Fix fork-related regressions on GNU/Linux
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a new fork is attached. */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
202
203 /* The method to call, if any, when a process is no longer
204 attached. */
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
206
207 /* Hook to call prior to resuming a thread. */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
209
210 /* The method to call, if any, when the siginfo object needs to be
211 converted between the layout returned by ptrace, and the layout in
212 the architecture of the inferior. */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
214 gdb_byte *,
215 int);
216
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218 Called by our to_xfer_partial. */
219 static target_xfer_partial_ftype *super_xfer_partial;
220
221 /* The saved to_close method, inherited from inf-ptrace.c.
222 Called by our to_close. */
223 static void (*super_close) (struct target_ops *);
224
225 static unsigned int debug_linux_nat;
226 static void
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
231 value);
232 }
233
234 struct simple_pid_list
235 {
236 int pid;
237 int status;
238 struct simple_pid_list *next;
239 };
240 struct simple_pid_list *stopped_pids;
241
242 /* Whether target_thread_events is in effect. */
243 static int report_thread_events;
244
245 /* Async mode support. */
246
247 /* The read/write ends of the pipe registered as waitable file in the
248 event loop. */
249 static int linux_nat_event_pipe[2] = { -1, -1 };
250
251 /* True if we're currently in async mode. */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
253
254 /* Flush the event pipe. */
255
256 static void
257 async_file_flush (void)
258 {
259 int ret;
260 char buf;
261
262 do
263 {
264 ret = read (linux_nat_event_pipe[0], &buf, 1);
265 }
266 while (ret >= 0 || (ret == -1 && errno == EINTR));
267 }
268
269 /* Put something (anything, doesn't matter what, or how much) in event
270 pipe, so that the select/poll in the event-loop realizes we have
271 something to process. */
272
273 static void
274 async_file_mark (void)
275 {
276 int ret;
277
278 /* It doesn't really matter what the pipe contains, as long we end
279 up with something in it. Might as well flush the previous
280 left-overs. */
281 async_file_flush ();
282
283 do
284 {
285 ret = write (linux_nat_event_pipe[1], "+", 1);
286 }
287 while (ret == -1 && errno == EINTR);
288
289 /* Ignore EAGAIN. If the pipe is full, the event loop will already
290 be awakened anyway. */
291 }
292
293 static int kill_lwp (int lwpid, int signo);
294
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
297
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
300
301 struct lwp_info;
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
306
307 static int lwp_status_pending_p (struct lwp_info *lp);
308
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
311
312 static void save_stop_reason (struct lwp_info *lp);
313
314 \f
315 /* LWP accessors. */
316
317 /* See nat/linux-nat.h. */
318
319 ptid_t
320 ptid_of_lwp (struct lwp_info *lwp)
321 {
322 return lwp->ptid;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 void
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 struct arch_lwp_info *info)
330 {
331 lwp->arch_private = info;
332 }
333
334 /* See nat/linux-nat.h. */
335
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
338 {
339 return lwp->arch_private;
340 }
341
342 /* See nat/linux-nat.h. */
343
344 int
345 lwp_is_stopped (struct lwp_info *lwp)
346 {
347 return lwp->stopped;
348 }
349
350 /* See nat/linux-nat.h. */
351
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
354 {
355 return lwp->stop_reason;
356 }
357
358 /* See nat/linux-nat.h. */
359
360 int
361 lwp_is_stepping (struct lwp_info *lwp)
362 {
363 return lwp->step;
364 }
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
373
374 new_pid->pid = pid;
375 new_pid->status = status;
376 new_pid->next = *listp;
377 *listp = new_pid;
378 }
379
380 static int
381 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
382 {
383 struct simple_pid_list **p;
384
385 for (p = listp; *p != NULL; p = &(*p)->next)
386 if ((*p)->pid == pid)
387 {
388 struct simple_pid_list *next = (*p)->next;
389
390 *statusp = (*p)->status;
391 xfree (*p);
392 *p = next;
393 return 1;
394 }
395 return 0;
396 }
397
398 /* Return the ptrace options that we want to try to enable. */
399
400 static int
401 linux_nat_ptrace_options (int attached)
402 {
403 int options = 0;
404
405 if (!attached)
406 options |= PTRACE_O_EXITKILL;
407
408 options |= (PTRACE_O_TRACESYSGOOD
409 | PTRACE_O_TRACEVFORKDONE
410 | PTRACE_O_TRACEVFORK
411 | PTRACE_O_TRACEFORK
412 | PTRACE_O_TRACEEXEC);
413
414 return options;
415 }
416
417 /* Initialize ptrace warnings and check for supported ptrace
418 features given PID.
419
420 ATTACHED should be nonzero iff we attached to the inferior. */
421
422 static void
423 linux_init_ptrace (pid_t pid, int attached)
424 {
425 int options = linux_nat_ptrace_options (attached);
426
427 linux_enable_event_reporting (pid, options);
428 linux_ptrace_init_warnings ();
429 }
430
431 static void
432 linux_child_post_attach (struct target_ops *self, int pid)
433 {
434 linux_init_ptrace (pid, 1);
435 }
436
437 static void
438 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
439 {
440 linux_init_ptrace (ptid_get_pid (ptid), 0);
441 }
442
443 /* Return the number of known LWPs in the tgid given by PID. */
444
445 static int
446 num_lwps (int pid)
447 {
448 int count = 0;
449 struct lwp_info *lp;
450
451 for (lp = lwp_list; lp; lp = lp->next)
452 if (ptid_get_pid (lp->ptid) == pid)
453 count++;
454
455 return count;
456 }
457
458 /* Call delete_lwp with prototype compatible for make_cleanup. */
459
460 static void
461 delete_lwp_cleanup (void *lp_voidp)
462 {
463 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
464
465 delete_lwp (lp->ptid);
466 }
467
468 /* Target hook for follow_fork. On entry inferior_ptid must be the
469 ptid of the followed inferior. At return, inferior_ptid will be
470 unchanged. */
471
472 static int
473 linux_child_follow_fork (struct target_ops *ops, int follow_child,
474 int detach_fork)
475 {
476 if (!follow_child)
477 {
478 struct lwp_info *child_lp = NULL;
479 int status = W_STOPCODE (0);
480 int has_vforked;
481 ptid_t parent_ptid, child_ptid;
482 int parent_pid, child_pid;
483
484 has_vforked = (inferior_thread ()->pending_follow.kind
485 == TARGET_WAITKIND_VFORKED);
486 parent_ptid = inferior_ptid;
487 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
488 parent_pid = ptid_get_lwp (parent_ptid);
489 child_pid = ptid_get_lwp (child_ptid);
490
491 /* We're already attached to the parent, by default. */
492 child_lp = add_lwp (child_ptid);
493 child_lp->stopped = 1;
494 child_lp->last_resume_kind = resume_stop;
495
496 /* Detach new forked process? */
497 if (detach_fork)
498 {
499 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
500 child_lp);
501
502 if (linux_nat_prepare_to_resume != NULL)
503 linux_nat_prepare_to_resume (child_lp);
504
505 /* When debugging an inferior in an architecture that supports
506 hardware single stepping on a kernel without commit
507 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
508 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
509 set if the parent process had them set.
510 To work around this, single step the child process
511 once before detaching to clear the flags. */
512
513 /* Note that we consult the parent's architecture instead of
514 the child's because there's no inferior for the child at
515 this point. */
516 if (!gdbarch_software_single_step_p (target_thread_architecture
517 (parent_ptid)))
518 {
519 linux_disable_event_reporting (child_pid);
520 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
521 perror_with_name (_("Couldn't do single step"));
522 if (my_waitpid (child_pid, &status, 0) < 0)
523 perror_with_name (_("Couldn't wait vfork process"));
524 }
525
526 if (WIFSTOPPED (status))
527 {
528 int signo;
529
530 signo = WSTOPSIG (status);
531 if (signo != 0
532 && !signal_pass_state (gdb_signal_from_host (signo)))
533 signo = 0;
534 ptrace (PTRACE_DETACH, child_pid, 0, signo);
535 }
536
537 do_cleanups (old_chain);
538 }
539 else
540 {
541 scoped_restore save_inferior_ptid
542 = make_scoped_restore (&inferior_ptid);
543 inferior_ptid = child_ptid;
544
545 /* Let the thread_db layer learn about this new process. */
546 check_for_thread_db ();
547 }
548
549 if (has_vforked)
550 {
551 struct lwp_info *parent_lp;
552
553 parent_lp = find_lwp_pid (parent_ptid);
554 gdb_assert (linux_supports_tracefork () >= 0);
555
556 if (linux_supports_tracevforkdone ())
557 {
558 if (debug_linux_nat)
559 fprintf_unfiltered (gdb_stdlog,
560 "LCFF: waiting for VFORK_DONE on %d\n",
561 parent_pid);
562 parent_lp->stopped = 1;
563
564 /* We'll handle the VFORK_DONE event like any other
565 event, in target_wait. */
566 }
567 else
568 {
569 /* We can't insert breakpoints until the child has
570 finished with the shared memory region. We need to
571 wait until that happens. Ideal would be to just
572 call:
573 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
574 - waitpid (parent_pid, &status, __WALL);
575 However, most architectures can't handle a syscall
576 being traced on the way out if it wasn't traced on
577 the way in.
578
579 We might also think to loop, continuing the child
580 until it exits or gets a SIGTRAP. One problem is
581 that the child might call ptrace with PTRACE_TRACEME.
582
583 There's no simple and reliable way to figure out when
584 the vforked child will be done with its copy of the
585 shared memory. We could step it out of the syscall,
586 two instructions, let it go, and then single-step the
587 parent once. When we have hardware single-step, this
588 would work; with software single-step it could still
589 be made to work but we'd have to be able to insert
590 single-step breakpoints in the child, and we'd have
591 to insert -just- the single-step breakpoint in the
592 parent. Very awkward.
593
594 In the end, the best we can do is to make sure it
595 runs for a little while. Hopefully it will be out of
596 range of any breakpoints we reinsert. Usually this
597 is only the single-step breakpoint at vfork's return
598 point. */
599
600 if (debug_linux_nat)
601 fprintf_unfiltered (gdb_stdlog,
602 "LCFF: no VFORK_DONE "
603 "support, sleeping a bit\n");
604
605 usleep (10000);
606
607 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
608 and leave it pending. The next linux_nat_resume call
609 will notice a pending event, and bypasses actually
610 resuming the inferior. */
611 parent_lp->status = 0;
612 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
613 parent_lp->stopped = 1;
614
615 /* If we're in async mode, need to tell the event loop
616 there's something here to process. */
617 if (target_is_async_p ())
618 async_file_mark ();
619 }
620 }
621 }
622 else
623 {
624 struct lwp_info *child_lp;
625
626 child_lp = add_lwp (inferior_ptid);
627 child_lp->stopped = 1;
628 child_lp->last_resume_kind = resume_stop;
629
630 /* Let the thread_db layer learn about this new process. */
631 check_for_thread_db ();
632 }
633
634 return 0;
635 }
636
637 \f
638 static int
639 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
640 {
641 return !linux_supports_tracefork ();
642 }
643
644 static int
645 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
646 {
647 return 0;
648 }
649
650 static int
651 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
652 {
653 return !linux_supports_tracefork ();
654 }
655
656 static int
657 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
658 {
659 return 0;
660 }
661
662 static int
663 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
664 {
665 return !linux_supports_tracefork ();
666 }
667
668 static int
669 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
670 {
671 return 0;
672 }
673
674 static int
675 linux_child_set_syscall_catchpoint (struct target_ops *self,
676 int pid, int needed, int any_count,
677 int table_size, int *table)
678 {
679 if (!linux_supports_tracesysgood ())
680 return 1;
681
682 /* On GNU/Linux, we ignore the arguments. It means that we only
683 enable the syscall catchpoints, but do not disable them.
684
685 Also, we do not use the `table' information because we do not
686 filter system calls here. We let GDB do the logic for us. */
687 return 0;
688 }
689
690 /* List of known LWPs, keyed by LWP PID. This speeds up the common
691 case of mapping a PID returned from the kernel to our corresponding
692 lwp_info data structure. */
693 static htab_t lwp_lwpid_htab;
694
695 /* Calculate a hash from a lwp_info's LWP PID. */
696
697 static hashval_t
698 lwp_info_hash (const void *ap)
699 {
700 const struct lwp_info *lp = (struct lwp_info *) ap;
701 pid_t pid = ptid_get_lwp (lp->ptid);
702
703 return iterative_hash_object (pid, 0);
704 }
705
706 /* Equality function for the lwp_info hash table. Compares the LWP's
707 PID. */
708
709 static int
710 lwp_lwpid_htab_eq (const void *a, const void *b)
711 {
712 const struct lwp_info *entry = (const struct lwp_info *) a;
713 const struct lwp_info *element = (const struct lwp_info *) b;
714
715 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
716 }
717
718 /* Create the lwp_lwpid_htab hash table. */
719
720 static void
721 lwp_lwpid_htab_create (void)
722 {
723 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
724 }
725
726 /* Add LP to the hash table. */
727
728 static void
729 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
730 {
731 void **slot;
732
733 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
734 gdb_assert (slot != NULL && *slot == NULL);
735 *slot = lp;
736 }
737
738 /* Head of doubly-linked list of known LWPs. Sorted by reverse
739 creation order. This order is assumed in some cases. E.g.,
740 reaping status after killing alls lwps of a process: the leader LWP
741 must be reaped last. */
742 struct lwp_info *lwp_list;
743
744 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
745
746 static void
747 lwp_list_add (struct lwp_info *lp)
748 {
749 lp->next = lwp_list;
750 if (lwp_list != NULL)
751 lwp_list->prev = lp;
752 lwp_list = lp;
753 }
754
755 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
756 list. */
757
758 static void
759 lwp_list_remove (struct lwp_info *lp)
760 {
761 /* Remove from sorted-by-creation-order list. */
762 if (lp->next != NULL)
763 lp->next->prev = lp->prev;
764 if (lp->prev != NULL)
765 lp->prev->next = lp->next;
766 if (lp == lwp_list)
767 lwp_list = lp->next;
768 }
769
770 \f
771
772 /* Original signal mask. */
773 static sigset_t normal_mask;
774
775 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
776 _initialize_linux_nat. */
777 static sigset_t suspend_mask;
778
779 /* Signals to block to make that sigsuspend work. */
780 static sigset_t blocked_mask;
781
782 /* SIGCHLD action. */
783 struct sigaction sigchld_action;
784
785 /* Block child signals (SIGCHLD and linux threads signals), and store
786 the previous mask in PREV_MASK. */
787
788 static void
789 block_child_signals (sigset_t *prev_mask)
790 {
791 /* Make sure SIGCHLD is blocked. */
792 if (!sigismember (&blocked_mask, SIGCHLD))
793 sigaddset (&blocked_mask, SIGCHLD);
794
795 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
796 }
797
798 /* Restore child signals mask, previously returned by
799 block_child_signals. */
800
801 static void
802 restore_child_signals_mask (sigset_t *prev_mask)
803 {
804 sigprocmask (SIG_SETMASK, prev_mask, NULL);
805 }
806
807 /* Mask of signals to pass directly to the inferior. */
808 static sigset_t pass_mask;
809
810 /* Update signals to pass to the inferior. */
811 static void
812 linux_nat_pass_signals (struct target_ops *self,
813 int numsigs, unsigned char *pass_signals)
814 {
815 int signo;
816
817 sigemptyset (&pass_mask);
818
819 for (signo = 1; signo < NSIG; signo++)
820 {
821 int target_signo = gdb_signal_from_host (signo);
822 if (target_signo < numsigs && pass_signals[target_signo])
823 sigaddset (&pass_mask, signo);
824 }
825 }
826
827 \f
828
829 /* Prototypes for local functions. */
830 static int stop_wait_callback (struct lwp_info *lp, void *data);
831 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
832 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
833 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
834
835 \f
836
837 /* Destroy and free LP. */
838
839 static void
840 lwp_free (struct lwp_info *lp)
841 {
842 xfree (lp->arch_private);
843 xfree (lp);
844 }
845
846 /* Traversal function for purge_lwp_list. */
847
848 static int
849 lwp_lwpid_htab_remove_pid (void **slot, void *info)
850 {
851 struct lwp_info *lp = (struct lwp_info *) *slot;
852 int pid = *(int *) info;
853
854 if (ptid_get_pid (lp->ptid) == pid)
855 {
856 htab_clear_slot (lwp_lwpid_htab, slot);
857 lwp_list_remove (lp);
858 lwp_free (lp);
859 }
860
861 return 1;
862 }
863
864 /* Remove all LWPs belong to PID from the lwp list. */
865
866 static void
867 purge_lwp_list (int pid)
868 {
869 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
870 }
871
872 /* Add the LWP specified by PTID to the list. PTID is the first LWP
873 in the process. Return a pointer to the structure describing the
874 new LWP.
875
876 This differs from add_lwp in that we don't let the arch specific
877 bits know about this new thread. Current clients of this callback
878 take the opportunity to install watchpoints in the new thread, and
879 we shouldn't do that for the first thread. If we're spawning a
880 child ("run"), the thread executes the shell wrapper first, and we
881 shouldn't touch it until it execs the program we want to debug.
882 For "attach", it'd be okay to call the callback, but it's not
883 necessary, because watchpoints can't yet have been inserted into
884 the inferior. */
885
886 static struct lwp_info *
887 add_initial_lwp (ptid_t ptid)
888 {
889 struct lwp_info *lp;
890
891 gdb_assert (ptid_lwp_p (ptid));
892
893 lp = XNEW (struct lwp_info);
894
895 memset (lp, 0, sizeof (struct lwp_info));
896
897 lp->last_resume_kind = resume_continue;
898 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
899
900 lp->ptid = ptid;
901 lp->core = -1;
902
903 /* Add to sorted-by-reverse-creation-order list. */
904 lwp_list_add (lp);
905
906 /* Add to keyed-by-pid htab. */
907 lwp_lwpid_htab_add_lwp (lp);
908
909 return lp;
910 }
911
912 /* Add the LWP specified by PID to the list. Return a pointer to the
913 structure describing the new LWP. The LWP should already be
914 stopped. */
915
916 static struct lwp_info *
917 add_lwp (ptid_t ptid)
918 {
919 struct lwp_info *lp;
920
921 lp = add_initial_lwp (ptid);
922
923 /* Let the arch specific bits know about this new thread. Current
924 clients of this callback take the opportunity to install
925 watchpoints in the new thread. We don't do this for the first
926 thread though. See add_initial_lwp. */
927 if (linux_nat_new_thread != NULL)
928 linux_nat_new_thread (lp);
929
930 return lp;
931 }
932
933 /* Remove the LWP specified by PID from the list. */
934
935 static void
936 delete_lwp (ptid_t ptid)
937 {
938 struct lwp_info *lp;
939 void **slot;
940 struct lwp_info dummy;
941
942 dummy.ptid = ptid;
943 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
944 if (slot == NULL)
945 return;
946
947 lp = *(struct lwp_info **) slot;
948 gdb_assert (lp != NULL);
949
950 htab_clear_slot (lwp_lwpid_htab, slot);
951
952 /* Remove from sorted-by-creation-order list. */
953 lwp_list_remove (lp);
954
955 /* Release. */
956 lwp_free (lp);
957 }
958
959 /* Return a pointer to the structure describing the LWP corresponding
960 to PID. If no corresponding LWP could be found, return NULL. */
961
962 static struct lwp_info *
963 find_lwp_pid (ptid_t ptid)
964 {
965 struct lwp_info *lp;
966 int lwp;
967 struct lwp_info dummy;
968
969 if (ptid_lwp_p (ptid))
970 lwp = ptid_get_lwp (ptid);
971 else
972 lwp = ptid_get_pid (ptid);
973
974 dummy.ptid = ptid_build (0, lwp, 0);
975 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
976 return lp;
977 }
978
979 /* See nat/linux-nat.h. */
980
981 struct lwp_info *
982 iterate_over_lwps (ptid_t filter,
983 iterate_over_lwps_ftype callback,
984 void *data)
985 {
986 struct lwp_info *lp, *lpnext;
987
988 for (lp = lwp_list; lp; lp = lpnext)
989 {
990 lpnext = lp->next;
991
992 if (ptid_match (lp->ptid, filter))
993 {
994 if ((*callback) (lp, data) != 0)
995 return lp;
996 }
997 }
998
999 return NULL;
1000 }
1001
1002 /* Update our internal state when changing from one checkpoint to
1003 another indicated by NEW_PTID. We can only switch single-threaded
1004 applications, so we only create one new LWP, and the previous list
1005 is discarded. */
1006
1007 void
1008 linux_nat_switch_fork (ptid_t new_ptid)
1009 {
1010 struct lwp_info *lp;
1011
1012 purge_lwp_list (ptid_get_pid (inferior_ptid));
1013
1014 lp = add_lwp (new_ptid);
1015 lp->stopped = 1;
1016
1017 /* This changes the thread's ptid while preserving the gdb thread
1018 num. Also changes the inferior pid, while preserving the
1019 inferior num. */
1020 thread_change_ptid (inferior_ptid, new_ptid);
1021
1022 /* We've just told GDB core that the thread changed target id, but,
1023 in fact, it really is a different thread, with different register
1024 contents. */
1025 registers_changed ();
1026 }
1027
1028 /* Handle the exit of a single thread LP. */
1029
1030 static void
1031 exit_lwp (struct lwp_info *lp)
1032 {
1033 struct thread_info *th = find_thread_ptid (lp->ptid);
1034
1035 if (th)
1036 {
1037 if (print_thread_events)
1038 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1039
1040 delete_thread (lp->ptid);
1041 }
1042
1043 delete_lwp (lp->ptid);
1044 }
1045
1046 /* Wait for the LWP specified by LP, which we have just attached to.
1047 Returns a wait status for that LWP, to cache. */
1048
1049 static int
1050 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1051 {
1052 pid_t new_pid, pid = ptid_get_lwp (ptid);
1053 int status;
1054
1055 if (linux_proc_pid_is_stopped (pid))
1056 {
1057 if (debug_linux_nat)
1058 fprintf_unfiltered (gdb_stdlog,
1059 "LNPAW: Attaching to a stopped process\n");
1060
1061 /* The process is definitely stopped. It is in a job control
1062 stop, unless the kernel predates the TASK_STOPPED /
1063 TASK_TRACED distinction, in which case it might be in a
1064 ptrace stop. Make sure it is in a ptrace stop; from there we
1065 can kill it, signal it, et cetera.
1066
1067 First make sure there is a pending SIGSTOP. Since we are
1068 already attached, the process can not transition from stopped
1069 to running without a PTRACE_CONT; so we know this signal will
1070 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1071 probably already in the queue (unless this kernel is old
1072 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1073 is not an RT signal, it can only be queued once. */
1074 kill_lwp (pid, SIGSTOP);
1075
1076 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1077 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1078 ptrace (PTRACE_CONT, pid, 0, 0);
1079 }
1080
1081 /* Make sure the initial process is stopped. The user-level threads
1082 layer might want to poke around in the inferior, and that won't
1083 work if things haven't stabilized yet. */
1084 new_pid = my_waitpid (pid, &status, __WALL);
1085 gdb_assert (pid == new_pid);
1086
1087 if (!WIFSTOPPED (status))
1088 {
1089 /* The pid we tried to attach has apparently just exited. */
1090 if (debug_linux_nat)
1091 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1092 pid, status_to_str (status));
1093 return status;
1094 }
1095
1096 if (WSTOPSIG (status) != SIGSTOP)
1097 {
1098 *signalled = 1;
1099 if (debug_linux_nat)
1100 fprintf_unfiltered (gdb_stdlog,
1101 "LNPAW: Received %s after attaching\n",
1102 status_to_str (status));
1103 }
1104
1105 return status;
1106 }
1107
1108 static void
1109 linux_nat_create_inferior (struct target_ops *ops,
1110 const char *exec_file, const std::string &allargs,
1111 char **env, int from_tty)
1112 {
1113 struct cleanup *restore_personality
1114 = maybe_disable_address_space_randomization (disable_randomization);
1115
1116 /* The fork_child mechanism is synchronous and calls target_wait, so
1117 we have to mask the async mode. */
1118
1119 /* Make sure we report all signals during startup. */
1120 linux_nat_pass_signals (ops, 0, NULL);
1121
1122 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1123
1124 do_cleanups (restore_personality);
1125 }
1126
1127 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1128 already attached. Returns true if a new LWP is found, false
1129 otherwise. */
1130
1131 static int
1132 attach_proc_task_lwp_callback (ptid_t ptid)
1133 {
1134 struct lwp_info *lp;
1135
1136 /* Ignore LWPs we're already attached to. */
1137 lp = find_lwp_pid (ptid);
1138 if (lp == NULL)
1139 {
1140 int lwpid = ptid_get_lwp (ptid);
1141
1142 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1143 {
1144 int err = errno;
1145
1146 /* Be quiet if we simply raced with the thread exiting.
1147 EPERM is returned if the thread's task still exists, and
1148 is marked as exited or zombie, as well as other
1149 conditions, so in that case, confirm the status in
1150 /proc/PID/status. */
1151 if (err == ESRCH
1152 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1153 {
1154 if (debug_linux_nat)
1155 {
1156 fprintf_unfiltered (gdb_stdlog,
1157 "Cannot attach to lwp %d: "
1158 "thread is gone (%d: %s)\n",
1159 lwpid, err, safe_strerror (err));
1160 }
1161 }
1162 else
1163 {
1164 warning (_("Cannot attach to lwp %d: %s"),
1165 lwpid,
1166 linux_ptrace_attach_fail_reason_string (ptid,
1167 err));
1168 }
1169 }
1170 else
1171 {
1172 if (debug_linux_nat)
1173 fprintf_unfiltered (gdb_stdlog,
1174 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1175 target_pid_to_str (ptid));
1176
1177 lp = add_lwp (ptid);
1178
1179 /* The next time we wait for this LWP we'll see a SIGSTOP as
1180 PTRACE_ATTACH brings it to a halt. */
1181 lp->signalled = 1;
1182
1183 /* We need to wait for a stop before being able to make the
1184 next ptrace call on this LWP. */
1185 lp->must_set_ptrace_flags = 1;
1186
1187 /* So that wait collects the SIGSTOP. */
1188 lp->resumed = 1;
1189
1190 /* Also add the LWP to gdb's thread list, in case a
1191 matching libthread_db is not found (or the process uses
1192 raw clone). */
1193 add_thread (lp->ptid);
1194 set_running (lp->ptid, 1);
1195 set_executing (lp->ptid, 1);
1196 }
1197
1198 return 1;
1199 }
1200 return 0;
1201 }
1202
1203 static void
1204 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1205 {
1206 struct lwp_info *lp;
1207 int status;
1208 ptid_t ptid;
1209
1210 /* Make sure we report all signals during attach. */
1211 linux_nat_pass_signals (ops, 0, NULL);
1212
1213 TRY
1214 {
1215 linux_ops->to_attach (ops, args, from_tty);
1216 }
1217 CATCH (ex, RETURN_MASK_ERROR)
1218 {
1219 pid_t pid = parse_pid_to_attach (args);
1220 struct buffer buffer;
1221 char *message, *buffer_s;
1222
1223 message = xstrdup (ex.message);
1224 make_cleanup (xfree, message);
1225
1226 buffer_init (&buffer);
1227 linux_ptrace_attach_fail_reason (pid, &buffer);
1228
1229 buffer_grow_str0 (&buffer, "");
1230 buffer_s = buffer_finish (&buffer);
1231 make_cleanup (xfree, buffer_s);
1232
1233 if (*buffer_s != '\0')
1234 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1235 else
1236 throw_error (ex.error, "%s", message);
1237 }
1238 END_CATCH
1239
1240 /* The ptrace base target adds the main thread with (pid,0,0)
1241 format. Decorate it with lwp info. */
1242 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1243 ptid_get_pid (inferior_ptid),
1244 0);
1245 thread_change_ptid (inferior_ptid, ptid);
1246
1247 /* Add the initial process as the first LWP to the list. */
1248 lp = add_initial_lwp (ptid);
1249
1250 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1251 if (!WIFSTOPPED (status))
1252 {
1253 if (WIFEXITED (status))
1254 {
1255 int exit_code = WEXITSTATUS (status);
1256
1257 target_terminal::ours ();
1258 target_mourn_inferior (inferior_ptid);
1259 if (exit_code == 0)
1260 error (_("Unable to attach: program exited normally."));
1261 else
1262 error (_("Unable to attach: program exited with code %d."),
1263 exit_code);
1264 }
1265 else if (WIFSIGNALED (status))
1266 {
1267 enum gdb_signal signo;
1268
1269 target_terminal::ours ();
1270 target_mourn_inferior (inferior_ptid);
1271
1272 signo = gdb_signal_from_host (WTERMSIG (status));
1273 error (_("Unable to attach: program terminated with signal "
1274 "%s, %s."),
1275 gdb_signal_to_name (signo),
1276 gdb_signal_to_string (signo));
1277 }
1278
1279 internal_error (__FILE__, __LINE__,
1280 _("unexpected status %d for PID %ld"),
1281 status, (long) ptid_get_lwp (ptid));
1282 }
1283
1284 lp->stopped = 1;
1285
1286 /* Save the wait status to report later. */
1287 lp->resumed = 1;
1288 if (debug_linux_nat)
1289 fprintf_unfiltered (gdb_stdlog,
1290 "LNA: waitpid %ld, saving status %s\n",
1291 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1292
1293 lp->status = status;
1294
1295 /* We must attach to every LWP. If /proc is mounted, use that to
1296 find them now. The inferior may be using raw clone instead of
1297 using pthreads. But even if it is using pthreads, thread_db
1298 walks structures in the inferior's address space to find the list
1299 of threads/LWPs, and those structures may well be corrupted.
1300 Note that once thread_db is loaded, we'll still use it to list
1301 threads and associate pthread info with each LWP. */
1302 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1303 attach_proc_task_lwp_callback);
1304
1305 if (target_can_async_p ())
1306 target_async (1);
1307 }
1308
1309 /* Get pending signal of THREAD as a host signal number, for detaching
1310 purposes. This is the signal the thread last stopped for, which we
1311 need to deliver to the thread when detaching, otherwise, it'd be
1312 suppressed/lost. */
1313
1314 static int
1315 get_detach_signal (struct lwp_info *lp)
1316 {
1317 enum gdb_signal signo = GDB_SIGNAL_0;
1318
1319 /* If we paused threads momentarily, we may have stored pending
1320 events in lp->status or lp->waitstatus (see stop_wait_callback),
1321 and GDB core hasn't seen any signal for those threads.
1322 Otherwise, the last signal reported to the core is found in the
1323 thread object's stop_signal.
1324
1325 There's a corner case that isn't handled here at present. Only
1326 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1327 stop_signal make sense as a real signal to pass to the inferior.
1328 Some catchpoint related events, like
1329 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1330 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1331 those traps are debug API (ptrace in our case) related and
1332 induced; the inferior wouldn't see them if it wasn't being
1333 traced. Hence, we should never pass them to the inferior, even
1334 when set to pass state. Since this corner case isn't handled by
1335 infrun.c when proceeding with a signal, for consistency, neither
1336 do we handle it here (or elsewhere in the file we check for
1337 signal pass state). Normally SIGTRAP isn't set to pass state, so
1338 this is really a corner case. */
1339
1340 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1341 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1342 else if (lp->status)
1343 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1344 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1345 {
1346 struct thread_info *tp = find_thread_ptid (lp->ptid);
1347
1348 if (tp->suspend.waitstatus_pending_p)
1349 signo = tp->suspend.waitstatus.value.sig;
1350 else
1351 signo = tp->suspend.stop_signal;
1352 }
1353 else if (!target_is_non_stop_p ())
1354 {
1355 struct target_waitstatus last;
1356 ptid_t last_ptid;
1357
1358 get_last_target_status (&last_ptid, &last);
1359
1360 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1361 {
1362 struct thread_info *tp = find_thread_ptid (lp->ptid);
1363
1364 signo = tp->suspend.stop_signal;
1365 }
1366 }
1367
1368 if (signo == GDB_SIGNAL_0)
1369 {
1370 if (debug_linux_nat)
1371 fprintf_unfiltered (gdb_stdlog,
1372 "GPT: lwp %s has no pending signal\n",
1373 target_pid_to_str (lp->ptid));
1374 }
1375 else if (!signal_pass_state (signo))
1376 {
1377 if (debug_linux_nat)
1378 fprintf_unfiltered (gdb_stdlog,
1379 "GPT: lwp %s had signal %s, "
1380 "but it is in no pass state\n",
1381 target_pid_to_str (lp->ptid),
1382 gdb_signal_to_string (signo));
1383 }
1384 else
1385 {
1386 if (debug_linux_nat)
1387 fprintf_unfiltered (gdb_stdlog,
1388 "GPT: lwp %s has pending signal %s\n",
1389 target_pid_to_str (lp->ptid),
1390 gdb_signal_to_string (signo));
1391
1392 return gdb_signal_to_host (signo);
1393 }
1394
1395 return 0;
1396 }
1397
1398 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1399 signal number that should be passed to the LWP when detaching.
1400 Otherwise pass any pending signal the LWP may have, if any. */
1401
1402 static void
1403 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1404 {
1405 int lwpid = ptid_get_lwp (lp->ptid);
1406 int signo;
1407
1408 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1409
1410 if (debug_linux_nat && lp->status)
1411 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1412 strsignal (WSTOPSIG (lp->status)),
1413 target_pid_to_str (lp->ptid));
1414
1415 /* If there is a pending SIGSTOP, get rid of it. */
1416 if (lp->signalled)
1417 {
1418 if (debug_linux_nat)
1419 fprintf_unfiltered (gdb_stdlog,
1420 "DC: Sending SIGCONT to %s\n",
1421 target_pid_to_str (lp->ptid));
1422
1423 kill_lwp (lwpid, SIGCONT);
1424 lp->signalled = 0;
1425 }
1426
1427 if (signo_p == NULL)
1428 {
1429 /* Pass on any pending signal for this LWP. */
1430 signo = get_detach_signal (lp);
1431 }
1432 else
1433 signo = *signo_p;
1434
1435 /* Preparing to resume may try to write registers, and fail if the
1436 lwp is zombie. If that happens, ignore the error. We'll handle
1437 it below, when detach fails with ESRCH. */
1438 TRY
1439 {
1440 if (linux_nat_prepare_to_resume != NULL)
1441 linux_nat_prepare_to_resume (lp);
1442 }
1443 CATCH (ex, RETURN_MASK_ERROR)
1444 {
1445 if (!check_ptrace_stopped_lwp_gone (lp))
1446 throw_exception (ex);
1447 }
1448 END_CATCH
1449
1450 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1451 {
1452 int save_errno = errno;
1453
1454 /* We know the thread exists, so ESRCH must mean the lwp is
1455 zombie. This can happen if one of the already-detached
1456 threads exits the whole thread group. In that case we're
1457 still attached, and must reap the lwp. */
1458 if (save_errno == ESRCH)
1459 {
1460 int ret, status;
1461
1462 ret = my_waitpid (lwpid, &status, __WALL);
1463 if (ret == -1)
1464 {
1465 warning (_("Couldn't reap LWP %d while detaching: %s"),
1466 lwpid, strerror (errno));
1467 }
1468 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1469 {
1470 warning (_("Reaping LWP %d while detaching "
1471 "returned unexpected status 0x%x"),
1472 lwpid, status);
1473 }
1474 }
1475 else
1476 {
1477 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1478 safe_strerror (save_errno));
1479 }
1480 }
1481 else if (debug_linux_nat)
1482 {
1483 fprintf_unfiltered (gdb_stdlog,
1484 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1485 target_pid_to_str (lp->ptid),
1486 strsignal (signo));
1487 }
1488
1489 delete_lwp (lp->ptid);
1490 }
1491
1492 static int
1493 detach_callback (struct lwp_info *lp, void *data)
1494 {
1495 /* We don't actually detach from the thread group leader just yet.
1496 If the thread group exits, we must reap the zombie clone lwps
1497 before we're able to reap the leader. */
1498 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1499 detach_one_lwp (lp, NULL);
1500 return 0;
1501 }
1502
1503 static void
1504 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1505 {
1506 int pid;
1507 struct lwp_info *main_lwp;
1508
1509 pid = ptid_get_pid (inferior_ptid);
1510
1511 /* Don't unregister from the event loop, as there may be other
1512 inferiors running. */
1513
1514 /* Stop all threads before detaching. ptrace requires that the
1515 thread is stopped to sucessfully detach. */
1516 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1517 /* ... and wait until all of them have reported back that
1518 they're no longer running. */
1519 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1520
1521 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1522
1523 /* Only the initial process should be left right now. */
1524 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1525
1526 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1527
1528 if (forks_exist_p ())
1529 {
1530 /* Multi-fork case. The current inferior_ptid is being detached
1531 from, but there are other viable forks to debug. Detach from
1532 the current fork, and context-switch to the first
1533 available. */
1534 linux_fork_detach (args, from_tty);
1535 }
1536 else
1537 {
1538 int signo;
1539
1540 target_announce_detach (from_tty);
1541
1542 /* Pass on any pending signal for the last LWP, unless the user
1543 requested detaching with a different signal (most likely 0,
1544 meaning, discard the signal). */
1545 if (args != NULL)
1546 signo = atoi (args);
1547 else
1548 signo = get_detach_signal (main_lwp);
1549
1550 detach_one_lwp (main_lwp, &signo);
1551
1552 inf_ptrace_detach_success (ops);
1553 }
1554 }
1555
1556 /* Resume execution of the inferior process. If STEP is nonzero,
1557 single-step it. If SIGNAL is nonzero, give it that signal. */
1558
1559 static void
1560 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1561 enum gdb_signal signo)
1562 {
1563 lp->step = step;
1564
1565 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1566 We only presently need that if the LWP is stepped though (to
1567 handle the case of stepping a breakpoint instruction). */
1568 if (step)
1569 {
1570 struct regcache *regcache = get_thread_regcache (lp->ptid);
1571
1572 lp->stop_pc = regcache_read_pc (regcache);
1573 }
1574 else
1575 lp->stop_pc = 0;
1576
1577 if (linux_nat_prepare_to_resume != NULL)
1578 linux_nat_prepare_to_resume (lp);
1579 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1580
1581 /* Successfully resumed. Clear state that no longer makes sense,
1582 and mark the LWP as running. Must not do this before resuming
1583 otherwise if that fails other code will be confused. E.g., we'd
1584 later try to stop the LWP and hang forever waiting for a stop
1585 status. Note that we must not throw after this is cleared,
1586 otherwise handle_zombie_lwp_error would get confused. */
1587 lp->stopped = 0;
1588 lp->core = -1;
1589 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1590 registers_changed_ptid (lp->ptid);
1591 }
1592
1593 /* Called when we try to resume a stopped LWP and that errors out. If
1594 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1595 or about to become), discard the error, clear any pending status
1596 the LWP may have, and return true (we'll collect the exit status
1597 soon enough). Otherwise, return false. */
1598
1599 static int
1600 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1601 {
1602 /* If we get an error after resuming the LWP successfully, we'd
1603 confuse !T state for the LWP being gone. */
1604 gdb_assert (lp->stopped);
1605
1606 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1607 because even if ptrace failed with ESRCH, the tracee may be "not
1608 yet fully dead", but already refusing ptrace requests. In that
1609 case the tracee has 'R (Running)' state for a little bit
1610 (observed in Linux 3.18). See also the note on ESRCH in the
1611 ptrace(2) man page. Instead, check whether the LWP has any state
1612 other than ptrace-stopped. */
1613
1614 /* Don't assume anything if /proc/PID/status can't be read. */
1615 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1616 {
1617 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1618 lp->status = 0;
1619 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1620 return 1;
1621 }
1622 return 0;
1623 }
1624
1625 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1626 disappears while we try to resume it. */
1627
1628 static void
1629 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1630 {
1631 TRY
1632 {
1633 linux_resume_one_lwp_throw (lp, step, signo);
1634 }
1635 CATCH (ex, RETURN_MASK_ERROR)
1636 {
1637 if (!check_ptrace_stopped_lwp_gone (lp))
1638 throw_exception (ex);
1639 }
1640 END_CATCH
1641 }
1642
1643 /* Resume LP. */
1644
1645 static void
1646 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1647 {
1648 if (lp->stopped)
1649 {
1650 struct inferior *inf = find_inferior_ptid (lp->ptid);
1651
1652 if (inf->vfork_child != NULL)
1653 {
1654 if (debug_linux_nat)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "RC: Not resuming %s (vfork parent)\n",
1657 target_pid_to_str (lp->ptid));
1658 }
1659 else if (!lwp_status_pending_p (lp))
1660 {
1661 if (debug_linux_nat)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "RC: Resuming sibling %s, %s, %s\n",
1664 target_pid_to_str (lp->ptid),
1665 (signo != GDB_SIGNAL_0
1666 ? strsignal (gdb_signal_to_host (signo))
1667 : "0"),
1668 step ? "step" : "resume");
1669
1670 linux_resume_one_lwp (lp, step, signo);
1671 }
1672 else
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "RC: Not resuming sibling %s (has pending)\n",
1677 target_pid_to_str (lp->ptid));
1678 }
1679 }
1680 else
1681 {
1682 if (debug_linux_nat)
1683 fprintf_unfiltered (gdb_stdlog,
1684 "RC: Not resuming sibling %s (not stopped)\n",
1685 target_pid_to_str (lp->ptid));
1686 }
1687 }
1688
1689 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1690 Resume LWP with the last stop signal, if it is in pass state. */
1691
1692 static int
1693 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1694 {
1695 enum gdb_signal signo = GDB_SIGNAL_0;
1696
1697 if (lp == except)
1698 return 0;
1699
1700 if (lp->stopped)
1701 {
1702 struct thread_info *thread;
1703
1704 thread = find_thread_ptid (lp->ptid);
1705 if (thread != NULL)
1706 {
1707 signo = thread->suspend.stop_signal;
1708 thread->suspend.stop_signal = GDB_SIGNAL_0;
1709 }
1710 }
1711
1712 resume_lwp (lp, 0, signo);
1713 return 0;
1714 }
1715
1716 static int
1717 resume_clear_callback (struct lwp_info *lp, void *data)
1718 {
1719 lp->resumed = 0;
1720 lp->last_resume_kind = resume_stop;
1721 return 0;
1722 }
1723
1724 static int
1725 resume_set_callback (struct lwp_info *lp, void *data)
1726 {
1727 lp->resumed = 1;
1728 lp->last_resume_kind = resume_continue;
1729 return 0;
1730 }
1731
1732 static void
1733 linux_nat_resume (struct target_ops *ops,
1734 ptid_t ptid, int step, enum gdb_signal signo)
1735 {
1736 struct lwp_info *lp;
1737 int resume_many;
1738
1739 if (debug_linux_nat)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1742 step ? "step" : "resume",
1743 target_pid_to_str (ptid),
1744 (signo != GDB_SIGNAL_0
1745 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1746 target_pid_to_str (inferior_ptid));
1747
1748 /* A specific PTID means `step only this process id'. */
1749 resume_many = (ptid_equal (minus_one_ptid, ptid)
1750 || ptid_is_pid (ptid));
1751
1752 /* Mark the lwps we're resuming as resumed. */
1753 iterate_over_lwps (ptid, resume_set_callback, NULL);
1754
1755 /* See if it's the current inferior that should be handled
1756 specially. */
1757 if (resume_many)
1758 lp = find_lwp_pid (inferior_ptid);
1759 else
1760 lp = find_lwp_pid (ptid);
1761 gdb_assert (lp != NULL);
1762
1763 /* Remember if we're stepping. */
1764 lp->last_resume_kind = step ? resume_step : resume_continue;
1765
1766 /* If we have a pending wait status for this thread, there is no
1767 point in resuming the process. But first make sure that
1768 linux_nat_wait won't preemptively handle the event - we
1769 should never take this short-circuit if we are going to
1770 leave LP running, since we have skipped resuming all the
1771 other threads. This bit of code needs to be synchronized
1772 with linux_nat_wait. */
1773
1774 if (lp->status && WIFSTOPPED (lp->status))
1775 {
1776 if (!lp->step
1777 && WSTOPSIG (lp->status)
1778 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1779 {
1780 if (debug_linux_nat)
1781 fprintf_unfiltered (gdb_stdlog,
1782 "LLR: Not short circuiting for ignored "
1783 "status 0x%x\n", lp->status);
1784
1785 /* FIXME: What should we do if we are supposed to continue
1786 this thread with a signal? */
1787 gdb_assert (signo == GDB_SIGNAL_0);
1788 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1789 lp->status = 0;
1790 }
1791 }
1792
1793 if (lwp_status_pending_p (lp))
1794 {
1795 /* FIXME: What should we do if we are supposed to continue
1796 this thread with a signal? */
1797 gdb_assert (signo == GDB_SIGNAL_0);
1798
1799 if (debug_linux_nat)
1800 fprintf_unfiltered (gdb_stdlog,
1801 "LLR: Short circuiting for status 0x%x\n",
1802 lp->status);
1803
1804 if (target_can_async_p ())
1805 {
1806 target_async (1);
1807 /* Tell the event loop we have something to process. */
1808 async_file_mark ();
1809 }
1810 return;
1811 }
1812
1813 if (resume_many)
1814 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1815
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "LLR: %s %s, %s (resume event thread)\n",
1819 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1820 target_pid_to_str (lp->ptid),
1821 (signo != GDB_SIGNAL_0
1822 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1823
1824 linux_resume_one_lwp (lp, step, signo);
1825
1826 if (target_can_async_p ())
1827 target_async (1);
1828 }
1829
1830 /* Send a signal to an LWP. */
1831
1832 static int
1833 kill_lwp (int lwpid, int signo)
1834 {
1835 int ret;
1836
1837 errno = 0;
1838 ret = syscall (__NR_tkill, lwpid, signo);
1839 if (errno == ENOSYS)
1840 {
1841 /* If tkill fails, then we are not using nptl threads, a
1842 configuration we no longer support. */
1843 perror_with_name (("tkill"));
1844 }
1845 return ret;
1846 }
1847
1848 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1849 event, check if the core is interested in it: if not, ignore the
1850 event, and keep waiting; otherwise, we need to toggle the LWP's
1851 syscall entry/exit status, since the ptrace event itself doesn't
1852 indicate it, and report the trap to higher layers. */
1853
1854 static int
1855 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1856 {
1857 struct target_waitstatus *ourstatus = &lp->waitstatus;
1858 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1859 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1860
1861 if (stopping)
1862 {
1863 /* If we're stopping threads, there's a SIGSTOP pending, which
1864 makes it so that the LWP reports an immediate syscall return,
1865 followed by the SIGSTOP. Skip seeing that "return" using
1866 PTRACE_CONT directly, and let stop_wait_callback collect the
1867 SIGSTOP. Later when the thread is resumed, a new syscall
1868 entry event. If we didn't do this (and returned 0), we'd
1869 leave a syscall entry pending, and our caller, by using
1870 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1871 itself. Later, when the user re-resumes this LWP, we'd see
1872 another syscall entry event and we'd mistake it for a return.
1873
1874 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1875 (leaving immediately with LWP->signalled set, without issuing
1876 a PTRACE_CONT), it would still be problematic to leave this
1877 syscall enter pending, as later when the thread is resumed,
1878 it would then see the same syscall exit mentioned above,
1879 followed by the delayed SIGSTOP, while the syscall didn't
1880 actually get to execute. It seems it would be even more
1881 confusing to the user. */
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LHST: ignoring syscall %d "
1886 "for LWP %ld (stopping threads), "
1887 "resuming with PTRACE_CONT for SIGSTOP\n",
1888 syscall_number,
1889 ptid_get_lwp (lp->ptid));
1890
1891 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1892 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1893 lp->stopped = 0;
1894 return 1;
1895 }
1896
1897 /* Always update the entry/return state, even if this particular
1898 syscall isn't interesting to the core now. In async mode,
1899 the user could install a new catchpoint for this syscall
1900 between syscall enter/return, and we'll need to know to
1901 report a syscall return if that happens. */
1902 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1903 ? TARGET_WAITKIND_SYSCALL_RETURN
1904 : TARGET_WAITKIND_SYSCALL_ENTRY);
1905
1906 if (catch_syscall_enabled ())
1907 {
1908 if (catching_syscall_number (syscall_number))
1909 {
1910 /* Alright, an event to report. */
1911 ourstatus->kind = lp->syscall_state;
1912 ourstatus->value.syscall_number = syscall_number;
1913
1914 if (debug_linux_nat)
1915 fprintf_unfiltered (gdb_stdlog,
1916 "LHST: stopping for %s of syscall %d"
1917 " for LWP %ld\n",
1918 lp->syscall_state
1919 == TARGET_WAITKIND_SYSCALL_ENTRY
1920 ? "entry" : "return",
1921 syscall_number,
1922 ptid_get_lwp (lp->ptid));
1923 return 0;
1924 }
1925
1926 if (debug_linux_nat)
1927 fprintf_unfiltered (gdb_stdlog,
1928 "LHST: ignoring %s of syscall %d "
1929 "for LWP %ld\n",
1930 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1931 ? "entry" : "return",
1932 syscall_number,
1933 ptid_get_lwp (lp->ptid));
1934 }
1935 else
1936 {
1937 /* If we had been syscall tracing, and hence used PT_SYSCALL
1938 before on this LWP, it could happen that the user removes all
1939 syscall catchpoints before we get to process this event.
1940 There are two noteworthy issues here:
1941
1942 - When stopped at a syscall entry event, resuming with
1943 PT_STEP still resumes executing the syscall and reports a
1944 syscall return.
1945
1946 - Only PT_SYSCALL catches syscall enters. If we last
1947 single-stepped this thread, then this event can't be a
1948 syscall enter. If we last single-stepped this thread, this
1949 has to be a syscall exit.
1950
1951 The points above mean that the next resume, be it PT_STEP or
1952 PT_CONTINUE, can not trigger a syscall trace event. */
1953 if (debug_linux_nat)
1954 fprintf_unfiltered (gdb_stdlog,
1955 "LHST: caught syscall event "
1956 "with no syscall catchpoints."
1957 " %d for LWP %ld, ignoring\n",
1958 syscall_number,
1959 ptid_get_lwp (lp->ptid));
1960 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1961 }
1962
1963 /* The core isn't interested in this event. For efficiency, avoid
1964 stopping all threads only to have the core resume them all again.
1965 Since we're not stopping threads, if we're still syscall tracing
1966 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1967 subsequent syscall. Simply resume using the inf-ptrace layer,
1968 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1969
1970 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1971 return 1;
1972 }
1973
1974 /* Handle a GNU/Linux extended wait response. If we see a clone
1975 event, we need to add the new LWP to our list (and not report the
1976 trap to higher layers). This function returns non-zero if the
1977 event should be ignored and we should wait again. If STOPPING is
1978 true, the new LWP remains stopped, otherwise it is continued. */
1979
1980 static int
1981 linux_handle_extended_wait (struct lwp_info *lp, int status)
1982 {
1983 int pid = ptid_get_lwp (lp->ptid);
1984 struct target_waitstatus *ourstatus = &lp->waitstatus;
1985 int event = linux_ptrace_get_extended_event (status);
1986
1987 /* All extended events we currently use are mid-syscall. Only
1988 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1989 you have to be using PTRACE_SEIZE to get that. */
1990 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1991
1992 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1993 || event == PTRACE_EVENT_CLONE)
1994 {
1995 unsigned long new_pid;
1996 int ret;
1997
1998 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1999
2000 /* If we haven't already seen the new PID stop, wait for it now. */
2001 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2002 {
2003 /* The new child has a pending SIGSTOP. We can't affect it until it
2004 hits the SIGSTOP, but we're already attached. */
2005 ret = my_waitpid (new_pid, &status, __WALL);
2006 if (ret == -1)
2007 perror_with_name (_("waiting for new child"));
2008 else if (ret != new_pid)
2009 internal_error (__FILE__, __LINE__,
2010 _("wait returned unexpected PID %d"), ret);
2011 else if (!WIFSTOPPED (status))
2012 internal_error (__FILE__, __LINE__,
2013 _("wait returned unexpected status 0x%x"), status);
2014 }
2015
2016 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2017
2018 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2019 {
2020 /* The arch-specific native code may need to know about new
2021 forks even if those end up never mapped to an
2022 inferior. */
2023 if (linux_nat_new_fork != NULL)
2024 linux_nat_new_fork (lp, new_pid);
2025 }
2026
2027 if (event == PTRACE_EVENT_FORK
2028 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2029 {
2030 /* Handle checkpointing by linux-fork.c here as a special
2031 case. We don't want the follow-fork-mode or 'catch fork'
2032 to interfere with this. */
2033
2034 /* This won't actually modify the breakpoint list, but will
2035 physically remove the breakpoints from the child. */
2036 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2037
2038 /* Retain child fork in ptrace (stopped) state. */
2039 if (!find_fork_pid (new_pid))
2040 add_fork (new_pid);
2041
2042 /* Report as spurious, so that infrun doesn't want to follow
2043 this fork. We're actually doing an infcall in
2044 linux-fork.c. */
2045 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2046
2047 /* Report the stop to the core. */
2048 return 0;
2049 }
2050
2051 if (event == PTRACE_EVENT_FORK)
2052 ourstatus->kind = TARGET_WAITKIND_FORKED;
2053 else if (event == PTRACE_EVENT_VFORK)
2054 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2055 else if (event == PTRACE_EVENT_CLONE)
2056 {
2057 struct lwp_info *new_lp;
2058
2059 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2060
2061 if (debug_linux_nat)
2062 fprintf_unfiltered (gdb_stdlog,
2063 "LHEW: Got clone event "
2064 "from LWP %d, new child is LWP %ld\n",
2065 pid, new_pid);
2066
2067 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2068 new_lp->stopped = 1;
2069 new_lp->resumed = 1;
2070
2071 /* If the thread_db layer is active, let it record the user
2072 level thread id and status, and add the thread to GDB's
2073 list. */
2074 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2075 {
2076 /* The process is not using thread_db. Add the LWP to
2077 GDB's list. */
2078 target_post_attach (ptid_get_lwp (new_lp->ptid));
2079 add_thread (new_lp->ptid);
2080 }
2081
2082 /* Even if we're stopping the thread for some reason
2083 internal to this module, from the perspective of infrun
2084 and the user/frontend, this new thread is running until
2085 it next reports a stop. */
2086 set_running (new_lp->ptid, 1);
2087 set_executing (new_lp->ptid, 1);
2088
2089 if (WSTOPSIG (status) != SIGSTOP)
2090 {
2091 /* This can happen if someone starts sending signals to
2092 the new thread before it gets a chance to run, which
2093 have a lower number than SIGSTOP (e.g. SIGUSR1).
2094 This is an unlikely case, and harder to handle for
2095 fork / vfork than for clone, so we do not try - but
2096 we handle it for clone events here. */
2097
2098 new_lp->signalled = 1;
2099
2100 /* We created NEW_LP so it cannot yet contain STATUS. */
2101 gdb_assert (new_lp->status == 0);
2102
2103 /* Save the wait status to report later. */
2104 if (debug_linux_nat)
2105 fprintf_unfiltered (gdb_stdlog,
2106 "LHEW: waitpid of new LWP %ld, "
2107 "saving status %s\n",
2108 (long) ptid_get_lwp (new_lp->ptid),
2109 status_to_str (status));
2110 new_lp->status = status;
2111 }
2112 else if (report_thread_events)
2113 {
2114 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2115 new_lp->status = status;
2116 }
2117
2118 return 1;
2119 }
2120
2121 return 0;
2122 }
2123
2124 if (event == PTRACE_EVENT_EXEC)
2125 {
2126 if (debug_linux_nat)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "LHEW: Got exec event from LWP %ld\n",
2129 ptid_get_lwp (lp->ptid));
2130
2131 ourstatus->kind = TARGET_WAITKIND_EXECD;
2132 ourstatus->value.execd_pathname
2133 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2134
2135 /* The thread that execed must have been resumed, but, when a
2136 thread execs, it changes its tid to the tgid, and the old
2137 tgid thread might have not been resumed. */
2138 lp->resumed = 1;
2139 return 0;
2140 }
2141
2142 if (event == PTRACE_EVENT_VFORK_DONE)
2143 {
2144 if (current_inferior ()->waiting_for_vfork_done)
2145 {
2146 if (debug_linux_nat)
2147 fprintf_unfiltered (gdb_stdlog,
2148 "LHEW: Got expected PTRACE_EVENT_"
2149 "VFORK_DONE from LWP %ld: stopping\n",
2150 ptid_get_lwp (lp->ptid));
2151
2152 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2153 return 0;
2154 }
2155
2156 if (debug_linux_nat)
2157 fprintf_unfiltered (gdb_stdlog,
2158 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2159 "from LWP %ld: ignoring\n",
2160 ptid_get_lwp (lp->ptid));
2161 return 1;
2162 }
2163
2164 internal_error (__FILE__, __LINE__,
2165 _("unknown ptrace event %d"), event);
2166 }
2167
2168 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2169 exited. */
2170
2171 static int
2172 wait_lwp (struct lwp_info *lp)
2173 {
2174 pid_t pid;
2175 int status = 0;
2176 int thread_dead = 0;
2177 sigset_t prev_mask;
2178
2179 gdb_assert (!lp->stopped);
2180 gdb_assert (lp->status == 0);
2181
2182 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2183 block_child_signals (&prev_mask);
2184
2185 for (;;)
2186 {
2187 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2188 if (pid == -1 && errno == ECHILD)
2189 {
2190 /* The thread has previously exited. We need to delete it
2191 now because if this was a non-leader thread execing, we
2192 won't get an exit event. See comments on exec events at
2193 the top of the file. */
2194 thread_dead = 1;
2195 if (debug_linux_nat)
2196 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2197 target_pid_to_str (lp->ptid));
2198 }
2199 if (pid != 0)
2200 break;
2201
2202 /* Bugs 10970, 12702.
2203 Thread group leader may have exited in which case we'll lock up in
2204 waitpid if there are other threads, even if they are all zombies too.
2205 Basically, we're not supposed to use waitpid this way.
2206 tkill(pid,0) cannot be used here as it gets ESRCH for both
2207 for zombie and running processes.
2208
2209 As a workaround, check if we're waiting for the thread group leader and
2210 if it's a zombie, and avoid calling waitpid if it is.
2211
2212 This is racy, what if the tgl becomes a zombie right after we check?
2213 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2214 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2215
2216 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2217 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2218 {
2219 thread_dead = 1;
2220 if (debug_linux_nat)
2221 fprintf_unfiltered (gdb_stdlog,
2222 "WL: Thread group leader %s vanished.\n",
2223 target_pid_to_str (lp->ptid));
2224 break;
2225 }
2226
2227 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2228 get invoked despite our caller had them intentionally blocked by
2229 block_child_signals. This is sensitive only to the loop of
2230 linux_nat_wait_1 and there if we get called my_waitpid gets called
2231 again before it gets to sigsuspend so we can safely let the handlers
2232 get executed here. */
2233
2234 if (debug_linux_nat)
2235 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2236 sigsuspend (&suspend_mask);
2237 }
2238
2239 restore_child_signals_mask (&prev_mask);
2240
2241 if (!thread_dead)
2242 {
2243 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2244
2245 if (debug_linux_nat)
2246 {
2247 fprintf_unfiltered (gdb_stdlog,
2248 "WL: waitpid %s received %s\n",
2249 target_pid_to_str (lp->ptid),
2250 status_to_str (status));
2251 }
2252
2253 /* Check if the thread has exited. */
2254 if (WIFEXITED (status) || WIFSIGNALED (status))
2255 {
2256 if (report_thread_events
2257 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2258 {
2259 if (debug_linux_nat)
2260 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2261 ptid_get_pid (lp->ptid));
2262
2263 /* If this is the leader exiting, it means the whole
2264 process is gone. Store the status to report to the
2265 core. Store it in lp->waitstatus, because lp->status
2266 would be ambiguous (W_EXITCODE(0,0) == 0). */
2267 store_waitstatus (&lp->waitstatus, status);
2268 return 0;
2269 }
2270
2271 thread_dead = 1;
2272 if (debug_linux_nat)
2273 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2274 target_pid_to_str (lp->ptid));
2275 }
2276 }
2277
2278 if (thread_dead)
2279 {
2280 exit_lwp (lp);
2281 return 0;
2282 }
2283
2284 gdb_assert (WIFSTOPPED (status));
2285 lp->stopped = 1;
2286
2287 if (lp->must_set_ptrace_flags)
2288 {
2289 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2290 int options = linux_nat_ptrace_options (inf->attach_flag);
2291
2292 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2293 lp->must_set_ptrace_flags = 0;
2294 }
2295
2296 /* Handle GNU/Linux's syscall SIGTRAPs. */
2297 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2298 {
2299 /* No longer need the sysgood bit. The ptrace event ends up
2300 recorded in lp->waitstatus if we care for it. We can carry
2301 on handling the event like a regular SIGTRAP from here
2302 on. */
2303 status = W_STOPCODE (SIGTRAP);
2304 if (linux_handle_syscall_trap (lp, 1))
2305 return wait_lwp (lp);
2306 }
2307 else
2308 {
2309 /* Almost all other ptrace-stops are known to be outside of system
2310 calls, with further exceptions in linux_handle_extended_wait. */
2311 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2312 }
2313
2314 /* Handle GNU/Linux's extended waitstatus for trace events. */
2315 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2316 && linux_is_extended_waitstatus (status))
2317 {
2318 if (debug_linux_nat)
2319 fprintf_unfiltered (gdb_stdlog,
2320 "WL: Handling extended status 0x%06x\n",
2321 status);
2322 linux_handle_extended_wait (lp, status);
2323 return 0;
2324 }
2325
2326 return status;
2327 }
2328
2329 /* Send a SIGSTOP to LP. */
2330
2331 static int
2332 stop_callback (struct lwp_info *lp, void *data)
2333 {
2334 if (!lp->stopped && !lp->signalled)
2335 {
2336 int ret;
2337
2338 if (debug_linux_nat)
2339 {
2340 fprintf_unfiltered (gdb_stdlog,
2341 "SC: kill %s **<SIGSTOP>**\n",
2342 target_pid_to_str (lp->ptid));
2343 }
2344 errno = 0;
2345 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2346 if (debug_linux_nat)
2347 {
2348 fprintf_unfiltered (gdb_stdlog,
2349 "SC: lwp kill %d %s\n",
2350 ret,
2351 errno ? safe_strerror (errno) : "ERRNO-OK");
2352 }
2353
2354 lp->signalled = 1;
2355 gdb_assert (lp->status == 0);
2356 }
2357
2358 return 0;
2359 }
2360
2361 /* Request a stop on LWP. */
2362
2363 void
2364 linux_stop_lwp (struct lwp_info *lwp)
2365 {
2366 stop_callback (lwp, NULL);
2367 }
2368
2369 /* See linux-nat.h */
2370
2371 void
2372 linux_stop_and_wait_all_lwps (void)
2373 {
2374 /* Stop all LWP's ... */
2375 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2376
2377 /* ... and wait until all of them have reported back that
2378 they're no longer running. */
2379 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2380 }
2381
2382 /* See linux-nat.h */
2383
2384 void
2385 linux_unstop_all_lwps (void)
2386 {
2387 iterate_over_lwps (minus_one_ptid,
2388 resume_stopped_resumed_lwps, &minus_one_ptid);
2389 }
2390
2391 /* Return non-zero if LWP PID has a pending SIGINT. */
2392
2393 static int
2394 linux_nat_has_pending_sigint (int pid)
2395 {
2396 sigset_t pending, blocked, ignored;
2397
2398 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2399
2400 if (sigismember (&pending, SIGINT)
2401 && !sigismember (&ignored, SIGINT))
2402 return 1;
2403
2404 return 0;
2405 }
2406
2407 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2408
2409 static int
2410 set_ignore_sigint (struct lwp_info *lp, void *data)
2411 {
2412 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2413 flag to consume the next one. */
2414 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2415 && WSTOPSIG (lp->status) == SIGINT)
2416 lp->status = 0;
2417 else
2418 lp->ignore_sigint = 1;
2419
2420 return 0;
2421 }
2422
2423 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2424 This function is called after we know the LWP has stopped; if the LWP
2425 stopped before the expected SIGINT was delivered, then it will never have
2426 arrived. Also, if the signal was delivered to a shared queue and consumed
2427 by a different thread, it will never be delivered to this LWP. */
2428
2429 static void
2430 maybe_clear_ignore_sigint (struct lwp_info *lp)
2431 {
2432 if (!lp->ignore_sigint)
2433 return;
2434
2435 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2436 {
2437 if (debug_linux_nat)
2438 fprintf_unfiltered (gdb_stdlog,
2439 "MCIS: Clearing bogus flag for %s\n",
2440 target_pid_to_str (lp->ptid));
2441 lp->ignore_sigint = 0;
2442 }
2443 }
2444
2445 /* Fetch the possible triggered data watchpoint info and store it in
2446 LP.
2447
2448 On some archs, like x86, that use debug registers to set
2449 watchpoints, it's possible that the way to know which watched
2450 address trapped, is to check the register that is used to select
2451 which address to watch. Problem is, between setting the watchpoint
2452 and reading back which data address trapped, the user may change
2453 the set of watchpoints, and, as a consequence, GDB changes the
2454 debug registers in the inferior. To avoid reading back a stale
2455 stopped-data-address when that happens, we cache in LP the fact
2456 that a watchpoint trapped, and the corresponding data address, as
2457 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2458 registers meanwhile, we have the cached data we can rely on. */
2459
2460 static int
2461 check_stopped_by_watchpoint (struct lwp_info *lp)
2462 {
2463 if (linux_ops->to_stopped_by_watchpoint == NULL)
2464 return 0;
2465
2466 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2467 inferior_ptid = lp->ptid;
2468
2469 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2470 {
2471 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2472
2473 if (linux_ops->to_stopped_data_address != NULL)
2474 lp->stopped_data_address_p =
2475 linux_ops->to_stopped_data_address (&current_target,
2476 &lp->stopped_data_address);
2477 else
2478 lp->stopped_data_address_p = 0;
2479 }
2480
2481 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2482 }
2483
2484 /* Returns true if the LWP had stopped for a watchpoint. */
2485
2486 static int
2487 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2488 {
2489 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2490
2491 gdb_assert (lp != NULL);
2492
2493 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2494 }
2495
2496 static int
2497 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2498 {
2499 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2500
2501 gdb_assert (lp != NULL);
2502
2503 *addr_p = lp->stopped_data_address;
2504
2505 return lp->stopped_data_address_p;
2506 }
2507
2508 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2509
2510 static int
2511 sigtrap_is_event (int status)
2512 {
2513 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2514 }
2515
2516 /* Set alternative SIGTRAP-like events recognizer. If
2517 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2518 applied. */
2519
2520 void
2521 linux_nat_set_status_is_event (struct target_ops *t,
2522 int (*status_is_event) (int status))
2523 {
2524 linux_nat_status_is_event = status_is_event;
2525 }
2526
2527 /* Wait until LP is stopped. */
2528
2529 static int
2530 stop_wait_callback (struct lwp_info *lp, void *data)
2531 {
2532 struct inferior *inf = find_inferior_ptid (lp->ptid);
2533
2534 /* If this is a vfork parent, bail out, it is not going to report
2535 any SIGSTOP until the vfork is done with. */
2536 if (inf->vfork_child != NULL)
2537 return 0;
2538
2539 if (!lp->stopped)
2540 {
2541 int status;
2542
2543 status = wait_lwp (lp);
2544 if (status == 0)
2545 return 0;
2546
2547 if (lp->ignore_sigint && WIFSTOPPED (status)
2548 && WSTOPSIG (status) == SIGINT)
2549 {
2550 lp->ignore_sigint = 0;
2551
2552 errno = 0;
2553 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2554 lp->stopped = 0;
2555 if (debug_linux_nat)
2556 fprintf_unfiltered (gdb_stdlog,
2557 "PTRACE_CONT %s, 0, 0 (%s) "
2558 "(discarding SIGINT)\n",
2559 target_pid_to_str (lp->ptid),
2560 errno ? safe_strerror (errno) : "OK");
2561
2562 return stop_wait_callback (lp, NULL);
2563 }
2564
2565 maybe_clear_ignore_sigint (lp);
2566
2567 if (WSTOPSIG (status) != SIGSTOP)
2568 {
2569 /* The thread was stopped with a signal other than SIGSTOP. */
2570
2571 if (debug_linux_nat)
2572 fprintf_unfiltered (gdb_stdlog,
2573 "SWC: Pending event %s in %s\n",
2574 status_to_str ((int) status),
2575 target_pid_to_str (lp->ptid));
2576
2577 /* Save the sigtrap event. */
2578 lp->status = status;
2579 gdb_assert (lp->signalled);
2580 save_stop_reason (lp);
2581 }
2582 else
2583 {
2584 /* We caught the SIGSTOP that we intended to catch, so
2585 there's no SIGSTOP pending. */
2586
2587 if (debug_linux_nat)
2588 fprintf_unfiltered (gdb_stdlog,
2589 "SWC: Expected SIGSTOP caught for %s.\n",
2590 target_pid_to_str (lp->ptid));
2591
2592 /* Reset SIGNALLED only after the stop_wait_callback call
2593 above as it does gdb_assert on SIGNALLED. */
2594 lp->signalled = 0;
2595 }
2596 }
2597
2598 return 0;
2599 }
2600
2601 /* Return non-zero if LP has a wait status pending. Discard the
2602 pending event and resume the LWP if the event that originally
2603 caused the stop became uninteresting. */
2604
2605 static int
2606 status_callback (struct lwp_info *lp, void *data)
2607 {
2608 /* Only report a pending wait status if we pretend that this has
2609 indeed been resumed. */
2610 if (!lp->resumed)
2611 return 0;
2612
2613 if (!lwp_status_pending_p (lp))
2614 return 0;
2615
2616 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2617 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2618 {
2619 struct regcache *regcache = get_thread_regcache (lp->ptid);
2620 CORE_ADDR pc;
2621 int discard = 0;
2622
2623 pc = regcache_read_pc (regcache);
2624
2625 if (pc != lp->stop_pc)
2626 {
2627 if (debug_linux_nat)
2628 fprintf_unfiltered (gdb_stdlog,
2629 "SC: PC of %s changed. was=%s, now=%s\n",
2630 target_pid_to_str (lp->ptid),
2631 paddress (target_gdbarch (), lp->stop_pc),
2632 paddress (target_gdbarch (), pc));
2633 discard = 1;
2634 }
2635
2636 #if !USE_SIGTRAP_SIGINFO
2637 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2638 {
2639 if (debug_linux_nat)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "SC: previous breakpoint of %s, at %s gone\n",
2642 target_pid_to_str (lp->ptid),
2643 paddress (target_gdbarch (), lp->stop_pc));
2644
2645 discard = 1;
2646 }
2647 #endif
2648
2649 if (discard)
2650 {
2651 if (debug_linux_nat)
2652 fprintf_unfiltered (gdb_stdlog,
2653 "SC: pending event of %s cancelled.\n",
2654 target_pid_to_str (lp->ptid));
2655
2656 lp->status = 0;
2657 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2658 return 0;
2659 }
2660 }
2661
2662 return 1;
2663 }
2664
2665 /* Count the LWP's that have had events. */
2666
2667 static int
2668 count_events_callback (struct lwp_info *lp, void *data)
2669 {
2670 int *count = (int *) data;
2671
2672 gdb_assert (count != NULL);
2673
2674 /* Select only resumed LWPs that have an event pending. */
2675 if (lp->resumed && lwp_status_pending_p (lp))
2676 (*count)++;
2677
2678 return 0;
2679 }
2680
2681 /* Select the LWP (if any) that is currently being single-stepped. */
2682
2683 static int
2684 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2685 {
2686 if (lp->last_resume_kind == resume_step
2687 && lp->status != 0)
2688 return 1;
2689 else
2690 return 0;
2691 }
2692
2693 /* Returns true if LP has a status pending. */
2694
2695 static int
2696 lwp_status_pending_p (struct lwp_info *lp)
2697 {
2698 /* We check for lp->waitstatus in addition to lp->status, because we
2699 can have pending process exits recorded in lp->status and
2700 W_EXITCODE(0,0) happens to be 0. */
2701 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2702 }
2703
2704 /* Select the Nth LWP that has had an event. */
2705
2706 static int
2707 select_event_lwp_callback (struct lwp_info *lp, void *data)
2708 {
2709 int *selector = (int *) data;
2710
2711 gdb_assert (selector != NULL);
2712
2713 /* Select only resumed LWPs that have an event pending. */
2714 if (lp->resumed && lwp_status_pending_p (lp))
2715 if ((*selector)-- == 0)
2716 return 1;
2717
2718 return 0;
2719 }
2720
2721 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2722 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2723 and save the result in the LWP's stop_reason field. If it stopped
2724 for a breakpoint, decrement the PC if necessary on the lwp's
2725 architecture. */
2726
2727 static void
2728 save_stop_reason (struct lwp_info *lp)
2729 {
2730 struct regcache *regcache;
2731 struct gdbarch *gdbarch;
2732 CORE_ADDR pc;
2733 CORE_ADDR sw_bp_pc;
2734 #if USE_SIGTRAP_SIGINFO
2735 siginfo_t siginfo;
2736 #endif
2737
2738 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2739 gdb_assert (lp->status != 0);
2740
2741 if (!linux_nat_status_is_event (lp->status))
2742 return;
2743
2744 regcache = get_thread_regcache (lp->ptid);
2745 gdbarch = get_regcache_arch (regcache);
2746
2747 pc = regcache_read_pc (regcache);
2748 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2749
2750 #if USE_SIGTRAP_SIGINFO
2751 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2752 {
2753 if (siginfo.si_signo == SIGTRAP)
2754 {
2755 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2756 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2757 {
2758 /* The si_code is ambiguous on this arch -- check debug
2759 registers. */
2760 if (!check_stopped_by_watchpoint (lp))
2761 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2762 }
2763 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2764 {
2765 /* If we determine the LWP stopped for a SW breakpoint,
2766 trust it. Particularly don't check watchpoint
2767 registers, because at least on s390, we'd find
2768 stopped-by-watchpoint as long as there's a watchpoint
2769 set. */
2770 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2771 }
2772 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2773 {
2774 /* This can indicate either a hardware breakpoint or
2775 hardware watchpoint. Check debug registers. */
2776 if (!check_stopped_by_watchpoint (lp))
2777 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2778 }
2779 else if (siginfo.si_code == TRAP_TRACE)
2780 {
2781 if (debug_linux_nat)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "CSBB: %s stopped by trace\n",
2784 target_pid_to_str (lp->ptid));
2785
2786 /* We may have single stepped an instruction that
2787 triggered a watchpoint. In that case, on some
2788 architectures (such as x86), instead of TRAP_HWBKPT,
2789 si_code indicates TRAP_TRACE, and we need to check
2790 the debug registers separately. */
2791 check_stopped_by_watchpoint (lp);
2792 }
2793 }
2794 }
2795 #else
2796 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2797 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2798 sw_bp_pc))
2799 {
2800 /* The LWP was either continued, or stepped a software
2801 breakpoint instruction. */
2802 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2803 }
2804
2805 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2806 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2807
2808 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2809 check_stopped_by_watchpoint (lp);
2810 #endif
2811
2812 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2813 {
2814 if (debug_linux_nat)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "CSBB: %s stopped by software breakpoint\n",
2817 target_pid_to_str (lp->ptid));
2818
2819 /* Back up the PC if necessary. */
2820 if (pc != sw_bp_pc)
2821 regcache_write_pc (regcache, sw_bp_pc);
2822
2823 /* Update this so we record the correct stop PC below. */
2824 pc = sw_bp_pc;
2825 }
2826 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2827 {
2828 if (debug_linux_nat)
2829 fprintf_unfiltered (gdb_stdlog,
2830 "CSBB: %s stopped by hardware breakpoint\n",
2831 target_pid_to_str (lp->ptid));
2832 }
2833 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2834 {
2835 if (debug_linux_nat)
2836 fprintf_unfiltered (gdb_stdlog,
2837 "CSBB: %s stopped by hardware watchpoint\n",
2838 target_pid_to_str (lp->ptid));
2839 }
2840
2841 lp->stop_pc = pc;
2842 }
2843
2844
2845 /* Returns true if the LWP had stopped for a software breakpoint. */
2846
2847 static int
2848 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2849 {
2850 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2851
2852 gdb_assert (lp != NULL);
2853
2854 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2855 }
2856
2857 /* Implement the supports_stopped_by_sw_breakpoint method. */
2858
2859 static int
2860 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2861 {
2862 return USE_SIGTRAP_SIGINFO;
2863 }
2864
2865 /* Returns true if the LWP had stopped for a hardware
2866 breakpoint/watchpoint. */
2867
2868 static int
2869 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2870 {
2871 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2872
2873 gdb_assert (lp != NULL);
2874
2875 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2876 }
2877
2878 /* Implement the supports_stopped_by_hw_breakpoint method. */
2879
2880 static int
2881 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2882 {
2883 return USE_SIGTRAP_SIGINFO;
2884 }
2885
2886 /* Select one LWP out of those that have events pending. */
2887
2888 static void
2889 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2890 {
2891 int num_events = 0;
2892 int random_selector;
2893 struct lwp_info *event_lp = NULL;
2894
2895 /* Record the wait status for the original LWP. */
2896 (*orig_lp)->status = *status;
2897
2898 /* In all-stop, give preference to the LWP that is being
2899 single-stepped. There will be at most one, and it will be the
2900 LWP that the core is most interested in. If we didn't do this,
2901 then we'd have to handle pending step SIGTRAPs somehow in case
2902 the core later continues the previously-stepped thread, as
2903 otherwise we'd report the pending SIGTRAP then, and the core, not
2904 having stepped the thread, wouldn't understand what the trap was
2905 for, and therefore would report it to the user as a random
2906 signal. */
2907 if (!target_is_non_stop_p ())
2908 {
2909 event_lp = iterate_over_lwps (filter,
2910 select_singlestep_lwp_callback, NULL);
2911 if (event_lp != NULL)
2912 {
2913 if (debug_linux_nat)
2914 fprintf_unfiltered (gdb_stdlog,
2915 "SEL: Select single-step %s\n",
2916 target_pid_to_str (event_lp->ptid));
2917 }
2918 }
2919
2920 if (event_lp == NULL)
2921 {
2922 /* Pick one at random, out of those which have had events. */
2923
2924 /* First see how many events we have. */
2925 iterate_over_lwps (filter, count_events_callback, &num_events);
2926 gdb_assert (num_events > 0);
2927
2928 /* Now randomly pick a LWP out of those that have had
2929 events. */
2930 random_selector = (int)
2931 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2932
2933 if (debug_linux_nat && num_events > 1)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "SEL: Found %d events, selecting #%d\n",
2936 num_events, random_selector);
2937
2938 event_lp = iterate_over_lwps (filter,
2939 select_event_lwp_callback,
2940 &random_selector);
2941 }
2942
2943 if (event_lp != NULL)
2944 {
2945 /* Switch the event LWP. */
2946 *orig_lp = event_lp;
2947 *status = event_lp->status;
2948 }
2949
2950 /* Flush the wait status for the event LWP. */
2951 (*orig_lp)->status = 0;
2952 }
2953
2954 /* Return non-zero if LP has been resumed. */
2955
2956 static int
2957 resumed_callback (struct lwp_info *lp, void *data)
2958 {
2959 return lp->resumed;
2960 }
2961
2962 /* Check if we should go on and pass this event to common code.
2963 Return the affected lwp if we are, or NULL otherwise. */
2964
2965 static struct lwp_info *
2966 linux_nat_filter_event (int lwpid, int status)
2967 {
2968 struct lwp_info *lp;
2969 int event = linux_ptrace_get_extended_event (status);
2970
2971 lp = find_lwp_pid (pid_to_ptid (lwpid));
2972
2973 /* Check for stop events reported by a process we didn't already
2974 know about - anything not already in our LWP list.
2975
2976 If we're expecting to receive stopped processes after
2977 fork, vfork, and clone events, then we'll just add the
2978 new one to our list and go back to waiting for the event
2979 to be reported - the stopped process might be returned
2980 from waitpid before or after the event is.
2981
2982 But note the case of a non-leader thread exec'ing after the
2983 leader having exited, and gone from our lists. The non-leader
2984 thread changes its tid to the tgid. */
2985
2986 if (WIFSTOPPED (status) && lp == NULL
2987 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2988 {
2989 /* A multi-thread exec after we had seen the leader exiting. */
2990 if (debug_linux_nat)
2991 fprintf_unfiltered (gdb_stdlog,
2992 "LLW: Re-adding thread group leader LWP %d.\n",
2993 lwpid);
2994
2995 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2996 lp->stopped = 1;
2997 lp->resumed = 1;
2998 add_thread (lp->ptid);
2999 }
3000
3001 if (WIFSTOPPED (status) && !lp)
3002 {
3003 if (debug_linux_nat)
3004 fprintf_unfiltered (gdb_stdlog,
3005 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3006 (long) lwpid, status_to_str (status));
3007 add_to_pid_list (&stopped_pids, lwpid, status);
3008 return NULL;
3009 }
3010
3011 /* Make sure we don't report an event for the exit of an LWP not in
3012 our list, i.e. not part of the current process. This can happen
3013 if we detach from a program we originally forked and then it
3014 exits. */
3015 if (!WIFSTOPPED (status) && !lp)
3016 return NULL;
3017
3018 /* This LWP is stopped now. (And if dead, this prevents it from
3019 ever being continued.) */
3020 lp->stopped = 1;
3021
3022 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3023 {
3024 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3025 int options = linux_nat_ptrace_options (inf->attach_flag);
3026
3027 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3028 lp->must_set_ptrace_flags = 0;
3029 }
3030
3031 /* Handle GNU/Linux's syscall SIGTRAPs. */
3032 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3033 {
3034 /* No longer need the sysgood bit. The ptrace event ends up
3035 recorded in lp->waitstatus if we care for it. We can carry
3036 on handling the event like a regular SIGTRAP from here
3037 on. */
3038 status = W_STOPCODE (SIGTRAP);
3039 if (linux_handle_syscall_trap (lp, 0))
3040 return NULL;
3041 }
3042 else
3043 {
3044 /* Almost all other ptrace-stops are known to be outside of system
3045 calls, with further exceptions in linux_handle_extended_wait. */
3046 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3047 }
3048
3049 /* Handle GNU/Linux's extended waitstatus for trace events. */
3050 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3051 && linux_is_extended_waitstatus (status))
3052 {
3053 if (debug_linux_nat)
3054 fprintf_unfiltered (gdb_stdlog,
3055 "LLW: Handling extended status 0x%06x\n",
3056 status);
3057 if (linux_handle_extended_wait (lp, status))
3058 return NULL;
3059 }
3060
3061 /* Check if the thread has exited. */
3062 if (WIFEXITED (status) || WIFSIGNALED (status))
3063 {
3064 if (!report_thread_events
3065 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3066 {
3067 if (debug_linux_nat)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "LLW: %s exited.\n",
3070 target_pid_to_str (lp->ptid));
3071
3072 /* If there is at least one more LWP, then the exit signal
3073 was not the end of the debugged application and should be
3074 ignored. */
3075 exit_lwp (lp);
3076 return NULL;
3077 }
3078
3079 /* Note that even if the leader was ptrace-stopped, it can still
3080 exit, if e.g., some other thread brings down the whole
3081 process (calls `exit'). So don't assert that the lwp is
3082 resumed. */
3083 if (debug_linux_nat)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "LWP %ld exited (resumed=%d)\n",
3086 ptid_get_lwp (lp->ptid), lp->resumed);
3087
3088 /* Dead LWP's aren't expected to reported a pending sigstop. */
3089 lp->signalled = 0;
3090
3091 /* Store the pending event in the waitstatus, because
3092 W_EXITCODE(0,0) == 0. */
3093 store_waitstatus (&lp->waitstatus, status);
3094 return lp;
3095 }
3096
3097 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3098 an attempt to stop an LWP. */
3099 if (lp->signalled
3100 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3101 {
3102 lp->signalled = 0;
3103
3104 if (lp->last_resume_kind == resume_stop)
3105 {
3106 if (debug_linux_nat)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "LLW: resume_stop SIGSTOP caught for %s.\n",
3109 target_pid_to_str (lp->ptid));
3110 }
3111 else
3112 {
3113 /* This is a delayed SIGSTOP. Filter out the event. */
3114
3115 if (debug_linux_nat)
3116 fprintf_unfiltered (gdb_stdlog,
3117 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3118 lp->step ?
3119 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3120 target_pid_to_str (lp->ptid));
3121
3122 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3123 gdb_assert (lp->resumed);
3124 return NULL;
3125 }
3126 }
3127
3128 /* Make sure we don't report a SIGINT that we have already displayed
3129 for another thread. */
3130 if (lp->ignore_sigint
3131 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3132 {
3133 if (debug_linux_nat)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "LLW: Delayed SIGINT caught for %s.\n",
3136 target_pid_to_str (lp->ptid));
3137
3138 /* This is a delayed SIGINT. */
3139 lp->ignore_sigint = 0;
3140
3141 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3142 if (debug_linux_nat)
3143 fprintf_unfiltered (gdb_stdlog,
3144 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3145 lp->step ?
3146 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3147 target_pid_to_str (lp->ptid));
3148 gdb_assert (lp->resumed);
3149
3150 /* Discard the event. */
3151 return NULL;
3152 }
3153
3154 /* Don't report signals that GDB isn't interested in, such as
3155 signals that are neither printed nor stopped upon. Stopping all
3156 threads can be a bit time-consuming so if we want decent
3157 performance with heavily multi-threaded programs, especially when
3158 they're using a high frequency timer, we'd better avoid it if we
3159 can. */
3160 if (WIFSTOPPED (status))
3161 {
3162 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3163
3164 if (!target_is_non_stop_p ())
3165 {
3166 /* Only do the below in all-stop, as we currently use SIGSTOP
3167 to implement target_stop (see linux_nat_stop) in
3168 non-stop. */
3169 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3170 {
3171 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3172 forwarded to the entire process group, that is, all LWPs
3173 will receive it - unless they're using CLONE_THREAD to
3174 share signals. Since we only want to report it once, we
3175 mark it as ignored for all LWPs except this one. */
3176 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3177 set_ignore_sigint, NULL);
3178 lp->ignore_sigint = 0;
3179 }
3180 else
3181 maybe_clear_ignore_sigint (lp);
3182 }
3183
3184 /* When using hardware single-step, we need to report every signal.
3185 Otherwise, signals in pass_mask may be short-circuited
3186 except signals that might be caused by a breakpoint. */
3187 if (!lp->step
3188 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3189 && !linux_wstatus_maybe_breakpoint (status))
3190 {
3191 linux_resume_one_lwp (lp, lp->step, signo);
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "LLW: %s %s, %s (preempt 'handle')\n",
3195 lp->step ?
3196 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3197 target_pid_to_str (lp->ptid),
3198 (signo != GDB_SIGNAL_0
3199 ? strsignal (gdb_signal_to_host (signo))
3200 : "0"));
3201 return NULL;
3202 }
3203 }
3204
3205 /* An interesting event. */
3206 gdb_assert (lp);
3207 lp->status = status;
3208 save_stop_reason (lp);
3209 return lp;
3210 }
3211
3212 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3213 their exits until all other threads in the group have exited. */
3214
3215 static void
3216 check_zombie_leaders (void)
3217 {
3218 struct inferior *inf;
3219
3220 ALL_INFERIORS (inf)
3221 {
3222 struct lwp_info *leader_lp;
3223
3224 if (inf->pid == 0)
3225 continue;
3226
3227 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3228 if (leader_lp != NULL
3229 /* Check if there are other threads in the group, as we may
3230 have raced with the inferior simply exiting. */
3231 && num_lwps (inf->pid) > 1
3232 && linux_proc_pid_is_zombie (inf->pid))
3233 {
3234 if (debug_linux_nat)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "CZL: Thread group leader %d zombie "
3237 "(it exited, or another thread execd).\n",
3238 inf->pid);
3239
3240 /* A leader zombie can mean one of two things:
3241
3242 - It exited, and there's an exit status pending
3243 available, or only the leader exited (not the whole
3244 program). In the latter case, we can't waitpid the
3245 leader's exit status until all other threads are gone.
3246
3247 - There are 3 or more threads in the group, and a thread
3248 other than the leader exec'd. See comments on exec
3249 events at the top of the file. We could try
3250 distinguishing the exit and exec cases, by waiting once
3251 more, and seeing if something comes out, but it doesn't
3252 sound useful. The previous leader _does_ go away, and
3253 we'll re-add the new one once we see the exec event
3254 (which is just the same as what would happen if the
3255 previous leader did exit voluntarily before some other
3256 thread execs). */
3257
3258 if (debug_linux_nat)
3259 fprintf_unfiltered (gdb_stdlog,
3260 "CZL: Thread group leader %d vanished.\n",
3261 inf->pid);
3262 exit_lwp (leader_lp);
3263 }
3264 }
3265 }
3266
3267 /* Convenience function that is called when the kernel reports an exit
3268 event. This decides whether to report the event to GDB as a
3269 process exit event, a thread exit event, or to suppress the
3270 event. */
3271
3272 static ptid_t
3273 filter_exit_event (struct lwp_info *event_child,
3274 struct target_waitstatus *ourstatus)
3275 {
3276 ptid_t ptid = event_child->ptid;
3277
3278 if (num_lwps (ptid_get_pid (ptid)) > 1)
3279 {
3280 if (report_thread_events)
3281 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3282 else
3283 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3284
3285 exit_lwp (event_child);
3286 }
3287
3288 return ptid;
3289 }
3290
3291 static ptid_t
3292 linux_nat_wait_1 (struct target_ops *ops,
3293 ptid_t ptid, struct target_waitstatus *ourstatus,
3294 int target_options)
3295 {
3296 sigset_t prev_mask;
3297 enum resume_kind last_resume_kind;
3298 struct lwp_info *lp;
3299 int status;
3300
3301 if (debug_linux_nat)
3302 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3303
3304 /* The first time we get here after starting a new inferior, we may
3305 not have added it to the LWP list yet - this is the earliest
3306 moment at which we know its PID. */
3307 if (ptid_is_pid (inferior_ptid))
3308 {
3309 /* Upgrade the main thread's ptid. */
3310 thread_change_ptid (inferior_ptid,
3311 ptid_build (ptid_get_pid (inferior_ptid),
3312 ptid_get_pid (inferior_ptid), 0));
3313
3314 lp = add_initial_lwp (inferior_ptid);
3315 lp->resumed = 1;
3316 }
3317
3318 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3319 block_child_signals (&prev_mask);
3320
3321 /* First check if there is a LWP with a wait status pending. */
3322 lp = iterate_over_lwps (ptid, status_callback, NULL);
3323 if (lp != NULL)
3324 {
3325 if (debug_linux_nat)
3326 fprintf_unfiltered (gdb_stdlog,
3327 "LLW: Using pending wait status %s for %s.\n",
3328 status_to_str (lp->status),
3329 target_pid_to_str (lp->ptid));
3330 }
3331
3332 /* But if we don't find a pending event, we'll have to wait. Always
3333 pull all events out of the kernel. We'll randomly select an
3334 event LWP out of all that have events, to prevent starvation. */
3335
3336 while (lp == NULL)
3337 {
3338 pid_t lwpid;
3339
3340 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3341 quirks:
3342
3343 - If the thread group leader exits while other threads in the
3344 thread group still exist, waitpid(TGID, ...) hangs. That
3345 waitpid won't return an exit status until the other threads
3346 in the group are reapped.
3347
3348 - When a non-leader thread execs, that thread just vanishes
3349 without reporting an exit (so we'd hang if we waited for it
3350 explicitly in that case). The exec event is reported to
3351 the TGID pid. */
3352
3353 errno = 0;
3354 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3355
3356 if (debug_linux_nat)
3357 fprintf_unfiltered (gdb_stdlog,
3358 "LNW: waitpid(-1, ...) returned %d, %s\n",
3359 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3360
3361 if (lwpid > 0)
3362 {
3363 if (debug_linux_nat)
3364 {
3365 fprintf_unfiltered (gdb_stdlog,
3366 "LLW: waitpid %ld received %s\n",
3367 (long) lwpid, status_to_str (status));
3368 }
3369
3370 linux_nat_filter_event (lwpid, status);
3371 /* Retry until nothing comes out of waitpid. A single
3372 SIGCHLD can indicate more than one child stopped. */
3373 continue;
3374 }
3375
3376 /* Now that we've pulled all events out of the kernel, resume
3377 LWPs that don't have an interesting event to report. */
3378 iterate_over_lwps (minus_one_ptid,
3379 resume_stopped_resumed_lwps, &minus_one_ptid);
3380
3381 /* ... and find an LWP with a status to report to the core, if
3382 any. */
3383 lp = iterate_over_lwps (ptid, status_callback, NULL);
3384 if (lp != NULL)
3385 break;
3386
3387 /* Check for zombie thread group leaders. Those can't be reaped
3388 until all other threads in the thread group are. */
3389 check_zombie_leaders ();
3390
3391 /* If there are no resumed children left, bail. We'd be stuck
3392 forever in the sigsuspend call below otherwise. */
3393 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3394 {
3395 if (debug_linux_nat)
3396 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3397
3398 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3399
3400 restore_child_signals_mask (&prev_mask);
3401 return minus_one_ptid;
3402 }
3403
3404 /* No interesting event to report to the core. */
3405
3406 if (target_options & TARGET_WNOHANG)
3407 {
3408 if (debug_linux_nat)
3409 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3410
3411 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3412 restore_child_signals_mask (&prev_mask);
3413 return minus_one_ptid;
3414 }
3415
3416 /* We shouldn't end up here unless we want to try again. */
3417 gdb_assert (lp == NULL);
3418
3419 /* Block until we get an event reported with SIGCHLD. */
3420 if (debug_linux_nat)
3421 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3422 sigsuspend (&suspend_mask);
3423 }
3424
3425 gdb_assert (lp);
3426
3427 status = lp->status;
3428 lp->status = 0;
3429
3430 if (!target_is_non_stop_p ())
3431 {
3432 /* Now stop all other LWP's ... */
3433 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3434
3435 /* ... and wait until all of them have reported back that
3436 they're no longer running. */
3437 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3438 }
3439
3440 /* If we're not waiting for a specific LWP, choose an event LWP from
3441 among those that have had events. Giving equal priority to all
3442 LWPs that have had events helps prevent starvation. */
3443 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3444 select_event_lwp (ptid, &lp, &status);
3445
3446 gdb_assert (lp != NULL);
3447
3448 /* Now that we've selected our final event LWP, un-adjust its PC if
3449 it was a software breakpoint, and we can't reliably support the
3450 "stopped by software breakpoint" stop reason. */
3451 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3452 && !USE_SIGTRAP_SIGINFO)
3453 {
3454 struct regcache *regcache = get_thread_regcache (lp->ptid);
3455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3456 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3457
3458 if (decr_pc != 0)
3459 {
3460 CORE_ADDR pc;
3461
3462 pc = regcache_read_pc (regcache);
3463 regcache_write_pc (regcache, pc + decr_pc);
3464 }
3465 }
3466
3467 /* We'll need this to determine whether to report a SIGSTOP as
3468 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3469 clears it. */
3470 last_resume_kind = lp->last_resume_kind;
3471
3472 if (!target_is_non_stop_p ())
3473 {
3474 /* In all-stop, from the core's perspective, all LWPs are now
3475 stopped until a new resume action is sent over. */
3476 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3477 }
3478 else
3479 {
3480 resume_clear_callback (lp, NULL);
3481 }
3482
3483 if (linux_nat_status_is_event (status))
3484 {
3485 if (debug_linux_nat)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "LLW: trap ptid is %s.\n",
3488 target_pid_to_str (lp->ptid));
3489 }
3490
3491 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3492 {
3493 *ourstatus = lp->waitstatus;
3494 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3495 }
3496 else
3497 store_waitstatus (ourstatus, status);
3498
3499 if (debug_linux_nat)
3500 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3501
3502 restore_child_signals_mask (&prev_mask);
3503
3504 if (last_resume_kind == resume_stop
3505 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3506 && WSTOPSIG (status) == SIGSTOP)
3507 {
3508 /* A thread that has been requested to stop by GDB with
3509 target_stop, and it stopped cleanly, so report as SIG0. The
3510 use of SIGSTOP is an implementation detail. */
3511 ourstatus->value.sig = GDB_SIGNAL_0;
3512 }
3513
3514 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3515 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3516 lp->core = -1;
3517 else
3518 lp->core = linux_common_core_of_thread (lp->ptid);
3519
3520 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3521 return filter_exit_event (lp, ourstatus);
3522
3523 return lp->ptid;
3524 }
3525
3526 /* Resume LWPs that are currently stopped without any pending status
3527 to report, but are resumed from the core's perspective. */
3528
3529 static int
3530 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3531 {
3532 ptid_t *wait_ptid_p = (ptid_t *) data;
3533
3534 if (!lp->stopped)
3535 {
3536 if (debug_linux_nat)
3537 fprintf_unfiltered (gdb_stdlog,
3538 "RSRL: NOT resuming LWP %s, not stopped\n",
3539 target_pid_to_str (lp->ptid));
3540 }
3541 else if (!lp->resumed)
3542 {
3543 if (debug_linux_nat)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "RSRL: NOT resuming LWP %s, not resumed\n",
3546 target_pid_to_str (lp->ptid));
3547 }
3548 else if (lwp_status_pending_p (lp))
3549 {
3550 if (debug_linux_nat)
3551 fprintf_unfiltered (gdb_stdlog,
3552 "RSRL: NOT resuming LWP %s, has pending status\n",
3553 target_pid_to_str (lp->ptid));
3554 }
3555 else
3556 {
3557 struct regcache *regcache = get_thread_regcache (lp->ptid);
3558 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3559
3560 TRY
3561 {
3562 CORE_ADDR pc = regcache_read_pc (regcache);
3563 int leave_stopped = 0;
3564
3565 /* Don't bother if there's a breakpoint at PC that we'd hit
3566 immediately, and we're not waiting for this LWP. */
3567 if (!ptid_match (lp->ptid, *wait_ptid_p))
3568 {
3569 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3570 leave_stopped = 1;
3571 }
3572
3573 if (!leave_stopped)
3574 {
3575 if (debug_linux_nat)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "RSRL: resuming stopped-resumed LWP %s at "
3578 "%s: step=%d\n",
3579 target_pid_to_str (lp->ptid),
3580 paddress (gdbarch, pc),
3581 lp->step);
3582
3583 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3584 }
3585 }
3586 CATCH (ex, RETURN_MASK_ERROR)
3587 {
3588 if (!check_ptrace_stopped_lwp_gone (lp))
3589 throw_exception (ex);
3590 }
3591 END_CATCH
3592 }
3593
3594 return 0;
3595 }
3596
3597 static ptid_t
3598 linux_nat_wait (struct target_ops *ops,
3599 ptid_t ptid, struct target_waitstatus *ourstatus,
3600 int target_options)
3601 {
3602 ptid_t event_ptid;
3603
3604 if (debug_linux_nat)
3605 {
3606 char *options_string;
3607
3608 options_string = target_options_to_string (target_options);
3609 fprintf_unfiltered (gdb_stdlog,
3610 "linux_nat_wait: [%s], [%s]\n",
3611 target_pid_to_str (ptid),
3612 options_string);
3613 xfree (options_string);
3614 }
3615
3616 /* Flush the async file first. */
3617 if (target_is_async_p ())
3618 async_file_flush ();
3619
3620 /* Resume LWPs that are currently stopped without any pending status
3621 to report, but are resumed from the core's perspective. LWPs get
3622 in this state if we find them stopping at a time we're not
3623 interested in reporting the event (target_wait on a
3624 specific_process, for example, see linux_nat_wait_1), and
3625 meanwhile the event became uninteresting. Don't bother resuming
3626 LWPs we're not going to wait for if they'd stop immediately. */
3627 if (target_is_non_stop_p ())
3628 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3629
3630 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3631
3632 /* If we requested any event, and something came out, assume there
3633 may be more. If we requested a specific lwp or process, also
3634 assume there may be more. */
3635 if (target_is_async_p ()
3636 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3637 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3638 || !ptid_equal (ptid, minus_one_ptid)))
3639 async_file_mark ();
3640
3641 return event_ptid;
3642 }
3643
3644 /* Kill one LWP. */
3645
3646 static void
3647 kill_one_lwp (pid_t pid)
3648 {
3649 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3650
3651 errno = 0;
3652 kill_lwp (pid, SIGKILL);
3653 if (debug_linux_nat)
3654 {
3655 int save_errno = errno;
3656
3657 fprintf_unfiltered (gdb_stdlog,
3658 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3659 save_errno ? safe_strerror (save_errno) : "OK");
3660 }
3661
3662 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3663
3664 errno = 0;
3665 ptrace (PTRACE_KILL, pid, 0, 0);
3666 if (debug_linux_nat)
3667 {
3668 int save_errno = errno;
3669
3670 fprintf_unfiltered (gdb_stdlog,
3671 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3672 save_errno ? safe_strerror (save_errno) : "OK");
3673 }
3674 }
3675
3676 /* Wait for an LWP to die. */
3677
3678 static void
3679 kill_wait_one_lwp (pid_t pid)
3680 {
3681 pid_t res;
3682
3683 /* We must make sure that there are no pending events (delayed
3684 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3685 program doesn't interfere with any following debugging session. */
3686
3687 do
3688 {
3689 res = my_waitpid (pid, NULL, __WALL);
3690 if (res != (pid_t) -1)
3691 {
3692 if (debug_linux_nat)
3693 fprintf_unfiltered (gdb_stdlog,
3694 "KWC: wait %ld received unknown.\n",
3695 (long) pid);
3696 /* The Linux kernel sometimes fails to kill a thread
3697 completely after PTRACE_KILL; that goes from the stop
3698 point in do_fork out to the one in get_signal_to_deliver
3699 and waits again. So kill it again. */
3700 kill_one_lwp (pid);
3701 }
3702 }
3703 while (res == pid);
3704
3705 gdb_assert (res == -1 && errno == ECHILD);
3706 }
3707
3708 /* Callback for iterate_over_lwps. */
3709
3710 static int
3711 kill_callback (struct lwp_info *lp, void *data)
3712 {
3713 kill_one_lwp (ptid_get_lwp (lp->ptid));
3714 return 0;
3715 }
3716
3717 /* Callback for iterate_over_lwps. */
3718
3719 static int
3720 kill_wait_callback (struct lwp_info *lp, void *data)
3721 {
3722 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3723 return 0;
3724 }
3725
3726 /* Kill the fork children of any threads of inferior INF that are
3727 stopped at a fork event. */
3728
3729 static void
3730 kill_unfollowed_fork_children (struct inferior *inf)
3731 {
3732 struct thread_info *thread;
3733
3734 ALL_NON_EXITED_THREADS (thread)
3735 if (thread->inf == inf)
3736 {
3737 struct target_waitstatus *ws = &thread->pending_follow;
3738
3739 if (ws->kind == TARGET_WAITKIND_FORKED
3740 || ws->kind == TARGET_WAITKIND_VFORKED)
3741 {
3742 ptid_t child_ptid = ws->value.related_pid;
3743 int child_pid = ptid_get_pid (child_ptid);
3744 int child_lwp = ptid_get_lwp (child_ptid);
3745
3746 kill_one_lwp (child_lwp);
3747 kill_wait_one_lwp (child_lwp);
3748
3749 /* Let the arch-specific native code know this process is
3750 gone. */
3751 linux_nat_forget_process (child_pid);
3752 }
3753 }
3754 }
3755
3756 static void
3757 linux_nat_kill (struct target_ops *ops)
3758 {
3759 /* If we're stopped while forking and we haven't followed yet,
3760 kill the other task. We need to do this first because the
3761 parent will be sleeping if this is a vfork. */
3762 kill_unfollowed_fork_children (current_inferior ());
3763
3764 if (forks_exist_p ())
3765 linux_fork_killall ();
3766 else
3767 {
3768 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3769
3770 /* Stop all threads before killing them, since ptrace requires
3771 that the thread is stopped to sucessfully PTRACE_KILL. */
3772 iterate_over_lwps (ptid, stop_callback, NULL);
3773 /* ... and wait until all of them have reported back that
3774 they're no longer running. */
3775 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3776
3777 /* Kill all LWP's ... */
3778 iterate_over_lwps (ptid, kill_callback, NULL);
3779
3780 /* ... and wait until we've flushed all events. */
3781 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3782 }
3783
3784 target_mourn_inferior (inferior_ptid);
3785 }
3786
3787 static void
3788 linux_nat_mourn_inferior (struct target_ops *ops)
3789 {
3790 int pid = ptid_get_pid (inferior_ptid);
3791
3792 purge_lwp_list (pid);
3793
3794 if (! forks_exist_p ())
3795 /* Normal case, no other forks available. */
3796 linux_ops->to_mourn_inferior (ops);
3797 else
3798 /* Multi-fork case. The current inferior_ptid has exited, but
3799 there are other viable forks to debug. Delete the exiting
3800 one and context-switch to the first available. */
3801 linux_fork_mourn_inferior ();
3802
3803 /* Let the arch-specific native code know this process is gone. */
3804 linux_nat_forget_process (pid);
3805 }
3806
3807 /* Convert a native/host siginfo object, into/from the siginfo in the
3808 layout of the inferiors' architecture. */
3809
3810 static void
3811 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3812 {
3813 int done = 0;
3814
3815 if (linux_nat_siginfo_fixup != NULL)
3816 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3817
3818 /* If there was no callback, or the callback didn't do anything,
3819 then just do a straight memcpy. */
3820 if (!done)
3821 {
3822 if (direction == 1)
3823 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3824 else
3825 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3826 }
3827 }
3828
3829 static enum target_xfer_status
3830 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3831 const char *annex, gdb_byte *readbuf,
3832 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3833 ULONGEST *xfered_len)
3834 {
3835 int pid;
3836 siginfo_t siginfo;
3837 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3838
3839 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3840 gdb_assert (readbuf || writebuf);
3841
3842 pid = ptid_get_lwp (inferior_ptid);
3843 if (pid == 0)
3844 pid = ptid_get_pid (inferior_ptid);
3845
3846 if (offset > sizeof (siginfo))
3847 return TARGET_XFER_E_IO;
3848
3849 errno = 0;
3850 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3851 if (errno != 0)
3852 return TARGET_XFER_E_IO;
3853
3854 /* When GDB is built as a 64-bit application, ptrace writes into
3855 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3856 inferior with a 64-bit GDB should look the same as debugging it
3857 with a 32-bit GDB, we need to convert it. GDB core always sees
3858 the converted layout, so any read/write will have to be done
3859 post-conversion. */
3860 siginfo_fixup (&siginfo, inf_siginfo, 0);
3861
3862 if (offset + len > sizeof (siginfo))
3863 len = sizeof (siginfo) - offset;
3864
3865 if (readbuf != NULL)
3866 memcpy (readbuf, inf_siginfo + offset, len);
3867 else
3868 {
3869 memcpy (inf_siginfo + offset, writebuf, len);
3870
3871 /* Convert back to ptrace layout before flushing it out. */
3872 siginfo_fixup (&siginfo, inf_siginfo, 1);
3873
3874 errno = 0;
3875 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3876 if (errno != 0)
3877 return TARGET_XFER_E_IO;
3878 }
3879
3880 *xfered_len = len;
3881 return TARGET_XFER_OK;
3882 }
3883
3884 static enum target_xfer_status
3885 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3886 const char *annex, gdb_byte *readbuf,
3887 const gdb_byte *writebuf,
3888 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3889 {
3890 enum target_xfer_status xfer;
3891
3892 if (object == TARGET_OBJECT_SIGNAL_INFO)
3893 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3894 offset, len, xfered_len);
3895
3896 /* The target is connected but no live inferior is selected. Pass
3897 this request down to a lower stratum (e.g., the executable
3898 file). */
3899 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3900 return TARGET_XFER_EOF;
3901
3902 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3903 offset, len, xfered_len);
3904
3905 return xfer;
3906 }
3907
3908 static int
3909 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3910 {
3911 /* As long as a PTID is in lwp list, consider it alive. */
3912 return find_lwp_pid (ptid) != NULL;
3913 }
3914
3915 /* Implement the to_update_thread_list target method for this
3916 target. */
3917
3918 static void
3919 linux_nat_update_thread_list (struct target_ops *ops)
3920 {
3921 struct lwp_info *lwp;
3922
3923 /* We add/delete threads from the list as clone/exit events are
3924 processed, so just try deleting exited threads still in the
3925 thread list. */
3926 delete_exited_threads ();
3927
3928 /* Update the processor core that each lwp/thread was last seen
3929 running on. */
3930 ALL_LWPS (lwp)
3931 {
3932 /* Avoid accessing /proc if the thread hasn't run since we last
3933 time we fetched the thread's core. Accessing /proc becomes
3934 noticeably expensive when we have thousands of LWPs. */
3935 if (lwp->core == -1)
3936 lwp->core = linux_common_core_of_thread (lwp->ptid);
3937 }
3938 }
3939
3940 static const char *
3941 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3942 {
3943 static char buf[64];
3944
3945 if (ptid_lwp_p (ptid)
3946 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3947 || num_lwps (ptid_get_pid (ptid)) > 1))
3948 {
3949 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3950 return buf;
3951 }
3952
3953 return normal_pid_to_str (ptid);
3954 }
3955
3956 static const char *
3957 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3958 {
3959 return linux_proc_tid_get_name (thr->ptid);
3960 }
3961
3962 /* Accepts an integer PID; Returns a string representing a file that
3963 can be opened to get the symbols for the child process. */
3964
3965 static char *
3966 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3967 {
3968 return linux_proc_pid_to_exec_file (pid);
3969 }
3970
3971 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3972 Because we can use a single read/write call, this can be much more
3973 efficient than banging away at PTRACE_PEEKTEXT. */
3974
3975 static enum target_xfer_status
3976 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3977 const char *annex, gdb_byte *readbuf,
3978 const gdb_byte *writebuf,
3979 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3980 {
3981 LONGEST ret;
3982 int fd;
3983 char filename[64];
3984
3985 if (object != TARGET_OBJECT_MEMORY)
3986 return TARGET_XFER_EOF;
3987
3988 /* Don't bother for one word. */
3989 if (len < 3 * sizeof (long))
3990 return TARGET_XFER_EOF;
3991
3992 /* We could keep this file open and cache it - possibly one per
3993 thread. That requires some juggling, but is even faster. */
3994 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3995 ptid_get_lwp (inferior_ptid));
3996 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3997 | O_LARGEFILE), 0);
3998 if (fd == -1)
3999 return TARGET_XFER_EOF;
4000
4001 /* Use pread64/pwrite64 if available, since they save a syscall and can
4002 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4003 debugging a SPARC64 application). */
4004 #ifdef HAVE_PREAD64
4005 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4006 : pwrite64 (fd, writebuf, len, offset));
4007 #else
4008 ret = lseek (fd, offset, SEEK_SET);
4009 if (ret != -1)
4010 ret = (readbuf ? read (fd, readbuf, len)
4011 : write (fd, writebuf, len));
4012 #endif
4013
4014 close (fd);
4015
4016 if (ret == -1 || ret == 0)
4017 return TARGET_XFER_EOF;
4018 else
4019 {
4020 *xfered_len = ret;
4021 return TARGET_XFER_OK;
4022 }
4023 }
4024
4025
4026 /* Enumerate spufs IDs for process PID. */
4027 static LONGEST
4028 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4029 {
4030 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4031 LONGEST pos = 0;
4032 LONGEST written = 0;
4033 char path[128];
4034 DIR *dir;
4035 struct dirent *entry;
4036
4037 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4038 dir = opendir (path);
4039 if (!dir)
4040 return -1;
4041
4042 rewinddir (dir);
4043 while ((entry = readdir (dir)) != NULL)
4044 {
4045 struct stat st;
4046 struct statfs stfs;
4047 int fd;
4048
4049 fd = atoi (entry->d_name);
4050 if (!fd)
4051 continue;
4052
4053 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4054 if (stat (path, &st) != 0)
4055 continue;
4056 if (!S_ISDIR (st.st_mode))
4057 continue;
4058
4059 if (statfs (path, &stfs) != 0)
4060 continue;
4061 if (stfs.f_type != SPUFS_MAGIC)
4062 continue;
4063
4064 if (pos >= offset && pos + 4 <= offset + len)
4065 {
4066 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4067 written += 4;
4068 }
4069 pos += 4;
4070 }
4071
4072 closedir (dir);
4073 return written;
4074 }
4075
4076 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4077 object type, using the /proc file system. */
4078
4079 static enum target_xfer_status
4080 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4081 const char *annex, gdb_byte *readbuf,
4082 const gdb_byte *writebuf,
4083 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4084 {
4085 char buf[128];
4086 int fd = 0;
4087 int ret = -1;
4088 int pid = ptid_get_lwp (inferior_ptid);
4089
4090 if (!annex)
4091 {
4092 if (!readbuf)
4093 return TARGET_XFER_E_IO;
4094 else
4095 {
4096 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4097
4098 if (l < 0)
4099 return TARGET_XFER_E_IO;
4100 else if (l == 0)
4101 return TARGET_XFER_EOF;
4102 else
4103 {
4104 *xfered_len = (ULONGEST) l;
4105 return TARGET_XFER_OK;
4106 }
4107 }
4108 }
4109
4110 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4111 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4112 if (fd <= 0)
4113 return TARGET_XFER_E_IO;
4114
4115 if (offset != 0
4116 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4117 {
4118 close (fd);
4119 return TARGET_XFER_EOF;
4120 }
4121
4122 if (writebuf)
4123 ret = write (fd, writebuf, (size_t) len);
4124 else if (readbuf)
4125 ret = read (fd, readbuf, (size_t) len);
4126
4127 close (fd);
4128
4129 if (ret < 0)
4130 return TARGET_XFER_E_IO;
4131 else if (ret == 0)
4132 return TARGET_XFER_EOF;
4133 else
4134 {
4135 *xfered_len = (ULONGEST) ret;
4136 return TARGET_XFER_OK;
4137 }
4138 }
4139
4140
4141 /* Parse LINE as a signal set and add its set bits to SIGS. */
4142
4143 static void
4144 add_line_to_sigset (const char *line, sigset_t *sigs)
4145 {
4146 int len = strlen (line) - 1;
4147 const char *p;
4148 int signum;
4149
4150 if (line[len] != '\n')
4151 error (_("Could not parse signal set: %s"), line);
4152
4153 p = line;
4154 signum = len * 4;
4155 while (len-- > 0)
4156 {
4157 int digit;
4158
4159 if (*p >= '0' && *p <= '9')
4160 digit = *p - '0';
4161 else if (*p >= 'a' && *p <= 'f')
4162 digit = *p - 'a' + 10;
4163 else
4164 error (_("Could not parse signal set: %s"), line);
4165
4166 signum -= 4;
4167
4168 if (digit & 1)
4169 sigaddset (sigs, signum + 1);
4170 if (digit & 2)
4171 sigaddset (sigs, signum + 2);
4172 if (digit & 4)
4173 sigaddset (sigs, signum + 3);
4174 if (digit & 8)
4175 sigaddset (sigs, signum + 4);
4176
4177 p++;
4178 }
4179 }
4180
4181 /* Find process PID's pending signals from /proc/pid/status and set
4182 SIGS to match. */
4183
4184 void
4185 linux_proc_pending_signals (int pid, sigset_t *pending,
4186 sigset_t *blocked, sigset_t *ignored)
4187 {
4188 char buffer[PATH_MAX], fname[PATH_MAX];
4189
4190 sigemptyset (pending);
4191 sigemptyset (blocked);
4192 sigemptyset (ignored);
4193 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4194 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4195 if (procfile == NULL)
4196 error (_("Could not open %s"), fname);
4197
4198 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4199 {
4200 /* Normal queued signals are on the SigPnd line in the status
4201 file. However, 2.6 kernels also have a "shared" pending
4202 queue for delivering signals to a thread group, so check for
4203 a ShdPnd line also.
4204
4205 Unfortunately some Red Hat kernels include the shared pending
4206 queue but not the ShdPnd status field. */
4207
4208 if (startswith (buffer, "SigPnd:\t"))
4209 add_line_to_sigset (buffer + 8, pending);
4210 else if (startswith (buffer, "ShdPnd:\t"))
4211 add_line_to_sigset (buffer + 8, pending);
4212 else if (startswith (buffer, "SigBlk:\t"))
4213 add_line_to_sigset (buffer + 8, blocked);
4214 else if (startswith (buffer, "SigIgn:\t"))
4215 add_line_to_sigset (buffer + 8, ignored);
4216 }
4217 }
4218
4219 static enum target_xfer_status
4220 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4221 const char *annex, gdb_byte *readbuf,
4222 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4223 ULONGEST *xfered_len)
4224 {
4225 gdb_assert (object == TARGET_OBJECT_OSDATA);
4226
4227 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4228 if (*xfered_len == 0)
4229 return TARGET_XFER_EOF;
4230 else
4231 return TARGET_XFER_OK;
4232 }
4233
4234 static enum target_xfer_status
4235 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4236 const char *annex, gdb_byte *readbuf,
4237 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4238 ULONGEST *xfered_len)
4239 {
4240 enum target_xfer_status xfer;
4241
4242 if (object == TARGET_OBJECT_AUXV)
4243 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4244 offset, len, xfered_len);
4245
4246 if (object == TARGET_OBJECT_OSDATA)
4247 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4248 offset, len, xfered_len);
4249
4250 if (object == TARGET_OBJECT_SPU)
4251 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4252 offset, len, xfered_len);
4253
4254 /* GDB calculates all the addresses in possibly larget width of the address.
4255 Address width needs to be masked before its final use - either by
4256 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4257
4258 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4259
4260 if (object == TARGET_OBJECT_MEMORY)
4261 {
4262 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4263
4264 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4265 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4266 }
4267
4268 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4269 offset, len, xfered_len);
4270 if (xfer != TARGET_XFER_EOF)
4271 return xfer;
4272
4273 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4274 offset, len, xfered_len);
4275 }
4276
4277 static void
4278 cleanup_target_stop (void *arg)
4279 {
4280 ptid_t *ptid = (ptid_t *) arg;
4281
4282 gdb_assert (arg != NULL);
4283
4284 /* Unpause all */
4285 target_continue_no_signal (*ptid);
4286 }
4287
4288 static VEC(static_tracepoint_marker_p) *
4289 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4290 const char *strid)
4291 {
4292 char s[IPA_CMD_BUF_SIZE];
4293 struct cleanup *old_chain;
4294 int pid = ptid_get_pid (inferior_ptid);
4295 VEC(static_tracepoint_marker_p) *markers = NULL;
4296 struct static_tracepoint_marker *marker = NULL;
4297 const char *p = s;
4298 ptid_t ptid = ptid_build (pid, 0, 0);
4299
4300 /* Pause all */
4301 target_stop (ptid);
4302
4303 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4304 s[sizeof ("qTfSTM")] = 0;
4305
4306 agent_run_command (pid, s, strlen (s) + 1);
4307
4308 old_chain = make_cleanup (free_current_marker, &marker);
4309 make_cleanup (cleanup_target_stop, &ptid);
4310
4311 while (*p++ == 'm')
4312 {
4313 if (marker == NULL)
4314 marker = XCNEW (struct static_tracepoint_marker);
4315
4316 do
4317 {
4318 parse_static_tracepoint_marker_definition (p, &p, marker);
4319
4320 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4321 {
4322 VEC_safe_push (static_tracepoint_marker_p,
4323 markers, marker);
4324 marker = NULL;
4325 }
4326 else
4327 {
4328 release_static_tracepoint_marker (marker);
4329 memset (marker, 0, sizeof (*marker));
4330 }
4331 }
4332 while (*p++ == ','); /* comma-separated list */
4333
4334 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4335 s[sizeof ("qTsSTM")] = 0;
4336 agent_run_command (pid, s, strlen (s) + 1);
4337 p = s;
4338 }
4339
4340 do_cleanups (old_chain);
4341
4342 return markers;
4343 }
4344
4345 /* Create a prototype generic GNU/Linux target. The client can override
4346 it with local methods. */
4347
4348 static void
4349 linux_target_install_ops (struct target_ops *t)
4350 {
4351 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4352 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4353 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4354 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4355 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4356 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4357 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4358 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4359 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4360 t->to_post_attach = linux_child_post_attach;
4361 t->to_follow_fork = linux_child_follow_fork;
4362
4363 super_xfer_partial = t->to_xfer_partial;
4364 t->to_xfer_partial = linux_xfer_partial;
4365
4366 t->to_static_tracepoint_markers_by_strid
4367 = linux_child_static_tracepoint_markers_by_strid;
4368 }
4369
4370 struct target_ops *
4371 linux_target (void)
4372 {
4373 struct target_ops *t;
4374
4375 t = inf_ptrace_target ();
4376 linux_target_install_ops (t);
4377
4378 return t;
4379 }
4380
4381 struct target_ops *
4382 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4383 {
4384 struct target_ops *t;
4385
4386 t = inf_ptrace_trad_target (register_u_offset);
4387 linux_target_install_ops (t);
4388
4389 return t;
4390 }
4391
4392 /* target_is_async_p implementation. */
4393
4394 static int
4395 linux_nat_is_async_p (struct target_ops *ops)
4396 {
4397 return linux_is_async_p ();
4398 }
4399
4400 /* target_can_async_p implementation. */
4401
4402 static int
4403 linux_nat_can_async_p (struct target_ops *ops)
4404 {
4405 /* We're always async, unless the user explicitly prevented it with the
4406 "maint set target-async" command. */
4407 return target_async_permitted;
4408 }
4409
4410 static int
4411 linux_nat_supports_non_stop (struct target_ops *self)
4412 {
4413 return 1;
4414 }
4415
4416 /* to_always_non_stop_p implementation. */
4417
4418 static int
4419 linux_nat_always_non_stop_p (struct target_ops *self)
4420 {
4421 return 1;
4422 }
4423
4424 /* True if we want to support multi-process. To be removed when GDB
4425 supports multi-exec. */
4426
4427 int linux_multi_process = 1;
4428
4429 static int
4430 linux_nat_supports_multi_process (struct target_ops *self)
4431 {
4432 return linux_multi_process;
4433 }
4434
4435 static int
4436 linux_nat_supports_disable_randomization (struct target_ops *self)
4437 {
4438 #ifdef HAVE_PERSONALITY
4439 return 1;
4440 #else
4441 return 0;
4442 #endif
4443 }
4444
4445 static int async_terminal_is_ours = 1;
4446
4447 /* target_terminal_inferior implementation.
4448
4449 This is a wrapper around child_terminal_inferior to add async support. */
4450
4451 static void
4452 linux_nat_terminal_inferior (struct target_ops *self)
4453 {
4454 child_terminal_inferior (self);
4455
4456 /* Calls to target_terminal_*() are meant to be idempotent. */
4457 if (!async_terminal_is_ours)
4458 return;
4459
4460 async_terminal_is_ours = 0;
4461 set_sigint_trap ();
4462 }
4463
4464 /* target_terminal::ours implementation.
4465
4466 This is a wrapper around child_terminal_ours to add async support (and
4467 implement the target_terminal::ours vs target_terminal::ours_for_output
4468 distinction). child_terminal_ours is currently no different than
4469 child_terminal_ours_for_output.
4470 We leave target_terminal::ours_for_output alone, leaving it to
4471 child_terminal_ours_for_output. */
4472
4473 static void
4474 linux_nat_terminal_ours (struct target_ops *self)
4475 {
4476 /* GDB should never give the terminal to the inferior if the
4477 inferior is running in the background (run&, continue&, etc.),
4478 but claiming it sure should. */
4479 child_terminal_ours (self);
4480
4481 if (async_terminal_is_ours)
4482 return;
4483
4484 clear_sigint_trap ();
4485 async_terminal_is_ours = 1;
4486 }
4487
4488 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4489 so we notice when any child changes state, and notify the
4490 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4491 above to wait for the arrival of a SIGCHLD. */
4492
4493 static void
4494 sigchld_handler (int signo)
4495 {
4496 int old_errno = errno;
4497
4498 if (debug_linux_nat)
4499 ui_file_write_async_safe (gdb_stdlog,
4500 "sigchld\n", sizeof ("sigchld\n") - 1);
4501
4502 if (signo == SIGCHLD
4503 && linux_nat_event_pipe[0] != -1)
4504 async_file_mark (); /* Let the event loop know that there are
4505 events to handle. */
4506
4507 errno = old_errno;
4508 }
4509
4510 /* Callback registered with the target events file descriptor. */
4511
4512 static void
4513 handle_target_event (int error, gdb_client_data client_data)
4514 {
4515 inferior_event_handler (INF_REG_EVENT, NULL);
4516 }
4517
4518 /* Create/destroy the target events pipe. Returns previous state. */
4519
4520 static int
4521 linux_async_pipe (int enable)
4522 {
4523 int previous = linux_is_async_p ();
4524
4525 if (previous != enable)
4526 {
4527 sigset_t prev_mask;
4528
4529 /* Block child signals while we create/destroy the pipe, as
4530 their handler writes to it. */
4531 block_child_signals (&prev_mask);
4532
4533 if (enable)
4534 {
4535 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4536 internal_error (__FILE__, __LINE__,
4537 "creating event pipe failed.");
4538
4539 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4540 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4541 }
4542 else
4543 {
4544 close (linux_nat_event_pipe[0]);
4545 close (linux_nat_event_pipe[1]);
4546 linux_nat_event_pipe[0] = -1;
4547 linux_nat_event_pipe[1] = -1;
4548 }
4549
4550 restore_child_signals_mask (&prev_mask);
4551 }
4552
4553 return previous;
4554 }
4555
4556 /* target_async implementation. */
4557
4558 static void
4559 linux_nat_async (struct target_ops *ops, int enable)
4560 {
4561 if (enable)
4562 {
4563 if (!linux_async_pipe (1))
4564 {
4565 add_file_handler (linux_nat_event_pipe[0],
4566 handle_target_event, NULL);
4567 /* There may be pending events to handle. Tell the event loop
4568 to poll them. */
4569 async_file_mark ();
4570 }
4571 }
4572 else
4573 {
4574 delete_file_handler (linux_nat_event_pipe[0]);
4575 linux_async_pipe (0);
4576 }
4577 return;
4578 }
4579
4580 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4581 event came out. */
4582
4583 static int
4584 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4585 {
4586 if (!lwp->stopped)
4587 {
4588 if (debug_linux_nat)
4589 fprintf_unfiltered (gdb_stdlog,
4590 "LNSL: running -> suspending %s\n",
4591 target_pid_to_str (lwp->ptid));
4592
4593
4594 if (lwp->last_resume_kind == resume_stop)
4595 {
4596 if (debug_linux_nat)
4597 fprintf_unfiltered (gdb_stdlog,
4598 "linux-nat: already stopping LWP %ld at "
4599 "GDB's request\n",
4600 ptid_get_lwp (lwp->ptid));
4601 return 0;
4602 }
4603
4604 stop_callback (lwp, NULL);
4605 lwp->last_resume_kind = resume_stop;
4606 }
4607 else
4608 {
4609 /* Already known to be stopped; do nothing. */
4610
4611 if (debug_linux_nat)
4612 {
4613 if (find_thread_ptid (lwp->ptid)->stop_requested)
4614 fprintf_unfiltered (gdb_stdlog,
4615 "LNSL: already stopped/stop_requested %s\n",
4616 target_pid_to_str (lwp->ptid));
4617 else
4618 fprintf_unfiltered (gdb_stdlog,
4619 "LNSL: already stopped/no "
4620 "stop_requested yet %s\n",
4621 target_pid_to_str (lwp->ptid));
4622 }
4623 }
4624 return 0;
4625 }
4626
4627 static void
4628 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4629 {
4630 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4631 }
4632
4633 static void
4634 linux_nat_close (struct target_ops *self)
4635 {
4636 /* Unregister from the event loop. */
4637 if (linux_nat_is_async_p (self))
4638 linux_nat_async (self, 0);
4639
4640 if (linux_ops->to_close)
4641 linux_ops->to_close (linux_ops);
4642
4643 super_close (self);
4644 }
4645
4646 /* When requests are passed down from the linux-nat layer to the
4647 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4648 used. The address space pointer is stored in the inferior object,
4649 but the common code that is passed such ptid can't tell whether
4650 lwpid is a "main" process id or not (it assumes so). We reverse
4651 look up the "main" process id from the lwp here. */
4652
4653 static struct address_space *
4654 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4655 {
4656 struct lwp_info *lwp;
4657 struct inferior *inf;
4658 int pid;
4659
4660 if (ptid_get_lwp (ptid) == 0)
4661 {
4662 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4663 tgid. */
4664 lwp = find_lwp_pid (ptid);
4665 pid = ptid_get_pid (lwp->ptid);
4666 }
4667 else
4668 {
4669 /* A (pid,lwpid,0) ptid. */
4670 pid = ptid_get_pid (ptid);
4671 }
4672
4673 inf = find_inferior_pid (pid);
4674 gdb_assert (inf != NULL);
4675 return inf->aspace;
4676 }
4677
4678 /* Return the cached value of the processor core for thread PTID. */
4679
4680 static int
4681 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4682 {
4683 struct lwp_info *info = find_lwp_pid (ptid);
4684
4685 if (info)
4686 return info->core;
4687 return -1;
4688 }
4689
4690 /* Implementation of to_filesystem_is_local. */
4691
4692 static int
4693 linux_nat_filesystem_is_local (struct target_ops *ops)
4694 {
4695 struct inferior *inf = current_inferior ();
4696
4697 if (inf->fake_pid_p || inf->pid == 0)
4698 return 1;
4699
4700 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4701 }
4702
4703 /* Convert the INF argument passed to a to_fileio_* method
4704 to a process ID suitable for passing to its corresponding
4705 linux_mntns_* function. If INF is non-NULL then the
4706 caller is requesting the filesystem seen by INF. If INF
4707 is NULL then the caller is requesting the filesystem seen
4708 by the GDB. We fall back to GDB's filesystem in the case
4709 that INF is non-NULL but its PID is unknown. */
4710
4711 static pid_t
4712 linux_nat_fileio_pid_of (struct inferior *inf)
4713 {
4714 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4715 return getpid ();
4716 else
4717 return inf->pid;
4718 }
4719
4720 /* Implementation of to_fileio_open. */
4721
4722 static int
4723 linux_nat_fileio_open (struct target_ops *self,
4724 struct inferior *inf, const char *filename,
4725 int flags, int mode, int warn_if_slow,
4726 int *target_errno)
4727 {
4728 int nat_flags;
4729 mode_t nat_mode;
4730 int fd;
4731
4732 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4733 || fileio_to_host_mode (mode, &nat_mode) == -1)
4734 {
4735 *target_errno = FILEIO_EINVAL;
4736 return -1;
4737 }
4738
4739 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4740 filename, nat_flags, nat_mode);
4741 if (fd == -1)
4742 *target_errno = host_to_fileio_error (errno);
4743
4744 return fd;
4745 }
4746
4747 /* Implementation of to_fileio_readlink. */
4748
4749 static char *
4750 linux_nat_fileio_readlink (struct target_ops *self,
4751 struct inferior *inf, const char *filename,
4752 int *target_errno)
4753 {
4754 char buf[PATH_MAX];
4755 int len;
4756 char *ret;
4757
4758 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4759 filename, buf, sizeof (buf));
4760 if (len < 0)
4761 {
4762 *target_errno = host_to_fileio_error (errno);
4763 return NULL;
4764 }
4765
4766 ret = (char *) xmalloc (len + 1);
4767 memcpy (ret, buf, len);
4768 ret[len] = '\0';
4769 return ret;
4770 }
4771
4772 /* Implementation of to_fileio_unlink. */
4773
4774 static int
4775 linux_nat_fileio_unlink (struct target_ops *self,
4776 struct inferior *inf, const char *filename,
4777 int *target_errno)
4778 {
4779 int ret;
4780
4781 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4782 filename);
4783 if (ret == -1)
4784 *target_errno = host_to_fileio_error (errno);
4785
4786 return ret;
4787 }
4788
4789 /* Implementation of the to_thread_events method. */
4790
4791 static void
4792 linux_nat_thread_events (struct target_ops *ops, int enable)
4793 {
4794 report_thread_events = enable;
4795 }
4796
4797 void
4798 linux_nat_add_target (struct target_ops *t)
4799 {
4800 /* Save the provided single-threaded target. We save this in a separate
4801 variable because another target we've inherited from (e.g. inf-ptrace)
4802 may have saved a pointer to T; we want to use it for the final
4803 process stratum target. */
4804 linux_ops_saved = *t;
4805 linux_ops = &linux_ops_saved;
4806
4807 /* Override some methods for multithreading. */
4808 t->to_create_inferior = linux_nat_create_inferior;
4809 t->to_attach = linux_nat_attach;
4810 t->to_detach = linux_nat_detach;
4811 t->to_resume = linux_nat_resume;
4812 t->to_wait = linux_nat_wait;
4813 t->to_pass_signals = linux_nat_pass_signals;
4814 t->to_xfer_partial = linux_nat_xfer_partial;
4815 t->to_kill = linux_nat_kill;
4816 t->to_mourn_inferior = linux_nat_mourn_inferior;
4817 t->to_thread_alive = linux_nat_thread_alive;
4818 t->to_update_thread_list = linux_nat_update_thread_list;
4819 t->to_pid_to_str = linux_nat_pid_to_str;
4820 t->to_thread_name = linux_nat_thread_name;
4821 t->to_has_thread_control = tc_schedlock;
4822 t->to_thread_address_space = linux_nat_thread_address_space;
4823 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4824 t->to_stopped_data_address = linux_nat_stopped_data_address;
4825 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4826 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4827 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4828 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4829 t->to_thread_events = linux_nat_thread_events;
4830
4831 t->to_can_async_p = linux_nat_can_async_p;
4832 t->to_is_async_p = linux_nat_is_async_p;
4833 t->to_supports_non_stop = linux_nat_supports_non_stop;
4834 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4835 t->to_async = linux_nat_async;
4836 t->to_terminal_inferior = linux_nat_terminal_inferior;
4837 t->to_terminal_ours = linux_nat_terminal_ours;
4838
4839 super_close = t->to_close;
4840 t->to_close = linux_nat_close;
4841
4842 t->to_stop = linux_nat_stop;
4843
4844 t->to_supports_multi_process = linux_nat_supports_multi_process;
4845
4846 t->to_supports_disable_randomization
4847 = linux_nat_supports_disable_randomization;
4848
4849 t->to_core_of_thread = linux_nat_core_of_thread;
4850
4851 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4852 t->to_fileio_open = linux_nat_fileio_open;
4853 t->to_fileio_readlink = linux_nat_fileio_readlink;
4854 t->to_fileio_unlink = linux_nat_fileio_unlink;
4855
4856 /* We don't change the stratum; this target will sit at
4857 process_stratum and thread_db will set at thread_stratum. This
4858 is a little strange, since this is a multi-threaded-capable
4859 target, but we want to be on the stack below thread_db, and we
4860 also want to be used for single-threaded processes. */
4861
4862 add_target (t);
4863 }
4864
4865 /* Register a method to call whenever a new thread is attached. */
4866 void
4867 linux_nat_set_new_thread (struct target_ops *t,
4868 void (*new_thread) (struct lwp_info *))
4869 {
4870 /* Save the pointer. We only support a single registered instance
4871 of the GNU/Linux native target, so we do not need to map this to
4872 T. */
4873 linux_nat_new_thread = new_thread;
4874 }
4875
4876 /* See declaration in linux-nat.h. */
4877
4878 void
4879 linux_nat_set_new_fork (struct target_ops *t,
4880 linux_nat_new_fork_ftype *new_fork)
4881 {
4882 /* Save the pointer. */
4883 linux_nat_new_fork = new_fork;
4884 }
4885
4886 /* See declaration in linux-nat.h. */
4887
4888 void
4889 linux_nat_set_forget_process (struct target_ops *t,
4890 linux_nat_forget_process_ftype *fn)
4891 {
4892 /* Save the pointer. */
4893 linux_nat_forget_process_hook = fn;
4894 }
4895
4896 /* See declaration in linux-nat.h. */
4897
4898 void
4899 linux_nat_forget_process (pid_t pid)
4900 {
4901 if (linux_nat_forget_process_hook != NULL)
4902 linux_nat_forget_process_hook (pid);
4903 }
4904
4905 /* Register a method that converts a siginfo object between the layout
4906 that ptrace returns, and the layout in the architecture of the
4907 inferior. */
4908 void
4909 linux_nat_set_siginfo_fixup (struct target_ops *t,
4910 int (*siginfo_fixup) (siginfo_t *,
4911 gdb_byte *,
4912 int))
4913 {
4914 /* Save the pointer. */
4915 linux_nat_siginfo_fixup = siginfo_fixup;
4916 }
4917
4918 /* Register a method to call prior to resuming a thread. */
4919
4920 void
4921 linux_nat_set_prepare_to_resume (struct target_ops *t,
4922 void (*prepare_to_resume) (struct lwp_info *))
4923 {
4924 /* Save the pointer. */
4925 linux_nat_prepare_to_resume = prepare_to_resume;
4926 }
4927
4928 /* See linux-nat.h. */
4929
4930 int
4931 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4932 {
4933 int pid;
4934
4935 pid = ptid_get_lwp (ptid);
4936 if (pid == 0)
4937 pid = ptid_get_pid (ptid);
4938
4939 errno = 0;
4940 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4941 if (errno != 0)
4942 {
4943 memset (siginfo, 0, sizeof (*siginfo));
4944 return 0;
4945 }
4946 return 1;
4947 }
4948
4949 /* See nat/linux-nat.h. */
4950
4951 ptid_t
4952 current_lwp_ptid (void)
4953 {
4954 gdb_assert (ptid_lwp_p (inferior_ptid));
4955 return inferior_ptid;
4956 }
4957
4958 void
4959 _initialize_linux_nat (void)
4960 {
4961 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4962 &debug_linux_nat, _("\
4963 Set debugging of GNU/Linux lwp module."), _("\
4964 Show debugging of GNU/Linux lwp module."), _("\
4965 Enables printf debugging output."),
4966 NULL,
4967 show_debug_linux_nat,
4968 &setdebuglist, &showdebuglist);
4969
4970 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4971 &debug_linux_namespaces, _("\
4972 Set debugging of GNU/Linux namespaces module."), _("\
4973 Show debugging of GNU/Linux namespaces module."), _("\
4974 Enables printf debugging output."),
4975 NULL,
4976 NULL,
4977 &setdebuglist, &showdebuglist);
4978
4979 /* Save this mask as the default. */
4980 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4981
4982 /* Install a SIGCHLD handler. */
4983 sigchld_action.sa_handler = sigchld_handler;
4984 sigemptyset (&sigchld_action.sa_mask);
4985 sigchld_action.sa_flags = SA_RESTART;
4986
4987 /* Make it the default. */
4988 sigaction (SIGCHLD, &sigchld_action, NULL);
4989
4990 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4991 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4992 sigdelset (&suspend_mask, SIGCHLD);
4993
4994 sigemptyset (&blocked_mask);
4995
4996 lwp_lwpid_htab_create ();
4997 }
4998 \f
4999
5000 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5001 the GNU/Linux Threads library and therefore doesn't really belong
5002 here. */
5003
5004 /* Return the set of signals used by the threads library in *SET. */
5005
5006 void
5007 lin_thread_get_thread_signals (sigset_t *set)
5008 {
5009 sigemptyset (set);
5010
5011 /* NPTL reserves the first two RT signals, but does not provide any
5012 way for the debugger to query the signal numbers - fortunately
5013 they don't change. */
5014 sigaddset (set, __SIGRTMIN);
5015 sigaddset (set, __SIGRTMIN + 1);
5016 }
This page took 0.137531 seconds and 5 git commands to generate.