Make exceptions use std::string and be self-managing
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "common/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "common/agent.h"
62 #include "tracepoint.h"
63 #include "common/buffer.h"
64 #include "target-descriptions.h"
65 #include "common/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "common/fileio.h"
69 #include "common/scope-exit.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 /* This comment documents high-level logic of this file.
76
77 Waiting for events in sync mode
78 ===============================
79
80 When waiting for an event in a specific thread, we just use waitpid,
81 passing the specific pid, and not passing WNOHANG.
82
83 When waiting for an event in all threads, waitpid is not quite good:
84
85 - If the thread group leader exits while other threads in the thread
86 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
87 return an exit status until the other threads in the group are
88 reaped.
89
90 - When a non-leader thread execs, that thread just vanishes without
91 reporting an exit (so we'd hang if we waited for it explicitly in
92 that case). The exec event is instead reported to the TGID pid.
93
94 The solution is to always use -1 and WNOHANG, together with
95 sigsuspend.
96
97 First, we use non-blocking waitpid to check for events. If nothing is
98 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
99 it means something happened to a child process. As soon as we know
100 there's an event, we get back to calling nonblocking waitpid.
101
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend
103 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
104 when it's blocked, the signal becomes pending and sigsuspend
105 immediately notices it and returns.
106
107 Waiting for events in async mode (TARGET_WNOHANG)
108 =================================================
109
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options. Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target. We
114 detect asynchronous target events by handling SIGCHLD signals. To
115 notify the event loop about target events, the self-pipe trick is used
116 --- a pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler writes a
119 byte to this pipe. This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad. OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop. Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls. Those waitpid calls, while blocking, are guarantied to
139 return quickly. E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144
145 Use of signals
146 ==============
147
148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it. SIGSTOP's advantage is that it can not be
151 blocked. A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153
154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162
163 We could use a real-time signal instead. This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked.
168
169 Exec events
170 ===========
171
172 The case of a thread group (process) with 3 or more threads, and a
173 thread other than the leader execs is worth detailing:
174
175 On an exec, the Linux kernel destroys all threads except the execing
176 one in the thread group, and resets the execing thread's tid to the
177 tgid. No exit notification is sent for the execing thread -- from the
178 ptracer's perspective, it appears as though the execing thread just
179 vanishes. Until we reap all other threads except the leader and the
180 execing thread, the leader will be zombie, and the execing thread will
181 be in `D (disc sleep)' state. As soon as all other threads are
182 reaped, the execing thread changes its tid to the tgid, and the
183 previous (zombie) leader vanishes, giving place to the "new"
184 leader. */
185
186 #ifndef O_LARGEFILE
187 #define O_LARGEFILE 0
188 #endif
189
190 struct linux_nat_target *linux_target;
191
192 /* Does the current host support PTRACE_GETREGSET? */
193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194
195 static unsigned int debug_linux_nat;
196 static void
197 show_debug_linux_nat (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
201 value);
202 }
203
204 struct simple_pid_list
205 {
206 int pid;
207 int status;
208 struct simple_pid_list *next;
209 };
210 struct simple_pid_list *stopped_pids;
211
212 /* Whether target_thread_events is in effect. */
213 static int report_thread_events;
214
215 /* Async mode support. */
216
217 /* The read/write ends of the pipe registered as waitable file in the
218 event loop. */
219 static int linux_nat_event_pipe[2] = { -1, -1 };
220
221 /* True if we're currently in async mode. */
222 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
223
224 /* Flush the event pipe. */
225
226 static void
227 async_file_flush (void)
228 {
229 int ret;
230 char buf;
231
232 do
233 {
234 ret = read (linux_nat_event_pipe[0], &buf, 1);
235 }
236 while (ret >= 0 || (ret == -1 && errno == EINTR));
237 }
238
239 /* Put something (anything, doesn't matter what, or how much) in event
240 pipe, so that the select/poll in the event-loop realizes we have
241 something to process. */
242
243 static void
244 async_file_mark (void)
245 {
246 int ret;
247
248 /* It doesn't really matter what the pipe contains, as long we end
249 up with something in it. Might as well flush the previous
250 left-overs. */
251 async_file_flush ();
252
253 do
254 {
255 ret = write (linux_nat_event_pipe[1], "+", 1);
256 }
257 while (ret == -1 && errno == EINTR);
258
259 /* Ignore EAGAIN. If the pipe is full, the event loop will already
260 be awakened anyway. */
261 }
262
263 static int kill_lwp (int lwpid, int signo);
264
265 static int stop_callback (struct lwp_info *lp);
266
267 static void block_child_signals (sigset_t *prev_mask);
268 static void restore_child_signals_mask (sigset_t *prev_mask);
269
270 struct lwp_info;
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void purge_lwp_list (int pid);
273 static void delete_lwp (ptid_t ptid);
274 static struct lwp_info *find_lwp_pid (ptid_t ptid);
275
276 static int lwp_status_pending_p (struct lwp_info *lp);
277
278 static void save_stop_reason (struct lwp_info *lp);
279
280 \f
281 /* LWP accessors. */
282
283 /* See nat/linux-nat.h. */
284
285 ptid_t
286 ptid_of_lwp (struct lwp_info *lwp)
287 {
288 return lwp->ptid;
289 }
290
291 /* See nat/linux-nat.h. */
292
293 void
294 lwp_set_arch_private_info (struct lwp_info *lwp,
295 struct arch_lwp_info *info)
296 {
297 lwp->arch_private = info;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 struct arch_lwp_info *
303 lwp_arch_private_info (struct lwp_info *lwp)
304 {
305 return lwp->arch_private;
306 }
307
308 /* See nat/linux-nat.h. */
309
310 int
311 lwp_is_stopped (struct lwp_info *lwp)
312 {
313 return lwp->stopped;
314 }
315
316 /* See nat/linux-nat.h. */
317
318 enum target_stop_reason
319 lwp_stop_reason (struct lwp_info *lwp)
320 {
321 return lwp->stop_reason;
322 }
323
324 /* See nat/linux-nat.h. */
325
326 int
327 lwp_is_stepping (struct lwp_info *lwp)
328 {
329 return lwp->step;
330 }
331
332 \f
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
335 static void
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
337 {
338 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
339
340 new_pid->pid = pid;
341 new_pid->status = status;
342 new_pid->next = *listp;
343 *listp = new_pid;
344 }
345
346 static int
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
348 {
349 struct simple_pid_list **p;
350
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
353 {
354 struct simple_pid_list *next = (*p)->next;
355
356 *statusp = (*p)->status;
357 xfree (*p);
358 *p = next;
359 return 1;
360 }
361 return 0;
362 }
363
364 /* Return the ptrace options that we want to try to enable. */
365
366 static int
367 linux_nat_ptrace_options (int attached)
368 {
369 int options = 0;
370
371 if (!attached)
372 options |= PTRACE_O_EXITKILL;
373
374 options |= (PTRACE_O_TRACESYSGOOD
375 | PTRACE_O_TRACEVFORKDONE
376 | PTRACE_O_TRACEVFORK
377 | PTRACE_O_TRACEFORK
378 | PTRACE_O_TRACEEXEC);
379
380 return options;
381 }
382
383 /* Initialize ptrace and procfs warnings and check for supported
384 ptrace features given PID.
385
386 ATTACHED should be nonzero iff we attached to the inferior. */
387
388 static void
389 linux_init_ptrace_procfs (pid_t pid, int attached)
390 {
391 int options = linux_nat_ptrace_options (attached);
392
393 linux_enable_event_reporting (pid, options);
394 linux_ptrace_init_warnings ();
395 linux_proc_init_warnings ();
396 }
397
398 linux_nat_target::~linux_nat_target ()
399 {}
400
401 void
402 linux_nat_target::post_attach (int pid)
403 {
404 linux_init_ptrace_procfs (pid, 1);
405 }
406
407 void
408 linux_nat_target::post_startup_inferior (ptid_t ptid)
409 {
410 linux_init_ptrace_procfs (ptid.pid (), 0);
411 }
412
413 /* Return the number of known LWPs in the tgid given by PID. */
414
415 static int
416 num_lwps (int pid)
417 {
418 int count = 0;
419 struct lwp_info *lp;
420
421 for (lp = lwp_list; lp; lp = lp->next)
422 if (lp->ptid.pid () == pid)
423 count++;
424
425 return count;
426 }
427
428 /* Deleter for lwp_info unique_ptr specialisation. */
429
430 struct lwp_deleter
431 {
432 void operator() (struct lwp_info *lwp) const
433 {
434 delete_lwp (lwp->ptid);
435 }
436 };
437
438 /* A unique_ptr specialisation for lwp_info. */
439
440 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
441
442 /* Target hook for follow_fork. On entry inferior_ptid must be the
443 ptid of the followed inferior. At return, inferior_ptid will be
444 unchanged. */
445
446 int
447 linux_nat_target::follow_fork (int follow_child, int detach_fork)
448 {
449 if (!follow_child)
450 {
451 struct lwp_info *child_lp = NULL;
452 int has_vforked;
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
455
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = parent_ptid.lwp ();
461 child_pid = child_ptid.lwp ();
462
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
467
468 /* Detach new forked process? */
469 if (detach_fork)
470 {
471 int child_stop_signal = 0;
472 bool detach_child = true;
473
474 /* Move CHILD_LP into a unique_ptr and clear the source pointer
475 to prevent us doing anything stupid with it. */
476 lwp_info_up child_lp_ptr (child_lp);
477 child_lp = nullptr;
478
479 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
480
481 /* When debugging an inferior in an architecture that supports
482 hardware single stepping on a kernel without commit
483 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
484 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
485 set if the parent process had them set.
486 To work around this, single step the child process
487 once before detaching to clear the flags. */
488
489 /* Note that we consult the parent's architecture instead of
490 the child's because there's no inferior for the child at
491 this point. */
492 if (!gdbarch_software_single_step_p (target_thread_architecture
493 (parent_ptid)))
494 {
495 int status;
496
497 linux_disable_event_reporting (child_pid);
498 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
499 perror_with_name (_("Couldn't do single step"));
500 if (my_waitpid (child_pid, &status, 0) < 0)
501 perror_with_name (_("Couldn't wait vfork process"));
502 else
503 {
504 detach_child = WIFSTOPPED (status);
505 child_stop_signal = WSTOPSIG (status);
506 }
507 }
508
509 if (detach_child)
510 {
511 int signo = child_stop_signal;
512
513 if (signo != 0
514 && !signal_pass_state (gdb_signal_from_host (signo)))
515 signo = 0;
516 ptrace (PTRACE_DETACH, child_pid, 0, signo);
517 }
518 }
519 else
520 {
521 scoped_restore save_inferior_ptid
522 = make_scoped_restore (&inferior_ptid);
523 inferior_ptid = child_ptid;
524
525 /* Let the thread_db layer learn about this new process. */
526 check_for_thread_db ();
527 }
528
529 if (has_vforked)
530 {
531 struct lwp_info *parent_lp;
532
533 parent_lp = find_lwp_pid (parent_ptid);
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_is_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct lwp_info *child_lp;
605
606 child_lp = add_lwp (inferior_ptid);
607 child_lp->stopped = 1;
608 child_lp->last_resume_kind = resume_stop;
609
610 /* Let the thread_db layer learn about this new process. */
611 check_for_thread_db ();
612 }
613
614 return 0;
615 }
616
617 \f
618 int
619 linux_nat_target::insert_fork_catchpoint (int pid)
620 {
621 return !linux_supports_tracefork ();
622 }
623
624 int
625 linux_nat_target::remove_fork_catchpoint (int pid)
626 {
627 return 0;
628 }
629
630 int
631 linux_nat_target::insert_vfork_catchpoint (int pid)
632 {
633 return !linux_supports_tracefork ();
634 }
635
636 int
637 linux_nat_target::remove_vfork_catchpoint (int pid)
638 {
639 return 0;
640 }
641
642 int
643 linux_nat_target::insert_exec_catchpoint (int pid)
644 {
645 return !linux_supports_tracefork ();
646 }
647
648 int
649 linux_nat_target::remove_exec_catchpoint (int pid)
650 {
651 return 0;
652 }
653
654 int
655 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
656 gdb::array_view<const int> syscall_counts)
657 {
658 if (!linux_supports_tracesysgood ())
659 return 1;
660
661 /* On GNU/Linux, we ignore the arguments. It means that we only
662 enable the syscall catchpoints, but do not disable them.
663
664 Also, we do not use the `syscall_counts' information because we do not
665 filter system calls here. We let GDB do the logic for us. */
666 return 0;
667 }
668
669 /* List of known LWPs, keyed by LWP PID. This speeds up the common
670 case of mapping a PID returned from the kernel to our corresponding
671 lwp_info data structure. */
672 static htab_t lwp_lwpid_htab;
673
674 /* Calculate a hash from a lwp_info's LWP PID. */
675
676 static hashval_t
677 lwp_info_hash (const void *ap)
678 {
679 const struct lwp_info *lp = (struct lwp_info *) ap;
680 pid_t pid = lp->ptid.lwp ();
681
682 return iterative_hash_object (pid, 0);
683 }
684
685 /* Equality function for the lwp_info hash table. Compares the LWP's
686 PID. */
687
688 static int
689 lwp_lwpid_htab_eq (const void *a, const void *b)
690 {
691 const struct lwp_info *entry = (const struct lwp_info *) a;
692 const struct lwp_info *element = (const struct lwp_info *) b;
693
694 return entry->ptid.lwp () == element->ptid.lwp ();
695 }
696
697 /* Create the lwp_lwpid_htab hash table. */
698
699 static void
700 lwp_lwpid_htab_create (void)
701 {
702 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
703 }
704
705 /* Add LP to the hash table. */
706
707 static void
708 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
709 {
710 void **slot;
711
712 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
713 gdb_assert (slot != NULL && *slot == NULL);
714 *slot = lp;
715 }
716
717 /* Head of doubly-linked list of known LWPs. Sorted by reverse
718 creation order. This order is assumed in some cases. E.g.,
719 reaping status after killing alls lwps of a process: the leader LWP
720 must be reaped last. */
721 struct lwp_info *lwp_list;
722
723 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
724
725 static void
726 lwp_list_add (struct lwp_info *lp)
727 {
728 lp->next = lwp_list;
729 if (lwp_list != NULL)
730 lwp_list->prev = lp;
731 lwp_list = lp;
732 }
733
734 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737 static void
738 lwp_list_remove (struct lwp_info *lp)
739 {
740 /* Remove from sorted-by-creation-order list. */
741 if (lp->next != NULL)
742 lp->next->prev = lp->prev;
743 if (lp->prev != NULL)
744 lp->prev->next = lp->next;
745 if (lp == lwp_list)
746 lwp_list = lp->next;
747 }
748
749 \f
750
751 /* Original signal mask. */
752 static sigset_t normal_mask;
753
754 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
755 _initialize_linux_nat. */
756 static sigset_t suspend_mask;
757
758 /* Signals to block to make that sigsuspend work. */
759 static sigset_t blocked_mask;
760
761 /* SIGCHLD action. */
762 struct sigaction sigchld_action;
763
764 /* Block child signals (SIGCHLD and linux threads signals), and store
765 the previous mask in PREV_MASK. */
766
767 static void
768 block_child_signals (sigset_t *prev_mask)
769 {
770 /* Make sure SIGCHLD is blocked. */
771 if (!sigismember (&blocked_mask, SIGCHLD))
772 sigaddset (&blocked_mask, SIGCHLD);
773
774 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
775 }
776
777 /* Restore child signals mask, previously returned by
778 block_child_signals. */
779
780 static void
781 restore_child_signals_mask (sigset_t *prev_mask)
782 {
783 sigprocmask (SIG_SETMASK, prev_mask, NULL);
784 }
785
786 /* Mask of signals to pass directly to the inferior. */
787 static sigset_t pass_mask;
788
789 /* Update signals to pass to the inferior. */
790 void
791 linux_nat_target::pass_signals
792 (gdb::array_view<const unsigned char> pass_signals)
793 {
794 int signo;
795
796 sigemptyset (&pass_mask);
797
798 for (signo = 1; signo < NSIG; signo++)
799 {
800 int target_signo = gdb_signal_from_host (signo);
801 if (target_signo < pass_signals.size () && pass_signals[target_signo])
802 sigaddset (&pass_mask, signo);
803 }
804 }
805
806 \f
807
808 /* Prototypes for local functions. */
809 static int stop_wait_callback (struct lwp_info *lp);
810 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
811 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
812
813 \f
814
815 /* Destroy and free LP. */
816
817 static void
818 lwp_free (struct lwp_info *lp)
819 {
820 /* Let the arch specific bits release arch_lwp_info. */
821 linux_target->low_delete_thread (lp->arch_private);
822
823 xfree (lp);
824 }
825
826 /* Traversal function for purge_lwp_list. */
827
828 static int
829 lwp_lwpid_htab_remove_pid (void **slot, void *info)
830 {
831 struct lwp_info *lp = (struct lwp_info *) *slot;
832 int pid = *(int *) info;
833
834 if (lp->ptid.pid () == pid)
835 {
836 htab_clear_slot (lwp_lwpid_htab, slot);
837 lwp_list_remove (lp);
838 lwp_free (lp);
839 }
840
841 return 1;
842 }
843
844 /* Remove all LWPs belong to PID from the lwp list. */
845
846 static void
847 purge_lwp_list (int pid)
848 {
849 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
850 }
851
852 /* Add the LWP specified by PTID to the list. PTID is the first LWP
853 in the process. Return a pointer to the structure describing the
854 new LWP.
855
856 This differs from add_lwp in that we don't let the arch specific
857 bits know about this new thread. Current clients of this callback
858 take the opportunity to install watchpoints in the new thread, and
859 we shouldn't do that for the first thread. If we're spawning a
860 child ("run"), the thread executes the shell wrapper first, and we
861 shouldn't touch it until it execs the program we want to debug.
862 For "attach", it'd be okay to call the callback, but it's not
863 necessary, because watchpoints can't yet have been inserted into
864 the inferior. */
865
866 static struct lwp_info *
867 add_initial_lwp (ptid_t ptid)
868 {
869 struct lwp_info *lp;
870
871 gdb_assert (ptid.lwp_p ());
872
873 lp = XNEW (struct lwp_info);
874
875 memset (lp, 0, sizeof (struct lwp_info));
876
877 lp->last_resume_kind = resume_continue;
878 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
879
880 lp->ptid = ptid;
881 lp->core = -1;
882
883 /* Add to sorted-by-reverse-creation-order list. */
884 lwp_list_add (lp);
885
886 /* Add to keyed-by-pid htab. */
887 lwp_lwpid_htab_add_lwp (lp);
888
889 return lp;
890 }
891
892 /* Add the LWP specified by PID to the list. Return a pointer to the
893 structure describing the new LWP. The LWP should already be
894 stopped. */
895
896 static struct lwp_info *
897 add_lwp (ptid_t ptid)
898 {
899 struct lwp_info *lp;
900
901 lp = add_initial_lwp (ptid);
902
903 /* Let the arch specific bits know about this new thread. Current
904 clients of this callback take the opportunity to install
905 watchpoints in the new thread. We don't do this for the first
906 thread though. See add_initial_lwp. */
907 linux_target->low_new_thread (lp);
908
909 return lp;
910 }
911
912 /* Remove the LWP specified by PID from the list. */
913
914 static void
915 delete_lwp (ptid_t ptid)
916 {
917 struct lwp_info *lp;
918 void **slot;
919 struct lwp_info dummy;
920
921 dummy.ptid = ptid;
922 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
923 if (slot == NULL)
924 return;
925
926 lp = *(struct lwp_info **) slot;
927 gdb_assert (lp != NULL);
928
929 htab_clear_slot (lwp_lwpid_htab, slot);
930
931 /* Remove from sorted-by-creation-order list. */
932 lwp_list_remove (lp);
933
934 /* Release. */
935 lwp_free (lp);
936 }
937
938 /* Return a pointer to the structure describing the LWP corresponding
939 to PID. If no corresponding LWP could be found, return NULL. */
940
941 static struct lwp_info *
942 find_lwp_pid (ptid_t ptid)
943 {
944 struct lwp_info *lp;
945 int lwp;
946 struct lwp_info dummy;
947
948 if (ptid.lwp_p ())
949 lwp = ptid.lwp ();
950 else
951 lwp = ptid.pid ();
952
953 dummy.ptid = ptid_t (0, lwp, 0);
954 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
955 return lp;
956 }
957
958 /* See nat/linux-nat.h. */
959
960 struct lwp_info *
961 iterate_over_lwps (ptid_t filter,
962 gdb::function_view<iterate_over_lwps_ftype> callback)
963 {
964 struct lwp_info *lp, *lpnext;
965
966 for (lp = lwp_list; lp; lp = lpnext)
967 {
968 lpnext = lp->next;
969
970 if (lp->ptid.matches (filter))
971 {
972 if (callback (lp) != 0)
973 return lp;
974 }
975 }
976
977 return NULL;
978 }
979
980 /* Update our internal state when changing from one checkpoint to
981 another indicated by NEW_PTID. We can only switch single-threaded
982 applications, so we only create one new LWP, and the previous list
983 is discarded. */
984
985 void
986 linux_nat_switch_fork (ptid_t new_ptid)
987 {
988 struct lwp_info *lp;
989
990 purge_lwp_list (inferior_ptid.pid ());
991
992 lp = add_lwp (new_ptid);
993 lp->stopped = 1;
994
995 /* This changes the thread's ptid while preserving the gdb thread
996 num. Also changes the inferior pid, while preserving the
997 inferior num. */
998 thread_change_ptid (inferior_ptid, new_ptid);
999
1000 /* We've just told GDB core that the thread changed target id, but,
1001 in fact, it really is a different thread, with different register
1002 contents. */
1003 registers_changed ();
1004 }
1005
1006 /* Handle the exit of a single thread LP. */
1007
1008 static void
1009 exit_lwp (struct lwp_info *lp)
1010 {
1011 struct thread_info *th = find_thread_ptid (lp->ptid);
1012
1013 if (th)
1014 {
1015 if (print_thread_events)
1016 printf_unfiltered (_("[%s exited]\n"),
1017 target_pid_to_str (lp->ptid).c_str ());
1018
1019 delete_thread (th);
1020 }
1021
1022 delete_lwp (lp->ptid);
1023 }
1024
1025 /* Wait for the LWP specified by LP, which we have just attached to.
1026 Returns a wait status for that LWP, to cache. */
1027
1028 static int
1029 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1030 {
1031 pid_t new_pid, pid = ptid.lwp ();
1032 int status;
1033
1034 if (linux_proc_pid_is_stopped (pid))
1035 {
1036 if (debug_linux_nat)
1037 fprintf_unfiltered (gdb_stdlog,
1038 "LNPAW: Attaching to a stopped process\n");
1039
1040 /* The process is definitely stopped. It is in a job control
1041 stop, unless the kernel predates the TASK_STOPPED /
1042 TASK_TRACED distinction, in which case it might be in a
1043 ptrace stop. Make sure it is in a ptrace stop; from there we
1044 can kill it, signal it, et cetera.
1045
1046 First make sure there is a pending SIGSTOP. Since we are
1047 already attached, the process can not transition from stopped
1048 to running without a PTRACE_CONT; so we know this signal will
1049 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1050 probably already in the queue (unless this kernel is old
1051 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1052 is not an RT signal, it can only be queued once. */
1053 kill_lwp (pid, SIGSTOP);
1054
1055 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1056 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1057 ptrace (PTRACE_CONT, pid, 0, 0);
1058 }
1059
1060 /* Make sure the initial process is stopped. The user-level threads
1061 layer might want to poke around in the inferior, and that won't
1062 work if things haven't stabilized yet. */
1063 new_pid = my_waitpid (pid, &status, __WALL);
1064 gdb_assert (pid == new_pid);
1065
1066 if (!WIFSTOPPED (status))
1067 {
1068 /* The pid we tried to attach has apparently just exited. */
1069 if (debug_linux_nat)
1070 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1071 pid, status_to_str (status));
1072 return status;
1073 }
1074
1075 if (WSTOPSIG (status) != SIGSTOP)
1076 {
1077 *signalled = 1;
1078 if (debug_linux_nat)
1079 fprintf_unfiltered (gdb_stdlog,
1080 "LNPAW: Received %s after attaching\n",
1081 status_to_str (status));
1082 }
1083
1084 return status;
1085 }
1086
1087 void
1088 linux_nat_target::create_inferior (const char *exec_file,
1089 const std::string &allargs,
1090 char **env, int from_tty)
1091 {
1092 maybe_disable_address_space_randomization restore_personality
1093 (disable_randomization);
1094
1095 /* The fork_child mechanism is synchronous and calls target_wait, so
1096 we have to mask the async mode. */
1097
1098 /* Make sure we report all signals during startup. */
1099 pass_signals ({});
1100
1101 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1102 }
1103
1104 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1105 already attached. Returns true if a new LWP is found, false
1106 otherwise. */
1107
1108 static int
1109 attach_proc_task_lwp_callback (ptid_t ptid)
1110 {
1111 struct lwp_info *lp;
1112
1113 /* Ignore LWPs we're already attached to. */
1114 lp = find_lwp_pid (ptid);
1115 if (lp == NULL)
1116 {
1117 int lwpid = ptid.lwp ();
1118
1119 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1120 {
1121 int err = errno;
1122
1123 /* Be quiet if we simply raced with the thread exiting.
1124 EPERM is returned if the thread's task still exists, and
1125 is marked as exited or zombie, as well as other
1126 conditions, so in that case, confirm the status in
1127 /proc/PID/status. */
1128 if (err == ESRCH
1129 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1130 {
1131 if (debug_linux_nat)
1132 {
1133 fprintf_unfiltered (gdb_stdlog,
1134 "Cannot attach to lwp %d: "
1135 "thread is gone (%d: %s)\n",
1136 lwpid, err, safe_strerror (err));
1137 }
1138 }
1139 else
1140 {
1141 std::string reason
1142 = linux_ptrace_attach_fail_reason_string (ptid, err);
1143
1144 warning (_("Cannot attach to lwp %d: %s"),
1145 lwpid, reason.c_str ());
1146 }
1147 }
1148 else
1149 {
1150 if (debug_linux_nat)
1151 fprintf_unfiltered (gdb_stdlog,
1152 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1153 target_pid_to_str (ptid).c_str ());
1154
1155 lp = add_lwp (ptid);
1156
1157 /* The next time we wait for this LWP we'll see a SIGSTOP as
1158 PTRACE_ATTACH brings it to a halt. */
1159 lp->signalled = 1;
1160
1161 /* We need to wait for a stop before being able to make the
1162 next ptrace call on this LWP. */
1163 lp->must_set_ptrace_flags = 1;
1164
1165 /* So that wait collects the SIGSTOP. */
1166 lp->resumed = 1;
1167
1168 /* Also add the LWP to gdb's thread list, in case a
1169 matching libthread_db is not found (or the process uses
1170 raw clone). */
1171 add_thread (lp->ptid);
1172 set_running (lp->ptid, 1);
1173 set_executing (lp->ptid, 1);
1174 }
1175
1176 return 1;
1177 }
1178 return 0;
1179 }
1180
1181 void
1182 linux_nat_target::attach (const char *args, int from_tty)
1183 {
1184 struct lwp_info *lp;
1185 int status;
1186 ptid_t ptid;
1187
1188 /* Make sure we report all signals during attach. */
1189 pass_signals ({});
1190
1191 TRY
1192 {
1193 inf_ptrace_target::attach (args, from_tty);
1194 }
1195 CATCH (ex, RETURN_MASK_ERROR)
1196 {
1197 pid_t pid = parse_pid_to_attach (args);
1198 std::string reason = linux_ptrace_attach_fail_reason (pid);
1199
1200 if (!reason.empty ())
1201 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1202 ex.what ());
1203 else
1204 throw_error (ex.error, "%s", ex.what ());
1205 }
1206 END_CATCH
1207
1208 /* The ptrace base target adds the main thread with (pid,0,0)
1209 format. Decorate it with lwp info. */
1210 ptid = ptid_t (inferior_ptid.pid (),
1211 inferior_ptid.pid (),
1212 0);
1213 thread_change_ptid (inferior_ptid, ptid);
1214
1215 /* Add the initial process as the first LWP to the list. */
1216 lp = add_initial_lwp (ptid);
1217
1218 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1219 if (!WIFSTOPPED (status))
1220 {
1221 if (WIFEXITED (status))
1222 {
1223 int exit_code = WEXITSTATUS (status);
1224
1225 target_terminal::ours ();
1226 target_mourn_inferior (inferior_ptid);
1227 if (exit_code == 0)
1228 error (_("Unable to attach: program exited normally."));
1229 else
1230 error (_("Unable to attach: program exited with code %d."),
1231 exit_code);
1232 }
1233 else if (WIFSIGNALED (status))
1234 {
1235 enum gdb_signal signo;
1236
1237 target_terminal::ours ();
1238 target_mourn_inferior (inferior_ptid);
1239
1240 signo = gdb_signal_from_host (WTERMSIG (status));
1241 error (_("Unable to attach: program terminated with signal "
1242 "%s, %s."),
1243 gdb_signal_to_name (signo),
1244 gdb_signal_to_string (signo));
1245 }
1246
1247 internal_error (__FILE__, __LINE__,
1248 _("unexpected status %d for PID %ld"),
1249 status, (long) ptid.lwp ());
1250 }
1251
1252 lp->stopped = 1;
1253
1254 /* Save the wait status to report later. */
1255 lp->resumed = 1;
1256 if (debug_linux_nat)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "LNA: waitpid %ld, saving status %s\n",
1259 (long) lp->ptid.pid (), status_to_str (status));
1260
1261 lp->status = status;
1262
1263 /* We must attach to every LWP. If /proc is mounted, use that to
1264 find them now. The inferior may be using raw clone instead of
1265 using pthreads. But even if it is using pthreads, thread_db
1266 walks structures in the inferior's address space to find the list
1267 of threads/LWPs, and those structures may well be corrupted.
1268 Note that once thread_db is loaded, we'll still use it to list
1269 threads and associate pthread info with each LWP. */
1270 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1271 attach_proc_task_lwp_callback);
1272
1273 if (target_can_async_p ())
1274 target_async (1);
1275 }
1276
1277 /* Get pending signal of THREAD as a host signal number, for detaching
1278 purposes. This is the signal the thread last stopped for, which we
1279 need to deliver to the thread when detaching, otherwise, it'd be
1280 suppressed/lost. */
1281
1282 static int
1283 get_detach_signal (struct lwp_info *lp)
1284 {
1285 enum gdb_signal signo = GDB_SIGNAL_0;
1286
1287 /* If we paused threads momentarily, we may have stored pending
1288 events in lp->status or lp->waitstatus (see stop_wait_callback),
1289 and GDB core hasn't seen any signal for those threads.
1290 Otherwise, the last signal reported to the core is found in the
1291 thread object's stop_signal.
1292
1293 There's a corner case that isn't handled here at present. Only
1294 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1295 stop_signal make sense as a real signal to pass to the inferior.
1296 Some catchpoint related events, like
1297 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1298 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1299 those traps are debug API (ptrace in our case) related and
1300 induced; the inferior wouldn't see them if it wasn't being
1301 traced. Hence, we should never pass them to the inferior, even
1302 when set to pass state. Since this corner case isn't handled by
1303 infrun.c when proceeding with a signal, for consistency, neither
1304 do we handle it here (or elsewhere in the file we check for
1305 signal pass state). Normally SIGTRAP isn't set to pass state, so
1306 this is really a corner case. */
1307
1308 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1309 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1310 else if (lp->status)
1311 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1312 else
1313 {
1314 struct thread_info *tp = find_thread_ptid (lp->ptid);
1315
1316 if (target_is_non_stop_p () && !tp->executing)
1317 {
1318 if (tp->suspend.waitstatus_pending_p)
1319 signo = tp->suspend.waitstatus.value.sig;
1320 else
1321 signo = tp->suspend.stop_signal;
1322 }
1323 else if (!target_is_non_stop_p ())
1324 {
1325 struct target_waitstatus last;
1326 ptid_t last_ptid;
1327
1328 get_last_target_status (&last_ptid, &last);
1329
1330 if (lp->ptid.lwp () == last_ptid.lwp ())
1331 signo = tp->suspend.stop_signal;
1332 }
1333 }
1334
1335 if (signo == GDB_SIGNAL_0)
1336 {
1337 if (debug_linux_nat)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "GPT: lwp %s has no pending signal\n",
1340 target_pid_to_str (lp->ptid).c_str ());
1341 }
1342 else if (!signal_pass_state (signo))
1343 {
1344 if (debug_linux_nat)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "GPT: lwp %s had signal %s, "
1347 "but it is in no pass state\n",
1348 target_pid_to_str (lp->ptid).c_str (),
1349 gdb_signal_to_string (signo));
1350 }
1351 else
1352 {
1353 if (debug_linux_nat)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "GPT: lwp %s has pending signal %s\n",
1356 target_pid_to_str (lp->ptid).c_str (),
1357 gdb_signal_to_string (signo));
1358
1359 return gdb_signal_to_host (signo);
1360 }
1361
1362 return 0;
1363 }
1364
1365 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1366 signal number that should be passed to the LWP when detaching.
1367 Otherwise pass any pending signal the LWP may have, if any. */
1368
1369 static void
1370 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1371 {
1372 int lwpid = lp->ptid.lwp ();
1373 int signo;
1374
1375 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1376
1377 if (debug_linux_nat && lp->status)
1378 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1379 strsignal (WSTOPSIG (lp->status)),
1380 target_pid_to_str (lp->ptid).c_str ());
1381
1382 /* If there is a pending SIGSTOP, get rid of it. */
1383 if (lp->signalled)
1384 {
1385 if (debug_linux_nat)
1386 fprintf_unfiltered (gdb_stdlog,
1387 "DC: Sending SIGCONT to %s\n",
1388 target_pid_to_str (lp->ptid).c_str ());
1389
1390 kill_lwp (lwpid, SIGCONT);
1391 lp->signalled = 0;
1392 }
1393
1394 if (signo_p == NULL)
1395 {
1396 /* Pass on any pending signal for this LWP. */
1397 signo = get_detach_signal (lp);
1398 }
1399 else
1400 signo = *signo_p;
1401
1402 /* Preparing to resume may try to write registers, and fail if the
1403 lwp is zombie. If that happens, ignore the error. We'll handle
1404 it below, when detach fails with ESRCH. */
1405 TRY
1406 {
1407 linux_target->low_prepare_to_resume (lp);
1408 }
1409 CATCH (ex, RETURN_MASK_ERROR)
1410 {
1411 if (!check_ptrace_stopped_lwp_gone (lp))
1412 throw_exception (ex);
1413 }
1414 END_CATCH
1415
1416 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1417 {
1418 int save_errno = errno;
1419
1420 /* We know the thread exists, so ESRCH must mean the lwp is
1421 zombie. This can happen if one of the already-detached
1422 threads exits the whole thread group. In that case we're
1423 still attached, and must reap the lwp. */
1424 if (save_errno == ESRCH)
1425 {
1426 int ret, status;
1427
1428 ret = my_waitpid (lwpid, &status, __WALL);
1429 if (ret == -1)
1430 {
1431 warning (_("Couldn't reap LWP %d while detaching: %s"),
1432 lwpid, strerror (errno));
1433 }
1434 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1435 {
1436 warning (_("Reaping LWP %d while detaching "
1437 "returned unexpected status 0x%x"),
1438 lwpid, status);
1439 }
1440 }
1441 else
1442 {
1443 error (_("Can't detach %s: %s"),
1444 target_pid_to_str (lp->ptid).c_str (),
1445 safe_strerror (save_errno));
1446 }
1447 }
1448 else if (debug_linux_nat)
1449 {
1450 fprintf_unfiltered (gdb_stdlog,
1451 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1452 target_pid_to_str (lp->ptid).c_str (),
1453 strsignal (signo));
1454 }
1455
1456 delete_lwp (lp->ptid);
1457 }
1458
1459 static int
1460 detach_callback (struct lwp_info *lp)
1461 {
1462 /* We don't actually detach from the thread group leader just yet.
1463 If the thread group exits, we must reap the zombie clone lwps
1464 before we're able to reap the leader. */
1465 if (lp->ptid.lwp () != lp->ptid.pid ())
1466 detach_one_lwp (lp, NULL);
1467 return 0;
1468 }
1469
1470 void
1471 linux_nat_target::detach (inferior *inf, int from_tty)
1472 {
1473 struct lwp_info *main_lwp;
1474 int pid = inf->pid;
1475
1476 /* Don't unregister from the event loop, as there may be other
1477 inferiors running. */
1478
1479 /* Stop all threads before detaching. ptrace requires that the
1480 thread is stopped to sucessfully detach. */
1481 iterate_over_lwps (ptid_t (pid), stop_callback);
1482 /* ... and wait until all of them have reported back that
1483 they're no longer running. */
1484 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1485
1486 iterate_over_lwps (ptid_t (pid), detach_callback);
1487
1488 /* Only the initial process should be left right now. */
1489 gdb_assert (num_lwps (pid) == 1);
1490
1491 main_lwp = find_lwp_pid (ptid_t (pid));
1492
1493 if (forks_exist_p ())
1494 {
1495 /* Multi-fork case. The current inferior_ptid is being detached
1496 from, but there are other viable forks to debug. Detach from
1497 the current fork, and context-switch to the first
1498 available. */
1499 linux_fork_detach (from_tty);
1500 }
1501 else
1502 {
1503 target_announce_detach (from_tty);
1504
1505 /* Pass on any pending signal for the last LWP. */
1506 int signo = get_detach_signal (main_lwp);
1507
1508 detach_one_lwp (main_lwp, &signo);
1509
1510 detach_success (inf);
1511 }
1512 }
1513
1514 /* Resume execution of the inferior process. If STEP is nonzero,
1515 single-step it. If SIGNAL is nonzero, give it that signal. */
1516
1517 static void
1518 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1519 enum gdb_signal signo)
1520 {
1521 lp->step = step;
1522
1523 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1524 We only presently need that if the LWP is stepped though (to
1525 handle the case of stepping a breakpoint instruction). */
1526 if (step)
1527 {
1528 struct regcache *regcache = get_thread_regcache (lp->ptid);
1529
1530 lp->stop_pc = regcache_read_pc (regcache);
1531 }
1532 else
1533 lp->stop_pc = 0;
1534
1535 linux_target->low_prepare_to_resume (lp);
1536 linux_target->low_resume (lp->ptid, step, signo);
1537
1538 /* Successfully resumed. Clear state that no longer makes sense,
1539 and mark the LWP as running. Must not do this before resuming
1540 otherwise if that fails other code will be confused. E.g., we'd
1541 later try to stop the LWP and hang forever waiting for a stop
1542 status. Note that we must not throw after this is cleared,
1543 otherwise handle_zombie_lwp_error would get confused. */
1544 lp->stopped = 0;
1545 lp->core = -1;
1546 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1547 registers_changed_ptid (lp->ptid);
1548 }
1549
1550 /* Called when we try to resume a stopped LWP and that errors out. If
1551 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1552 or about to become), discard the error, clear any pending status
1553 the LWP may have, and return true (we'll collect the exit status
1554 soon enough). Otherwise, return false. */
1555
1556 static int
1557 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1558 {
1559 /* If we get an error after resuming the LWP successfully, we'd
1560 confuse !T state for the LWP being gone. */
1561 gdb_assert (lp->stopped);
1562
1563 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1564 because even if ptrace failed with ESRCH, the tracee may be "not
1565 yet fully dead", but already refusing ptrace requests. In that
1566 case the tracee has 'R (Running)' state for a little bit
1567 (observed in Linux 3.18). See also the note on ESRCH in the
1568 ptrace(2) man page. Instead, check whether the LWP has any state
1569 other than ptrace-stopped. */
1570
1571 /* Don't assume anything if /proc/PID/status can't be read. */
1572 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1573 {
1574 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1575 lp->status = 0;
1576 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1577 return 1;
1578 }
1579 return 0;
1580 }
1581
1582 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1583 disappears while we try to resume it. */
1584
1585 static void
1586 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1587 {
1588 TRY
1589 {
1590 linux_resume_one_lwp_throw (lp, step, signo);
1591 }
1592 CATCH (ex, RETURN_MASK_ERROR)
1593 {
1594 if (!check_ptrace_stopped_lwp_gone (lp))
1595 throw_exception (ex);
1596 }
1597 END_CATCH
1598 }
1599
1600 /* Resume LP. */
1601
1602 static void
1603 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1604 {
1605 if (lp->stopped)
1606 {
1607 struct inferior *inf = find_inferior_ptid (lp->ptid);
1608
1609 if (inf->vfork_child != NULL)
1610 {
1611 if (debug_linux_nat)
1612 fprintf_unfiltered (gdb_stdlog,
1613 "RC: Not resuming %s (vfork parent)\n",
1614 target_pid_to_str (lp->ptid).c_str ());
1615 }
1616 else if (!lwp_status_pending_p (lp))
1617 {
1618 if (debug_linux_nat)
1619 fprintf_unfiltered (gdb_stdlog,
1620 "RC: Resuming sibling %s, %s, %s\n",
1621 target_pid_to_str (lp->ptid).c_str (),
1622 (signo != GDB_SIGNAL_0
1623 ? strsignal (gdb_signal_to_host (signo))
1624 : "0"),
1625 step ? "step" : "resume");
1626
1627 linux_resume_one_lwp (lp, step, signo);
1628 }
1629 else
1630 {
1631 if (debug_linux_nat)
1632 fprintf_unfiltered (gdb_stdlog,
1633 "RC: Not resuming sibling %s (has pending)\n",
1634 target_pid_to_str (lp->ptid).c_str ());
1635 }
1636 }
1637 else
1638 {
1639 if (debug_linux_nat)
1640 fprintf_unfiltered (gdb_stdlog,
1641 "RC: Not resuming sibling %s (not stopped)\n",
1642 target_pid_to_str (lp->ptid).c_str ());
1643 }
1644 }
1645
1646 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1647 Resume LWP with the last stop signal, if it is in pass state. */
1648
1649 static int
1650 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1651 {
1652 enum gdb_signal signo = GDB_SIGNAL_0;
1653
1654 if (lp == except)
1655 return 0;
1656
1657 if (lp->stopped)
1658 {
1659 struct thread_info *thread;
1660
1661 thread = find_thread_ptid (lp->ptid);
1662 if (thread != NULL)
1663 {
1664 signo = thread->suspend.stop_signal;
1665 thread->suspend.stop_signal = GDB_SIGNAL_0;
1666 }
1667 }
1668
1669 resume_lwp (lp, 0, signo);
1670 return 0;
1671 }
1672
1673 static int
1674 resume_clear_callback (struct lwp_info *lp)
1675 {
1676 lp->resumed = 0;
1677 lp->last_resume_kind = resume_stop;
1678 return 0;
1679 }
1680
1681 static int
1682 resume_set_callback (struct lwp_info *lp)
1683 {
1684 lp->resumed = 1;
1685 lp->last_resume_kind = resume_continue;
1686 return 0;
1687 }
1688
1689 void
1690 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1691 {
1692 struct lwp_info *lp;
1693 int resume_many;
1694
1695 if (debug_linux_nat)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1698 step ? "step" : "resume",
1699 target_pid_to_str (ptid).c_str (),
1700 (signo != GDB_SIGNAL_0
1701 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1702 target_pid_to_str (inferior_ptid).c_str ());
1703
1704 /* A specific PTID means `step only this process id'. */
1705 resume_many = (minus_one_ptid == ptid
1706 || ptid.is_pid ());
1707
1708 /* Mark the lwps we're resuming as resumed. */
1709 iterate_over_lwps (ptid, resume_set_callback);
1710
1711 /* See if it's the current inferior that should be handled
1712 specially. */
1713 if (resume_many)
1714 lp = find_lwp_pid (inferior_ptid);
1715 else
1716 lp = find_lwp_pid (ptid);
1717 gdb_assert (lp != NULL);
1718
1719 /* Remember if we're stepping. */
1720 lp->last_resume_kind = step ? resume_step : resume_continue;
1721
1722 /* If we have a pending wait status for this thread, there is no
1723 point in resuming the process. But first make sure that
1724 linux_nat_wait won't preemptively handle the event - we
1725 should never take this short-circuit if we are going to
1726 leave LP running, since we have skipped resuming all the
1727 other threads. This bit of code needs to be synchronized
1728 with linux_nat_wait. */
1729
1730 if (lp->status && WIFSTOPPED (lp->status))
1731 {
1732 if (!lp->step
1733 && WSTOPSIG (lp->status)
1734 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1735 {
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "LLR: Not short circuiting for ignored "
1739 "status 0x%x\n", lp->status);
1740
1741 /* FIXME: What should we do if we are supposed to continue
1742 this thread with a signal? */
1743 gdb_assert (signo == GDB_SIGNAL_0);
1744 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1745 lp->status = 0;
1746 }
1747 }
1748
1749 if (lwp_status_pending_p (lp))
1750 {
1751 /* FIXME: What should we do if we are supposed to continue
1752 this thread with a signal? */
1753 gdb_assert (signo == GDB_SIGNAL_0);
1754
1755 if (debug_linux_nat)
1756 fprintf_unfiltered (gdb_stdlog,
1757 "LLR: Short circuiting for status 0x%x\n",
1758 lp->status);
1759
1760 if (target_can_async_p ())
1761 {
1762 target_async (1);
1763 /* Tell the event loop we have something to process. */
1764 async_file_mark ();
1765 }
1766 return;
1767 }
1768
1769 if (resume_many)
1770 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1771 {
1772 return linux_nat_resume_callback (info, lp);
1773 });
1774
1775 if (debug_linux_nat)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "LLR: %s %s, %s (resume event thread)\n",
1778 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1779 target_pid_to_str (lp->ptid).c_str (),
1780 (signo != GDB_SIGNAL_0
1781 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1782
1783 linux_resume_one_lwp (lp, step, signo);
1784
1785 if (target_can_async_p ())
1786 target_async (1);
1787 }
1788
1789 /* Send a signal to an LWP. */
1790
1791 static int
1792 kill_lwp (int lwpid, int signo)
1793 {
1794 int ret;
1795
1796 errno = 0;
1797 ret = syscall (__NR_tkill, lwpid, signo);
1798 if (errno == ENOSYS)
1799 {
1800 /* If tkill fails, then we are not using nptl threads, a
1801 configuration we no longer support. */
1802 perror_with_name (("tkill"));
1803 }
1804 return ret;
1805 }
1806
1807 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1808 event, check if the core is interested in it: if not, ignore the
1809 event, and keep waiting; otherwise, we need to toggle the LWP's
1810 syscall entry/exit status, since the ptrace event itself doesn't
1811 indicate it, and report the trap to higher layers. */
1812
1813 static int
1814 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1815 {
1816 struct target_waitstatus *ourstatus = &lp->waitstatus;
1817 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1818 thread_info *thread = find_thread_ptid (lp->ptid);
1819 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1820
1821 if (stopping)
1822 {
1823 /* If we're stopping threads, there's a SIGSTOP pending, which
1824 makes it so that the LWP reports an immediate syscall return,
1825 followed by the SIGSTOP. Skip seeing that "return" using
1826 PTRACE_CONT directly, and let stop_wait_callback collect the
1827 SIGSTOP. Later when the thread is resumed, a new syscall
1828 entry event. If we didn't do this (and returned 0), we'd
1829 leave a syscall entry pending, and our caller, by using
1830 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1831 itself. Later, when the user re-resumes this LWP, we'd see
1832 another syscall entry event and we'd mistake it for a return.
1833
1834 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1835 (leaving immediately with LWP->signalled set, without issuing
1836 a PTRACE_CONT), it would still be problematic to leave this
1837 syscall enter pending, as later when the thread is resumed,
1838 it would then see the same syscall exit mentioned above,
1839 followed by the delayed SIGSTOP, while the syscall didn't
1840 actually get to execute. It seems it would be even more
1841 confusing to the user. */
1842
1843 if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog,
1845 "LHST: ignoring syscall %d "
1846 "for LWP %ld (stopping threads), "
1847 "resuming with PTRACE_CONT for SIGSTOP\n",
1848 syscall_number,
1849 lp->ptid.lwp ());
1850
1851 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1852 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1853 lp->stopped = 0;
1854 return 1;
1855 }
1856
1857 /* Always update the entry/return state, even if this particular
1858 syscall isn't interesting to the core now. In async mode,
1859 the user could install a new catchpoint for this syscall
1860 between syscall enter/return, and we'll need to know to
1861 report a syscall return if that happens. */
1862 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1863 ? TARGET_WAITKIND_SYSCALL_RETURN
1864 : TARGET_WAITKIND_SYSCALL_ENTRY);
1865
1866 if (catch_syscall_enabled ())
1867 {
1868 if (catching_syscall_number (syscall_number))
1869 {
1870 /* Alright, an event to report. */
1871 ourstatus->kind = lp->syscall_state;
1872 ourstatus->value.syscall_number = syscall_number;
1873
1874 if (debug_linux_nat)
1875 fprintf_unfiltered (gdb_stdlog,
1876 "LHST: stopping for %s of syscall %d"
1877 " for LWP %ld\n",
1878 lp->syscall_state
1879 == TARGET_WAITKIND_SYSCALL_ENTRY
1880 ? "entry" : "return",
1881 syscall_number,
1882 lp->ptid.lwp ());
1883 return 0;
1884 }
1885
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LHST: ignoring %s of syscall %d "
1889 "for LWP %ld\n",
1890 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1891 ? "entry" : "return",
1892 syscall_number,
1893 lp->ptid.lwp ());
1894 }
1895 else
1896 {
1897 /* If we had been syscall tracing, and hence used PT_SYSCALL
1898 before on this LWP, it could happen that the user removes all
1899 syscall catchpoints before we get to process this event.
1900 There are two noteworthy issues here:
1901
1902 - When stopped at a syscall entry event, resuming with
1903 PT_STEP still resumes executing the syscall and reports a
1904 syscall return.
1905
1906 - Only PT_SYSCALL catches syscall enters. If we last
1907 single-stepped this thread, then this event can't be a
1908 syscall enter. If we last single-stepped this thread, this
1909 has to be a syscall exit.
1910
1911 The points above mean that the next resume, be it PT_STEP or
1912 PT_CONTINUE, can not trigger a syscall trace event. */
1913 if (debug_linux_nat)
1914 fprintf_unfiltered (gdb_stdlog,
1915 "LHST: caught syscall event "
1916 "with no syscall catchpoints."
1917 " %d for LWP %ld, ignoring\n",
1918 syscall_number,
1919 lp->ptid.lwp ());
1920 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1921 }
1922
1923 /* The core isn't interested in this event. For efficiency, avoid
1924 stopping all threads only to have the core resume them all again.
1925 Since we're not stopping threads, if we're still syscall tracing
1926 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1927 subsequent syscall. Simply resume using the inf-ptrace layer,
1928 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1929
1930 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1931 return 1;
1932 }
1933
1934 /* Handle a GNU/Linux extended wait response. If we see a clone
1935 event, we need to add the new LWP to our list (and not report the
1936 trap to higher layers). This function returns non-zero if the
1937 event should be ignored and we should wait again. If STOPPING is
1938 true, the new LWP remains stopped, otherwise it is continued. */
1939
1940 static int
1941 linux_handle_extended_wait (struct lwp_info *lp, int status)
1942 {
1943 int pid = lp->ptid.lwp ();
1944 struct target_waitstatus *ourstatus = &lp->waitstatus;
1945 int event = linux_ptrace_get_extended_event (status);
1946
1947 /* All extended events we currently use are mid-syscall. Only
1948 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1949 you have to be using PTRACE_SEIZE to get that. */
1950 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1951
1952 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1953 || event == PTRACE_EVENT_CLONE)
1954 {
1955 unsigned long new_pid;
1956 int ret;
1957
1958 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1959
1960 /* If we haven't already seen the new PID stop, wait for it now. */
1961 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1962 {
1963 /* The new child has a pending SIGSTOP. We can't affect it until it
1964 hits the SIGSTOP, but we're already attached. */
1965 ret = my_waitpid (new_pid, &status, __WALL);
1966 if (ret == -1)
1967 perror_with_name (_("waiting for new child"));
1968 else if (ret != new_pid)
1969 internal_error (__FILE__, __LINE__,
1970 _("wait returned unexpected PID %d"), ret);
1971 else if (!WIFSTOPPED (status))
1972 internal_error (__FILE__, __LINE__,
1973 _("wait returned unexpected status 0x%x"), status);
1974 }
1975
1976 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1977
1978 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1979 {
1980 /* The arch-specific native code may need to know about new
1981 forks even if those end up never mapped to an
1982 inferior. */
1983 linux_target->low_new_fork (lp, new_pid);
1984 }
1985
1986 if (event == PTRACE_EVENT_FORK
1987 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1988 {
1989 /* Handle checkpointing by linux-fork.c here as a special
1990 case. We don't want the follow-fork-mode or 'catch fork'
1991 to interfere with this. */
1992
1993 /* This won't actually modify the breakpoint list, but will
1994 physically remove the breakpoints from the child. */
1995 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1996
1997 /* Retain child fork in ptrace (stopped) state. */
1998 if (!find_fork_pid (new_pid))
1999 add_fork (new_pid);
2000
2001 /* Report as spurious, so that infrun doesn't want to follow
2002 this fork. We're actually doing an infcall in
2003 linux-fork.c. */
2004 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2005
2006 /* Report the stop to the core. */
2007 return 0;
2008 }
2009
2010 if (event == PTRACE_EVENT_FORK)
2011 ourstatus->kind = TARGET_WAITKIND_FORKED;
2012 else if (event == PTRACE_EVENT_VFORK)
2013 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2014 else if (event == PTRACE_EVENT_CLONE)
2015 {
2016 struct lwp_info *new_lp;
2017
2018 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2019
2020 if (debug_linux_nat)
2021 fprintf_unfiltered (gdb_stdlog,
2022 "LHEW: Got clone event "
2023 "from LWP %d, new child is LWP %ld\n",
2024 pid, new_pid);
2025
2026 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2027 new_lp->stopped = 1;
2028 new_lp->resumed = 1;
2029
2030 /* If the thread_db layer is active, let it record the user
2031 level thread id and status, and add the thread to GDB's
2032 list. */
2033 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2034 {
2035 /* The process is not using thread_db. Add the LWP to
2036 GDB's list. */
2037 target_post_attach (new_lp->ptid.lwp ());
2038 add_thread (new_lp->ptid);
2039 }
2040
2041 /* Even if we're stopping the thread for some reason
2042 internal to this module, from the perspective of infrun
2043 and the user/frontend, this new thread is running until
2044 it next reports a stop. */
2045 set_running (new_lp->ptid, 1);
2046 set_executing (new_lp->ptid, 1);
2047
2048 if (WSTOPSIG (status) != SIGSTOP)
2049 {
2050 /* This can happen if someone starts sending signals to
2051 the new thread before it gets a chance to run, which
2052 have a lower number than SIGSTOP (e.g. SIGUSR1).
2053 This is an unlikely case, and harder to handle for
2054 fork / vfork than for clone, so we do not try - but
2055 we handle it for clone events here. */
2056
2057 new_lp->signalled = 1;
2058
2059 /* We created NEW_LP so it cannot yet contain STATUS. */
2060 gdb_assert (new_lp->status == 0);
2061
2062 /* Save the wait status to report later. */
2063 if (debug_linux_nat)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "LHEW: waitpid of new LWP %ld, "
2066 "saving status %s\n",
2067 (long) new_lp->ptid.lwp (),
2068 status_to_str (status));
2069 new_lp->status = status;
2070 }
2071 else if (report_thread_events)
2072 {
2073 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2074 new_lp->status = status;
2075 }
2076
2077 return 1;
2078 }
2079
2080 return 0;
2081 }
2082
2083 if (event == PTRACE_EVENT_EXEC)
2084 {
2085 if (debug_linux_nat)
2086 fprintf_unfiltered (gdb_stdlog,
2087 "LHEW: Got exec event from LWP %ld\n",
2088 lp->ptid.lwp ());
2089
2090 ourstatus->kind = TARGET_WAITKIND_EXECD;
2091 ourstatus->value.execd_pathname
2092 = xstrdup (linux_proc_pid_to_exec_file (pid));
2093
2094 /* The thread that execed must have been resumed, but, when a
2095 thread execs, it changes its tid to the tgid, and the old
2096 tgid thread might have not been resumed. */
2097 lp->resumed = 1;
2098 return 0;
2099 }
2100
2101 if (event == PTRACE_EVENT_VFORK_DONE)
2102 {
2103 if (current_inferior ()->waiting_for_vfork_done)
2104 {
2105 if (debug_linux_nat)
2106 fprintf_unfiltered (gdb_stdlog,
2107 "LHEW: Got expected PTRACE_EVENT_"
2108 "VFORK_DONE from LWP %ld: stopping\n",
2109 lp->ptid.lwp ());
2110
2111 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2112 return 0;
2113 }
2114
2115 if (debug_linux_nat)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2118 "from LWP %ld: ignoring\n",
2119 lp->ptid.lwp ());
2120 return 1;
2121 }
2122
2123 internal_error (__FILE__, __LINE__,
2124 _("unknown ptrace event %d"), event);
2125 }
2126
2127 /* Suspend waiting for a signal. We're mostly interested in
2128 SIGCHLD/SIGINT. */
2129
2130 static void
2131 wait_for_signal ()
2132 {
2133 if (debug_linux_nat)
2134 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2135 sigsuspend (&suspend_mask);
2136
2137 /* If the quit flag is set, it means that the user pressed Ctrl-C
2138 and we're debugging a process that is running on a separate
2139 terminal, so we must forward the Ctrl-C to the inferior. (If the
2140 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2141 inferior directly.) We must do this here because functions that
2142 need to block waiting for a signal loop forever until there's an
2143 event to report before returning back to the event loop. */
2144 if (!target_terminal::is_ours ())
2145 {
2146 if (check_quit_flag ())
2147 target_pass_ctrlc ();
2148 }
2149 }
2150
2151 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2152 exited. */
2153
2154 static int
2155 wait_lwp (struct lwp_info *lp)
2156 {
2157 pid_t pid;
2158 int status = 0;
2159 int thread_dead = 0;
2160 sigset_t prev_mask;
2161
2162 gdb_assert (!lp->stopped);
2163 gdb_assert (lp->status == 0);
2164
2165 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2166 block_child_signals (&prev_mask);
2167
2168 for (;;)
2169 {
2170 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2171 if (pid == -1 && errno == ECHILD)
2172 {
2173 /* The thread has previously exited. We need to delete it
2174 now because if this was a non-leader thread execing, we
2175 won't get an exit event. See comments on exec events at
2176 the top of the file. */
2177 thread_dead = 1;
2178 if (debug_linux_nat)
2179 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2180 target_pid_to_str (lp->ptid).c_str ());
2181 }
2182 if (pid != 0)
2183 break;
2184
2185 /* Bugs 10970, 12702.
2186 Thread group leader may have exited in which case we'll lock up in
2187 waitpid if there are other threads, even if they are all zombies too.
2188 Basically, we're not supposed to use waitpid this way.
2189 tkill(pid,0) cannot be used here as it gets ESRCH for both
2190 for zombie and running processes.
2191
2192 As a workaround, check if we're waiting for the thread group leader and
2193 if it's a zombie, and avoid calling waitpid if it is.
2194
2195 This is racy, what if the tgl becomes a zombie right after we check?
2196 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2197 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2198
2199 if (lp->ptid.pid () == lp->ptid.lwp ()
2200 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2201 {
2202 thread_dead = 1;
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog,
2205 "WL: Thread group leader %s vanished.\n",
2206 target_pid_to_str (lp->ptid).c_str ());
2207 break;
2208 }
2209
2210 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2211 get invoked despite our caller had them intentionally blocked by
2212 block_child_signals. This is sensitive only to the loop of
2213 linux_nat_wait_1 and there if we get called my_waitpid gets called
2214 again before it gets to sigsuspend so we can safely let the handlers
2215 get executed here. */
2216 wait_for_signal ();
2217 }
2218
2219 restore_child_signals_mask (&prev_mask);
2220
2221 if (!thread_dead)
2222 {
2223 gdb_assert (pid == lp->ptid.lwp ());
2224
2225 if (debug_linux_nat)
2226 {
2227 fprintf_unfiltered (gdb_stdlog,
2228 "WL: waitpid %s received %s\n",
2229 target_pid_to_str (lp->ptid).c_str (),
2230 status_to_str (status));
2231 }
2232
2233 /* Check if the thread has exited. */
2234 if (WIFEXITED (status) || WIFSIGNALED (status))
2235 {
2236 if (report_thread_events
2237 || lp->ptid.pid () == lp->ptid.lwp ())
2238 {
2239 if (debug_linux_nat)
2240 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2241 lp->ptid.pid ());
2242
2243 /* If this is the leader exiting, it means the whole
2244 process is gone. Store the status to report to the
2245 core. Store it in lp->waitstatus, because lp->status
2246 would be ambiguous (W_EXITCODE(0,0) == 0). */
2247 store_waitstatus (&lp->waitstatus, status);
2248 return 0;
2249 }
2250
2251 thread_dead = 1;
2252 if (debug_linux_nat)
2253 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2254 target_pid_to_str (lp->ptid).c_str ());
2255 }
2256 }
2257
2258 if (thread_dead)
2259 {
2260 exit_lwp (lp);
2261 return 0;
2262 }
2263
2264 gdb_assert (WIFSTOPPED (status));
2265 lp->stopped = 1;
2266
2267 if (lp->must_set_ptrace_flags)
2268 {
2269 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2270 int options = linux_nat_ptrace_options (inf->attach_flag);
2271
2272 linux_enable_event_reporting (lp->ptid.lwp (), options);
2273 lp->must_set_ptrace_flags = 0;
2274 }
2275
2276 /* Handle GNU/Linux's syscall SIGTRAPs. */
2277 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2278 {
2279 /* No longer need the sysgood bit. The ptrace event ends up
2280 recorded in lp->waitstatus if we care for it. We can carry
2281 on handling the event like a regular SIGTRAP from here
2282 on. */
2283 status = W_STOPCODE (SIGTRAP);
2284 if (linux_handle_syscall_trap (lp, 1))
2285 return wait_lwp (lp);
2286 }
2287 else
2288 {
2289 /* Almost all other ptrace-stops are known to be outside of system
2290 calls, with further exceptions in linux_handle_extended_wait. */
2291 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2292 }
2293
2294 /* Handle GNU/Linux's extended waitstatus for trace events. */
2295 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2296 && linux_is_extended_waitstatus (status))
2297 {
2298 if (debug_linux_nat)
2299 fprintf_unfiltered (gdb_stdlog,
2300 "WL: Handling extended status 0x%06x\n",
2301 status);
2302 linux_handle_extended_wait (lp, status);
2303 return 0;
2304 }
2305
2306 return status;
2307 }
2308
2309 /* Send a SIGSTOP to LP. */
2310
2311 static int
2312 stop_callback (struct lwp_info *lp)
2313 {
2314 if (!lp->stopped && !lp->signalled)
2315 {
2316 int ret;
2317
2318 if (debug_linux_nat)
2319 {
2320 fprintf_unfiltered (gdb_stdlog,
2321 "SC: kill %s **<SIGSTOP>**\n",
2322 target_pid_to_str (lp->ptid).c_str ());
2323 }
2324 errno = 0;
2325 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2326 if (debug_linux_nat)
2327 {
2328 fprintf_unfiltered (gdb_stdlog,
2329 "SC: lwp kill %d %s\n",
2330 ret,
2331 errno ? safe_strerror (errno) : "ERRNO-OK");
2332 }
2333
2334 lp->signalled = 1;
2335 gdb_assert (lp->status == 0);
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Request a stop on LWP. */
2342
2343 void
2344 linux_stop_lwp (struct lwp_info *lwp)
2345 {
2346 stop_callback (lwp);
2347 }
2348
2349 /* See linux-nat.h */
2350
2351 void
2352 linux_stop_and_wait_all_lwps (void)
2353 {
2354 /* Stop all LWP's ... */
2355 iterate_over_lwps (minus_one_ptid, stop_callback);
2356
2357 /* ... and wait until all of them have reported back that
2358 they're no longer running. */
2359 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2360 }
2361
2362 /* See linux-nat.h */
2363
2364 void
2365 linux_unstop_all_lwps (void)
2366 {
2367 iterate_over_lwps (minus_one_ptid,
2368 [] (struct lwp_info *info)
2369 {
2370 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2371 });
2372 }
2373
2374 /* Return non-zero if LWP PID has a pending SIGINT. */
2375
2376 static int
2377 linux_nat_has_pending_sigint (int pid)
2378 {
2379 sigset_t pending, blocked, ignored;
2380
2381 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2382
2383 if (sigismember (&pending, SIGINT)
2384 && !sigismember (&ignored, SIGINT))
2385 return 1;
2386
2387 return 0;
2388 }
2389
2390 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2391
2392 static int
2393 set_ignore_sigint (struct lwp_info *lp)
2394 {
2395 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2396 flag to consume the next one. */
2397 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2398 && WSTOPSIG (lp->status) == SIGINT)
2399 lp->status = 0;
2400 else
2401 lp->ignore_sigint = 1;
2402
2403 return 0;
2404 }
2405
2406 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2407 This function is called after we know the LWP has stopped; if the LWP
2408 stopped before the expected SIGINT was delivered, then it will never have
2409 arrived. Also, if the signal was delivered to a shared queue and consumed
2410 by a different thread, it will never be delivered to this LWP. */
2411
2412 static void
2413 maybe_clear_ignore_sigint (struct lwp_info *lp)
2414 {
2415 if (!lp->ignore_sigint)
2416 return;
2417
2418 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2419 {
2420 if (debug_linux_nat)
2421 fprintf_unfiltered (gdb_stdlog,
2422 "MCIS: Clearing bogus flag for %s\n",
2423 target_pid_to_str (lp->ptid).c_str ());
2424 lp->ignore_sigint = 0;
2425 }
2426 }
2427
2428 /* Fetch the possible triggered data watchpoint info and store it in
2429 LP.
2430
2431 On some archs, like x86, that use debug registers to set
2432 watchpoints, it's possible that the way to know which watched
2433 address trapped, is to check the register that is used to select
2434 which address to watch. Problem is, between setting the watchpoint
2435 and reading back which data address trapped, the user may change
2436 the set of watchpoints, and, as a consequence, GDB changes the
2437 debug registers in the inferior. To avoid reading back a stale
2438 stopped-data-address when that happens, we cache in LP the fact
2439 that a watchpoint trapped, and the corresponding data address, as
2440 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2441 registers meanwhile, we have the cached data we can rely on. */
2442
2443 static int
2444 check_stopped_by_watchpoint (struct lwp_info *lp)
2445 {
2446 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2447 inferior_ptid = lp->ptid;
2448
2449 if (linux_target->low_stopped_by_watchpoint ())
2450 {
2451 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2452 lp->stopped_data_address_p
2453 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2454 }
2455
2456 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2457 }
2458
2459 /* Returns true if the LWP had stopped for a watchpoint. */
2460
2461 bool
2462 linux_nat_target::stopped_by_watchpoint ()
2463 {
2464 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2465
2466 gdb_assert (lp != NULL);
2467
2468 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2469 }
2470
2471 bool
2472 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2473 {
2474 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2475
2476 gdb_assert (lp != NULL);
2477
2478 *addr_p = lp->stopped_data_address;
2479
2480 return lp->stopped_data_address_p;
2481 }
2482
2483 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2484
2485 bool
2486 linux_nat_target::low_status_is_event (int status)
2487 {
2488 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2489 }
2490
2491 /* Wait until LP is stopped. */
2492
2493 static int
2494 stop_wait_callback (struct lwp_info *lp)
2495 {
2496 struct inferior *inf = find_inferior_ptid (lp->ptid);
2497
2498 /* If this is a vfork parent, bail out, it is not going to report
2499 any SIGSTOP until the vfork is done with. */
2500 if (inf->vfork_child != NULL)
2501 return 0;
2502
2503 if (!lp->stopped)
2504 {
2505 int status;
2506
2507 status = wait_lwp (lp);
2508 if (status == 0)
2509 return 0;
2510
2511 if (lp->ignore_sigint && WIFSTOPPED (status)
2512 && WSTOPSIG (status) == SIGINT)
2513 {
2514 lp->ignore_sigint = 0;
2515
2516 errno = 0;
2517 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2518 lp->stopped = 0;
2519 if (debug_linux_nat)
2520 fprintf_unfiltered (gdb_stdlog,
2521 "PTRACE_CONT %s, 0, 0 (%s) "
2522 "(discarding SIGINT)\n",
2523 target_pid_to_str (lp->ptid).c_str (),
2524 errno ? safe_strerror (errno) : "OK");
2525
2526 return stop_wait_callback (lp);
2527 }
2528
2529 maybe_clear_ignore_sigint (lp);
2530
2531 if (WSTOPSIG (status) != SIGSTOP)
2532 {
2533 /* The thread was stopped with a signal other than SIGSTOP. */
2534
2535 if (debug_linux_nat)
2536 fprintf_unfiltered (gdb_stdlog,
2537 "SWC: Pending event %s in %s\n",
2538 status_to_str ((int) status),
2539 target_pid_to_str (lp->ptid).c_str ());
2540
2541 /* Save the sigtrap event. */
2542 lp->status = status;
2543 gdb_assert (lp->signalled);
2544 save_stop_reason (lp);
2545 }
2546 else
2547 {
2548 /* We caught the SIGSTOP that we intended to catch. */
2549
2550 if (debug_linux_nat)
2551 fprintf_unfiltered (gdb_stdlog,
2552 "SWC: Expected SIGSTOP caught for %s.\n",
2553 target_pid_to_str (lp->ptid).c_str ());
2554
2555 lp->signalled = 0;
2556
2557 /* If we are waiting for this stop so we can report the thread
2558 stopped then we need to record this status. Otherwise, we can
2559 now discard this stop event. */
2560 if (lp->last_resume_kind == resume_stop)
2561 {
2562 lp->status = status;
2563 save_stop_reason (lp);
2564 }
2565 }
2566 }
2567
2568 return 0;
2569 }
2570
2571 /* Return non-zero if LP has a wait status pending. Discard the
2572 pending event and resume the LWP if the event that originally
2573 caused the stop became uninteresting. */
2574
2575 static int
2576 status_callback (struct lwp_info *lp)
2577 {
2578 /* Only report a pending wait status if we pretend that this has
2579 indeed been resumed. */
2580 if (!lp->resumed)
2581 return 0;
2582
2583 if (!lwp_status_pending_p (lp))
2584 return 0;
2585
2586 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2587 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2588 {
2589 struct regcache *regcache = get_thread_regcache (lp->ptid);
2590 CORE_ADDR pc;
2591 int discard = 0;
2592
2593 pc = regcache_read_pc (regcache);
2594
2595 if (pc != lp->stop_pc)
2596 {
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "SC: PC of %s changed. was=%s, now=%s\n",
2600 target_pid_to_str (lp->ptid).c_str (),
2601 paddress (target_gdbarch (), lp->stop_pc),
2602 paddress (target_gdbarch (), pc));
2603 discard = 1;
2604 }
2605
2606 #if !USE_SIGTRAP_SIGINFO
2607 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2608 {
2609 if (debug_linux_nat)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "SC: previous breakpoint of %s, at %s gone\n",
2612 target_pid_to_str (lp->ptid).c_str (),
2613 paddress (target_gdbarch (), lp->stop_pc));
2614
2615 discard = 1;
2616 }
2617 #endif
2618
2619 if (discard)
2620 {
2621 if (debug_linux_nat)
2622 fprintf_unfiltered (gdb_stdlog,
2623 "SC: pending event of %s cancelled.\n",
2624 target_pid_to_str (lp->ptid).c_str ());
2625
2626 lp->status = 0;
2627 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2628 return 0;
2629 }
2630 }
2631
2632 return 1;
2633 }
2634
2635 /* Count the LWP's that have had events. */
2636
2637 static int
2638 count_events_callback (struct lwp_info *lp, int *count)
2639 {
2640 gdb_assert (count != NULL);
2641
2642 /* Select only resumed LWPs that have an event pending. */
2643 if (lp->resumed && lwp_status_pending_p (lp))
2644 (*count)++;
2645
2646 return 0;
2647 }
2648
2649 /* Select the LWP (if any) that is currently being single-stepped. */
2650
2651 static int
2652 select_singlestep_lwp_callback (struct lwp_info *lp)
2653 {
2654 if (lp->last_resume_kind == resume_step
2655 && lp->status != 0)
2656 return 1;
2657 else
2658 return 0;
2659 }
2660
2661 /* Returns true if LP has a status pending. */
2662
2663 static int
2664 lwp_status_pending_p (struct lwp_info *lp)
2665 {
2666 /* We check for lp->waitstatus in addition to lp->status, because we
2667 can have pending process exits recorded in lp->status and
2668 W_EXITCODE(0,0) happens to be 0. */
2669 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2670 }
2671
2672 /* Select the Nth LWP that has had an event. */
2673
2674 static int
2675 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2676 {
2677 gdb_assert (selector != NULL);
2678
2679 /* Select only resumed LWPs that have an event pending. */
2680 if (lp->resumed && lwp_status_pending_p (lp))
2681 if ((*selector)-- == 0)
2682 return 1;
2683
2684 return 0;
2685 }
2686
2687 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2688 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2689 and save the result in the LWP's stop_reason field. If it stopped
2690 for a breakpoint, decrement the PC if necessary on the lwp's
2691 architecture. */
2692
2693 static void
2694 save_stop_reason (struct lwp_info *lp)
2695 {
2696 struct regcache *regcache;
2697 struct gdbarch *gdbarch;
2698 CORE_ADDR pc;
2699 CORE_ADDR sw_bp_pc;
2700 #if USE_SIGTRAP_SIGINFO
2701 siginfo_t siginfo;
2702 #endif
2703
2704 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2705 gdb_assert (lp->status != 0);
2706
2707 if (!linux_target->low_status_is_event (lp->status))
2708 return;
2709
2710 regcache = get_thread_regcache (lp->ptid);
2711 gdbarch = regcache->arch ();
2712
2713 pc = regcache_read_pc (regcache);
2714 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2715
2716 #if USE_SIGTRAP_SIGINFO
2717 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2718 {
2719 if (siginfo.si_signo == SIGTRAP)
2720 {
2721 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2722 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2723 {
2724 /* The si_code is ambiguous on this arch -- check debug
2725 registers. */
2726 if (!check_stopped_by_watchpoint (lp))
2727 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2728 }
2729 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2730 {
2731 /* If we determine the LWP stopped for a SW breakpoint,
2732 trust it. Particularly don't check watchpoint
2733 registers, because at least on s390, we'd find
2734 stopped-by-watchpoint as long as there's a watchpoint
2735 set. */
2736 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2737 }
2738 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2739 {
2740 /* This can indicate either a hardware breakpoint or
2741 hardware watchpoint. Check debug registers. */
2742 if (!check_stopped_by_watchpoint (lp))
2743 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2744 }
2745 else if (siginfo.si_code == TRAP_TRACE)
2746 {
2747 if (debug_linux_nat)
2748 fprintf_unfiltered (gdb_stdlog,
2749 "CSBB: %s stopped by trace\n",
2750 target_pid_to_str (lp->ptid).c_str ());
2751
2752 /* We may have single stepped an instruction that
2753 triggered a watchpoint. In that case, on some
2754 architectures (such as x86), instead of TRAP_HWBKPT,
2755 si_code indicates TRAP_TRACE, and we need to check
2756 the debug registers separately. */
2757 check_stopped_by_watchpoint (lp);
2758 }
2759 }
2760 }
2761 #else
2762 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2763 && software_breakpoint_inserted_here_p (regcache->aspace (),
2764 sw_bp_pc))
2765 {
2766 /* The LWP was either continued, or stepped a software
2767 breakpoint instruction. */
2768 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2769 }
2770
2771 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2772 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2773
2774 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2775 check_stopped_by_watchpoint (lp);
2776 #endif
2777
2778 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2779 {
2780 if (debug_linux_nat)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "CSBB: %s stopped by software breakpoint\n",
2783 target_pid_to_str (lp->ptid).c_str ());
2784
2785 /* Back up the PC if necessary. */
2786 if (pc != sw_bp_pc)
2787 regcache_write_pc (regcache, sw_bp_pc);
2788
2789 /* Update this so we record the correct stop PC below. */
2790 pc = sw_bp_pc;
2791 }
2792 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2793 {
2794 if (debug_linux_nat)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "CSBB: %s stopped by hardware breakpoint\n",
2797 target_pid_to_str (lp->ptid).c_str ());
2798 }
2799 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2800 {
2801 if (debug_linux_nat)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "CSBB: %s stopped by hardware watchpoint\n",
2804 target_pid_to_str (lp->ptid).c_str ());
2805 }
2806
2807 lp->stop_pc = pc;
2808 }
2809
2810
2811 /* Returns true if the LWP had stopped for a software breakpoint. */
2812
2813 bool
2814 linux_nat_target::stopped_by_sw_breakpoint ()
2815 {
2816 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2817
2818 gdb_assert (lp != NULL);
2819
2820 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2821 }
2822
2823 /* Implement the supports_stopped_by_sw_breakpoint method. */
2824
2825 bool
2826 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2827 {
2828 return USE_SIGTRAP_SIGINFO;
2829 }
2830
2831 /* Returns true if the LWP had stopped for a hardware
2832 breakpoint/watchpoint. */
2833
2834 bool
2835 linux_nat_target::stopped_by_hw_breakpoint ()
2836 {
2837 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2838
2839 gdb_assert (lp != NULL);
2840
2841 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2842 }
2843
2844 /* Implement the supports_stopped_by_hw_breakpoint method. */
2845
2846 bool
2847 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2848 {
2849 return USE_SIGTRAP_SIGINFO;
2850 }
2851
2852 /* Select one LWP out of those that have events pending. */
2853
2854 static void
2855 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2856 {
2857 int num_events = 0;
2858 int random_selector;
2859 struct lwp_info *event_lp = NULL;
2860
2861 /* Record the wait status for the original LWP. */
2862 (*orig_lp)->status = *status;
2863
2864 /* In all-stop, give preference to the LWP that is being
2865 single-stepped. There will be at most one, and it will be the
2866 LWP that the core is most interested in. If we didn't do this,
2867 then we'd have to handle pending step SIGTRAPs somehow in case
2868 the core later continues the previously-stepped thread, as
2869 otherwise we'd report the pending SIGTRAP then, and the core, not
2870 having stepped the thread, wouldn't understand what the trap was
2871 for, and therefore would report it to the user as a random
2872 signal. */
2873 if (!target_is_non_stop_p ())
2874 {
2875 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2876 if (event_lp != NULL)
2877 {
2878 if (debug_linux_nat)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "SEL: Select single-step %s\n",
2881 target_pid_to_str (event_lp->ptid).c_str ());
2882 }
2883 }
2884
2885 if (event_lp == NULL)
2886 {
2887 /* Pick one at random, out of those which have had events. */
2888
2889 /* First see how many events we have. */
2890 iterate_over_lwps (filter,
2891 [&] (struct lwp_info *info)
2892 {
2893 return count_events_callback (info, &num_events);
2894 });
2895 gdb_assert (num_events > 0);
2896
2897 /* Now randomly pick a LWP out of those that have had
2898 events. */
2899 random_selector = (int)
2900 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2901
2902 if (debug_linux_nat && num_events > 1)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "SEL: Found %d events, selecting #%d\n",
2905 num_events, random_selector);
2906
2907 event_lp
2908 = (iterate_over_lwps
2909 (filter,
2910 [&] (struct lwp_info *info)
2911 {
2912 return select_event_lwp_callback (info,
2913 &random_selector);
2914 }));
2915 }
2916
2917 if (event_lp != NULL)
2918 {
2919 /* Switch the event LWP. */
2920 *orig_lp = event_lp;
2921 *status = event_lp->status;
2922 }
2923
2924 /* Flush the wait status for the event LWP. */
2925 (*orig_lp)->status = 0;
2926 }
2927
2928 /* Return non-zero if LP has been resumed. */
2929
2930 static int
2931 resumed_callback (struct lwp_info *lp)
2932 {
2933 return lp->resumed;
2934 }
2935
2936 /* Check if we should go on and pass this event to common code.
2937 Return the affected lwp if we are, or NULL otherwise. */
2938
2939 static struct lwp_info *
2940 linux_nat_filter_event (int lwpid, int status)
2941 {
2942 struct lwp_info *lp;
2943 int event = linux_ptrace_get_extended_event (status);
2944
2945 lp = find_lwp_pid (ptid_t (lwpid));
2946
2947 /* Check for stop events reported by a process we didn't already
2948 know about - anything not already in our LWP list.
2949
2950 If we're expecting to receive stopped processes after
2951 fork, vfork, and clone events, then we'll just add the
2952 new one to our list and go back to waiting for the event
2953 to be reported - the stopped process might be returned
2954 from waitpid before or after the event is.
2955
2956 But note the case of a non-leader thread exec'ing after the
2957 leader having exited, and gone from our lists. The non-leader
2958 thread changes its tid to the tgid. */
2959
2960 if (WIFSTOPPED (status) && lp == NULL
2961 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2962 {
2963 /* A multi-thread exec after we had seen the leader exiting. */
2964 if (debug_linux_nat)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "LLW: Re-adding thread group leader LWP %d.\n",
2967 lwpid);
2968
2969 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2970 lp->stopped = 1;
2971 lp->resumed = 1;
2972 add_thread (lp->ptid);
2973 }
2974
2975 if (WIFSTOPPED (status) && !lp)
2976 {
2977 if (debug_linux_nat)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2980 (long) lwpid, status_to_str (status));
2981 add_to_pid_list (&stopped_pids, lwpid, status);
2982 return NULL;
2983 }
2984
2985 /* Make sure we don't report an event for the exit of an LWP not in
2986 our list, i.e. not part of the current process. This can happen
2987 if we detach from a program we originally forked and then it
2988 exits. */
2989 if (!WIFSTOPPED (status) && !lp)
2990 return NULL;
2991
2992 /* This LWP is stopped now. (And if dead, this prevents it from
2993 ever being continued.) */
2994 lp->stopped = 1;
2995
2996 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2997 {
2998 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2999 int options = linux_nat_ptrace_options (inf->attach_flag);
3000
3001 linux_enable_event_reporting (lp->ptid.lwp (), options);
3002 lp->must_set_ptrace_flags = 0;
3003 }
3004
3005 /* Handle GNU/Linux's syscall SIGTRAPs. */
3006 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3007 {
3008 /* No longer need the sysgood bit. The ptrace event ends up
3009 recorded in lp->waitstatus if we care for it. We can carry
3010 on handling the event like a regular SIGTRAP from here
3011 on. */
3012 status = W_STOPCODE (SIGTRAP);
3013 if (linux_handle_syscall_trap (lp, 0))
3014 return NULL;
3015 }
3016 else
3017 {
3018 /* Almost all other ptrace-stops are known to be outside of system
3019 calls, with further exceptions in linux_handle_extended_wait. */
3020 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3021 }
3022
3023 /* Handle GNU/Linux's extended waitstatus for trace events. */
3024 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3025 && linux_is_extended_waitstatus (status))
3026 {
3027 if (debug_linux_nat)
3028 fprintf_unfiltered (gdb_stdlog,
3029 "LLW: Handling extended status 0x%06x\n",
3030 status);
3031 if (linux_handle_extended_wait (lp, status))
3032 return NULL;
3033 }
3034
3035 /* Check if the thread has exited. */
3036 if (WIFEXITED (status) || WIFSIGNALED (status))
3037 {
3038 if (!report_thread_events
3039 && num_lwps (lp->ptid.pid ()) > 1)
3040 {
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "LLW: %s exited.\n",
3044 target_pid_to_str (lp->ptid).c_str ());
3045
3046 /* If there is at least one more LWP, then the exit signal
3047 was not the end of the debugged application and should be
3048 ignored. */
3049 exit_lwp (lp);
3050 return NULL;
3051 }
3052
3053 /* Note that even if the leader was ptrace-stopped, it can still
3054 exit, if e.g., some other thread brings down the whole
3055 process (calls `exit'). So don't assert that the lwp is
3056 resumed. */
3057 if (debug_linux_nat)
3058 fprintf_unfiltered (gdb_stdlog,
3059 "LWP %ld exited (resumed=%d)\n",
3060 lp->ptid.lwp (), lp->resumed);
3061
3062 /* Dead LWP's aren't expected to reported a pending sigstop. */
3063 lp->signalled = 0;
3064
3065 /* Store the pending event in the waitstatus, because
3066 W_EXITCODE(0,0) == 0. */
3067 store_waitstatus (&lp->waitstatus, status);
3068 return lp;
3069 }
3070
3071 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3072 an attempt to stop an LWP. */
3073 if (lp->signalled
3074 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3075 {
3076 lp->signalled = 0;
3077
3078 if (lp->last_resume_kind == resume_stop)
3079 {
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LLW: resume_stop SIGSTOP caught for %s.\n",
3083 target_pid_to_str (lp->ptid).c_str ());
3084 }
3085 else
3086 {
3087 /* This is a delayed SIGSTOP. Filter out the event. */
3088
3089 if (debug_linux_nat)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3092 lp->step ?
3093 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3094 target_pid_to_str (lp->ptid).c_str ());
3095
3096 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3097 gdb_assert (lp->resumed);
3098 return NULL;
3099 }
3100 }
3101
3102 /* Make sure we don't report a SIGINT that we have already displayed
3103 for another thread. */
3104 if (lp->ignore_sigint
3105 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3106 {
3107 if (debug_linux_nat)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "LLW: Delayed SIGINT caught for %s.\n",
3110 target_pid_to_str (lp->ptid).c_str ());
3111
3112 /* This is a delayed SIGINT. */
3113 lp->ignore_sigint = 0;
3114
3115 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3116 if (debug_linux_nat)
3117 fprintf_unfiltered (gdb_stdlog,
3118 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3119 lp->step ?
3120 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3121 target_pid_to_str (lp->ptid).c_str ());
3122 gdb_assert (lp->resumed);
3123
3124 /* Discard the event. */
3125 return NULL;
3126 }
3127
3128 /* Don't report signals that GDB isn't interested in, such as
3129 signals that are neither printed nor stopped upon. Stopping all
3130 threads can be a bit time-consuming so if we want decent
3131 performance with heavily multi-threaded programs, especially when
3132 they're using a high frequency timer, we'd better avoid it if we
3133 can. */
3134 if (WIFSTOPPED (status))
3135 {
3136 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3137
3138 if (!target_is_non_stop_p ())
3139 {
3140 /* Only do the below in all-stop, as we currently use SIGSTOP
3141 to implement target_stop (see linux_nat_stop) in
3142 non-stop. */
3143 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3144 {
3145 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3146 forwarded to the entire process group, that is, all LWPs
3147 will receive it - unless they're using CLONE_THREAD to
3148 share signals. Since we only want to report it once, we
3149 mark it as ignored for all LWPs except this one. */
3150 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3151 lp->ignore_sigint = 0;
3152 }
3153 else
3154 maybe_clear_ignore_sigint (lp);
3155 }
3156
3157 /* When using hardware single-step, we need to report every signal.
3158 Otherwise, signals in pass_mask may be short-circuited
3159 except signals that might be caused by a breakpoint. */
3160 if (!lp->step
3161 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3162 && !linux_wstatus_maybe_breakpoint (status))
3163 {
3164 linux_resume_one_lwp (lp, lp->step, signo);
3165 if (debug_linux_nat)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "LLW: %s %s, %s (preempt 'handle')\n",
3168 lp->step ?
3169 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3170 target_pid_to_str (lp->ptid).c_str (),
3171 (signo != GDB_SIGNAL_0
3172 ? strsignal (gdb_signal_to_host (signo))
3173 : "0"));
3174 return NULL;
3175 }
3176 }
3177
3178 /* An interesting event. */
3179 gdb_assert (lp);
3180 lp->status = status;
3181 save_stop_reason (lp);
3182 return lp;
3183 }
3184
3185 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3186 their exits until all other threads in the group have exited. */
3187
3188 static void
3189 check_zombie_leaders (void)
3190 {
3191 for (inferior *inf : all_inferiors ())
3192 {
3193 struct lwp_info *leader_lp;
3194
3195 if (inf->pid == 0)
3196 continue;
3197
3198 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3199 if (leader_lp != NULL
3200 /* Check if there are other threads in the group, as we may
3201 have raced with the inferior simply exiting. */
3202 && num_lwps (inf->pid) > 1
3203 && linux_proc_pid_is_zombie (inf->pid))
3204 {
3205 if (debug_linux_nat)
3206 fprintf_unfiltered (gdb_stdlog,
3207 "CZL: Thread group leader %d zombie "
3208 "(it exited, or another thread execd).\n",
3209 inf->pid);
3210
3211 /* A leader zombie can mean one of two things:
3212
3213 - It exited, and there's an exit status pending
3214 available, or only the leader exited (not the whole
3215 program). In the latter case, we can't waitpid the
3216 leader's exit status until all other threads are gone.
3217
3218 - There are 3 or more threads in the group, and a thread
3219 other than the leader exec'd. See comments on exec
3220 events at the top of the file. We could try
3221 distinguishing the exit and exec cases, by waiting once
3222 more, and seeing if something comes out, but it doesn't
3223 sound useful. The previous leader _does_ go away, and
3224 we'll re-add the new one once we see the exec event
3225 (which is just the same as what would happen if the
3226 previous leader did exit voluntarily before some other
3227 thread execs). */
3228
3229 if (debug_linux_nat)
3230 fprintf_unfiltered (gdb_stdlog,
3231 "CZL: Thread group leader %d vanished.\n",
3232 inf->pid);
3233 exit_lwp (leader_lp);
3234 }
3235 }
3236 }
3237
3238 /* Convenience function that is called when the kernel reports an exit
3239 event. This decides whether to report the event to GDB as a
3240 process exit event, a thread exit event, or to suppress the
3241 event. */
3242
3243 static ptid_t
3244 filter_exit_event (struct lwp_info *event_child,
3245 struct target_waitstatus *ourstatus)
3246 {
3247 ptid_t ptid = event_child->ptid;
3248
3249 if (num_lwps (ptid.pid ()) > 1)
3250 {
3251 if (report_thread_events)
3252 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3253 else
3254 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3255
3256 exit_lwp (event_child);
3257 }
3258
3259 return ptid;
3260 }
3261
3262 static ptid_t
3263 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3264 int target_options)
3265 {
3266 sigset_t prev_mask;
3267 enum resume_kind last_resume_kind;
3268 struct lwp_info *lp;
3269 int status;
3270
3271 if (debug_linux_nat)
3272 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3273
3274 /* The first time we get here after starting a new inferior, we may
3275 not have added it to the LWP list yet - this is the earliest
3276 moment at which we know its PID. */
3277 if (inferior_ptid.is_pid ())
3278 {
3279 /* Upgrade the main thread's ptid. */
3280 thread_change_ptid (inferior_ptid,
3281 ptid_t (inferior_ptid.pid (),
3282 inferior_ptid.pid (), 0));
3283
3284 lp = add_initial_lwp (inferior_ptid);
3285 lp->resumed = 1;
3286 }
3287
3288 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3289 block_child_signals (&prev_mask);
3290
3291 /* First check if there is a LWP with a wait status pending. */
3292 lp = iterate_over_lwps (ptid, status_callback);
3293 if (lp != NULL)
3294 {
3295 if (debug_linux_nat)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: Using pending wait status %s for %s.\n",
3298 status_to_str (lp->status),
3299 target_pid_to_str (lp->ptid).c_str ());
3300 }
3301
3302 /* But if we don't find a pending event, we'll have to wait. Always
3303 pull all events out of the kernel. We'll randomly select an
3304 event LWP out of all that have events, to prevent starvation. */
3305
3306 while (lp == NULL)
3307 {
3308 pid_t lwpid;
3309
3310 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3311 quirks:
3312
3313 - If the thread group leader exits while other threads in the
3314 thread group still exist, waitpid(TGID, ...) hangs. That
3315 waitpid won't return an exit status until the other threads
3316 in the group are reapped.
3317
3318 - When a non-leader thread execs, that thread just vanishes
3319 without reporting an exit (so we'd hang if we waited for it
3320 explicitly in that case). The exec event is reported to
3321 the TGID pid. */
3322
3323 errno = 0;
3324 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3325
3326 if (debug_linux_nat)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "LNW: waitpid(-1, ...) returned %d, %s\n",
3329 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3330
3331 if (lwpid > 0)
3332 {
3333 if (debug_linux_nat)
3334 {
3335 fprintf_unfiltered (gdb_stdlog,
3336 "LLW: waitpid %ld received %s\n",
3337 (long) lwpid, status_to_str (status));
3338 }
3339
3340 linux_nat_filter_event (lwpid, status);
3341 /* Retry until nothing comes out of waitpid. A single
3342 SIGCHLD can indicate more than one child stopped. */
3343 continue;
3344 }
3345
3346 /* Now that we've pulled all events out of the kernel, resume
3347 LWPs that don't have an interesting event to report. */
3348 iterate_over_lwps (minus_one_ptid,
3349 [] (struct lwp_info *info)
3350 {
3351 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3352 });
3353
3354 /* ... and find an LWP with a status to report to the core, if
3355 any. */
3356 lp = iterate_over_lwps (ptid, status_callback);
3357 if (lp != NULL)
3358 break;
3359
3360 /* Check for zombie thread group leaders. Those can't be reaped
3361 until all other threads in the thread group are. */
3362 check_zombie_leaders ();
3363
3364 /* If there are no resumed children left, bail. We'd be stuck
3365 forever in the sigsuspend call below otherwise. */
3366 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3367 {
3368 if (debug_linux_nat)
3369 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3370
3371 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3372
3373 restore_child_signals_mask (&prev_mask);
3374 return minus_one_ptid;
3375 }
3376
3377 /* No interesting event to report to the core. */
3378
3379 if (target_options & TARGET_WNOHANG)
3380 {
3381 if (debug_linux_nat)
3382 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3383
3384 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3385 restore_child_signals_mask (&prev_mask);
3386 return minus_one_ptid;
3387 }
3388
3389 /* We shouldn't end up here unless we want to try again. */
3390 gdb_assert (lp == NULL);
3391
3392 /* Block until we get an event reported with SIGCHLD. */
3393 wait_for_signal ();
3394 }
3395
3396 gdb_assert (lp);
3397
3398 status = lp->status;
3399 lp->status = 0;
3400
3401 if (!target_is_non_stop_p ())
3402 {
3403 /* Now stop all other LWP's ... */
3404 iterate_over_lwps (minus_one_ptid, stop_callback);
3405
3406 /* ... and wait until all of them have reported back that
3407 they're no longer running. */
3408 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3409 }
3410
3411 /* If we're not waiting for a specific LWP, choose an event LWP from
3412 among those that have had events. Giving equal priority to all
3413 LWPs that have had events helps prevent starvation. */
3414 if (ptid == minus_one_ptid || ptid.is_pid ())
3415 select_event_lwp (ptid, &lp, &status);
3416
3417 gdb_assert (lp != NULL);
3418
3419 /* Now that we've selected our final event LWP, un-adjust its PC if
3420 it was a software breakpoint, and we can't reliably support the
3421 "stopped by software breakpoint" stop reason. */
3422 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3423 && !USE_SIGTRAP_SIGINFO)
3424 {
3425 struct regcache *regcache = get_thread_regcache (lp->ptid);
3426 struct gdbarch *gdbarch = regcache->arch ();
3427 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3428
3429 if (decr_pc != 0)
3430 {
3431 CORE_ADDR pc;
3432
3433 pc = regcache_read_pc (regcache);
3434 regcache_write_pc (regcache, pc + decr_pc);
3435 }
3436 }
3437
3438 /* We'll need this to determine whether to report a SIGSTOP as
3439 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3440 clears it. */
3441 last_resume_kind = lp->last_resume_kind;
3442
3443 if (!target_is_non_stop_p ())
3444 {
3445 /* In all-stop, from the core's perspective, all LWPs are now
3446 stopped until a new resume action is sent over. */
3447 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3448 }
3449 else
3450 {
3451 resume_clear_callback (lp);
3452 }
3453
3454 if (linux_target->low_status_is_event (status))
3455 {
3456 if (debug_linux_nat)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "LLW: trap ptid is %s.\n",
3459 target_pid_to_str (lp->ptid).c_str ());
3460 }
3461
3462 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3463 {
3464 *ourstatus = lp->waitstatus;
3465 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3466 }
3467 else
3468 store_waitstatus (ourstatus, status);
3469
3470 if (debug_linux_nat)
3471 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3472
3473 restore_child_signals_mask (&prev_mask);
3474
3475 if (last_resume_kind == resume_stop
3476 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3477 && WSTOPSIG (status) == SIGSTOP)
3478 {
3479 /* A thread that has been requested to stop by GDB with
3480 target_stop, and it stopped cleanly, so report as SIG0. The
3481 use of SIGSTOP is an implementation detail. */
3482 ourstatus->value.sig = GDB_SIGNAL_0;
3483 }
3484
3485 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3486 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3487 lp->core = -1;
3488 else
3489 lp->core = linux_common_core_of_thread (lp->ptid);
3490
3491 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3492 return filter_exit_event (lp, ourstatus);
3493
3494 return lp->ptid;
3495 }
3496
3497 /* Resume LWPs that are currently stopped without any pending status
3498 to report, but are resumed from the core's perspective. */
3499
3500 static int
3501 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3502 {
3503 if (!lp->stopped)
3504 {
3505 if (debug_linux_nat)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "RSRL: NOT resuming LWP %s, not stopped\n",
3508 target_pid_to_str (lp->ptid).c_str ());
3509 }
3510 else if (!lp->resumed)
3511 {
3512 if (debug_linux_nat)
3513 fprintf_unfiltered (gdb_stdlog,
3514 "RSRL: NOT resuming LWP %s, not resumed\n",
3515 target_pid_to_str (lp->ptid).c_str ());
3516 }
3517 else if (lwp_status_pending_p (lp))
3518 {
3519 if (debug_linux_nat)
3520 fprintf_unfiltered (gdb_stdlog,
3521 "RSRL: NOT resuming LWP %s, has pending status\n",
3522 target_pid_to_str (lp->ptid).c_str ());
3523 }
3524 else
3525 {
3526 struct regcache *regcache = get_thread_regcache (lp->ptid);
3527 struct gdbarch *gdbarch = regcache->arch ();
3528
3529 TRY
3530 {
3531 CORE_ADDR pc = regcache_read_pc (regcache);
3532 int leave_stopped = 0;
3533
3534 /* Don't bother if there's a breakpoint at PC that we'd hit
3535 immediately, and we're not waiting for this LWP. */
3536 if (!lp->ptid.matches (wait_ptid))
3537 {
3538 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3539 leave_stopped = 1;
3540 }
3541
3542 if (!leave_stopped)
3543 {
3544 if (debug_linux_nat)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "RSRL: resuming stopped-resumed LWP %s at "
3547 "%s: step=%d\n",
3548 target_pid_to_str (lp->ptid).c_str (),
3549 paddress (gdbarch, pc),
3550 lp->step);
3551
3552 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3553 }
3554 }
3555 CATCH (ex, RETURN_MASK_ERROR)
3556 {
3557 if (!check_ptrace_stopped_lwp_gone (lp))
3558 throw_exception (ex);
3559 }
3560 END_CATCH
3561 }
3562
3563 return 0;
3564 }
3565
3566 ptid_t
3567 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3568 int target_options)
3569 {
3570 ptid_t event_ptid;
3571
3572 if (debug_linux_nat)
3573 {
3574 std::string options_string = target_options_to_string (target_options);
3575 fprintf_unfiltered (gdb_stdlog,
3576 "linux_nat_wait: [%s], [%s]\n",
3577 target_pid_to_str (ptid).c_str (),
3578 options_string.c_str ());
3579 }
3580
3581 /* Flush the async file first. */
3582 if (target_is_async_p ())
3583 async_file_flush ();
3584
3585 /* Resume LWPs that are currently stopped without any pending status
3586 to report, but are resumed from the core's perspective. LWPs get
3587 in this state if we find them stopping at a time we're not
3588 interested in reporting the event (target_wait on a
3589 specific_process, for example, see linux_nat_wait_1), and
3590 meanwhile the event became uninteresting. Don't bother resuming
3591 LWPs we're not going to wait for if they'd stop immediately. */
3592 if (target_is_non_stop_p ())
3593 iterate_over_lwps (minus_one_ptid,
3594 [=] (struct lwp_info *info)
3595 {
3596 return resume_stopped_resumed_lwps (info, ptid);
3597 });
3598
3599 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3600
3601 /* If we requested any event, and something came out, assume there
3602 may be more. If we requested a specific lwp or process, also
3603 assume there may be more. */
3604 if (target_is_async_p ()
3605 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3606 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3607 || ptid != minus_one_ptid))
3608 async_file_mark ();
3609
3610 return event_ptid;
3611 }
3612
3613 /* Kill one LWP. */
3614
3615 static void
3616 kill_one_lwp (pid_t pid)
3617 {
3618 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3619
3620 errno = 0;
3621 kill_lwp (pid, SIGKILL);
3622 if (debug_linux_nat)
3623 {
3624 int save_errno = errno;
3625
3626 fprintf_unfiltered (gdb_stdlog,
3627 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3628 save_errno ? safe_strerror (save_errno) : "OK");
3629 }
3630
3631 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3632
3633 errno = 0;
3634 ptrace (PTRACE_KILL, pid, 0, 0);
3635 if (debug_linux_nat)
3636 {
3637 int save_errno = errno;
3638
3639 fprintf_unfiltered (gdb_stdlog,
3640 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3641 save_errno ? safe_strerror (save_errno) : "OK");
3642 }
3643 }
3644
3645 /* Wait for an LWP to die. */
3646
3647 static void
3648 kill_wait_one_lwp (pid_t pid)
3649 {
3650 pid_t res;
3651
3652 /* We must make sure that there are no pending events (delayed
3653 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3654 program doesn't interfere with any following debugging session. */
3655
3656 do
3657 {
3658 res = my_waitpid (pid, NULL, __WALL);
3659 if (res != (pid_t) -1)
3660 {
3661 if (debug_linux_nat)
3662 fprintf_unfiltered (gdb_stdlog,
3663 "KWC: wait %ld received unknown.\n",
3664 (long) pid);
3665 /* The Linux kernel sometimes fails to kill a thread
3666 completely after PTRACE_KILL; that goes from the stop
3667 point in do_fork out to the one in get_signal_to_deliver
3668 and waits again. So kill it again. */
3669 kill_one_lwp (pid);
3670 }
3671 }
3672 while (res == pid);
3673
3674 gdb_assert (res == -1 && errno == ECHILD);
3675 }
3676
3677 /* Callback for iterate_over_lwps. */
3678
3679 static int
3680 kill_callback (struct lwp_info *lp)
3681 {
3682 kill_one_lwp (lp->ptid.lwp ());
3683 return 0;
3684 }
3685
3686 /* Callback for iterate_over_lwps. */
3687
3688 static int
3689 kill_wait_callback (struct lwp_info *lp)
3690 {
3691 kill_wait_one_lwp (lp->ptid.lwp ());
3692 return 0;
3693 }
3694
3695 /* Kill the fork children of any threads of inferior INF that are
3696 stopped at a fork event. */
3697
3698 static void
3699 kill_unfollowed_fork_children (struct inferior *inf)
3700 {
3701 for (thread_info *thread : inf->non_exited_threads ())
3702 {
3703 struct target_waitstatus *ws = &thread->pending_follow;
3704
3705 if (ws->kind == TARGET_WAITKIND_FORKED
3706 || ws->kind == TARGET_WAITKIND_VFORKED)
3707 {
3708 ptid_t child_ptid = ws->value.related_pid;
3709 int child_pid = child_ptid.pid ();
3710 int child_lwp = child_ptid.lwp ();
3711
3712 kill_one_lwp (child_lwp);
3713 kill_wait_one_lwp (child_lwp);
3714
3715 /* Let the arch-specific native code know this process is
3716 gone. */
3717 linux_target->low_forget_process (child_pid);
3718 }
3719 }
3720 }
3721
3722 void
3723 linux_nat_target::kill ()
3724 {
3725 /* If we're stopped while forking and we haven't followed yet,
3726 kill the other task. We need to do this first because the
3727 parent will be sleeping if this is a vfork. */
3728 kill_unfollowed_fork_children (current_inferior ());
3729
3730 if (forks_exist_p ())
3731 linux_fork_killall ();
3732 else
3733 {
3734 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3735
3736 /* Stop all threads before killing them, since ptrace requires
3737 that the thread is stopped to sucessfully PTRACE_KILL. */
3738 iterate_over_lwps (ptid, stop_callback);
3739 /* ... and wait until all of them have reported back that
3740 they're no longer running. */
3741 iterate_over_lwps (ptid, stop_wait_callback);
3742
3743 /* Kill all LWP's ... */
3744 iterate_over_lwps (ptid, kill_callback);
3745
3746 /* ... and wait until we've flushed all events. */
3747 iterate_over_lwps (ptid, kill_wait_callback);
3748 }
3749
3750 target_mourn_inferior (inferior_ptid);
3751 }
3752
3753 void
3754 linux_nat_target::mourn_inferior ()
3755 {
3756 int pid = inferior_ptid.pid ();
3757
3758 purge_lwp_list (pid);
3759
3760 if (! forks_exist_p ())
3761 /* Normal case, no other forks available. */
3762 inf_ptrace_target::mourn_inferior ();
3763 else
3764 /* Multi-fork case. The current inferior_ptid has exited, but
3765 there are other viable forks to debug. Delete the exiting
3766 one and context-switch to the first available. */
3767 linux_fork_mourn_inferior ();
3768
3769 /* Let the arch-specific native code know this process is gone. */
3770 linux_target->low_forget_process (pid);
3771 }
3772
3773 /* Convert a native/host siginfo object, into/from the siginfo in the
3774 layout of the inferiors' architecture. */
3775
3776 static void
3777 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3778 {
3779 /* If the low target didn't do anything, then just do a straight
3780 memcpy. */
3781 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3782 {
3783 if (direction == 1)
3784 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3785 else
3786 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3787 }
3788 }
3789
3790 static enum target_xfer_status
3791 linux_xfer_siginfo (enum target_object object,
3792 const char *annex, gdb_byte *readbuf,
3793 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3794 ULONGEST *xfered_len)
3795 {
3796 int pid;
3797 siginfo_t siginfo;
3798 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3799
3800 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3801 gdb_assert (readbuf || writebuf);
3802
3803 pid = inferior_ptid.lwp ();
3804 if (pid == 0)
3805 pid = inferior_ptid.pid ();
3806
3807 if (offset > sizeof (siginfo))
3808 return TARGET_XFER_E_IO;
3809
3810 errno = 0;
3811 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3812 if (errno != 0)
3813 return TARGET_XFER_E_IO;
3814
3815 /* When GDB is built as a 64-bit application, ptrace writes into
3816 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3817 inferior with a 64-bit GDB should look the same as debugging it
3818 with a 32-bit GDB, we need to convert it. GDB core always sees
3819 the converted layout, so any read/write will have to be done
3820 post-conversion. */
3821 siginfo_fixup (&siginfo, inf_siginfo, 0);
3822
3823 if (offset + len > sizeof (siginfo))
3824 len = sizeof (siginfo) - offset;
3825
3826 if (readbuf != NULL)
3827 memcpy (readbuf, inf_siginfo + offset, len);
3828 else
3829 {
3830 memcpy (inf_siginfo + offset, writebuf, len);
3831
3832 /* Convert back to ptrace layout before flushing it out. */
3833 siginfo_fixup (&siginfo, inf_siginfo, 1);
3834
3835 errno = 0;
3836 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3837 if (errno != 0)
3838 return TARGET_XFER_E_IO;
3839 }
3840
3841 *xfered_len = len;
3842 return TARGET_XFER_OK;
3843 }
3844
3845 static enum target_xfer_status
3846 linux_nat_xfer_osdata (enum target_object object,
3847 const char *annex, gdb_byte *readbuf,
3848 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3849 ULONGEST *xfered_len);
3850
3851 static enum target_xfer_status
3852 linux_proc_xfer_spu (enum target_object object,
3853 const char *annex, gdb_byte *readbuf,
3854 const gdb_byte *writebuf,
3855 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3856
3857 static enum target_xfer_status
3858 linux_proc_xfer_partial (enum target_object object,
3859 const char *annex, gdb_byte *readbuf,
3860 const gdb_byte *writebuf,
3861 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3862
3863 enum target_xfer_status
3864 linux_nat_target::xfer_partial (enum target_object object,
3865 const char *annex, gdb_byte *readbuf,
3866 const gdb_byte *writebuf,
3867 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3868 {
3869 enum target_xfer_status xfer;
3870
3871 if (object == TARGET_OBJECT_SIGNAL_INFO)
3872 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3873 offset, len, xfered_len);
3874
3875 /* The target is connected but no live inferior is selected. Pass
3876 this request down to a lower stratum (e.g., the executable
3877 file). */
3878 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3879 return TARGET_XFER_EOF;
3880
3881 if (object == TARGET_OBJECT_AUXV)
3882 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3883 offset, len, xfered_len);
3884
3885 if (object == TARGET_OBJECT_OSDATA)
3886 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3887 offset, len, xfered_len);
3888
3889 if (object == TARGET_OBJECT_SPU)
3890 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3891 offset, len, xfered_len);
3892
3893 /* GDB calculates all addresses in the largest possible address
3894 width.
3895 The address width must be masked before its final use - either by
3896 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3897
3898 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3899
3900 if (object == TARGET_OBJECT_MEMORY)
3901 {
3902 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3903
3904 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3905 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3906 }
3907
3908 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3909 offset, len, xfered_len);
3910 if (xfer != TARGET_XFER_EOF)
3911 return xfer;
3912
3913 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3914 offset, len, xfered_len);
3915 }
3916
3917 bool
3918 linux_nat_target::thread_alive (ptid_t ptid)
3919 {
3920 /* As long as a PTID is in lwp list, consider it alive. */
3921 return find_lwp_pid (ptid) != NULL;
3922 }
3923
3924 /* Implement the to_update_thread_list target method for this
3925 target. */
3926
3927 void
3928 linux_nat_target::update_thread_list ()
3929 {
3930 struct lwp_info *lwp;
3931
3932 /* We add/delete threads from the list as clone/exit events are
3933 processed, so just try deleting exited threads still in the
3934 thread list. */
3935 delete_exited_threads ();
3936
3937 /* Update the processor core that each lwp/thread was last seen
3938 running on. */
3939 ALL_LWPS (lwp)
3940 {
3941 /* Avoid accessing /proc if the thread hasn't run since we last
3942 time we fetched the thread's core. Accessing /proc becomes
3943 noticeably expensive when we have thousands of LWPs. */
3944 if (lwp->core == -1)
3945 lwp->core = linux_common_core_of_thread (lwp->ptid);
3946 }
3947 }
3948
3949 std::string
3950 linux_nat_target::pid_to_str (ptid_t ptid)
3951 {
3952 if (ptid.lwp_p ()
3953 && (ptid.pid () != ptid.lwp ()
3954 || num_lwps (ptid.pid ()) > 1))
3955 return string_printf ("LWP %ld", ptid.lwp ());
3956
3957 return normal_pid_to_str (ptid);
3958 }
3959
3960 const char *
3961 linux_nat_target::thread_name (struct thread_info *thr)
3962 {
3963 return linux_proc_tid_get_name (thr->ptid);
3964 }
3965
3966 /* Accepts an integer PID; Returns a string representing a file that
3967 can be opened to get the symbols for the child process. */
3968
3969 char *
3970 linux_nat_target::pid_to_exec_file (int pid)
3971 {
3972 return linux_proc_pid_to_exec_file (pid);
3973 }
3974
3975 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3976 Because we can use a single read/write call, this can be much more
3977 efficient than banging away at PTRACE_PEEKTEXT. */
3978
3979 static enum target_xfer_status
3980 linux_proc_xfer_partial (enum target_object object,
3981 const char *annex, gdb_byte *readbuf,
3982 const gdb_byte *writebuf,
3983 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3984 {
3985 LONGEST ret;
3986 int fd;
3987 char filename[64];
3988
3989 if (object != TARGET_OBJECT_MEMORY)
3990 return TARGET_XFER_EOF;
3991
3992 /* Don't bother for one word. */
3993 if (len < 3 * sizeof (long))
3994 return TARGET_XFER_EOF;
3995
3996 /* We could keep this file open and cache it - possibly one per
3997 thread. That requires some juggling, but is even faster. */
3998 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3999 inferior_ptid.lwp ());
4000 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
4001 | O_LARGEFILE), 0);
4002 if (fd == -1)
4003 return TARGET_XFER_EOF;
4004
4005 /* Use pread64/pwrite64 if available, since they save a syscall and can
4006 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4007 debugging a SPARC64 application). */
4008 #ifdef HAVE_PREAD64
4009 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4010 : pwrite64 (fd, writebuf, len, offset));
4011 #else
4012 ret = lseek (fd, offset, SEEK_SET);
4013 if (ret != -1)
4014 ret = (readbuf ? read (fd, readbuf, len)
4015 : write (fd, writebuf, len));
4016 #endif
4017
4018 close (fd);
4019
4020 if (ret == -1 || ret == 0)
4021 return TARGET_XFER_EOF;
4022 else
4023 {
4024 *xfered_len = ret;
4025 return TARGET_XFER_OK;
4026 }
4027 }
4028
4029
4030 /* Enumerate spufs IDs for process PID. */
4031 static LONGEST
4032 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4033 {
4034 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4035 LONGEST pos = 0;
4036 LONGEST written = 0;
4037 char path[128];
4038 DIR *dir;
4039 struct dirent *entry;
4040
4041 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4042 dir = opendir (path);
4043 if (!dir)
4044 return -1;
4045
4046 rewinddir (dir);
4047 while ((entry = readdir (dir)) != NULL)
4048 {
4049 struct stat st;
4050 struct statfs stfs;
4051 int fd;
4052
4053 fd = atoi (entry->d_name);
4054 if (!fd)
4055 continue;
4056
4057 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4058 if (stat (path, &st) != 0)
4059 continue;
4060 if (!S_ISDIR (st.st_mode))
4061 continue;
4062
4063 if (statfs (path, &stfs) != 0)
4064 continue;
4065 if (stfs.f_type != SPUFS_MAGIC)
4066 continue;
4067
4068 if (pos >= offset && pos + 4 <= offset + len)
4069 {
4070 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4071 written += 4;
4072 }
4073 pos += 4;
4074 }
4075
4076 closedir (dir);
4077 return written;
4078 }
4079
4080 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4081 object type, using the /proc file system. */
4082
4083 static enum target_xfer_status
4084 linux_proc_xfer_spu (enum target_object object,
4085 const char *annex, gdb_byte *readbuf,
4086 const gdb_byte *writebuf,
4087 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4088 {
4089 char buf[128];
4090 int fd = 0;
4091 int ret = -1;
4092 int pid = inferior_ptid.lwp ();
4093
4094 if (!annex)
4095 {
4096 if (!readbuf)
4097 return TARGET_XFER_E_IO;
4098 else
4099 {
4100 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4101
4102 if (l < 0)
4103 return TARGET_XFER_E_IO;
4104 else if (l == 0)
4105 return TARGET_XFER_EOF;
4106 else
4107 {
4108 *xfered_len = (ULONGEST) l;
4109 return TARGET_XFER_OK;
4110 }
4111 }
4112 }
4113
4114 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4115 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4116 if (fd <= 0)
4117 return TARGET_XFER_E_IO;
4118
4119 if (offset != 0
4120 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4121 {
4122 close (fd);
4123 return TARGET_XFER_EOF;
4124 }
4125
4126 if (writebuf)
4127 ret = write (fd, writebuf, (size_t) len);
4128 else if (readbuf)
4129 ret = read (fd, readbuf, (size_t) len);
4130
4131 close (fd);
4132
4133 if (ret < 0)
4134 return TARGET_XFER_E_IO;
4135 else if (ret == 0)
4136 return TARGET_XFER_EOF;
4137 else
4138 {
4139 *xfered_len = (ULONGEST) ret;
4140 return TARGET_XFER_OK;
4141 }
4142 }
4143
4144
4145 /* Parse LINE as a signal set and add its set bits to SIGS. */
4146
4147 static void
4148 add_line_to_sigset (const char *line, sigset_t *sigs)
4149 {
4150 int len = strlen (line) - 1;
4151 const char *p;
4152 int signum;
4153
4154 if (line[len] != '\n')
4155 error (_("Could not parse signal set: %s"), line);
4156
4157 p = line;
4158 signum = len * 4;
4159 while (len-- > 0)
4160 {
4161 int digit;
4162
4163 if (*p >= '0' && *p <= '9')
4164 digit = *p - '0';
4165 else if (*p >= 'a' && *p <= 'f')
4166 digit = *p - 'a' + 10;
4167 else
4168 error (_("Could not parse signal set: %s"), line);
4169
4170 signum -= 4;
4171
4172 if (digit & 1)
4173 sigaddset (sigs, signum + 1);
4174 if (digit & 2)
4175 sigaddset (sigs, signum + 2);
4176 if (digit & 4)
4177 sigaddset (sigs, signum + 3);
4178 if (digit & 8)
4179 sigaddset (sigs, signum + 4);
4180
4181 p++;
4182 }
4183 }
4184
4185 /* Find process PID's pending signals from /proc/pid/status and set
4186 SIGS to match. */
4187
4188 void
4189 linux_proc_pending_signals (int pid, sigset_t *pending,
4190 sigset_t *blocked, sigset_t *ignored)
4191 {
4192 char buffer[PATH_MAX], fname[PATH_MAX];
4193
4194 sigemptyset (pending);
4195 sigemptyset (blocked);
4196 sigemptyset (ignored);
4197 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4198 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4199 if (procfile == NULL)
4200 error (_("Could not open %s"), fname);
4201
4202 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4203 {
4204 /* Normal queued signals are on the SigPnd line in the status
4205 file. However, 2.6 kernels also have a "shared" pending
4206 queue for delivering signals to a thread group, so check for
4207 a ShdPnd line also.
4208
4209 Unfortunately some Red Hat kernels include the shared pending
4210 queue but not the ShdPnd status field. */
4211
4212 if (startswith (buffer, "SigPnd:\t"))
4213 add_line_to_sigset (buffer + 8, pending);
4214 else if (startswith (buffer, "ShdPnd:\t"))
4215 add_line_to_sigset (buffer + 8, pending);
4216 else if (startswith (buffer, "SigBlk:\t"))
4217 add_line_to_sigset (buffer + 8, blocked);
4218 else if (startswith (buffer, "SigIgn:\t"))
4219 add_line_to_sigset (buffer + 8, ignored);
4220 }
4221 }
4222
4223 static enum target_xfer_status
4224 linux_nat_xfer_osdata (enum target_object object,
4225 const char *annex, gdb_byte *readbuf,
4226 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4227 ULONGEST *xfered_len)
4228 {
4229 gdb_assert (object == TARGET_OBJECT_OSDATA);
4230
4231 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4232 if (*xfered_len == 0)
4233 return TARGET_XFER_EOF;
4234 else
4235 return TARGET_XFER_OK;
4236 }
4237
4238 std::vector<static_tracepoint_marker>
4239 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4240 {
4241 char s[IPA_CMD_BUF_SIZE];
4242 int pid = inferior_ptid.pid ();
4243 std::vector<static_tracepoint_marker> markers;
4244 const char *p = s;
4245 ptid_t ptid = ptid_t (pid, 0, 0);
4246 static_tracepoint_marker marker;
4247
4248 /* Pause all */
4249 target_stop (ptid);
4250
4251 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4252 s[sizeof ("qTfSTM")] = 0;
4253
4254 agent_run_command (pid, s, strlen (s) + 1);
4255
4256 /* Unpause all. */
4257 SCOPE_EXIT { target_continue_no_signal (ptid); };
4258
4259 while (*p++ == 'm')
4260 {
4261 do
4262 {
4263 parse_static_tracepoint_marker_definition (p, &p, &marker);
4264
4265 if (strid == NULL || marker.str_id == strid)
4266 markers.push_back (std::move (marker));
4267 }
4268 while (*p++ == ','); /* comma-separated list */
4269
4270 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4271 s[sizeof ("qTsSTM")] = 0;
4272 agent_run_command (pid, s, strlen (s) + 1);
4273 p = s;
4274 }
4275
4276 return markers;
4277 }
4278
4279 /* target_is_async_p implementation. */
4280
4281 bool
4282 linux_nat_target::is_async_p ()
4283 {
4284 return linux_is_async_p ();
4285 }
4286
4287 /* target_can_async_p implementation. */
4288
4289 bool
4290 linux_nat_target::can_async_p ()
4291 {
4292 /* We're always async, unless the user explicitly prevented it with the
4293 "maint set target-async" command. */
4294 return target_async_permitted;
4295 }
4296
4297 bool
4298 linux_nat_target::supports_non_stop ()
4299 {
4300 return 1;
4301 }
4302
4303 /* to_always_non_stop_p implementation. */
4304
4305 bool
4306 linux_nat_target::always_non_stop_p ()
4307 {
4308 return 1;
4309 }
4310
4311 /* True if we want to support multi-process. To be removed when GDB
4312 supports multi-exec. */
4313
4314 int linux_multi_process = 1;
4315
4316 bool
4317 linux_nat_target::supports_multi_process ()
4318 {
4319 return linux_multi_process;
4320 }
4321
4322 bool
4323 linux_nat_target::supports_disable_randomization ()
4324 {
4325 #ifdef HAVE_PERSONALITY
4326 return 1;
4327 #else
4328 return 0;
4329 #endif
4330 }
4331
4332 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4333 so we notice when any child changes state, and notify the
4334 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4335 above to wait for the arrival of a SIGCHLD. */
4336
4337 static void
4338 sigchld_handler (int signo)
4339 {
4340 int old_errno = errno;
4341
4342 if (debug_linux_nat)
4343 ui_file_write_async_safe (gdb_stdlog,
4344 "sigchld\n", sizeof ("sigchld\n") - 1);
4345
4346 if (signo == SIGCHLD
4347 && linux_nat_event_pipe[0] != -1)
4348 async_file_mark (); /* Let the event loop know that there are
4349 events to handle. */
4350
4351 errno = old_errno;
4352 }
4353
4354 /* Callback registered with the target events file descriptor. */
4355
4356 static void
4357 handle_target_event (int error, gdb_client_data client_data)
4358 {
4359 inferior_event_handler (INF_REG_EVENT, NULL);
4360 }
4361
4362 /* Create/destroy the target events pipe. Returns previous state. */
4363
4364 static int
4365 linux_async_pipe (int enable)
4366 {
4367 int previous = linux_is_async_p ();
4368
4369 if (previous != enable)
4370 {
4371 sigset_t prev_mask;
4372
4373 /* Block child signals while we create/destroy the pipe, as
4374 their handler writes to it. */
4375 block_child_signals (&prev_mask);
4376
4377 if (enable)
4378 {
4379 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4380 internal_error (__FILE__, __LINE__,
4381 "creating event pipe failed.");
4382
4383 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4384 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4385 }
4386 else
4387 {
4388 close (linux_nat_event_pipe[0]);
4389 close (linux_nat_event_pipe[1]);
4390 linux_nat_event_pipe[0] = -1;
4391 linux_nat_event_pipe[1] = -1;
4392 }
4393
4394 restore_child_signals_mask (&prev_mask);
4395 }
4396
4397 return previous;
4398 }
4399
4400 /* target_async implementation. */
4401
4402 void
4403 linux_nat_target::async (int enable)
4404 {
4405 if (enable)
4406 {
4407 if (!linux_async_pipe (1))
4408 {
4409 add_file_handler (linux_nat_event_pipe[0],
4410 handle_target_event, NULL);
4411 /* There may be pending events to handle. Tell the event loop
4412 to poll them. */
4413 async_file_mark ();
4414 }
4415 }
4416 else
4417 {
4418 delete_file_handler (linux_nat_event_pipe[0]);
4419 linux_async_pipe (0);
4420 }
4421 return;
4422 }
4423
4424 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4425 event came out. */
4426
4427 static int
4428 linux_nat_stop_lwp (struct lwp_info *lwp)
4429 {
4430 if (!lwp->stopped)
4431 {
4432 if (debug_linux_nat)
4433 fprintf_unfiltered (gdb_stdlog,
4434 "LNSL: running -> suspending %s\n",
4435 target_pid_to_str (lwp->ptid).c_str ());
4436
4437
4438 if (lwp->last_resume_kind == resume_stop)
4439 {
4440 if (debug_linux_nat)
4441 fprintf_unfiltered (gdb_stdlog,
4442 "linux-nat: already stopping LWP %ld at "
4443 "GDB's request\n",
4444 lwp->ptid.lwp ());
4445 return 0;
4446 }
4447
4448 stop_callback (lwp);
4449 lwp->last_resume_kind = resume_stop;
4450 }
4451 else
4452 {
4453 /* Already known to be stopped; do nothing. */
4454
4455 if (debug_linux_nat)
4456 {
4457 if (find_thread_ptid (lwp->ptid)->stop_requested)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "LNSL: already stopped/stop_requested %s\n",
4460 target_pid_to_str (lwp->ptid).c_str ());
4461 else
4462 fprintf_unfiltered (gdb_stdlog,
4463 "LNSL: already stopped/no "
4464 "stop_requested yet %s\n",
4465 target_pid_to_str (lwp->ptid).c_str ());
4466 }
4467 }
4468 return 0;
4469 }
4470
4471 void
4472 linux_nat_target::stop (ptid_t ptid)
4473 {
4474 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4475 }
4476
4477 void
4478 linux_nat_target::close ()
4479 {
4480 /* Unregister from the event loop. */
4481 if (is_async_p ())
4482 async (0);
4483
4484 inf_ptrace_target::close ();
4485 }
4486
4487 /* When requests are passed down from the linux-nat layer to the
4488 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4489 used. The address space pointer is stored in the inferior object,
4490 but the common code that is passed such ptid can't tell whether
4491 lwpid is a "main" process id or not (it assumes so). We reverse
4492 look up the "main" process id from the lwp here. */
4493
4494 struct address_space *
4495 linux_nat_target::thread_address_space (ptid_t ptid)
4496 {
4497 struct lwp_info *lwp;
4498 struct inferior *inf;
4499 int pid;
4500
4501 if (ptid.lwp () == 0)
4502 {
4503 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4504 tgid. */
4505 lwp = find_lwp_pid (ptid);
4506 pid = lwp->ptid.pid ();
4507 }
4508 else
4509 {
4510 /* A (pid,lwpid,0) ptid. */
4511 pid = ptid.pid ();
4512 }
4513
4514 inf = find_inferior_pid (pid);
4515 gdb_assert (inf != NULL);
4516 return inf->aspace;
4517 }
4518
4519 /* Return the cached value of the processor core for thread PTID. */
4520
4521 int
4522 linux_nat_target::core_of_thread (ptid_t ptid)
4523 {
4524 struct lwp_info *info = find_lwp_pid (ptid);
4525
4526 if (info)
4527 return info->core;
4528 return -1;
4529 }
4530
4531 /* Implementation of to_filesystem_is_local. */
4532
4533 bool
4534 linux_nat_target::filesystem_is_local ()
4535 {
4536 struct inferior *inf = current_inferior ();
4537
4538 if (inf->fake_pid_p || inf->pid == 0)
4539 return true;
4540
4541 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4542 }
4543
4544 /* Convert the INF argument passed to a to_fileio_* method
4545 to a process ID suitable for passing to its corresponding
4546 linux_mntns_* function. If INF is non-NULL then the
4547 caller is requesting the filesystem seen by INF. If INF
4548 is NULL then the caller is requesting the filesystem seen
4549 by the GDB. We fall back to GDB's filesystem in the case
4550 that INF is non-NULL but its PID is unknown. */
4551
4552 static pid_t
4553 linux_nat_fileio_pid_of (struct inferior *inf)
4554 {
4555 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4556 return getpid ();
4557 else
4558 return inf->pid;
4559 }
4560
4561 /* Implementation of to_fileio_open. */
4562
4563 int
4564 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4565 int flags, int mode, int warn_if_slow,
4566 int *target_errno)
4567 {
4568 int nat_flags;
4569 mode_t nat_mode;
4570 int fd;
4571
4572 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4573 || fileio_to_host_mode (mode, &nat_mode) == -1)
4574 {
4575 *target_errno = FILEIO_EINVAL;
4576 return -1;
4577 }
4578
4579 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4580 filename, nat_flags, nat_mode);
4581 if (fd == -1)
4582 *target_errno = host_to_fileio_error (errno);
4583
4584 return fd;
4585 }
4586
4587 /* Implementation of to_fileio_readlink. */
4588
4589 gdb::optional<std::string>
4590 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4591 int *target_errno)
4592 {
4593 char buf[PATH_MAX];
4594 int len;
4595
4596 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4597 filename, buf, sizeof (buf));
4598 if (len < 0)
4599 {
4600 *target_errno = host_to_fileio_error (errno);
4601 return {};
4602 }
4603
4604 return std::string (buf, len);
4605 }
4606
4607 /* Implementation of to_fileio_unlink. */
4608
4609 int
4610 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4611 int *target_errno)
4612 {
4613 int ret;
4614
4615 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4616 filename);
4617 if (ret == -1)
4618 *target_errno = host_to_fileio_error (errno);
4619
4620 return ret;
4621 }
4622
4623 /* Implementation of the to_thread_events method. */
4624
4625 void
4626 linux_nat_target::thread_events (int enable)
4627 {
4628 report_thread_events = enable;
4629 }
4630
4631 linux_nat_target::linux_nat_target ()
4632 {
4633 /* We don't change the stratum; this target will sit at
4634 process_stratum and thread_db will set at thread_stratum. This
4635 is a little strange, since this is a multi-threaded-capable
4636 target, but we want to be on the stack below thread_db, and we
4637 also want to be used for single-threaded processes. */
4638 }
4639
4640 /* See linux-nat.h. */
4641
4642 int
4643 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4644 {
4645 int pid;
4646
4647 pid = ptid.lwp ();
4648 if (pid == 0)
4649 pid = ptid.pid ();
4650
4651 errno = 0;
4652 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4653 if (errno != 0)
4654 {
4655 memset (siginfo, 0, sizeof (*siginfo));
4656 return 0;
4657 }
4658 return 1;
4659 }
4660
4661 /* See nat/linux-nat.h. */
4662
4663 ptid_t
4664 current_lwp_ptid (void)
4665 {
4666 gdb_assert (inferior_ptid.lwp_p ());
4667 return inferior_ptid;
4668 }
4669
4670 void
4671 _initialize_linux_nat (void)
4672 {
4673 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4674 &debug_linux_nat, _("\
4675 Set debugging of GNU/Linux lwp module."), _("\
4676 Show debugging of GNU/Linux lwp module."), _("\
4677 Enables printf debugging output."),
4678 NULL,
4679 show_debug_linux_nat,
4680 &setdebuglist, &showdebuglist);
4681
4682 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4683 &debug_linux_namespaces, _("\
4684 Set debugging of GNU/Linux namespaces module."), _("\
4685 Show debugging of GNU/Linux namespaces module."), _("\
4686 Enables printf debugging output."),
4687 NULL,
4688 NULL,
4689 &setdebuglist, &showdebuglist);
4690
4691 /* Save this mask as the default. */
4692 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4693
4694 /* Install a SIGCHLD handler. */
4695 sigchld_action.sa_handler = sigchld_handler;
4696 sigemptyset (&sigchld_action.sa_mask);
4697 sigchld_action.sa_flags = SA_RESTART;
4698
4699 /* Make it the default. */
4700 sigaction (SIGCHLD, &sigchld_action, NULL);
4701
4702 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4703 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4704 sigdelset (&suspend_mask, SIGCHLD);
4705
4706 sigemptyset (&blocked_mask);
4707
4708 lwp_lwpid_htab_create ();
4709 }
4710 \f
4711
4712 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4713 the GNU/Linux Threads library and therefore doesn't really belong
4714 here. */
4715
4716 /* Return the set of signals used by the threads library in *SET. */
4717
4718 void
4719 lin_thread_get_thread_signals (sigset_t *set)
4720 {
4721 sigemptyset (set);
4722
4723 /* NPTL reserves the first two RT signals, but does not provide any
4724 way for the debugger to query the signal numbers - fortunately
4725 they don't change. */
4726 sigaddset (set, __SIGRTMIN);
4727 sigaddset (set, __SIGRTMIN + 1);
4728 }
This page took 0.205939 seconds and 5 git commands to generate.