoint at vfork's return
569 point. */
570
571 if (debug_linux_nat)
572 fprintf_unfiltered (gdb_stdlog,
573 "LCFF: no VFORK_DONE "
574 "support, sleeping a bit\n");
575
576 usleep (10000);
577
578 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
579 and leave it pending. The next linux_nat_resume call
580 will notice a pending event, and bypasses actually
581 resuming the inferior. */
582 parent_lp->status = 0;
583 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
584 parent_lp->stopped = 1;
585
586 /* If we're in async mode, need to tell the event loop
587 there's something here to process. */
588 if (target_is_async_p ())
589 async_file_mark ();
590 }
591 }
592 }
593 else
594 {
595 struct lwp_info *child_lp;
596
597 child_lp = add_lwp (inferior_ptid);
598 child_lp->stopped = 1;
599 child_lp->last_resume_kind = resume_stop;
600
601 /* Let the thread_db layer learn about this new process. */
602 check_for_thread_db ();
603 }
604
605 return 0;
606 }
607
608 \f
609 int
610 linux_nat_target::insert_fork_catchpoint (int pid)
611 {
612 return !linux_supports_tracefork ();
613 }
614
615 int
616 linux_nat_target::remove_fork_catchpoint (int pid)
617 {
618 return 0;
619 }
620
621 int
622 linux_nat_target::insert_vfork_catchpoint (int pid)
623 {
624 return !linux_supports_tracefork ();
625 }
626
627 int
628 linux_nat_target::remove_vfork_catchpoint (int pid)
629 {
630 return 0;
631 }
632
633 int
634 linux_nat_target::insert_exec_catchpoint (int pid)
635 {
636 return !linux_supports_tracefork ();
637 }
638
639 int
640 linux_nat_target::remove_exec_catchpoint (int pid)
641 {
642 return 0;
643 }
644
645 int
646 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
647 gdb::array_view<const int> syscall_counts)
648 {
649 if (!linux_supports_tracesysgood ())
650 return 1;
651
652 /* On GNU/Linux, we ignore the arguments. It means that we only
653 enable the syscall catchpoints, but do not disable them.
654
655 Also, we do not use the `syscall_counts' information because we do not
656 filter system calls here. We let GDB do the logic for us. */
657 return 0;
658 }
659
660 /* List of known LWPs, keyed by LWP PID. This speeds up the common
661 case of mapping a PID returned from the kernel to our corresponding
662 lwp_info data structure. */
663 static htab_t lwp_lwpid_htab;
664
665 /* Calculate a hash from a lwp_info's LWP PID. */
666
667 static hashval_t
668 lwp_info_hash (const void *ap)
669 {
670 const struct lwp_info *lp = (struct lwp_info *) ap;
671 pid_t pid = ptid_get_lwp (lp->ptid);
672
673 return iterative_hash_object (pid, 0);
674 }
675
676 /* Equality function for the lwp_info hash table. Compares the LWP's
677 PID. */
678
679 static int
680 lwp_lwpid_htab_eq (const void *a, const void *b)
681 {
682 const struct lwp_info *entry = (const struct lwp_info *) a;
683 const struct lwp_info *element = (const struct lwp_info *) b;
684
685 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
686 }
687
688 /* Create the lwp_lwpid_htab hash table. */
689
690 static void
691 lwp_lwpid_htab_create (void)
692 {
693 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
694 }
695
696 /* Add LP to the hash table. */
697
698 static void
699 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
700 {
701 void **slot;
702
703 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
704 gdb_assert (slot != NULL && *slot == NULL);
705 *slot = lp;
706 }
707
708 /* Head of doubly-linked list of known LWPs. Sorted by reverse
709 creation order. This order is assumed in some cases. E.g.,
710 reaping status after killing alls lwps of a process: the leader LWP
711 must be reaped last. */
712 struct lwp_info *lwp_list;
713
714 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
715
716 static void
717 lwp_list_add (struct lwp_info *lp)
718 {
719 lp->next = lwp_list;
720 if (lwp_list != NULL)
721 lwp_list->prev = lp;
722 lwp_list = lp;
723 }
724
725 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
726 list. */
727
728 static void
729 lwp_list_remove (struct lwp_info *lp)
730 {
731 /* Remove from sorted-by-creation-order list. */
732 if (lp->next != NULL)
733 lp->next->prev = lp->prev;
734 if (lp->prev != NULL)
735 lp->prev->next = lp->next;
736 if (lp == lwp_list)
737 lwp_list = lp->next;
738 }
739
740 \f
741
742 /* Original signal mask. */
743 static sigset_t normal_mask;
744
745 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
746 _initialize_linux_nat. */
747 static sigset_t suspend_mask;
748
749 /* Signals to block to make that sigsuspend work. */
750 static sigset_t blocked_mask;
751
752 /* SIGCHLD action. */
753 struct sigaction sigchld_action;
754
755 /* Block child signals (SIGCHLD and linux threads signals), and store
756 the previous mask in PREV_MASK. */
757
758 static void
759 block_child_signals (sigset_t *prev_mask)
760 {
761 /* Make sure SIGCHLD is blocked. */
762 if (!sigismember (&blocked_mask, SIGCHLD))
763 sigaddset (&blocked_mask, SIGCHLD);
764
765 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
766 }
767
768 /* Restore child signals mask, previously returned by
769 block_child_signals. */
770
771 static void
772 restore_child_signals_mask (sigset_t *prev_mask)
773 {
774 sigprocmask (SIG_SETMASK, prev_mask, NULL);
775 }
776
777 /* Mask of signals to pass directly to the inferior. */
778 static sigset_t pass_mask;
779
780 /* Update signals to pass to the inferior. */
781 void
782 linux_nat_target::pass_signals (int numsigs, unsigned char *pass_signals)
783 {
784 int signo;
785
786 sigemptyset (&pass_mask);
787
788 for (signo = 1; signo < NSIG; signo++)
789 {
790 int target_signo = gdb_signal_from_host (signo);
791 if (target_signo < numsigs && pass_signals[target_signo])
792 sigaddset (&pass_mask, signo);
793 }
794 }
795
796 \f
797
798 /* Prototypes for local functions. */
799 static int stop_wait_callback (struct lwp_info *lp, void *data);
800 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
801 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
802
803 \f
804
805 /* Destroy and free LP. */
806
807 static void
808 lwp_free (struct lwp_info *lp)
809 {
810 /* Let the arch specific bits release arch_lwp_info. */
811 linux_target->low_delete_thread (lp->arch_private);
812
813 xfree (lp);
814 }
815
816 /* Traversal function for purge_lwp_list. */
817
818 static int
819 lwp_lwpid_htab_remove_pid (void **slot, void *info)
820 {
821 struct lwp_info *lp = (struct lwp_info *) *slot;
822 int pid = *(int *) info;
823
824 if (ptid_get_pid (lp->ptid) == pid)
825 {
826 htab_clear_slot (lwp_lwpid_htab, slot);
827 lwp_list_remove (lp);
828 lwp_free (lp);
829 }
830
831 return 1;
832 }
833
834 /* Remove all LWPs belong to PID from the lwp list. */
835
836 static void
837 purge_lwp_list (int pid)
838 {
839 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
840 }
841
842 /* Add the LWP specified by PTID to the list. PTID is the first LWP
843 in the process. Return a pointer to the structure describing the
844 new LWP.
845
846 This differs from add_lwp in that we don't let the arch specific
847 bits know about this new thread. Current clients of this callback
848 take the opportunity to install watchpoints in the new thread, and
849 we shouldn't do that for the first thread. If we're spawning a
850 child ("run"), the thread executes the shell wrapper first, and we
851 shouldn't touch it until it execs the program we want to debug.
852 For "attach", it'd be okay to call the callback, but it's not
853 necessary, because watchpoints can't yet have been inserted into
854 the inferior. */
855
856 static struct lwp_info *
857 add_initial_lwp (ptid_t ptid)
858 {
859 struct lwp_info *lp;
860
861 gdb_assert (ptid_lwp_p (ptid));
862
863 lp = XNEW (struct lwp_info);
864
865 memset (lp, 0, sizeof (struct lwp_info));
866
867 lp->last_resume_kind = resume_continue;
868 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
869
870 lp->ptid = ptid;
871 lp->core = -1;
872
873 /* Add to sorted-by-reverse-creation-order list. */
874 lwp_list_add (lp);
875
876 /* Add to keyed-by-pid htab. */
877 lwp_lwpid_htab_add_lwp (lp);
878
879 return lp;
880 }
881
882 /* Add the LWP specified by PID to the list. Return a pointer to the
883 structure describing the new LWP. The LWP should already be
884 stopped. */
885
886 static struct lwp_info *
887 add_lwp (ptid_t ptid)
888 {
889 struct lwp_info *lp;
890
891 lp = add_initial_lwp (ptid);
892
893 /* Let the arch specific bits know about this new thread. Current
894 clients of this callback take the opportunity to install
895 watchpoints in the new thread. We don't do this for the first
896 thread though. See add_initial_lwp. */
897 linux_target->low_new_thread (lp);
898
899 return lp;
900 }
901
902 /* Remove the LWP specified by PID from the list. */
903
904 static void
905 delete_lwp (ptid_t ptid)
906 {
907 struct lwp_info *lp;
908 void **slot;
909 struct lwp_info dummy;
910
911 dummy.ptid = ptid;
912 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
913 if (slot == NULL)
914 return;
915
916 lp = *(struct lwp_info **) slot;
917 gdb_assert (lp != NULL);
918
919 htab_clear_slot (lwp_lwpid_htab, slot);
920
921 /* Remove from sorted-by-creation-order list. */
922 lwp_list_remove (lp);
923
924 /* Release. */
925 lwp_free (lp);
926 }
927
928 /* Return a pointer to the structure describing the LWP corresponding
929 to PID. If no corresponding LWP could be found, return NULL. */
930
931 static struct lwp_info *
932 find_lwp_pid (ptid_t ptid)
933 {
934 struct lwp_info *lp;
935 int lwp;
936 struct lwp_info dummy;
937
938 if (ptid_lwp_p (ptid))
939 lwp = ptid_get_lwp (ptid);
940 else
941 lwp = ptid_get_pid (ptid);
942
943 dummy.ptid = ptid_build (0, lwp, 0);
944 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
945 return lp;
946 }
947
948 /* See nat/linux-nat.h. */
949
950 struct lwp_info *
951 iterate_over_lwps (ptid_t filter,
952 iterate_over_lwps_ftype callback,
953 void *data)
954 {
955 struct lwp_info *lp, *lpnext;
956
957 for (lp = lwp_list; lp; lp = lpnext)
958 {
959 lpnext = lp->next;
960
961 if (ptid_match (lp->ptid, filter))
962 {
963 if ((*callback) (lp, data) != 0)
964 return lp;
965 }
966 }
967
968 return NULL;
969 }
970
971 /* Update our internal state when changing from one checkpoint to
972 another indicated by NEW_PTID. We can only switch single-threaded
973 applications, so we only create one new LWP, and the previous list
974 is discarded. */
975
976 void
977 linux_nat_switch_fork (ptid_t new_ptid)
978 {
979 struct lwp_info *lp;
980
981 purge_lwp_list (ptid_get_pid (inferior_ptid));
982
983 lp = add_lwp (new_ptid);
984 lp->stopped = 1;
985
986 /* This changes the thread's ptid while preserving the gdb thread
987 num. Also changes the inferior pid, while preserving the
988 inferior num. */
989 thread_change_ptid (inferior_ptid, new_ptid);
990
991 /* We've just told GDB core that the thread changed target id, but,
992 in fact, it really is a different thread, with different register
993 contents. */
994 registers_changed ();
995 }
996
997 /* Handle the exit of a single thread LP. */
998
999 static void
1000 exit_lwp (struct lwp_info *lp)
1001 {
1002 struct thread_info *th = find_thread_ptid (lp->ptid);
1003
1004 if (th)
1005 {
1006 if (print_thread_events)
1007 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1008
1009 delete_thread (lp->ptid);
1010 }
1011
1012 delete_lwp (lp->ptid);
1013 }
1014
1015 /* Wait for the LWP specified by LP, which we have just attached to.
1016 Returns a wait status for that LWP, to cache. */
1017
1018 static int
1019 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1020 {
1021 pid_t new_pid, pid = ptid_get_lwp (ptid);
1022 int status;
1023
1024 if (linux_proc_pid_is_stopped (pid))
1025 {
1026 if (debug_linux_nat)
1027 fprintf_unfiltered (gdb_stdlog,
1028 "LNPAW: Attaching to a stopped process\n");
1029
1030 /* The process is definitely stopped. It is in a job control
1031 stop, unless the kernel predates the TASK_STOPPED /
1032 TASK_TRACED distinction, in which case it might be in a
1033 ptrace stop. Make sure it is in a ptrace stop; from there we
1034 can kill it, signal it, et cetera.
1035
1036 First make sure there is a pending SIGSTOP. Since we are
1037 already attached, the process can not transition from stopped
1038 to running without a PTRACE_CONT; so we know this signal will
1039 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1040 probably already in the queue (unless this kernel is old
1041 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1042 is not an RT signal, it can only be queued once. */
1043 kill_lwp (pid, SIGSTOP);
1044
1045 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1046 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1047 ptrace (PTRACE_CONT, pid, 0, 0);
1048 }
1049
1050 /* Make sure the initial process is stopped. The user-level threads
1051 layer might want to poke around in the inferior, and that won't
1052 work if things haven't stabilized yet. */
1053 new_pid = my_waitpid (pid, &status, __WALL);
1054 gdb_assert (pid == new_pid);
1055
1056 if (!WIFSTOPPED (status))
1057 {
1058 /* The pid we tried to attach has apparently just exited. */
1059 if (debug_linux_nat)
1060 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1061 pid, status_to_str (status));
1062 return status;
1063 }
1064
1065 if (WSTOPSIG (status) != SIGSTOP)
1066 {
1067 *signalled = 1;
1068 if (debug_linux_nat)
1069 fprintf_unfiltered (gdb_stdlog,
1070 "LNPAW: Received %s after attaching\n",
1071 status_to_str (status));
1072 }
1073
1074 return status;
1075 }
1076
1077 void
1078 linux_nat_target::create_inferior (const char *exec_file,
1079 const std::string &allargs,
1080 char **env, int from_tty)
1081 {
1082 maybe_disable_address_space_randomization restore_personality
1083 (disable_randomization);
1084
1085 /* The fork_child mechanism is synchronous and calls target_wait, so
1086 we have to mask the async mode. */
1087
1088 /* Make sure we report all signals during startup. */
1089 pass_signals (0, NULL);
1090
1091 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1092 }
1093
1094 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1095 already attached. Returns true if a new LWP is found, false
1096 otherwise. */
1097
1098 static int
1099 attach_proc_task_lwp_callback (ptid_t ptid)
1100 {
1101 struct lwp_info *lp;
1102
1103 /* Ignore LWPs we're already attached to. */
1104 lp = find_lwp_pid (ptid);
1105 if (lp == NULL)
1106 {
1107 int lwpid = ptid_get_lwp (ptid);
1108
1109 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1110 {
1111 int err = errno;
1112
1113 /* Be quiet if we simply raced with the thread exiting.
1114 EPERM is returned if the thread's task still exists, and
1115 is marked as exited or zombie, as well as other
1116 conditions, so in that case, confirm the status in
1117 /proc/PID/status. */
1118 if (err == ESRCH
1119 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1120 {
1121 if (debug_linux_nat)
1122 {
1123 fprintf_unfiltered (gdb_stdlog,
1124 "Cannot attach to lwp %d: "
1125 "thread is gone (%d: %s)\n",
1126 lwpid, err, safe_strerror (err));
1127 }
1128 }
1129 else
1130 {
1131 std::string reason
1132 = linux_ptrace_attach_fail_reason_string (ptid, err);
1133
1134 warning (_("Cannot attach to lwp %d: %s"),
1135 lwpid, reason.c_str ());
1136 }
1137 }
1138 else
1139 {
1140 if (debug_linux_nat)
1141 fprintf_unfiltered (gdb_stdlog,
1142 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1143 target_pid_to_str (ptid));
1144
1145 lp = add_lwp (ptid);
1146
1147 /* The next time we wait for this LWP we'll see a SIGSTOP as
1148 PTRACE_ATTACH brings it to a halt. */
1149 lp->signalled = 1;
1150
1151 /* We need to wait for a stop before being able to make the
1152 next ptrace call on this LWP. */
1153 lp->must_set_ptrace_flags = 1;
1154
1155 /* So that wait collects the SIGSTOP. */
1156 lp->resumed = 1;
1157
1158 /* Also add the LWP to gdb's thread list, in case a
1159 matching libthread_db is not found (or the process uses
1160 raw clone). */
1161 add_thread (lp->ptid);
1162 set_running (lp->ptid, 1);
1163 set_executing (lp->ptid, 1);
1164 }
1165
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 void
1172 linux_nat_target::attach (const char *args, int from_tty)
1173 {
1174 struct lwp_info *lp;
1175 int status;
1176 ptid_t ptid;
1177
1178 /* Make sure we report all signals during attach. */
1179 pass_signals (0, NULL);
1180
1181 TRY
1182 {
1183 inf_ptrace_target::attach (args, from_tty);
1184 }
1185 CATCH (ex, RETURN_MASK_ERROR)
1186 {
1187 pid_t pid = parse_pid_to_attach (args);
1188 std::string reason = linux_ptrace_attach_fail_reason (pid);
1189
1190 if (!reason.empty ())
1191 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1192 else
1193 throw_error (ex.error, "%s", ex.message);
1194 }
1195 END_CATCH
1196
1197 /* The ptrace base target adds the main thread with (pid,0,0)
1198 format. Decorate it with lwp info. */
1199 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1200 ptid_get_pid (inferior_ptid),
1201 0);
1202 thread_change_ptid (inferior_ptid, ptid);
1203
1204 /* Add the initial process as the first LWP to the list. */
1205 lp = add_initial_lwp (ptid);
1206
1207 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1208 if (!WIFSTOPPED (status))
1209 {
1210 if (WIFEXITED (status))
1211 {
1212 int exit_code = WEXITSTATUS (status);
1213
1214 target_terminal::ours ();
1215 target_mourn_inferior (inferior_ptid);
1216 if (exit_code == 0)
1217 error (_("Unable to attach: program exited normally."));
1218 else
1219 error (_("Unable to attach: program exited with code %d."),
1220 exit_code);
1221 }
1222 else if (WIFSIGNALED (status))
1223 {
1224 enum gdb_signal signo;
1225
1226 target_terminal::ours ();
1227 target_mourn_inferior (inferior_ptid);
1228
1229 signo = gdb_signal_from_host (WTERMSIG (status));
1230 error (_("Unable to attach: program terminated with signal "
1231 "%s, %s."),
1232 gdb_signal_to_name (signo),
1233 gdb_signal_to_string (signo));
1234 }
1235
1236 internal_error (__FILE__, __LINE__,
1237 _("unexpected status %d for PID %ld"),
1238 status, (long) ptid_get_lwp (ptid));
1239 }
1240
1241 lp->stopped = 1;
1242
1243 /* Save the wait status to report later. */
1244 lp->resumed = 1;
1245 if (debug_linux_nat)
1246 fprintf_unfiltered (gdb_stdlog,
1247 "LNA: waitpid %ld, saving status %s\n",
1248 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1249
1250 lp->status = status;
1251
1252 /* We must attach to every LWP. If /proc is mounted, use that to
1253 find them now. The inferior may be using raw clone instead of
1254 using pthreads. But even if it is using pthreads, thread_db
1255 walks structures in the inferior's address space to find the list
1256 of threads/LWPs, and those structures may well be corrupted.
1257 Note that once thread_db is loaded, we'll still use it to list
1258 threads and associate pthread info with each LWP. */
1259 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1260 attach_proc_task_lwp_callback);
1261
1262 if (target_can_async_p ())
1263 target_async (1);
1264 }
1265
1266 /* Get pending signal of THREAD as a host signal number, for detaching
1267 purposes. This is the signal the thread last stopped for, which we
1268 need to deliver to the thread when detaching, otherwise, it'd be
1269 suppressed/lost. */
1270
1271 static int
1272 get_detach_signal (struct lwp_info *lp)
1273 {
1274 enum gdb_signal signo = GDB_SIGNAL_0;
1275
1276 /* If we paused threads momentarily, we may have stored pending
1277 events in lp->status or lp->waitstatus (see stop_wait_callback),
1278 and GDB core hasn't seen any signal for those threads.
1279 Otherwise, the last signal reported to the core is found in the
1280 thread object's stop_signal.
1281
1282 There's a corner case that isn't handled here at present. Only
1283 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1284 stop_signal make sense as a real signal to pass to the inferior.
1285 Some catchpoint related events, like
1286 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1287 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1288 those traps are debug API (ptrace in our case) related and
1289 induced; the inferior wouldn't see them if it wasn't being
1290 traced. Hence, we should never pass them to the inferior, even
1291 when set to pass state. Since this corner case isn't handled by
1292 infrun.c when proceeding with a signal, for consistency, neither
1293 do we handle it here (or elsewhere in the file we check for
1294 signal pass state). Normally SIGTRAP isn't set to pass state, so
1295 this is really a corner case. */
1296
1297 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1298 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1299 else if (lp->status)
1300 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1301 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1302 {
1303 struct thread_info *tp = find_thread_ptid (lp->ptid);
1304
1305 if (tp->suspend.waitstatus_pending_p)
1306 signo = tp->suspend.waitstatus.value.sig;
1307 else
1308 signo = tp->suspend.stop_signal;
1309 }
1310 else if (!target_is_non_stop_p ())
1311 {
1312 struct target_waitstatus last;
1313 ptid_t last_ptid;
1314
1315 get_last_target_status (&last_ptid, &last);
1316
1317 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1318 {
1319 struct thread_info *tp = find_thread_ptid (lp->ptid);
1320
1321 signo = tp->suspend.stop_signal;
1322 }
1323 }
1324
1325 if (signo == GDB_SIGNAL_0)
1326 {
1327 if (debug_linux_nat)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "GPT: lwp %s has no pending signal\n",
1330 target_pid_to_str (lp->ptid));
1331 }
1332 else if (!signal_pass_state (signo))
1333 {
1334 if (debug_linux_nat)
1335 fprintf_unfiltered (gdb_stdlog,
1336 "GPT: lwp %s had signal %s, "
1337 "but it is in no pass state\n",
1338 target_pid_to_str (lp->ptid),
1339 gdb_signal_to_string (signo));
1340 }
1341 else
1342 {
1343 if (debug_linux_nat)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "GPT: lwp %s has pending signal %s\n",
1346 target_pid_to_str (lp->ptid),
1347 gdb_signal_to_string (signo));
1348
1349 return gdb_signal_to_host (signo);
1350 }
1351
1352 return 0;
1353 }
1354
1355 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1356 signal number that should be passed to the LWP when detaching.
1357 Otherwise pass any pending signal the LWP may have, if any. */
1358
1359 static void
1360 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1361 {
1362 int lwpid = ptid_get_lwp (lp->ptid);
1363 int signo;
1364
1365 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1366
1367 if (debug_linux_nat && lp->status)
1368 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1369 strsignal (WSTOPSIG (lp->status)),
1370 target_pid_to_str (lp->ptid));
1371
1372 /* If there is a pending SIGSTOP, get rid of it. */
1373 if (lp->signalled)
1374 {
1375 if (debug_linux_nat)
1376 fprintf_unfiltered (gdb_stdlog,
1377 "DC: Sending SIGCONT to %s\n",
1378 target_pid_to_str (lp->ptid));
1379
1380 kill_lwp (lwpid, SIGCONT);
1381 lp->signalled = 0;
1382 }
1383
1384 if (signo_p == NULL)
1385 {
1386 /* Pass on any pending signal for this LWP. */
1387 signo = get_detach_signal (lp);
1388 }
1389 else
1390 signo = *signo_p;
1391
1392 /* Preparing to resume may try to write registers, and fail if the
1393 lwp is zombie. If that happens, ignore the error. We'll handle
1394 it below, when detach fails with ESRCH. */
1395 TRY
1396 {
1397 linux_target->low_prepare_to_resume (lp);
1398 }
1399 CATCH (ex, RETURN_MASK_ERROR)
1400 {
1401 if (!check_ptrace_stopped_lwp_gone (lp))
1402 throw_exception (ex);
1403 }
1404 END_CATCH
1405
1406 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1407 {
1408 int save_errno = errno;
1409
1410 /* We know the thread exists, so ESRCH must mean the lwp is
1411 zombie. This can happen if one of the already-detached
1412 threads exits the whole thread group. In that case we're
1413 still attached, and must reap the lwp. */
1414 if (save_errno == ESRCH)
1415 {
1416 int ret, status;
1417
1418 ret = my_waitpid (lwpid, &status, __WALL);
1419 if (ret == -1)
1420 {
1421 warning (_("Couldn't reap LWP %d while detaching: %s"),
1422 lwpid, strerror (errno));
1423 }
1424 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1425 {
1426 warning (_("Reaping LWP %d while detaching "
1427 "returned unexpected status 0x%x"),
1428 lwpid, status);
1429 }
1430 }
1431 else
1432 {
1433 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1434 safe_strerror (save_errno));
1435 }
1436 }
1437 else if (debug_linux_nat)
1438 {
1439 fprintf_unfiltered (gdb_stdlog,
1440 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1441 target_pid_to_str (lp->ptid),
1442 strsignal (signo));
1443 }
1444
1445 delete_lwp (lp->ptid);
1446 }
1447
1448 static int
1449 detach_callback (struct lwp_info *lp, void *data)
1450 {
1451 /* We don't actually detach from the thread group leader just yet.
1452 If the thread group exits, we must reap the zombie clone lwps
1453 before we're able to reap the leader. */
1454 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1455 detach_one_lwp (lp, NULL);
1456 return 0;
1457 }
1458
1459 void
1460 linux_nat_target::detach (inferior *inf, int from_tty)
1461 {
1462 struct lwp_info *main_lwp;
1463 int pid = inf->pid;
1464
1465 /* Don't unregister from the event loop, as there may be other
1466 inferiors running. */
1467
1468 /* Stop all threads before detaching. ptrace requires that the
1469 thread is stopped to sucessfully detach. */
1470 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1471 /* ... and wait until all of them have reported back that
1472 they're no longer running. */
1473 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1474
1475 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1476
1477 /* Only the initial process should be left right now. */
1478 gdb_assert (num_lwps (pid) == 1);
1479
1480 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1481
1482 if (forks_exist_p ())
1483 {
1484 /* Multi-fork case. The current inferior_ptid is being detached
1485 from, but there are other viable forks to debug. Detach from
1486 the current fork, and context-switch to the first
1487 available. */
1488 linux_fork_detach (from_tty);
1489 }
1490 else
1491 {
1492 target_announce_detach (from_tty);
1493
1494 /* Pass on any pending signal for the last LWP. */
1495 int signo = get_detach_signal (main_lwp);
1496
1497 detach_one_lwp (main_lwp, &signo);
1498
1499 detach_success (inf);
1500 }
1501 }
1502
1503 /* Resume execution of the inferior process. If STEP is nonzero,
1504 single-step it. If SIGNAL is nonzero, give it that signal. */
1505
1506 static void
1507 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1508 enum gdb_signal signo)
1509 {
1510 lp->step = step;
1511
1512 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1513 We only presently need that if the LWP is stepped though (to
1514 handle the case of stepping a breakpoint instruction). */
1515 if (step)
1516 {
1517 struct regcache *regcache = get_thread_regcache (lp->ptid);
1518
1519 lp->stop_pc = regcache_read_pc (regcache);
1520 }
1521 else
1522 lp->stop_pc = 0;
1523
1524 linux_target->low_prepare_to_resume (lp);
1525 linux_target->low_resume (lp->ptid, step, signo);
1526
1527 /* Successfully resumed. Clear state that no longer makes sense,
1528 and mark the LWP as running. Must not do this before resuming
1529 otherwise if that fails other code will be confused. E.g., we'd
1530 later try to stop the LWP and hang forever waiting for a stop
1531 status. Note that we must not throw after this is cleared,
1532 otherwise handle_zombie_lwp_error would get confused. */
1533 lp->stopped = 0;
1534 lp->core = -1;
1535 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1536 registers_changed_ptid (lp->ptid);
1537 }
1538
1539 /* Called when we try to resume a stopped LWP and that errors out. If
1540 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1541 or about to become), discard the error, clear any pending status
1542 the LWP may have, and return true (we'll collect the exit status
1543 soon enough). Otherwise, return false. */
1544
1545 static int
1546 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1547 {
1548 /* If we get an error after resuming the LWP successfully, we'd
1549 confuse !T state for the LWP being gone. */
1550 gdb_assert (lp->stopped);
1551
1552 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1553 because even if ptrace failed with ESRCH, the tracee may be "not
1554 yet fully dead", but already refusing ptrace requests. In that
1555 case the tracee has 'R (Running)' state for a little bit
1556 (observed in Linux 3.18). See also the note on ESRCH in the
1557 ptrace(2) man page. Instead, check whether the LWP has any state
1558 other than ptrace-stopped. */
1559
1560 /* Don't assume anything if /proc/PID/status can't be read. */
1561 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1562 {
1563 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1564 lp->status = 0;
1565 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1566 return 1;
1567 }
1568 return 0;
1569 }
1570
1571 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1572 disappears while we try to resume it. */
1573
1574 static void
1575 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1576 {
1577 TRY
1578 {
1579 linux_resume_one_lwp_throw (lp, step, signo);
1580 }
1581 CATCH (ex, RETURN_MASK_ERROR)
1582 {
1583 if (!check_ptrace_stopped_lwp_gone (lp))
1584 throw_exception (ex);
1585 }
1586 END_CATCH
1587 }
1588
1589 /* Resume LP. */
1590
1591 static void
1592 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1593 {
1594 if (lp->stopped)
1595 {
1596 struct inferior *inf = find_inferior_ptid (lp->ptid);
1597
1598 if (inf->vfork_child != NULL)
1599 {
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "RC: Not resuming %s (vfork parent)\n",
1603 target_pid_to_str (lp->ptid));
1604 }
1605 else if (!lwp_status_pending_p (lp))
1606 {
1607 if (debug_linux_nat)
1608 fprintf_unfiltered (gdb_stdlog,
1609 "RC: Resuming sibling %s, %s, %s\n",
1610 target_pid_to_str (lp->ptid),
1611 (signo != GDB_SIGNAL_0
1612 ? strsignal (gdb_signal_to_host (signo))
1613 : "0"),
1614 step ? "step" : "resume");
1615
1616 linux_resume_one_lwp (lp, step, signo);
1617 }
1618 else
1619 {
1620 if (debug_linux_nat)
1621 fprintf_unfiltered (gdb_stdlog,
1622 "RC: Not resuming sibling %s (has pending)\n",
1623 target_pid_to_str (lp->ptid));
1624 }
1625 }
1626 else
1627 {
1628 if (debug_linux_nat)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "RC: Not resuming sibling %s (not stopped)\n",
1631 target_pid_to_str (lp->ptid));
1632 }
1633 }
1634
1635 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1636 Resume LWP with the last stop signal, if it is in pass state. */
1637
1638 static int
1639 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1640 {
1641 enum gdb_signal signo = GDB_SIGNAL_0;
1642
1643 if (lp == except)
1644 return 0;
1645
1646 if (lp->stopped)
1647 {
1648 struct thread_info *thread;
1649
1650 thread = find_thread_ptid (lp->ptid);
1651 if (thread != NULL)
1652 {
1653 signo = thread->suspend.stop_signal;
1654 thread->suspend.stop_signal = GDB_SIGNAL_0;
1655 }
1656 }
1657
1658 resume_lwp (lp, 0, signo);
1659 return 0;
1660 }
1661
1662 static int
1663 resume_clear_callback (struct lwp_info *lp, void *data)
1664 {
1665 lp->resumed = 0;
1666 lp->last_resume_kind = resume_stop;
1667 return 0;
1668 }
1669
1670 static int
1671 resume_set_callback (struct lwp_info *lp, void *data)
1672 {
1673 lp->resumed = 1;
1674 lp->last_resume_kind = resume_continue;
1675 return 0;
1676 }
1677
1678 void
1679 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1680 {
1681 struct lwp_info *lp;
1682 int resume_many;
1683
1684 if (debug_linux_nat)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1687 step ? "step" : "resume",
1688 target_pid_to_str (ptid),
1689 (signo != GDB_SIGNAL_0
1690 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1691 target_pid_to_str (inferior_ptid));
1692
1693 /* A specific PTID means `step only this process id'. */
1694 resume_many = (ptid_equal (minus_one_ptid, ptid)
1695 || ptid_is_pid (ptid));
1696
1697 /* Mark the lwps we're resuming as resumed. */
1698 iterate_over_lwps (ptid, resume_set_callback, NULL);
1699
1700 /* See if it's the current inferior that should be handled
1701 specially. */
1702 if (resume_many)
1703 lp = find_lwp_pid (inferior_ptid);
1704 else
1705 lp = find_lwp_pid (ptid);
1706 gdb_assert (lp != NULL);
1707
1708 /* Remember if we're stepping. */
1709 lp->last_resume_kind = step ? resume_step : resume_continue;
1710
1711 /* If we have a pending wait status for this thread, there is no
1712 point in resuming the process. But first make sure that
1713 linux_nat_wait won't preemptively handle the event - we
1714 should never take this short-circuit if we are going to
1715 leave LP running, since we have skipped resuming all the
1716 other threads. This bit of code needs to be synchronized
1717 with linux_nat_wait. */
1718
1719 if (lp->status && WIFSTOPPED (lp->status))
1720 {
1721 if (!lp->step
1722 && WSTOPSIG (lp->status)
1723 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1724 {
1725 if (debug_linux_nat)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "LLR: Not short circuiting for ignored "
1728 "status 0x%x\n", lp->status);
1729
1730 /* FIXME: What should we do if we are supposed to continue
1731 this thread with a signal? */
1732 gdb_assert (signo == GDB_SIGNAL_0);
1733 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1734 lp->status = 0;
1735 }
1736 }
1737
1738 if (lwp_status_pending_p (lp))
1739 {
1740 /* FIXME: What should we do if we are supposed to continue
1741 this thread with a signal? */
1742 gdb_assert (signo == GDB_SIGNAL_0);
1743
1744 if (debug_linux_nat)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "LLR: Short circuiting for status 0x%x\n",
1747 lp->status);
1748
1749 if (target_can_async_p ())
1750 {
1751 target_async (1);
1752 /* Tell the event loop we have something to process. */
1753 async_file_mark ();
1754 }
1755 return;
1756 }
1757
1758 if (resume_many)
1759 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1760
1761 if (debug_linux_nat)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "LLR: %s %s, %s (resume event thread)\n",
1764 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1765 target_pid_to_str (lp->ptid),
1766 (signo != GDB_SIGNAL_0
1767 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1768
1769 linux_resume_one_lwp (lp, step, signo);
1770
1771 if (target_can_async_p ())
1772 target_async (1);
1773 }
1774
1775 /* Send a signal to an LWP. */
1776
1777 static int
1778 kill_lwp (int lwpid, int signo)
1779 {
1780 int ret;
1781
1782 errno = 0;
1783 ret = syscall (__NR_tkill, lwpid, signo);
1784 if (errno == ENOSYS)
1785 {
1786 /* If tkill fails, then we are not using nptl threads, a
1787 configuration we no longer support. */
1788 perror_with_name (("tkill"));
1789 }
1790 return ret;
1791 }
1792
1793 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1794 event, check if the core is interested in it: if not, ignore the
1795 event, and keep waiting; otherwise, we need to toggle the LWP's
1796 syscall entry/exit status, since the ptrace event itself doesn't
1797 indicate it, and report the trap to higher layers. */
1798
1799 static int
1800 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1801 {
1802 struct target_waitstatus *ourstatus = &lp->waitstatus;
1803 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1804 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1805
1806 if (stopping)
1807 {
1808 /* If we're stopping threads, there's a SIGSTOP pending, which
1809 makes it so that the LWP reports an immediate syscall return,
1810 followed by the SIGSTOP. Skip seeing that "return" using
1811 PTRACE_CONT directly, and let stop_wait_callback collect the
1812 SIGSTOP. Later when the thread is resumed, a new syscall
1813 entry event. If we didn't do this (and returned 0), we'd
1814 leave a syscall entry pending, and our caller, by using
1815 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1816 itself. Later, when the user re-resumes this LWP, we'd see
1817 another syscall entry event and we'd mistake it for a return.
1818
1819 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1820 (leaving immediately with LWP->signalled set, without issuing
1821 a PTRACE_CONT), it would still be problematic to leave this
1822 syscall enter pending, as later when the thread is resumed,
1823 it would then see the same syscall exit mentioned above,
1824 followed by the delayed SIGSTOP, while the syscall didn't
1825 actually get to execute. It seems it would be even more
1826 confusing to the user. */
1827
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "LHST: ignoring syscall %d "
1831 "for LWP %ld (stopping threads), "
1832 "resuming with PTRACE_CONT for SIGSTOP\n",
1833 syscall_number,
1834 ptid_get_lwp (lp->ptid));
1835
1836 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1837 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1838 lp->stopped = 0;
1839 return 1;
1840 }
1841
1842 /* Always update the entry/return state, even if this particular
1843 syscall isn't interesting to the core now. In async mode,
1844 the user could install a new catchpoint for this syscall
1845 between syscall enter/return, and we'll need to know to
1846 report a syscall return if that happens. */
1847 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1848 ? TARGET_WAITKIND_SYSCALL_RETURN
1849 : TARGET_WAITKIND_SYSCALL_ENTRY);
1850
1851 if (catch_syscall_enabled ())
1852 {
1853 if (catching_syscall_number (syscall_number))
1854 {
1855 /* Alright, an event to report. */
1856 ourstatus->kind = lp->syscall_state;
1857 ourstatus->value.syscall_number = syscall_number;
1858
1859 if (debug_linux_nat)
1860 fprintf_unfiltered (gdb_stdlog,
1861 "LHST: stopping for %s of syscall %d"
1862 " for LWP %ld\n",
1863 lp->syscall_state
1864 == TARGET_WAITKIND_SYSCALL_ENTRY
1865 ? "entry" : "return",
1866 syscall_number,
1867 ptid_get_lwp (lp->ptid));
1868 return 0;
1869 }
1870
1871 if (debug_linux_nat)
1872 fprintf_unfiltered (gdb_stdlog,
1873 "LHST: ignoring %s of syscall %d "
1874 "for LWP %ld\n",
1875 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1876 ? "entry" : "return",
1877 syscall_number,
1878 ptid_get_lwp (lp->ptid));
1879 }
1880 else
1881 {
1882 /* If we had been syscall tracing, and hence used PT_SYSCALL
1883 before on this LWP, it could happen that the user removes all
1884 syscall catchpoints before we get to process this event.
1885 There are two noteworthy issues here:
1886
1887 - When stopped at a syscall entry event, resuming with
1888 PT_STEP still resumes executing the syscall and reports a
1889 syscall return.
1890
1891 - Only PT_SYSCALL catches syscall enters. If we last
1892 single-stepped this thread, then this event can't be a
1893 syscall enter. If we last single-stepped this thread, this
1894 has to be a syscall exit.
1895
1896 The points above mean that the next resume, be it PT_STEP or
1897 PT_CONTINUE, can not trigger a syscall trace event. */
1898 if (debug_linux_nat)
1899 fprintf_unfiltered (gdb_stdlog,
1900 "LHST: caught syscall event "
1901 "with no syscall catchpoints."
1902 " %d for LWP %ld, ignoring\n",
1903 syscall_number,
1904 ptid_get_lwp (lp->ptid));
1905 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1906 }
1907
1908 /* The core isn't interested in this event. For efficiency, avoid
1909 stopping all threads only to have the core resume them all again.
1910 Since we're not stopping threads, if we're still syscall tracing
1911 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1912 subsequent syscall. Simply resume using the inf-ptrace layer,
1913 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1914
1915 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1916 return 1;
1917 }
1918
1919 /* Handle a GNU/Linux extended wait response. If we see a clone
1920 event, we need to add the new LWP to our list (and not report the
1921 trap to higher layers). This function returns non-zero if the
1922 event should be ignored and we should wait again. If STOPPING is
1923 true, the new LWP remains stopped, otherwise it is continued. */
1924
1925 static int
1926 linux_handle_extended_wait (struct lwp_info *lp, int status)
1927 {
1928 int pid = ptid_get_lwp (lp->ptid);
1929 struct target_waitstatus *ourstatus = &lp->waitstatus;
1930 int event = linux_ptrace_get_extended_event (status);
1931
1932 /* All extended events we currently use are mid-syscall. Only
1933 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1934 you have to be using PTRACE_SEIZE to get that. */
1935 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1936
1937 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1938 || event == PTRACE_EVENT_CLONE)
1939 {
1940 unsigned long new_pid;
1941 int ret;
1942
1943 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1944
1945 /* If we haven't already seen the new PID stop, wait for it now. */
1946 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1947 {
1948 /* The new child has a pending SIGSTOP. We can't affect it until it
1949 hits the SIGSTOP, but we're already attached. */
1950 ret = my_waitpid (new_pid, &status, __WALL);
1951 if (ret == -1)
1952 perror_with_name (_("waiting for new child"));
1953 else if (ret != new_pid)
1954 internal_error (__FILE__, __LINE__,
1955 _("wait returned unexpected PID %d"), ret);
1956 else if (!WIFSTOPPED (status))
1957 internal_error (__FILE__, __LINE__,
1958 _("wait returned unexpected status 0x%x"), status);
1959 }
1960
1961 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1962
1963 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1964 {
1965 /* The arch-specific native code may need to know about new
1966 forks even if those end up never mapped to an
1967 inferior. */
1968 linux_target->low_new_fork (lp, new_pid);
1969 }
1970
1971 if (event == PTRACE_EVENT_FORK
1972 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1973 {
1974 /* Handle checkpointing by linux-fork.c here as a special
1975 case. We don't want the follow-fork-mode or 'catch fork'
1976 to interfere with this. */
1977
1978 /* This won't actually modify the breakpoint list, but will
1979 physically remove the breakpoints from the child. */
1980 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1981
1982 /* Retain child fork in ptrace (stopped) state. */
1983 if (!find_fork_pid (new_pid))
1984 add_fork (new_pid);
1985
1986 /* Report as spurious, so that infrun doesn't want to follow
1987 this fork. We're actually doing an infcall in
1988 linux-fork.c. */
1989 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1990
1991 /* Report the stop to the core. */
1992 return 0;
1993 }
1994
1995 if (event == PTRACE_EVENT_FORK)
1996 ourstatus->kind = TARGET_WAITKIND_FORKED;
1997 else if (event == PTRACE_EVENT_VFORK)
1998 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1999 else if (event == PTRACE_EVENT_CLONE)
2000 {
2001 struct lwp_info *new_lp;
2002
2003 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2004
2005 if (debug_linux_nat)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "LHEW: Got clone event "
2008 "from LWP %d, new child is LWP %ld\n",
2009 pid, new_pid);
2010
2011 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2012 new_lp->stopped = 1;
2013 new_lp->resumed = 1;
2014
2015 /* If the thread_db layer is active, let it record the user
2016 level thread id and status, and add the thread to GDB's
2017 list. */
2018 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2019 {
2020 /* The process is not using thread_db. Add the LWP to
2021 GDB's list. */
2022 target_post_attach (ptid_get_lwp (new_lp->ptid));
2023 add_thread (new_lp->ptid);
2024 }
2025
2026 /* Even if we're stopping the thread for some reason
2027 internal to this module, from the perspective of infrun
2028 and the user/frontend, this new thread is running until
2029 it next reports a stop. */
2030 set_running (new_lp->ptid, 1);
2031 set_executing (new_lp->ptid, 1);
2032
2033 if (WSTOPSIG (status) != SIGSTOP)
2034 {
2035 /* This can happen if someone starts sending signals to
2036 the new thread before it gets a chance to run, which
2037 have a lower number than SIGSTOP (e.g. SIGUSR1).
2038 This is an unlikely case, and harder to handle for
2039 fork / vfork than for clone, so we do not try - but
2040 we handle it for clone events here. */
2041
2042 new_lp->signalled = 1;
2043
2044 /* We created NEW_LP so it cannot yet contain STATUS. */
2045 gdb_assert (new_lp->status == 0);
2046
2047 /* Save the wait status to report later. */
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHEW: waitpid of new LWP %ld, "
2051 "saving status %s\n",
2052 (long) ptid_get_lwp (new_lp->ptid),
2053 status_to_str (status));
2054 new_lp->status = status;
2055 }
2056 else if (report_thread_events)
2057 {
2058 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2059 new_lp->status = status;
2060 }
2061
2062 return 1;
2063 }
2064
2065 return 0;
2066 }
2067
2068 if (event == PTRACE_EVENT_EXEC)
2069 {
2070 if (debug_linux_nat)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "LHEW: Got exec event from LWP %ld\n",
2073 ptid_get_lwp (lp->ptid));
2074
2075 ourstatus->kind = TARGET_WAITKIND_EXECD;
2076 ourstatus->value.execd_pathname
2077 = xstrdup (linux_proc_pid_to_exec_file (pid));
2078
2079 /* The thread that execed must have been resumed, but, when a
2080 thread execs, it changes its tid to the tgid, and the old
2081 tgid thread might have not been resumed. */
2082 lp->resumed = 1;
2083 return 0;
2084 }
2085
2086 if (event == PTRACE_EVENT_VFORK_DONE)
2087 {
2088 if (current_inferior ()->waiting_for_vfork_done)
2089 {
2090 if (debug_linux_nat)
2091 fprintf_unfiltered (gdb_stdlog,
2092 "LHEW: Got expected PTRACE_EVENT_"
2093 "VFORK_DONE from LWP %ld: stopping\n",
2094 ptid_get_lwp (lp->ptid));
2095
2096 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2097 return 0;
2098 }
2099
2100 if (debug_linux_nat)
2101 fprintf_unfiltered (gdb_stdlog,
2102 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2103 "from LWP %ld: ignoring\n",
2104 ptid_get_lwp (lp->ptid));
2105 return 1;
2106 }
2107
2108 internal_error (__FILE__, __LINE__,
2109 _("unknown ptrace event %d"), event);
2110 }
2111
2112 /* Suspend waiting for a signal. We're mostly interested in
2113 SIGCHLD/SIGINT. */
2114
2115 static void
2116 wait_for_signal ()
2117 {
2118 if (debug_linux_nat)
2119 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2120 sigsuspend (&suspend_mask);
2121
2122 /* If the quit flag is set, it means that the user pressed Ctrl-C
2123 and we're debugging a process that is running on a separate
2124 terminal, so we must forward the Ctrl-C to the inferior. (If the
2125 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2126 inferior directly.) We must do this here because functions that
2127 need to block waiting for a signal loop forever until there's an
2128 event to report before returning back to the event loop. */
2129 if (!target_terminal::is_ours ())
2130 {
2131 if (check_quit_flag ())
2132 target_pass_ctrlc ();
2133 }
2134 }
2135
2136 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2137 exited. */
2138
2139 static int
2140 wait_lwp (struct lwp_info *lp)
2141 {
2142 pid_t pid;
2143 int status = 0;
2144 int thread_dead = 0;
2145 sigset_t prev_mask;
2146
2147 gdb_assert (!lp->stopped);
2148 gdb_assert (lp->status == 0);
2149
2150 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2151 block_child_signals (&prev_mask);
2152
2153 for (;;)
2154 {
2155 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2156 if (pid == -1 && errno == ECHILD)
2157 {
2158 /* The thread has previously exited. We need to delete it
2159 now because if this was a non-leader thread execing, we
2160 won't get an exit event. See comments on exec events at
2161 the top of the file. */
2162 thread_dead = 1;
2163 if (debug_linux_nat)
2164 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2165 target_pid_to_str (lp->ptid));
2166 }
2167 if (pid != 0)
2168 break;
2169
2170 /* Bugs 10970, 12702.
2171 Thread group leader may have exited in which case we'll lock up in
2172 waitpid if there are other threads, even if they are all zombies too.
2173 Basically, we're not supposed to use waitpid this way.
2174 tkill(pid,0) cannot be used here as it gets ESRCH for both
2175 for zombie and running processes.
2176
2177 As a workaround, check if we're waiting for the thread group leader and
2178 if it's a zombie, and avoid calling waitpid if it is.
2179
2180 This is racy, what if the tgl becomes a zombie right after we check?
2181 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2182 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2183
2184 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2185 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2186 {
2187 thread_dead = 1;
2188 if (debug_linux_nat)
2189 fprintf_unfiltered (gdb_stdlog,
2190 "WL: Thread group leader %s vanished.\n",
2191 target_pid_to_str (lp->ptid));
2192 break;
2193 }
2194
2195 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2196 get invoked despite our caller had them intentionally blocked by
2197 block_child_signals. This is sensitive only to the loop of
2198 linux_nat_wait_1 and there if we get called my_waitpid gets called
2199 again before it gets to sigsuspend so we can safely let the handlers
2200 get executed here. */
2201 wait_for_signal ();
2202 }
2203
2204 restore_child_signals_mask (&prev_mask);
2205
2206 if (!thread_dead)
2207 {
2208 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2209
2210 if (debug_linux_nat)
2211 {
2212 fprintf_unfiltered (gdb_stdlog,
2213 "WL: waitpid %s received %s\n",
2214 target_pid_to_str (lp->ptid),
2215 status_to_str (status));
2216 }
2217
2218 /* Check if the thread has exited. */
2219 if (WIFEXITED (status) || WIFSIGNALED (status))
2220 {
2221 if (report_thread_events
2222 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2223 {
2224 if (debug_linux_nat)
2225 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2226 ptid_get_pid (lp->ptid));
2227
2228 /* If this is the leader exiting, it means the whole
2229 process is gone. Store the status to report to the
2230 core. Store it in lp->waitstatus, because lp->status
2231 would be ambiguous (W_EXITCODE(0,0) == 0). */
2232 store_waitstatus (&lp->waitstatus, status);
2233 return 0;
2234 }
2235
2236 thread_dead = 1;
2237 if (debug_linux_nat)
2238 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2239 target_pid_to_str (lp->ptid));
2240 }
2241 }
2242
2243 if (thread_dead)
2244 {
2245 exit_lwp (lp);
2246 return 0;
2247 }
2248
2249 gdb_assert (WIFSTOPPED (status));
2250 lp->stopped = 1;
2251
2252 if (lp->must_set_ptrace_flags)
2253 {
2254 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2255 int options = linux_nat_ptrace_options (inf->attach_flag);
2256
2257 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2258 lp->must_set_ptrace_flags = 0;
2259 }
2260
2261 /* Handle GNU/Linux's syscall SIGTRAPs. */
2262 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2263 {
2264 /* No longer need the sysgood bit. The ptrace event ends up
2265 recorded in lp->waitstatus if we care for it. We can carry
2266 on handling the event like a regular SIGTRAP from here
2267 on. */
2268 status = W_STOPCODE (SIGTRAP);
2269 if (linux_handle_syscall_trap (lp, 1))
2270 return wait_lwp (lp);
2271 }
2272 else
2273 {
2274 /* Almost all other ptrace-stops are known to be outside of system
2275 calls, with further exceptions in linux_handle_extended_wait. */
2276 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2277 }
2278
2279 /* Handle GNU/Linux's extended waitstatus for trace events. */
2280 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2281 && linux_is_extended_waitstatus (status))
2282 {
2283 if (debug_linux_nat)
2284 fprintf_unfiltered (gdb_stdlog,
2285 "WL: Handling extended status 0x%06x\n",
2286 status);
2287 linux_handle_extended_wait (lp, status);
2288 return 0;
2289 }
2290
2291 return status;
2292 }
2293
2294 /* Send a SIGSTOP to LP. */
2295
2296 static int
2297 stop_callback (struct lwp_info *lp, void *data)
2298 {
2299 if (!lp->stopped && !lp->signalled)
2300 {
2301 int ret;
2302
2303 if (debug_linux_nat)
2304 {
2305 fprintf_unfiltered (gdb_stdlog,
2306 "SC: kill %s **<SIGSTOP>**\n",
2307 target_pid_to_str (lp->ptid));
2308 }
2309 errno = 0;
2310 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2311 if (debug_linux_nat)
2312 {
2313 fprintf_unfiltered (gdb_stdlog,
2314 "SC: lwp kill %d %s\n",
2315 ret,
2316 errno ? safe_strerror (errno) : "ERRNO-OK");
2317 }
2318
2319 lp->signalled = 1;
2320 gdb_assert (lp->status == 0);
2321 }
2322
2323 return 0;
2324 }
2325
2326 /* Request a stop on LWP. */
2327
2328 void
2329 linux_stop_lwp (struct lwp_info *lwp)
2330 {
2331 stop_callback (lwp, NULL);
2332 }
2333
2334 /* See linux-nat.h */
2335
2336 void
2337 linux_stop_and_wait_all_lwps (void)
2338 {
2339 /* Stop all LWP's ... */
2340 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2341
2342 /* ... and wait until all of them have reported back that
2343 they're no longer running. */
2344 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2345 }
2346
2347 /* See linux-nat.h */
2348
2349 void
2350 linux_unstop_all_lwps (void)
2351 {
2352 iterate_over_lwps (minus_one_ptid,
2353 resume_stopped_resumed_lwps, &minus_one_ptid);
2354 }
2355
2356 /* Return non-zero if LWP PID has a pending SIGINT. */
2357
2358 static int
2359 linux_nat_has_pending_sigint (int pid)
2360 {
2361 sigset_t pending, blocked, ignored;
2362
2363 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2364
2365 if (sigismember (&pending, SIGINT)
2366 && !sigismember (&ignored, SIGINT))
2367 return 1;
2368
2369 return 0;
2370 }
2371
2372 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2373
2374 static int
2375 set_ignore_sigint (struct lwp_info *lp, void *data)
2376 {
2377 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2378 flag to consume the next one. */
2379 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2380 && WSTOPSIG (lp->status) == SIGINT)
2381 lp->status = 0;
2382 else
2383 lp->ignore_sigint = 1;
2384
2385 return 0;
2386 }
2387
2388 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2389 This function is called after we know the LWP has stopped; if the LWP
2390 stopped before the expected SIGINT was delivered, then it will never have
2391 arrived. Also, if the signal was delivered to a shared queue and consumed
2392 by a different thread, it will never be delivered to this LWP. */
2393
2394 static void
2395 maybe_clear_ignore_sigint (struct lwp_info *lp)
2396 {
2397 if (!lp->ignore_sigint)
2398 return;
2399
2400 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2401 {
2402 if (debug_linux_nat)
2403 fprintf_unfiltered (gdb_stdlog,
2404 "MCIS: Clearing bogus flag for %s\n",
2405 target_pid_to_str (lp->ptid));
2406 lp->ignore_sigint = 0;
2407 }
2408 }
2409
2410 /* Fetch the possible triggered data watchpoint info and store it in
2411 LP.
2412
2413 On some archs, like x86, that use debug registers to set
2414 watchpoints, it's possible that the way to know which watched
2415 address trapped, is to check the register that is used to select
2416 which address to watch. Problem is, between setting the watchpoint
2417 and reading back which data address trapped, the user may change
2418 the set of watchpoints, and, as a consequence, GDB changes the
2419 debug registers in the inferior. To avoid reading back a stale
2420 stopped-data-address when that happens, we cache in LP the fact
2421 that a watchpoint trapped, and the corresponding data address, as
2422 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2423 registers meanwhile, we have the cached data we can rely on. */
2424
2425 static int
2426 check_stopped_by_watchpoint (struct lwp_info *lp)
2427 {
2428 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2429 inferior_ptid = lp->ptid;
2430
2431 if (linux_target->low_stopped_by_watchpoint ())
2432 {
2433 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2434 lp->stopped_data_address_p
2435 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2436 }
2437
2438 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2439 }
2440
2441 /* Returns true if the LWP had stopped for a watchpoint. */
2442
2443 bool
2444 linux_nat_target::stopped_by_watchpoint ()
2445 {
2446 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2447
2448 gdb_assert (lp != NULL);
2449
2450 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2451 }
2452
2453 bool
2454 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2455 {
2456 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2457
2458 gdb_assert (lp != NULL);
2459
2460 *addr_p = lp->stopped_data_address;
2461
2462 return lp->stopped_data_address_p;
2463 }
2464
2465 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2466
2467 bool
2468 linux_nat_target::low_status_is_event (int status)
2469 {
2470 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2471 }
2472
2473 /* Wait until LP is stopped. */
2474
2475 static int
2476 stop_wait_callback (struct lwp_info *lp, void *data)
2477 {
2478 struct inferior *inf = find_inferior_ptid (lp->ptid);
2479
2480 /* If this is a vfork parent, bail out, it is not going to report
2481 any SIGSTOP until the vfork is done with. */
2482 if (inf->vfork_child != NULL)
2483 return 0;
2484
2485 if (!lp->stopped)
2486 {
2487 int status;
2488
2489 status = wait_lwp (lp);
2490 if (status == 0)
2491 return 0;
2492
2493 if (lp->ignore_sigint && WIFSTOPPED (status)
2494 && WSTOPSIG (status) == SIGINT)
2495 {
2496 lp->ignore_sigint = 0;
2497
2498 errno = 0;
2499 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2500 lp->stopped = 0;
2501 if (debug_linux_nat)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "PTRACE_CONT %s, 0, 0 (%s) "
2504 "(discarding SIGINT)\n",
2505 target_pid_to_str (lp->ptid),
2506 errno ? safe_strerror (errno) : "OK");
2507
2508 return stop_wait_callback (lp, NULL);
2509 }
2510
2511 maybe_clear_ignore_sigint (lp);
2512
2513 if (WSTOPSIG (status) != SIGSTOP)
2514 {
2515 /* The thread was stopped with a signal other than SIGSTOP. */
2516
2517 if (debug_linux_nat)
2518 fprintf_unfiltered (gdb_stdlog,
2519 "SWC: Pending event %s in %s\n",
2520 status_to_str ((int) status),
2521 target_pid_to_str (lp->ptid));
2522
2523 /* Save the sigtrap event. */
2524 lp->status = status;
2525 gdb_assert (lp->signalled);
2526 save_stop_reason (lp);
2527 }
2528 else
2529 {
2530 /* We caught the SIGSTOP that we intended to catch, so
2531 there's no SIGSTOP pending. */
2532
2533 if (debug_linux_nat)
2534 fprintf_unfiltered (gdb_stdlog,
2535 "SWC: Expected SIGSTOP caught for %s.\n",
2536 target_pid_to_str (lp->ptid));
2537
2538 /* Reset SIGNALLED only after the stop_wait_callback call
2539 above as it does gdb_assert on SIGNALLED. */
2540 lp->signalled = 0;
2541 }
2542 }
2543
2544 return 0;
2545 }
2546
2547 /* Return non-zero if LP has a wait status pending. Discard the
2548 pending event and resume the LWP if the event that originally
2549 caused the stop became uninteresting. */
2550
2551 static int
2552 status_callback (struct lwp_info *lp, void *data)
2553 {
2554 /* Only report a pending wait status if we pretend that this has
2555 indeed been resumed. */
2556 if (!lp->resumed)
2557 return 0;
2558
2559 if (!lwp_status_pending_p (lp))
2560 return 0;
2561
2562 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2563 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2564 {
2565 struct regcache *regcache = get_thread_regcache (lp->ptid);
2566 CORE_ADDR pc;
2567 int discard = 0;
2568
2569 pc = regcache_read_pc (regcache);
2570
2571 if (pc != lp->stop_pc)
2572 {
2573 if (debug_linux_nat)
2574 fprintf_unfiltered (gdb_stdlog,
2575 "SC: PC of %s changed. was=%s, now=%s\n",
2576 target_pid_to_str (lp->ptid),
2577 paddress (target_gdbarch (), lp->stop_pc),
2578 paddress (target_gdbarch (), pc));
2579 discard = 1;
2580 }
2581
2582 #if !USE_SIGTRAP_SIGINFO
2583 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2584 {
2585 if (debug_linux_nat)
2586 fprintf_unfiltered (gdb_stdlog,
2587 "SC: previous breakpoint of %s, at %s gone\n",
2588 target_pid_to_str (lp->ptid),
2589 paddress (target_gdbarch (), lp->stop_pc));
2590
2591 discard = 1;
2592 }
2593 #endif
2594
2595 if (discard)
2596 {
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "SC: pending event of %s cancelled.\n",
2600 target_pid_to_str (lp->ptid));
2601
2602 lp->status = 0;
2603 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2604 return 0;
2605 }
2606 }
2607
2608 return 1;
2609 }
2610
2611 /* Count the LWP's that have had events. */
2612
2613 static int
2614 count_events_callback (struct lwp_info *lp, void *data)
2615 {
2616 int *count = (int *) data;
2617
2618 gdb_assert (count != NULL);
2619
2620 /* Select only resumed LWPs that have an event pending. */
2621 if (lp->resumed && lwp_status_pending_p (lp))
2622 (*count)++;
2623
2624 return 0;
2625 }
2626
2627 /* Select the LWP (if any) that is currently being single-stepped. */
2628
2629 static int
2630 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2631 {
2632 if (lp->last_resume_kind == resume_step
2633 && lp->status != 0)
2634 return 1;
2635 else
2636 return 0;
2637 }
2638
2639 /* Returns true if LP has a status pending. */
2640
2641 static int
2642 lwp_status_pending_p (struct lwp_info *lp)
2643 {
2644 /* We check for lp->waitstatus in addition to lp->status, because we
2645 can have pending process exits recorded in lp->status and
2646 W_EXITCODE(0,0) happens to be 0. */
2647 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2648 }
2649
2650 /* Select the Nth LWP that has had an event. */
2651
2652 static int
2653 select_event_lwp_callback (struct lwp_info *lp, void *data)
2654 {
2655 int *selector = (int *) data;
2656
2657 gdb_assert (selector != NULL);
2658
2659 /* Select only resumed LWPs that have an event pending. */
2660 if (lp->resumed && lwp_status_pending_p (lp))
2661 if ((*selector)-- == 0)
2662 return 1;
2663
2664 return 0;
2665 }
2666
2667 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2668 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2669 and save the result in the LWP's stop_reason field. If it stopped
2670 for a breakpoint, decrement the PC if necessary on the lwp's
2671 architecture. */
2672
2673 static void
2674 save_stop_reason (struct lwp_info *lp)
2675 {
2676 struct regcache *regcache;
2677 struct gdbarch *gdbarch;
2678 CORE_ADDR pc;
2679 CORE_ADDR sw_bp_pc;
2680 #if USE_SIGTRAP_SIGINFO
2681 siginfo_t siginfo;
2682 #endif
2683
2684 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2685 gdb_assert (lp->status != 0);
2686
2687 if (!linux_target->low_status_is_event (lp->status))
2688 return;
2689
2690 regcache = get_thread_regcache (lp->ptid);
2691 gdbarch = regcache->arch ();
2692
2693 pc = regcache_read_pc (regcache);
2694 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2695
2696 #if USE_SIGTRAP_SIGINFO
2697 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2698 {
2699 if (siginfo.si_signo == SIGTRAP)
2700 {
2701 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2702 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2703 {
2704 /* The si_code is ambiguous on this arch -- check debug
2705 registers. */
2706 if (!check_stopped_by_watchpoint (lp))
2707 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2708 }
2709 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2710 {
2711 /* If we determine the LWP stopped for a SW breakpoint,
2712 trust it. Particularly don't check watchpoint
2713 registers, because at least on s390, we'd find
2714 stopped-by-watchpoint as long as there's a watchpoint
2715 set. */
2716 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2717 }
2718 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2719 {
2720 /* This can indicate either a hardware breakpoint or
2721 hardware watchpoint. Check debug registers. */
2722 if (!check_stopped_by_watchpoint (lp))
2723 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2724 }
2725 else if (siginfo.si_code == TRAP_TRACE)
2726 {
2727 if (debug_linux_nat)
2728 fprintf_unfiltered (gdb_stdlog,
2729 "CSBB: %s stopped by trace\n",
2730 target_pid_to_str (lp->ptid));
2731
2732 /* We may have single stepped an instruction that
2733 triggered a watchpoint. In that case, on some
2734 architectures (such as x86), instead of TRAP_HWBKPT,
2735 si_code indicates TRAP_TRACE, and we need to check
2736 the debug registers separately. */
2737 check_stopped_by_watchpoint (lp);
2738 }
2739 }
2740 }
2741 #else
2742 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2743 && software_breakpoint_inserted_here_p (regcache->aspace (),
2744 sw_bp_pc))
2745 {
2746 /* The LWP was either continued, or stepped a software
2747 breakpoint instruction. */
2748 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2749 }
2750
2751 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2752 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2753
2754 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2755 check_stopped_by_watchpoint (lp);
2756 #endif
2757
2758 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2759 {
2760 if (debug_linux_nat)
2761 fprintf_unfiltered (gdb_stdlog,
2762 "CSBB: %s stopped by software breakpoint\n",
2763 target_pid_to_str (lp->ptid));
2764
2765 /* Back up the PC if necessary. */
2766 if (pc != sw_bp_pc)
2767 regcache_write_pc (regcache, sw_bp_pc);
2768
2769 /* Update this so we record the correct stop PC below. */
2770 pc = sw_bp_pc;
2771 }
2772 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2773 {
2774 if (debug_linux_nat)
2775 fprintf_unfiltered (gdb_stdlog,
2776 "CSBB: %s stopped by hardware breakpoint\n",
2777 target_pid_to_str (lp->ptid));
2778 }
2779 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2780 {
2781 if (debug_linux_nat)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "CSBB: %s stopped by hardware watchpoint\n",
2784 target_pid_to_str (lp->ptid));
2785 }
2786
2787 lp->stop_pc = pc;
2788 }
2789
2790
2791 /* Returns true if the LWP had stopped for a software breakpoint. */
2792
2793 bool
2794 linux_nat_target::stopped_by_sw_breakpoint ()
2795 {
2796 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2797
2798 gdb_assert (lp != NULL);
2799
2800 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2801 }
2802
2803 /* Implement the supports_stopped_by_sw_breakpoint method. */
2804
2805 bool
2806 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2807 {
2808 return USE_SIGTRAP_SIGINFO;
2809 }
2810
2811 /* Returns true if the LWP had stopped for a hardware
2812 breakpoint/watchpoint. */
2813
2814 bool
2815 linux_nat_target::stopped_by_hw_breakpoint ()
2816 {
2817 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2818
2819 gdb_assert (lp != NULL);
2820
2821 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2822 }
2823
2824 /* Implement the supports_stopped_by_hw_breakpoint method. */
2825
2826 bool
2827 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2828 {
2829 return USE_SIGTRAP_SIGINFO;
2830 }
2831
2832 /* Select one LWP out of those that have events pending. */
2833
2834 static void
2835 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2836 {
2837 int num_events = 0;
2838 int random_selector;
2839 struct lwp_info *event_lp = NULL;
2840
2841 /* Record the wait status for the original LWP. */
2842 (*orig_lp)->status = *status;
2843
2844 /* In all-stop, give preference to the LWP that is being
2845 single-stepped. There will be at most one, and it will be the
2846 LWP that the core is most interested in. If we didn't do this,
2847 then we'd have to handle pending step SIGTRAPs somehow in case
2848 the core later continues the previously-stepped thread, as
2849 otherwise we'd report the pending SIGTRAP then, and the core, not
2850 having stepped the thread, wouldn't understand what the trap was
2851 for, and therefore would report it to the user as a random
2852 signal. */
2853 if (!target_is_non_stop_p ())
2854 {
2855 event_lp = iterate_over_lwps (filter,
2856 select_singlestep_lwp_callback, NULL);
2857 if (event_lp != NULL)
2858 {
2859 if (debug_linux_nat)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "SEL: Select single-step %s\n",
2862 target_pid_to_str (event_lp->ptid));
2863 }
2864 }
2865
2866 if (event_lp == NULL)
2867 {
2868 /* Pick one at random, out of those which have had events. */
2869
2870 /* First see how many events we have. */
2871 iterate_over_lwps (filter, count_events_callback, &num_events);
2872 gdb_assert (num_events > 0);
2873
2874 /* Now randomly pick a LWP out of those that have had
2875 events. */
2876 random_selector = (int)
2877 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2878
2879 if (debug_linux_nat && num_events > 1)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "SEL: Found %d events, selecting #%d\n",
2882 num_events, random_selector);
2883
2884 event_lp = iterate_over_lwps (filter,
2885 select_event_lwp_callback,
2886 &random_selector);
2887 }
2888
2889 if (event_lp != NULL)
2890 {
2891 /* Switch the event LWP. */
2892 *orig_lp = event_lp;
2893 *status = event_lp->status;
2894 }
2895
2896 /* Flush the wait status for the event LWP. */
2897 (*orig_lp)->status = 0;
2898 }
2899
2900 /* Return non-zero if LP has been resumed. */
2901
2902 static int
2903 resumed_callback (struct lwp_info *lp, void *data)
2904 {
2905 return lp->resumed;
2906 }
2907
2908 /* Check if we should go on and pass this event to common code.
2909 Return the affected lwp if we are, or NULL otherwise. */
2910
2911 static struct lwp_info *
2912 linux_nat_filter_event (int lwpid, int status)
2913 {
2914 struct lwp_info *lp;
2915 int event = linux_ptrace_get_extended_event (status);
2916
2917 lp = find_lwp_pid (pid_to_ptid (lwpid));
2918
2919 /* Check for stop events reported by a process we didn't already
2920 know about - anything not already in our LWP list.
2921
2922 If we're expecting to receive stopped processes after
2923 fork, vfork, and clone events, then we'll just add the
2924 new one to our list and go back to waiting for the event
2925 to be reported - the stopped process might be returned
2926 from waitpid before or after the event is.
2927
2928 But note the case of a non-leader thread exec'ing after the
2929 leader having exited, and gone from our lists. The non-leader
2930 thread changes its tid to the tgid. */
2931
2932 if (WIFSTOPPED (status) && lp == NULL
2933 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2934 {
2935 /* A multi-thread exec after we had seen the leader exiting. */
2936 if (debug_linux_nat)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "LLW: Re-adding thread group leader LWP %d.\n",
2939 lwpid);
2940
2941 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2942 lp->stopped = 1;
2943 lp->resumed = 1;
2944 add_thread (lp->ptid);
2945 }
2946
2947 if (WIFSTOPPED (status) && !lp)
2948 {
2949 if (debug_linux_nat)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2952 (long) lwpid, status_to_str (status));
2953 add_to_pid_list (&stopped_pids, lwpid, status);
2954 return NULL;
2955 }
2956
2957 /* Make sure we don't report an event for the exit of an LWP not in
2958 our list, i.e. not part of the current process. This can happen
2959 if we detach from a program we originally forked and then it
2960 exits. */
2961 if (!WIFSTOPPED (status) && !lp)
2962 return NULL;
2963
2964 /* This LWP is stopped now. (And if dead, this prevents it from
2965 ever being continued.) */
2966 lp->stopped = 1;
2967
2968 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2969 {
2970 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2971 int options = linux_nat_ptrace_options (inf->attach_flag);
2972
2973 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2974 lp->must_set_ptrace_flags = 0;
2975 }
2976
2977 /* Handle GNU/Linux's syscall SIGTRAPs. */
2978 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2979 {
2980 /* No longer need the sysgood bit. The ptrace event ends up
2981 recorded in lp->waitstatus if we care for it. We can carry
2982 on handling the event like a regular SIGTRAP from here
2983 on. */
2984 status = W_STOPCODE (SIGTRAP);
2985 if (linux_handle_syscall_trap (lp, 0))
2986 return NULL;
2987 }
2988 else
2989 {
2990 /* Almost all other ptrace-stops are known to be outside of system
2991 calls, with further exceptions in linux_handle_extended_wait. */
2992 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2993 }
2994
2995 /* Handle GNU/Linux's extended waitstatus for trace events. */
2996 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2997 && linux_is_extended_waitstatus (status))
2998 {
2999 if (debug_linux_nat)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "LLW: Handling extended status 0x%06x\n",
3002 status);
3003 if (linux_handle_extended_wait (lp, status))
3004 return NULL;
3005 }
3006
3007 /* Check if the thread has exited. */
3008 if (WIFEXITED (status) || WIFSIGNALED (status))
3009 {
3010 if (!report_thread_events
3011 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3012 {
3013 if (debug_linux_nat)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "LLW: %s exited.\n",
3016 target_pid_to_str (lp->ptid));
3017
3018 /* If there is at least one more LWP, then the exit signal
3019 was not the end of the debugged application and should be
3020 ignored. */
3021 exit_lwp (lp);
3022 return NULL;
3023 }
3024
3025 /* Note that even if the leader was ptrace-stopped, it can still
3026 exit, if e.g., some other thread brings down the whole
3027 process (calls `exit'). So don't assert that the lwp is
3028 resumed. */
3029 if (debug_linux_nat)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "LWP %ld exited (resumed=%d)\n",
3032 ptid_get_lwp (lp->ptid), lp->resumed);
3033
3034 /* Dead LWP's aren't expected to reported a pending sigstop. */
3035 lp->signalled = 0;
3036
3037 /* Store the pending event in the waitstatus, because
3038 W_EXITCODE(0,0) == 0. */
3039 store_waitstatus (&lp->waitstatus, status);
3040 return lp;
3041 }
3042
3043 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3044 an attempt to stop an LWP. */
3045 if (lp->signalled
3046 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3047 {
3048 lp->signalled = 0;
3049
3050 if (lp->last_resume_kind == resume_stop)
3051 {
3052 if (debug_linux_nat)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "LLW: resume_stop SIGSTOP caught for %s.\n",
3055 target_pid_to_str (lp->ptid));
3056 }
3057 else
3058 {
3059 /* This is a delayed SIGSTOP. Filter out the event. */
3060
3061 if (debug_linux_nat)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3064 lp->step ?
3065 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3066 target_pid_to_str (lp->ptid));
3067
3068 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3069 gdb_assert (lp->resumed);
3070 return NULL;
3071 }
3072 }
3073
3074 /* Make sure we don't report a SIGINT that we have already displayed
3075 for another thread. */
3076 if (lp->ignore_sigint
3077 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3078 {
3079 if (debug_linux_nat)
3080 fprintf_unfiltered (gdb_stdlog,
3081 "LLW: Delayed SIGINT caught for %s.\n",
3082 target_pid_to_str (lp->ptid));
3083
3084 /* This is a delayed SIGINT. */
3085 lp->ignore_sigint = 0;
3086
3087 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3088 if (debug_linux_nat)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3091 lp->step ?
3092 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3093 target_pid_to_str (lp->ptid));
3094 gdb_assert (lp->resumed);
3095
3096 /* Discard the event. */
3097 return NULL;
3098 }
3099
3100 /* Don't report signals that GDB isn't interested in, such as
3101 signals that are neither printed nor stopped upon. Stopping all
3102 threads can be a bit time-consuming so if we want decent
3103 performance with heavily multi-threaded programs, especially when
3104 they're using a high frequency timer, we'd better avoid it if we
3105 can. */
3106 if (WIFSTOPPED (status))
3107 {
3108 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3109
3110 if (!target_is_non_stop_p ())
3111 {
3112 /* Only do the below in all-stop, as we currently use SIGSTOP
3113 to implement target_stop (see linux_nat_stop) in
3114 non-stop. */
3115 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3116 {
3117 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3118 forwarded to the entire process group, that is, all LWPs
3119 will receive it - unless they're using CLONE_THREAD to
3120 share signals. Since we only want to report it once, we
3121 mark it as ignored for all LWPs except this one. */
3122 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3123 set_ignore_sigint, NULL);
3124 lp->ignore_sigint = 0;
3125 }
3126 else
3127 maybe_clear_ignore_sigint (lp);
3128 }
3129
3130 /* When using hardware single-step, we need to report every signal.
3131 Otherwise, signals in pass_mask may be short-circuited
3132 except signals that might be caused by a breakpoint. */
3133 if (!lp->step
3134 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3135 && !linux_wstatus_maybe_breakpoint (status))
3136 {
3137 linux_resume_one_lwp (lp, lp->step, signo);
3138 if (debug_linux_nat)
3139 fprintf_unfiltered (gdb_stdlog,
3140 "LLW: %s %s, %s (preempt 'handle')\n",
3141 lp->step ?
3142 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3143 target_pid_to_str (lp->ptid),
3144 (signo != GDB_SIGNAL_0
3145 ? strsignal (gdb_signal_to_host (signo))
3146 : "0"));
3147 return NULL;
3148 }
3149 }
3150
3151 /* An interesting event. */
3152 gdb_assert (lp);
3153 lp->status = status;
3154 save_stop_reason (lp);
3155 return lp;
3156 }
3157
3158 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3159 their exits until all other threads in the group have exited. */
3160
3161 static void
3162 check_zombie_leaders (void)
3163 {
3164 struct inferior *inf;
3165
3166 ALL_INFERIORS (inf)
3167 {
3168 struct lwp_info *leader_lp;
3169
3170 if (inf->pid == 0)
3171 continue;
3172
3173 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3174 if (leader_lp != NULL
3175 /* Check if there are other threads in the group, as we may
3176 have raced with the inferior simply exiting. */
3177 && num_lwps (inf->pid) > 1
3178 && linux_proc_pid_is_zombie (inf->pid))
3179 {
3180 if (debug_linux_nat)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "CZL: Thread group leader %d zombie "
3183 "(it exited, or another thread execd).\n",
3184 inf->pid);
3185
3186 /* A leader zombie can mean one of two things:
3187
3188 - It exited, and there's an exit status pending
3189 available, or only the leader exited (not the whole
3190 program). In the latter case, we can't waitpid the
3191 leader's exit status until all other threads are gone.
3192
3193 - There are 3 or more threads in the group, and a thread
3194 other than the leader exec'd. See comments on exec
3195 events at the top of the file. We could try
3196 distinguishing the exit and exec cases, by waiting once
3197 more, and seeing if something comes out, but it doesn't
3198 sound useful. The previous leader _does_ go away, and
3199 we'll re-add the new one once we see the exec event
3200 (which is just the same as what would happen if the
3201 previous leader did exit voluntarily before some other
3202 thread execs). */
3203
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "CZL: Thread group leader %d vanished.\n",
3207 inf->pid);
3208 exit_lwp (leader_lp);
3209 }
3210 }
3211 }
3212
3213 /* Convenience function that is called when the kernel reports an exit
3214 event. This decides whether to report the event to GDB as a
3215 process exit event, a thread exit event, or to suppress the
3216 event. */
3217
3218 static ptid_t
3219 filter_exit_event (struct lwp_info *event_child,
3220 struct target_waitstatus *ourstatus)
3221 {
3222 ptid_t ptid = event_child->ptid;
3223
3224 if (num_lwps (ptid_get_pid (ptid)) > 1)
3225 {
3226 if (report_thread_events)
3227 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3228 else
3229 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3230
3231 exit_lwp (event_child);
3232 }
3233
3234 return ptid;
3235 }
3236
3237 static ptid_t
3238 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3239 int target_options)
3240 {
3241 sigset_t prev_mask;
3242 enum resume_kind last_resume_kind;
3243 struct lwp_info *lp;
3244 int status;
3245
3246 if (debug_linux_nat)
3247 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3248
3249 /* The first time we get here after starting a new inferior, we may
3250 not have added it to the LWP list yet - this is the earliest
3251 moment at which we know its PID. */
3252 if (ptid_is_pid (inferior_ptid))
3253 {
3254 /* Upgrade the main thread's ptid. */
3255 thread_change_ptid (inferior_ptid,
3256 ptid_build (ptid_get_pid (inferior_ptid),
3257 ptid_get_pid (inferior_ptid), 0));
3258
3259 lp = add_initial_lwp (inferior_ptid);
3260 lp->resumed = 1;
3261 }
3262
3263 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3264 block_child_signals (&prev_mask);
3265
3266 /* First check if there is a LWP with a wait status pending. */
3267 lp = iterate_over_lwps (ptid, status_callback, NULL);
3268 if (lp != NULL)
3269 {
3270 if (debug_linux_nat)
3271 fprintf_unfiltered (gdb_stdlog,
3272 "LLW: Using pending wait status %s for %s.\n",
3273 status_to_str (lp->status),
3274 target_pid_to_str (lp->ptid));
3275 }
3276
3277 /* But if we don't find a pending event, we'll have to wait. Always
3278 pull all events out of the kernel. We'll randomly select an
3279 event LWP out of all that have events, to prevent starvation. */
3280
3281 while (lp == NULL)
3282 {
3283 pid_t lwpid;
3284
3285 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3286 quirks:
3287
3288 - If the thread group leader exits while other threads in the
3289 thread group still exist, waitpid(TGID, ...) hangs. That
3290 waitpid won't return an exit status until the other threads
3291 in the group are reapped.
3292
3293 - When a non-leader thread execs, that thread just vanishes
3294 without reporting an exit (so we'd hang if we waited for it
3295 explicitly in that case). The exec event is reported to
3296 the TGID pid. */
3297
3298 errno = 0;
3299 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3300
3301 if (debug_linux_nat)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LNW: waitpid(-1, ...) returned %d, %s\n",
3304 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3305
3306 if (lwpid > 0)
3307 {
3308 if (debug_linux_nat)
3309 {
3310 fprintf_unfiltered (gdb_stdlog,
3311 "LLW: waitpid %ld received %s\n",
3312 (long) lwpid, status_to_str (status));
3313 }
3314
3315 linux_nat_filter_event (lwpid, status);
3316 /* Retry until nothing comes out of waitpid. A single
3317 SIGCHLD can indicate more than one child stopped. */
3318 continue;
3319 }
3320
3321 /* Now that we've pulled all events out of the kernel, resume
3322 LWPs that don't have an interesting event to report. */
3323 iterate_over_lwps (minus_one_ptid,
3324 resume_stopped_resumed_lwps, &minus_one_ptid);
3325
3326 /* ... and find an LWP with a status to report to the core, if
3327 any. */
3328 lp = iterate_over_lwps (ptid, status_callback, NULL);
3329 if (lp != NULL)
3330 break;
3331
3332 /* Check for zombie thread group leaders. Those can't be reaped
3333 until all other threads in the thread group are. */
3334 check_zombie_leaders ();
3335
3336 /* If there are no resumed children left, bail. We'd be stuck
3337 forever in the sigsuspend call below otherwise. */
3338 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3339 {
3340 if (debug_linux_nat)
3341 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3342
3343 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3344
3345 restore_child_signals_mask (&prev_mask);
3346 return minus_one_ptid;
3347 }
3348
3349 /* No interesting event to report to the core. */
3350
3351 if (target_options & TARGET_WNOHANG)
3352 {
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3355
3356 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3357 restore_child_signals_mask (&prev_mask);
3358 return minus_one_ptid;
3359 }
3360
3361 /* We shouldn't end up here unless we want to try again. */
3362 gdb_assert (lp == NULL);
3363
3364 /* Block until we get an event reported with SIGCHLD. */
3365 wait_for_signal ();
3366 }
3367
3368 gdb_assert (lp);
3369
3370 status = lp->status;
3371 lp->status = 0;
3372
3373 if (!target_is_non_stop_p ())
3374 {
3375 /* Now stop all other LWP's ... */
3376 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3377
3378 /* ... and wait until all of them have reported back that
3379 they're no longer running. */
3380 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3381 }
3382
3383 /* If we're not waiting for a specific LWP, choose an event LWP from
3384 among those that have had events. Giving equal priority to all
3385 LWPs that have had events helps prevent starvation. */
3386 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3387 select_event_lwp (ptid, &lp, &status);
3388
3389 gdb_assert (lp != NULL);
3390
3391 /* Now that we've selected our final event LWP, un-adjust its PC if
3392 it was a software breakpoint, and we can't reliably support the
3393 "stopped by software breakpoint" stop reason. */
3394 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3395 && !USE_SIGTRAP_SIGINFO)
3396 {
3397 struct regcache *regcache = get_thread_regcache (lp->ptid);
3398 struct gdbarch *gdbarch = regcache->arch ();
3399 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3400
3401 if (decr_pc != 0)
3402 {
3403 CORE_ADDR pc;
3404
3405 pc = regcache_read_pc (regcache);
3406 regcache_write_pc (regcache, pc + decr_pc);
3407 }
3408 }
3409
3410 /* We'll need this to determine whether to report a SIGSTOP as
3411 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3412 clears it. */
3413 last_resume_kind = lp->last_resume_kind;
3414
3415 if (!target_is_non_stop_p ())
3416 {
3417 /* In all-stop, from the core's perspective, all LWPs are now
3418 stopped until a new resume action is sent over. */
3419 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3420 }
3421 else
3422 {
3423 resume_clear_callback (lp, NULL);
3424 }
3425
3426 if (linux_target->low_status_is_event (status))
3427 {
3428 if (debug_linux_nat)
3429 fprintf_unfiltered (gdb_stdlog,
3430 "LLW: trap ptid is %s.\n",
3431 target_pid_to_str (lp->ptid));
3432 }
3433
3434 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3435 {
3436 *ourstatus = lp->waitstatus;
3437 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3438 }
3439 else
3440 store_waitstatus (ourstatus, status);
3441
3442 if (debug_linux_nat)
3443 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3444
3445 restore_child_signals_mask (&prev_mask);
3446
3447 if (last_resume_kind == resume_stop
3448 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3449 && WSTOPSIG (status) == SIGSTOP)
3450 {
3451 /* A thread that has been requested to stop by GDB with
3452 target_stop, and it stopped cleanly, so report as SIG0. The
3453 use of SIGSTOP is an implementation detail. */
3454 ourstatus->value.sig = GDB_SIGNAL_0;
3455 }
3456
3457 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3458 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3459 lp->core = -1;
3460 else
3461 lp->core = linux_common_core_of_thread (lp->ptid);
3462
3463 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3464 return filter_exit_event (lp, ourstatus);
3465
3466 return lp->ptid;
3467 }
3468
3469 /* Resume LWPs that are currently stopped without any pending status
3470 to report, but are resumed from the core's perspective. */
3471
3472 static int
3473 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3474 {
3475 ptid_t *wait_ptid_p = (ptid_t *) data;
3476
3477 if (!lp->stopped)
3478 {
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "RSRL: NOT resuming LWP %s, not stopped\n",
3482 target_pid_to_str (lp->ptid));
3483 }
3484 else if (!lp->resumed)
3485 {
3486 if (debug_linux_nat)
3487 fprintf_unfiltered (gdb_stdlog,
3488 "RSRL: NOT resuming LWP %s, not resumed\n",
3489 target_pid_to_str (lp->ptid));
3490 }
3491 else if (lwp_status_pending_p (lp))
3492 {
3493 if (debug_linux_nat)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "RSRL: NOT resuming LWP %s, has pending status\n",
3496 target_pid_to_str (lp->ptid));
3497 }
3498 else
3499 {
3500 struct regcache *regcache = get_thread_regcache (lp->ptid);
3501 struct gdbarch *gdbarch = regcache->arch ();
3502
3503 TRY
3504 {
3505 CORE_ADDR pc = regcache_read_pc (regcache);
3506 int leave_stopped = 0;
3507
3508 /* Don't bother if there's a breakpoint at PC that we'd hit
3509 immediately, and we're not waiting for this LWP. */
3510 if (!ptid_match (lp->ptid, *wait_ptid_p))
3511 {
3512 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3513 leave_stopped = 1;
3514 }
3515
3516 if (!leave_stopped)
3517 {
3518 if (debug_linux_nat)
3519 fprintf_unfiltered (gdb_stdlog,
3520 "RSRL: resuming stopped-resumed LWP %s at "
3521 "%s: step=%d\n",
3522 target_pid_to_str (lp->ptid),
3523 paddress (gdbarch, pc),
3524 lp->step);
3525
3526 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3527 }
3528 }
3529 CATCH (ex, RETURN_MASK_ERROR)
3530 {
3531 if (!check_ptrace_stopped_lwp_gone (lp))
3532 throw_exception (ex);
3533 }
3534 END_CATCH
3535 }
3536
3537 return 0;
3538 }
3539
3540 ptid_t
3541 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3542 int target_options)
3543 {
3544 ptid_t event_ptid;
3545
3546 if (debug_linux_nat)
3547 {
3548 char *options_string;
3549
3550 options_string = target_options_to_string (target_options);
3551 fprintf_unfiltered (gdb_stdlog,
3552 "linux_nat_wait: [%s], [%s]\n",
3553 target_pid_to_str (ptid),
3554 options_string);
3555 xfree (options_string);
3556 }
3557
3558 /* Flush the async file first. */
3559 if (target_is_async_p ())
3560 async_file_flush ();
3561
3562 /* Resume LWPs that are currently stopped without any pending status
3563 to report, but are resumed from the core's perspective. LWPs get
3564 in this state if we find them stopping at a time we're not
3565 interested in reporting the event (target_wait on a
3566 specific_process, for example, see linux_nat_wait_1), and
3567 meanwhile the event became uninteresting. Don't bother resuming
3568 LWPs we're not going to wait for if they'd stop immediately. */
3569 if (target_is_non_stop_p ())
3570 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3571
3572 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3573
3574 /* If we requested any event, and something came out, assume there
3575 may be more. If we requested a specific lwp or process, also
3576 assume there may be more. */
3577 if (target_is_async_p ()
3578 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3579 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3580 || !ptid_equal (ptid, minus_one_ptid)))
3581 async_file_mark ();
3582
3583 return event_ptid;
3584 }
3585
3586 /* Kill one LWP. */
3587
3588 static void
3589 kill_one_lwp (pid_t pid)
3590 {
3591 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3592
3593 errno = 0;
3594 kill_lwp (pid, SIGKILL);
3595 if (debug_linux_nat)
3596 {
3597 int save_errno = errno;
3598
3599 fprintf_unfiltered (gdb_stdlog,
3600 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3601 save_errno ? safe_strerror (save_errno) : "OK");
3602 }
3603
3604 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3605
3606 errno = 0;
3607 ptrace (PTRACE_KILL, pid, 0, 0);
3608 if (debug_linux_nat)
3609 {
3610 int save_errno = errno;
3611
3612 fprintf_unfiltered (gdb_stdlog,
3613 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3614 save_errno ? safe_strerror (save_errno) : "OK");
3615 }
3616 }
3617
3618 /* Wait for an LWP to die. */
3619
3620 static void
3621 kill_wait_one_lwp (pid_t pid)
3622 {
3623 pid_t res;
3624
3625 /* We must make sure that there are no pending events (delayed
3626 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3627 program doesn't interfere with any following debugging session. */
3628
3629 do
3630 {
3631 res = my_waitpid (pid, NULL, __WALL);
3632 if (res != (pid_t) -1)
3633 {
3634 if (debug_linux_nat)
3635 fprintf_unfiltered (gdb_stdlog,
3636 "KWC: wait %ld received unknown.\n",
3637 (long) pid);
3638 /* The Linux kernel sometimes fails to kill a thread
3639 completely after PTRACE_KILL; that goes from the stop
3640 point in do_fork out to the one in get_signal_to_deliver
3641 and waits again. So kill it again. */
3642 kill_one_lwp (pid);
3643 }
3644 }
3645 while (res == pid);
3646
3647 gdb_assert (res == -1 && errno == ECHILD);
3648 }
3649
3650 /* Callback for iterate_over_lwps. */
3651
3652 static int
3653 kill_callback (struct lwp_info *lp, void *data)
3654 {
3655 kill_one_lwp (ptid_get_lwp (lp->ptid));
3656 return 0;
3657 }
3658
3659 /* Callback for iterate_over_lwps. */
3660
3661 static int
3662 kill_wait_callback (struct lwp_info *lp, void *data)
3663 {
3664 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3665 return 0;
3666 }
3667
3668 /* Kill the fork children of any threads of inferior INF that are
3669 stopped at a fork event. */
3670
3671 static void
3672 kill_unfollowed_fork_children (struct inferior *inf)
3673 {
3674 struct thread_info *thread;
3675
3676 ALL_NON_EXITED_THREADS (thread)
3677 if (thread->inf == inf)
3678 {
3679 struct target_waitstatus *ws = &thread->pending_follow;
3680
3681 if (ws->kind == TARGET_WAITKIND_FORKED
3682 || ws->kind == TARGET_WAITKIND_VFORKED)
3683 {
3684 ptid_t child_ptid = ws->value.related_pid;
3685 int child_pid = ptid_get_pid (child_ptid);
3686 int child_lwp = ptid_get_lwp (child_ptid);
3687
3688 kill_one_lwp (child_lwp);
3689 kill_wait_one_lwp (child_lwp);
3690
3691 /* Let the arch-specific native code know this process is
3692 gone. */
3693 linux_target->low_forget_process (child_pid);
3694 }
3695 }
3696 }
3697
3698 void
3699 linux_nat_target::kill ()
3700 {
3701 /* If we're stopped while forking and we haven't followed yet,
3702 kill the other task. We need to do this first because the
3703 parent will be sleeping if this is a vfork. */
3704 kill_unfollowed_fork_children (current_inferior ());
3705
3706 if (forks_exist_p ())
3707 linux_fork_killall ();
3708 else
3709 {
3710 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3711
3712 /* Stop all threads before killing them, since ptrace requires
3713 that the thread is stopped to sucessfully PTRACE_KILL. */
3714 iterate_over_lwps (ptid, stop_callback, NULL);
3715 /* ... and wait until all of them have reported back that
3716 they're no longer running. */
3717 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3718
3719 /* Kill all LWP's ... */
3720 iterate_over_lwps (ptid, kill_callback, NULL);
3721
3722 /* ... and wait until we've flushed all events. */
3723 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3724 }
3725
3726 target_mourn_inferior (inferior_ptid);
3727 }
3728
3729 void
3730 linux_nat_target::mourn_inferior ()
3731 {
3732 int pid = ptid_get_pid (inferior_ptid);
3733
3734 purge_lwp_list (pid);
3735
3736 if (! forks_exist_p ())
3737 /* Normal case, no other forks available. */
3738 inf_ptrace_target::mourn_inferior ();
3739 else
3740 /* Multi-fork case. The current inferior_ptid has exited, but
3741 there are other viable forks to debug. Delete the exiting
3742 one and context-switch to the first available. */
3743 linux_fork_mourn_inferior ();
3744
3745 /* Let the arch-specific native code know this process is gone. */
3746 linux_target->low_forget_process (pid);
3747 }
3748
3749 /* Convert a native/host siginfo object, into/from the siginfo in the
3750 layout of the inferiors' architecture. */
3751
3752 static void
3753 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3754 {
3755 /* If the low target didn't do anything, then just do a straight
3756 memcpy. */
3757 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3758 {
3759 if (direction == 1)
3760 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3761 else
3762 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3763 }
3764 }
3765
3766 static enum target_xfer_status
3767 linux_xfer_siginfo (enum target_object object,
3768 const char *annex, gdb_byte *readbuf,
3769 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3770 ULONGEST *xfered_len)
3771 {
3772 int pid;
3773 siginfo_t siginfo;
3774 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3775
3776 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3777 gdb_assert (readbuf || writebuf);
3778
3779 pid = ptid_get_lwp (inferior_ptid);
3780 if (pid == 0)
3781 pid = ptid_get_pid (inferior_ptid);
3782
3783 if (offset > sizeof (siginfo))
3784 return TARGET_XFER_E_IO;
3785
3786 errno = 0;
3787 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3788 if (errno != 0)
3789 return TARGET_XFER_E_IO;
3790
3791 /* When GDB is built as a 64-bit application, ptrace writes into
3792 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3793 inferior with a 64-bit GDB should look the same as debugging it
3794 with a 32-bit GDB, we need to convert it. GDB core always sees
3795 the converted layout, so any read/write will have to be done
3796 post-conversion. */
3797 siginfo_fixup (&siginfo, inf_siginfo, 0);
3798
3799 if (offset + len > sizeof (siginfo))
3800 len = sizeof (siginfo) - offset;
3801
3802 if (readbuf != NULL)
3803 memcpy (readbuf, inf_siginfo + offset, len);
3804 else
3805 {
3806 memcpy (inf_siginfo + offset, writebuf, len);
3807
3808 /* Convert back to ptrace layout before flushing it out. */
3809 siginfo_fixup (&siginfo, inf_siginfo, 1);
3810
3811 errno = 0;
3812 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3813 if (errno != 0)
3814 return TARGET_XFER_E_IO;
3815 }
3816
3817 *xfered_len = len;
3818 return TARGET_XFER_OK;
3819 }
3820
3821 static enum target_xfer_status
3822 linux_nat_xfer_osdata (enum target_object object,
3823 const char *annex, gdb_byte *readbuf,
3824 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3825 ULONGEST *xfered_len);
3826
3827 static enum target_xfer_status
3828 linux_proc_xfer_spu (enum target_object object,
3829 const char *annex, gdb_byte *readbuf,
3830 const gdb_byte *writebuf,
3831 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3832
3833 static enum target_xfer_status
3834 linux_proc_xfer_partial (enum target_object object,
3835 const char *annex, gdb_byte *readbuf,
3836 const gdb_byte *writebuf,
3837 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3838
3839 enum target_xfer_status
3840 linux_nat_target::xfer_partial (enum target_object object,
3841 const char *annex, gdb_byte *readbuf,
3842 const gdb_byte *writebuf,
3843 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3844 {
3845 enum target_xfer_status xfer;
3846
3847 if (object == TARGET_OBJECT_SIGNAL_INFO)
3848 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3849 offset, len, xfered_len);
3850
3851 /* The target is connected but no live inferior is selected. Pass
3852 this request down to a lower stratum (e.g., the executable
3853 file). */
3854 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3855 return TARGET_XFER_EOF;
3856
3857 if (object == TARGET_OBJECT_AUXV)
3858 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3859 offset, len, xfered_len);
3860
3861 if (object == TARGET_OBJECT_OSDATA)
3862 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3863 offset, len, xfered_len);
3864
3865 if (object == TARGET_OBJECT_SPU)
3866 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3867 offset, len, xfered_len);
3868
3869 /* GDB calculates all addresses in the largest possible address
3870 width.
3871 The address width must be masked before its final use - either by
3872 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3873
3874 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3875
3876 if (object == TARGET_OBJECT_MEMORY)
3877 {
3878 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3879
3880 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3881 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3882 }
3883
3884 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3885 offset, len, xfered_len);
3886 if (xfer != TARGET_XFER_EOF)
3887 return xfer;
3888
3889 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3890 offset, len, xfered_len);
3891 }
3892
3893 bool
3894 linux_nat_target::thread_alive (ptid_t ptid)
3895 {
3896 /* As long as a PTID is in lwp list, consider it alive. */
3897 return find_lwp_pid (ptid) != NULL;
3898 }
3899
3900 /* Implement the to_update_thread_list target method for this
3901 target. */
3902
3903 void
3904 linux_nat_target::update_thread_list ()
3905 {
3906 struct lwp_info *lwp;
3907
3908 /* We add/delete threads from the list as clone/exit events are
3909 processed, so just try deleting exited threads still in the
3910 thread list. */
3911 delete_exited_threads ();
3912
3913 /* Update the processor core that each lwp/thread was last seen
3914 running on. */
3915 ALL_LWPS (lwp)
3916 {
3917 /* Avoid accessing /proc if the thread hasn't run since we last
3918 time we fetched the thread's core. Accessing /proc becomes
3919 noticeably expensive when we have thousands of LWPs. */
3920 if (lwp->core == -1)
3921 lwp->core = linux_common_core_of_thread (lwp->ptid);
3922 }
3923 }
3924
3925 const char *
3926 linux_nat_target::pid_to_str (ptid_t ptid)
3927 {
3928 static char buf[64];
3929
3930 if (ptid_lwp_p (ptid)
3931 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3932 || num_lwps (ptid_get_pid (ptid)) > 1))
3933 {
3934 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3935 return buf;
3936 }
3937
3938 return normal_pid_to_str (ptid);
3939 }
3940
3941 const char *
3942 linux_nat_target::thread_name (struct thread_info *thr)
3943 {
3944 return linux_proc_tid_get_name (thr->ptid);
3945 }
3946
3947 /* Accepts an integer PID; Returns a string representing a file that
3948 can be opened to get the symbols for the child process. */
3949
3950 char *
3951 linux_nat_target::pid_to_exec_file (int pid)
3952 {
3953 return linux_proc_pid_to_exec_file (pid);
3954 }
3955
3956 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3957 Because we can use a single read/write call, this can be much more
3958 efficient than banging away at PTRACE_PEEKTEXT. */
3959
3960 static enum target_xfer_status
3961 linux_proc_xfer_partial (enum target_object object,
3962 const char *annex, gdb_byte *readbuf,
3963 const gdb_byte *writebuf,
3964 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3965 {
3966 LONGEST ret;
3967 int fd;
3968 char filename[64];
3969
3970 if (object != TARGET_OBJECT_MEMORY)
3971 return TARGET_XFER_EOF;
3972
3973 /* Don't bother for one word. */
3974 if (len < 3 * sizeof (long))
3975 return TARGET_XFER_EOF;
3976
3977 /* We could keep this file open and cache it - possibly one per
3978 thread. That requires some juggling, but is even faster. */
3979 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3980 ptid_get_lwp (inferior_ptid));
3981 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3982 | O_LARGEFILE), 0);
3983 if (fd == -1)
3984 return TARGET_XFER_EOF;
3985
3986 /* Use pread64/pwrite64 if available, since they save a syscall and can
3987 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3988 debugging a SPARC64 application). */
3989 #ifdef HAVE_PREAD64
3990 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3991 : pwrite64 (fd, writebuf, len, offset));
3992 #else
3993 ret = lseek (fd, offset, SEEK_SET);
3994 if (ret != -1)
3995 ret = (readbuf ? read (fd, readbuf, len)
3996 : write (fd, writebuf, len));
3997 #endif
3998
3999 close (fd);
4000
4001 if (ret == -1 || ret == 0)
4002 return TARGET_XFER_EOF;
4003 else
4004 {
4005 *xfered_len = ret;
4006 return TARGET_XFER_OK;
4007 }
4008 }
4009
4010
4011 /* Enumerate spufs IDs for process PID. */
4012 static LONGEST
4013 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4014 {
4015 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4016 LONGEST pos = 0;
4017 LONGEST written = 0;
4018 char path[128];
4019 DIR *dir;
4020 struct dirent *entry;
4021
4022 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4023 dir = opendir (path);
4024 if (!dir)
4025 return -1;
4026
4027 rewinddir (dir);
4028 while ((entry = readdir (dir)) != NULL)
4029 {
4030 struct stat st;
4031 struct statfs stfs;
4032 int fd;
4033
4034 fd = atoi (entry->d_name);
4035 if (!fd)
4036 continue;
4037
4038 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4039 if (stat (path, &st) != 0)
4040 continue;
4041 if (!S_ISDIR (st.st_mode))
4042 continue;
4043
4044 if (statfs (path, &stfs) != 0)
4045 continue;
4046 if (stfs.f_type != SPUFS_MAGIC)
4047 continue;
4048
4049 if (pos >= offset && pos + 4 <= offset + len)
4050 {
4051 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4052 written += 4;
4053 }
4054 pos += 4;
4055 }
4056
4057 closedir (dir);
4058 return written;
4059 }
4060
4061 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4062 object type, using the /proc file system. */
4063
4064 static enum target_xfer_status
4065 linux_proc_xfer_spu (enum target_object object,
4066 const char *annex, gdb_byte *readbuf,
4067 const gdb_byte *writebuf,
4068 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4069 {
4070 char buf[128];
4071 int fd = 0;
4072 int ret = -1;
4073 int pid = ptid_get_lwp (inferior_ptid);
4074
4075 if (!annex)
4076 {
4077 if (!readbuf)
4078 return TARGET_XFER_E_IO;
4079 else
4080 {
4081 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4082
4083 if (l < 0)
4084 return TARGET_XFER_E_IO;
4085 else if (l == 0)
4086 return TARGET_XFER_EOF;
4087 else
4088 {
4089 *xfered_len = (ULONGEST) l;
4090 return TARGET_XFER_OK;
4091 }
4092 }
4093 }
4094
4095 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4096 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4097 if (fd <= 0)
4098 return TARGET_XFER_E_IO;
4099
4100 if (offset != 0
4101 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4102 {
4103 close (fd);
4104 return TARGET_XFER_EOF;
4105 }
4106
4107 if (writebuf)
4108 ret = write (fd, writebuf, (size_t) len);
4109 else if (readbuf)
4110 ret = read (fd, readbuf, (size_t) len);
4111
4112 close (fd);
4113
4114 if (ret < 0)
4115 return TARGET_XFER_E_IO;
4116 else if (ret == 0)
4117 return TARGET_XFER_EOF;
4118 else
4119 {
4120 *xfered_len = (ULONGEST) ret;
4121 return TARGET_XFER_OK;
4122 }
4123 }
4124
4125
4126 /* Parse LINE as a signal set and add its set bits to SIGS. */
4127
4128 static void
4129 add_line_to_sigset (const char *line, sigset_t *sigs)
4130 {
4131 int len = strlen (line) - 1;
4132 const char *p;
4133 int signum;
4134
4135 if (line[len] != '\n')
4136 error (_("Could not parse signal set: %s"), line);
4137
4138 p = line;
4139 signum = len * 4;
4140 while (len-- > 0)
4141 {
4142 int digit;
4143
4144 if (*p >= '0' && *p <= '9')
4145 digit = *p - '0';
4146 else if (*p >= 'a' && *p <= 'f')
4147 digit = *p - 'a' + 10;
4148 else
4149 error (_("Could not parse signal set: %s"), line);
4150
4151 signum -= 4;
4152
4153 if (digit & 1)
4154 sigaddset (sigs, signum + 1);
4155 if (digit & 2)
4156 sigaddset (sigs, signum + 2);
4157 if (digit & 4)
4158 sigaddset (sigs, signum + 3);
4159 if (digit & 8)
4160 sigaddset (sigs, signum + 4);
4161
4162 p++;
4163 }
4164 }
4165
4166 /* Find process PID's pending signals from /proc/pid/status and set
4167 SIGS to match. */
4168
4169 void
4170 linux_proc_pending_signals (int pid, sigset_t *pending,
4171 sigset_t *blocked, sigset_t *ignored)
4172 {
4173 char buffer[PATH_MAX], fname[PATH_MAX];
4174
4175 sigemptyset (pending);
4176 sigemptyset (blocked);
4177 sigemptyset (ignored);
4178 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4179 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4180 if (procfile == NULL)
4181 error (_("Could not open %s"), fname);
4182
4183 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4184 {
4185 /* Normal queued signals are on the SigPnd line in the status
4186 file. However, 2.6 kernels also have a "shared" pending
4187 queue for delivering signals to a thread group, so check for
4188 a ShdPnd line also.
4189
4190 Unfortunately some Red Hat kernels include the shared pending
4191 queue but not the ShdPnd status field. */
4192
4193 if (startswith (buffer, "SigPnd:\t"))
4194 add_line_to_sigset (buffer + 8, pending);
4195 else if (startswith (buffer, "ShdPnd:\t"))
4196 add_line_to_sigset (buffer + 8, pending);
4197 else if (startswith (buffer, "SigBlk:\t"))
4198 add_line_to_sigset (buffer + 8, blocked);
4199 else if (startswith (buffer, "SigIgn:\t"))
4200 add_line_to_sigset (buffer + 8, ignored);
4201 }
4202 }
4203
4204 static enum target_xfer_status
4205 linux_nat_xfer_osdata (enum target_object object,
4206 const char *annex, gdb_byte *readbuf,
4207 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4208 ULONGEST *xfered_len)
4209 {
4210 gdb_assert (object == TARGET_OBJECT_OSDATA);
4211
4212 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4213 if (*xfered_len == 0)
4214 return TARGET_XFER_EOF;
4215 else
4216 return TARGET_XFER_OK;
4217 }
4218
4219 static void
4220 cleanup_target_stop (void *arg)
4221 {
4222 ptid_t *ptid = (ptid_t *) arg;
4223
4224 gdb_assert (arg != NULL);
4225
4226 /* Unpause all */
4227 target_continue_no_signal (*ptid);
4228 }
4229
4230 std::vector<static_tracepoint_marker>
4231 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4232 {
4233 char s[IPA_CMD_BUF_SIZE];
4234 struct cleanup *old_chain;
4235 int pid = ptid_get_pid (inferior_ptid);
4236 std::vector<static_tracepoint_marker> markers;
4237 const char *p = s;
4238 ptid_t ptid = ptid_build (pid, 0, 0);
4239 static_tracepoint_marker marker;
4240
4241 /* Pause all */
4242 target_stop (ptid);
4243
4244 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4245 s[sizeof ("qTfSTM")] = 0;
4246
4247 agent_run_command (pid, s, strlen (s) + 1);
4248
4249 old_chain = make_cleanup (cleanup_target_stop, &ptid);
4250
4251 while (*p++ == 'm')
4252 {
4253 do
4254 {
4255 parse_static_tracepoint_marker_definition (p, &p, &marker);
4256
4257 if (strid == NULL || marker.str_id == strid)
4258 markers.push_back (std::move (marker));
4259 }
4260 while (*p++ == ','); /* comma-separated list */
4261
4262 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4263 s[sizeof ("qTsSTM")] = 0;
4264 agent_run_command (pid, s, strlen (s) + 1);
4265 p = s;
4266 }
4267
4268 do_cleanups (old_chain);
4269
4270 return markers;
4271 }
4272
4273 /* target_is_async_p implementation. */
4274
4275 bool
4276 linux_nat_target::is_async_p ()
4277 {
4278 return linux_is_async_p ();
4279 }
4280
4281 /* target_can_async_p implementation. */
4282
4283 bool
4284 linux_nat_target::can_async_p ()
4285 {
4286 /* We're always async, unless the user explicitly prevented it with the
4287 "maint set target-async" command. */
4288 return target_async_permitted;
4289 }
4290
4291 bool
4292 linux_nat_target::supports_non_stop ()
4293 {
4294 return 1;
4295 }
4296
4297 /* to_always_non_stop_p implementation. */
4298
4299 bool
4300 linux_nat_target::always_non_stop_p ()
4301 {
4302 return 1;
4303 }
4304
4305 /* True if we want to support multi-process. To be removed when GDB
4306 supports multi-exec. */
4307
4308 int linux_multi_process = 1;
4309
4310 bool
4311 linux_nat_target::supports_multi_process ()
4312 {
4313 return linux_multi_process;
4314 }
4315
4316 bool
4317 linux_nat_target::supports_disable_randomization ()
4318 {
4319 #ifdef HAVE_PERSONALITY
4320 return 1;
4321 #else
4322 return 0;
4323 #endif
4324 }
4325
4326 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4327 so we notice when any child changes state, and notify the
4328 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4329 above to wait for the arrival of a SIGCHLD. */
4330
4331 static void
4332 sigchld_handler (int signo)
4333 {
4334 int old_errno = errno;
4335
4336 if (debug_linux_nat)
4337 ui_file_write_async_safe (gdb_stdlog,
4338 "sigchld\n", sizeof ("sigchld\n") - 1);
4339
4340 if (signo == SIGCHLD
4341 && linux_nat_event_pipe[0] != -1)
4342 async_file_mark (); /* Let the event loop know that there are
4343 events to handle. */
4344
4345 errno = old_errno;
4346 }
4347
4348 /* Callback registered with the target events file descriptor. */
4349
4350 static void
4351 handle_target_event (int error, gdb_client_data client_data)
4352 {
4353 inferior_event_handler (INF_REG_EVENT, NULL);
4354 }
4355
4356 /* Create/destroy the target events pipe. Returns previous state. */
4357
4358 static int
4359 linux_async_pipe (int enable)
4360 {
4361 int previous = linux_is_async_p ();
4362
4363 if (previous != enable)
4364 {
4365 sigset_t prev_mask;
4366
4367 /* Block child signals while we create/destroy the pipe, as
4368 their handler writes to it. */
4369 block_child_signals (&prev_mask);
4370
4371 if (enable)
4372 {
4373 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4374 internal_error (__FILE__, __LINE__,
4375 "creating event pipe failed.");
4376
4377 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4378 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4379 }
4380 else
4381 {
4382 close (linux_nat_event_pipe[0]);
4383 close (linux_nat_event_pipe[1]);
4384 linux_nat_event_pipe[0] = -1;
4385 linux_nat_event_pipe[1] = -1;
4386 }
4387
4388 restore_child_signals_mask (&prev_mask);
4389 }
4390
4391 return previous;
4392 }
4393
4394 /* target_async implementation. */
4395
4396 void
4397 linux_nat_target::async (int enable)
4398 {
4399 if (enable)
4400 {
4401 if (!linux_async_pipe (1))
4402 {
4403 add_file_handler (linux_nat_event_pipe[0],
4404 handle_target_event, NULL);
4405 /* There may be pending events to handle. Tell the event loop
4406 to poll them. */
4407 async_file_mark ();
4408 }
4409 }
4410 else
4411 {
4412 delete_file_handler (linux_nat_event_pipe[0]);
4413 linux_async_pipe (0);
4414 }
4415 return;
4416 }
4417
4418 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4419 event came out. */
4420
4421 static int
4422 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4423 {
4424 if (!lwp->stopped)
4425 {
4426 if (debug_linux_nat)
4427 fprintf_unfiltered (gdb_stdlog,
4428 "LNSL: running -> suspending %s\n",
4429 target_pid_to_str (lwp->ptid));
4430
4431
4432 if (lwp->last_resume_kind == resume_stop)
4433 {
4434 if (debug_linux_nat)
4435 fprintf_unfiltered (gdb_stdlog,
4436 "linux-nat: already stopping LWP %ld at "
4437 "GDB's request\n",
4438 ptid_get_lwp (lwp->ptid));
4439 return 0;
4440 }
4441
4442 stop_callback (lwp, NULL);
4443 lwp->last_resume_kind = resume_stop;
4444 }
4445 else
4446 {
4447 /* Already known to be stopped; do nothing. */
4448
4449 if (debug_linux_nat)
4450 {
4451 if (find_thread_ptid (lwp->ptid)->stop_requested)
4452 fprintf_unfiltered (gdb_stdlog,
4453 "LNSL: already stopped/stop_requested %s\n",
4454 target_pid_to_str (lwp->ptid));
4455 else
4456 fprintf_unfiltered (gdb_stdlog,
4457 "LNSL: already stopped/no "
4458 "stop_requested yet %s\n",
4459 target_pid_to_str (lwp->ptid));
4460 }
4461 }
4462 return 0;
4463 }
4464
4465 void
4466 linux_nat_target::stop (ptid_t ptid)
4467 {
4468 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4469 }
4470
4471 void
4472 linux_nat_target::close ()
4473 {
4474 /* Unregister from the event loop. */
4475 if (is_async_p ())
4476 async (0);
4477
4478 inf_ptrace_target::close ();
4479 }
4480
4481 /* When requests are passed down from the linux-nat layer to the
4482 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4483 used. The address space pointer is stored in the inferior object,
4484 but the common code that is passed such ptid can't tell whether
4485 lwpid is a "main" process id or not (it assumes so). We reverse
4486 look up the "main" process id from the lwp here. */
4487
4488 struct address_space *
4489 linux_nat_target::thread_address_space (ptid_t ptid)
4490 {
4491 struct lwp_info *lwp;
4492 struct inferior *inf;
4493 int pid;
4494
4495 if (ptid_get_lwp (ptid) == 0)
4496 {
4497 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4498 tgid. */
4499 lwp = find_lwp_pid (ptid);
4500 pid = ptid_get_pid (lwp->ptid);
4501 }
4502 else
4503 {
4504 /* A (pid,lwpid,0) ptid. */
4505 pid = ptid_get_pid (ptid);
4506 }
4507
4508 inf = find_inferior_pid (pid);
4509 gdb_assert (inf != NULL);
4510 return inf->aspace;
4511 }
4512
4513 /* Return the cached value of the processor core for thread PTID. */
4514
4515 int
4516 linux_nat_target::core_of_thread (ptid_t ptid)
4517 {
4518 struct lwp_info *info = find_lwp_pid (ptid);
4519
4520 if (info)
4521 return info->core;
4522 return -1;
4523 }
4524
4525 /* Implementation of to_filesystem_is_local. */
4526
4527 bool
4528 linux_nat_target::filesystem_is_local ()
4529 {
4530 struct inferior *inf = current_inferior ();
4531
4532 if (inf->fake_pid_p || inf->pid == 0)
4533 return true;
4534
4535 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4536 }
4537
4538 /* Convert the INF argument passed to a to_fileio_* method
4539 to a process ID suitable for passing to its corresponding
4540 linux_mntns_* function. If INF is non-NULL then the
4541 caller is requesting the filesystem seen by INF. If INF
4542 is NULL then the caller is requesting the filesystem seen
4543 by the GDB. We fall back to GDB's filesystem in the case
4544 that INF is non-NULL but its PID is unknown. */
4545
4546 static pid_t
4547 linux_nat_fileio_pid_of (struct inferior *inf)
4548 {
4549 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4550 return getpid ();
4551 else
4552 return inf->pid;
4553 }
4554
4555 /* Implementation of to_fileio_open. */
4556
4557 int
4558 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4559 int flags, int mode, int warn_if_slow,
4560 int *target_errno)
4561 {
4562 int nat_flags;
4563 mode_t nat_mode;
4564 int fd;
4565
4566 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4567 || fileio_to_host_mode (mode, &nat_mode) == -1)
4568 {
4569 *target_errno = FILEIO_EINVAL;
4570 return -1;
4571 }
4572
4573 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4574 filename, nat_flags, nat_mode);
4575 if (fd == -1)
4576 *target_errno = host_to_fileio_error (errno);
4577
4578 return fd;
4579 }
4580
4581 /* Implementation of to_fileio_readlink. */
4582
4583 gdb::optional<std::string>
4584 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4585 int *target_errno)
4586 {
4587 char buf[PATH_MAX];
4588 int len;
4589
4590 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4591 filename, buf, sizeof (buf));
4592 if (len < 0)
4593 {
4594 *target_errno = host_to_fileio_error (errno);
4595 return {};
4596 }
4597
4598 return std::string (buf, len);
4599 }
4600
4601 /* Implementation of to_fileio_unlink. */
4602
4603 int
4604 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4605 int *target_errno)
4606 {
4607 int ret;
4608
4609 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4610 filename);
4611 if (ret == -1)
4612 *target_errno = host_to_fileio_error (errno);
4613
4614 return ret;
4615 }
4616
4617 /* Implementation of the to_thread_events method. */
4618
4619 void
4620 linux_nat_target::thread_events (int enable)
4621 {
4622 report_thread_events = enable;
4623 }
4624
4625 linux_nat_target::linux_nat_target ()
4626 {
4627 /* We don't change the stratum; this target will sit at
4628 process_stratum and thread_db will set at thread_stratum. This
4629 is a little strange, since this is a multi-threaded-capable
4630 target, but we want to be on the stack below thread_db, and we
4631 also want to be used for single-threaded processes. */
4632 }
4633
4634 /* See linux-nat.h. */
4635
4636 int
4637 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4638 {
4639 int pid;
4640
4641 pid = ptid_get_lwp (ptid);
4642 if (pid == 0)
4643 pid = ptid_get_pid (ptid);
4644
4645 errno = 0;
4646 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4647 if (errno != 0)
4648 {
4649 memset (siginfo, 0, sizeof (*siginfo));
4650 return 0;
4651 }
4652 return 1;
4653 }
4654
4655 /* See nat/linux-nat.h. */
4656
4657 ptid_t
4658 current_lwp_ptid (void)
4659 {
4660 gdb_assert (ptid_lwp_p (inferior_ptid));
4661 return inferior_ptid;
4662 }
4663
4664 void
4665 _initialize_linux_nat (void)
4666 {
4667 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4668 &debug_linux_nat, _("\
4669 Set debugging of GNU/Linux lwp module."), _("\
4670 Show debugging of GNU/Linux lwp module."), _("\
4671 Enables printf debugging output."),
4672 NULL,
4673 show_debug_linux_nat,
4674 &setdebuglist, &showdebuglist);
4675
4676 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4677 &debug_linux_namespaces, _("\
4678 Set debugging of GNU/Linux namespaces module."), _("\
4679 Show debugging of GNU/Linux namespaces module."), _("\
4680 Enables printf debugging output."),
4681 NULL,
4682 NULL,
4683 &setdebuglist, &showdebuglist);
4684
4685 /* Save this mask as the default. */
4686 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4687
4688 /* Install a SIGCHLD handler. */
4689 sigchld_action.sa_handler = sigchld_handler;
4690 sigemptyset (&sigchld_action.sa_mask);
4691 sigchld_action.sa_flags = SA_RESTART;
4692
4693 /* Make it the default. */
4694 sigaction (SIGCHLD, &sigchld_action, NULL);
4695
4696 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4697 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4698 sigdelset (&suspend_mask, SIGCHLD);
4699
4700 sigemptyset (&blocked_mask);
4701
4702 lwp_lwpid_htab_create ();
4703 }
4704 \f
4705
4706 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4707 the GNU/Linux Threads library and therefore doesn't really belong
4708 here. */
4709
4710 /* Return the set of signals used by the threads library in *SET. */
4711
4712 void
4713 lin_thread_get_thread_signals (sigset_t *set)
4714 {
4715 sigemptyset (set);
4716
4717 /* NPTL reserves the first two RT signals, but does not provide any
4718 way for the debugger to query the signal numbers - fortunately
4719 they don't change. */
4720 sigaddset (set, __SIGRTMIN);
4721 sigaddset (set, __SIGRTMIN + 1);
4722 }
This page took 0.158156 seconds and 5 git commands to generate.