Warn when accessing binaries from remote targets
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include "nat/gdb_ptrace.h"
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69 #include "nat/linux-namespaces.h"
70 #include "fileio.h"
71
72 #ifndef SPUFS_MAGIC
73 #define SPUFS_MAGIC 0x23c9b64e
74 #endif
75
76 /* This comment documents high-level logic of this file.
77
78 Waiting for events in sync mode
79 ===============================
80
81 When waiting for an event in a specific thread, we just use waitpid, passing
82 the specific pid, and not passing WNOHANG.
83
84 When waiting for an event in all threads, waitpid is not quite good. Prior to
85 version 2.4, Linux can either wait for event in main thread, or in secondary
86 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
87 miss an event. The solution is to use non-blocking waitpid, together with
88 sigsuspend. First, we use non-blocking waitpid to get an event in the main
89 process, if any. Second, we use non-blocking waitpid with the __WCLONED
90 flag to check for events in cloned processes. If nothing is found, we use
91 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
92 happened to a child process -- and SIGCHLD will be delivered both for events
93 in main debugged process and in cloned processes. As soon as we know there's
94 an event, we get back to calling nonblocking waitpid with and without
95 __WCLONED.
96
97 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
98 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
99 blocked, the signal becomes pending and sigsuspend immediately
100 notices it and returns.
101
102 Waiting for events in async mode
103 ================================
104
105 In async mode, GDB should always be ready to handle both user input
106 and target events, so neither blocking waitpid nor sigsuspend are
107 viable options. Instead, we should asynchronously notify the GDB main
108 event loop whenever there's an unprocessed event from the target. We
109 detect asynchronous target events by handling SIGCHLD signals. To
110 notify the event loop about target events, the self-pipe trick is used
111 --- a pipe is registered as waitable event source in the event loop,
112 the event loop select/poll's on the read end of this pipe (as well on
113 other event sources, e.g., stdin), and the SIGCHLD handler writes a
114 byte to this pipe. This is more portable than relying on
115 pselect/ppoll, since on kernels that lack those syscalls, libc
116 emulates them with select/poll+sigprocmask, and that is racy
117 (a.k.a. plain broken).
118
119 Obviously, if we fail to notify the event loop if there's a target
120 event, it's bad. OTOH, if we notify the event loop when there's no
121 event from the target, linux_nat_wait will detect that there's no real
122 event to report, and return event of type TARGET_WAITKIND_IGNORE.
123 This is mostly harmless, but it will waste time and is better avoided.
124
125 The main design point is that every time GDB is outside linux-nat.c,
126 we have a SIGCHLD handler installed that is called when something
127 happens to the target and notifies the GDB event loop. Whenever GDB
128 core decides to handle the event, and calls into linux-nat.c, we
129 process things as in sync mode, except that the we never block in
130 sigsuspend.
131
132 While processing an event, we may end up momentarily blocked in
133 waitpid calls. Those waitpid calls, while blocking, are guarantied to
134 return quickly. E.g., in all-stop mode, before reporting to the core
135 that an LWP hit a breakpoint, all LWPs are stopped by sending them
136 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
137 Note that this is different from blocking indefinitely waiting for the
138 next event --- here, we're already handling an event.
139
140 Use of signals
141 ==============
142
143 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
144 signal is not entirely significant; we just need for a signal to be delivered,
145 so that we can intercept it. SIGSTOP's advantage is that it can not be
146 blocked. A disadvantage is that it is not a real-time signal, so it can only
147 be queued once; we do not keep track of other sources of SIGSTOP.
148
149 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
150 use them, because they have special behavior when the signal is generated -
151 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
152 kills the entire thread group.
153
154 A delivered SIGSTOP would stop the entire thread group, not just the thread we
155 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
156 cancel it (by PTRACE_CONT without passing SIGSTOP).
157
158 We could use a real-time signal instead. This would solve those problems; we
159 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
160 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
161 generates it, and there are races with trying to find a signal that is not
162 blocked. */
163
164 #ifndef O_LARGEFILE
165 #define O_LARGEFILE 0
166 #endif
167
168 /* Does the current host support PTRACE_GETREGSET? */
169 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (struct lwp_info *);
178
179 /* The method to call, if any, when a new fork is attached. */
180 static linux_nat_new_fork_ftype *linux_nat_new_fork;
181
182 /* The method to call, if any, when a process is no longer
183 attached. */
184 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
185
186 /* Hook to call prior to resuming a thread. */
187 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
188
189 /* The method to call, if any, when the siginfo object needs to be
190 converted between the layout returned by ptrace, and the layout in
191 the architecture of the inferior. */
192 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
193 gdb_byte *,
194 int);
195
196 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
197 Called by our to_xfer_partial. */
198 static target_xfer_partial_ftype *super_xfer_partial;
199
200 /* The saved to_close method, inherited from inf-ptrace.c.
201 Called by our to_close. */
202 static void (*super_close) (struct target_ops *);
203
204 static unsigned int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* Async mode support. */
222
223 /* The read/write ends of the pipe registered as waitable file in the
224 event loop. */
225 static int linux_nat_event_pipe[2] = { -1, -1 };
226
227 /* True if we're currently in async mode. */
228 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
229
230 /* Flush the event pipe. */
231
232 static void
233 async_file_flush (void)
234 {
235 int ret;
236 char buf;
237
238 do
239 {
240 ret = read (linux_nat_event_pipe[0], &buf, 1);
241 }
242 while (ret >= 0 || (ret == -1 && errno == EINTR));
243 }
244
245 /* Put something (anything, doesn't matter what, or how much) in event
246 pipe, so that the select/poll in the event-loop realizes we have
247 something to process. */
248
249 static void
250 async_file_mark (void)
251 {
252 int ret;
253
254 /* It doesn't really matter what the pipe contains, as long we end
255 up with something in it. Might as well flush the previous
256 left-overs. */
257 async_file_flush ();
258
259 do
260 {
261 ret = write (linux_nat_event_pipe[1], "+", 1);
262 }
263 while (ret == -1 && errno == EINTR);
264
265 /* Ignore EAGAIN. If the pipe is full, the event loop will already
266 be awakened anyway. */
267 }
268
269 static int kill_lwp (int lwpid, int signo);
270
271 static int stop_callback (struct lwp_info *lp, void *data);
272 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
273
274 static void block_child_signals (sigset_t *prev_mask);
275 static void restore_child_signals_mask (sigset_t *prev_mask);
276
277 struct lwp_info;
278 static struct lwp_info *add_lwp (ptid_t ptid);
279 static void purge_lwp_list (int pid);
280 static void delete_lwp (ptid_t ptid);
281 static struct lwp_info *find_lwp_pid (ptid_t ptid);
282
283 static int lwp_status_pending_p (struct lwp_info *lp);
284
285 static int check_stopped_by_breakpoint (struct lwp_info *lp);
286 static int sigtrap_is_event (int status);
287 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
288
289 \f
290 /* LWP accessors. */
291
292 /* See nat/linux-nat.h. */
293
294 ptid_t
295 ptid_of_lwp (struct lwp_info *lwp)
296 {
297 return lwp->ptid;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 void
303 lwp_set_arch_private_info (struct lwp_info *lwp,
304 struct arch_lwp_info *info)
305 {
306 lwp->arch_private = info;
307 }
308
309 /* See nat/linux-nat.h. */
310
311 struct arch_lwp_info *
312 lwp_arch_private_info (struct lwp_info *lwp)
313 {
314 return lwp->arch_private;
315 }
316
317 /* See nat/linux-nat.h. */
318
319 int
320 lwp_is_stopped (struct lwp_info *lwp)
321 {
322 return lwp->stopped;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 enum target_stop_reason
328 lwp_stop_reason (struct lwp_info *lwp)
329 {
330 return lwp->stop_reason;
331 }
332
333 \f
334 /* Trivial list manipulation functions to keep track of a list of
335 new stopped processes. */
336 static void
337 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
338 {
339 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
340
341 new_pid->pid = pid;
342 new_pid->status = status;
343 new_pid->next = *listp;
344 *listp = new_pid;
345 }
346
347 static int
348 in_pid_list_p (struct simple_pid_list *list, int pid)
349 {
350 struct simple_pid_list *p;
351
352 for (p = list; p != NULL; p = p->next)
353 if (p->pid == pid)
354 return 1;
355 return 0;
356 }
357
358 static int
359 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
360 {
361 struct simple_pid_list **p;
362
363 for (p = listp; *p != NULL; p = &(*p)->next)
364 if ((*p)->pid == pid)
365 {
366 struct simple_pid_list *next = (*p)->next;
367
368 *statusp = (*p)->status;
369 xfree (*p);
370 *p = next;
371 return 1;
372 }
373 return 0;
374 }
375
376 /* Return the ptrace options that we want to try to enable. */
377
378 static int
379 linux_nat_ptrace_options (int attached)
380 {
381 int options = 0;
382
383 if (!attached)
384 options |= PTRACE_O_EXITKILL;
385
386 options |= (PTRACE_O_TRACESYSGOOD
387 | PTRACE_O_TRACEVFORKDONE
388 | PTRACE_O_TRACEVFORK
389 | PTRACE_O_TRACEFORK
390 | PTRACE_O_TRACEEXEC);
391
392 return options;
393 }
394
395 /* Initialize ptrace warnings and check for supported ptrace
396 features given PID.
397
398 ATTACHED should be nonzero iff we attached to the inferior. */
399
400 static void
401 linux_init_ptrace (pid_t pid, int attached)
402 {
403 int options = linux_nat_ptrace_options (attached);
404
405 linux_enable_event_reporting (pid, options);
406 linux_ptrace_init_warnings ();
407 }
408
409 static void
410 linux_child_post_attach (struct target_ops *self, int pid)
411 {
412 linux_init_ptrace (pid, 1);
413 }
414
415 static void
416 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
417 {
418 linux_init_ptrace (ptid_get_pid (ptid), 0);
419 }
420
421 /* Return the number of known LWPs in the tgid given by PID. */
422
423 static int
424 num_lwps (int pid)
425 {
426 int count = 0;
427 struct lwp_info *lp;
428
429 for (lp = lwp_list; lp; lp = lp->next)
430 if (ptid_get_pid (lp->ptid) == pid)
431 count++;
432
433 return count;
434 }
435
436 /* Call delete_lwp with prototype compatible for make_cleanup. */
437
438 static void
439 delete_lwp_cleanup (void *lp_voidp)
440 {
441 struct lwp_info *lp = lp_voidp;
442
443 delete_lwp (lp->ptid);
444 }
445
446 /* Target hook for follow_fork. On entry inferior_ptid must be the
447 ptid of the followed inferior. At return, inferior_ptid will be
448 unchanged. */
449
450 static int
451 linux_child_follow_fork (struct target_ops *ops, int follow_child,
452 int detach_fork)
453 {
454 if (!follow_child)
455 {
456 struct lwp_info *child_lp = NULL;
457 int status = W_STOPCODE (0);
458 struct cleanup *old_chain;
459 int has_vforked;
460 ptid_t parent_ptid, child_ptid;
461 int parent_pid, child_pid;
462
463 has_vforked = (inferior_thread ()->pending_follow.kind
464 == TARGET_WAITKIND_VFORKED);
465 parent_ptid = inferior_ptid;
466 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
467 parent_pid = ptid_get_lwp (parent_ptid);
468 child_pid = ptid_get_lwp (child_ptid);
469
470 /* We're already attached to the parent, by default. */
471 old_chain = save_inferior_ptid ();
472 inferior_ptid = child_ptid;
473 child_lp = add_lwp (inferior_ptid);
474 child_lp->stopped = 1;
475 child_lp->last_resume_kind = resume_stop;
476
477 /* Detach new forked process? */
478 if (detach_fork)
479 {
480 make_cleanup (delete_lwp_cleanup, child_lp);
481
482 if (linux_nat_prepare_to_resume != NULL)
483 linux_nat_prepare_to_resume (child_lp);
484
485 /* When debugging an inferior in an architecture that supports
486 hardware single stepping on a kernel without commit
487 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
488 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
489 set if the parent process had them set.
490 To work around this, single step the child process
491 once before detaching to clear the flags. */
492
493 if (!gdbarch_software_single_step_p (target_thread_architecture
494 (child_lp->ptid)))
495 {
496 linux_disable_event_reporting (child_pid);
497 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
498 perror_with_name (_("Couldn't do single step"));
499 if (my_waitpid (child_pid, &status, 0) < 0)
500 perror_with_name (_("Couldn't wait vfork process"));
501 }
502
503 if (WIFSTOPPED (status))
504 {
505 int signo;
506
507 signo = WSTOPSIG (status);
508 if (signo != 0
509 && !signal_pass_state (gdb_signal_from_host (signo)))
510 signo = 0;
511 ptrace (PTRACE_DETACH, child_pid, 0, signo);
512 }
513
514 /* Resets value of inferior_ptid to parent ptid. */
515 do_cleanups (old_chain);
516 }
517 else
518 {
519 /* Let the thread_db layer learn about this new process. */
520 check_for_thread_db ();
521 }
522
523 do_cleanups (old_chain);
524
525 if (has_vforked)
526 {
527 struct lwp_info *parent_lp;
528
529 parent_lp = find_lwp_pid (parent_ptid);
530 gdb_assert (linux_supports_tracefork () >= 0);
531
532 if (linux_supports_tracevforkdone ())
533 {
534 if (debug_linux_nat)
535 fprintf_unfiltered (gdb_stdlog,
536 "LCFF: waiting for VFORK_DONE on %d\n",
537 parent_pid);
538 parent_lp->stopped = 1;
539
540 /* We'll handle the VFORK_DONE event like any other
541 event, in target_wait. */
542 }
543 else
544 {
545 /* We can't insert breakpoints until the child has
546 finished with the shared memory region. We need to
547 wait until that happens. Ideal would be to just
548 call:
549 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
550 - waitpid (parent_pid, &status, __WALL);
551 However, most architectures can't handle a syscall
552 being traced on the way out if it wasn't traced on
553 the way in.
554
555 We might also think to loop, continuing the child
556 until it exits or gets a SIGTRAP. One problem is
557 that the child might call ptrace with PTRACE_TRACEME.
558
559 There's no simple and reliable way to figure out when
560 the vforked child will be done with its copy of the
561 shared memory. We could step it out of the syscall,
562 two instructions, let it go, and then single-step the
563 parent once. When we have hardware single-step, this
564 would work; with software single-step it could still
565 be made to work but we'd have to be able to insert
566 single-step breakpoints in the child, and we'd have
567 to insert -just- the single-step breakpoint in the
568 parent. Very awkward.
569
570 In the end, the best we can do is to make sure it
571 runs for a little while. Hopefully it will be out of
572 range of any breakpoints we reinsert. Usually this
573 is only the single-step breakpoint at vfork's return
574 point. */
575
576 if (debug_linux_nat)
577 fprintf_unfiltered (gdb_stdlog,
578 "LCFF: no VFORK_DONE "
579 "support, sleeping a bit\n");
580
581 usleep (10000);
582
583 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
584 and leave it pending. The next linux_nat_resume call
585 will notice a pending event, and bypasses actually
586 resuming the inferior. */
587 parent_lp->status = 0;
588 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
589 parent_lp->stopped = 1;
590
591 /* If we're in async mode, need to tell the event loop
592 there's something here to process. */
593 if (target_is_async_p ())
594 async_file_mark ();
595 }
596 }
597 }
598 else
599 {
600 struct lwp_info *child_lp;
601
602 child_lp = add_lwp (inferior_ptid);
603 child_lp->stopped = 1;
604 child_lp->last_resume_kind = resume_stop;
605
606 /* Let the thread_db layer learn about this new process. */
607 check_for_thread_db ();
608 }
609
610 return 0;
611 }
612
613 \f
614 static int
615 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
616 {
617 return !linux_supports_tracefork ();
618 }
619
620 static int
621 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
622 {
623 return 0;
624 }
625
626 static int
627 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
628 {
629 return !linux_supports_tracefork ();
630 }
631
632 static int
633 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
634 {
635 return 0;
636 }
637
638 static int
639 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
640 {
641 return !linux_supports_tracefork ();
642 }
643
644 static int
645 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
646 {
647 return 0;
648 }
649
650 static int
651 linux_child_set_syscall_catchpoint (struct target_ops *self,
652 int pid, int needed, int any_count,
653 int table_size, int *table)
654 {
655 if (!linux_supports_tracesysgood ())
656 return 1;
657
658 /* On GNU/Linux, we ignore the arguments. It means that we only
659 enable the syscall catchpoints, but do not disable them.
660
661 Also, we do not use the `table' information because we do not
662 filter system calls here. We let GDB do the logic for us. */
663 return 0;
664 }
665
666 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
667 are processes sharing the same VM space. A multi-threaded process
668 is basically a group of such processes. However, such a grouping
669 is almost entirely a user-space issue; the kernel doesn't enforce
670 such a grouping at all (this might change in the future). In
671 general, we'll rely on the threads library (i.e. the GNU/Linux
672 Threads library) to provide such a grouping.
673
674 It is perfectly well possible to write a multi-threaded application
675 without the assistance of a threads library, by using the clone
676 system call directly. This module should be able to give some
677 rudimentary support for debugging such applications if developers
678 specify the CLONE_PTRACE flag in the clone system call, and are
679 using the Linux kernel 2.4 or above.
680
681 Note that there are some peculiarities in GNU/Linux that affect
682 this code:
683
684 - In general one should specify the __WCLONE flag to waitpid in
685 order to make it report events for any of the cloned processes
686 (and leave it out for the initial process). However, if a cloned
687 process has exited the exit status is only reported if the
688 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
689 we cannot use it since GDB must work on older systems too.
690
691 - When a traced, cloned process exits and is waited for by the
692 debugger, the kernel reassigns it to the original parent and
693 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
694 library doesn't notice this, which leads to the "zombie problem":
695 When debugged a multi-threaded process that spawns a lot of
696 threads will run out of processes, even if the threads exit,
697 because the "zombies" stay around. */
698
699 /* List of known LWPs. */
700 struct lwp_info *lwp_list;
701 \f
702
703 /* Original signal mask. */
704 static sigset_t normal_mask;
705
706 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
707 _initialize_linux_nat. */
708 static sigset_t suspend_mask;
709
710 /* Signals to block to make that sigsuspend work. */
711 static sigset_t blocked_mask;
712
713 /* SIGCHLD action. */
714 struct sigaction sigchld_action;
715
716 /* Block child signals (SIGCHLD and linux threads signals), and store
717 the previous mask in PREV_MASK. */
718
719 static void
720 block_child_signals (sigset_t *prev_mask)
721 {
722 /* Make sure SIGCHLD is blocked. */
723 if (!sigismember (&blocked_mask, SIGCHLD))
724 sigaddset (&blocked_mask, SIGCHLD);
725
726 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
727 }
728
729 /* Restore child signals mask, previously returned by
730 block_child_signals. */
731
732 static void
733 restore_child_signals_mask (sigset_t *prev_mask)
734 {
735 sigprocmask (SIG_SETMASK, prev_mask, NULL);
736 }
737
738 /* Mask of signals to pass directly to the inferior. */
739 static sigset_t pass_mask;
740
741 /* Update signals to pass to the inferior. */
742 static void
743 linux_nat_pass_signals (struct target_ops *self,
744 int numsigs, unsigned char *pass_signals)
745 {
746 int signo;
747
748 sigemptyset (&pass_mask);
749
750 for (signo = 1; signo < NSIG; signo++)
751 {
752 int target_signo = gdb_signal_from_host (signo);
753 if (target_signo < numsigs && pass_signals[target_signo])
754 sigaddset (&pass_mask, signo);
755 }
756 }
757
758 \f
759
760 /* Prototypes for local functions. */
761 static int stop_wait_callback (struct lwp_info *lp, void *data);
762 static int linux_thread_alive (ptid_t ptid);
763 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
764 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
765
766 \f
767
768 /* Destroy and free LP. */
769
770 static void
771 lwp_free (struct lwp_info *lp)
772 {
773 xfree (lp->arch_private);
774 xfree (lp);
775 }
776
777 /* Remove all LWPs belong to PID from the lwp list. */
778
779 static void
780 purge_lwp_list (int pid)
781 {
782 struct lwp_info *lp, *lpprev, *lpnext;
783
784 lpprev = NULL;
785
786 for (lp = lwp_list; lp; lp = lpnext)
787 {
788 lpnext = lp->next;
789
790 if (ptid_get_pid (lp->ptid) == pid)
791 {
792 if (lp == lwp_list)
793 lwp_list = lp->next;
794 else
795 lpprev->next = lp->next;
796
797 lwp_free (lp);
798 }
799 else
800 lpprev = lp;
801 }
802 }
803
804 /* Add the LWP specified by PTID to the list. PTID is the first LWP
805 in the process. Return a pointer to the structure describing the
806 new LWP.
807
808 This differs from add_lwp in that we don't let the arch specific
809 bits know about this new thread. Current clients of this callback
810 take the opportunity to install watchpoints in the new thread, and
811 we shouldn't do that for the first thread. If we're spawning a
812 child ("run"), the thread executes the shell wrapper first, and we
813 shouldn't touch it until it execs the program we want to debug.
814 For "attach", it'd be okay to call the callback, but it's not
815 necessary, because watchpoints can't yet have been inserted into
816 the inferior. */
817
818 static struct lwp_info *
819 add_initial_lwp (ptid_t ptid)
820 {
821 struct lwp_info *lp;
822
823 gdb_assert (ptid_lwp_p (ptid));
824
825 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
826
827 memset (lp, 0, sizeof (struct lwp_info));
828
829 lp->last_resume_kind = resume_continue;
830 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
831
832 lp->ptid = ptid;
833 lp->core = -1;
834
835 lp->next = lwp_list;
836 lwp_list = lp;
837
838 return lp;
839 }
840
841 /* Add the LWP specified by PID to the list. Return a pointer to the
842 structure describing the new LWP. The LWP should already be
843 stopped. */
844
845 static struct lwp_info *
846 add_lwp (ptid_t ptid)
847 {
848 struct lwp_info *lp;
849
850 lp = add_initial_lwp (ptid);
851
852 /* Let the arch specific bits know about this new thread. Current
853 clients of this callback take the opportunity to install
854 watchpoints in the new thread. We don't do this for the first
855 thread though. See add_initial_lwp. */
856 if (linux_nat_new_thread != NULL)
857 linux_nat_new_thread (lp);
858
859 return lp;
860 }
861
862 /* Remove the LWP specified by PID from the list. */
863
864 static void
865 delete_lwp (ptid_t ptid)
866 {
867 struct lwp_info *lp, *lpprev;
868
869 lpprev = NULL;
870
871 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
872 if (ptid_equal (lp->ptid, ptid))
873 break;
874
875 if (!lp)
876 return;
877
878 if (lpprev)
879 lpprev->next = lp->next;
880 else
881 lwp_list = lp->next;
882
883 lwp_free (lp);
884 }
885
886 /* Return a pointer to the structure describing the LWP corresponding
887 to PID. If no corresponding LWP could be found, return NULL. */
888
889 static struct lwp_info *
890 find_lwp_pid (ptid_t ptid)
891 {
892 struct lwp_info *lp;
893 int lwp;
894
895 if (ptid_lwp_p (ptid))
896 lwp = ptid_get_lwp (ptid);
897 else
898 lwp = ptid_get_pid (ptid);
899
900 for (lp = lwp_list; lp; lp = lp->next)
901 if (lwp == ptid_get_lwp (lp->ptid))
902 return lp;
903
904 return NULL;
905 }
906
907 /* See nat/linux-nat.h. */
908
909 struct lwp_info *
910 iterate_over_lwps (ptid_t filter,
911 iterate_over_lwps_ftype callback,
912 void *data)
913 {
914 struct lwp_info *lp, *lpnext;
915
916 for (lp = lwp_list; lp; lp = lpnext)
917 {
918 lpnext = lp->next;
919
920 if (ptid_match (lp->ptid, filter))
921 {
922 if ((*callback) (lp, data) != 0)
923 return lp;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Update our internal state when changing from one checkpoint to
931 another indicated by NEW_PTID. We can only switch single-threaded
932 applications, so we only create one new LWP, and the previous list
933 is discarded. */
934
935 void
936 linux_nat_switch_fork (ptid_t new_ptid)
937 {
938 struct lwp_info *lp;
939
940 purge_lwp_list (ptid_get_pid (inferior_ptid));
941
942 lp = add_lwp (new_ptid);
943 lp->stopped = 1;
944
945 /* This changes the thread's ptid while preserving the gdb thread
946 num. Also changes the inferior pid, while preserving the
947 inferior num. */
948 thread_change_ptid (inferior_ptid, new_ptid);
949
950 /* We've just told GDB core that the thread changed target id, but,
951 in fact, it really is a different thread, with different register
952 contents. */
953 registers_changed ();
954 }
955
956 /* Handle the exit of a single thread LP. */
957
958 static void
959 exit_lwp (struct lwp_info *lp)
960 {
961 struct thread_info *th = find_thread_ptid (lp->ptid);
962
963 if (th)
964 {
965 if (print_thread_events)
966 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
967
968 delete_thread (lp->ptid);
969 }
970
971 delete_lwp (lp->ptid);
972 }
973
974 /* Wait for the LWP specified by LP, which we have just attached to.
975 Returns a wait status for that LWP, to cache. */
976
977 static int
978 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
979 int *signalled)
980 {
981 pid_t new_pid, pid = ptid_get_lwp (ptid);
982 int status;
983
984 if (linux_proc_pid_is_stopped (pid))
985 {
986 if (debug_linux_nat)
987 fprintf_unfiltered (gdb_stdlog,
988 "LNPAW: Attaching to a stopped process\n");
989
990 /* The process is definitely stopped. It is in a job control
991 stop, unless the kernel predates the TASK_STOPPED /
992 TASK_TRACED distinction, in which case it might be in a
993 ptrace stop. Make sure it is in a ptrace stop; from there we
994 can kill it, signal it, et cetera.
995
996 First make sure there is a pending SIGSTOP. Since we are
997 already attached, the process can not transition from stopped
998 to running without a PTRACE_CONT; so we know this signal will
999 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1000 probably already in the queue (unless this kernel is old
1001 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1002 is not an RT signal, it can only be queued once. */
1003 kill_lwp (pid, SIGSTOP);
1004
1005 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1006 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1007 ptrace (PTRACE_CONT, pid, 0, 0);
1008 }
1009
1010 /* Make sure the initial process is stopped. The user-level threads
1011 layer might want to poke around in the inferior, and that won't
1012 work if things haven't stabilized yet. */
1013 new_pid = my_waitpid (pid, &status, 0);
1014 if (new_pid == -1 && errno == ECHILD)
1015 {
1016 if (first)
1017 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1018
1019 /* Try again with __WCLONE to check cloned processes. */
1020 new_pid = my_waitpid (pid, &status, __WCLONE);
1021 *cloned = 1;
1022 }
1023
1024 gdb_assert (pid == new_pid);
1025
1026 if (!WIFSTOPPED (status))
1027 {
1028 /* The pid we tried to attach has apparently just exited. */
1029 if (debug_linux_nat)
1030 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1031 pid, status_to_str (status));
1032 return status;
1033 }
1034
1035 if (WSTOPSIG (status) != SIGSTOP)
1036 {
1037 *signalled = 1;
1038 if (debug_linux_nat)
1039 fprintf_unfiltered (gdb_stdlog,
1040 "LNPAW: Received %s after attaching\n",
1041 status_to_str (status));
1042 }
1043
1044 return status;
1045 }
1046
1047 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1048 the new LWP could not be attached, or 1 if we're already auto
1049 attached to this thread, but haven't processed the
1050 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1051 its existance, without considering it an error. */
1052
1053 int
1054 lin_lwp_attach_lwp (ptid_t ptid)
1055 {
1056 struct lwp_info *lp;
1057 int lwpid;
1058
1059 gdb_assert (ptid_lwp_p (ptid));
1060
1061 lp = find_lwp_pid (ptid);
1062 lwpid = ptid_get_lwp (ptid);
1063
1064 /* We assume that we're already attached to any LWP that is already
1065 in our list of LWPs. If we're not seeing exit events from threads
1066 and we've had PID wraparound since we last tried to stop all threads,
1067 this assumption might be wrong; fortunately, this is very unlikely
1068 to happen. */
1069 if (lp == NULL)
1070 {
1071 int status, cloned = 0, signalled = 0;
1072
1073 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1074 {
1075 if (linux_supports_tracefork ())
1076 {
1077 /* If we haven't stopped all threads when we get here,
1078 we may have seen a thread listed in thread_db's list,
1079 but not processed the PTRACE_EVENT_CLONE yet. If
1080 that's the case, ignore this new thread, and let
1081 normal event handling discover it later. */
1082 if (in_pid_list_p (stopped_pids, lwpid))
1083 {
1084 /* We've already seen this thread stop, but we
1085 haven't seen the PTRACE_EVENT_CLONE extended
1086 event yet. */
1087 if (debug_linux_nat)
1088 fprintf_unfiltered (gdb_stdlog,
1089 "LLAL: attach failed, but already seen "
1090 "this thread %s stop\n",
1091 target_pid_to_str (ptid));
1092 return 1;
1093 }
1094 else
1095 {
1096 int new_pid;
1097 int status;
1098
1099 if (debug_linux_nat)
1100 fprintf_unfiltered (gdb_stdlog,
1101 "LLAL: attach failed, and haven't seen "
1102 "this thread %s stop yet\n",
1103 target_pid_to_str (ptid));
1104
1105 /* We may or may not be attached to the LWP already.
1106 Try waitpid on it. If that errors, we're not
1107 attached to the LWP yet. Otherwise, we're
1108 already attached. */
1109 gdb_assert (lwpid > 0);
1110 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1111 if (new_pid == -1 && errno == ECHILD)
1112 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1113 if (new_pid != -1)
1114 {
1115 if (new_pid == 0)
1116 {
1117 /* The child hasn't stopped for its initial
1118 SIGSTOP stop yet. */
1119 if (debug_linux_nat)
1120 fprintf_unfiltered (gdb_stdlog,
1121 "LLAL: child hasn't "
1122 "stopped yet\n");
1123 }
1124 else if (WIFSTOPPED (status))
1125 {
1126 if (debug_linux_nat)
1127 fprintf_unfiltered (gdb_stdlog,
1128 "LLAL: adding to stopped_pids\n");
1129 add_to_pid_list (&stopped_pids, lwpid, status);
1130 }
1131 return 1;
1132 }
1133 }
1134 }
1135
1136 /* If we fail to attach to the thread, issue a warning,
1137 but continue. One way this can happen is if thread
1138 creation is interrupted; as of Linux kernel 2.6.19, a
1139 bug may place threads in the thread list and then fail
1140 to create them. */
1141 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1142 safe_strerror (errno));
1143 return -1;
1144 }
1145
1146 if (debug_linux_nat)
1147 fprintf_unfiltered (gdb_stdlog,
1148 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1149 target_pid_to_str (ptid));
1150
1151 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1152 if (!WIFSTOPPED (status))
1153 return 1;
1154
1155 lp = add_lwp (ptid);
1156 lp->stopped = 1;
1157 lp->last_resume_kind = resume_stop;
1158 lp->cloned = cloned;
1159 lp->signalled = signalled;
1160 if (WSTOPSIG (status) != SIGSTOP)
1161 {
1162 lp->resumed = 1;
1163 lp->status = status;
1164 }
1165
1166 target_post_attach (ptid_get_lwp (lp->ptid));
1167
1168 if (debug_linux_nat)
1169 {
1170 fprintf_unfiltered (gdb_stdlog,
1171 "LLAL: waitpid %s received %s\n",
1172 target_pid_to_str (ptid),
1173 status_to_str (status));
1174 }
1175 }
1176
1177 return 0;
1178 }
1179
1180 static void
1181 linux_nat_create_inferior (struct target_ops *ops,
1182 char *exec_file, char *allargs, char **env,
1183 int from_tty)
1184 {
1185 struct cleanup *restore_personality
1186 = maybe_disable_address_space_randomization (disable_randomization);
1187
1188 /* The fork_child mechanism is synchronous and calls target_wait, so
1189 we have to mask the async mode. */
1190
1191 /* Make sure we report all signals during startup. */
1192 linux_nat_pass_signals (ops, 0, NULL);
1193
1194 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1195
1196 do_cleanups (restore_personality);
1197 }
1198
1199 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1200 already attached. Returns true if a new LWP is found, false
1201 otherwise. */
1202
1203 static int
1204 attach_proc_task_lwp_callback (ptid_t ptid)
1205 {
1206 struct lwp_info *lp;
1207
1208 /* Ignore LWPs we're already attached to. */
1209 lp = find_lwp_pid (ptid);
1210 if (lp == NULL)
1211 {
1212 int lwpid = ptid_get_lwp (ptid);
1213
1214 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1215 {
1216 int err = errno;
1217
1218 /* Be quiet if we simply raced with the thread exiting.
1219 EPERM is returned if the thread's task still exists, and
1220 is marked as exited or zombie, as well as other
1221 conditions, so in that case, confirm the status in
1222 /proc/PID/status. */
1223 if (err == ESRCH
1224 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1225 {
1226 if (debug_linux_nat)
1227 {
1228 fprintf_unfiltered (gdb_stdlog,
1229 "Cannot attach to lwp %d: "
1230 "thread is gone (%d: %s)\n",
1231 lwpid, err, safe_strerror (err));
1232 }
1233 }
1234 else
1235 {
1236 warning (_("Cannot attach to lwp %d: %s"),
1237 lwpid,
1238 linux_ptrace_attach_fail_reason_string (ptid,
1239 err));
1240 }
1241 }
1242 else
1243 {
1244 if (debug_linux_nat)
1245 fprintf_unfiltered (gdb_stdlog,
1246 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1247 target_pid_to_str (ptid));
1248
1249 lp = add_lwp (ptid);
1250 lp->cloned = 1;
1251
1252 /* The next time we wait for this LWP we'll see a SIGSTOP as
1253 PTRACE_ATTACH brings it to a halt. */
1254 lp->signalled = 1;
1255
1256 /* We need to wait for a stop before being able to make the
1257 next ptrace call on this LWP. */
1258 lp->must_set_ptrace_flags = 1;
1259 }
1260
1261 return 1;
1262 }
1263 return 0;
1264 }
1265
1266 static void
1267 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1268 {
1269 struct lwp_info *lp;
1270 int status;
1271 ptid_t ptid;
1272
1273 /* Make sure we report all signals during attach. */
1274 linux_nat_pass_signals (ops, 0, NULL);
1275
1276 TRY
1277 {
1278 linux_ops->to_attach (ops, args, from_tty);
1279 }
1280 CATCH (ex, RETURN_MASK_ERROR)
1281 {
1282 pid_t pid = parse_pid_to_attach (args);
1283 struct buffer buffer;
1284 char *message, *buffer_s;
1285
1286 message = xstrdup (ex.message);
1287 make_cleanup (xfree, message);
1288
1289 buffer_init (&buffer);
1290 linux_ptrace_attach_fail_reason (pid, &buffer);
1291
1292 buffer_grow_str0 (&buffer, "");
1293 buffer_s = buffer_finish (&buffer);
1294 make_cleanup (xfree, buffer_s);
1295
1296 if (*buffer_s != '\0')
1297 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1298 else
1299 throw_error (ex.error, "%s", message);
1300 }
1301 END_CATCH
1302
1303 /* The ptrace base target adds the main thread with (pid,0,0)
1304 format. Decorate it with lwp info. */
1305 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1306 ptid_get_pid (inferior_ptid),
1307 0);
1308 thread_change_ptid (inferior_ptid, ptid);
1309
1310 /* Add the initial process as the first LWP to the list. */
1311 lp = add_initial_lwp (ptid);
1312
1313 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1314 &lp->signalled);
1315 if (!WIFSTOPPED (status))
1316 {
1317 if (WIFEXITED (status))
1318 {
1319 int exit_code = WEXITSTATUS (status);
1320
1321 target_terminal_ours ();
1322 target_mourn_inferior ();
1323 if (exit_code == 0)
1324 error (_("Unable to attach: program exited normally."));
1325 else
1326 error (_("Unable to attach: program exited with code %d."),
1327 exit_code);
1328 }
1329 else if (WIFSIGNALED (status))
1330 {
1331 enum gdb_signal signo;
1332
1333 target_terminal_ours ();
1334 target_mourn_inferior ();
1335
1336 signo = gdb_signal_from_host (WTERMSIG (status));
1337 error (_("Unable to attach: program terminated with signal "
1338 "%s, %s."),
1339 gdb_signal_to_name (signo),
1340 gdb_signal_to_string (signo));
1341 }
1342
1343 internal_error (__FILE__, __LINE__,
1344 _("unexpected status %d for PID %ld"),
1345 status, (long) ptid_get_lwp (ptid));
1346 }
1347
1348 lp->stopped = 1;
1349
1350 /* Save the wait status to report later. */
1351 lp->resumed = 1;
1352 if (debug_linux_nat)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "LNA: waitpid %ld, saving status %s\n",
1355 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1356
1357 lp->status = status;
1358
1359 /* We must attach to every LWP. If /proc is mounted, use that to
1360 find them now. The inferior may be using raw clone instead of
1361 using pthreads. But even if it is using pthreads, thread_db
1362 walks structures in the inferior's address space to find the list
1363 of threads/LWPs, and those structures may well be corrupted.
1364 Note that once thread_db is loaded, we'll still use it to list
1365 threads and associate pthread info with each LWP. */
1366 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1367 attach_proc_task_lwp_callback);
1368
1369 if (target_can_async_p ())
1370 target_async (1);
1371 }
1372
1373 /* Get pending status of LP. */
1374 static int
1375 get_pending_status (struct lwp_info *lp, int *status)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378
1379 /* If we paused threads momentarily, we may have stored pending
1380 events in lp->status or lp->waitstatus (see stop_wait_callback),
1381 and GDB core hasn't seen any signal for those threads.
1382 Otherwise, the last signal reported to the core is found in the
1383 thread object's stop_signal.
1384
1385 There's a corner case that isn't handled here at present. Only
1386 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1387 stop_signal make sense as a real signal to pass to the inferior.
1388 Some catchpoint related events, like
1389 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1390 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1391 those traps are debug API (ptrace in our case) related and
1392 induced; the inferior wouldn't see them if it wasn't being
1393 traced. Hence, we should never pass them to the inferior, even
1394 when set to pass state. Since this corner case isn't handled by
1395 infrun.c when proceeding with a signal, for consistency, neither
1396 do we handle it here (or elsewhere in the file we check for
1397 signal pass state). Normally SIGTRAP isn't set to pass state, so
1398 this is really a corner case. */
1399
1400 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1401 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1402 else if (lp->status)
1403 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1404 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1405 {
1406 struct thread_info *tp = find_thread_ptid (lp->ptid);
1407
1408 signo = tp->suspend.stop_signal;
1409 }
1410 else if (!target_is_non_stop_p ())
1411 {
1412 struct target_waitstatus last;
1413 ptid_t last_ptid;
1414
1415 get_last_target_status (&last_ptid, &last);
1416
1417 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1418 {
1419 struct thread_info *tp = find_thread_ptid (lp->ptid);
1420
1421 signo = tp->suspend.stop_signal;
1422 }
1423 }
1424
1425 *status = 0;
1426
1427 if (signo == GDB_SIGNAL_0)
1428 {
1429 if (debug_linux_nat)
1430 fprintf_unfiltered (gdb_stdlog,
1431 "GPT: lwp %s has no pending signal\n",
1432 target_pid_to_str (lp->ptid));
1433 }
1434 else if (!signal_pass_state (signo))
1435 {
1436 if (debug_linux_nat)
1437 fprintf_unfiltered (gdb_stdlog,
1438 "GPT: lwp %s had signal %s, "
1439 "but it is in no pass state\n",
1440 target_pid_to_str (lp->ptid),
1441 gdb_signal_to_string (signo));
1442 }
1443 else
1444 {
1445 *status = W_STOPCODE (gdb_signal_to_host (signo));
1446
1447 if (debug_linux_nat)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "GPT: lwp %s has pending signal %s\n",
1450 target_pid_to_str (lp->ptid),
1451 gdb_signal_to_string (signo));
1452 }
1453
1454 return 0;
1455 }
1456
1457 static int
1458 detach_callback (struct lwp_info *lp, void *data)
1459 {
1460 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1461
1462 if (debug_linux_nat && lp->status)
1463 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1464 strsignal (WSTOPSIG (lp->status)),
1465 target_pid_to_str (lp->ptid));
1466
1467 /* If there is a pending SIGSTOP, get rid of it. */
1468 if (lp->signalled)
1469 {
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "DC: Sending SIGCONT to %s\n",
1473 target_pid_to_str (lp->ptid));
1474
1475 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1476 lp->signalled = 0;
1477 }
1478
1479 /* We don't actually detach from the LWP that has an id equal to the
1480 overall process id just yet. */
1481 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1482 {
1483 int status = 0;
1484
1485 /* Pass on any pending signal for this LWP. */
1486 get_pending_status (lp, &status);
1487
1488 if (linux_nat_prepare_to_resume != NULL)
1489 linux_nat_prepare_to_resume (lp);
1490 errno = 0;
1491 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1492 WSTOPSIG (status)) < 0)
1493 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1494 safe_strerror (errno));
1495
1496 if (debug_linux_nat)
1497 fprintf_unfiltered (gdb_stdlog,
1498 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1499 target_pid_to_str (lp->ptid),
1500 strsignal (WSTOPSIG (status)));
1501
1502 delete_lwp (lp->ptid);
1503 }
1504
1505 return 0;
1506 }
1507
1508 static void
1509 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1510 {
1511 int pid;
1512 int status;
1513 struct lwp_info *main_lwp;
1514
1515 pid = ptid_get_pid (inferior_ptid);
1516
1517 /* Don't unregister from the event loop, as there may be other
1518 inferiors running. */
1519
1520 /* Stop all threads before detaching. ptrace requires that the
1521 thread is stopped to sucessfully detach. */
1522 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1523 /* ... and wait until all of them have reported back that
1524 they're no longer running. */
1525 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1526
1527 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1528
1529 /* Only the initial process should be left right now. */
1530 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1531
1532 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1533
1534 /* Pass on any pending signal for the last LWP. */
1535 if ((args == NULL || *args == '\0')
1536 && get_pending_status (main_lwp, &status) != -1
1537 && WIFSTOPPED (status))
1538 {
1539 char *tem;
1540
1541 /* Put the signal number in ARGS so that inf_ptrace_detach will
1542 pass it along with PTRACE_DETACH. */
1543 tem = alloca (8);
1544 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1545 args = tem;
1546 if (debug_linux_nat)
1547 fprintf_unfiltered (gdb_stdlog,
1548 "LND: Sending signal %s to %s\n",
1549 args,
1550 target_pid_to_str (main_lwp->ptid));
1551 }
1552
1553 if (linux_nat_prepare_to_resume != NULL)
1554 linux_nat_prepare_to_resume (main_lwp);
1555 delete_lwp (main_lwp->ptid);
1556
1557 if (forks_exist_p ())
1558 {
1559 /* Multi-fork case. The current inferior_ptid is being detached
1560 from, but there are other viable forks to debug. Detach from
1561 the current fork, and context-switch to the first
1562 available. */
1563 linux_fork_detach (args, from_tty);
1564 }
1565 else
1566 linux_ops->to_detach (ops, args, from_tty);
1567 }
1568
1569 /* Resume execution of the inferior process. If STEP is nonzero,
1570 single-step it. If SIGNAL is nonzero, give it that signal. */
1571
1572 static void
1573 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1574 enum gdb_signal signo)
1575 {
1576 lp->step = step;
1577
1578 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1579 We only presently need that if the LWP is stepped though (to
1580 handle the case of stepping a breakpoint instruction). */
1581 if (step)
1582 {
1583 struct regcache *regcache = get_thread_regcache (lp->ptid);
1584
1585 lp->stop_pc = regcache_read_pc (regcache);
1586 }
1587 else
1588 lp->stop_pc = 0;
1589
1590 if (linux_nat_prepare_to_resume != NULL)
1591 linux_nat_prepare_to_resume (lp);
1592 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1593
1594 /* Successfully resumed. Clear state that no longer makes sense,
1595 and mark the LWP as running. Must not do this before resuming
1596 otherwise if that fails other code will be confused. E.g., we'd
1597 later try to stop the LWP and hang forever waiting for a stop
1598 status. Note that we must not throw after this is cleared,
1599 otherwise handle_zombie_lwp_error would get confused. */
1600 lp->stopped = 0;
1601 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1602 registers_changed_ptid (lp->ptid);
1603 }
1604
1605 /* Called when we try to resume a stopped LWP and that errors out. If
1606 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1607 or about to become), discard the error, clear any pending status
1608 the LWP may have, and return true (we'll collect the exit status
1609 soon enough). Otherwise, return false. */
1610
1611 static int
1612 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1613 {
1614 /* If we get an error after resuming the LWP successfully, we'd
1615 confuse !T state for the LWP being gone. */
1616 gdb_assert (lp->stopped);
1617
1618 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1619 because even if ptrace failed with ESRCH, the tracee may be "not
1620 yet fully dead", but already refusing ptrace requests. In that
1621 case the tracee has 'R (Running)' state for a little bit
1622 (observed in Linux 3.18). See also the note on ESRCH in the
1623 ptrace(2) man page. Instead, check whether the LWP has any state
1624 other than ptrace-stopped. */
1625
1626 /* Don't assume anything if /proc/PID/status can't be read. */
1627 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1628 {
1629 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1630 lp->status = 0;
1631 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1632 return 1;
1633 }
1634 return 0;
1635 }
1636
1637 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1638 disappears while we try to resume it. */
1639
1640 static void
1641 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1642 {
1643 TRY
1644 {
1645 linux_resume_one_lwp_throw (lp, step, signo);
1646 }
1647 CATCH (ex, RETURN_MASK_ERROR)
1648 {
1649 if (!check_ptrace_stopped_lwp_gone (lp))
1650 throw_exception (ex);
1651 }
1652 END_CATCH
1653 }
1654
1655 /* Resume LP. */
1656
1657 static void
1658 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1659 {
1660 if (lp->stopped)
1661 {
1662 struct inferior *inf = find_inferior_ptid (lp->ptid);
1663
1664 if (inf->vfork_child != NULL)
1665 {
1666 if (debug_linux_nat)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "RC: Not resuming %s (vfork parent)\n",
1669 target_pid_to_str (lp->ptid));
1670 }
1671 else if (!lwp_status_pending_p (lp))
1672 {
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "RC: Resuming sibling %s, %s, %s\n",
1676 target_pid_to_str (lp->ptid),
1677 (signo != GDB_SIGNAL_0
1678 ? strsignal (gdb_signal_to_host (signo))
1679 : "0"),
1680 step ? "step" : "resume");
1681
1682 linux_resume_one_lwp (lp, step, signo);
1683 }
1684 else
1685 {
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "RC: Not resuming sibling %s (has pending)\n",
1689 target_pid_to_str (lp->ptid));
1690 }
1691 }
1692 else
1693 {
1694 if (debug_linux_nat)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "RC: Not resuming sibling %s (not stopped)\n",
1697 target_pid_to_str (lp->ptid));
1698 }
1699 }
1700
1701 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1702 Resume LWP with the last stop signal, if it is in pass state. */
1703
1704 static int
1705 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1706 {
1707 enum gdb_signal signo = GDB_SIGNAL_0;
1708
1709 if (lp == except)
1710 return 0;
1711
1712 if (lp->stopped)
1713 {
1714 struct thread_info *thread;
1715
1716 thread = find_thread_ptid (lp->ptid);
1717 if (thread != NULL)
1718 {
1719 signo = thread->suspend.stop_signal;
1720 thread->suspend.stop_signal = GDB_SIGNAL_0;
1721 }
1722 }
1723
1724 resume_lwp (lp, 0, signo);
1725 return 0;
1726 }
1727
1728 static int
1729 resume_clear_callback (struct lwp_info *lp, void *data)
1730 {
1731 lp->resumed = 0;
1732 lp->last_resume_kind = resume_stop;
1733 return 0;
1734 }
1735
1736 static int
1737 resume_set_callback (struct lwp_info *lp, void *data)
1738 {
1739 lp->resumed = 1;
1740 lp->last_resume_kind = resume_continue;
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_resume (struct target_ops *ops,
1746 ptid_t ptid, int step, enum gdb_signal signo)
1747 {
1748 struct lwp_info *lp;
1749 int resume_many;
1750
1751 if (debug_linux_nat)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1754 step ? "step" : "resume",
1755 target_pid_to_str (ptid),
1756 (signo != GDB_SIGNAL_0
1757 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1758 target_pid_to_str (inferior_ptid));
1759
1760 /* A specific PTID means `step only this process id'. */
1761 resume_many = (ptid_equal (minus_one_ptid, ptid)
1762 || ptid_is_pid (ptid));
1763
1764 /* Mark the lwps we're resuming as resumed. */
1765 iterate_over_lwps (ptid, resume_set_callback, NULL);
1766
1767 /* See if it's the current inferior that should be handled
1768 specially. */
1769 if (resume_many)
1770 lp = find_lwp_pid (inferior_ptid);
1771 else
1772 lp = find_lwp_pid (ptid);
1773 gdb_assert (lp != NULL);
1774
1775 /* Remember if we're stepping. */
1776 lp->last_resume_kind = step ? resume_step : resume_continue;
1777
1778 /* If we have a pending wait status for this thread, there is no
1779 point in resuming the process. But first make sure that
1780 linux_nat_wait won't preemptively handle the event - we
1781 should never take this short-circuit if we are going to
1782 leave LP running, since we have skipped resuming all the
1783 other threads. This bit of code needs to be synchronized
1784 with linux_nat_wait. */
1785
1786 if (lp->status && WIFSTOPPED (lp->status))
1787 {
1788 if (!lp->step
1789 && WSTOPSIG (lp->status)
1790 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1791 {
1792 if (debug_linux_nat)
1793 fprintf_unfiltered (gdb_stdlog,
1794 "LLR: Not short circuiting for ignored "
1795 "status 0x%x\n", lp->status);
1796
1797 /* FIXME: What should we do if we are supposed to continue
1798 this thread with a signal? */
1799 gdb_assert (signo == GDB_SIGNAL_0);
1800 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1801 lp->status = 0;
1802 }
1803 }
1804
1805 if (lwp_status_pending_p (lp))
1806 {
1807 /* FIXME: What should we do if we are supposed to continue
1808 this thread with a signal? */
1809 gdb_assert (signo == GDB_SIGNAL_0);
1810
1811 if (debug_linux_nat)
1812 fprintf_unfiltered (gdb_stdlog,
1813 "LLR: Short circuiting for status 0x%x\n",
1814 lp->status);
1815
1816 if (target_can_async_p ())
1817 {
1818 target_async (1);
1819 /* Tell the event loop we have something to process. */
1820 async_file_mark ();
1821 }
1822 return;
1823 }
1824
1825 if (resume_many)
1826 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1827
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "LLR: %s %s, %s (resume event thread)\n",
1831 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1832 target_pid_to_str (lp->ptid),
1833 (signo != GDB_SIGNAL_0
1834 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1835
1836 linux_resume_one_lwp (lp, step, signo);
1837
1838 if (target_can_async_p ())
1839 target_async (1);
1840 }
1841
1842 /* Send a signal to an LWP. */
1843
1844 static int
1845 kill_lwp (int lwpid, int signo)
1846 {
1847 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1848 fails, then we are not using nptl threads and we should be using kill. */
1849
1850 #ifdef HAVE_TKILL_SYSCALL
1851 {
1852 static int tkill_failed;
1853
1854 if (!tkill_failed)
1855 {
1856 int ret;
1857
1858 errno = 0;
1859 ret = syscall (__NR_tkill, lwpid, signo);
1860 if (errno != ENOSYS)
1861 return ret;
1862 tkill_failed = 1;
1863 }
1864 }
1865 #endif
1866
1867 return kill (lwpid, signo);
1868 }
1869
1870 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1871 event, check if the core is interested in it: if not, ignore the
1872 event, and keep waiting; otherwise, we need to toggle the LWP's
1873 syscall entry/exit status, since the ptrace event itself doesn't
1874 indicate it, and report the trap to higher layers. */
1875
1876 static int
1877 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1878 {
1879 struct target_waitstatus *ourstatus = &lp->waitstatus;
1880 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1881 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1882
1883 if (stopping)
1884 {
1885 /* If we're stopping threads, there's a SIGSTOP pending, which
1886 makes it so that the LWP reports an immediate syscall return,
1887 followed by the SIGSTOP. Skip seeing that "return" using
1888 PTRACE_CONT directly, and let stop_wait_callback collect the
1889 SIGSTOP. Later when the thread is resumed, a new syscall
1890 entry event. If we didn't do this (and returned 0), we'd
1891 leave a syscall entry pending, and our caller, by using
1892 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1893 itself. Later, when the user re-resumes this LWP, we'd see
1894 another syscall entry event and we'd mistake it for a return.
1895
1896 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1897 (leaving immediately with LWP->signalled set, without issuing
1898 a PTRACE_CONT), it would still be problematic to leave this
1899 syscall enter pending, as later when the thread is resumed,
1900 it would then see the same syscall exit mentioned above,
1901 followed by the delayed SIGSTOP, while the syscall didn't
1902 actually get to execute. It seems it would be even more
1903 confusing to the user. */
1904
1905 if (debug_linux_nat)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "LHST: ignoring syscall %d "
1908 "for LWP %ld (stopping threads), "
1909 "resuming with PTRACE_CONT for SIGSTOP\n",
1910 syscall_number,
1911 ptid_get_lwp (lp->ptid));
1912
1913 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1914 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1915 lp->stopped = 0;
1916 return 1;
1917 }
1918
1919 if (catch_syscall_enabled ())
1920 {
1921 /* Always update the entry/return state, even if this particular
1922 syscall isn't interesting to the core now. In async mode,
1923 the user could install a new catchpoint for this syscall
1924 between syscall enter/return, and we'll need to know to
1925 report a syscall return if that happens. */
1926 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? TARGET_WAITKIND_SYSCALL_RETURN
1928 : TARGET_WAITKIND_SYSCALL_ENTRY);
1929
1930 if (catching_syscall_number (syscall_number))
1931 {
1932 /* Alright, an event to report. */
1933 ourstatus->kind = lp->syscall_state;
1934 ourstatus->value.syscall_number = syscall_number;
1935
1936 if (debug_linux_nat)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "LHST: stopping for %s of syscall %d"
1939 " for LWP %ld\n",
1940 lp->syscall_state
1941 == TARGET_WAITKIND_SYSCALL_ENTRY
1942 ? "entry" : "return",
1943 syscall_number,
1944 ptid_get_lwp (lp->ptid));
1945 return 0;
1946 }
1947
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LHST: ignoring %s of syscall %d "
1951 "for LWP %ld\n",
1952 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1953 ? "entry" : "return",
1954 syscall_number,
1955 ptid_get_lwp (lp->ptid));
1956 }
1957 else
1958 {
1959 /* If we had been syscall tracing, and hence used PT_SYSCALL
1960 before on this LWP, it could happen that the user removes all
1961 syscall catchpoints before we get to process this event.
1962 There are two noteworthy issues here:
1963
1964 - When stopped at a syscall entry event, resuming with
1965 PT_STEP still resumes executing the syscall and reports a
1966 syscall return.
1967
1968 - Only PT_SYSCALL catches syscall enters. If we last
1969 single-stepped this thread, then this event can't be a
1970 syscall enter. If we last single-stepped this thread, this
1971 has to be a syscall exit.
1972
1973 The points above mean that the next resume, be it PT_STEP or
1974 PT_CONTINUE, can not trigger a syscall trace event. */
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LHST: caught syscall event "
1978 "with no syscall catchpoints."
1979 " %d for LWP %ld, ignoring\n",
1980 syscall_number,
1981 ptid_get_lwp (lp->ptid));
1982 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1983 }
1984
1985 /* The core isn't interested in this event. For efficiency, avoid
1986 stopping all threads only to have the core resume them all again.
1987 Since we're not stopping threads, if we're still syscall tracing
1988 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1989 subsequent syscall. Simply resume using the inf-ptrace layer,
1990 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1991
1992 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1993 return 1;
1994 }
1995
1996 /* Handle a GNU/Linux extended wait response. If we see a clone
1997 event, we need to add the new LWP to our list (and not report the
1998 trap to higher layers). This function returns non-zero if the
1999 event should be ignored and we should wait again. If STOPPING is
2000 true, the new LWP remains stopped, otherwise it is continued. */
2001
2002 static int
2003 linux_handle_extended_wait (struct lwp_info *lp, int status)
2004 {
2005 int pid = ptid_get_lwp (lp->ptid);
2006 struct target_waitstatus *ourstatus = &lp->waitstatus;
2007 int event = linux_ptrace_get_extended_event (status);
2008
2009 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2010 || event == PTRACE_EVENT_CLONE)
2011 {
2012 unsigned long new_pid;
2013 int ret;
2014
2015 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2016
2017 /* If we haven't already seen the new PID stop, wait for it now. */
2018 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2019 {
2020 /* The new child has a pending SIGSTOP. We can't affect it until it
2021 hits the SIGSTOP, but we're already attached. */
2022 ret = my_waitpid (new_pid, &status,
2023 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2024 if (ret == -1)
2025 perror_with_name (_("waiting for new child"));
2026 else if (ret != new_pid)
2027 internal_error (__FILE__, __LINE__,
2028 _("wait returned unexpected PID %d"), ret);
2029 else if (!WIFSTOPPED (status))
2030 internal_error (__FILE__, __LINE__,
2031 _("wait returned unexpected status 0x%x"), status);
2032 }
2033
2034 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2035
2036 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2037 {
2038 /* The arch-specific native code may need to know about new
2039 forks even if those end up never mapped to an
2040 inferior. */
2041 if (linux_nat_new_fork != NULL)
2042 linux_nat_new_fork (lp, new_pid);
2043 }
2044
2045 if (event == PTRACE_EVENT_FORK
2046 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2047 {
2048 /* Handle checkpointing by linux-fork.c here as a special
2049 case. We don't want the follow-fork-mode or 'catch fork'
2050 to interfere with this. */
2051
2052 /* This won't actually modify the breakpoint list, but will
2053 physically remove the breakpoints from the child. */
2054 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2055
2056 /* Retain child fork in ptrace (stopped) state. */
2057 if (!find_fork_pid (new_pid))
2058 add_fork (new_pid);
2059
2060 /* Report as spurious, so that infrun doesn't want to follow
2061 this fork. We're actually doing an infcall in
2062 linux-fork.c. */
2063 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2064
2065 /* Report the stop to the core. */
2066 return 0;
2067 }
2068
2069 if (event == PTRACE_EVENT_FORK)
2070 ourstatus->kind = TARGET_WAITKIND_FORKED;
2071 else if (event == PTRACE_EVENT_VFORK)
2072 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2073 else if (event == PTRACE_EVENT_CLONE)
2074 {
2075 struct lwp_info *new_lp;
2076
2077 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2078
2079 if (debug_linux_nat)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "LHEW: Got clone event "
2082 "from LWP %d, new child is LWP %ld\n",
2083 pid, new_pid);
2084
2085 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2086 new_lp->cloned = 1;
2087 new_lp->stopped = 1;
2088 new_lp->resumed = 1;
2089
2090 /* If the thread_db layer is active, let it record the user
2091 level thread id and status, and add the thread to GDB's
2092 list. */
2093 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2094 {
2095 /* The process is not using thread_db. Add the LWP to
2096 GDB's list. */
2097 target_post_attach (ptid_get_lwp (new_lp->ptid));
2098 add_thread (new_lp->ptid);
2099 }
2100
2101 /* Even if we're stopping the thread for some reason
2102 internal to this module, from the perspective of infrun
2103 and the user/frontend, this new thread is running until
2104 it next reports a stop. */
2105 set_running (new_lp->ptid, 1);
2106 set_executing (new_lp->ptid, 1);
2107
2108 if (WSTOPSIG (status) != SIGSTOP)
2109 {
2110 /* This can happen if someone starts sending signals to
2111 the new thread before it gets a chance to run, which
2112 have a lower number than SIGSTOP (e.g. SIGUSR1).
2113 This is an unlikely case, and harder to handle for
2114 fork / vfork than for clone, so we do not try - but
2115 we handle it for clone events here. */
2116
2117 new_lp->signalled = 1;
2118
2119 /* We created NEW_LP so it cannot yet contain STATUS. */
2120 gdb_assert (new_lp->status == 0);
2121
2122 /* Save the wait status to report later. */
2123 if (debug_linux_nat)
2124 fprintf_unfiltered (gdb_stdlog,
2125 "LHEW: waitpid of new LWP %ld, "
2126 "saving status %s\n",
2127 (long) ptid_get_lwp (new_lp->ptid),
2128 status_to_str (status));
2129 new_lp->status = status;
2130 }
2131
2132 return 1;
2133 }
2134
2135 return 0;
2136 }
2137
2138 if (event == PTRACE_EVENT_EXEC)
2139 {
2140 if (debug_linux_nat)
2141 fprintf_unfiltered (gdb_stdlog,
2142 "LHEW: Got exec event from LWP %ld\n",
2143 ptid_get_lwp (lp->ptid));
2144
2145 ourstatus->kind = TARGET_WAITKIND_EXECD;
2146 ourstatus->value.execd_pathname
2147 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2148
2149 /* The thread that execed must have been resumed, but, when a
2150 thread execs, it changes its tid to the tgid, and the old
2151 tgid thread might have not been resumed. */
2152 lp->resumed = 1;
2153 return 0;
2154 }
2155
2156 if (event == PTRACE_EVENT_VFORK_DONE)
2157 {
2158 if (current_inferior ()->waiting_for_vfork_done)
2159 {
2160 if (debug_linux_nat)
2161 fprintf_unfiltered (gdb_stdlog,
2162 "LHEW: Got expected PTRACE_EVENT_"
2163 "VFORK_DONE from LWP %ld: stopping\n",
2164 ptid_get_lwp (lp->ptid));
2165
2166 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2167 return 0;
2168 }
2169
2170 if (debug_linux_nat)
2171 fprintf_unfiltered (gdb_stdlog,
2172 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2173 "from LWP %ld: ignoring\n",
2174 ptid_get_lwp (lp->ptid));
2175 return 1;
2176 }
2177
2178 internal_error (__FILE__, __LINE__,
2179 _("unknown ptrace event %d"), event);
2180 }
2181
2182 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2183 exited. */
2184
2185 static int
2186 wait_lwp (struct lwp_info *lp)
2187 {
2188 pid_t pid;
2189 int status = 0;
2190 int thread_dead = 0;
2191 sigset_t prev_mask;
2192
2193 gdb_assert (!lp->stopped);
2194 gdb_assert (lp->status == 0);
2195
2196 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2197 block_child_signals (&prev_mask);
2198
2199 for (;;)
2200 {
2201 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2202 was right and we should just call sigsuspend. */
2203
2204 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2205 if (pid == -1 && errno == ECHILD)
2206 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2207 if (pid == -1 && errno == ECHILD)
2208 {
2209 /* The thread has previously exited. We need to delete it
2210 now because, for some vendor 2.4 kernels with NPTL
2211 support backported, there won't be an exit event unless
2212 it is the main thread. 2.6 kernels will report an exit
2213 event for each thread that exits, as expected. */
2214 thread_dead = 1;
2215 if (debug_linux_nat)
2216 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2217 target_pid_to_str (lp->ptid));
2218 }
2219 if (pid != 0)
2220 break;
2221
2222 /* Bugs 10970, 12702.
2223 Thread group leader may have exited in which case we'll lock up in
2224 waitpid if there are other threads, even if they are all zombies too.
2225 Basically, we're not supposed to use waitpid this way.
2226 __WCLONE is not applicable for the leader so we can't use that.
2227 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2228 process; it gets ESRCH both for the zombie and for running processes.
2229
2230 As a workaround, check if we're waiting for the thread group leader and
2231 if it's a zombie, and avoid calling waitpid if it is.
2232
2233 This is racy, what if the tgl becomes a zombie right after we check?
2234 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2235 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2236
2237 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2238 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2239 {
2240 thread_dead = 1;
2241 if (debug_linux_nat)
2242 fprintf_unfiltered (gdb_stdlog,
2243 "WL: Thread group leader %s vanished.\n",
2244 target_pid_to_str (lp->ptid));
2245 break;
2246 }
2247
2248 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2249 get invoked despite our caller had them intentionally blocked by
2250 block_child_signals. This is sensitive only to the loop of
2251 linux_nat_wait_1 and there if we get called my_waitpid gets called
2252 again before it gets to sigsuspend so we can safely let the handlers
2253 get executed here. */
2254
2255 if (debug_linux_nat)
2256 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2257 sigsuspend (&suspend_mask);
2258 }
2259
2260 restore_child_signals_mask (&prev_mask);
2261
2262 if (!thread_dead)
2263 {
2264 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2265
2266 if (debug_linux_nat)
2267 {
2268 fprintf_unfiltered (gdb_stdlog,
2269 "WL: waitpid %s received %s\n",
2270 target_pid_to_str (lp->ptid),
2271 status_to_str (status));
2272 }
2273
2274 /* Check if the thread has exited. */
2275 if (WIFEXITED (status) || WIFSIGNALED (status))
2276 {
2277 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2278 {
2279 if (debug_linux_nat)
2280 fprintf_unfiltered (gdb_stdlog, "WL: Process %d exited.\n",
2281 ptid_get_pid (lp->ptid));
2282
2283 /* This is the leader exiting, it means the whole
2284 process is gone. Store the status to report to the
2285 core. Store it in lp->waitstatus, because lp->status
2286 would be ambiguous (W_EXITCODE(0,0) == 0). */
2287 store_waitstatus (&lp->waitstatus, status);
2288 return 0;
2289 }
2290
2291 thread_dead = 1;
2292 if (debug_linux_nat)
2293 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2294 target_pid_to_str (lp->ptid));
2295 }
2296 }
2297
2298 if (thread_dead)
2299 {
2300 exit_lwp (lp);
2301 return 0;
2302 }
2303
2304 gdb_assert (WIFSTOPPED (status));
2305 lp->stopped = 1;
2306
2307 if (lp->must_set_ptrace_flags)
2308 {
2309 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2310 int options = linux_nat_ptrace_options (inf->attach_flag);
2311
2312 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2313 lp->must_set_ptrace_flags = 0;
2314 }
2315
2316 /* Handle GNU/Linux's syscall SIGTRAPs. */
2317 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2318 {
2319 /* No longer need the sysgood bit. The ptrace event ends up
2320 recorded in lp->waitstatus if we care for it. We can carry
2321 on handling the event like a regular SIGTRAP from here
2322 on. */
2323 status = W_STOPCODE (SIGTRAP);
2324 if (linux_handle_syscall_trap (lp, 1))
2325 return wait_lwp (lp);
2326 }
2327
2328 /* Handle GNU/Linux's extended waitstatus for trace events. */
2329 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2330 && linux_is_extended_waitstatus (status))
2331 {
2332 if (debug_linux_nat)
2333 fprintf_unfiltered (gdb_stdlog,
2334 "WL: Handling extended status 0x%06x\n",
2335 status);
2336 linux_handle_extended_wait (lp, status);
2337 return 0;
2338 }
2339
2340 return status;
2341 }
2342
2343 /* Send a SIGSTOP to LP. */
2344
2345 static int
2346 stop_callback (struct lwp_info *lp, void *data)
2347 {
2348 if (!lp->stopped && !lp->signalled)
2349 {
2350 int ret;
2351
2352 if (debug_linux_nat)
2353 {
2354 fprintf_unfiltered (gdb_stdlog,
2355 "SC: kill %s **<SIGSTOP>**\n",
2356 target_pid_to_str (lp->ptid));
2357 }
2358 errno = 0;
2359 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2360 if (debug_linux_nat)
2361 {
2362 fprintf_unfiltered (gdb_stdlog,
2363 "SC: lwp kill %d %s\n",
2364 ret,
2365 errno ? safe_strerror (errno) : "ERRNO-OK");
2366 }
2367
2368 lp->signalled = 1;
2369 gdb_assert (lp->status == 0);
2370 }
2371
2372 return 0;
2373 }
2374
2375 /* Request a stop on LWP. */
2376
2377 void
2378 linux_stop_lwp (struct lwp_info *lwp)
2379 {
2380 stop_callback (lwp, NULL);
2381 }
2382
2383 /* See linux-nat.h */
2384
2385 void
2386 linux_stop_and_wait_all_lwps (void)
2387 {
2388 /* Stop all LWP's ... */
2389 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2390
2391 /* ... and wait until all of them have reported back that
2392 they're no longer running. */
2393 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2394 }
2395
2396 /* See linux-nat.h */
2397
2398 void
2399 linux_unstop_all_lwps (void)
2400 {
2401 iterate_over_lwps (minus_one_ptid,
2402 resume_stopped_resumed_lwps, &minus_one_ptid);
2403 }
2404
2405 /* Return non-zero if LWP PID has a pending SIGINT. */
2406
2407 static int
2408 linux_nat_has_pending_sigint (int pid)
2409 {
2410 sigset_t pending, blocked, ignored;
2411
2412 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2413
2414 if (sigismember (&pending, SIGINT)
2415 && !sigismember (&ignored, SIGINT))
2416 return 1;
2417
2418 return 0;
2419 }
2420
2421 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2422
2423 static int
2424 set_ignore_sigint (struct lwp_info *lp, void *data)
2425 {
2426 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2427 flag to consume the next one. */
2428 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2429 && WSTOPSIG (lp->status) == SIGINT)
2430 lp->status = 0;
2431 else
2432 lp->ignore_sigint = 1;
2433
2434 return 0;
2435 }
2436
2437 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2438 This function is called after we know the LWP has stopped; if the LWP
2439 stopped before the expected SIGINT was delivered, then it will never have
2440 arrived. Also, if the signal was delivered to a shared queue and consumed
2441 by a different thread, it will never be delivered to this LWP. */
2442
2443 static void
2444 maybe_clear_ignore_sigint (struct lwp_info *lp)
2445 {
2446 if (!lp->ignore_sigint)
2447 return;
2448
2449 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2450 {
2451 if (debug_linux_nat)
2452 fprintf_unfiltered (gdb_stdlog,
2453 "MCIS: Clearing bogus flag for %s\n",
2454 target_pid_to_str (lp->ptid));
2455 lp->ignore_sigint = 0;
2456 }
2457 }
2458
2459 /* Fetch the possible triggered data watchpoint info and store it in
2460 LP.
2461
2462 On some archs, like x86, that use debug registers to set
2463 watchpoints, it's possible that the way to know which watched
2464 address trapped, is to check the register that is used to select
2465 which address to watch. Problem is, between setting the watchpoint
2466 and reading back which data address trapped, the user may change
2467 the set of watchpoints, and, as a consequence, GDB changes the
2468 debug registers in the inferior. To avoid reading back a stale
2469 stopped-data-address when that happens, we cache in LP the fact
2470 that a watchpoint trapped, and the corresponding data address, as
2471 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2472 registers meanwhile, we have the cached data we can rely on. */
2473
2474 static int
2475 check_stopped_by_watchpoint (struct lwp_info *lp)
2476 {
2477 struct cleanup *old_chain;
2478
2479 if (linux_ops->to_stopped_by_watchpoint == NULL)
2480 return 0;
2481
2482 old_chain = save_inferior_ptid ();
2483 inferior_ptid = lp->ptid;
2484
2485 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2486 {
2487 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2488
2489 if (linux_ops->to_stopped_data_address != NULL)
2490 lp->stopped_data_address_p =
2491 linux_ops->to_stopped_data_address (&current_target,
2492 &lp->stopped_data_address);
2493 else
2494 lp->stopped_data_address_p = 0;
2495 }
2496
2497 do_cleanups (old_chain);
2498
2499 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2500 }
2501
2502 /* Called when the LWP stopped for a trap that could be explained by a
2503 watchpoint or a breakpoint. */
2504
2505 static void
2506 save_sigtrap (struct lwp_info *lp)
2507 {
2508 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2509 gdb_assert (lp->status != 0);
2510
2511 /* Check first if this was a SW/HW breakpoint before checking
2512 watchpoints, because at least s390 can't tell the data address of
2513 hardware watchpoint hits, and the kernel returns
2514 stopped-by-watchpoint as long as there's a watchpoint set. */
2515 if (linux_nat_status_is_event (lp->status))
2516 check_stopped_by_breakpoint (lp);
2517
2518 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2519 or hardware watchpoint. Check which is which if we got
2520 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2521 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2522 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2523 check_stopped_by_watchpoint (lp);
2524 }
2525
2526 /* Returns true if the LWP had stopped for a watchpoint. */
2527
2528 static int
2529 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2530 {
2531 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2532
2533 gdb_assert (lp != NULL);
2534
2535 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2536 }
2537
2538 static int
2539 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2540 {
2541 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2542
2543 gdb_assert (lp != NULL);
2544
2545 *addr_p = lp->stopped_data_address;
2546
2547 return lp->stopped_data_address_p;
2548 }
2549
2550 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2551
2552 static int
2553 sigtrap_is_event (int status)
2554 {
2555 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2556 }
2557
2558 /* Set alternative SIGTRAP-like events recognizer. If
2559 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2560 applied. */
2561
2562 void
2563 linux_nat_set_status_is_event (struct target_ops *t,
2564 int (*status_is_event) (int status))
2565 {
2566 linux_nat_status_is_event = status_is_event;
2567 }
2568
2569 /* Wait until LP is stopped. */
2570
2571 static int
2572 stop_wait_callback (struct lwp_info *lp, void *data)
2573 {
2574 struct inferior *inf = find_inferior_ptid (lp->ptid);
2575
2576 /* If this is a vfork parent, bail out, it is not going to report
2577 any SIGSTOP until the vfork is done with. */
2578 if (inf->vfork_child != NULL)
2579 return 0;
2580
2581 if (!lp->stopped)
2582 {
2583 int status;
2584
2585 status = wait_lwp (lp);
2586 if (status == 0)
2587 return 0;
2588
2589 if (lp->ignore_sigint && WIFSTOPPED (status)
2590 && WSTOPSIG (status) == SIGINT)
2591 {
2592 lp->ignore_sigint = 0;
2593
2594 errno = 0;
2595 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2596 lp->stopped = 0;
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "PTRACE_CONT %s, 0, 0 (%s) "
2600 "(discarding SIGINT)\n",
2601 target_pid_to_str (lp->ptid),
2602 errno ? safe_strerror (errno) : "OK");
2603
2604 return stop_wait_callback (lp, NULL);
2605 }
2606
2607 maybe_clear_ignore_sigint (lp);
2608
2609 if (WSTOPSIG (status) != SIGSTOP)
2610 {
2611 /* The thread was stopped with a signal other than SIGSTOP. */
2612
2613 if (debug_linux_nat)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "SWC: Pending event %s in %s\n",
2616 status_to_str ((int) status),
2617 target_pid_to_str (lp->ptid));
2618
2619 /* Save the sigtrap event. */
2620 lp->status = status;
2621 gdb_assert (lp->signalled);
2622 save_sigtrap (lp);
2623 }
2624 else
2625 {
2626 /* We caught the SIGSTOP that we intended to catch, so
2627 there's no SIGSTOP pending. */
2628
2629 if (debug_linux_nat)
2630 fprintf_unfiltered (gdb_stdlog,
2631 "SWC: Expected SIGSTOP caught for %s.\n",
2632 target_pid_to_str (lp->ptid));
2633
2634 /* Reset SIGNALLED only after the stop_wait_callback call
2635 above as it does gdb_assert on SIGNALLED. */
2636 lp->signalled = 0;
2637 }
2638 }
2639
2640 return 0;
2641 }
2642
2643 /* Return non-zero if LP has a wait status pending. Discard the
2644 pending event and resume the LWP if the event that originally
2645 caused the stop became uninteresting. */
2646
2647 static int
2648 status_callback (struct lwp_info *lp, void *data)
2649 {
2650 /* Only report a pending wait status if we pretend that this has
2651 indeed been resumed. */
2652 if (!lp->resumed)
2653 return 0;
2654
2655 if (!lwp_status_pending_p (lp))
2656 return 0;
2657
2658 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2659 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2660 {
2661 struct regcache *regcache = get_thread_regcache (lp->ptid);
2662 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2663 CORE_ADDR pc;
2664 int discard = 0;
2665
2666 pc = regcache_read_pc (regcache);
2667
2668 if (pc != lp->stop_pc)
2669 {
2670 if (debug_linux_nat)
2671 fprintf_unfiltered (gdb_stdlog,
2672 "SC: PC of %s changed. was=%s, now=%s\n",
2673 target_pid_to_str (lp->ptid),
2674 paddress (target_gdbarch (), lp->stop_pc),
2675 paddress (target_gdbarch (), pc));
2676 discard = 1;
2677 }
2678
2679 #if !USE_SIGTRAP_SIGINFO
2680 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2681 {
2682 if (debug_linux_nat)
2683 fprintf_unfiltered (gdb_stdlog,
2684 "SC: previous breakpoint of %s, at %s gone\n",
2685 target_pid_to_str (lp->ptid),
2686 paddress (target_gdbarch (), lp->stop_pc));
2687
2688 discard = 1;
2689 }
2690 #endif
2691
2692 if (discard)
2693 {
2694 if (debug_linux_nat)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "SC: pending event of %s cancelled.\n",
2697 target_pid_to_str (lp->ptid));
2698
2699 lp->status = 0;
2700 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2701 return 0;
2702 }
2703 }
2704
2705 return 1;
2706 }
2707
2708 /* Return non-zero if LP isn't stopped. */
2709
2710 static int
2711 running_callback (struct lwp_info *lp, void *data)
2712 {
2713 return (!lp->stopped
2714 || (lwp_status_pending_p (lp) && lp->resumed));
2715 }
2716
2717 /* Count the LWP's that have had events. */
2718
2719 static int
2720 count_events_callback (struct lwp_info *lp, void *data)
2721 {
2722 int *count = data;
2723
2724 gdb_assert (count != NULL);
2725
2726 /* Select only resumed LWPs that have an event pending. */
2727 if (lp->resumed && lwp_status_pending_p (lp))
2728 (*count)++;
2729
2730 return 0;
2731 }
2732
2733 /* Select the LWP (if any) that is currently being single-stepped. */
2734
2735 static int
2736 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2737 {
2738 if (lp->last_resume_kind == resume_step
2739 && lp->status != 0)
2740 return 1;
2741 else
2742 return 0;
2743 }
2744
2745 /* Returns true if LP has a status pending. */
2746
2747 static int
2748 lwp_status_pending_p (struct lwp_info *lp)
2749 {
2750 /* We check for lp->waitstatus in addition to lp->status, because we
2751 can have pending process exits recorded in lp->status and
2752 W_EXITCODE(0,0) happens to be 0. */
2753 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2754 }
2755
2756 /* Select the Nth LWP that has had an event. */
2757
2758 static int
2759 select_event_lwp_callback (struct lwp_info *lp, void *data)
2760 {
2761 int *selector = data;
2762
2763 gdb_assert (selector != NULL);
2764
2765 /* Select only resumed LWPs that have an event pending. */
2766 if (lp->resumed && lwp_status_pending_p (lp))
2767 if ((*selector)-- == 0)
2768 return 1;
2769
2770 return 0;
2771 }
2772
2773 /* Called when the LWP got a signal/trap that could be explained by a
2774 software or hardware breakpoint. */
2775
2776 static int
2777 check_stopped_by_breakpoint (struct lwp_info *lp)
2778 {
2779 /* Arrange for a breakpoint to be hit again later. We don't keep
2780 the SIGTRAP status and don't forward the SIGTRAP signal to the
2781 LWP. We will handle the current event, eventually we will resume
2782 this LWP, and this breakpoint will trap again.
2783
2784 If we do not do this, then we run the risk that the user will
2785 delete or disable the breakpoint, but the LWP will have already
2786 tripped on it. */
2787
2788 struct regcache *regcache = get_thread_regcache (lp->ptid);
2789 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2790 CORE_ADDR pc;
2791 CORE_ADDR sw_bp_pc;
2792 #if USE_SIGTRAP_SIGINFO
2793 siginfo_t siginfo;
2794 #endif
2795
2796 pc = regcache_read_pc (regcache);
2797 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2798
2799 #if USE_SIGTRAP_SIGINFO
2800 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2801 {
2802 if (siginfo.si_signo == SIGTRAP)
2803 {
2804 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2805 {
2806 if (debug_linux_nat)
2807 fprintf_unfiltered (gdb_stdlog,
2808 "CSBB: %s stopped by software "
2809 "breakpoint\n",
2810 target_pid_to_str (lp->ptid));
2811
2812 /* Back up the PC if necessary. */
2813 if (pc != sw_bp_pc)
2814 regcache_write_pc (regcache, sw_bp_pc);
2815
2816 lp->stop_pc = sw_bp_pc;
2817 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2818 return 1;
2819 }
2820 else if (siginfo.si_code == TRAP_HWBKPT)
2821 {
2822 if (debug_linux_nat)
2823 fprintf_unfiltered (gdb_stdlog,
2824 "CSBB: %s stopped by hardware "
2825 "breakpoint/watchpoint\n",
2826 target_pid_to_str (lp->ptid));
2827
2828 lp->stop_pc = pc;
2829 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2830 return 1;
2831 }
2832 else if (siginfo.si_code == TRAP_TRACE)
2833 {
2834 if (debug_linux_nat)
2835 fprintf_unfiltered (gdb_stdlog,
2836 "CSBB: %s stopped by trace\n",
2837 target_pid_to_str (lp->ptid));
2838 }
2839 }
2840 }
2841 #else
2842 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2843 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2844 sw_bp_pc))
2845 {
2846 /* The LWP was either continued, or stepped a software
2847 breakpoint instruction. */
2848 if (debug_linux_nat)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "CSBB: %s stopped by software breakpoint\n",
2851 target_pid_to_str (lp->ptid));
2852
2853 /* Back up the PC if necessary. */
2854 if (pc != sw_bp_pc)
2855 regcache_write_pc (regcache, sw_bp_pc);
2856
2857 lp->stop_pc = sw_bp_pc;
2858 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2859 return 1;
2860 }
2861
2862 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2863 {
2864 if (debug_linux_nat)
2865 fprintf_unfiltered (gdb_stdlog,
2866 "CSBB: stopped by hardware breakpoint %s\n",
2867 target_pid_to_str (lp->ptid));
2868
2869 lp->stop_pc = pc;
2870 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2871 return 1;
2872 }
2873 #endif
2874
2875 return 0;
2876 }
2877
2878
2879 /* Returns true if the LWP had stopped for a software breakpoint. */
2880
2881 static int
2882 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2883 {
2884 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2885
2886 gdb_assert (lp != NULL);
2887
2888 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2889 }
2890
2891 /* Implement the supports_stopped_by_sw_breakpoint method. */
2892
2893 static int
2894 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2895 {
2896 return USE_SIGTRAP_SIGINFO;
2897 }
2898
2899 /* Returns true if the LWP had stopped for a hardware
2900 breakpoint/watchpoint. */
2901
2902 static int
2903 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2904 {
2905 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2906
2907 gdb_assert (lp != NULL);
2908
2909 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2910 }
2911
2912 /* Implement the supports_stopped_by_hw_breakpoint method. */
2913
2914 static int
2915 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2916 {
2917 return USE_SIGTRAP_SIGINFO;
2918 }
2919
2920 /* Select one LWP out of those that have events pending. */
2921
2922 static void
2923 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2924 {
2925 int num_events = 0;
2926 int random_selector;
2927 struct lwp_info *event_lp = NULL;
2928
2929 /* Record the wait status for the original LWP. */
2930 (*orig_lp)->status = *status;
2931
2932 /* In all-stop, give preference to the LWP that is being
2933 single-stepped. There will be at most one, and it will be the
2934 LWP that the core is most interested in. If we didn't do this,
2935 then we'd have to handle pending step SIGTRAPs somehow in case
2936 the core later continues the previously-stepped thread, as
2937 otherwise we'd report the pending SIGTRAP then, and the core, not
2938 having stepped the thread, wouldn't understand what the trap was
2939 for, and therefore would report it to the user as a random
2940 signal. */
2941 if (!target_is_non_stop_p ())
2942 {
2943 event_lp = iterate_over_lwps (filter,
2944 select_singlestep_lwp_callback, NULL);
2945 if (event_lp != NULL)
2946 {
2947 if (debug_linux_nat)
2948 fprintf_unfiltered (gdb_stdlog,
2949 "SEL: Select single-step %s\n",
2950 target_pid_to_str (event_lp->ptid));
2951 }
2952 }
2953
2954 if (event_lp == NULL)
2955 {
2956 /* Pick one at random, out of those which have had events. */
2957
2958 /* First see how many events we have. */
2959 iterate_over_lwps (filter, count_events_callback, &num_events);
2960 gdb_assert (num_events > 0);
2961
2962 /* Now randomly pick a LWP out of those that have had
2963 events. */
2964 random_selector = (int)
2965 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2966
2967 if (debug_linux_nat && num_events > 1)
2968 fprintf_unfiltered (gdb_stdlog,
2969 "SEL: Found %d events, selecting #%d\n",
2970 num_events, random_selector);
2971
2972 event_lp = iterate_over_lwps (filter,
2973 select_event_lwp_callback,
2974 &random_selector);
2975 }
2976
2977 if (event_lp != NULL)
2978 {
2979 /* Switch the event LWP. */
2980 *orig_lp = event_lp;
2981 *status = event_lp->status;
2982 }
2983
2984 /* Flush the wait status for the event LWP. */
2985 (*orig_lp)->status = 0;
2986 }
2987
2988 /* Return non-zero if LP has been resumed. */
2989
2990 static int
2991 resumed_callback (struct lwp_info *lp, void *data)
2992 {
2993 return lp->resumed;
2994 }
2995
2996 /* Stop an active thread, verify it still exists, then resume it. If
2997 the thread ends up with a pending status, then it is not resumed,
2998 and *DATA (really a pointer to int), is set. */
2999
3000 static int
3001 stop_and_resume_callback (struct lwp_info *lp, void *data)
3002 {
3003 if (!lp->stopped)
3004 {
3005 ptid_t ptid = lp->ptid;
3006
3007 stop_callback (lp, NULL);
3008 stop_wait_callback (lp, NULL);
3009
3010 /* Resume if the lwp still exists, and the core wanted it
3011 running. */
3012 lp = find_lwp_pid (ptid);
3013 if (lp != NULL)
3014 {
3015 if (lp->last_resume_kind == resume_stop
3016 && !lwp_status_pending_p (lp))
3017 {
3018 /* The core wanted the LWP to stop. Even if it stopped
3019 cleanly (with SIGSTOP), leave the event pending. */
3020 if (debug_linux_nat)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "SARC: core wanted LWP %ld stopped "
3023 "(leaving SIGSTOP pending)\n",
3024 ptid_get_lwp (lp->ptid));
3025 lp->status = W_STOPCODE (SIGSTOP);
3026 }
3027
3028 if (!lwp_status_pending_p (lp))
3029 {
3030 if (debug_linux_nat)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "SARC: re-resuming LWP %ld\n",
3033 ptid_get_lwp (lp->ptid));
3034 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3035 }
3036 else
3037 {
3038 if (debug_linux_nat)
3039 fprintf_unfiltered (gdb_stdlog,
3040 "SARC: not re-resuming LWP %ld "
3041 "(has pending)\n",
3042 ptid_get_lwp (lp->ptid));
3043 }
3044 }
3045 }
3046 return 0;
3047 }
3048
3049 /* Check if we should go on and pass this event to common code.
3050 Return the affected lwp if we are, or NULL otherwise. */
3051
3052 static struct lwp_info *
3053 linux_nat_filter_event (int lwpid, int status)
3054 {
3055 struct lwp_info *lp;
3056 int event = linux_ptrace_get_extended_event (status);
3057
3058 lp = find_lwp_pid (pid_to_ptid (lwpid));
3059
3060 /* Check for stop events reported by a process we didn't already
3061 know about - anything not already in our LWP list.
3062
3063 If we're expecting to receive stopped processes after
3064 fork, vfork, and clone events, then we'll just add the
3065 new one to our list and go back to waiting for the event
3066 to be reported - the stopped process might be returned
3067 from waitpid before or after the event is.
3068
3069 But note the case of a non-leader thread exec'ing after the
3070 leader having exited, and gone from our lists. The non-leader
3071 thread changes its tid to the tgid. */
3072
3073 if (WIFSTOPPED (status) && lp == NULL
3074 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3075 {
3076 /* A multi-thread exec after we had seen the leader exiting. */
3077 if (debug_linux_nat)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "LLW: Re-adding thread group leader LWP %d.\n",
3080 lwpid);
3081
3082 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3083 lp->stopped = 1;
3084 lp->resumed = 1;
3085 add_thread (lp->ptid);
3086 }
3087
3088 if (WIFSTOPPED (status) && !lp)
3089 {
3090 if (debug_linux_nat)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3093 (long) lwpid, status_to_str (status));
3094 add_to_pid_list (&stopped_pids, lwpid, status);
3095 return NULL;
3096 }
3097
3098 /* Make sure we don't report an event for the exit of an LWP not in
3099 our list, i.e. not part of the current process. This can happen
3100 if we detach from a program we originally forked and then it
3101 exits. */
3102 if (!WIFSTOPPED (status) && !lp)
3103 return NULL;
3104
3105 /* This LWP is stopped now. (And if dead, this prevents it from
3106 ever being continued.) */
3107 lp->stopped = 1;
3108
3109 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3110 {
3111 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3112 int options = linux_nat_ptrace_options (inf->attach_flag);
3113
3114 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3115 lp->must_set_ptrace_flags = 0;
3116 }
3117
3118 /* Handle GNU/Linux's syscall SIGTRAPs. */
3119 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3120 {
3121 /* No longer need the sysgood bit. The ptrace event ends up
3122 recorded in lp->waitstatus if we care for it. We can carry
3123 on handling the event like a regular SIGTRAP from here
3124 on. */
3125 status = W_STOPCODE (SIGTRAP);
3126 if (linux_handle_syscall_trap (lp, 0))
3127 return NULL;
3128 }
3129
3130 /* Handle GNU/Linux's extended waitstatus for trace events. */
3131 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3132 && linux_is_extended_waitstatus (status))
3133 {
3134 if (debug_linux_nat)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "LLW: Handling extended status 0x%06x\n",
3137 status);
3138 if (linux_handle_extended_wait (lp, status))
3139 return NULL;
3140 }
3141
3142 /* Check if the thread has exited. */
3143 if (WIFEXITED (status) || WIFSIGNALED (status))
3144 {
3145 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3146 {
3147 /* If this is the main thread, we must stop all threads and
3148 verify if they are still alive. This is because in the
3149 nptl thread model on Linux 2.4, there is no signal issued
3150 for exiting LWPs other than the main thread. We only get
3151 the main thread exit signal once all child threads have
3152 already exited. If we stop all the threads and use the
3153 stop_wait_callback to check if they have exited we can
3154 determine whether this signal should be ignored or
3155 whether it means the end of the debugged application,
3156 regardless of which threading model is being used. */
3157 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3158 {
3159 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3160 stop_and_resume_callback, NULL);
3161 }
3162
3163 if (debug_linux_nat)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "LLW: %s exited.\n",
3166 target_pid_to_str (lp->ptid));
3167
3168 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3169 {
3170 /* If there is at least one more LWP, then the exit signal
3171 was not the end of the debugged application and should be
3172 ignored. */
3173 exit_lwp (lp);
3174 return NULL;
3175 }
3176 }
3177
3178 /* Note that even if the leader was ptrace-stopped, it can still
3179 exit, if e.g., some other thread brings down the whole
3180 process (calls `exit'). So don't assert that the lwp is
3181 resumed. */
3182 if (debug_linux_nat)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "Process %ld exited (resumed=%d)\n",
3185 ptid_get_lwp (lp->ptid), lp->resumed);
3186
3187 /* This was the last lwp in the process. Since events are
3188 serialized to GDB core, we may not be able report this one
3189 right now, but GDB core and the other target layers will want
3190 to be notified about the exit code/signal, leave the status
3191 pending for the next time we're able to report it. */
3192
3193 /* Dead LWP's aren't expected to reported a pending sigstop. */
3194 lp->signalled = 0;
3195
3196 /* Store the pending event in the waitstatus, because
3197 W_EXITCODE(0,0) == 0. */
3198 store_waitstatus (&lp->waitstatus, status);
3199 return lp;
3200 }
3201
3202 /* Check if the current LWP has previously exited. In the nptl
3203 thread model, LWPs other than the main thread do not issue
3204 signals when they exit so we must check whenever the thread has
3205 stopped. A similar check is made in stop_wait_callback(). */
3206 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3207 {
3208 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3209
3210 if (debug_linux_nat)
3211 fprintf_unfiltered (gdb_stdlog,
3212 "LLW: %s exited.\n",
3213 target_pid_to_str (lp->ptid));
3214
3215 exit_lwp (lp);
3216
3217 /* Make sure there is at least one thread running. */
3218 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3219
3220 /* Discard the event. */
3221 return NULL;
3222 }
3223
3224 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3225 an attempt to stop an LWP. */
3226 if (lp->signalled
3227 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3228 {
3229 lp->signalled = 0;
3230
3231 if (lp->last_resume_kind == resume_stop)
3232 {
3233 if (debug_linux_nat)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "LLW: resume_stop SIGSTOP caught for %s.\n",
3236 target_pid_to_str (lp->ptid));
3237 }
3238 else
3239 {
3240 /* This is a delayed SIGSTOP. Filter out the event. */
3241
3242 if (debug_linux_nat)
3243 fprintf_unfiltered (gdb_stdlog,
3244 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3245 lp->step ?
3246 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3247 target_pid_to_str (lp->ptid));
3248
3249 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3250 gdb_assert (lp->resumed);
3251 return NULL;
3252 }
3253 }
3254
3255 /* Make sure we don't report a SIGINT that we have already displayed
3256 for another thread. */
3257 if (lp->ignore_sigint
3258 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3259 {
3260 if (debug_linux_nat)
3261 fprintf_unfiltered (gdb_stdlog,
3262 "LLW: Delayed SIGINT caught for %s.\n",
3263 target_pid_to_str (lp->ptid));
3264
3265 /* This is a delayed SIGINT. */
3266 lp->ignore_sigint = 0;
3267
3268 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3269 if (debug_linux_nat)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3272 lp->step ?
3273 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3274 target_pid_to_str (lp->ptid));
3275 gdb_assert (lp->resumed);
3276
3277 /* Discard the event. */
3278 return NULL;
3279 }
3280
3281 /* Don't report signals that GDB isn't interested in, such as
3282 signals that are neither printed nor stopped upon. Stopping all
3283 threads can be a bit time-consuming so if we want decent
3284 performance with heavily multi-threaded programs, especially when
3285 they're using a high frequency timer, we'd better avoid it if we
3286 can. */
3287 if (WIFSTOPPED (status))
3288 {
3289 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3290
3291 if (!target_is_non_stop_p ())
3292 {
3293 /* Only do the below in all-stop, as we currently use SIGSTOP
3294 to implement target_stop (see linux_nat_stop) in
3295 non-stop. */
3296 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3297 {
3298 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3299 forwarded to the entire process group, that is, all LWPs
3300 will receive it - unless they're using CLONE_THREAD to
3301 share signals. Since we only want to report it once, we
3302 mark it as ignored for all LWPs except this one. */
3303 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3304 set_ignore_sigint, NULL);
3305 lp->ignore_sigint = 0;
3306 }
3307 else
3308 maybe_clear_ignore_sigint (lp);
3309 }
3310
3311 /* When using hardware single-step, we need to report every signal.
3312 Otherwise, signals in pass_mask may be short-circuited
3313 except signals that might be caused by a breakpoint. */
3314 if (!lp->step
3315 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3316 && !linux_wstatus_maybe_breakpoint (status))
3317 {
3318 linux_resume_one_lwp (lp, lp->step, signo);
3319 if (debug_linux_nat)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "LLW: %s %s, %s (preempt 'handle')\n",
3322 lp->step ?
3323 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3324 target_pid_to_str (lp->ptid),
3325 (signo != GDB_SIGNAL_0
3326 ? strsignal (gdb_signal_to_host (signo))
3327 : "0"));
3328 return NULL;
3329 }
3330 }
3331
3332 /* An interesting event. */
3333 gdb_assert (lp);
3334 lp->status = status;
3335 save_sigtrap (lp);
3336 return lp;
3337 }
3338
3339 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3340 their exits until all other threads in the group have exited. */
3341
3342 static void
3343 check_zombie_leaders (void)
3344 {
3345 struct inferior *inf;
3346
3347 ALL_INFERIORS (inf)
3348 {
3349 struct lwp_info *leader_lp;
3350
3351 if (inf->pid == 0)
3352 continue;
3353
3354 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3355 if (leader_lp != NULL
3356 /* Check if there are other threads in the group, as we may
3357 have raced with the inferior simply exiting. */
3358 && num_lwps (inf->pid) > 1
3359 && linux_proc_pid_is_zombie (inf->pid))
3360 {
3361 if (debug_linux_nat)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "CZL: Thread group leader %d zombie "
3364 "(it exited, or another thread execd).\n",
3365 inf->pid);
3366
3367 /* A leader zombie can mean one of two things:
3368
3369 - It exited, and there's an exit status pending
3370 available, or only the leader exited (not the whole
3371 program). In the latter case, we can't waitpid the
3372 leader's exit status until all other threads are gone.
3373
3374 - There are 3 or more threads in the group, and a thread
3375 other than the leader exec'd. On an exec, the Linux
3376 kernel destroys all other threads (except the execing
3377 one) in the thread group, and resets the execing thread's
3378 tid to the tgid. No exit notification is sent for the
3379 execing thread -- from the ptracer's perspective, it
3380 appears as though the execing thread just vanishes.
3381 Until we reap all other threads except the leader and the
3382 execing thread, the leader will be zombie, and the
3383 execing thread will be in `D (disc sleep)'. As soon as
3384 all other threads are reaped, the execing thread changes
3385 it's tid to the tgid, and the previous (zombie) leader
3386 vanishes, giving place to the "new" leader. We could try
3387 distinguishing the exit and exec cases, by waiting once
3388 more, and seeing if something comes out, but it doesn't
3389 sound useful. The previous leader _does_ go away, and
3390 we'll re-add the new one once we see the exec event
3391 (which is just the same as what would happen if the
3392 previous leader did exit voluntarily before some other
3393 thread execs). */
3394
3395 if (debug_linux_nat)
3396 fprintf_unfiltered (gdb_stdlog,
3397 "CZL: Thread group leader %d vanished.\n",
3398 inf->pid);
3399 exit_lwp (leader_lp);
3400 }
3401 }
3402 }
3403
3404 static ptid_t
3405 linux_nat_wait_1 (struct target_ops *ops,
3406 ptid_t ptid, struct target_waitstatus *ourstatus,
3407 int target_options)
3408 {
3409 sigset_t prev_mask;
3410 enum resume_kind last_resume_kind;
3411 struct lwp_info *lp;
3412 int status;
3413
3414 if (debug_linux_nat)
3415 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3416
3417 /* The first time we get here after starting a new inferior, we may
3418 not have added it to the LWP list yet - this is the earliest
3419 moment at which we know its PID. */
3420 if (ptid_is_pid (inferior_ptid))
3421 {
3422 /* Upgrade the main thread's ptid. */
3423 thread_change_ptid (inferior_ptid,
3424 ptid_build (ptid_get_pid (inferior_ptid),
3425 ptid_get_pid (inferior_ptid), 0));
3426
3427 lp = add_initial_lwp (inferior_ptid);
3428 lp->resumed = 1;
3429 }
3430
3431 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3432 block_child_signals (&prev_mask);
3433
3434 /* First check if there is a LWP with a wait status pending. */
3435 lp = iterate_over_lwps (ptid, status_callback, NULL);
3436 if (lp != NULL)
3437 {
3438 if (debug_linux_nat)
3439 fprintf_unfiltered (gdb_stdlog,
3440 "LLW: Using pending wait status %s for %s.\n",
3441 status_to_str (lp->status),
3442 target_pid_to_str (lp->ptid));
3443 }
3444
3445 if (!target_is_async_p ())
3446 {
3447 /* Causes SIGINT to be passed on to the attached process. */
3448 set_sigint_trap ();
3449 }
3450
3451 /* But if we don't find a pending event, we'll have to wait. Always
3452 pull all events out of the kernel. We'll randomly select an
3453 event LWP out of all that have events, to prevent starvation. */
3454
3455 while (lp == NULL)
3456 {
3457 pid_t lwpid;
3458
3459 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3460 quirks:
3461
3462 - If the thread group leader exits while other threads in the
3463 thread group still exist, waitpid(TGID, ...) hangs. That
3464 waitpid won't return an exit status until the other threads
3465 in the group are reapped.
3466
3467 - When a non-leader thread execs, that thread just vanishes
3468 without reporting an exit (so we'd hang if we waited for it
3469 explicitly in that case). The exec event is reported to
3470 the TGID pid. */
3471
3472 errno = 0;
3473 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3474 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3475 lwpid = my_waitpid (-1, &status, WNOHANG);
3476
3477 if (debug_linux_nat)
3478 fprintf_unfiltered (gdb_stdlog,
3479 "LNW: waitpid(-1, ...) returned %d, %s\n",
3480 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3481
3482 if (lwpid > 0)
3483 {
3484 if (debug_linux_nat)
3485 {
3486 fprintf_unfiltered (gdb_stdlog,
3487 "LLW: waitpid %ld received %s\n",
3488 (long) lwpid, status_to_str (status));
3489 }
3490
3491 linux_nat_filter_event (lwpid, status);
3492 /* Retry until nothing comes out of waitpid. A single
3493 SIGCHLD can indicate more than one child stopped. */
3494 continue;
3495 }
3496
3497 /* Now that we've pulled all events out of the kernel, resume
3498 LWPs that don't have an interesting event to report. */
3499 iterate_over_lwps (minus_one_ptid,
3500 resume_stopped_resumed_lwps, &minus_one_ptid);
3501
3502 /* ... and find an LWP with a status to report to the core, if
3503 any. */
3504 lp = iterate_over_lwps (ptid, status_callback, NULL);
3505 if (lp != NULL)
3506 break;
3507
3508 /* Check for zombie thread group leaders. Those can't be reaped
3509 until all other threads in the thread group are. */
3510 check_zombie_leaders ();
3511
3512 /* If there are no resumed children left, bail. We'd be stuck
3513 forever in the sigsuspend call below otherwise. */
3514 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3515 {
3516 if (debug_linux_nat)
3517 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3518
3519 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3520
3521 if (!target_is_async_p ())
3522 clear_sigint_trap ();
3523
3524 restore_child_signals_mask (&prev_mask);
3525 return minus_one_ptid;
3526 }
3527
3528 /* No interesting event to report to the core. */
3529
3530 if (target_options & TARGET_WNOHANG)
3531 {
3532 if (debug_linux_nat)
3533 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3534
3535 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3536 restore_child_signals_mask (&prev_mask);
3537 return minus_one_ptid;
3538 }
3539
3540 /* We shouldn't end up here unless we want to try again. */
3541 gdb_assert (lp == NULL);
3542
3543 /* Block until we get an event reported with SIGCHLD. */
3544 if (debug_linux_nat)
3545 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3546 sigsuspend (&suspend_mask);
3547 }
3548
3549 if (!target_is_async_p ())
3550 clear_sigint_trap ();
3551
3552 gdb_assert (lp);
3553
3554 status = lp->status;
3555 lp->status = 0;
3556
3557 if (!target_is_non_stop_p ())
3558 {
3559 /* Now stop all other LWP's ... */
3560 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3561
3562 /* ... and wait until all of them have reported back that
3563 they're no longer running. */
3564 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3565 }
3566
3567 /* If we're not waiting for a specific LWP, choose an event LWP from
3568 among those that have had events. Giving equal priority to all
3569 LWPs that have had events helps prevent starvation. */
3570 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3571 select_event_lwp (ptid, &lp, &status);
3572
3573 gdb_assert (lp != NULL);
3574
3575 /* Now that we've selected our final event LWP, un-adjust its PC if
3576 it was a software breakpoint, and we can't reliably support the
3577 "stopped by software breakpoint" stop reason. */
3578 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3579 && !USE_SIGTRAP_SIGINFO)
3580 {
3581 struct regcache *regcache = get_thread_regcache (lp->ptid);
3582 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3583 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3584
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 /* We'll need this to determine whether to report a SIGSTOP as
3595 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3596 clears it. */
3597 last_resume_kind = lp->last_resume_kind;
3598
3599 if (!target_is_non_stop_p ())
3600 {
3601 /* In all-stop, from the core's perspective, all LWPs are now
3602 stopped until a new resume action is sent over. */
3603 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3604 }
3605 else
3606 {
3607 resume_clear_callback (lp, NULL);
3608 }
3609
3610 if (linux_nat_status_is_event (status))
3611 {
3612 if (debug_linux_nat)
3613 fprintf_unfiltered (gdb_stdlog,
3614 "LLW: trap ptid is %s.\n",
3615 target_pid_to_str (lp->ptid));
3616 }
3617
3618 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3619 {
3620 *ourstatus = lp->waitstatus;
3621 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3622 }
3623 else
3624 store_waitstatus (ourstatus, status);
3625
3626 if (debug_linux_nat)
3627 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3628
3629 restore_child_signals_mask (&prev_mask);
3630
3631 if (last_resume_kind == resume_stop
3632 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3633 && WSTOPSIG (status) == SIGSTOP)
3634 {
3635 /* A thread that has been requested to stop by GDB with
3636 target_stop, and it stopped cleanly, so report as SIG0. The
3637 use of SIGSTOP is an implementation detail. */
3638 ourstatus->value.sig = GDB_SIGNAL_0;
3639 }
3640
3641 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3642 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3643 lp->core = -1;
3644 else
3645 lp->core = linux_common_core_of_thread (lp->ptid);
3646
3647 return lp->ptid;
3648 }
3649
3650 /* Resume LWPs that are currently stopped without any pending status
3651 to report, but are resumed from the core's perspective. */
3652
3653 static int
3654 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3655 {
3656 ptid_t *wait_ptid_p = data;
3657
3658 if (!lp->stopped)
3659 {
3660 if (debug_linux_nat)
3661 fprintf_unfiltered (gdb_stdlog,
3662 "RSRL: NOT resuming LWP %s, not stopped\n",
3663 target_pid_to_str (lp->ptid));
3664 }
3665 else if (!lp->resumed)
3666 {
3667 if (debug_linux_nat)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "RSRL: NOT resuming LWP %s, not resumed\n",
3670 target_pid_to_str (lp->ptid));
3671 }
3672 else if (lwp_status_pending_p (lp))
3673 {
3674 if (debug_linux_nat)
3675 fprintf_unfiltered (gdb_stdlog,
3676 "RSRL: NOT resuming LWP %s, has pending status\n",
3677 target_pid_to_str (lp->ptid));
3678 }
3679 else
3680 {
3681 struct regcache *regcache = get_thread_regcache (lp->ptid);
3682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3683
3684 TRY
3685 {
3686 CORE_ADDR pc = regcache_read_pc (regcache);
3687 int leave_stopped = 0;
3688
3689 /* Don't bother if there's a breakpoint at PC that we'd hit
3690 immediately, and we're not waiting for this LWP. */
3691 if (!ptid_match (lp->ptid, *wait_ptid_p))
3692 {
3693 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3694 leave_stopped = 1;
3695 }
3696
3697 if (!leave_stopped)
3698 {
3699 if (debug_linux_nat)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "RSRL: resuming stopped-resumed LWP %s at "
3702 "%s: step=%d\n",
3703 target_pid_to_str (lp->ptid),
3704 paddress (gdbarch, pc),
3705 lp->step);
3706
3707 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3708 }
3709 }
3710 CATCH (ex, RETURN_MASK_ERROR)
3711 {
3712 if (!check_ptrace_stopped_lwp_gone (lp))
3713 throw_exception (ex);
3714 }
3715 END_CATCH
3716 }
3717
3718 return 0;
3719 }
3720
3721 static ptid_t
3722 linux_nat_wait (struct target_ops *ops,
3723 ptid_t ptid, struct target_waitstatus *ourstatus,
3724 int target_options)
3725 {
3726 ptid_t event_ptid;
3727
3728 if (debug_linux_nat)
3729 {
3730 char *options_string;
3731
3732 options_string = target_options_to_string (target_options);
3733 fprintf_unfiltered (gdb_stdlog,
3734 "linux_nat_wait: [%s], [%s]\n",
3735 target_pid_to_str (ptid),
3736 options_string);
3737 xfree (options_string);
3738 }
3739
3740 /* Flush the async file first. */
3741 if (target_is_async_p ())
3742 async_file_flush ();
3743
3744 /* Resume LWPs that are currently stopped without any pending status
3745 to report, but are resumed from the core's perspective. LWPs get
3746 in this state if we find them stopping at a time we're not
3747 interested in reporting the event (target_wait on a
3748 specific_process, for example, see linux_nat_wait_1), and
3749 meanwhile the event became uninteresting. Don't bother resuming
3750 LWPs we're not going to wait for if they'd stop immediately. */
3751 if (target_is_non_stop_p ())
3752 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3753
3754 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3755
3756 /* If we requested any event, and something came out, assume there
3757 may be more. If we requested a specific lwp or process, also
3758 assume there may be more. */
3759 if (target_is_async_p ()
3760 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3761 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3762 || !ptid_equal (ptid, minus_one_ptid)))
3763 async_file_mark ();
3764
3765 return event_ptid;
3766 }
3767
3768 static int
3769 kill_callback (struct lwp_info *lp, void *data)
3770 {
3771 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3772
3773 errno = 0;
3774 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3775 if (debug_linux_nat)
3776 {
3777 int save_errno = errno;
3778
3779 fprintf_unfiltered (gdb_stdlog,
3780 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3781 target_pid_to_str (lp->ptid),
3782 save_errno ? safe_strerror (save_errno) : "OK");
3783 }
3784
3785 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3786
3787 errno = 0;
3788 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3789 if (debug_linux_nat)
3790 {
3791 int save_errno = errno;
3792
3793 fprintf_unfiltered (gdb_stdlog,
3794 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3795 target_pid_to_str (lp->ptid),
3796 save_errno ? safe_strerror (save_errno) : "OK");
3797 }
3798
3799 return 0;
3800 }
3801
3802 static int
3803 kill_wait_callback (struct lwp_info *lp, void *data)
3804 {
3805 pid_t pid;
3806
3807 /* We must make sure that there are no pending events (delayed
3808 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3809 program doesn't interfere with any following debugging session. */
3810
3811 /* For cloned processes we must check both with __WCLONE and
3812 without, since the exit status of a cloned process isn't reported
3813 with __WCLONE. */
3814 if (lp->cloned)
3815 {
3816 do
3817 {
3818 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3819 if (pid != (pid_t) -1)
3820 {
3821 if (debug_linux_nat)
3822 fprintf_unfiltered (gdb_stdlog,
3823 "KWC: wait %s received unknown.\n",
3824 target_pid_to_str (lp->ptid));
3825 /* The Linux kernel sometimes fails to kill a thread
3826 completely after PTRACE_KILL; that goes from the stop
3827 point in do_fork out to the one in
3828 get_signal_to_deliever and waits again. So kill it
3829 again. */
3830 kill_callback (lp, NULL);
3831 }
3832 }
3833 while (pid == ptid_get_lwp (lp->ptid));
3834
3835 gdb_assert (pid == -1 && errno == ECHILD);
3836 }
3837
3838 do
3839 {
3840 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3841 if (pid != (pid_t) -1)
3842 {
3843 if (debug_linux_nat)
3844 fprintf_unfiltered (gdb_stdlog,
3845 "KWC: wait %s received unk.\n",
3846 target_pid_to_str (lp->ptid));
3847 /* See the call to kill_callback above. */
3848 kill_callback (lp, NULL);
3849 }
3850 }
3851 while (pid == ptid_get_lwp (lp->ptid));
3852
3853 gdb_assert (pid == -1 && errno == ECHILD);
3854 return 0;
3855 }
3856
3857 static void
3858 linux_nat_kill (struct target_ops *ops)
3859 {
3860 struct target_waitstatus last;
3861 ptid_t last_ptid;
3862 int status;
3863
3864 /* If we're stopped while forking and we haven't followed yet,
3865 kill the other task. We need to do this first because the
3866 parent will be sleeping if this is a vfork. */
3867
3868 get_last_target_status (&last_ptid, &last);
3869
3870 if (last.kind == TARGET_WAITKIND_FORKED
3871 || last.kind == TARGET_WAITKIND_VFORKED)
3872 {
3873 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3874 wait (&status);
3875
3876 /* Let the arch-specific native code know this process is
3877 gone. */
3878 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3879 }
3880
3881 if (forks_exist_p ())
3882 linux_fork_killall ();
3883 else
3884 {
3885 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3886
3887 /* Stop all threads before killing them, since ptrace requires
3888 that the thread is stopped to sucessfully PTRACE_KILL. */
3889 iterate_over_lwps (ptid, stop_callback, NULL);
3890 /* ... and wait until all of them have reported back that
3891 they're no longer running. */
3892 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3893
3894 /* Kill all LWP's ... */
3895 iterate_over_lwps (ptid, kill_callback, NULL);
3896
3897 /* ... and wait until we've flushed all events. */
3898 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3899 }
3900
3901 target_mourn_inferior ();
3902 }
3903
3904 static void
3905 linux_nat_mourn_inferior (struct target_ops *ops)
3906 {
3907 int pid = ptid_get_pid (inferior_ptid);
3908
3909 purge_lwp_list (pid);
3910
3911 if (! forks_exist_p ())
3912 /* Normal case, no other forks available. */
3913 linux_ops->to_mourn_inferior (ops);
3914 else
3915 /* Multi-fork case. The current inferior_ptid has exited, but
3916 there are other viable forks to debug. Delete the exiting
3917 one and context-switch to the first available. */
3918 linux_fork_mourn_inferior ();
3919
3920 /* Let the arch-specific native code know this process is gone. */
3921 linux_nat_forget_process (pid);
3922 }
3923
3924 /* Convert a native/host siginfo object, into/from the siginfo in the
3925 layout of the inferiors' architecture. */
3926
3927 static void
3928 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3929 {
3930 int done = 0;
3931
3932 if (linux_nat_siginfo_fixup != NULL)
3933 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3934
3935 /* If there was no callback, or the callback didn't do anything,
3936 then just do a straight memcpy. */
3937 if (!done)
3938 {
3939 if (direction == 1)
3940 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3941 else
3942 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3943 }
3944 }
3945
3946 static enum target_xfer_status
3947 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3948 const char *annex, gdb_byte *readbuf,
3949 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3950 ULONGEST *xfered_len)
3951 {
3952 int pid;
3953 siginfo_t siginfo;
3954 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3955
3956 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3957 gdb_assert (readbuf || writebuf);
3958
3959 pid = ptid_get_lwp (inferior_ptid);
3960 if (pid == 0)
3961 pid = ptid_get_pid (inferior_ptid);
3962
3963 if (offset > sizeof (siginfo))
3964 return TARGET_XFER_E_IO;
3965
3966 errno = 0;
3967 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3968 if (errno != 0)
3969 return TARGET_XFER_E_IO;
3970
3971 /* When GDB is built as a 64-bit application, ptrace writes into
3972 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3973 inferior with a 64-bit GDB should look the same as debugging it
3974 with a 32-bit GDB, we need to convert it. GDB core always sees
3975 the converted layout, so any read/write will have to be done
3976 post-conversion. */
3977 siginfo_fixup (&siginfo, inf_siginfo, 0);
3978
3979 if (offset + len > sizeof (siginfo))
3980 len = sizeof (siginfo) - offset;
3981
3982 if (readbuf != NULL)
3983 memcpy (readbuf, inf_siginfo + offset, len);
3984 else
3985 {
3986 memcpy (inf_siginfo + offset, writebuf, len);
3987
3988 /* Convert back to ptrace layout before flushing it out. */
3989 siginfo_fixup (&siginfo, inf_siginfo, 1);
3990
3991 errno = 0;
3992 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3993 if (errno != 0)
3994 return TARGET_XFER_E_IO;
3995 }
3996
3997 *xfered_len = len;
3998 return TARGET_XFER_OK;
3999 }
4000
4001 static enum target_xfer_status
4002 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4003 const char *annex, gdb_byte *readbuf,
4004 const gdb_byte *writebuf,
4005 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4006 {
4007 struct cleanup *old_chain;
4008 enum target_xfer_status xfer;
4009
4010 if (object == TARGET_OBJECT_SIGNAL_INFO)
4011 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4012 offset, len, xfered_len);
4013
4014 /* The target is connected but no live inferior is selected. Pass
4015 this request down to a lower stratum (e.g., the executable
4016 file). */
4017 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4018 return TARGET_XFER_EOF;
4019
4020 old_chain = save_inferior_ptid ();
4021
4022 if (ptid_lwp_p (inferior_ptid))
4023 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
4024
4025 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4026 offset, len, xfered_len);
4027
4028 do_cleanups (old_chain);
4029 return xfer;
4030 }
4031
4032 static int
4033 linux_thread_alive (ptid_t ptid)
4034 {
4035 int err, tmp_errno;
4036
4037 gdb_assert (ptid_lwp_p (ptid));
4038
4039 /* Send signal 0 instead of anything ptrace, because ptracing a
4040 running thread errors out claiming that the thread doesn't
4041 exist. */
4042 err = kill_lwp (ptid_get_lwp (ptid), 0);
4043 tmp_errno = errno;
4044 if (debug_linux_nat)
4045 fprintf_unfiltered (gdb_stdlog,
4046 "LLTA: KILL(SIG0) %s (%s)\n",
4047 target_pid_to_str (ptid),
4048 err ? safe_strerror (tmp_errno) : "OK");
4049
4050 if (err != 0)
4051 return 0;
4052
4053 return 1;
4054 }
4055
4056 static int
4057 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4058 {
4059 return linux_thread_alive (ptid);
4060 }
4061
4062 /* Implement the to_update_thread_list target method for this
4063 target. */
4064
4065 static void
4066 linux_nat_update_thread_list (struct target_ops *ops)
4067 {
4068 if (linux_supports_traceclone ())
4069 {
4070 /* With support for clone events, we add/delete threads from the
4071 list as clone/exit events are processed, so just try deleting
4072 exited threads still in the thread list. */
4073 delete_exited_threads ();
4074 }
4075 else
4076 prune_threads ();
4077 }
4078
4079 static char *
4080 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4081 {
4082 static char buf[64];
4083
4084 if (ptid_lwp_p (ptid)
4085 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4086 || num_lwps (ptid_get_pid (ptid)) > 1))
4087 {
4088 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4089 return buf;
4090 }
4091
4092 return normal_pid_to_str (ptid);
4093 }
4094
4095 static char *
4096 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4097 {
4098 int pid = ptid_get_pid (thr->ptid);
4099 long lwp = ptid_get_lwp (thr->ptid);
4100 #define FORMAT "/proc/%d/task/%ld/comm"
4101 char buf[sizeof (FORMAT) + 30];
4102 FILE *comm_file;
4103 char *result = NULL;
4104
4105 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4106 comm_file = gdb_fopen_cloexec (buf, "r");
4107 if (comm_file)
4108 {
4109 /* Not exported by the kernel, so we define it here. */
4110 #define COMM_LEN 16
4111 static char line[COMM_LEN + 1];
4112
4113 if (fgets (line, sizeof (line), comm_file))
4114 {
4115 char *nl = strchr (line, '\n');
4116
4117 if (nl)
4118 *nl = '\0';
4119 if (*line != '\0')
4120 result = line;
4121 }
4122
4123 fclose (comm_file);
4124 }
4125
4126 #undef COMM_LEN
4127 #undef FORMAT
4128
4129 return result;
4130 }
4131
4132 /* Accepts an integer PID; Returns a string representing a file that
4133 can be opened to get the symbols for the child process. */
4134
4135 static char *
4136 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4137 {
4138 return linux_proc_pid_to_exec_file (pid);
4139 }
4140
4141 /* Implement the to_xfer_partial interface for memory reads using the /proc
4142 filesystem. Because we can use a single read() call for /proc, this
4143 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4144 but it doesn't support writes. */
4145
4146 static enum target_xfer_status
4147 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4148 const char *annex, gdb_byte *readbuf,
4149 const gdb_byte *writebuf,
4150 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4151 {
4152 LONGEST ret;
4153 int fd;
4154 char filename[64];
4155
4156 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4157 return TARGET_XFER_EOF;
4158
4159 /* Don't bother for one word. */
4160 if (len < 3 * sizeof (long))
4161 return TARGET_XFER_EOF;
4162
4163 /* We could keep this file open and cache it - possibly one per
4164 thread. That requires some juggling, but is even faster. */
4165 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4166 ptid_get_pid (inferior_ptid));
4167 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4168 if (fd == -1)
4169 return TARGET_XFER_EOF;
4170
4171 /* If pread64 is available, use it. It's faster if the kernel
4172 supports it (only one syscall), and it's 64-bit safe even on
4173 32-bit platforms (for instance, SPARC debugging a SPARC64
4174 application). */
4175 #ifdef HAVE_PREAD64
4176 if (pread64 (fd, readbuf, len, offset) != len)
4177 #else
4178 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4179 #endif
4180 ret = 0;
4181 else
4182 ret = len;
4183
4184 close (fd);
4185
4186 if (ret == 0)
4187 return TARGET_XFER_EOF;
4188 else
4189 {
4190 *xfered_len = ret;
4191 return TARGET_XFER_OK;
4192 }
4193 }
4194
4195
4196 /* Enumerate spufs IDs for process PID. */
4197 static LONGEST
4198 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4199 {
4200 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4201 LONGEST pos = 0;
4202 LONGEST written = 0;
4203 char path[128];
4204 DIR *dir;
4205 struct dirent *entry;
4206
4207 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4208 dir = opendir (path);
4209 if (!dir)
4210 return -1;
4211
4212 rewinddir (dir);
4213 while ((entry = readdir (dir)) != NULL)
4214 {
4215 struct stat st;
4216 struct statfs stfs;
4217 int fd;
4218
4219 fd = atoi (entry->d_name);
4220 if (!fd)
4221 continue;
4222
4223 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4224 if (stat (path, &st) != 0)
4225 continue;
4226 if (!S_ISDIR (st.st_mode))
4227 continue;
4228
4229 if (statfs (path, &stfs) != 0)
4230 continue;
4231 if (stfs.f_type != SPUFS_MAGIC)
4232 continue;
4233
4234 if (pos >= offset && pos + 4 <= offset + len)
4235 {
4236 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4237 written += 4;
4238 }
4239 pos += 4;
4240 }
4241
4242 closedir (dir);
4243 return written;
4244 }
4245
4246 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4247 object type, using the /proc file system. */
4248
4249 static enum target_xfer_status
4250 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4251 const char *annex, gdb_byte *readbuf,
4252 const gdb_byte *writebuf,
4253 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4254 {
4255 char buf[128];
4256 int fd = 0;
4257 int ret = -1;
4258 int pid = ptid_get_pid (inferior_ptid);
4259
4260 if (!annex)
4261 {
4262 if (!readbuf)
4263 return TARGET_XFER_E_IO;
4264 else
4265 {
4266 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4267
4268 if (l < 0)
4269 return TARGET_XFER_E_IO;
4270 else if (l == 0)
4271 return TARGET_XFER_EOF;
4272 else
4273 {
4274 *xfered_len = (ULONGEST) l;
4275 return TARGET_XFER_OK;
4276 }
4277 }
4278 }
4279
4280 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4281 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4282 if (fd <= 0)
4283 return TARGET_XFER_E_IO;
4284
4285 if (offset != 0
4286 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4287 {
4288 close (fd);
4289 return TARGET_XFER_EOF;
4290 }
4291
4292 if (writebuf)
4293 ret = write (fd, writebuf, (size_t) len);
4294 else if (readbuf)
4295 ret = read (fd, readbuf, (size_t) len);
4296
4297 close (fd);
4298
4299 if (ret < 0)
4300 return TARGET_XFER_E_IO;
4301 else if (ret == 0)
4302 return TARGET_XFER_EOF;
4303 else
4304 {
4305 *xfered_len = (ULONGEST) ret;
4306 return TARGET_XFER_OK;
4307 }
4308 }
4309
4310
4311 /* Parse LINE as a signal set and add its set bits to SIGS. */
4312
4313 static void
4314 add_line_to_sigset (const char *line, sigset_t *sigs)
4315 {
4316 int len = strlen (line) - 1;
4317 const char *p;
4318 int signum;
4319
4320 if (line[len] != '\n')
4321 error (_("Could not parse signal set: %s"), line);
4322
4323 p = line;
4324 signum = len * 4;
4325 while (len-- > 0)
4326 {
4327 int digit;
4328
4329 if (*p >= '0' && *p <= '9')
4330 digit = *p - '0';
4331 else if (*p >= 'a' && *p <= 'f')
4332 digit = *p - 'a' + 10;
4333 else
4334 error (_("Could not parse signal set: %s"), line);
4335
4336 signum -= 4;
4337
4338 if (digit & 1)
4339 sigaddset (sigs, signum + 1);
4340 if (digit & 2)
4341 sigaddset (sigs, signum + 2);
4342 if (digit & 4)
4343 sigaddset (sigs, signum + 3);
4344 if (digit & 8)
4345 sigaddset (sigs, signum + 4);
4346
4347 p++;
4348 }
4349 }
4350
4351 /* Find process PID's pending signals from /proc/pid/status and set
4352 SIGS to match. */
4353
4354 void
4355 linux_proc_pending_signals (int pid, sigset_t *pending,
4356 sigset_t *blocked, sigset_t *ignored)
4357 {
4358 FILE *procfile;
4359 char buffer[PATH_MAX], fname[PATH_MAX];
4360 struct cleanup *cleanup;
4361
4362 sigemptyset (pending);
4363 sigemptyset (blocked);
4364 sigemptyset (ignored);
4365 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4366 procfile = gdb_fopen_cloexec (fname, "r");
4367 if (procfile == NULL)
4368 error (_("Could not open %s"), fname);
4369 cleanup = make_cleanup_fclose (procfile);
4370
4371 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4372 {
4373 /* Normal queued signals are on the SigPnd line in the status
4374 file. However, 2.6 kernels also have a "shared" pending
4375 queue for delivering signals to a thread group, so check for
4376 a ShdPnd line also.
4377
4378 Unfortunately some Red Hat kernels include the shared pending
4379 queue but not the ShdPnd status field. */
4380
4381 if (startswith (buffer, "SigPnd:\t"))
4382 add_line_to_sigset (buffer + 8, pending);
4383 else if (startswith (buffer, "ShdPnd:\t"))
4384 add_line_to_sigset (buffer + 8, pending);
4385 else if (startswith (buffer, "SigBlk:\t"))
4386 add_line_to_sigset (buffer + 8, blocked);
4387 else if (startswith (buffer, "SigIgn:\t"))
4388 add_line_to_sigset (buffer + 8, ignored);
4389 }
4390
4391 do_cleanups (cleanup);
4392 }
4393
4394 static enum target_xfer_status
4395 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4396 const char *annex, gdb_byte *readbuf,
4397 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4398 ULONGEST *xfered_len)
4399 {
4400 gdb_assert (object == TARGET_OBJECT_OSDATA);
4401
4402 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4403 if (*xfered_len == 0)
4404 return TARGET_XFER_EOF;
4405 else
4406 return TARGET_XFER_OK;
4407 }
4408
4409 static enum target_xfer_status
4410 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4411 const char *annex, gdb_byte *readbuf,
4412 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4413 ULONGEST *xfered_len)
4414 {
4415 enum target_xfer_status xfer;
4416
4417 if (object == TARGET_OBJECT_AUXV)
4418 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4419 offset, len, xfered_len);
4420
4421 if (object == TARGET_OBJECT_OSDATA)
4422 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4423 offset, len, xfered_len);
4424
4425 if (object == TARGET_OBJECT_SPU)
4426 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4427 offset, len, xfered_len);
4428
4429 /* GDB calculates all the addresses in possibly larget width of the address.
4430 Address width needs to be masked before its final use - either by
4431 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4432
4433 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4434
4435 if (object == TARGET_OBJECT_MEMORY)
4436 {
4437 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4438
4439 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4440 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4441 }
4442
4443 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4444 offset, len, xfered_len);
4445 if (xfer != TARGET_XFER_EOF)
4446 return xfer;
4447
4448 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4449 offset, len, xfered_len);
4450 }
4451
4452 static void
4453 cleanup_target_stop (void *arg)
4454 {
4455 ptid_t *ptid = (ptid_t *) arg;
4456
4457 gdb_assert (arg != NULL);
4458
4459 /* Unpause all */
4460 target_resume (*ptid, 0, GDB_SIGNAL_0);
4461 }
4462
4463 static VEC(static_tracepoint_marker_p) *
4464 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4465 const char *strid)
4466 {
4467 char s[IPA_CMD_BUF_SIZE];
4468 struct cleanup *old_chain;
4469 int pid = ptid_get_pid (inferior_ptid);
4470 VEC(static_tracepoint_marker_p) *markers = NULL;
4471 struct static_tracepoint_marker *marker = NULL;
4472 char *p = s;
4473 ptid_t ptid = ptid_build (pid, 0, 0);
4474
4475 /* Pause all */
4476 target_stop (ptid);
4477
4478 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4479 s[sizeof ("qTfSTM")] = 0;
4480
4481 agent_run_command (pid, s, strlen (s) + 1);
4482
4483 old_chain = make_cleanup (free_current_marker, &marker);
4484 make_cleanup (cleanup_target_stop, &ptid);
4485
4486 while (*p++ == 'm')
4487 {
4488 if (marker == NULL)
4489 marker = XCNEW (struct static_tracepoint_marker);
4490
4491 do
4492 {
4493 parse_static_tracepoint_marker_definition (p, &p, marker);
4494
4495 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4496 {
4497 VEC_safe_push (static_tracepoint_marker_p,
4498 markers, marker);
4499 marker = NULL;
4500 }
4501 else
4502 {
4503 release_static_tracepoint_marker (marker);
4504 memset (marker, 0, sizeof (*marker));
4505 }
4506 }
4507 while (*p++ == ','); /* comma-separated list */
4508
4509 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4510 s[sizeof ("qTsSTM")] = 0;
4511 agent_run_command (pid, s, strlen (s) + 1);
4512 p = s;
4513 }
4514
4515 do_cleanups (old_chain);
4516
4517 return markers;
4518 }
4519
4520 /* Create a prototype generic GNU/Linux target. The client can override
4521 it with local methods. */
4522
4523 static void
4524 linux_target_install_ops (struct target_ops *t)
4525 {
4526 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4527 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4528 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4529 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4530 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4531 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4532 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4533 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4534 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4535 t->to_post_attach = linux_child_post_attach;
4536 t->to_follow_fork = linux_child_follow_fork;
4537
4538 super_xfer_partial = t->to_xfer_partial;
4539 t->to_xfer_partial = linux_xfer_partial;
4540
4541 t->to_static_tracepoint_markers_by_strid
4542 = linux_child_static_tracepoint_markers_by_strid;
4543 }
4544
4545 struct target_ops *
4546 linux_target (void)
4547 {
4548 struct target_ops *t;
4549
4550 t = inf_ptrace_target ();
4551 linux_target_install_ops (t);
4552
4553 return t;
4554 }
4555
4556 struct target_ops *
4557 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4558 {
4559 struct target_ops *t;
4560
4561 t = inf_ptrace_trad_target (register_u_offset);
4562 linux_target_install_ops (t);
4563
4564 return t;
4565 }
4566
4567 /* target_is_async_p implementation. */
4568
4569 static int
4570 linux_nat_is_async_p (struct target_ops *ops)
4571 {
4572 return linux_is_async_p ();
4573 }
4574
4575 /* target_can_async_p implementation. */
4576
4577 static int
4578 linux_nat_can_async_p (struct target_ops *ops)
4579 {
4580 /* NOTE: palves 2008-03-21: We're only async when the user requests
4581 it explicitly with the "set target-async" command.
4582 Someday, linux will always be async. */
4583 return target_async_permitted;
4584 }
4585
4586 static int
4587 linux_nat_supports_non_stop (struct target_ops *self)
4588 {
4589 return 1;
4590 }
4591
4592 /* to_always_non_stop_p implementation. */
4593
4594 static int
4595 linux_nat_always_non_stop_p (struct target_ops *self)
4596 {
4597 if (linux_ops->to_always_non_stop_p != NULL)
4598 return linux_ops->to_always_non_stop_p (linux_ops);
4599 return 1;
4600 }
4601
4602 /* True if we want to support multi-process. To be removed when GDB
4603 supports multi-exec. */
4604
4605 int linux_multi_process = 1;
4606
4607 static int
4608 linux_nat_supports_multi_process (struct target_ops *self)
4609 {
4610 return linux_multi_process;
4611 }
4612
4613 static int
4614 linux_nat_supports_disable_randomization (struct target_ops *self)
4615 {
4616 #ifdef HAVE_PERSONALITY
4617 return 1;
4618 #else
4619 return 0;
4620 #endif
4621 }
4622
4623 static int async_terminal_is_ours = 1;
4624
4625 /* target_terminal_inferior implementation.
4626
4627 This is a wrapper around child_terminal_inferior to add async support. */
4628
4629 static void
4630 linux_nat_terminal_inferior (struct target_ops *self)
4631 {
4632 /* Like target_terminal_inferior, use target_can_async_p, not
4633 target_is_async_p, since at this point the target is not async
4634 yet. If it can async, then we know it will become async prior to
4635 resume. */
4636 if (!target_can_async_p ())
4637 {
4638 /* Async mode is disabled. */
4639 child_terminal_inferior (self);
4640 return;
4641 }
4642
4643 child_terminal_inferior (self);
4644
4645 /* Calls to target_terminal_*() are meant to be idempotent. */
4646 if (!async_terminal_is_ours)
4647 return;
4648
4649 delete_file_handler (input_fd);
4650 async_terminal_is_ours = 0;
4651 set_sigint_trap ();
4652 }
4653
4654 /* target_terminal_ours implementation.
4655
4656 This is a wrapper around child_terminal_ours to add async support (and
4657 implement the target_terminal_ours vs target_terminal_ours_for_output
4658 distinction). child_terminal_ours is currently no different than
4659 child_terminal_ours_for_output.
4660 We leave target_terminal_ours_for_output alone, leaving it to
4661 child_terminal_ours_for_output. */
4662
4663 static void
4664 linux_nat_terminal_ours (struct target_ops *self)
4665 {
4666 /* GDB should never give the terminal to the inferior if the
4667 inferior is running in the background (run&, continue&, etc.),
4668 but claiming it sure should. */
4669 child_terminal_ours (self);
4670
4671 if (async_terminal_is_ours)
4672 return;
4673
4674 clear_sigint_trap ();
4675 add_file_handler (input_fd, stdin_event_handler, 0);
4676 async_terminal_is_ours = 1;
4677 }
4678
4679 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4680 so we notice when any child changes state, and notify the
4681 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4682 above to wait for the arrival of a SIGCHLD. */
4683
4684 static void
4685 sigchld_handler (int signo)
4686 {
4687 int old_errno = errno;
4688
4689 if (debug_linux_nat)
4690 ui_file_write_async_safe (gdb_stdlog,
4691 "sigchld\n", sizeof ("sigchld\n") - 1);
4692
4693 if (signo == SIGCHLD
4694 && linux_nat_event_pipe[0] != -1)
4695 async_file_mark (); /* Let the event loop know that there are
4696 events to handle. */
4697
4698 errno = old_errno;
4699 }
4700
4701 /* Callback registered with the target events file descriptor. */
4702
4703 static void
4704 handle_target_event (int error, gdb_client_data client_data)
4705 {
4706 inferior_event_handler (INF_REG_EVENT, NULL);
4707 }
4708
4709 /* Create/destroy the target events pipe. Returns previous state. */
4710
4711 static int
4712 linux_async_pipe (int enable)
4713 {
4714 int previous = linux_is_async_p ();
4715
4716 if (previous != enable)
4717 {
4718 sigset_t prev_mask;
4719
4720 /* Block child signals while we create/destroy the pipe, as
4721 their handler writes to it. */
4722 block_child_signals (&prev_mask);
4723
4724 if (enable)
4725 {
4726 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4727 internal_error (__FILE__, __LINE__,
4728 "creating event pipe failed.");
4729
4730 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4731 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4732 }
4733 else
4734 {
4735 close (linux_nat_event_pipe[0]);
4736 close (linux_nat_event_pipe[1]);
4737 linux_nat_event_pipe[0] = -1;
4738 linux_nat_event_pipe[1] = -1;
4739 }
4740
4741 restore_child_signals_mask (&prev_mask);
4742 }
4743
4744 return previous;
4745 }
4746
4747 /* target_async implementation. */
4748
4749 static void
4750 linux_nat_async (struct target_ops *ops, int enable)
4751 {
4752 if (enable)
4753 {
4754 if (!linux_async_pipe (1))
4755 {
4756 add_file_handler (linux_nat_event_pipe[0],
4757 handle_target_event, NULL);
4758 /* There may be pending events to handle. Tell the event loop
4759 to poll them. */
4760 async_file_mark ();
4761 }
4762 }
4763 else
4764 {
4765 delete_file_handler (linux_nat_event_pipe[0]);
4766 linux_async_pipe (0);
4767 }
4768 return;
4769 }
4770
4771 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4772 event came out. */
4773
4774 static int
4775 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4776 {
4777 if (!lwp->stopped)
4778 {
4779 if (debug_linux_nat)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "LNSL: running -> suspending %s\n",
4782 target_pid_to_str (lwp->ptid));
4783
4784
4785 if (lwp->last_resume_kind == resume_stop)
4786 {
4787 if (debug_linux_nat)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "linux-nat: already stopping LWP %ld at "
4790 "GDB's request\n",
4791 ptid_get_lwp (lwp->ptid));
4792 return 0;
4793 }
4794
4795 stop_callback (lwp, NULL);
4796 lwp->last_resume_kind = resume_stop;
4797 }
4798 else
4799 {
4800 /* Already known to be stopped; do nothing. */
4801
4802 if (debug_linux_nat)
4803 {
4804 if (find_thread_ptid (lwp->ptid)->stop_requested)
4805 fprintf_unfiltered (gdb_stdlog,
4806 "LNSL: already stopped/stop_requested %s\n",
4807 target_pid_to_str (lwp->ptid));
4808 else
4809 fprintf_unfiltered (gdb_stdlog,
4810 "LNSL: already stopped/no "
4811 "stop_requested yet %s\n",
4812 target_pid_to_str (lwp->ptid));
4813 }
4814 }
4815 return 0;
4816 }
4817
4818 static void
4819 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4820 {
4821 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4822 }
4823
4824 static void
4825 linux_nat_interrupt (struct target_ops *self, ptid_t ptid)
4826 {
4827 if (non_stop)
4828 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4829 else
4830 linux_ops->to_interrupt (linux_ops, ptid);
4831 }
4832
4833 static void
4834 linux_nat_close (struct target_ops *self)
4835 {
4836 /* Unregister from the event loop. */
4837 if (linux_nat_is_async_p (self))
4838 linux_nat_async (self, 0);
4839
4840 if (linux_ops->to_close)
4841 linux_ops->to_close (linux_ops);
4842
4843 super_close (self);
4844 }
4845
4846 /* When requests are passed down from the linux-nat layer to the
4847 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4848 used. The address space pointer is stored in the inferior object,
4849 but the common code that is passed such ptid can't tell whether
4850 lwpid is a "main" process id or not (it assumes so). We reverse
4851 look up the "main" process id from the lwp here. */
4852
4853 static struct address_space *
4854 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4855 {
4856 struct lwp_info *lwp;
4857 struct inferior *inf;
4858 int pid;
4859
4860 if (ptid_get_lwp (ptid) == 0)
4861 {
4862 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4863 tgid. */
4864 lwp = find_lwp_pid (ptid);
4865 pid = ptid_get_pid (lwp->ptid);
4866 }
4867 else
4868 {
4869 /* A (pid,lwpid,0) ptid. */
4870 pid = ptid_get_pid (ptid);
4871 }
4872
4873 inf = find_inferior_pid (pid);
4874 gdb_assert (inf != NULL);
4875 return inf->aspace;
4876 }
4877
4878 /* Return the cached value of the processor core for thread PTID. */
4879
4880 static int
4881 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4882 {
4883 struct lwp_info *info = find_lwp_pid (ptid);
4884
4885 if (info)
4886 return info->core;
4887 return -1;
4888 }
4889
4890 /* Implementation of to_filesystem_is_local. */
4891
4892 static int
4893 linux_nat_filesystem_is_local (struct target_ops *ops)
4894 {
4895 struct inferior *inf = current_inferior ();
4896
4897 if (inf->fake_pid_p || inf->pid == 0)
4898 return 1;
4899
4900 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4901 }
4902
4903 /* Convert the INF argument passed to a to_fileio_* method
4904 to a process ID suitable for passing to its corresponding
4905 linux_mntns_* function. If INF is non-NULL then the
4906 caller is requesting the filesystem seen by INF. If INF
4907 is NULL then the caller is requesting the filesystem seen
4908 by the GDB. We fall back to GDB's filesystem in the case
4909 that INF is non-NULL but its PID is unknown. */
4910
4911 static pid_t
4912 linux_nat_fileio_pid_of (struct inferior *inf)
4913 {
4914 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4915 return getpid ();
4916 else
4917 return inf->pid;
4918 }
4919
4920 /* Implementation of to_fileio_open. */
4921
4922 static int
4923 linux_nat_fileio_open (struct target_ops *self,
4924 struct inferior *inf, const char *filename,
4925 int flags, int mode, int warn_if_slow,
4926 int *target_errno)
4927 {
4928 int nat_flags;
4929 mode_t nat_mode;
4930 int fd;
4931
4932 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4933 || fileio_to_host_mode (mode, &nat_mode) == -1)
4934 {
4935 *target_errno = FILEIO_EINVAL;
4936 return -1;
4937 }
4938
4939 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4940 filename, nat_flags, nat_mode);
4941 if (fd == -1)
4942 *target_errno = host_to_fileio_error (errno);
4943
4944 return fd;
4945 }
4946
4947 /* Implementation of to_fileio_readlink. */
4948
4949 static char *
4950 linux_nat_fileio_readlink (struct target_ops *self,
4951 struct inferior *inf, const char *filename,
4952 int *target_errno)
4953 {
4954 char buf[PATH_MAX];
4955 int len;
4956 char *ret;
4957
4958 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4959 filename, buf, sizeof (buf));
4960 if (len < 0)
4961 {
4962 *target_errno = host_to_fileio_error (errno);
4963 return NULL;
4964 }
4965
4966 ret = xmalloc (len + 1);
4967 memcpy (ret, buf, len);
4968 ret[len] = '\0';
4969 return ret;
4970 }
4971
4972 /* Implementation of to_fileio_unlink. */
4973
4974 static int
4975 linux_nat_fileio_unlink (struct target_ops *self,
4976 struct inferior *inf, const char *filename,
4977 int *target_errno)
4978 {
4979 int ret;
4980
4981 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4982 filename);
4983 if (ret == -1)
4984 *target_errno = host_to_fileio_error (errno);
4985
4986 return ret;
4987 }
4988
4989 void
4990 linux_nat_add_target (struct target_ops *t)
4991 {
4992 /* Save the provided single-threaded target. We save this in a separate
4993 variable because another target we've inherited from (e.g. inf-ptrace)
4994 may have saved a pointer to T; we want to use it for the final
4995 process stratum target. */
4996 linux_ops_saved = *t;
4997 linux_ops = &linux_ops_saved;
4998
4999 /* Override some methods for multithreading. */
5000 t->to_create_inferior = linux_nat_create_inferior;
5001 t->to_attach = linux_nat_attach;
5002 t->to_detach = linux_nat_detach;
5003 t->to_resume = linux_nat_resume;
5004 t->to_wait = linux_nat_wait;
5005 t->to_pass_signals = linux_nat_pass_signals;
5006 t->to_xfer_partial = linux_nat_xfer_partial;
5007 t->to_kill = linux_nat_kill;
5008 t->to_mourn_inferior = linux_nat_mourn_inferior;
5009 t->to_thread_alive = linux_nat_thread_alive;
5010 t->to_update_thread_list = linux_nat_update_thread_list;
5011 t->to_pid_to_str = linux_nat_pid_to_str;
5012 t->to_thread_name = linux_nat_thread_name;
5013 t->to_has_thread_control = tc_schedlock;
5014 t->to_thread_address_space = linux_nat_thread_address_space;
5015 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5016 t->to_stopped_data_address = linux_nat_stopped_data_address;
5017 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
5018 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
5019 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
5020 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
5021
5022 t->to_can_async_p = linux_nat_can_async_p;
5023 t->to_is_async_p = linux_nat_is_async_p;
5024 t->to_supports_non_stop = linux_nat_supports_non_stop;
5025 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
5026 t->to_async = linux_nat_async;
5027 t->to_terminal_inferior = linux_nat_terminal_inferior;
5028 t->to_terminal_ours = linux_nat_terminal_ours;
5029
5030 super_close = t->to_close;
5031 t->to_close = linux_nat_close;
5032
5033 t->to_stop = linux_nat_stop;
5034 t->to_interrupt = linux_nat_interrupt;
5035
5036 t->to_supports_multi_process = linux_nat_supports_multi_process;
5037
5038 t->to_supports_disable_randomization
5039 = linux_nat_supports_disable_randomization;
5040
5041 t->to_core_of_thread = linux_nat_core_of_thread;
5042
5043 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
5044 t->to_fileio_open = linux_nat_fileio_open;
5045 t->to_fileio_readlink = linux_nat_fileio_readlink;
5046 t->to_fileio_unlink = linux_nat_fileio_unlink;
5047
5048 /* We don't change the stratum; this target will sit at
5049 process_stratum and thread_db will set at thread_stratum. This
5050 is a little strange, since this is a multi-threaded-capable
5051 target, but we want to be on the stack below thread_db, and we
5052 also want to be used for single-threaded processes. */
5053
5054 add_target (t);
5055 }
5056
5057 /* Register a method to call whenever a new thread is attached. */
5058 void
5059 linux_nat_set_new_thread (struct target_ops *t,
5060 void (*new_thread) (struct lwp_info *))
5061 {
5062 /* Save the pointer. We only support a single registered instance
5063 of the GNU/Linux native target, so we do not need to map this to
5064 T. */
5065 linux_nat_new_thread = new_thread;
5066 }
5067
5068 /* See declaration in linux-nat.h. */
5069
5070 void
5071 linux_nat_set_new_fork (struct target_ops *t,
5072 linux_nat_new_fork_ftype *new_fork)
5073 {
5074 /* Save the pointer. */
5075 linux_nat_new_fork = new_fork;
5076 }
5077
5078 /* See declaration in linux-nat.h. */
5079
5080 void
5081 linux_nat_set_forget_process (struct target_ops *t,
5082 linux_nat_forget_process_ftype *fn)
5083 {
5084 /* Save the pointer. */
5085 linux_nat_forget_process_hook = fn;
5086 }
5087
5088 /* See declaration in linux-nat.h. */
5089
5090 void
5091 linux_nat_forget_process (pid_t pid)
5092 {
5093 if (linux_nat_forget_process_hook != NULL)
5094 linux_nat_forget_process_hook (pid);
5095 }
5096
5097 /* Register a method that converts a siginfo object between the layout
5098 that ptrace returns, and the layout in the architecture of the
5099 inferior. */
5100 void
5101 linux_nat_set_siginfo_fixup (struct target_ops *t,
5102 int (*siginfo_fixup) (siginfo_t *,
5103 gdb_byte *,
5104 int))
5105 {
5106 /* Save the pointer. */
5107 linux_nat_siginfo_fixup = siginfo_fixup;
5108 }
5109
5110 /* Register a method to call prior to resuming a thread. */
5111
5112 void
5113 linux_nat_set_prepare_to_resume (struct target_ops *t,
5114 void (*prepare_to_resume) (struct lwp_info *))
5115 {
5116 /* Save the pointer. */
5117 linux_nat_prepare_to_resume = prepare_to_resume;
5118 }
5119
5120 /* See linux-nat.h. */
5121
5122 int
5123 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5124 {
5125 int pid;
5126
5127 pid = ptid_get_lwp (ptid);
5128 if (pid == 0)
5129 pid = ptid_get_pid (ptid);
5130
5131 errno = 0;
5132 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5133 if (errno != 0)
5134 {
5135 memset (siginfo, 0, sizeof (*siginfo));
5136 return 0;
5137 }
5138 return 1;
5139 }
5140
5141 /* See nat/linux-nat.h. */
5142
5143 ptid_t
5144 current_lwp_ptid (void)
5145 {
5146 gdb_assert (ptid_lwp_p (inferior_ptid));
5147 return inferior_ptid;
5148 }
5149
5150 /* Provide a prototype to silence -Wmissing-prototypes. */
5151 extern initialize_file_ftype _initialize_linux_nat;
5152
5153 void
5154 _initialize_linux_nat (void)
5155 {
5156 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5157 &debug_linux_nat, _("\
5158 Set debugging of GNU/Linux lwp module."), _("\
5159 Show debugging of GNU/Linux lwp module."), _("\
5160 Enables printf debugging output."),
5161 NULL,
5162 show_debug_linux_nat,
5163 &setdebuglist, &showdebuglist);
5164
5165 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
5166 &debug_linux_namespaces, _("\
5167 Set debugging of GNU/Linux namespaces module."), _("\
5168 Show debugging of GNU/Linux namespaces module."), _("\
5169 Enables printf debugging output."),
5170 NULL,
5171 NULL,
5172 &setdebuglist, &showdebuglist);
5173
5174 /* Save this mask as the default. */
5175 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5176
5177 /* Install a SIGCHLD handler. */
5178 sigchld_action.sa_handler = sigchld_handler;
5179 sigemptyset (&sigchld_action.sa_mask);
5180 sigchld_action.sa_flags = SA_RESTART;
5181
5182 /* Make it the default. */
5183 sigaction (SIGCHLD, &sigchld_action, NULL);
5184
5185 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5186 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5187 sigdelset (&suspend_mask, SIGCHLD);
5188
5189 sigemptyset (&blocked_mask);
5190 }
5191 \f
5192
5193 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5194 the GNU/Linux Threads library and therefore doesn't really belong
5195 here. */
5196
5197 /* Read variable NAME in the target and return its value if found.
5198 Otherwise return zero. It is assumed that the type of the variable
5199 is `int'. */
5200
5201 static int
5202 get_signo (const char *name)
5203 {
5204 struct bound_minimal_symbol ms;
5205 int signo;
5206
5207 ms = lookup_minimal_symbol (name, NULL, NULL);
5208 if (ms.minsym == NULL)
5209 return 0;
5210
5211 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5212 sizeof (signo)) != 0)
5213 return 0;
5214
5215 return signo;
5216 }
5217
5218 /* Return the set of signals used by the threads library in *SET. */
5219
5220 void
5221 lin_thread_get_thread_signals (sigset_t *set)
5222 {
5223 struct sigaction action;
5224 int restart, cancel;
5225
5226 sigemptyset (&blocked_mask);
5227 sigemptyset (set);
5228
5229 restart = get_signo ("__pthread_sig_restart");
5230 cancel = get_signo ("__pthread_sig_cancel");
5231
5232 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5233 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5234 not provide any way for the debugger to query the signal numbers -
5235 fortunately they don't change! */
5236
5237 if (restart == 0)
5238 restart = __SIGRTMIN;
5239
5240 if (cancel == 0)
5241 cancel = __SIGRTMIN + 1;
5242
5243 sigaddset (set, restart);
5244 sigaddset (set, cancel);
5245
5246 /* The GNU/Linux Threads library makes terminating threads send a
5247 special "cancel" signal instead of SIGCHLD. Make sure we catch
5248 those (to prevent them from terminating GDB itself, which is
5249 likely to be their default action) and treat them the same way as
5250 SIGCHLD. */
5251
5252 action.sa_handler = sigchld_handler;
5253 sigemptyset (&action.sa_mask);
5254 action.sa_flags = SA_RESTART;
5255 sigaction (cancel, &action, NULL);
5256
5257 /* We block the "cancel" signal throughout this code ... */
5258 sigaddset (&blocked_mask, cancel);
5259 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5260
5261 /* ... except during a sigsuspend. */
5262 sigdelset (&suspend_mask, cancel);
5263 }
This page took 0.130296 seconds and 5 git commands to generate.