Forget watchpoint locations when inferior exits or is killed/detached
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a new fork is attached. */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
202
203 /* The method to call, if any, when a process is no longer
204 attached. */
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
206
207 /* Hook to call prior to resuming a thread. */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
209
210 /* The method to call, if any, when the siginfo object needs to be
211 converted between the layout returned by ptrace, and the layout in
212 the architecture of the inferior. */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
214 gdb_byte *,
215 int);
216
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218 Called by our to_xfer_partial. */
219 static target_xfer_partial_ftype *super_xfer_partial;
220
221 /* The saved to_close method, inherited from inf-ptrace.c.
222 Called by our to_close. */
223 static void (*super_close) (struct target_ops *);
224
225 static unsigned int debug_linux_nat;
226 static void
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
231 value);
232 }
233
234 struct simple_pid_list
235 {
236 int pid;
237 int status;
238 struct simple_pid_list *next;
239 };
240 struct simple_pid_list *stopped_pids;
241
242 /* Whether target_thread_events is in effect. */
243 static int report_thread_events;
244
245 /* Async mode support. */
246
247 /* The read/write ends of the pipe registered as waitable file in the
248 event loop. */
249 static int linux_nat_event_pipe[2] = { -1, -1 };
250
251 /* True if we're currently in async mode. */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
253
254 /* Flush the event pipe. */
255
256 static void
257 async_file_flush (void)
258 {
259 int ret;
260 char buf;
261
262 do
263 {
264 ret = read (linux_nat_event_pipe[0], &buf, 1);
265 }
266 while (ret >= 0 || (ret == -1 && errno == EINTR));
267 }
268
269 /* Put something (anything, doesn't matter what, or how much) in event
270 pipe, so that the select/poll in the event-loop realizes we have
271 something to process. */
272
273 static void
274 async_file_mark (void)
275 {
276 int ret;
277
278 /* It doesn't really matter what the pipe contains, as long we end
279 up with something in it. Might as well flush the previous
280 left-overs. */
281 async_file_flush ();
282
283 do
284 {
285 ret = write (linux_nat_event_pipe[1], "+", 1);
286 }
287 while (ret == -1 && errno == EINTR);
288
289 /* Ignore EAGAIN. If the pipe is full, the event loop will already
290 be awakened anyway. */
291 }
292
293 static int kill_lwp (int lwpid, int signo);
294
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
297
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
300
301 struct lwp_info;
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
306
307 static int lwp_status_pending_p (struct lwp_info *lp);
308
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
311
312 static void save_stop_reason (struct lwp_info *lp);
313
314 \f
315 /* LWP accessors. */
316
317 /* See nat/linux-nat.h. */
318
319 ptid_t
320 ptid_of_lwp (struct lwp_info *lwp)
321 {
322 return lwp->ptid;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 void
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 struct arch_lwp_info *info)
330 {
331 lwp->arch_private = info;
332 }
333
334 /* See nat/linux-nat.h. */
335
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
338 {
339 return lwp->arch_private;
340 }
341
342 /* See nat/linux-nat.h. */
343
344 int
345 lwp_is_stopped (struct lwp_info *lwp)
346 {
347 return lwp->stopped;
348 }
349
350 /* See nat/linux-nat.h. */
351
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
354 {
355 return lwp->stop_reason;
356 }
357
358 \f
359 /* Trivial list manipulation functions to keep track of a list of
360 new stopped processes. */
361 static void
362 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
363 {
364 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
365
366 new_pid->pid = pid;
367 new_pid->status = status;
368 new_pid->next = *listp;
369 *listp = new_pid;
370 }
371
372 static int
373 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
374 {
375 struct simple_pid_list **p;
376
377 for (p = listp; *p != NULL; p = &(*p)->next)
378 if ((*p)->pid == pid)
379 {
380 struct simple_pid_list *next = (*p)->next;
381
382 *statusp = (*p)->status;
383 xfree (*p);
384 *p = next;
385 return 1;
386 }
387 return 0;
388 }
389
390 /* Return the ptrace options that we want to try to enable. */
391
392 static int
393 linux_nat_ptrace_options (int attached)
394 {
395 int options = 0;
396
397 if (!attached)
398 options |= PTRACE_O_EXITKILL;
399
400 options |= (PTRACE_O_TRACESYSGOOD
401 | PTRACE_O_TRACEVFORKDONE
402 | PTRACE_O_TRACEVFORK
403 | PTRACE_O_TRACEFORK
404 | PTRACE_O_TRACEEXEC);
405
406 return options;
407 }
408
409 /* Initialize ptrace warnings and check for supported ptrace
410 features given PID.
411
412 ATTACHED should be nonzero iff we attached to the inferior. */
413
414 static void
415 linux_init_ptrace (pid_t pid, int attached)
416 {
417 int options = linux_nat_ptrace_options (attached);
418
419 linux_enable_event_reporting (pid, options);
420 linux_ptrace_init_warnings ();
421 }
422
423 static void
424 linux_child_post_attach (struct target_ops *self, int pid)
425 {
426 linux_init_ptrace (pid, 1);
427 }
428
429 static void
430 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
431 {
432 linux_init_ptrace (ptid_get_pid (ptid), 0);
433 }
434
435 /* Return the number of known LWPs in the tgid given by PID. */
436
437 static int
438 num_lwps (int pid)
439 {
440 int count = 0;
441 struct lwp_info *lp;
442
443 for (lp = lwp_list; lp; lp = lp->next)
444 if (ptid_get_pid (lp->ptid) == pid)
445 count++;
446
447 return count;
448 }
449
450 /* Call delete_lwp with prototype compatible for make_cleanup. */
451
452 static void
453 delete_lwp_cleanup (void *lp_voidp)
454 {
455 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
456
457 delete_lwp (lp->ptid);
458 }
459
460 /* Target hook for follow_fork. On entry inferior_ptid must be the
461 ptid of the followed inferior. At return, inferior_ptid will be
462 unchanged. */
463
464 static int
465 linux_child_follow_fork (struct target_ops *ops, int follow_child,
466 int detach_fork)
467 {
468 if (!follow_child)
469 {
470 struct lwp_info *child_lp = NULL;
471 int status = W_STOPCODE (0);
472 struct cleanup *old_chain;
473 int has_vforked;
474 ptid_t parent_ptid, child_ptid;
475 int parent_pid, child_pid;
476
477 has_vforked = (inferior_thread ()->pending_follow.kind
478 == TARGET_WAITKIND_VFORKED);
479 parent_ptid = inferior_ptid;
480 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
481 parent_pid = ptid_get_lwp (parent_ptid);
482 child_pid = ptid_get_lwp (child_ptid);
483
484 /* We're already attached to the parent, by default. */
485 old_chain = save_inferior_ptid ();
486 inferior_ptid = child_ptid;
487 child_lp = add_lwp (inferior_ptid);
488 child_lp->stopped = 1;
489 child_lp->last_resume_kind = resume_stop;
490
491 /* Detach new forked process? */
492 if (detach_fork)
493 {
494 make_cleanup (delete_lwp_cleanup, child_lp);
495
496 if (linux_nat_prepare_to_resume != NULL)
497 linux_nat_prepare_to_resume (child_lp);
498
499 /* When debugging an inferior in an architecture that supports
500 hardware single stepping on a kernel without commit
501 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
502 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
503 set if the parent process had them set.
504 To work around this, single step the child process
505 once before detaching to clear the flags. */
506
507 if (!gdbarch_software_single_step_p (target_thread_architecture
508 (child_lp->ptid)))
509 {
510 linux_disable_event_reporting (child_pid);
511 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
512 perror_with_name (_("Couldn't do single step"));
513 if (my_waitpid (child_pid, &status, 0) < 0)
514 perror_with_name (_("Couldn't wait vfork process"));
515 }
516
517 if (WIFSTOPPED (status))
518 {
519 int signo;
520
521 signo = WSTOPSIG (status);
522 if (signo != 0
523 && !signal_pass_state (gdb_signal_from_host (signo)))
524 signo = 0;
525 ptrace (PTRACE_DETACH, child_pid, 0, signo);
526 }
527
528 /* Resets value of inferior_ptid to parent ptid. */
529 do_cleanups (old_chain);
530 }
531 else
532 {
533 /* Let the thread_db layer learn about this new process. */
534 check_for_thread_db ();
535 }
536
537 do_cleanups (old_chain);
538
539 if (has_vforked)
540 {
541 struct lwp_info *parent_lp;
542
543 parent_lp = find_lwp_pid (parent_ptid);
544 gdb_assert (linux_supports_tracefork () >= 0);
545
546 if (linux_supports_tracevforkdone ())
547 {
548 if (debug_linux_nat)
549 fprintf_unfiltered (gdb_stdlog,
550 "LCFF: waiting for VFORK_DONE on %d\n",
551 parent_pid);
552 parent_lp->stopped = 1;
553
554 /* We'll handle the VFORK_DONE event like any other
555 event, in target_wait. */
556 }
557 else
558 {
559 /* We can't insert breakpoints until the child has
560 finished with the shared memory region. We need to
561 wait until that happens. Ideal would be to just
562 call:
563 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
564 - waitpid (parent_pid, &status, __WALL);
565 However, most architectures can't handle a syscall
566 being traced on the way out if it wasn't traced on
567 the way in.
568
569 We might also think to loop, continuing the child
570 until it exits or gets a SIGTRAP. One problem is
571 that the child might call ptrace with PTRACE_TRACEME.
572
573 There's no simple and reliable way to figure out when
574 the vforked child will be done with its copy of the
575 shared memory. We could step it out of the syscall,
576 two instructions, let it go, and then single-step the
577 parent once. When we have hardware single-step, this
578 would work; with software single-step it could still
579 be made to work but we'd have to be able to insert
580 single-step breakpoints in the child, and we'd have
581 to insert -just- the single-step breakpoint in the
582 parent. Very awkward.
583
584 In the end, the best we can do is to make sure it
585 runs for a little while. Hopefully it will be out of
586 range of any breakpoints we reinsert. Usually this
587 is only the single-step breakpoint at vfork's return
588 point. */
589
590 if (debug_linux_nat)
591 fprintf_unfiltered (gdb_stdlog,
592 "LCFF: no VFORK_DONE "
593 "support, sleeping a bit\n");
594
595 usleep (10000);
596
597 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
598 and leave it pending. The next linux_nat_resume call
599 will notice a pending event, and bypasses actually
600 resuming the inferior. */
601 parent_lp->status = 0;
602 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
603 parent_lp->stopped = 1;
604
605 /* If we're in async mode, need to tell the event loop
606 there's something here to process. */
607 if (target_is_async_p ())
608 async_file_mark ();
609 }
610 }
611 }
612 else
613 {
614 struct lwp_info *child_lp;
615
616 child_lp = add_lwp (inferior_ptid);
617 child_lp->stopped = 1;
618 child_lp->last_resume_kind = resume_stop;
619
620 /* Let the thread_db layer learn about this new process. */
621 check_for_thread_db ();
622 }
623
624 return 0;
625 }
626
627 \f
628 static int
629 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
630 {
631 return !linux_supports_tracefork ();
632 }
633
634 static int
635 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
636 {
637 return 0;
638 }
639
640 static int
641 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
642 {
643 return !linux_supports_tracefork ();
644 }
645
646 static int
647 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
648 {
649 return 0;
650 }
651
652 static int
653 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
654 {
655 return !linux_supports_tracefork ();
656 }
657
658 static int
659 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
660 {
661 return 0;
662 }
663
664 static int
665 linux_child_set_syscall_catchpoint (struct target_ops *self,
666 int pid, int needed, int any_count,
667 int table_size, int *table)
668 {
669 if (!linux_supports_tracesysgood ())
670 return 1;
671
672 /* On GNU/Linux, we ignore the arguments. It means that we only
673 enable the syscall catchpoints, but do not disable them.
674
675 Also, we do not use the `table' information because we do not
676 filter system calls here. We let GDB do the logic for us. */
677 return 0;
678 }
679
680 /* List of known LWPs, keyed by LWP PID. This speeds up the common
681 case of mapping a PID returned from the kernel to our corresponding
682 lwp_info data structure. */
683 static htab_t lwp_lwpid_htab;
684
685 /* Calculate a hash from a lwp_info's LWP PID. */
686
687 static hashval_t
688 lwp_info_hash (const void *ap)
689 {
690 const struct lwp_info *lp = (struct lwp_info *) ap;
691 pid_t pid = ptid_get_lwp (lp->ptid);
692
693 return iterative_hash_object (pid, 0);
694 }
695
696 /* Equality function for the lwp_info hash table. Compares the LWP's
697 PID. */
698
699 static int
700 lwp_lwpid_htab_eq (const void *a, const void *b)
701 {
702 const struct lwp_info *entry = (const struct lwp_info *) a;
703 const struct lwp_info *element = (const struct lwp_info *) b;
704
705 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
706 }
707
708 /* Create the lwp_lwpid_htab hash table. */
709
710 static void
711 lwp_lwpid_htab_create (void)
712 {
713 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
714 }
715
716 /* Add LP to the hash table. */
717
718 static void
719 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
720 {
721 void **slot;
722
723 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
724 gdb_assert (slot != NULL && *slot == NULL);
725 *slot = lp;
726 }
727
728 /* Head of doubly-linked list of known LWPs. Sorted by reverse
729 creation order. This order is assumed in some cases. E.g.,
730 reaping status after killing alls lwps of a process: the leader LWP
731 must be reaped last. */
732 struct lwp_info *lwp_list;
733
734 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
735
736 static void
737 lwp_list_add (struct lwp_info *lp)
738 {
739 lp->next = lwp_list;
740 if (lwp_list != NULL)
741 lwp_list->prev = lp;
742 lwp_list = lp;
743 }
744
745 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
746 list. */
747
748 static void
749 lwp_list_remove (struct lwp_info *lp)
750 {
751 /* Remove from sorted-by-creation-order list. */
752 if (lp->next != NULL)
753 lp->next->prev = lp->prev;
754 if (lp->prev != NULL)
755 lp->prev->next = lp->next;
756 if (lp == lwp_list)
757 lwp_list = lp->next;
758 }
759
760 \f
761
762 /* Original signal mask. */
763 static sigset_t normal_mask;
764
765 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
766 _initialize_linux_nat. */
767 static sigset_t suspend_mask;
768
769 /* Signals to block to make that sigsuspend work. */
770 static sigset_t blocked_mask;
771
772 /* SIGCHLD action. */
773 struct sigaction sigchld_action;
774
775 /* Block child signals (SIGCHLD and linux threads signals), and store
776 the previous mask in PREV_MASK. */
777
778 static void
779 block_child_signals (sigset_t *prev_mask)
780 {
781 /* Make sure SIGCHLD is blocked. */
782 if (!sigismember (&blocked_mask, SIGCHLD))
783 sigaddset (&blocked_mask, SIGCHLD);
784
785 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
786 }
787
788 /* Restore child signals mask, previously returned by
789 block_child_signals. */
790
791 static void
792 restore_child_signals_mask (sigset_t *prev_mask)
793 {
794 sigprocmask (SIG_SETMASK, prev_mask, NULL);
795 }
796
797 /* Mask of signals to pass directly to the inferior. */
798 static sigset_t pass_mask;
799
800 /* Update signals to pass to the inferior. */
801 static void
802 linux_nat_pass_signals (struct target_ops *self,
803 int numsigs, unsigned char *pass_signals)
804 {
805 int signo;
806
807 sigemptyset (&pass_mask);
808
809 for (signo = 1; signo < NSIG; signo++)
810 {
811 int target_signo = gdb_signal_from_host (signo);
812 if (target_signo < numsigs && pass_signals[target_signo])
813 sigaddset (&pass_mask, signo);
814 }
815 }
816
817 \f
818
819 /* Prototypes for local functions. */
820 static int stop_wait_callback (struct lwp_info *lp, void *data);
821 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
822 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
823
824 \f
825
826 /* Destroy and free LP. */
827
828 static void
829 lwp_free (struct lwp_info *lp)
830 {
831 xfree (lp->arch_private);
832 xfree (lp);
833 }
834
835 /* Traversal function for purge_lwp_list. */
836
837 static int
838 lwp_lwpid_htab_remove_pid (void **slot, void *info)
839 {
840 struct lwp_info *lp = (struct lwp_info *) *slot;
841 int pid = *(int *) info;
842
843 if (ptid_get_pid (lp->ptid) == pid)
844 {
845 htab_clear_slot (lwp_lwpid_htab, slot);
846 lwp_list_remove (lp);
847 lwp_free (lp);
848 }
849
850 return 1;
851 }
852
853 /* Remove all LWPs belong to PID from the lwp list. */
854
855 static void
856 purge_lwp_list (int pid)
857 {
858 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
859 }
860
861 /* Add the LWP specified by PTID to the list. PTID is the first LWP
862 in the process. Return a pointer to the structure describing the
863 new LWP.
864
865 This differs from add_lwp in that we don't let the arch specific
866 bits know about this new thread. Current clients of this callback
867 take the opportunity to install watchpoints in the new thread, and
868 we shouldn't do that for the first thread. If we're spawning a
869 child ("run"), the thread executes the shell wrapper first, and we
870 shouldn't touch it until it execs the program we want to debug.
871 For "attach", it'd be okay to call the callback, but it's not
872 necessary, because watchpoints can't yet have been inserted into
873 the inferior. */
874
875 static struct lwp_info *
876 add_initial_lwp (ptid_t ptid)
877 {
878 struct lwp_info *lp;
879
880 gdb_assert (ptid_lwp_p (ptid));
881
882 lp = XNEW (struct lwp_info);
883
884 memset (lp, 0, sizeof (struct lwp_info));
885
886 lp->last_resume_kind = resume_continue;
887 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
888
889 lp->ptid = ptid;
890 lp->core = -1;
891
892 /* Add to sorted-by-reverse-creation-order list. */
893 lwp_list_add (lp);
894
895 /* Add to keyed-by-pid htab. */
896 lwp_lwpid_htab_add_lwp (lp);
897
898 return lp;
899 }
900
901 /* Add the LWP specified by PID to the list. Return a pointer to the
902 structure describing the new LWP. The LWP should already be
903 stopped. */
904
905 static struct lwp_info *
906 add_lwp (ptid_t ptid)
907 {
908 struct lwp_info *lp;
909
910 lp = add_initial_lwp (ptid);
911
912 /* Let the arch specific bits know about this new thread. Current
913 clients of this callback take the opportunity to install
914 watchpoints in the new thread. We don't do this for the first
915 thread though. See add_initial_lwp. */
916 if (linux_nat_new_thread != NULL)
917 linux_nat_new_thread (lp);
918
919 return lp;
920 }
921
922 /* Remove the LWP specified by PID from the list. */
923
924 static void
925 delete_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928 void **slot;
929 struct lwp_info dummy;
930
931 dummy.ptid = ptid;
932 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
933 if (slot == NULL)
934 return;
935
936 lp = *(struct lwp_info **) slot;
937 gdb_assert (lp != NULL);
938
939 htab_clear_slot (lwp_lwpid_htab, slot);
940
941 /* Remove from sorted-by-creation-order list. */
942 lwp_list_remove (lp);
943
944 /* Release. */
945 lwp_free (lp);
946 }
947
948 /* Return a pointer to the structure describing the LWP corresponding
949 to PID. If no corresponding LWP could be found, return NULL. */
950
951 static struct lwp_info *
952 find_lwp_pid (ptid_t ptid)
953 {
954 struct lwp_info *lp;
955 int lwp;
956 struct lwp_info dummy;
957
958 if (ptid_lwp_p (ptid))
959 lwp = ptid_get_lwp (ptid);
960 else
961 lwp = ptid_get_pid (ptid);
962
963 dummy.ptid = ptid_build (0, lwp, 0);
964 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
965 return lp;
966 }
967
968 /* See nat/linux-nat.h. */
969
970 struct lwp_info *
971 iterate_over_lwps (ptid_t filter,
972 iterate_over_lwps_ftype callback,
973 void *data)
974 {
975 struct lwp_info *lp, *lpnext;
976
977 for (lp = lwp_list; lp; lp = lpnext)
978 {
979 lpnext = lp->next;
980
981 if (ptid_match (lp->ptid, filter))
982 {
983 if ((*callback) (lp, data) != 0)
984 return lp;
985 }
986 }
987
988 return NULL;
989 }
990
991 /* Update our internal state when changing from one checkpoint to
992 another indicated by NEW_PTID. We can only switch single-threaded
993 applications, so we only create one new LWP, and the previous list
994 is discarded. */
995
996 void
997 linux_nat_switch_fork (ptid_t new_ptid)
998 {
999 struct lwp_info *lp;
1000
1001 purge_lwp_list (ptid_get_pid (inferior_ptid));
1002
1003 lp = add_lwp (new_ptid);
1004 lp->stopped = 1;
1005
1006 /* This changes the thread's ptid while preserving the gdb thread
1007 num. Also changes the inferior pid, while preserving the
1008 inferior num. */
1009 thread_change_ptid (inferior_ptid, new_ptid);
1010
1011 /* We've just told GDB core that the thread changed target id, but,
1012 in fact, it really is a different thread, with different register
1013 contents. */
1014 registers_changed ();
1015 }
1016
1017 /* Handle the exit of a single thread LP. */
1018
1019 static void
1020 exit_lwp (struct lwp_info *lp)
1021 {
1022 struct thread_info *th = find_thread_ptid (lp->ptid);
1023
1024 if (th)
1025 {
1026 if (print_thread_events)
1027 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1028
1029 delete_thread (lp->ptid);
1030 }
1031
1032 delete_lwp (lp->ptid);
1033 }
1034
1035 /* Wait for the LWP specified by LP, which we have just attached to.
1036 Returns a wait status for that LWP, to cache. */
1037
1038 static int
1039 linux_nat_post_attach_wait (ptid_t ptid, int first, int *signalled)
1040 {
1041 pid_t new_pid, pid = ptid_get_lwp (ptid);
1042 int status;
1043
1044 if (linux_proc_pid_is_stopped (pid))
1045 {
1046 if (debug_linux_nat)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "LNPAW: Attaching to a stopped process\n");
1049
1050 /* The process is definitely stopped. It is in a job control
1051 stop, unless the kernel predates the TASK_STOPPED /
1052 TASK_TRACED distinction, in which case it might be in a
1053 ptrace stop. Make sure it is in a ptrace stop; from there we
1054 can kill it, signal it, et cetera.
1055
1056 First make sure there is a pending SIGSTOP. Since we are
1057 already attached, the process can not transition from stopped
1058 to running without a PTRACE_CONT; so we know this signal will
1059 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1060 probably already in the queue (unless this kernel is old
1061 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1062 is not an RT signal, it can only be queued once. */
1063 kill_lwp (pid, SIGSTOP);
1064
1065 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1066 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1067 ptrace (PTRACE_CONT, pid, 0, 0);
1068 }
1069
1070 /* Make sure the initial process is stopped. The user-level threads
1071 layer might want to poke around in the inferior, and that won't
1072 work if things haven't stabilized yet. */
1073 new_pid = my_waitpid (pid, &status, __WALL);
1074 gdb_assert (pid == new_pid);
1075
1076 if (!WIFSTOPPED (status))
1077 {
1078 /* The pid we tried to attach has apparently just exited. */
1079 if (debug_linux_nat)
1080 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1081 pid, status_to_str (status));
1082 return status;
1083 }
1084
1085 if (WSTOPSIG (status) != SIGSTOP)
1086 {
1087 *signalled = 1;
1088 if (debug_linux_nat)
1089 fprintf_unfiltered (gdb_stdlog,
1090 "LNPAW: Received %s after attaching\n",
1091 status_to_str (status));
1092 }
1093
1094 return status;
1095 }
1096
1097 static void
1098 linux_nat_create_inferior (struct target_ops *ops,
1099 char *exec_file, char *allargs, char **env,
1100 int from_tty)
1101 {
1102 struct cleanup *restore_personality
1103 = maybe_disable_address_space_randomization (disable_randomization);
1104
1105 /* The fork_child mechanism is synchronous and calls target_wait, so
1106 we have to mask the async mode. */
1107
1108 /* Make sure we report all signals during startup. */
1109 linux_nat_pass_signals (ops, 0, NULL);
1110
1111 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1112
1113 do_cleanups (restore_personality);
1114 }
1115
1116 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1117 already attached. Returns true if a new LWP is found, false
1118 otherwise. */
1119
1120 static int
1121 attach_proc_task_lwp_callback (ptid_t ptid)
1122 {
1123 struct lwp_info *lp;
1124
1125 /* Ignore LWPs we're already attached to. */
1126 lp = find_lwp_pid (ptid);
1127 if (lp == NULL)
1128 {
1129 int lwpid = ptid_get_lwp (ptid);
1130
1131 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1132 {
1133 int err = errno;
1134
1135 /* Be quiet if we simply raced with the thread exiting.
1136 EPERM is returned if the thread's task still exists, and
1137 is marked as exited or zombie, as well as other
1138 conditions, so in that case, confirm the status in
1139 /proc/PID/status. */
1140 if (err == ESRCH
1141 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1142 {
1143 if (debug_linux_nat)
1144 {
1145 fprintf_unfiltered (gdb_stdlog,
1146 "Cannot attach to lwp %d: "
1147 "thread is gone (%d: %s)\n",
1148 lwpid, err, safe_strerror (err));
1149 }
1150 }
1151 else
1152 {
1153 warning (_("Cannot attach to lwp %d: %s"),
1154 lwpid,
1155 linux_ptrace_attach_fail_reason_string (ptid,
1156 err));
1157 }
1158 }
1159 else
1160 {
1161 if (debug_linux_nat)
1162 fprintf_unfiltered (gdb_stdlog,
1163 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1164 target_pid_to_str (ptid));
1165
1166 lp = add_lwp (ptid);
1167
1168 /* The next time we wait for this LWP we'll see a SIGSTOP as
1169 PTRACE_ATTACH brings it to a halt. */
1170 lp->signalled = 1;
1171
1172 /* We need to wait for a stop before being able to make the
1173 next ptrace call on this LWP. */
1174 lp->must_set_ptrace_flags = 1;
1175
1176 /* So that wait collects the SIGSTOP. */
1177 lp->resumed = 1;
1178
1179 /* Also add the LWP to gdb's thread list, in case a
1180 matching libthread_db is not found (or the process uses
1181 raw clone). */
1182 add_thread (lp->ptid);
1183 set_running (lp->ptid, 1);
1184 set_executing (lp->ptid, 1);
1185 }
1186
1187 return 1;
1188 }
1189 return 0;
1190 }
1191
1192 static void
1193 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1194 {
1195 struct lwp_info *lp;
1196 int status;
1197 ptid_t ptid;
1198
1199 /* Make sure we report all signals during attach. */
1200 linux_nat_pass_signals (ops, 0, NULL);
1201
1202 TRY
1203 {
1204 linux_ops->to_attach (ops, args, from_tty);
1205 }
1206 CATCH (ex, RETURN_MASK_ERROR)
1207 {
1208 pid_t pid = parse_pid_to_attach (args);
1209 struct buffer buffer;
1210 char *message, *buffer_s;
1211
1212 message = xstrdup (ex.message);
1213 make_cleanup (xfree, message);
1214
1215 buffer_init (&buffer);
1216 linux_ptrace_attach_fail_reason (pid, &buffer);
1217
1218 buffer_grow_str0 (&buffer, "");
1219 buffer_s = buffer_finish (&buffer);
1220 make_cleanup (xfree, buffer_s);
1221
1222 if (*buffer_s != '\0')
1223 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1224 else
1225 throw_error (ex.error, "%s", message);
1226 }
1227 END_CATCH
1228
1229 /* The ptrace base target adds the main thread with (pid,0,0)
1230 format. Decorate it with lwp info. */
1231 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1232 ptid_get_pid (inferior_ptid),
1233 0);
1234 thread_change_ptid (inferior_ptid, ptid);
1235
1236 /* Add the initial process as the first LWP to the list. */
1237 lp = add_initial_lwp (ptid);
1238
1239 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->signalled);
1240 if (!WIFSTOPPED (status))
1241 {
1242 if (WIFEXITED (status))
1243 {
1244 int exit_code = WEXITSTATUS (status);
1245
1246 target_terminal_ours ();
1247 target_mourn_inferior ();
1248 if (exit_code == 0)
1249 error (_("Unable to attach: program exited normally."));
1250 else
1251 error (_("Unable to attach: program exited with code %d."),
1252 exit_code);
1253 }
1254 else if (WIFSIGNALED (status))
1255 {
1256 enum gdb_signal signo;
1257
1258 target_terminal_ours ();
1259 target_mourn_inferior ();
1260
1261 signo = gdb_signal_from_host (WTERMSIG (status));
1262 error (_("Unable to attach: program terminated with signal "
1263 "%s, %s."),
1264 gdb_signal_to_name (signo),
1265 gdb_signal_to_string (signo));
1266 }
1267
1268 internal_error (__FILE__, __LINE__,
1269 _("unexpected status %d for PID %ld"),
1270 status, (long) ptid_get_lwp (ptid));
1271 }
1272
1273 lp->stopped = 1;
1274
1275 /* Save the wait status to report later. */
1276 lp->resumed = 1;
1277 if (debug_linux_nat)
1278 fprintf_unfiltered (gdb_stdlog,
1279 "LNA: waitpid %ld, saving status %s\n",
1280 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1281
1282 lp->status = status;
1283
1284 /* We must attach to every LWP. If /proc is mounted, use that to
1285 find them now. The inferior may be using raw clone instead of
1286 using pthreads. But even if it is using pthreads, thread_db
1287 walks structures in the inferior's address space to find the list
1288 of threads/LWPs, and those structures may well be corrupted.
1289 Note that once thread_db is loaded, we'll still use it to list
1290 threads and associate pthread info with each LWP. */
1291 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1292 attach_proc_task_lwp_callback);
1293
1294 if (target_can_async_p ())
1295 target_async (1);
1296 }
1297
1298 /* Get pending status of LP. */
1299 static int
1300 get_pending_status (struct lwp_info *lp, int *status)
1301 {
1302 enum gdb_signal signo = GDB_SIGNAL_0;
1303
1304 /* If we paused threads momentarily, we may have stored pending
1305 events in lp->status or lp->waitstatus (see stop_wait_callback),
1306 and GDB core hasn't seen any signal for those threads.
1307 Otherwise, the last signal reported to the core is found in the
1308 thread object's stop_signal.
1309
1310 There's a corner case that isn't handled here at present. Only
1311 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1312 stop_signal make sense as a real signal to pass to the inferior.
1313 Some catchpoint related events, like
1314 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1315 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1316 those traps are debug API (ptrace in our case) related and
1317 induced; the inferior wouldn't see them if it wasn't being
1318 traced. Hence, we should never pass them to the inferior, even
1319 when set to pass state. Since this corner case isn't handled by
1320 infrun.c when proceeding with a signal, for consistency, neither
1321 do we handle it here (or elsewhere in the file we check for
1322 signal pass state). Normally SIGTRAP isn't set to pass state, so
1323 this is really a corner case. */
1324
1325 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1326 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1327 else if (lp->status)
1328 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1329 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1330 {
1331 struct thread_info *tp = find_thread_ptid (lp->ptid);
1332
1333 if (tp->suspend.waitstatus_pending_p)
1334 signo = tp->suspend.waitstatus.value.sig;
1335 else
1336 signo = tp->suspend.stop_signal;
1337 }
1338 else if (!target_is_non_stop_p ())
1339 {
1340 struct target_waitstatus last;
1341 ptid_t last_ptid;
1342
1343 get_last_target_status (&last_ptid, &last);
1344
1345 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1346 {
1347 struct thread_info *tp = find_thread_ptid (lp->ptid);
1348
1349 signo = tp->suspend.stop_signal;
1350 }
1351 }
1352
1353 *status = 0;
1354
1355 if (signo == GDB_SIGNAL_0)
1356 {
1357 if (debug_linux_nat)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "GPT: lwp %s has no pending signal\n",
1360 target_pid_to_str (lp->ptid));
1361 }
1362 else if (!signal_pass_state (signo))
1363 {
1364 if (debug_linux_nat)
1365 fprintf_unfiltered (gdb_stdlog,
1366 "GPT: lwp %s had signal %s, "
1367 "but it is in no pass state\n",
1368 target_pid_to_str (lp->ptid),
1369 gdb_signal_to_string (signo));
1370 }
1371 else
1372 {
1373 *status = W_STOPCODE (gdb_signal_to_host (signo));
1374
1375 if (debug_linux_nat)
1376 fprintf_unfiltered (gdb_stdlog,
1377 "GPT: lwp %s has pending signal %s\n",
1378 target_pid_to_str (lp->ptid),
1379 gdb_signal_to_string (signo));
1380 }
1381
1382 return 0;
1383 }
1384
1385 static int
1386 detach_callback (struct lwp_info *lp, void *data)
1387 {
1388 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1389
1390 if (debug_linux_nat && lp->status)
1391 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1392 strsignal (WSTOPSIG (lp->status)),
1393 target_pid_to_str (lp->ptid));
1394
1395 /* If there is a pending SIGSTOP, get rid of it. */
1396 if (lp->signalled)
1397 {
1398 if (debug_linux_nat)
1399 fprintf_unfiltered (gdb_stdlog,
1400 "DC: Sending SIGCONT to %s\n",
1401 target_pid_to_str (lp->ptid));
1402
1403 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1404 lp->signalled = 0;
1405 }
1406
1407 /* We don't actually detach from the LWP that has an id equal to the
1408 overall process id just yet. */
1409 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1410 {
1411 int status = 0;
1412
1413 /* Pass on any pending signal for this LWP. */
1414 get_pending_status (lp, &status);
1415
1416 if (linux_nat_prepare_to_resume != NULL)
1417 linux_nat_prepare_to_resume (lp);
1418 errno = 0;
1419 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1420 WSTOPSIG (status)) < 0)
1421 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1422 safe_strerror (errno));
1423
1424 if (debug_linux_nat)
1425 fprintf_unfiltered (gdb_stdlog,
1426 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1427 target_pid_to_str (lp->ptid),
1428 strsignal (WSTOPSIG (status)));
1429
1430 delete_lwp (lp->ptid);
1431 }
1432
1433 return 0;
1434 }
1435
1436 static void
1437 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1438 {
1439 int pid;
1440 int status;
1441 struct lwp_info *main_lwp;
1442
1443 pid = ptid_get_pid (inferior_ptid);
1444
1445 /* Don't unregister from the event loop, as there may be other
1446 inferiors running. */
1447
1448 /* Stop all threads before detaching. ptrace requires that the
1449 thread is stopped to sucessfully detach. */
1450 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1451 /* ... and wait until all of them have reported back that
1452 they're no longer running. */
1453 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1454
1455 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1456
1457 /* Only the initial process should be left right now. */
1458 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1459
1460 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1461
1462 /* Pass on any pending signal for the last LWP. */
1463 if ((args == NULL || *args == '\0')
1464 && get_pending_status (main_lwp, &status) != -1
1465 && WIFSTOPPED (status))
1466 {
1467 char *tem;
1468
1469 /* Put the signal number in ARGS so that inf_ptrace_detach will
1470 pass it along with PTRACE_DETACH. */
1471 tem = (char *) alloca (8);
1472 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1473 args = tem;
1474 if (debug_linux_nat)
1475 fprintf_unfiltered (gdb_stdlog,
1476 "LND: Sending signal %s to %s\n",
1477 args,
1478 target_pid_to_str (main_lwp->ptid));
1479 }
1480
1481 if (linux_nat_prepare_to_resume != NULL)
1482 linux_nat_prepare_to_resume (main_lwp);
1483 delete_lwp (main_lwp->ptid);
1484
1485 if (forks_exist_p ())
1486 {
1487 /* Multi-fork case. The current inferior_ptid is being detached
1488 from, but there are other viable forks to debug. Detach from
1489 the current fork, and context-switch to the first
1490 available. */
1491 linux_fork_detach (args, from_tty);
1492 }
1493 else
1494 linux_ops->to_detach (ops, args, from_tty);
1495 }
1496
1497 /* Resume execution of the inferior process. If STEP is nonzero,
1498 single-step it. If SIGNAL is nonzero, give it that signal. */
1499
1500 static void
1501 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1502 enum gdb_signal signo)
1503 {
1504 lp->step = step;
1505
1506 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1507 We only presently need that if the LWP is stepped though (to
1508 handle the case of stepping a breakpoint instruction). */
1509 if (step)
1510 {
1511 struct regcache *regcache = get_thread_regcache (lp->ptid);
1512
1513 lp->stop_pc = regcache_read_pc (regcache);
1514 }
1515 else
1516 lp->stop_pc = 0;
1517
1518 if (linux_nat_prepare_to_resume != NULL)
1519 linux_nat_prepare_to_resume (lp);
1520 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1521
1522 /* Successfully resumed. Clear state that no longer makes sense,
1523 and mark the LWP as running. Must not do this before resuming
1524 otherwise if that fails other code will be confused. E.g., we'd
1525 later try to stop the LWP and hang forever waiting for a stop
1526 status. Note that we must not throw after this is cleared,
1527 otherwise handle_zombie_lwp_error would get confused. */
1528 lp->stopped = 0;
1529 lp->core = -1;
1530 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1531 registers_changed_ptid (lp->ptid);
1532 }
1533
1534 /* Called when we try to resume a stopped LWP and that errors out. If
1535 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1536 or about to become), discard the error, clear any pending status
1537 the LWP may have, and return true (we'll collect the exit status
1538 soon enough). Otherwise, return false. */
1539
1540 static int
1541 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1542 {
1543 /* If we get an error after resuming the LWP successfully, we'd
1544 confuse !T state for the LWP being gone. */
1545 gdb_assert (lp->stopped);
1546
1547 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1548 because even if ptrace failed with ESRCH, the tracee may be "not
1549 yet fully dead", but already refusing ptrace requests. In that
1550 case the tracee has 'R (Running)' state for a little bit
1551 (observed in Linux 3.18). See also the note on ESRCH in the
1552 ptrace(2) man page. Instead, check whether the LWP has any state
1553 other than ptrace-stopped. */
1554
1555 /* Don't assume anything if /proc/PID/status can't be read. */
1556 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1557 {
1558 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1559 lp->status = 0;
1560 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1561 return 1;
1562 }
1563 return 0;
1564 }
1565
1566 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1567 disappears while we try to resume it. */
1568
1569 static void
1570 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1571 {
1572 TRY
1573 {
1574 linux_resume_one_lwp_throw (lp, step, signo);
1575 }
1576 CATCH (ex, RETURN_MASK_ERROR)
1577 {
1578 if (!check_ptrace_stopped_lwp_gone (lp))
1579 throw_exception (ex);
1580 }
1581 END_CATCH
1582 }
1583
1584 /* Resume LP. */
1585
1586 static void
1587 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1588 {
1589 if (lp->stopped)
1590 {
1591 struct inferior *inf = find_inferior_ptid (lp->ptid);
1592
1593 if (inf->vfork_child != NULL)
1594 {
1595 if (debug_linux_nat)
1596 fprintf_unfiltered (gdb_stdlog,
1597 "RC: Not resuming %s (vfork parent)\n",
1598 target_pid_to_str (lp->ptid));
1599 }
1600 else if (!lwp_status_pending_p (lp))
1601 {
1602 if (debug_linux_nat)
1603 fprintf_unfiltered (gdb_stdlog,
1604 "RC: Resuming sibling %s, %s, %s\n",
1605 target_pid_to_str (lp->ptid),
1606 (signo != GDB_SIGNAL_0
1607 ? strsignal (gdb_signal_to_host (signo))
1608 : "0"),
1609 step ? "step" : "resume");
1610
1611 linux_resume_one_lwp (lp, step, signo);
1612 }
1613 else
1614 {
1615 if (debug_linux_nat)
1616 fprintf_unfiltered (gdb_stdlog,
1617 "RC: Not resuming sibling %s (has pending)\n",
1618 target_pid_to_str (lp->ptid));
1619 }
1620 }
1621 else
1622 {
1623 if (debug_linux_nat)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "RC: Not resuming sibling %s (not stopped)\n",
1626 target_pid_to_str (lp->ptid));
1627 }
1628 }
1629
1630 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1631 Resume LWP with the last stop signal, if it is in pass state. */
1632
1633 static int
1634 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1635 {
1636 enum gdb_signal signo = GDB_SIGNAL_0;
1637
1638 if (lp == except)
1639 return 0;
1640
1641 if (lp->stopped)
1642 {
1643 struct thread_info *thread;
1644
1645 thread = find_thread_ptid (lp->ptid);
1646 if (thread != NULL)
1647 {
1648 signo = thread->suspend.stop_signal;
1649 thread->suspend.stop_signal = GDB_SIGNAL_0;
1650 }
1651 }
1652
1653 resume_lwp (lp, 0, signo);
1654 return 0;
1655 }
1656
1657 static int
1658 resume_clear_callback (struct lwp_info *lp, void *data)
1659 {
1660 lp->resumed = 0;
1661 lp->last_resume_kind = resume_stop;
1662 return 0;
1663 }
1664
1665 static int
1666 resume_set_callback (struct lwp_info *lp, void *data)
1667 {
1668 lp->resumed = 1;
1669 lp->last_resume_kind = resume_continue;
1670 return 0;
1671 }
1672
1673 static void
1674 linux_nat_resume (struct target_ops *ops,
1675 ptid_t ptid, int step, enum gdb_signal signo)
1676 {
1677 struct lwp_info *lp;
1678 int resume_many;
1679
1680 if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog,
1682 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1683 step ? "step" : "resume",
1684 target_pid_to_str (ptid),
1685 (signo != GDB_SIGNAL_0
1686 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1687 target_pid_to_str (inferior_ptid));
1688
1689 /* A specific PTID means `step only this process id'. */
1690 resume_many = (ptid_equal (minus_one_ptid, ptid)
1691 || ptid_is_pid (ptid));
1692
1693 /* Mark the lwps we're resuming as resumed. */
1694 iterate_over_lwps (ptid, resume_set_callback, NULL);
1695
1696 /* See if it's the current inferior that should be handled
1697 specially. */
1698 if (resume_many)
1699 lp = find_lwp_pid (inferior_ptid);
1700 else
1701 lp = find_lwp_pid (ptid);
1702 gdb_assert (lp != NULL);
1703
1704 /* Remember if we're stepping. */
1705 lp->last_resume_kind = step ? resume_step : resume_continue;
1706
1707 /* If we have a pending wait status for this thread, there is no
1708 point in resuming the process. But first make sure that
1709 linux_nat_wait won't preemptively handle the event - we
1710 should never take this short-circuit if we are going to
1711 leave LP running, since we have skipped resuming all the
1712 other threads. This bit of code needs to be synchronized
1713 with linux_nat_wait. */
1714
1715 if (lp->status && WIFSTOPPED (lp->status))
1716 {
1717 if (!lp->step
1718 && WSTOPSIG (lp->status)
1719 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1720 {
1721 if (debug_linux_nat)
1722 fprintf_unfiltered (gdb_stdlog,
1723 "LLR: Not short circuiting for ignored "
1724 "status 0x%x\n", lp->status);
1725
1726 /* FIXME: What should we do if we are supposed to continue
1727 this thread with a signal? */
1728 gdb_assert (signo == GDB_SIGNAL_0);
1729 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1730 lp->status = 0;
1731 }
1732 }
1733
1734 if (lwp_status_pending_p (lp))
1735 {
1736 /* FIXME: What should we do if we are supposed to continue
1737 this thread with a signal? */
1738 gdb_assert (signo == GDB_SIGNAL_0);
1739
1740 if (debug_linux_nat)
1741 fprintf_unfiltered (gdb_stdlog,
1742 "LLR: Short circuiting for status 0x%x\n",
1743 lp->status);
1744
1745 if (target_can_async_p ())
1746 {
1747 target_async (1);
1748 /* Tell the event loop we have something to process. */
1749 async_file_mark ();
1750 }
1751 return;
1752 }
1753
1754 if (resume_many)
1755 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1756
1757 if (debug_linux_nat)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "LLR: %s %s, %s (resume event thread)\n",
1760 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1761 target_pid_to_str (lp->ptid),
1762 (signo != GDB_SIGNAL_0
1763 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1764
1765 linux_resume_one_lwp (lp, step, signo);
1766
1767 if (target_can_async_p ())
1768 target_async (1);
1769 }
1770
1771 /* Send a signal to an LWP. */
1772
1773 static int
1774 kill_lwp (int lwpid, int signo)
1775 {
1776 int ret;
1777
1778 errno = 0;
1779 ret = syscall (__NR_tkill, lwpid, signo);
1780 if (errno == ENOSYS)
1781 {
1782 /* If tkill fails, then we are not using nptl threads, a
1783 configuration we no longer support. */
1784 perror_with_name (("tkill"));
1785 }
1786 return ret;
1787 }
1788
1789 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1790 event, check if the core is interested in it: if not, ignore the
1791 event, and keep waiting; otherwise, we need to toggle the LWP's
1792 syscall entry/exit status, since the ptrace event itself doesn't
1793 indicate it, and report the trap to higher layers. */
1794
1795 static int
1796 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1797 {
1798 struct target_waitstatus *ourstatus = &lp->waitstatus;
1799 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1800 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1801
1802 if (stopping)
1803 {
1804 /* If we're stopping threads, there's a SIGSTOP pending, which
1805 makes it so that the LWP reports an immediate syscall return,
1806 followed by the SIGSTOP. Skip seeing that "return" using
1807 PTRACE_CONT directly, and let stop_wait_callback collect the
1808 SIGSTOP. Later when the thread is resumed, a new syscall
1809 entry event. If we didn't do this (and returned 0), we'd
1810 leave a syscall entry pending, and our caller, by using
1811 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1812 itself. Later, when the user re-resumes this LWP, we'd see
1813 another syscall entry event and we'd mistake it for a return.
1814
1815 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1816 (leaving immediately with LWP->signalled set, without issuing
1817 a PTRACE_CONT), it would still be problematic to leave this
1818 syscall enter pending, as later when the thread is resumed,
1819 it would then see the same syscall exit mentioned above,
1820 followed by the delayed SIGSTOP, while the syscall didn't
1821 actually get to execute. It seems it would be even more
1822 confusing to the user. */
1823
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "LHST: ignoring syscall %d "
1827 "for LWP %ld (stopping threads), "
1828 "resuming with PTRACE_CONT for SIGSTOP\n",
1829 syscall_number,
1830 ptid_get_lwp (lp->ptid));
1831
1832 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1833 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1834 lp->stopped = 0;
1835 return 1;
1836 }
1837
1838 /* Always update the entry/return state, even if this particular
1839 syscall isn't interesting to the core now. In async mode,
1840 the user could install a new catchpoint for this syscall
1841 between syscall enter/return, and we'll need to know to
1842 report a syscall return if that happens. */
1843 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1844 ? TARGET_WAITKIND_SYSCALL_RETURN
1845 : TARGET_WAITKIND_SYSCALL_ENTRY);
1846
1847 if (catch_syscall_enabled ())
1848 {
1849 if (catching_syscall_number (syscall_number))
1850 {
1851 /* Alright, an event to report. */
1852 ourstatus->kind = lp->syscall_state;
1853 ourstatus->value.syscall_number = syscall_number;
1854
1855 if (debug_linux_nat)
1856 fprintf_unfiltered (gdb_stdlog,
1857 "LHST: stopping for %s of syscall %d"
1858 " for LWP %ld\n",
1859 lp->syscall_state
1860 == TARGET_WAITKIND_SYSCALL_ENTRY
1861 ? "entry" : "return",
1862 syscall_number,
1863 ptid_get_lwp (lp->ptid));
1864 return 0;
1865 }
1866
1867 if (debug_linux_nat)
1868 fprintf_unfiltered (gdb_stdlog,
1869 "LHST: ignoring %s of syscall %d "
1870 "for LWP %ld\n",
1871 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1872 ? "entry" : "return",
1873 syscall_number,
1874 ptid_get_lwp (lp->ptid));
1875 }
1876 else
1877 {
1878 /* If we had been syscall tracing, and hence used PT_SYSCALL
1879 before on this LWP, it could happen that the user removes all
1880 syscall catchpoints before we get to process this event.
1881 There are two noteworthy issues here:
1882
1883 - When stopped at a syscall entry event, resuming with
1884 PT_STEP still resumes executing the syscall and reports a
1885 syscall return.
1886
1887 - Only PT_SYSCALL catches syscall enters. If we last
1888 single-stepped this thread, then this event can't be a
1889 syscall enter. If we last single-stepped this thread, this
1890 has to be a syscall exit.
1891
1892 The points above mean that the next resume, be it PT_STEP or
1893 PT_CONTINUE, can not trigger a syscall trace event. */
1894 if (debug_linux_nat)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "LHST: caught syscall event "
1897 "with no syscall catchpoints."
1898 " %d for LWP %ld, ignoring\n",
1899 syscall_number,
1900 ptid_get_lwp (lp->ptid));
1901 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1902 }
1903
1904 /* The core isn't interested in this event. For efficiency, avoid
1905 stopping all threads only to have the core resume them all again.
1906 Since we're not stopping threads, if we're still syscall tracing
1907 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1908 subsequent syscall. Simply resume using the inf-ptrace layer,
1909 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1910
1911 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1912 return 1;
1913 }
1914
1915 /* Handle a GNU/Linux extended wait response. If we see a clone
1916 event, we need to add the new LWP to our list (and not report the
1917 trap to higher layers). This function returns non-zero if the
1918 event should be ignored and we should wait again. If STOPPING is
1919 true, the new LWP remains stopped, otherwise it is continued. */
1920
1921 static int
1922 linux_handle_extended_wait (struct lwp_info *lp, int status)
1923 {
1924 int pid = ptid_get_lwp (lp->ptid);
1925 struct target_waitstatus *ourstatus = &lp->waitstatus;
1926 int event = linux_ptrace_get_extended_event (status);
1927
1928 /* All extended events we currently use are mid-syscall. Only
1929 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1930 you have to be using PTRACE_SEIZE to get that. */
1931 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1932
1933 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1934 || event == PTRACE_EVENT_CLONE)
1935 {
1936 unsigned long new_pid;
1937 int ret;
1938
1939 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1940
1941 /* If we haven't already seen the new PID stop, wait for it now. */
1942 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1943 {
1944 /* The new child has a pending SIGSTOP. We can't affect it until it
1945 hits the SIGSTOP, but we're already attached. */
1946 ret = my_waitpid (new_pid, &status, __WALL);
1947 if (ret == -1)
1948 perror_with_name (_("waiting for new child"));
1949 else if (ret != new_pid)
1950 internal_error (__FILE__, __LINE__,
1951 _("wait returned unexpected PID %d"), ret);
1952 else if (!WIFSTOPPED (status))
1953 internal_error (__FILE__, __LINE__,
1954 _("wait returned unexpected status 0x%x"), status);
1955 }
1956
1957 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1958
1959 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1960 {
1961 /* The arch-specific native code may need to know about new
1962 forks even if those end up never mapped to an
1963 inferior. */
1964 if (linux_nat_new_fork != NULL)
1965 linux_nat_new_fork (lp, new_pid);
1966 }
1967
1968 if (event == PTRACE_EVENT_FORK
1969 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1970 {
1971 /* Handle checkpointing by linux-fork.c here as a special
1972 case. We don't want the follow-fork-mode or 'catch fork'
1973 to interfere with this. */
1974
1975 /* This won't actually modify the breakpoint list, but will
1976 physically remove the breakpoints from the child. */
1977 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1978
1979 /* Retain child fork in ptrace (stopped) state. */
1980 if (!find_fork_pid (new_pid))
1981 add_fork (new_pid);
1982
1983 /* Report as spurious, so that infrun doesn't want to follow
1984 this fork. We're actually doing an infcall in
1985 linux-fork.c. */
1986 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1987
1988 /* Report the stop to the core. */
1989 return 0;
1990 }
1991
1992 if (event == PTRACE_EVENT_FORK)
1993 ourstatus->kind = TARGET_WAITKIND_FORKED;
1994 else if (event == PTRACE_EVENT_VFORK)
1995 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1996 else if (event == PTRACE_EVENT_CLONE)
1997 {
1998 struct lwp_info *new_lp;
1999
2000 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2001
2002 if (debug_linux_nat)
2003 fprintf_unfiltered (gdb_stdlog,
2004 "LHEW: Got clone event "
2005 "from LWP %d, new child is LWP %ld\n",
2006 pid, new_pid);
2007
2008 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2009 new_lp->stopped = 1;
2010 new_lp->resumed = 1;
2011
2012 /* If the thread_db layer is active, let it record the user
2013 level thread id and status, and add the thread to GDB's
2014 list. */
2015 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2016 {
2017 /* The process is not using thread_db. Add the LWP to
2018 GDB's list. */
2019 target_post_attach (ptid_get_lwp (new_lp->ptid));
2020 add_thread (new_lp->ptid);
2021 }
2022
2023 /* Even if we're stopping the thread for some reason
2024 internal to this module, from the perspective of infrun
2025 and the user/frontend, this new thread is running until
2026 it next reports a stop. */
2027 set_running (new_lp->ptid, 1);
2028 set_executing (new_lp->ptid, 1);
2029
2030 if (WSTOPSIG (status) != SIGSTOP)
2031 {
2032 /* This can happen if someone starts sending signals to
2033 the new thread before it gets a chance to run, which
2034 have a lower number than SIGSTOP (e.g. SIGUSR1).
2035 This is an unlikely case, and harder to handle for
2036 fork / vfork than for clone, so we do not try - but
2037 we handle it for clone events here. */
2038
2039 new_lp->signalled = 1;
2040
2041 /* We created NEW_LP so it cannot yet contain STATUS. */
2042 gdb_assert (new_lp->status == 0);
2043
2044 /* Save the wait status to report later. */
2045 if (debug_linux_nat)
2046 fprintf_unfiltered (gdb_stdlog,
2047 "LHEW: waitpid of new LWP %ld, "
2048 "saving status %s\n",
2049 (long) ptid_get_lwp (new_lp->ptid),
2050 status_to_str (status));
2051 new_lp->status = status;
2052 }
2053 else if (report_thread_events)
2054 {
2055 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2056 new_lp->status = status;
2057 }
2058
2059 return 1;
2060 }
2061
2062 return 0;
2063 }
2064
2065 if (event == PTRACE_EVENT_EXEC)
2066 {
2067 if (debug_linux_nat)
2068 fprintf_unfiltered (gdb_stdlog,
2069 "LHEW: Got exec event from LWP %ld\n",
2070 ptid_get_lwp (lp->ptid));
2071
2072 ourstatus->kind = TARGET_WAITKIND_EXECD;
2073 ourstatus->value.execd_pathname
2074 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2075
2076 /* The thread that execed must have been resumed, but, when a
2077 thread execs, it changes its tid to the tgid, and the old
2078 tgid thread might have not been resumed. */
2079 lp->resumed = 1;
2080 return 0;
2081 }
2082
2083 if (event == PTRACE_EVENT_VFORK_DONE)
2084 {
2085 if (current_inferior ()->waiting_for_vfork_done)
2086 {
2087 if (debug_linux_nat)
2088 fprintf_unfiltered (gdb_stdlog,
2089 "LHEW: Got expected PTRACE_EVENT_"
2090 "VFORK_DONE from LWP %ld: stopping\n",
2091 ptid_get_lwp (lp->ptid));
2092
2093 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2094 return 0;
2095 }
2096
2097 if (debug_linux_nat)
2098 fprintf_unfiltered (gdb_stdlog,
2099 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2100 "from LWP %ld: ignoring\n",
2101 ptid_get_lwp (lp->ptid));
2102 return 1;
2103 }
2104
2105 internal_error (__FILE__, __LINE__,
2106 _("unknown ptrace event %d"), event);
2107 }
2108
2109 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2110 exited. */
2111
2112 static int
2113 wait_lwp (struct lwp_info *lp)
2114 {
2115 pid_t pid;
2116 int status = 0;
2117 int thread_dead = 0;
2118 sigset_t prev_mask;
2119
2120 gdb_assert (!lp->stopped);
2121 gdb_assert (lp->status == 0);
2122
2123 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2124 block_child_signals (&prev_mask);
2125
2126 for (;;)
2127 {
2128 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2129 if (pid == -1 && errno == ECHILD)
2130 {
2131 /* The thread has previously exited. We need to delete it
2132 now because if this was a non-leader thread execing, we
2133 won't get an exit event. See comments on exec events at
2134 the top of the file. */
2135 thread_dead = 1;
2136 if (debug_linux_nat)
2137 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2138 target_pid_to_str (lp->ptid));
2139 }
2140 if (pid != 0)
2141 break;
2142
2143 /* Bugs 10970, 12702.
2144 Thread group leader may have exited in which case we'll lock up in
2145 waitpid if there are other threads, even if they are all zombies too.
2146 Basically, we're not supposed to use waitpid this way.
2147 tkill(pid,0) cannot be used here as it gets ESRCH for both
2148 for zombie and running processes.
2149
2150 As a workaround, check if we're waiting for the thread group leader and
2151 if it's a zombie, and avoid calling waitpid if it is.
2152
2153 This is racy, what if the tgl becomes a zombie right after we check?
2154 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2155 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2156
2157 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2158 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2159 {
2160 thread_dead = 1;
2161 if (debug_linux_nat)
2162 fprintf_unfiltered (gdb_stdlog,
2163 "WL: Thread group leader %s vanished.\n",
2164 target_pid_to_str (lp->ptid));
2165 break;
2166 }
2167
2168 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2169 get invoked despite our caller had them intentionally blocked by
2170 block_child_signals. This is sensitive only to the loop of
2171 linux_nat_wait_1 and there if we get called my_waitpid gets called
2172 again before it gets to sigsuspend so we can safely let the handlers
2173 get executed here. */
2174
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2177 sigsuspend (&suspend_mask);
2178 }
2179
2180 restore_child_signals_mask (&prev_mask);
2181
2182 if (!thread_dead)
2183 {
2184 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2185
2186 if (debug_linux_nat)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
2189 "WL: waitpid %s received %s\n",
2190 target_pid_to_str (lp->ptid),
2191 status_to_str (status));
2192 }
2193
2194 /* Check if the thread has exited. */
2195 if (WIFEXITED (status) || WIFSIGNALED (status))
2196 {
2197 if (report_thread_events
2198 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2199 {
2200 if (debug_linux_nat)
2201 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2202 ptid_get_pid (lp->ptid));
2203
2204 /* If this is the leader exiting, it means the whole
2205 process is gone. Store the status to report to the
2206 core. Store it in lp->waitstatus, because lp->status
2207 would be ambiguous (W_EXITCODE(0,0) == 0). */
2208 store_waitstatus (&lp->waitstatus, status);
2209 return 0;
2210 }
2211
2212 thread_dead = 1;
2213 if (debug_linux_nat)
2214 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2215 target_pid_to_str (lp->ptid));
2216 }
2217 }
2218
2219 if (thread_dead)
2220 {
2221 exit_lwp (lp);
2222 return 0;
2223 }
2224
2225 gdb_assert (WIFSTOPPED (status));
2226 lp->stopped = 1;
2227
2228 if (lp->must_set_ptrace_flags)
2229 {
2230 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2231 int options = linux_nat_ptrace_options (inf->attach_flag);
2232
2233 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2234 lp->must_set_ptrace_flags = 0;
2235 }
2236
2237 /* Handle GNU/Linux's syscall SIGTRAPs. */
2238 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2239 {
2240 /* No longer need the sysgood bit. The ptrace event ends up
2241 recorded in lp->waitstatus if we care for it. We can carry
2242 on handling the event like a regular SIGTRAP from here
2243 on. */
2244 status = W_STOPCODE (SIGTRAP);
2245 if (linux_handle_syscall_trap (lp, 1))
2246 return wait_lwp (lp);
2247 }
2248 else
2249 {
2250 /* Almost all other ptrace-stops are known to be outside of system
2251 calls, with further exceptions in linux_handle_extended_wait. */
2252 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2253 }
2254
2255 /* Handle GNU/Linux's extended waitstatus for trace events. */
2256 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2257 && linux_is_extended_waitstatus (status))
2258 {
2259 if (debug_linux_nat)
2260 fprintf_unfiltered (gdb_stdlog,
2261 "WL: Handling extended status 0x%06x\n",
2262 status);
2263 linux_handle_extended_wait (lp, status);
2264 return 0;
2265 }
2266
2267 return status;
2268 }
2269
2270 /* Send a SIGSTOP to LP. */
2271
2272 static int
2273 stop_callback (struct lwp_info *lp, void *data)
2274 {
2275 if (!lp->stopped && !lp->signalled)
2276 {
2277 int ret;
2278
2279 if (debug_linux_nat)
2280 {
2281 fprintf_unfiltered (gdb_stdlog,
2282 "SC: kill %s **<SIGSTOP>**\n",
2283 target_pid_to_str (lp->ptid));
2284 }
2285 errno = 0;
2286 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2287 if (debug_linux_nat)
2288 {
2289 fprintf_unfiltered (gdb_stdlog,
2290 "SC: lwp kill %d %s\n",
2291 ret,
2292 errno ? safe_strerror (errno) : "ERRNO-OK");
2293 }
2294
2295 lp->signalled = 1;
2296 gdb_assert (lp->status == 0);
2297 }
2298
2299 return 0;
2300 }
2301
2302 /* Request a stop on LWP. */
2303
2304 void
2305 linux_stop_lwp (struct lwp_info *lwp)
2306 {
2307 stop_callback (lwp, NULL);
2308 }
2309
2310 /* See linux-nat.h */
2311
2312 void
2313 linux_stop_and_wait_all_lwps (void)
2314 {
2315 /* Stop all LWP's ... */
2316 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2317
2318 /* ... and wait until all of them have reported back that
2319 they're no longer running. */
2320 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2321 }
2322
2323 /* See linux-nat.h */
2324
2325 void
2326 linux_unstop_all_lwps (void)
2327 {
2328 iterate_over_lwps (minus_one_ptid,
2329 resume_stopped_resumed_lwps, &minus_one_ptid);
2330 }
2331
2332 /* Return non-zero if LWP PID has a pending SIGINT. */
2333
2334 static int
2335 linux_nat_has_pending_sigint (int pid)
2336 {
2337 sigset_t pending, blocked, ignored;
2338
2339 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2340
2341 if (sigismember (&pending, SIGINT)
2342 && !sigismember (&ignored, SIGINT))
2343 return 1;
2344
2345 return 0;
2346 }
2347
2348 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2349
2350 static int
2351 set_ignore_sigint (struct lwp_info *lp, void *data)
2352 {
2353 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2354 flag to consume the next one. */
2355 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2356 && WSTOPSIG (lp->status) == SIGINT)
2357 lp->status = 0;
2358 else
2359 lp->ignore_sigint = 1;
2360
2361 return 0;
2362 }
2363
2364 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2365 This function is called after we know the LWP has stopped; if the LWP
2366 stopped before the expected SIGINT was delivered, then it will never have
2367 arrived. Also, if the signal was delivered to a shared queue and consumed
2368 by a different thread, it will never be delivered to this LWP. */
2369
2370 static void
2371 maybe_clear_ignore_sigint (struct lwp_info *lp)
2372 {
2373 if (!lp->ignore_sigint)
2374 return;
2375
2376 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2377 {
2378 if (debug_linux_nat)
2379 fprintf_unfiltered (gdb_stdlog,
2380 "MCIS: Clearing bogus flag for %s\n",
2381 target_pid_to_str (lp->ptid));
2382 lp->ignore_sigint = 0;
2383 }
2384 }
2385
2386 /* Fetch the possible triggered data watchpoint info and store it in
2387 LP.
2388
2389 On some archs, like x86, that use debug registers to set
2390 watchpoints, it's possible that the way to know which watched
2391 address trapped, is to check the register that is used to select
2392 which address to watch. Problem is, between setting the watchpoint
2393 and reading back which data address trapped, the user may change
2394 the set of watchpoints, and, as a consequence, GDB changes the
2395 debug registers in the inferior. To avoid reading back a stale
2396 stopped-data-address when that happens, we cache in LP the fact
2397 that a watchpoint trapped, and the corresponding data address, as
2398 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2399 registers meanwhile, we have the cached data we can rely on. */
2400
2401 static int
2402 check_stopped_by_watchpoint (struct lwp_info *lp)
2403 {
2404 struct cleanup *old_chain;
2405
2406 if (linux_ops->to_stopped_by_watchpoint == NULL)
2407 return 0;
2408
2409 old_chain = save_inferior_ptid ();
2410 inferior_ptid = lp->ptid;
2411
2412 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2413 {
2414 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2415
2416 if (linux_ops->to_stopped_data_address != NULL)
2417 lp->stopped_data_address_p =
2418 linux_ops->to_stopped_data_address (&current_target,
2419 &lp->stopped_data_address);
2420 else
2421 lp->stopped_data_address_p = 0;
2422 }
2423
2424 do_cleanups (old_chain);
2425
2426 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2427 }
2428
2429 /* Returns true if the LWP had stopped for a watchpoint. */
2430
2431 static int
2432 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2433 {
2434 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2435
2436 gdb_assert (lp != NULL);
2437
2438 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2439 }
2440
2441 static int
2442 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2443 {
2444 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2445
2446 gdb_assert (lp != NULL);
2447
2448 *addr_p = lp->stopped_data_address;
2449
2450 return lp->stopped_data_address_p;
2451 }
2452
2453 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2454
2455 static int
2456 sigtrap_is_event (int status)
2457 {
2458 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2459 }
2460
2461 /* Set alternative SIGTRAP-like events recognizer. If
2462 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2463 applied. */
2464
2465 void
2466 linux_nat_set_status_is_event (struct target_ops *t,
2467 int (*status_is_event) (int status))
2468 {
2469 linux_nat_status_is_event = status_is_event;
2470 }
2471
2472 /* Wait until LP is stopped. */
2473
2474 static int
2475 stop_wait_callback (struct lwp_info *lp, void *data)
2476 {
2477 struct inferior *inf = find_inferior_ptid (lp->ptid);
2478
2479 /* If this is a vfork parent, bail out, it is not going to report
2480 any SIGSTOP until the vfork is done with. */
2481 if (inf->vfork_child != NULL)
2482 return 0;
2483
2484 if (!lp->stopped)
2485 {
2486 int status;
2487
2488 status = wait_lwp (lp);
2489 if (status == 0)
2490 return 0;
2491
2492 if (lp->ignore_sigint && WIFSTOPPED (status)
2493 && WSTOPSIG (status) == SIGINT)
2494 {
2495 lp->ignore_sigint = 0;
2496
2497 errno = 0;
2498 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2499 lp->stopped = 0;
2500 if (debug_linux_nat)
2501 fprintf_unfiltered (gdb_stdlog,
2502 "PTRACE_CONT %s, 0, 0 (%s) "
2503 "(discarding SIGINT)\n",
2504 target_pid_to_str (lp->ptid),
2505 errno ? safe_strerror (errno) : "OK");
2506
2507 return stop_wait_callback (lp, NULL);
2508 }
2509
2510 maybe_clear_ignore_sigint (lp);
2511
2512 if (WSTOPSIG (status) != SIGSTOP)
2513 {
2514 /* The thread was stopped with a signal other than SIGSTOP. */
2515
2516 if (debug_linux_nat)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "SWC: Pending event %s in %s\n",
2519 status_to_str ((int) status),
2520 target_pid_to_str (lp->ptid));
2521
2522 /* Save the sigtrap event. */
2523 lp->status = status;
2524 gdb_assert (lp->signalled);
2525 save_stop_reason (lp);
2526 }
2527 else
2528 {
2529 /* We caught the SIGSTOP that we intended to catch, so
2530 there's no SIGSTOP pending. */
2531
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "SWC: Expected SIGSTOP caught for %s.\n",
2535 target_pid_to_str (lp->ptid));
2536
2537 /* Reset SIGNALLED only after the stop_wait_callback call
2538 above as it does gdb_assert on SIGNALLED. */
2539 lp->signalled = 0;
2540 }
2541 }
2542
2543 return 0;
2544 }
2545
2546 /* Return non-zero if LP has a wait status pending. Discard the
2547 pending event and resume the LWP if the event that originally
2548 caused the stop became uninteresting. */
2549
2550 static int
2551 status_callback (struct lwp_info *lp, void *data)
2552 {
2553 /* Only report a pending wait status if we pretend that this has
2554 indeed been resumed. */
2555 if (!lp->resumed)
2556 return 0;
2557
2558 if (!lwp_status_pending_p (lp))
2559 return 0;
2560
2561 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2562 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2563 {
2564 struct regcache *regcache = get_thread_regcache (lp->ptid);
2565 CORE_ADDR pc;
2566 int discard = 0;
2567
2568 pc = regcache_read_pc (regcache);
2569
2570 if (pc != lp->stop_pc)
2571 {
2572 if (debug_linux_nat)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "SC: PC of %s changed. was=%s, now=%s\n",
2575 target_pid_to_str (lp->ptid),
2576 paddress (target_gdbarch (), lp->stop_pc),
2577 paddress (target_gdbarch (), pc));
2578 discard = 1;
2579 }
2580
2581 #if !USE_SIGTRAP_SIGINFO
2582 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2583 {
2584 if (debug_linux_nat)
2585 fprintf_unfiltered (gdb_stdlog,
2586 "SC: previous breakpoint of %s, at %s gone\n",
2587 target_pid_to_str (lp->ptid),
2588 paddress (target_gdbarch (), lp->stop_pc));
2589
2590 discard = 1;
2591 }
2592 #endif
2593
2594 if (discard)
2595 {
2596 if (debug_linux_nat)
2597 fprintf_unfiltered (gdb_stdlog,
2598 "SC: pending event of %s cancelled.\n",
2599 target_pid_to_str (lp->ptid));
2600
2601 lp->status = 0;
2602 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2603 return 0;
2604 }
2605 }
2606
2607 return 1;
2608 }
2609
2610 /* Count the LWP's that have had events. */
2611
2612 static int
2613 count_events_callback (struct lwp_info *lp, void *data)
2614 {
2615 int *count = (int *) data;
2616
2617 gdb_assert (count != NULL);
2618
2619 /* Select only resumed LWPs that have an event pending. */
2620 if (lp->resumed && lwp_status_pending_p (lp))
2621 (*count)++;
2622
2623 return 0;
2624 }
2625
2626 /* Select the LWP (if any) that is currently being single-stepped. */
2627
2628 static int
2629 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2630 {
2631 if (lp->last_resume_kind == resume_step
2632 && lp->status != 0)
2633 return 1;
2634 else
2635 return 0;
2636 }
2637
2638 /* Returns true if LP has a status pending. */
2639
2640 static int
2641 lwp_status_pending_p (struct lwp_info *lp)
2642 {
2643 /* We check for lp->waitstatus in addition to lp->status, because we
2644 can have pending process exits recorded in lp->status and
2645 W_EXITCODE(0,0) happens to be 0. */
2646 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2647 }
2648
2649 /* Select the Nth LWP that has had an event. */
2650
2651 static int
2652 select_event_lwp_callback (struct lwp_info *lp, void *data)
2653 {
2654 int *selector = (int *) data;
2655
2656 gdb_assert (selector != NULL);
2657
2658 /* Select only resumed LWPs that have an event pending. */
2659 if (lp->resumed && lwp_status_pending_p (lp))
2660 if ((*selector)-- == 0)
2661 return 1;
2662
2663 return 0;
2664 }
2665
2666 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2667 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2668 and save the result in the LWP's stop_reason field. If it stopped
2669 for a breakpoint, decrement the PC if necessary on the lwp's
2670 architecture. */
2671
2672 static void
2673 save_stop_reason (struct lwp_info *lp)
2674 {
2675 struct regcache *regcache;
2676 struct gdbarch *gdbarch;
2677 CORE_ADDR pc;
2678 CORE_ADDR sw_bp_pc;
2679 #if USE_SIGTRAP_SIGINFO
2680 siginfo_t siginfo;
2681 #endif
2682
2683 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2684 gdb_assert (lp->status != 0);
2685
2686 if (!linux_nat_status_is_event (lp->status))
2687 return;
2688
2689 regcache = get_thread_regcache (lp->ptid);
2690 gdbarch = get_regcache_arch (regcache);
2691
2692 pc = regcache_read_pc (regcache);
2693 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2694
2695 #if USE_SIGTRAP_SIGINFO
2696 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2697 {
2698 if (siginfo.si_signo == SIGTRAP)
2699 {
2700 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2701 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2702 {
2703 /* The si_code is ambiguous on this arch -- check debug
2704 registers. */
2705 if (!check_stopped_by_watchpoint (lp))
2706 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2707 }
2708 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2709 {
2710 /* If we determine the LWP stopped for a SW breakpoint,
2711 trust it. Particularly don't check watchpoint
2712 registers, because at least on s390, we'd find
2713 stopped-by-watchpoint as long as there's a watchpoint
2714 set. */
2715 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2716 }
2717 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2718 {
2719 /* This can indicate either a hardware breakpoint or
2720 hardware watchpoint. Check debug registers. */
2721 if (!check_stopped_by_watchpoint (lp))
2722 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2723 }
2724 else if (siginfo.si_code == TRAP_TRACE)
2725 {
2726 if (debug_linux_nat)
2727 fprintf_unfiltered (gdb_stdlog,
2728 "CSBB: %s stopped by trace\n",
2729 target_pid_to_str (lp->ptid));
2730
2731 /* We may have single stepped an instruction that
2732 triggered a watchpoint. In that case, on some
2733 architectures (such as x86), instead of TRAP_HWBKPT,
2734 si_code indicates TRAP_TRACE, and we need to check
2735 the debug registers separately. */
2736 check_stopped_by_watchpoint (lp);
2737 }
2738 }
2739 }
2740 #else
2741 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2742 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2743 sw_bp_pc))
2744 {
2745 /* The LWP was either continued, or stepped a software
2746 breakpoint instruction. */
2747 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2748 }
2749
2750 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2751 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2752
2753 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2754 check_stopped_by_watchpoint (lp);
2755 #endif
2756
2757 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2758 {
2759 if (debug_linux_nat)
2760 fprintf_unfiltered (gdb_stdlog,
2761 "CSBB: %s stopped by software breakpoint\n",
2762 target_pid_to_str (lp->ptid));
2763
2764 /* Back up the PC if necessary. */
2765 if (pc != sw_bp_pc)
2766 regcache_write_pc (regcache, sw_bp_pc);
2767
2768 /* Update this so we record the correct stop PC below. */
2769 pc = sw_bp_pc;
2770 }
2771 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2772 {
2773 if (debug_linux_nat)
2774 fprintf_unfiltered (gdb_stdlog,
2775 "CSBB: %s stopped by hardware breakpoint\n",
2776 target_pid_to_str (lp->ptid));
2777 }
2778 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2779 {
2780 if (debug_linux_nat)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "CSBB: %s stopped by hardware watchpoint\n",
2783 target_pid_to_str (lp->ptid));
2784 }
2785
2786 lp->stop_pc = pc;
2787 }
2788
2789
2790 /* Returns true if the LWP had stopped for a software breakpoint. */
2791
2792 static int
2793 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2794 {
2795 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2796
2797 gdb_assert (lp != NULL);
2798
2799 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2800 }
2801
2802 /* Implement the supports_stopped_by_sw_breakpoint method. */
2803
2804 static int
2805 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2806 {
2807 return USE_SIGTRAP_SIGINFO;
2808 }
2809
2810 /* Returns true if the LWP had stopped for a hardware
2811 breakpoint/watchpoint. */
2812
2813 static int
2814 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2815 {
2816 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2817
2818 gdb_assert (lp != NULL);
2819
2820 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2821 }
2822
2823 /* Implement the supports_stopped_by_hw_breakpoint method. */
2824
2825 static int
2826 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2827 {
2828 return USE_SIGTRAP_SIGINFO;
2829 }
2830
2831 /* Select one LWP out of those that have events pending. */
2832
2833 static void
2834 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2835 {
2836 int num_events = 0;
2837 int random_selector;
2838 struct lwp_info *event_lp = NULL;
2839
2840 /* Record the wait status for the original LWP. */
2841 (*orig_lp)->status = *status;
2842
2843 /* In all-stop, give preference to the LWP that is being
2844 single-stepped. There will be at most one, and it will be the
2845 LWP that the core is most interested in. If we didn't do this,
2846 then we'd have to handle pending step SIGTRAPs somehow in case
2847 the core later continues the previously-stepped thread, as
2848 otherwise we'd report the pending SIGTRAP then, and the core, not
2849 having stepped the thread, wouldn't understand what the trap was
2850 for, and therefore would report it to the user as a random
2851 signal. */
2852 if (!target_is_non_stop_p ())
2853 {
2854 event_lp = iterate_over_lwps (filter,
2855 select_singlestep_lwp_callback, NULL);
2856 if (event_lp != NULL)
2857 {
2858 if (debug_linux_nat)
2859 fprintf_unfiltered (gdb_stdlog,
2860 "SEL: Select single-step %s\n",
2861 target_pid_to_str (event_lp->ptid));
2862 }
2863 }
2864
2865 if (event_lp == NULL)
2866 {
2867 /* Pick one at random, out of those which have had events. */
2868
2869 /* First see how many events we have. */
2870 iterate_over_lwps (filter, count_events_callback, &num_events);
2871 gdb_assert (num_events > 0);
2872
2873 /* Now randomly pick a LWP out of those that have had
2874 events. */
2875 random_selector = (int)
2876 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2877
2878 if (debug_linux_nat && num_events > 1)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "SEL: Found %d events, selecting #%d\n",
2881 num_events, random_selector);
2882
2883 event_lp = iterate_over_lwps (filter,
2884 select_event_lwp_callback,
2885 &random_selector);
2886 }
2887
2888 if (event_lp != NULL)
2889 {
2890 /* Switch the event LWP. */
2891 *orig_lp = event_lp;
2892 *status = event_lp->status;
2893 }
2894
2895 /* Flush the wait status for the event LWP. */
2896 (*orig_lp)->status = 0;
2897 }
2898
2899 /* Return non-zero if LP has been resumed. */
2900
2901 static int
2902 resumed_callback (struct lwp_info *lp, void *data)
2903 {
2904 return lp->resumed;
2905 }
2906
2907 /* Check if we should go on and pass this event to common code.
2908 Return the affected lwp if we are, or NULL otherwise. */
2909
2910 static struct lwp_info *
2911 linux_nat_filter_event (int lwpid, int status)
2912 {
2913 struct lwp_info *lp;
2914 int event = linux_ptrace_get_extended_event (status);
2915
2916 lp = find_lwp_pid (pid_to_ptid (lwpid));
2917
2918 /* Check for stop events reported by a process we didn't already
2919 know about - anything not already in our LWP list.
2920
2921 If we're expecting to receive stopped processes after
2922 fork, vfork, and clone events, then we'll just add the
2923 new one to our list and go back to waiting for the event
2924 to be reported - the stopped process might be returned
2925 from waitpid before or after the event is.
2926
2927 But note the case of a non-leader thread exec'ing after the
2928 leader having exited, and gone from our lists. The non-leader
2929 thread changes its tid to the tgid. */
2930
2931 if (WIFSTOPPED (status) && lp == NULL
2932 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2933 {
2934 /* A multi-thread exec after we had seen the leader exiting. */
2935 if (debug_linux_nat)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "LLW: Re-adding thread group leader LWP %d.\n",
2938 lwpid);
2939
2940 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2941 lp->stopped = 1;
2942 lp->resumed = 1;
2943 add_thread (lp->ptid);
2944 }
2945
2946 if (WIFSTOPPED (status) && !lp)
2947 {
2948 if (debug_linux_nat)
2949 fprintf_unfiltered (gdb_stdlog,
2950 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2951 (long) lwpid, status_to_str (status));
2952 add_to_pid_list (&stopped_pids, lwpid, status);
2953 return NULL;
2954 }
2955
2956 /* Make sure we don't report an event for the exit of an LWP not in
2957 our list, i.e. not part of the current process. This can happen
2958 if we detach from a program we originally forked and then it
2959 exits. */
2960 if (!WIFSTOPPED (status) && !lp)
2961 return NULL;
2962
2963 /* This LWP is stopped now. (And if dead, this prevents it from
2964 ever being continued.) */
2965 lp->stopped = 1;
2966
2967 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2968 {
2969 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2970 int options = linux_nat_ptrace_options (inf->attach_flag);
2971
2972 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2973 lp->must_set_ptrace_flags = 0;
2974 }
2975
2976 /* Handle GNU/Linux's syscall SIGTRAPs. */
2977 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2978 {
2979 /* No longer need the sysgood bit. The ptrace event ends up
2980 recorded in lp->waitstatus if we care for it. We can carry
2981 on handling the event like a regular SIGTRAP from here
2982 on. */
2983 status = W_STOPCODE (SIGTRAP);
2984 if (linux_handle_syscall_trap (lp, 0))
2985 return NULL;
2986 }
2987 else
2988 {
2989 /* Almost all other ptrace-stops are known to be outside of system
2990 calls, with further exceptions in linux_handle_extended_wait. */
2991 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2992 }
2993
2994 /* Handle GNU/Linux's extended waitstatus for trace events. */
2995 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2996 && linux_is_extended_waitstatus (status))
2997 {
2998 if (debug_linux_nat)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "LLW: Handling extended status 0x%06x\n",
3001 status);
3002 if (linux_handle_extended_wait (lp, status))
3003 return NULL;
3004 }
3005
3006 /* Check if the thread has exited. */
3007 if (WIFEXITED (status) || WIFSIGNALED (status))
3008 {
3009 if (!report_thread_events
3010 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3011 {
3012 if (debug_linux_nat)
3013 fprintf_unfiltered (gdb_stdlog,
3014 "LLW: %s exited.\n",
3015 target_pid_to_str (lp->ptid));
3016
3017 /* If there is at least one more LWP, then the exit signal
3018 was not the end of the debugged application and should be
3019 ignored. */
3020 exit_lwp (lp);
3021 return NULL;
3022 }
3023
3024 /* Note that even if the leader was ptrace-stopped, it can still
3025 exit, if e.g., some other thread brings down the whole
3026 process (calls `exit'). So don't assert that the lwp is
3027 resumed. */
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LWP %ld exited (resumed=%d)\n",
3031 ptid_get_lwp (lp->ptid), lp->resumed);
3032
3033 /* Dead LWP's aren't expected to reported a pending sigstop. */
3034 lp->signalled = 0;
3035
3036 /* Store the pending event in the waitstatus, because
3037 W_EXITCODE(0,0) == 0. */
3038 store_waitstatus (&lp->waitstatus, status);
3039 return lp;
3040 }
3041
3042 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3043 an attempt to stop an LWP. */
3044 if (lp->signalled
3045 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3046 {
3047 lp->signalled = 0;
3048
3049 if (lp->last_resume_kind == resume_stop)
3050 {
3051 if (debug_linux_nat)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "LLW: resume_stop SIGSTOP caught for %s.\n",
3054 target_pid_to_str (lp->ptid));
3055 }
3056 else
3057 {
3058 /* This is a delayed SIGSTOP. Filter out the event. */
3059
3060 if (debug_linux_nat)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3063 lp->step ?
3064 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3065 target_pid_to_str (lp->ptid));
3066
3067 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3068 gdb_assert (lp->resumed);
3069 return NULL;
3070 }
3071 }
3072
3073 /* Make sure we don't report a SIGINT that we have already displayed
3074 for another thread. */
3075 if (lp->ignore_sigint
3076 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3077 {
3078 if (debug_linux_nat)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "LLW: Delayed SIGINT caught for %s.\n",
3081 target_pid_to_str (lp->ptid));
3082
3083 /* This is a delayed SIGINT. */
3084 lp->ignore_sigint = 0;
3085
3086 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3087 if (debug_linux_nat)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3090 lp->step ?
3091 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3092 target_pid_to_str (lp->ptid));
3093 gdb_assert (lp->resumed);
3094
3095 /* Discard the event. */
3096 return NULL;
3097 }
3098
3099 /* Don't report signals that GDB isn't interested in, such as
3100 signals that are neither printed nor stopped upon. Stopping all
3101 threads can be a bit time-consuming so if we want decent
3102 performance with heavily multi-threaded programs, especially when
3103 they're using a high frequency timer, we'd better avoid it if we
3104 can. */
3105 if (WIFSTOPPED (status))
3106 {
3107 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3108
3109 if (!target_is_non_stop_p ())
3110 {
3111 /* Only do the below in all-stop, as we currently use SIGSTOP
3112 to implement target_stop (see linux_nat_stop) in
3113 non-stop. */
3114 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3115 {
3116 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3117 forwarded to the entire process group, that is, all LWPs
3118 will receive it - unless they're using CLONE_THREAD to
3119 share signals. Since we only want to report it once, we
3120 mark it as ignored for all LWPs except this one. */
3121 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3122 set_ignore_sigint, NULL);
3123 lp->ignore_sigint = 0;
3124 }
3125 else
3126 maybe_clear_ignore_sigint (lp);
3127 }
3128
3129 /* When using hardware single-step, we need to report every signal.
3130 Otherwise, signals in pass_mask may be short-circuited
3131 except signals that might be caused by a breakpoint. */
3132 if (!lp->step
3133 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3134 && !linux_wstatus_maybe_breakpoint (status))
3135 {
3136 linux_resume_one_lwp (lp, lp->step, signo);
3137 if (debug_linux_nat)
3138 fprintf_unfiltered (gdb_stdlog,
3139 "LLW: %s %s, %s (preempt 'handle')\n",
3140 lp->step ?
3141 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3142 target_pid_to_str (lp->ptid),
3143 (signo != GDB_SIGNAL_0
3144 ? strsignal (gdb_signal_to_host (signo))
3145 : "0"));
3146 return NULL;
3147 }
3148 }
3149
3150 /* An interesting event. */
3151 gdb_assert (lp);
3152 lp->status = status;
3153 save_stop_reason (lp);
3154 return lp;
3155 }
3156
3157 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3158 their exits until all other threads in the group have exited. */
3159
3160 static void
3161 check_zombie_leaders (void)
3162 {
3163 struct inferior *inf;
3164
3165 ALL_INFERIORS (inf)
3166 {
3167 struct lwp_info *leader_lp;
3168
3169 if (inf->pid == 0)
3170 continue;
3171
3172 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3173 if (leader_lp != NULL
3174 /* Check if there are other threads in the group, as we may
3175 have raced with the inferior simply exiting. */
3176 && num_lwps (inf->pid) > 1
3177 && linux_proc_pid_is_zombie (inf->pid))
3178 {
3179 if (debug_linux_nat)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "CZL: Thread group leader %d zombie "
3182 "(it exited, or another thread execd).\n",
3183 inf->pid);
3184
3185 /* A leader zombie can mean one of two things:
3186
3187 - It exited, and there's an exit status pending
3188 available, or only the leader exited (not the whole
3189 program). In the latter case, we can't waitpid the
3190 leader's exit status until all other threads are gone.
3191
3192 - There are 3 or more threads in the group, and a thread
3193 other than the leader exec'd. See comments on exec
3194 events at the top of the file. We could try
3195 distinguishing the exit and exec cases, by waiting once
3196 more, and seeing if something comes out, but it doesn't
3197 sound useful. The previous leader _does_ go away, and
3198 we'll re-add the new one once we see the exec event
3199 (which is just the same as what would happen if the
3200 previous leader did exit voluntarily before some other
3201 thread execs). */
3202
3203 if (debug_linux_nat)
3204 fprintf_unfiltered (gdb_stdlog,
3205 "CZL: Thread group leader %d vanished.\n",
3206 inf->pid);
3207 exit_lwp (leader_lp);
3208 }
3209 }
3210 }
3211
3212 /* Convenience function that is called when the kernel reports an exit
3213 event. This decides whether to report the event to GDB as a
3214 process exit event, a thread exit event, or to suppress the
3215 event. */
3216
3217 static ptid_t
3218 filter_exit_event (struct lwp_info *event_child,
3219 struct target_waitstatus *ourstatus)
3220 {
3221 ptid_t ptid = event_child->ptid;
3222
3223 if (num_lwps (ptid_get_pid (ptid)) > 1)
3224 {
3225 if (report_thread_events)
3226 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3227 else
3228 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3229
3230 exit_lwp (event_child);
3231 }
3232
3233 return ptid;
3234 }
3235
3236 static ptid_t
3237 linux_nat_wait_1 (struct target_ops *ops,
3238 ptid_t ptid, struct target_waitstatus *ourstatus,
3239 int target_options)
3240 {
3241 sigset_t prev_mask;
3242 enum resume_kind last_resume_kind;
3243 struct lwp_info *lp;
3244 int status;
3245
3246 if (debug_linux_nat)
3247 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3248
3249 /* The first time we get here after starting a new inferior, we may
3250 not have added it to the LWP list yet - this is the earliest
3251 moment at which we know its PID. */
3252 if (ptid_is_pid (inferior_ptid))
3253 {
3254 /* Upgrade the main thread's ptid. */
3255 thread_change_ptid (inferior_ptid,
3256 ptid_build (ptid_get_pid (inferior_ptid),
3257 ptid_get_pid (inferior_ptid), 0));
3258
3259 lp = add_initial_lwp (inferior_ptid);
3260 lp->resumed = 1;
3261 }
3262
3263 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3264 block_child_signals (&prev_mask);
3265
3266 /* First check if there is a LWP with a wait status pending. */
3267 lp = iterate_over_lwps (ptid, status_callback, NULL);
3268 if (lp != NULL)
3269 {
3270 if (debug_linux_nat)
3271 fprintf_unfiltered (gdb_stdlog,
3272 "LLW: Using pending wait status %s for %s.\n",
3273 status_to_str (lp->status),
3274 target_pid_to_str (lp->ptid));
3275 }
3276
3277 /* But if we don't find a pending event, we'll have to wait. Always
3278 pull all events out of the kernel. We'll randomly select an
3279 event LWP out of all that have events, to prevent starvation. */
3280
3281 while (lp == NULL)
3282 {
3283 pid_t lwpid;
3284
3285 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3286 quirks:
3287
3288 - If the thread group leader exits while other threads in the
3289 thread group still exist, waitpid(TGID, ...) hangs. That
3290 waitpid won't return an exit status until the other threads
3291 in the group are reapped.
3292
3293 - When a non-leader thread execs, that thread just vanishes
3294 without reporting an exit (so we'd hang if we waited for it
3295 explicitly in that case). The exec event is reported to
3296 the TGID pid. */
3297
3298 errno = 0;
3299 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3300
3301 if (debug_linux_nat)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LNW: waitpid(-1, ...) returned %d, %s\n",
3304 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3305
3306 if (lwpid > 0)
3307 {
3308 if (debug_linux_nat)
3309 {
3310 fprintf_unfiltered (gdb_stdlog,
3311 "LLW: waitpid %ld received %s\n",
3312 (long) lwpid, status_to_str (status));
3313 }
3314
3315 linux_nat_filter_event (lwpid, status);
3316 /* Retry until nothing comes out of waitpid. A single
3317 SIGCHLD can indicate more than one child stopped. */
3318 continue;
3319 }
3320
3321 /* Now that we've pulled all events out of the kernel, resume
3322 LWPs that don't have an interesting event to report. */
3323 iterate_over_lwps (minus_one_ptid,
3324 resume_stopped_resumed_lwps, &minus_one_ptid);
3325
3326 /* ... and find an LWP with a status to report to the core, if
3327 any. */
3328 lp = iterate_over_lwps (ptid, status_callback, NULL);
3329 if (lp != NULL)
3330 break;
3331
3332 /* Check for zombie thread group leaders. Those can't be reaped
3333 until all other threads in the thread group are. */
3334 check_zombie_leaders ();
3335
3336 /* If there are no resumed children left, bail. We'd be stuck
3337 forever in the sigsuspend call below otherwise. */
3338 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3339 {
3340 if (debug_linux_nat)
3341 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3342
3343 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3344
3345 restore_child_signals_mask (&prev_mask);
3346 return minus_one_ptid;
3347 }
3348
3349 /* No interesting event to report to the core. */
3350
3351 if (target_options & TARGET_WNOHANG)
3352 {
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3355
3356 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3357 restore_child_signals_mask (&prev_mask);
3358 return minus_one_ptid;
3359 }
3360
3361 /* We shouldn't end up here unless we want to try again. */
3362 gdb_assert (lp == NULL);
3363
3364 /* Block until we get an event reported with SIGCHLD. */
3365 if (debug_linux_nat)
3366 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3367 sigsuspend (&suspend_mask);
3368 }
3369
3370 gdb_assert (lp);
3371
3372 status = lp->status;
3373 lp->status = 0;
3374
3375 if (!target_is_non_stop_p ())
3376 {
3377 /* Now stop all other LWP's ... */
3378 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3379
3380 /* ... and wait until all of them have reported back that
3381 they're no longer running. */
3382 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3383 }
3384
3385 /* If we're not waiting for a specific LWP, choose an event LWP from
3386 among those that have had events. Giving equal priority to all
3387 LWPs that have had events helps prevent starvation. */
3388 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3389 select_event_lwp (ptid, &lp, &status);
3390
3391 gdb_assert (lp != NULL);
3392
3393 /* Now that we've selected our final event LWP, un-adjust its PC if
3394 it was a software breakpoint, and we can't reliably support the
3395 "stopped by software breakpoint" stop reason. */
3396 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3397 && !USE_SIGTRAP_SIGINFO)
3398 {
3399 struct regcache *regcache = get_thread_regcache (lp->ptid);
3400 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3401 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3402
3403 if (decr_pc != 0)
3404 {
3405 CORE_ADDR pc;
3406
3407 pc = regcache_read_pc (regcache);
3408 regcache_write_pc (regcache, pc + decr_pc);
3409 }
3410 }
3411
3412 /* We'll need this to determine whether to report a SIGSTOP as
3413 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3414 clears it. */
3415 last_resume_kind = lp->last_resume_kind;
3416
3417 if (!target_is_non_stop_p ())
3418 {
3419 /* In all-stop, from the core's perspective, all LWPs are now
3420 stopped until a new resume action is sent over. */
3421 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3422 }
3423 else
3424 {
3425 resume_clear_callback (lp, NULL);
3426 }
3427
3428 if (linux_nat_status_is_event (status))
3429 {
3430 if (debug_linux_nat)
3431 fprintf_unfiltered (gdb_stdlog,
3432 "LLW: trap ptid is %s.\n",
3433 target_pid_to_str (lp->ptid));
3434 }
3435
3436 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3437 {
3438 *ourstatus = lp->waitstatus;
3439 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3440 }
3441 else
3442 store_waitstatus (ourstatus, status);
3443
3444 if (debug_linux_nat)
3445 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3446
3447 restore_child_signals_mask (&prev_mask);
3448
3449 if (last_resume_kind == resume_stop
3450 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3451 && WSTOPSIG (status) == SIGSTOP)
3452 {
3453 /* A thread that has been requested to stop by GDB with
3454 target_stop, and it stopped cleanly, so report as SIG0. The
3455 use of SIGSTOP is an implementation detail. */
3456 ourstatus->value.sig = GDB_SIGNAL_0;
3457 }
3458
3459 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3460 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3461 lp->core = -1;
3462 else
3463 lp->core = linux_common_core_of_thread (lp->ptid);
3464
3465 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3466 return filter_exit_event (lp, ourstatus);
3467
3468 return lp->ptid;
3469 }
3470
3471 /* Resume LWPs that are currently stopped without any pending status
3472 to report, but are resumed from the core's perspective. */
3473
3474 static int
3475 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3476 {
3477 ptid_t *wait_ptid_p = (ptid_t *) data;
3478
3479 if (!lp->stopped)
3480 {
3481 if (debug_linux_nat)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "RSRL: NOT resuming LWP %s, not stopped\n",
3484 target_pid_to_str (lp->ptid));
3485 }
3486 else if (!lp->resumed)
3487 {
3488 if (debug_linux_nat)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "RSRL: NOT resuming LWP %s, not resumed\n",
3491 target_pid_to_str (lp->ptid));
3492 }
3493 else if (lwp_status_pending_p (lp))
3494 {
3495 if (debug_linux_nat)
3496 fprintf_unfiltered (gdb_stdlog,
3497 "RSRL: NOT resuming LWP %s, has pending status\n",
3498 target_pid_to_str (lp->ptid));
3499 }
3500 else
3501 {
3502 struct regcache *regcache = get_thread_regcache (lp->ptid);
3503 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3504
3505 TRY
3506 {
3507 CORE_ADDR pc = regcache_read_pc (regcache);
3508 int leave_stopped = 0;
3509
3510 /* Don't bother if there's a breakpoint at PC that we'd hit
3511 immediately, and we're not waiting for this LWP. */
3512 if (!ptid_match (lp->ptid, *wait_ptid_p))
3513 {
3514 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3515 leave_stopped = 1;
3516 }
3517
3518 if (!leave_stopped)
3519 {
3520 if (debug_linux_nat)
3521 fprintf_unfiltered (gdb_stdlog,
3522 "RSRL: resuming stopped-resumed LWP %s at "
3523 "%s: step=%d\n",
3524 target_pid_to_str (lp->ptid),
3525 paddress (gdbarch, pc),
3526 lp->step);
3527
3528 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3529 }
3530 }
3531 CATCH (ex, RETURN_MASK_ERROR)
3532 {
3533 if (!check_ptrace_stopped_lwp_gone (lp))
3534 throw_exception (ex);
3535 }
3536 END_CATCH
3537 }
3538
3539 return 0;
3540 }
3541
3542 static ptid_t
3543 linux_nat_wait (struct target_ops *ops,
3544 ptid_t ptid, struct target_waitstatus *ourstatus,
3545 int target_options)
3546 {
3547 ptid_t event_ptid;
3548
3549 if (debug_linux_nat)
3550 {
3551 char *options_string;
3552
3553 options_string = target_options_to_string (target_options);
3554 fprintf_unfiltered (gdb_stdlog,
3555 "linux_nat_wait: [%s], [%s]\n",
3556 target_pid_to_str (ptid),
3557 options_string);
3558 xfree (options_string);
3559 }
3560
3561 /* Flush the async file first. */
3562 if (target_is_async_p ())
3563 async_file_flush ();
3564
3565 /* Resume LWPs that are currently stopped without any pending status
3566 to report, but are resumed from the core's perspective. LWPs get
3567 in this state if we find them stopping at a time we're not
3568 interested in reporting the event (target_wait on a
3569 specific_process, for example, see linux_nat_wait_1), and
3570 meanwhile the event became uninteresting. Don't bother resuming
3571 LWPs we're not going to wait for if they'd stop immediately. */
3572 if (target_is_non_stop_p ())
3573 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3574
3575 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3576
3577 /* If we requested any event, and something came out, assume there
3578 may be more. If we requested a specific lwp or process, also
3579 assume there may be more. */
3580 if (target_is_async_p ()
3581 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3582 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3583 || !ptid_equal (ptid, minus_one_ptid)))
3584 async_file_mark ();
3585
3586 return event_ptid;
3587 }
3588
3589 /* Kill one LWP. */
3590
3591 static void
3592 kill_one_lwp (pid_t pid)
3593 {
3594 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3595
3596 errno = 0;
3597 kill_lwp (pid, SIGKILL);
3598 if (debug_linux_nat)
3599 {
3600 int save_errno = errno;
3601
3602 fprintf_unfiltered (gdb_stdlog,
3603 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3604 save_errno ? safe_strerror (save_errno) : "OK");
3605 }
3606
3607 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3608
3609 errno = 0;
3610 ptrace (PTRACE_KILL, pid, 0, 0);
3611 if (debug_linux_nat)
3612 {
3613 int save_errno = errno;
3614
3615 fprintf_unfiltered (gdb_stdlog,
3616 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3617 save_errno ? safe_strerror (save_errno) : "OK");
3618 }
3619 }
3620
3621 /* Wait for an LWP to die. */
3622
3623 static void
3624 kill_wait_one_lwp (pid_t pid)
3625 {
3626 pid_t res;
3627
3628 /* We must make sure that there are no pending events (delayed
3629 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3630 program doesn't interfere with any following debugging session. */
3631
3632 do
3633 {
3634 res = my_waitpid (pid, NULL, __WALL);
3635 if (res != (pid_t) -1)
3636 {
3637 if (debug_linux_nat)
3638 fprintf_unfiltered (gdb_stdlog,
3639 "KWC: wait %ld received unknown.\n",
3640 (long) pid);
3641 /* The Linux kernel sometimes fails to kill a thread
3642 completely after PTRACE_KILL; that goes from the stop
3643 point in do_fork out to the one in get_signal_to_deliver
3644 and waits again. So kill it again. */
3645 kill_one_lwp (pid);
3646 }
3647 }
3648 while (res == pid);
3649
3650 gdb_assert (res == -1 && errno == ECHILD);
3651 }
3652
3653 /* Callback for iterate_over_lwps. */
3654
3655 static int
3656 kill_callback (struct lwp_info *lp, void *data)
3657 {
3658 kill_one_lwp (ptid_get_lwp (lp->ptid));
3659 return 0;
3660 }
3661
3662 /* Callback for iterate_over_lwps. */
3663
3664 static int
3665 kill_wait_callback (struct lwp_info *lp, void *data)
3666 {
3667 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3668 return 0;
3669 }
3670
3671 /* Kill the fork children of any threads of inferior INF that are
3672 stopped at a fork event. */
3673
3674 static void
3675 kill_unfollowed_fork_children (struct inferior *inf)
3676 {
3677 struct thread_info *thread;
3678
3679 ALL_NON_EXITED_THREADS (thread)
3680 if (thread->inf == inf)
3681 {
3682 struct target_waitstatus *ws = &thread->pending_follow;
3683
3684 if (ws->kind == TARGET_WAITKIND_FORKED
3685 || ws->kind == TARGET_WAITKIND_VFORKED)
3686 {
3687 ptid_t child_ptid = ws->value.related_pid;
3688 int child_pid = ptid_get_pid (child_ptid);
3689 int child_lwp = ptid_get_lwp (child_ptid);
3690
3691 kill_one_lwp (child_lwp);
3692 kill_wait_one_lwp (child_lwp);
3693
3694 /* Let the arch-specific native code know this process is
3695 gone. */
3696 linux_nat_forget_process (child_pid);
3697 }
3698 }
3699 }
3700
3701 static void
3702 linux_nat_kill (struct target_ops *ops)
3703 {
3704 /* If we're stopped while forking and we haven't followed yet,
3705 kill the other task. We need to do this first because the
3706 parent will be sleeping if this is a vfork. */
3707 kill_unfollowed_fork_children (current_inferior ());
3708
3709 if (forks_exist_p ())
3710 linux_fork_killall ();
3711 else
3712 {
3713 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3714
3715 /* Stop all threads before killing them, since ptrace requires
3716 that the thread is stopped to sucessfully PTRACE_KILL. */
3717 iterate_over_lwps (ptid, stop_callback, NULL);
3718 /* ... and wait until all of them have reported back that
3719 they're no longer running. */
3720 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3721
3722 /* Kill all LWP's ... */
3723 iterate_over_lwps (ptid, kill_callback, NULL);
3724
3725 /* ... and wait until we've flushed all events. */
3726 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3727 }
3728
3729 target_mourn_inferior ();
3730 }
3731
3732 static void
3733 linux_nat_mourn_inferior (struct target_ops *ops)
3734 {
3735 int pid = ptid_get_pid (inferior_ptid);
3736
3737 purge_lwp_list (pid);
3738
3739 if (! forks_exist_p ())
3740 /* Normal case, no other forks available. */
3741 linux_ops->to_mourn_inferior (ops);
3742 else
3743 /* Multi-fork case. The current inferior_ptid has exited, but
3744 there are other viable forks to debug. Delete the exiting
3745 one and context-switch to the first available. */
3746 linux_fork_mourn_inferior ();
3747
3748 /* Let the arch-specific native code know this process is gone. */
3749 linux_nat_forget_process (pid);
3750 }
3751
3752 /* Convert a native/host siginfo object, into/from the siginfo in the
3753 layout of the inferiors' architecture. */
3754
3755 static void
3756 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3757 {
3758 int done = 0;
3759
3760 if (linux_nat_siginfo_fixup != NULL)
3761 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3762
3763 /* If there was no callback, or the callback didn't do anything,
3764 then just do a straight memcpy. */
3765 if (!done)
3766 {
3767 if (direction == 1)
3768 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3769 else
3770 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3771 }
3772 }
3773
3774 static enum target_xfer_status
3775 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3776 const char *annex, gdb_byte *readbuf,
3777 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3778 ULONGEST *xfered_len)
3779 {
3780 int pid;
3781 siginfo_t siginfo;
3782 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3783
3784 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3785 gdb_assert (readbuf || writebuf);
3786
3787 pid = ptid_get_lwp (inferior_ptid);
3788 if (pid == 0)
3789 pid = ptid_get_pid (inferior_ptid);
3790
3791 if (offset > sizeof (siginfo))
3792 return TARGET_XFER_E_IO;
3793
3794 errno = 0;
3795 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3796 if (errno != 0)
3797 return TARGET_XFER_E_IO;
3798
3799 /* When GDB is built as a 64-bit application, ptrace writes into
3800 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3801 inferior with a 64-bit GDB should look the same as debugging it
3802 with a 32-bit GDB, we need to convert it. GDB core always sees
3803 the converted layout, so any read/write will have to be done
3804 post-conversion. */
3805 siginfo_fixup (&siginfo, inf_siginfo, 0);
3806
3807 if (offset + len > sizeof (siginfo))
3808 len = sizeof (siginfo) - offset;
3809
3810 if (readbuf != NULL)
3811 memcpy (readbuf, inf_siginfo + offset, len);
3812 else
3813 {
3814 memcpy (inf_siginfo + offset, writebuf, len);
3815
3816 /* Convert back to ptrace layout before flushing it out. */
3817 siginfo_fixup (&siginfo, inf_siginfo, 1);
3818
3819 errno = 0;
3820 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3821 if (errno != 0)
3822 return TARGET_XFER_E_IO;
3823 }
3824
3825 *xfered_len = len;
3826 return TARGET_XFER_OK;
3827 }
3828
3829 static enum target_xfer_status
3830 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3831 const char *annex, gdb_byte *readbuf,
3832 const gdb_byte *writebuf,
3833 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3834 {
3835 struct cleanup *old_chain;
3836 enum target_xfer_status xfer;
3837
3838 if (object == TARGET_OBJECT_SIGNAL_INFO)
3839 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3840 offset, len, xfered_len);
3841
3842 /* The target is connected but no live inferior is selected. Pass
3843 this request down to a lower stratum (e.g., the executable
3844 file). */
3845 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3846 return TARGET_XFER_EOF;
3847
3848 old_chain = save_inferior_ptid ();
3849
3850 if (ptid_lwp_p (inferior_ptid))
3851 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3852
3853 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3854 offset, len, xfered_len);
3855
3856 do_cleanups (old_chain);
3857 return xfer;
3858 }
3859
3860 static int
3861 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3862 {
3863 /* As long as a PTID is in lwp list, consider it alive. */
3864 return find_lwp_pid (ptid) != NULL;
3865 }
3866
3867 /* Implement the to_update_thread_list target method for this
3868 target. */
3869
3870 static void
3871 linux_nat_update_thread_list (struct target_ops *ops)
3872 {
3873 struct lwp_info *lwp;
3874
3875 /* We add/delete threads from the list as clone/exit events are
3876 processed, so just try deleting exited threads still in the
3877 thread list. */
3878 delete_exited_threads ();
3879
3880 /* Update the processor core that each lwp/thread was last seen
3881 running on. */
3882 ALL_LWPS (lwp)
3883 {
3884 /* Avoid accessing /proc if the thread hasn't run since we last
3885 time we fetched the thread's core. Accessing /proc becomes
3886 noticeably expensive when we have thousands of LWPs. */
3887 if (lwp->core == -1)
3888 lwp->core = linux_common_core_of_thread (lwp->ptid);
3889 }
3890 }
3891
3892 static char *
3893 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3894 {
3895 static char buf[64];
3896
3897 if (ptid_lwp_p (ptid)
3898 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3899 || num_lwps (ptid_get_pid (ptid)) > 1))
3900 {
3901 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3902 return buf;
3903 }
3904
3905 return normal_pid_to_str (ptid);
3906 }
3907
3908 static const char *
3909 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3910 {
3911 return linux_proc_tid_get_name (thr->ptid);
3912 }
3913
3914 /* Accepts an integer PID; Returns a string representing a file that
3915 can be opened to get the symbols for the child process. */
3916
3917 static char *
3918 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3919 {
3920 return linux_proc_pid_to_exec_file (pid);
3921 }
3922
3923 /* Implement the to_xfer_partial interface for memory reads using the /proc
3924 filesystem. Because we can use a single read() call for /proc, this
3925 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3926 but it doesn't support writes. */
3927
3928 static enum target_xfer_status
3929 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3930 const char *annex, gdb_byte *readbuf,
3931 const gdb_byte *writebuf,
3932 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3933 {
3934 LONGEST ret;
3935 int fd;
3936 char filename[64];
3937
3938 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3939 return TARGET_XFER_EOF;
3940
3941 /* Don't bother for one word. */
3942 if (len < 3 * sizeof (long))
3943 return TARGET_XFER_EOF;
3944
3945 /* We could keep this file open and cache it - possibly one per
3946 thread. That requires some juggling, but is even faster. */
3947 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3948 ptid_get_pid (inferior_ptid));
3949 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3950 if (fd == -1)
3951 return TARGET_XFER_EOF;
3952
3953 /* If pread64 is available, use it. It's faster if the kernel
3954 supports it (only one syscall), and it's 64-bit safe even on
3955 32-bit platforms (for instance, SPARC debugging a SPARC64
3956 application). */
3957 #ifdef HAVE_PREAD64
3958 if (pread64 (fd, readbuf, len, offset) != len)
3959 #else
3960 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3961 #endif
3962 ret = 0;
3963 else
3964 ret = len;
3965
3966 close (fd);
3967
3968 if (ret == 0)
3969 return TARGET_XFER_EOF;
3970 else
3971 {
3972 *xfered_len = ret;
3973 return TARGET_XFER_OK;
3974 }
3975 }
3976
3977
3978 /* Enumerate spufs IDs for process PID. */
3979 static LONGEST
3980 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3981 {
3982 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3983 LONGEST pos = 0;
3984 LONGEST written = 0;
3985 char path[128];
3986 DIR *dir;
3987 struct dirent *entry;
3988
3989 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3990 dir = opendir (path);
3991 if (!dir)
3992 return -1;
3993
3994 rewinddir (dir);
3995 while ((entry = readdir (dir)) != NULL)
3996 {
3997 struct stat st;
3998 struct statfs stfs;
3999 int fd;
4000
4001 fd = atoi (entry->d_name);
4002 if (!fd)
4003 continue;
4004
4005 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4006 if (stat (path, &st) != 0)
4007 continue;
4008 if (!S_ISDIR (st.st_mode))
4009 continue;
4010
4011 if (statfs (path, &stfs) != 0)
4012 continue;
4013 if (stfs.f_type != SPUFS_MAGIC)
4014 continue;
4015
4016 if (pos >= offset && pos + 4 <= offset + len)
4017 {
4018 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4019 written += 4;
4020 }
4021 pos += 4;
4022 }
4023
4024 closedir (dir);
4025 return written;
4026 }
4027
4028 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4029 object type, using the /proc file system. */
4030
4031 static enum target_xfer_status
4032 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4033 const char *annex, gdb_byte *readbuf,
4034 const gdb_byte *writebuf,
4035 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4036 {
4037 char buf[128];
4038 int fd = 0;
4039 int ret = -1;
4040 int pid = ptid_get_pid (inferior_ptid);
4041
4042 if (!annex)
4043 {
4044 if (!readbuf)
4045 return TARGET_XFER_E_IO;
4046 else
4047 {
4048 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4049
4050 if (l < 0)
4051 return TARGET_XFER_E_IO;
4052 else if (l == 0)
4053 return TARGET_XFER_EOF;
4054 else
4055 {
4056 *xfered_len = (ULONGEST) l;
4057 return TARGET_XFER_OK;
4058 }
4059 }
4060 }
4061
4062 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4063 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4064 if (fd <= 0)
4065 return TARGET_XFER_E_IO;
4066
4067 if (offset != 0
4068 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4069 {
4070 close (fd);
4071 return TARGET_XFER_EOF;
4072 }
4073
4074 if (writebuf)
4075 ret = write (fd, writebuf, (size_t) len);
4076 else if (readbuf)
4077 ret = read (fd, readbuf, (size_t) len);
4078
4079 close (fd);
4080
4081 if (ret < 0)
4082 return TARGET_XFER_E_IO;
4083 else if (ret == 0)
4084 return TARGET_XFER_EOF;
4085 else
4086 {
4087 *xfered_len = (ULONGEST) ret;
4088 return TARGET_XFER_OK;
4089 }
4090 }
4091
4092
4093 /* Parse LINE as a signal set and add its set bits to SIGS. */
4094
4095 static void
4096 add_line_to_sigset (const char *line, sigset_t *sigs)
4097 {
4098 int len = strlen (line) - 1;
4099 const char *p;
4100 int signum;
4101
4102 if (line[len] != '\n')
4103 error (_("Could not parse signal set: %s"), line);
4104
4105 p = line;
4106 signum = len * 4;
4107 while (len-- > 0)
4108 {
4109 int digit;
4110
4111 if (*p >= '0' && *p <= '9')
4112 digit = *p - '0';
4113 else if (*p >= 'a' && *p <= 'f')
4114 digit = *p - 'a' + 10;
4115 else
4116 error (_("Could not parse signal set: %s"), line);
4117
4118 signum -= 4;
4119
4120 if (digit & 1)
4121 sigaddset (sigs, signum + 1);
4122 if (digit & 2)
4123 sigaddset (sigs, signum + 2);
4124 if (digit & 4)
4125 sigaddset (sigs, signum + 3);
4126 if (digit & 8)
4127 sigaddset (sigs, signum + 4);
4128
4129 p++;
4130 }
4131 }
4132
4133 /* Find process PID's pending signals from /proc/pid/status and set
4134 SIGS to match. */
4135
4136 void
4137 linux_proc_pending_signals (int pid, sigset_t *pending,
4138 sigset_t *blocked, sigset_t *ignored)
4139 {
4140 FILE *procfile;
4141 char buffer[PATH_MAX], fname[PATH_MAX];
4142 struct cleanup *cleanup;
4143
4144 sigemptyset (pending);
4145 sigemptyset (blocked);
4146 sigemptyset (ignored);
4147 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4148 procfile = gdb_fopen_cloexec (fname, "r");
4149 if (procfile == NULL)
4150 error (_("Could not open %s"), fname);
4151 cleanup = make_cleanup_fclose (procfile);
4152
4153 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4154 {
4155 /* Normal queued signals are on the SigPnd line in the status
4156 file. However, 2.6 kernels also have a "shared" pending
4157 queue for delivering signals to a thread group, so check for
4158 a ShdPnd line also.
4159
4160 Unfortunately some Red Hat kernels include the shared pending
4161 queue but not the ShdPnd status field. */
4162
4163 if (startswith (buffer, "SigPnd:\t"))
4164 add_line_to_sigset (buffer + 8, pending);
4165 else if (startswith (buffer, "ShdPnd:\t"))
4166 add_line_to_sigset (buffer + 8, pending);
4167 else if (startswith (buffer, "SigBlk:\t"))
4168 add_line_to_sigset (buffer + 8, blocked);
4169 else if (startswith (buffer, "SigIgn:\t"))
4170 add_line_to_sigset (buffer + 8, ignored);
4171 }
4172
4173 do_cleanups (cleanup);
4174 }
4175
4176 static enum target_xfer_status
4177 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4178 const char *annex, gdb_byte *readbuf,
4179 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4180 ULONGEST *xfered_len)
4181 {
4182 gdb_assert (object == TARGET_OBJECT_OSDATA);
4183
4184 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4185 if (*xfered_len == 0)
4186 return TARGET_XFER_EOF;
4187 else
4188 return TARGET_XFER_OK;
4189 }
4190
4191 static enum target_xfer_status
4192 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4193 const char *annex, gdb_byte *readbuf,
4194 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4195 ULONGEST *xfered_len)
4196 {
4197 enum target_xfer_status xfer;
4198
4199 if (object == TARGET_OBJECT_AUXV)
4200 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4201 offset, len, xfered_len);
4202
4203 if (object == TARGET_OBJECT_OSDATA)
4204 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4205 offset, len, xfered_len);
4206
4207 if (object == TARGET_OBJECT_SPU)
4208 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4209 offset, len, xfered_len);
4210
4211 /* GDB calculates all the addresses in possibly larget width of the address.
4212 Address width needs to be masked before its final use - either by
4213 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4214
4215 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4216
4217 if (object == TARGET_OBJECT_MEMORY)
4218 {
4219 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4220
4221 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4222 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4223 }
4224
4225 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4226 offset, len, xfered_len);
4227 if (xfer != TARGET_XFER_EOF)
4228 return xfer;
4229
4230 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4231 offset, len, xfered_len);
4232 }
4233
4234 static void
4235 cleanup_target_stop (void *arg)
4236 {
4237 ptid_t *ptid = (ptid_t *) arg;
4238
4239 gdb_assert (arg != NULL);
4240
4241 /* Unpause all */
4242 target_resume (*ptid, 0, GDB_SIGNAL_0);
4243 }
4244
4245 static VEC(static_tracepoint_marker_p) *
4246 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4247 const char *strid)
4248 {
4249 char s[IPA_CMD_BUF_SIZE];
4250 struct cleanup *old_chain;
4251 int pid = ptid_get_pid (inferior_ptid);
4252 VEC(static_tracepoint_marker_p) *markers = NULL;
4253 struct static_tracepoint_marker *marker = NULL;
4254 char *p = s;
4255 ptid_t ptid = ptid_build (pid, 0, 0);
4256
4257 /* Pause all */
4258 target_stop (ptid);
4259
4260 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4261 s[sizeof ("qTfSTM")] = 0;
4262
4263 agent_run_command (pid, s, strlen (s) + 1);
4264
4265 old_chain = make_cleanup (free_current_marker, &marker);
4266 make_cleanup (cleanup_target_stop, &ptid);
4267
4268 while (*p++ == 'm')
4269 {
4270 if (marker == NULL)
4271 marker = XCNEW (struct static_tracepoint_marker);
4272
4273 do
4274 {
4275 parse_static_tracepoint_marker_definition (p, &p, marker);
4276
4277 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4278 {
4279 VEC_safe_push (static_tracepoint_marker_p,
4280 markers, marker);
4281 marker = NULL;
4282 }
4283 else
4284 {
4285 release_static_tracepoint_marker (marker);
4286 memset (marker, 0, sizeof (*marker));
4287 }
4288 }
4289 while (*p++ == ','); /* comma-separated list */
4290
4291 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4292 s[sizeof ("qTsSTM")] = 0;
4293 agent_run_command (pid, s, strlen (s) + 1);
4294 p = s;
4295 }
4296
4297 do_cleanups (old_chain);
4298
4299 return markers;
4300 }
4301
4302 /* Create a prototype generic GNU/Linux target. The client can override
4303 it with local methods. */
4304
4305 static void
4306 linux_target_install_ops (struct target_ops *t)
4307 {
4308 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4309 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4310 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4311 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4312 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4313 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4314 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4315 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4316 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4317 t->to_post_attach = linux_child_post_attach;
4318 t->to_follow_fork = linux_child_follow_fork;
4319
4320 super_xfer_partial = t->to_xfer_partial;
4321 t->to_xfer_partial = linux_xfer_partial;
4322
4323 t->to_static_tracepoint_markers_by_strid
4324 = linux_child_static_tracepoint_markers_by_strid;
4325 }
4326
4327 struct target_ops *
4328 linux_target (void)
4329 {
4330 struct target_ops *t;
4331
4332 t = inf_ptrace_target ();
4333 linux_target_install_ops (t);
4334
4335 return t;
4336 }
4337
4338 struct target_ops *
4339 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4340 {
4341 struct target_ops *t;
4342
4343 t = inf_ptrace_trad_target (register_u_offset);
4344 linux_target_install_ops (t);
4345
4346 return t;
4347 }
4348
4349 /* target_is_async_p implementation. */
4350
4351 static int
4352 linux_nat_is_async_p (struct target_ops *ops)
4353 {
4354 return linux_is_async_p ();
4355 }
4356
4357 /* target_can_async_p implementation. */
4358
4359 static int
4360 linux_nat_can_async_p (struct target_ops *ops)
4361 {
4362 /* NOTE: palves 2008-03-21: We're only async when the user requests
4363 it explicitly with the "set target-async" command.
4364 Someday, linux will always be async. */
4365 return target_async_permitted;
4366 }
4367
4368 static int
4369 linux_nat_supports_non_stop (struct target_ops *self)
4370 {
4371 return 1;
4372 }
4373
4374 /* to_always_non_stop_p implementation. */
4375
4376 static int
4377 linux_nat_always_non_stop_p (struct target_ops *self)
4378 {
4379 return 1;
4380 }
4381
4382 /* True if we want to support multi-process. To be removed when GDB
4383 supports multi-exec. */
4384
4385 int linux_multi_process = 1;
4386
4387 static int
4388 linux_nat_supports_multi_process (struct target_ops *self)
4389 {
4390 return linux_multi_process;
4391 }
4392
4393 static int
4394 linux_nat_supports_disable_randomization (struct target_ops *self)
4395 {
4396 #ifdef HAVE_PERSONALITY
4397 return 1;
4398 #else
4399 return 0;
4400 #endif
4401 }
4402
4403 static int async_terminal_is_ours = 1;
4404
4405 /* target_terminal_inferior implementation.
4406
4407 This is a wrapper around child_terminal_inferior to add async support. */
4408
4409 static void
4410 linux_nat_terminal_inferior (struct target_ops *self)
4411 {
4412 child_terminal_inferior (self);
4413
4414 /* Calls to target_terminal_*() are meant to be idempotent. */
4415 if (!async_terminal_is_ours)
4416 return;
4417
4418 async_terminal_is_ours = 0;
4419 set_sigint_trap ();
4420 }
4421
4422 /* target_terminal_ours implementation.
4423
4424 This is a wrapper around child_terminal_ours to add async support (and
4425 implement the target_terminal_ours vs target_terminal_ours_for_output
4426 distinction). child_terminal_ours is currently no different than
4427 child_terminal_ours_for_output.
4428 We leave target_terminal_ours_for_output alone, leaving it to
4429 child_terminal_ours_for_output. */
4430
4431 static void
4432 linux_nat_terminal_ours (struct target_ops *self)
4433 {
4434 /* GDB should never give the terminal to the inferior if the
4435 inferior is running in the background (run&, continue&, etc.),
4436 but claiming it sure should. */
4437 child_terminal_ours (self);
4438
4439 if (async_terminal_is_ours)
4440 return;
4441
4442 clear_sigint_trap ();
4443 async_terminal_is_ours = 1;
4444 }
4445
4446 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4447 so we notice when any child changes state, and notify the
4448 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4449 above to wait for the arrival of a SIGCHLD. */
4450
4451 static void
4452 sigchld_handler (int signo)
4453 {
4454 int old_errno = errno;
4455
4456 if (debug_linux_nat)
4457 ui_file_write_async_safe (gdb_stdlog,
4458 "sigchld\n", sizeof ("sigchld\n") - 1);
4459
4460 if (signo == SIGCHLD
4461 && linux_nat_event_pipe[0] != -1)
4462 async_file_mark (); /* Let the event loop know that there are
4463 events to handle. */
4464
4465 errno = old_errno;
4466 }
4467
4468 /* Callback registered with the target events file descriptor. */
4469
4470 static void
4471 handle_target_event (int error, gdb_client_data client_data)
4472 {
4473 inferior_event_handler (INF_REG_EVENT, NULL);
4474 }
4475
4476 /* Create/destroy the target events pipe. Returns previous state. */
4477
4478 static int
4479 linux_async_pipe (int enable)
4480 {
4481 int previous = linux_is_async_p ();
4482
4483 if (previous != enable)
4484 {
4485 sigset_t prev_mask;
4486
4487 /* Block child signals while we create/destroy the pipe, as
4488 their handler writes to it. */
4489 block_child_signals (&prev_mask);
4490
4491 if (enable)
4492 {
4493 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4494 internal_error (__FILE__, __LINE__,
4495 "creating event pipe failed.");
4496
4497 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4498 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4499 }
4500 else
4501 {
4502 close (linux_nat_event_pipe[0]);
4503 close (linux_nat_event_pipe[1]);
4504 linux_nat_event_pipe[0] = -1;
4505 linux_nat_event_pipe[1] = -1;
4506 }
4507
4508 restore_child_signals_mask (&prev_mask);
4509 }
4510
4511 return previous;
4512 }
4513
4514 /* target_async implementation. */
4515
4516 static void
4517 linux_nat_async (struct target_ops *ops, int enable)
4518 {
4519 if (enable)
4520 {
4521 if (!linux_async_pipe (1))
4522 {
4523 add_file_handler (linux_nat_event_pipe[0],
4524 handle_target_event, NULL);
4525 /* There may be pending events to handle. Tell the event loop
4526 to poll them. */
4527 async_file_mark ();
4528 }
4529 }
4530 else
4531 {
4532 delete_file_handler (linux_nat_event_pipe[0]);
4533 linux_async_pipe (0);
4534 }
4535 return;
4536 }
4537
4538 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4539 event came out. */
4540
4541 static int
4542 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4543 {
4544 if (!lwp->stopped)
4545 {
4546 if (debug_linux_nat)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "LNSL: running -> suspending %s\n",
4549 target_pid_to_str (lwp->ptid));
4550
4551
4552 if (lwp->last_resume_kind == resume_stop)
4553 {
4554 if (debug_linux_nat)
4555 fprintf_unfiltered (gdb_stdlog,
4556 "linux-nat: already stopping LWP %ld at "
4557 "GDB's request\n",
4558 ptid_get_lwp (lwp->ptid));
4559 return 0;
4560 }
4561
4562 stop_callback (lwp, NULL);
4563 lwp->last_resume_kind = resume_stop;
4564 }
4565 else
4566 {
4567 /* Already known to be stopped; do nothing. */
4568
4569 if (debug_linux_nat)
4570 {
4571 if (find_thread_ptid (lwp->ptid)->stop_requested)
4572 fprintf_unfiltered (gdb_stdlog,
4573 "LNSL: already stopped/stop_requested %s\n",
4574 target_pid_to_str (lwp->ptid));
4575 else
4576 fprintf_unfiltered (gdb_stdlog,
4577 "LNSL: already stopped/no "
4578 "stop_requested yet %s\n",
4579 target_pid_to_str (lwp->ptid));
4580 }
4581 }
4582 return 0;
4583 }
4584
4585 static void
4586 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4587 {
4588 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4589 }
4590
4591 static void
4592 linux_nat_close (struct target_ops *self)
4593 {
4594 /* Unregister from the event loop. */
4595 if (linux_nat_is_async_p (self))
4596 linux_nat_async (self, 0);
4597
4598 if (linux_ops->to_close)
4599 linux_ops->to_close (linux_ops);
4600
4601 super_close (self);
4602 }
4603
4604 /* When requests are passed down from the linux-nat layer to the
4605 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4606 used. The address space pointer is stored in the inferior object,
4607 but the common code that is passed such ptid can't tell whether
4608 lwpid is a "main" process id or not (it assumes so). We reverse
4609 look up the "main" process id from the lwp here. */
4610
4611 static struct address_space *
4612 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4613 {
4614 struct lwp_info *lwp;
4615 struct inferior *inf;
4616 int pid;
4617
4618 if (ptid_get_lwp (ptid) == 0)
4619 {
4620 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4621 tgid. */
4622 lwp = find_lwp_pid (ptid);
4623 pid = ptid_get_pid (lwp->ptid);
4624 }
4625 else
4626 {
4627 /* A (pid,lwpid,0) ptid. */
4628 pid = ptid_get_pid (ptid);
4629 }
4630
4631 inf = find_inferior_pid (pid);
4632 gdb_assert (inf != NULL);
4633 return inf->aspace;
4634 }
4635
4636 /* Return the cached value of the processor core for thread PTID. */
4637
4638 static int
4639 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4640 {
4641 struct lwp_info *info = find_lwp_pid (ptid);
4642
4643 if (info)
4644 return info->core;
4645 return -1;
4646 }
4647
4648 /* Implementation of to_filesystem_is_local. */
4649
4650 static int
4651 linux_nat_filesystem_is_local (struct target_ops *ops)
4652 {
4653 struct inferior *inf = current_inferior ();
4654
4655 if (inf->fake_pid_p || inf->pid == 0)
4656 return 1;
4657
4658 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4659 }
4660
4661 /* Convert the INF argument passed to a to_fileio_* method
4662 to a process ID suitable for passing to its corresponding
4663 linux_mntns_* function. If INF is non-NULL then the
4664 caller is requesting the filesystem seen by INF. If INF
4665 is NULL then the caller is requesting the filesystem seen
4666 by the GDB. We fall back to GDB's filesystem in the case
4667 that INF is non-NULL but its PID is unknown. */
4668
4669 static pid_t
4670 linux_nat_fileio_pid_of (struct inferior *inf)
4671 {
4672 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4673 return getpid ();
4674 else
4675 return inf->pid;
4676 }
4677
4678 /* Implementation of to_fileio_open. */
4679
4680 static int
4681 linux_nat_fileio_open (struct target_ops *self,
4682 struct inferior *inf, const char *filename,
4683 int flags, int mode, int warn_if_slow,
4684 int *target_errno)
4685 {
4686 int nat_flags;
4687 mode_t nat_mode;
4688 int fd;
4689
4690 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4691 || fileio_to_host_mode (mode, &nat_mode) == -1)
4692 {
4693 *target_errno = FILEIO_EINVAL;
4694 return -1;
4695 }
4696
4697 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4698 filename, nat_flags, nat_mode);
4699 if (fd == -1)
4700 *target_errno = host_to_fileio_error (errno);
4701
4702 return fd;
4703 }
4704
4705 /* Implementation of to_fileio_readlink. */
4706
4707 static char *
4708 linux_nat_fileio_readlink (struct target_ops *self,
4709 struct inferior *inf, const char *filename,
4710 int *target_errno)
4711 {
4712 char buf[PATH_MAX];
4713 int len;
4714 char *ret;
4715
4716 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4717 filename, buf, sizeof (buf));
4718 if (len < 0)
4719 {
4720 *target_errno = host_to_fileio_error (errno);
4721 return NULL;
4722 }
4723
4724 ret = (char *) xmalloc (len + 1);
4725 memcpy (ret, buf, len);
4726 ret[len] = '\0';
4727 return ret;
4728 }
4729
4730 /* Implementation of to_fileio_unlink. */
4731
4732 static int
4733 linux_nat_fileio_unlink (struct target_ops *self,
4734 struct inferior *inf, const char *filename,
4735 int *target_errno)
4736 {
4737 int ret;
4738
4739 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4740 filename);
4741 if (ret == -1)
4742 *target_errno = host_to_fileio_error (errno);
4743
4744 return ret;
4745 }
4746
4747 /* Implementation of the to_thread_events method. */
4748
4749 static void
4750 linux_nat_thread_events (struct target_ops *ops, int enable)
4751 {
4752 report_thread_events = enable;
4753 }
4754
4755 void
4756 linux_nat_add_target (struct target_ops *t)
4757 {
4758 /* Save the provided single-threaded target. We save this in a separate
4759 variable because another target we've inherited from (e.g. inf-ptrace)
4760 may have saved a pointer to T; we want to use it for the final
4761 process stratum target. */
4762 linux_ops_saved = *t;
4763 linux_ops = &linux_ops_saved;
4764
4765 /* Override some methods for multithreading. */
4766 t->to_create_inferior = linux_nat_create_inferior;
4767 t->to_attach = linux_nat_attach;
4768 t->to_detach = linux_nat_detach;
4769 t->to_resume = linux_nat_resume;
4770 t->to_wait = linux_nat_wait;
4771 t->to_pass_signals = linux_nat_pass_signals;
4772 t->to_xfer_partial = linux_nat_xfer_partial;
4773 t->to_kill = linux_nat_kill;
4774 t->to_mourn_inferior = linux_nat_mourn_inferior;
4775 t->to_thread_alive = linux_nat_thread_alive;
4776 t->to_update_thread_list = linux_nat_update_thread_list;
4777 t->to_pid_to_str = linux_nat_pid_to_str;
4778 t->to_thread_name = linux_nat_thread_name;
4779 t->to_has_thread_control = tc_schedlock;
4780 t->to_thread_address_space = linux_nat_thread_address_space;
4781 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4782 t->to_stopped_data_address = linux_nat_stopped_data_address;
4783 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4784 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4785 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4786 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4787 t->to_thread_events = linux_nat_thread_events;
4788
4789 t->to_can_async_p = linux_nat_can_async_p;
4790 t->to_is_async_p = linux_nat_is_async_p;
4791 t->to_supports_non_stop = linux_nat_supports_non_stop;
4792 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4793 t->to_async = linux_nat_async;
4794 t->to_terminal_inferior = linux_nat_terminal_inferior;
4795 t->to_terminal_ours = linux_nat_terminal_ours;
4796
4797 super_close = t->to_close;
4798 t->to_close = linux_nat_close;
4799
4800 t->to_stop = linux_nat_stop;
4801
4802 t->to_supports_multi_process = linux_nat_supports_multi_process;
4803
4804 t->to_supports_disable_randomization
4805 = linux_nat_supports_disable_randomization;
4806
4807 t->to_core_of_thread = linux_nat_core_of_thread;
4808
4809 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4810 t->to_fileio_open = linux_nat_fileio_open;
4811 t->to_fileio_readlink = linux_nat_fileio_readlink;
4812 t->to_fileio_unlink = linux_nat_fileio_unlink;
4813
4814 /* We don't change the stratum; this target will sit at
4815 process_stratum and thread_db will set at thread_stratum. This
4816 is a little strange, since this is a multi-threaded-capable
4817 target, but we want to be on the stack below thread_db, and we
4818 also want to be used for single-threaded processes. */
4819
4820 add_target (t);
4821 }
4822
4823 /* Register a method to call whenever a new thread is attached. */
4824 void
4825 linux_nat_set_new_thread (struct target_ops *t,
4826 void (*new_thread) (struct lwp_info *))
4827 {
4828 /* Save the pointer. We only support a single registered instance
4829 of the GNU/Linux native target, so we do not need to map this to
4830 T. */
4831 linux_nat_new_thread = new_thread;
4832 }
4833
4834 /* See declaration in linux-nat.h. */
4835
4836 void
4837 linux_nat_set_new_fork (struct target_ops *t,
4838 linux_nat_new_fork_ftype *new_fork)
4839 {
4840 /* Save the pointer. */
4841 linux_nat_new_fork = new_fork;
4842 }
4843
4844 /* See declaration in linux-nat.h. */
4845
4846 void
4847 linux_nat_set_forget_process (struct target_ops *t,
4848 linux_nat_forget_process_ftype *fn)
4849 {
4850 /* Save the pointer. */
4851 linux_nat_forget_process_hook = fn;
4852 }
4853
4854 /* See declaration in linux-nat.h. */
4855
4856 void
4857 linux_nat_forget_process (pid_t pid)
4858 {
4859 if (linux_nat_forget_process_hook != NULL)
4860 linux_nat_forget_process_hook (pid);
4861 }
4862
4863 /* Register a method that converts a siginfo object between the layout
4864 that ptrace returns, and the layout in the architecture of the
4865 inferior. */
4866 void
4867 linux_nat_set_siginfo_fixup (struct target_ops *t,
4868 int (*siginfo_fixup) (siginfo_t *,
4869 gdb_byte *,
4870 int))
4871 {
4872 /* Save the pointer. */
4873 linux_nat_siginfo_fixup = siginfo_fixup;
4874 }
4875
4876 /* Register a method to call prior to resuming a thread. */
4877
4878 void
4879 linux_nat_set_prepare_to_resume (struct target_ops *t,
4880 void (*prepare_to_resume) (struct lwp_info *))
4881 {
4882 /* Save the pointer. */
4883 linux_nat_prepare_to_resume = prepare_to_resume;
4884 }
4885
4886 /* See linux-nat.h. */
4887
4888 int
4889 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4890 {
4891 int pid;
4892
4893 pid = ptid_get_lwp (ptid);
4894 if (pid == 0)
4895 pid = ptid_get_pid (ptid);
4896
4897 errno = 0;
4898 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4899 if (errno != 0)
4900 {
4901 memset (siginfo, 0, sizeof (*siginfo));
4902 return 0;
4903 }
4904 return 1;
4905 }
4906
4907 /* See nat/linux-nat.h. */
4908
4909 ptid_t
4910 current_lwp_ptid (void)
4911 {
4912 gdb_assert (ptid_lwp_p (inferior_ptid));
4913 return inferior_ptid;
4914 }
4915
4916 /* Provide a prototype to silence -Wmissing-prototypes. */
4917 extern initialize_file_ftype _initialize_linux_nat;
4918
4919 void
4920 _initialize_linux_nat (void)
4921 {
4922 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4923 &debug_linux_nat, _("\
4924 Set debugging of GNU/Linux lwp module."), _("\
4925 Show debugging of GNU/Linux lwp module."), _("\
4926 Enables printf debugging output."),
4927 NULL,
4928 show_debug_linux_nat,
4929 &setdebuglist, &showdebuglist);
4930
4931 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4932 &debug_linux_namespaces, _("\
4933 Set debugging of GNU/Linux namespaces module."), _("\
4934 Show debugging of GNU/Linux namespaces module."), _("\
4935 Enables printf debugging output."),
4936 NULL,
4937 NULL,
4938 &setdebuglist, &showdebuglist);
4939
4940 /* Save this mask as the default. */
4941 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4942
4943 /* Install a SIGCHLD handler. */
4944 sigchld_action.sa_handler = sigchld_handler;
4945 sigemptyset (&sigchld_action.sa_mask);
4946 sigchld_action.sa_flags = SA_RESTART;
4947
4948 /* Make it the default. */
4949 sigaction (SIGCHLD, &sigchld_action, NULL);
4950
4951 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4952 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4953 sigdelset (&suspend_mask, SIGCHLD);
4954
4955 sigemptyset (&blocked_mask);
4956
4957 lwp_lwpid_htab_create ();
4958 }
4959 \f
4960
4961 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4962 the GNU/Linux Threads library and therefore doesn't really belong
4963 here. */
4964
4965 /* Return the set of signals used by the threads library in *SET. */
4966
4967 void
4968 lin_thread_get_thread_signals (sigset_t *set)
4969 {
4970 sigemptyset (set);
4971
4972 /* NPTL reserves the first two RT signals, but does not provide any
4973 way for the debugger to query the signal numbers - fortunately
4974 they don't change. */
4975 sigaddset (set, __SIGRTMIN);
4976 sigaddset (set, __SIGRTMIN + 1);
4977 }
This page took 0.189296 seconds and 5 git commands to generate.