linux-nat: Remove unnecessary xstrdup
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a thread is destroyed. */
201 static void (*linux_nat_delete_thread) (struct arch_lwp_info *);
202
203 /* The method to call, if any, when a new fork is attached. */
204 static linux_nat_new_fork_ftype *linux_nat_new_fork;
205
206 /* The method to call, if any, when a process is no longer
207 attached. */
208 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
209
210 /* Hook to call prior to resuming a thread. */
211 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static target_xfer_partial_ftype *super_xfer_partial;
223
224 /* The saved to_close method, inherited from inf-ptrace.c.
225 Called by our to_close. */
226 static void (*super_close) (struct target_ops *);
227
228 static unsigned int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 struct simple_pid_list
238 {
239 int pid;
240 int status;
241 struct simple_pid_list *next;
242 };
243 struct simple_pid_list *stopped_pids;
244
245 /* Whether target_thread_events is in effect. */
246 static int report_thread_events;
247
248 /* Async mode support. */
249
250 /* The read/write ends of the pipe registered as waitable file in the
251 event loop. */
252 static int linux_nat_event_pipe[2] = { -1, -1 };
253
254 /* True if we're currently in async mode. */
255 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
256
257 /* Flush the event pipe. */
258
259 static void
260 async_file_flush (void)
261 {
262 int ret;
263 char buf;
264
265 do
266 {
267 ret = read (linux_nat_event_pipe[0], &buf, 1);
268 }
269 while (ret >= 0 || (ret == -1 && errno == EINTR));
270 }
271
272 /* Put something (anything, doesn't matter what, or how much) in event
273 pipe, so that the select/poll in the event-loop realizes we have
274 something to process. */
275
276 static void
277 async_file_mark (void)
278 {
279 int ret;
280
281 /* It doesn't really matter what the pipe contains, as long we end
282 up with something in it. Might as well flush the previous
283 left-overs. */
284 async_file_flush ();
285
286 do
287 {
288 ret = write (linux_nat_event_pipe[1], "+", 1);
289 }
290 while (ret == -1 && errno == EINTR);
291
292 /* Ignore EAGAIN. If the pipe is full, the event loop will already
293 be awakened anyway. */
294 }
295
296 static int kill_lwp (int lwpid, int signo);
297
298 static int stop_callback (struct lwp_info *lp, void *data);
299 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
300
301 static void block_child_signals (sigset_t *prev_mask);
302 static void restore_child_signals_mask (sigset_t *prev_mask);
303
304 struct lwp_info;
305 static struct lwp_info *add_lwp (ptid_t ptid);
306 static void purge_lwp_list (int pid);
307 static void delete_lwp (ptid_t ptid);
308 static struct lwp_info *find_lwp_pid (ptid_t ptid);
309
310 static int lwp_status_pending_p (struct lwp_info *lp);
311
312 static int sigtrap_is_event (int status);
313 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
314
315 static void save_stop_reason (struct lwp_info *lp);
316
317 \f
318 /* LWP accessors. */
319
320 /* See nat/linux-nat.h. */
321
322 ptid_t
323 ptid_of_lwp (struct lwp_info *lwp)
324 {
325 return lwp->ptid;
326 }
327
328 /* See nat/linux-nat.h. */
329
330 void
331 lwp_set_arch_private_info (struct lwp_info *lwp,
332 struct arch_lwp_info *info)
333 {
334 lwp->arch_private = info;
335 }
336
337 /* See nat/linux-nat.h. */
338
339 struct arch_lwp_info *
340 lwp_arch_private_info (struct lwp_info *lwp)
341 {
342 return lwp->arch_private;
343 }
344
345 /* See nat/linux-nat.h. */
346
347 int
348 lwp_is_stopped (struct lwp_info *lwp)
349 {
350 return lwp->stopped;
351 }
352
353 /* See nat/linux-nat.h. */
354
355 enum target_stop_reason
356 lwp_stop_reason (struct lwp_info *lwp)
357 {
358 return lwp->stop_reason;
359 }
360
361 /* See nat/linux-nat.h. */
362
363 int
364 lwp_is_stepping (struct lwp_info *lwp)
365 {
366 return lwp->step;
367 }
368
369 \f
370 /* Trivial list manipulation functions to keep track of a list of
371 new stopped processes. */
372 static void
373 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
374 {
375 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
376
377 new_pid->pid = pid;
378 new_pid->status = status;
379 new_pid->next = *listp;
380 *listp = new_pid;
381 }
382
383 static int
384 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
385 {
386 struct simple_pid_list **p;
387
388 for (p = listp; *p != NULL; p = &(*p)->next)
389 if ((*p)->pid == pid)
390 {
391 struct simple_pid_list *next = (*p)->next;
392
393 *statusp = (*p)->status;
394 xfree (*p);
395 *p = next;
396 return 1;
397 }
398 return 0;
399 }
400
401 /* Return the ptrace options that we want to try to enable. */
402
403 static int
404 linux_nat_ptrace_options (int attached)
405 {
406 int options = 0;
407
408 if (!attached)
409 options |= PTRACE_O_EXITKILL;
410
411 options |= (PTRACE_O_TRACESYSGOOD
412 | PTRACE_O_TRACEVFORKDONE
413 | PTRACE_O_TRACEVFORK
414 | PTRACE_O_TRACEFORK
415 | PTRACE_O_TRACEEXEC);
416
417 return options;
418 }
419
420 /* Initialize ptrace warnings and check for supported ptrace
421 features given PID.
422
423 ATTACHED should be nonzero iff we attached to the inferior. */
424
425 static void
426 linux_init_ptrace (pid_t pid, int attached)
427 {
428 int options = linux_nat_ptrace_options (attached);
429
430 linux_enable_event_reporting (pid, options);
431 linux_ptrace_init_warnings ();
432 }
433
434 static void
435 linux_child_post_attach (struct target_ops *self, int pid)
436 {
437 linux_init_ptrace (pid, 1);
438 }
439
440 static void
441 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
442 {
443 linux_init_ptrace (ptid_get_pid (ptid), 0);
444 }
445
446 /* Return the number of known LWPs in the tgid given by PID. */
447
448 static int
449 num_lwps (int pid)
450 {
451 int count = 0;
452 struct lwp_info *lp;
453
454 for (lp = lwp_list; lp; lp = lp->next)
455 if (ptid_get_pid (lp->ptid) == pid)
456 count++;
457
458 return count;
459 }
460
461 /* Call delete_lwp with prototype compatible for make_cleanup. */
462
463 static void
464 delete_lwp_cleanup (void *lp_voidp)
465 {
466 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
467
468 delete_lwp (lp->ptid);
469 }
470
471 /* Target hook for follow_fork. On entry inferior_ptid must be the
472 ptid of the followed inferior. At return, inferior_ptid will be
473 unchanged. */
474
475 static int
476 linux_child_follow_fork (struct target_ops *ops, int follow_child,
477 int detach_fork)
478 {
479 if (!follow_child)
480 {
481 struct lwp_info *child_lp = NULL;
482 int status = W_STOPCODE (0);
483 int has_vforked;
484 ptid_t parent_ptid, child_ptid;
485 int parent_pid, child_pid;
486
487 has_vforked = (inferior_thread ()->pending_follow.kind
488 == TARGET_WAITKIND_VFORKED);
489 parent_ptid = inferior_ptid;
490 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
491 parent_pid = ptid_get_lwp (parent_ptid);
492 child_pid = ptid_get_lwp (child_ptid);
493
494 /* We're already attached to the parent, by default. */
495 child_lp = add_lwp (child_ptid);
496 child_lp->stopped = 1;
497 child_lp->last_resume_kind = resume_stop;
498
499 /* Detach new forked process? */
500 if (detach_fork)
501 {
502 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
503 child_lp);
504
505 if (linux_nat_prepare_to_resume != NULL)
506 linux_nat_prepare_to_resume (child_lp);
507
508 /* When debugging an inferior in an architecture that supports
509 hardware single stepping on a kernel without commit
510 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
511 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
512 set if the parent process had them set.
513 To work around this, single step the child process
514 once before detaching to clear the flags. */
515
516 /* Note that we consult the parent's architecture instead of
517 the child's because there's no inferior for the child at
518 this point. */
519 if (!gdbarch_software_single_step_p (target_thread_architecture
520 (parent_ptid)))
521 {
522 linux_disable_event_reporting (child_pid);
523 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
524 perror_with_name (_("Couldn't do single step"));
525 if (my_waitpid (child_pid, &status, 0) < 0)
526 perror_with_name (_("Couldn't wait vfork process"));
527 }
528
529 if (WIFSTOPPED (status))
530 {
531 int signo;
532
533 signo = WSTOPSIG (status);
534 if (signo != 0
535 && !signal_pass_state (gdb_signal_from_host (signo)))
536 signo = 0;
537 ptrace (PTRACE_DETACH, child_pid, 0, signo);
538 }
539
540 do_cleanups (old_chain);
541 }
542 else
543 {
544 scoped_restore save_inferior_ptid
545 = make_scoped_restore (&inferior_ptid);
546 inferior_ptid = child_ptid;
547
548 /* Let the thread_db layer learn about this new process. */
549 check_for_thread_db ();
550 }
551
552 if (has_vforked)
553 {
554 struct lwp_info *parent_lp;
555
556 parent_lp = find_lwp_pid (parent_ptid);
557 gdb_assert (linux_supports_tracefork () >= 0);
558
559 if (linux_supports_tracevforkdone ())
560 {
561 if (debug_linux_nat)
562 fprintf_unfiltered (gdb_stdlog,
563 "LCFF: waiting for VFORK_DONE on %d\n",
564 parent_pid);
565 parent_lp->stopped = 1;
566
567 /* We'll handle the VFORK_DONE event like any other
568 event, in target_wait. */
569 }
570 else
571 {
572 /* We can't insert breakpoints until the child has
573 finished with the shared memory region. We need to
574 wait until that happens. Ideal would be to just
575 call:
576 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
577 - waitpid (parent_pid, &status, __WALL);
578 However, most architectures can't handle a syscall
579 being traced on the way out if it wasn't traced on
580 the way in.
581
582 We might also think to loop, continuing the child
583 until it exits or gets a SIGTRAP. One problem is
584 that the child might call ptrace with PTRACE_TRACEME.
585
586 There's no simple and reliable way to figure out when
587 the vforked child will be done with its copy of the
588 shared memory. We could step it out of the syscall,
589 two instructions, let it go, and then single-step the
590 parent once. When we have hardware single-step, this
591 would work; with software single-step it could still
592 be made to work but we'd have to be able to insert
593 single-step breakpoints in the child, and we'd have
594 to insert -just- the single-step breakpoint in the
595 parent. Very awkward.
596
597 In the end, the best we can do is to make sure it
598 runs for a little while. Hopefully it will be out of
599 range of any breakpoints we reinsert. Usually this
600 is only the single-step breakpoint at vfork's return
601 point. */
602
603 if (debug_linux_nat)
604 fprintf_unfiltered (gdb_stdlog,
605 "LCFF: no VFORK_DONE "
606 "support, sleeping a bit\n");
607
608 usleep (10000);
609
610 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
611 and leave it pending. The next linux_nat_resume call
612 will notice a pending event, and bypasses actually
613 resuming the inferior. */
614 parent_lp->status = 0;
615 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
616 parent_lp->stopped = 1;
617
618 /* If we're in async mode, need to tell the event loop
619 there's something here to process. */
620 if (target_is_async_p ())
621 async_file_mark ();
622 }
623 }
624 }
625 else
626 {
627 struct lwp_info *child_lp;
628
629 child_lp = add_lwp (inferior_ptid);
630 child_lp->stopped = 1;
631 child_lp->last_resume_kind = resume_stop;
632
633 /* Let the thread_db layer learn about this new process. */
634 check_for_thread_db ();
635 }
636
637 return 0;
638 }
639
640 \f
641 static int
642 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
643 {
644 return !linux_supports_tracefork ();
645 }
646
647 static int
648 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
649 {
650 return 0;
651 }
652
653 static int
654 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
655 {
656 return !linux_supports_tracefork ();
657 }
658
659 static int
660 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
661 {
662 return 0;
663 }
664
665 static int
666 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
667 {
668 return !linux_supports_tracefork ();
669 }
670
671 static int
672 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
673 {
674 return 0;
675 }
676
677 static int
678 linux_child_set_syscall_catchpoint (struct target_ops *self,
679 int pid, bool needed, int any_count,
680 gdb::array_view<const int> syscall_counts)
681 {
682 if (!linux_supports_tracesysgood ())
683 return 1;
684
685 /* On GNU/Linux, we ignore the arguments. It means that we only
686 enable the syscall catchpoints, but do not disable them.
687
688 Also, we do not use the `syscall_counts' information because we do not
689 filter system calls here. We let GDB do the logic for us. */
690 return 0;
691 }
692
693 /* List of known LWPs, keyed by LWP PID. This speeds up the common
694 case of mapping a PID returned from the kernel to our corresponding
695 lwp_info data structure. */
696 static htab_t lwp_lwpid_htab;
697
698 /* Calculate a hash from a lwp_info's LWP PID. */
699
700 static hashval_t
701 lwp_info_hash (const void *ap)
702 {
703 const struct lwp_info *lp = (struct lwp_info *) ap;
704 pid_t pid = ptid_get_lwp (lp->ptid);
705
706 return iterative_hash_object (pid, 0);
707 }
708
709 /* Equality function for the lwp_info hash table. Compares the LWP's
710 PID. */
711
712 static int
713 lwp_lwpid_htab_eq (const void *a, const void *b)
714 {
715 const struct lwp_info *entry = (const struct lwp_info *) a;
716 const struct lwp_info *element = (const struct lwp_info *) b;
717
718 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
719 }
720
721 /* Create the lwp_lwpid_htab hash table. */
722
723 static void
724 lwp_lwpid_htab_create (void)
725 {
726 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
727 }
728
729 /* Add LP to the hash table. */
730
731 static void
732 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
733 {
734 void **slot;
735
736 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
737 gdb_assert (slot != NULL && *slot == NULL);
738 *slot = lp;
739 }
740
741 /* Head of doubly-linked list of known LWPs. Sorted by reverse
742 creation order. This order is assumed in some cases. E.g.,
743 reaping status after killing alls lwps of a process: the leader LWP
744 must be reaped last. */
745 struct lwp_info *lwp_list;
746
747 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
748
749 static void
750 lwp_list_add (struct lwp_info *lp)
751 {
752 lp->next = lwp_list;
753 if (lwp_list != NULL)
754 lwp_list->prev = lp;
755 lwp_list = lp;
756 }
757
758 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
759 list. */
760
761 static void
762 lwp_list_remove (struct lwp_info *lp)
763 {
764 /* Remove from sorted-by-creation-order list. */
765 if (lp->next != NULL)
766 lp->next->prev = lp->prev;
767 if (lp->prev != NULL)
768 lp->prev->next = lp->next;
769 if (lp == lwp_list)
770 lwp_list = lp->next;
771 }
772
773 \f
774
775 /* Original signal mask. */
776 static sigset_t normal_mask;
777
778 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
779 _initialize_linux_nat. */
780 static sigset_t suspend_mask;
781
782 /* Signals to block to make that sigsuspend work. */
783 static sigset_t blocked_mask;
784
785 /* SIGCHLD action. */
786 struct sigaction sigchld_action;
787
788 /* Block child signals (SIGCHLD and linux threads signals), and store
789 the previous mask in PREV_MASK. */
790
791 static void
792 block_child_signals (sigset_t *prev_mask)
793 {
794 /* Make sure SIGCHLD is blocked. */
795 if (!sigismember (&blocked_mask, SIGCHLD))
796 sigaddset (&blocked_mask, SIGCHLD);
797
798 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
799 }
800
801 /* Restore child signals mask, previously returned by
802 block_child_signals. */
803
804 static void
805 restore_child_signals_mask (sigset_t *prev_mask)
806 {
807 sigprocmask (SIG_SETMASK, prev_mask, NULL);
808 }
809
810 /* Mask of signals to pass directly to the inferior. */
811 static sigset_t pass_mask;
812
813 /* Update signals to pass to the inferior. */
814 static void
815 linux_nat_pass_signals (struct target_ops *self,
816 int numsigs, unsigned char *pass_signals)
817 {
818 int signo;
819
820 sigemptyset (&pass_mask);
821
822 for (signo = 1; signo < NSIG; signo++)
823 {
824 int target_signo = gdb_signal_from_host (signo);
825 if (target_signo < numsigs && pass_signals[target_signo])
826 sigaddset (&pass_mask, signo);
827 }
828 }
829
830 \f
831
832 /* Prototypes for local functions. */
833 static int stop_wait_callback (struct lwp_info *lp, void *data);
834 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
835 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
836 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
837
838 \f
839
840 /* Destroy and free LP. */
841
842 static void
843 lwp_free (struct lwp_info *lp)
844 {
845 /* Let the arch specific bits release arch_lwp_info. */
846 if (linux_nat_delete_thread != NULL)
847 linux_nat_delete_thread (lp->arch_private);
848 else
849 gdb_assert (lp->arch_private == NULL);
850
851 xfree (lp);
852 }
853
854 /* Traversal function for purge_lwp_list. */
855
856 static int
857 lwp_lwpid_htab_remove_pid (void **slot, void *info)
858 {
859 struct lwp_info *lp = (struct lwp_info *) *slot;
860 int pid = *(int *) info;
861
862 if (ptid_get_pid (lp->ptid) == pid)
863 {
864 htab_clear_slot (lwp_lwpid_htab, slot);
865 lwp_list_remove (lp);
866 lwp_free (lp);
867 }
868
869 return 1;
870 }
871
872 /* Remove all LWPs belong to PID from the lwp list. */
873
874 static void
875 purge_lwp_list (int pid)
876 {
877 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
878 }
879
880 /* Add the LWP specified by PTID to the list. PTID is the first LWP
881 in the process. Return a pointer to the structure describing the
882 new LWP.
883
884 This differs from add_lwp in that we don't let the arch specific
885 bits know about this new thread. Current clients of this callback
886 take the opportunity to install watchpoints in the new thread, and
887 we shouldn't do that for the first thread. If we're spawning a
888 child ("run"), the thread executes the shell wrapper first, and we
889 shouldn't touch it until it execs the program we want to debug.
890 For "attach", it'd be okay to call the callback, but it's not
891 necessary, because watchpoints can't yet have been inserted into
892 the inferior. */
893
894 static struct lwp_info *
895 add_initial_lwp (ptid_t ptid)
896 {
897 struct lwp_info *lp;
898
899 gdb_assert (ptid_lwp_p (ptid));
900
901 lp = XNEW (struct lwp_info);
902
903 memset (lp, 0, sizeof (struct lwp_info));
904
905 lp->last_resume_kind = resume_continue;
906 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
907
908 lp->ptid = ptid;
909 lp->core = -1;
910
911 /* Add to sorted-by-reverse-creation-order list. */
912 lwp_list_add (lp);
913
914 /* Add to keyed-by-pid htab. */
915 lwp_lwpid_htab_add_lwp (lp);
916
917 return lp;
918 }
919
920 /* Add the LWP specified by PID to the list. Return a pointer to the
921 structure describing the new LWP. The LWP should already be
922 stopped. */
923
924 static struct lwp_info *
925 add_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928
929 lp = add_initial_lwp (ptid);
930
931 /* Let the arch specific bits know about this new thread. Current
932 clients of this callback take the opportunity to install
933 watchpoints in the new thread. We don't do this for the first
934 thread though. See add_initial_lwp. */
935 if (linux_nat_new_thread != NULL)
936 linux_nat_new_thread (lp);
937
938 return lp;
939 }
940
941 /* Remove the LWP specified by PID from the list. */
942
943 static void
944 delete_lwp (ptid_t ptid)
945 {
946 struct lwp_info *lp;
947 void **slot;
948 struct lwp_info dummy;
949
950 dummy.ptid = ptid;
951 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
952 if (slot == NULL)
953 return;
954
955 lp = *(struct lwp_info **) slot;
956 gdb_assert (lp != NULL);
957
958 htab_clear_slot (lwp_lwpid_htab, slot);
959
960 /* Remove from sorted-by-creation-order list. */
961 lwp_list_remove (lp);
962
963 /* Release. */
964 lwp_free (lp);
965 }
966
967 /* Return a pointer to the structure describing the LWP corresponding
968 to PID. If no corresponding LWP could be found, return NULL. */
969
970 static struct lwp_info *
971 find_lwp_pid (ptid_t ptid)
972 {
973 struct lwp_info *lp;
974 int lwp;
975 struct lwp_info dummy;
976
977 if (ptid_lwp_p (ptid))
978 lwp = ptid_get_lwp (ptid);
979 else
980 lwp = ptid_get_pid (ptid);
981
982 dummy.ptid = ptid_build (0, lwp, 0);
983 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
984 return lp;
985 }
986
987 /* See nat/linux-nat.h. */
988
989 struct lwp_info *
990 iterate_over_lwps (ptid_t filter,
991 iterate_over_lwps_ftype callback,
992 void *data)
993 {
994 struct lwp_info *lp, *lpnext;
995
996 for (lp = lwp_list; lp; lp = lpnext)
997 {
998 lpnext = lp->next;
999
1000 if (ptid_match (lp->ptid, filter))
1001 {
1002 if ((*callback) (lp, data) != 0)
1003 return lp;
1004 }
1005 }
1006
1007 return NULL;
1008 }
1009
1010 /* Update our internal state when changing from one checkpoint to
1011 another indicated by NEW_PTID. We can only switch single-threaded
1012 applications, so we only create one new LWP, and the previous list
1013 is discarded. */
1014
1015 void
1016 linux_nat_switch_fork (ptid_t new_ptid)
1017 {
1018 struct lwp_info *lp;
1019
1020 purge_lwp_list (ptid_get_pid (inferior_ptid));
1021
1022 lp = add_lwp (new_ptid);
1023 lp->stopped = 1;
1024
1025 /* This changes the thread's ptid while preserving the gdb thread
1026 num. Also changes the inferior pid, while preserving the
1027 inferior num. */
1028 thread_change_ptid (inferior_ptid, new_ptid);
1029
1030 /* We've just told GDB core that the thread changed target id, but,
1031 in fact, it really is a different thread, with different register
1032 contents. */
1033 registers_changed ();
1034 }
1035
1036 /* Handle the exit of a single thread LP. */
1037
1038 static void
1039 exit_lwp (struct lwp_info *lp)
1040 {
1041 struct thread_info *th = find_thread_ptid (lp->ptid);
1042
1043 if (th)
1044 {
1045 if (print_thread_events)
1046 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1047
1048 delete_thread (lp->ptid);
1049 }
1050
1051 delete_lwp (lp->ptid);
1052 }
1053
1054 /* Wait for the LWP specified by LP, which we have just attached to.
1055 Returns a wait status for that LWP, to cache. */
1056
1057 static int
1058 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1059 {
1060 pid_t new_pid, pid = ptid_get_lwp (ptid);
1061 int status;
1062
1063 if (linux_proc_pid_is_stopped (pid))
1064 {
1065 if (debug_linux_nat)
1066 fprintf_unfiltered (gdb_stdlog,
1067 "LNPAW: Attaching to a stopped process\n");
1068
1069 /* The process is definitely stopped. It is in a job control
1070 stop, unless the kernel predates the TASK_STOPPED /
1071 TASK_TRACED distinction, in which case it might be in a
1072 ptrace stop. Make sure it is in a ptrace stop; from there we
1073 can kill it, signal it, et cetera.
1074
1075 First make sure there is a pending SIGSTOP. Since we are
1076 already attached, the process can not transition from stopped
1077 to running without a PTRACE_CONT; so we know this signal will
1078 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1079 probably already in the queue (unless this kernel is old
1080 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1081 is not an RT signal, it can only be queued once. */
1082 kill_lwp (pid, SIGSTOP);
1083
1084 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1085 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1086 ptrace (PTRACE_CONT, pid, 0, 0);
1087 }
1088
1089 /* Make sure the initial process is stopped. The user-level threads
1090 layer might want to poke around in the inferior, and that won't
1091 work if things haven't stabilized yet. */
1092 new_pid = my_waitpid (pid, &status, __WALL);
1093 gdb_assert (pid == new_pid);
1094
1095 if (!WIFSTOPPED (status))
1096 {
1097 /* The pid we tried to attach has apparently just exited. */
1098 if (debug_linux_nat)
1099 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1100 pid, status_to_str (status));
1101 return status;
1102 }
1103
1104 if (WSTOPSIG (status) != SIGSTOP)
1105 {
1106 *signalled = 1;
1107 if (debug_linux_nat)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "LNPAW: Received %s after attaching\n",
1110 status_to_str (status));
1111 }
1112
1113 return status;
1114 }
1115
1116 static void
1117 linux_nat_create_inferior (struct target_ops *ops,
1118 const char *exec_file, const std::string &allargs,
1119 char **env, int from_tty)
1120 {
1121 maybe_disable_address_space_randomization restore_personality
1122 (disable_randomization);
1123
1124 /* The fork_child mechanism is synchronous and calls target_wait, so
1125 we have to mask the async mode. */
1126
1127 /* Make sure we report all signals during startup. */
1128 linux_nat_pass_signals (ops, 0, NULL);
1129
1130 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1131 }
1132
1133 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1134 already attached. Returns true if a new LWP is found, false
1135 otherwise. */
1136
1137 static int
1138 attach_proc_task_lwp_callback (ptid_t ptid)
1139 {
1140 struct lwp_info *lp;
1141
1142 /* Ignore LWPs we're already attached to. */
1143 lp = find_lwp_pid (ptid);
1144 if (lp == NULL)
1145 {
1146 int lwpid = ptid_get_lwp (ptid);
1147
1148 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1149 {
1150 int err = errno;
1151
1152 /* Be quiet if we simply raced with the thread exiting.
1153 EPERM is returned if the thread's task still exists, and
1154 is marked as exited or zombie, as well as other
1155 conditions, so in that case, confirm the status in
1156 /proc/PID/status. */
1157 if (err == ESRCH
1158 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1159 {
1160 if (debug_linux_nat)
1161 {
1162 fprintf_unfiltered (gdb_stdlog,
1163 "Cannot attach to lwp %d: "
1164 "thread is gone (%d: %s)\n",
1165 lwpid, err, safe_strerror (err));
1166 }
1167 }
1168 else
1169 {
1170 warning (_("Cannot attach to lwp %d: %s"),
1171 lwpid,
1172 linux_ptrace_attach_fail_reason_string (ptid,
1173 err));
1174 }
1175 }
1176 else
1177 {
1178 if (debug_linux_nat)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1181 target_pid_to_str (ptid));
1182
1183 lp = add_lwp (ptid);
1184
1185 /* The next time we wait for this LWP we'll see a SIGSTOP as
1186 PTRACE_ATTACH brings it to a halt. */
1187 lp->signalled = 1;
1188
1189 /* We need to wait for a stop before being able to make the
1190 next ptrace call on this LWP. */
1191 lp->must_set_ptrace_flags = 1;
1192
1193 /* So that wait collects the SIGSTOP. */
1194 lp->resumed = 1;
1195
1196 /* Also add the LWP to gdb's thread list, in case a
1197 matching libthread_db is not found (or the process uses
1198 raw clone). */
1199 add_thread (lp->ptid);
1200 set_running (lp->ptid, 1);
1201 set_executing (lp->ptid, 1);
1202 }
1203
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 static void
1210 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1211 {
1212 struct lwp_info *lp;
1213 int status;
1214 ptid_t ptid;
1215
1216 /* Make sure we report all signals during attach. */
1217 linux_nat_pass_signals (ops, 0, NULL);
1218
1219 TRY
1220 {
1221 linux_ops->to_attach (ops, args, from_tty);
1222 }
1223 CATCH (ex, RETURN_MASK_ERROR)
1224 {
1225 pid_t pid = parse_pid_to_attach (args);
1226 struct buffer buffer;
1227 char *buffer_s;
1228
1229 buffer_init (&buffer);
1230 linux_ptrace_attach_fail_reason (pid, &buffer);
1231
1232 buffer_grow_str0 (&buffer, "");
1233 buffer_s = buffer_finish (&buffer);
1234 make_cleanup (xfree, buffer_s);
1235
1236 if (*buffer_s != '\0')
1237 throw_error (ex.error, "warning: %s\n%s", buffer_s, ex.message);
1238 else
1239 throw_error (ex.error, "%s", ex.message);
1240 }
1241 END_CATCH
1242
1243 /* The ptrace base target adds the main thread with (pid,0,0)
1244 format. Decorate it with lwp info. */
1245 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1246 ptid_get_pid (inferior_ptid),
1247 0);
1248 thread_change_ptid (inferior_ptid, ptid);
1249
1250 /* Add the initial process as the first LWP to the list. */
1251 lp = add_initial_lwp (ptid);
1252
1253 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1254 if (!WIFSTOPPED (status))
1255 {
1256 if (WIFEXITED (status))
1257 {
1258 int exit_code = WEXITSTATUS (status);
1259
1260 target_terminal::ours ();
1261 target_mourn_inferior (inferior_ptid);
1262 if (exit_code == 0)
1263 error (_("Unable to attach: program exited normally."));
1264 else
1265 error (_("Unable to attach: program exited with code %d."),
1266 exit_code);
1267 }
1268 else if (WIFSIGNALED (status))
1269 {
1270 enum gdb_signal signo;
1271
1272 target_terminal::ours ();
1273 target_mourn_inferior (inferior_ptid);
1274
1275 signo = gdb_signal_from_host (WTERMSIG (status));
1276 error (_("Unable to attach: program terminated with signal "
1277 "%s, %s."),
1278 gdb_signal_to_name (signo),
1279 gdb_signal_to_string (signo));
1280 }
1281
1282 internal_error (__FILE__, __LINE__,
1283 _("unexpected status %d for PID %ld"),
1284 status, (long) ptid_get_lwp (ptid));
1285 }
1286
1287 lp->stopped = 1;
1288
1289 /* Save the wait status to report later. */
1290 lp->resumed = 1;
1291 if (debug_linux_nat)
1292 fprintf_unfiltered (gdb_stdlog,
1293 "LNA: waitpid %ld, saving status %s\n",
1294 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1295
1296 lp->status = status;
1297
1298 /* We must attach to every LWP. If /proc is mounted, use that to
1299 find them now. The inferior may be using raw clone instead of
1300 using pthreads. But even if it is using pthreads, thread_db
1301 walks structures in the inferior's address space to find the list
1302 of threads/LWPs, and those structures may well be corrupted.
1303 Note that once thread_db is loaded, we'll still use it to list
1304 threads and associate pthread info with each LWP. */
1305 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1306 attach_proc_task_lwp_callback);
1307
1308 if (target_can_async_p ())
1309 target_async (1);
1310 }
1311
1312 /* Get pending signal of THREAD as a host signal number, for detaching
1313 purposes. This is the signal the thread last stopped for, which we
1314 need to deliver to the thread when detaching, otherwise, it'd be
1315 suppressed/lost. */
1316
1317 static int
1318 get_detach_signal (struct lwp_info *lp)
1319 {
1320 enum gdb_signal signo = GDB_SIGNAL_0;
1321
1322 /* If we paused threads momentarily, we may have stored pending
1323 events in lp->status or lp->waitstatus (see stop_wait_callback),
1324 and GDB core hasn't seen any signal for those threads.
1325 Otherwise, the last signal reported to the core is found in the
1326 thread object's stop_signal.
1327
1328 There's a corner case that isn't handled here at present. Only
1329 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1330 stop_signal make sense as a real signal to pass to the inferior.
1331 Some catchpoint related events, like
1332 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1333 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1334 those traps are debug API (ptrace in our case) related and
1335 induced; the inferior wouldn't see them if it wasn't being
1336 traced. Hence, we should never pass them to the inferior, even
1337 when set to pass state. Since this corner case isn't handled by
1338 infrun.c when proceeding with a signal, for consistency, neither
1339 do we handle it here (or elsewhere in the file we check for
1340 signal pass state). Normally SIGTRAP isn't set to pass state, so
1341 this is really a corner case. */
1342
1343 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1344 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1345 else if (lp->status)
1346 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1347 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1348 {
1349 struct thread_info *tp = find_thread_ptid (lp->ptid);
1350
1351 if (tp->suspend.waitstatus_pending_p)
1352 signo = tp->suspend.waitstatus.value.sig;
1353 else
1354 signo = tp->suspend.stop_signal;
1355 }
1356 else if (!target_is_non_stop_p ())
1357 {
1358 struct target_waitstatus last;
1359 ptid_t last_ptid;
1360
1361 get_last_target_status (&last_ptid, &last);
1362
1363 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1364 {
1365 struct thread_info *tp = find_thread_ptid (lp->ptid);
1366
1367 signo = tp->suspend.stop_signal;
1368 }
1369 }
1370
1371 if (signo == GDB_SIGNAL_0)
1372 {
1373 if (debug_linux_nat)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "GPT: lwp %s has no pending signal\n",
1376 target_pid_to_str (lp->ptid));
1377 }
1378 else if (!signal_pass_state (signo))
1379 {
1380 if (debug_linux_nat)
1381 fprintf_unfiltered (gdb_stdlog,
1382 "GPT: lwp %s had signal %s, "
1383 "but it is in no pass state\n",
1384 target_pid_to_str (lp->ptid),
1385 gdb_signal_to_string (signo));
1386 }
1387 else
1388 {
1389 if (debug_linux_nat)
1390 fprintf_unfiltered (gdb_stdlog,
1391 "GPT: lwp %s has pending signal %s\n",
1392 target_pid_to_str (lp->ptid),
1393 gdb_signal_to_string (signo));
1394
1395 return gdb_signal_to_host (signo);
1396 }
1397
1398 return 0;
1399 }
1400
1401 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1402 signal number that should be passed to the LWP when detaching.
1403 Otherwise pass any pending signal the LWP may have, if any. */
1404
1405 static void
1406 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1407 {
1408 int lwpid = ptid_get_lwp (lp->ptid);
1409 int signo;
1410
1411 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1412
1413 if (debug_linux_nat && lp->status)
1414 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1415 strsignal (WSTOPSIG (lp->status)),
1416 target_pid_to_str (lp->ptid));
1417
1418 /* If there is a pending SIGSTOP, get rid of it. */
1419 if (lp->signalled)
1420 {
1421 if (debug_linux_nat)
1422 fprintf_unfiltered (gdb_stdlog,
1423 "DC: Sending SIGCONT to %s\n",
1424 target_pid_to_str (lp->ptid));
1425
1426 kill_lwp (lwpid, SIGCONT);
1427 lp->signalled = 0;
1428 }
1429
1430 if (signo_p == NULL)
1431 {
1432 /* Pass on any pending signal for this LWP. */
1433 signo = get_detach_signal (lp);
1434 }
1435 else
1436 signo = *signo_p;
1437
1438 /* Preparing to resume may try to write registers, and fail if the
1439 lwp is zombie. If that happens, ignore the error. We'll handle
1440 it below, when detach fails with ESRCH. */
1441 TRY
1442 {
1443 if (linux_nat_prepare_to_resume != NULL)
1444 linux_nat_prepare_to_resume (lp);
1445 }
1446 CATCH (ex, RETURN_MASK_ERROR)
1447 {
1448 if (!check_ptrace_stopped_lwp_gone (lp))
1449 throw_exception (ex);
1450 }
1451 END_CATCH
1452
1453 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1454 {
1455 int save_errno = errno;
1456
1457 /* We know the thread exists, so ESRCH must mean the lwp is
1458 zombie. This can happen if one of the already-detached
1459 threads exits the whole thread group. In that case we're
1460 still attached, and must reap the lwp. */
1461 if (save_errno == ESRCH)
1462 {
1463 int ret, status;
1464
1465 ret = my_waitpid (lwpid, &status, __WALL);
1466 if (ret == -1)
1467 {
1468 warning (_("Couldn't reap LWP %d while detaching: %s"),
1469 lwpid, strerror (errno));
1470 }
1471 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1472 {
1473 warning (_("Reaping LWP %d while detaching "
1474 "returned unexpected status 0x%x"),
1475 lwpid, status);
1476 }
1477 }
1478 else
1479 {
1480 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1481 safe_strerror (save_errno));
1482 }
1483 }
1484 else if (debug_linux_nat)
1485 {
1486 fprintf_unfiltered (gdb_stdlog,
1487 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1488 target_pid_to_str (lp->ptid),
1489 strsignal (signo));
1490 }
1491
1492 delete_lwp (lp->ptid);
1493 }
1494
1495 static int
1496 detach_callback (struct lwp_info *lp, void *data)
1497 {
1498 /* We don't actually detach from the thread group leader just yet.
1499 If the thread group exits, we must reap the zombie clone lwps
1500 before we're able to reap the leader. */
1501 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1502 detach_one_lwp (lp, NULL);
1503 return 0;
1504 }
1505
1506 static void
1507 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1508 {
1509 int pid;
1510 struct lwp_info *main_lwp;
1511
1512 pid = ptid_get_pid (inferior_ptid);
1513
1514 /* Don't unregister from the event loop, as there may be other
1515 inferiors running. */
1516
1517 /* Stop all threads before detaching. ptrace requires that the
1518 thread is stopped to sucessfully detach. */
1519 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1520 /* ... and wait until all of them have reported back that
1521 they're no longer running. */
1522 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1523
1524 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1525
1526 /* Only the initial process should be left right now. */
1527 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1528
1529 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1530
1531 if (forks_exist_p ())
1532 {
1533 /* Multi-fork case. The current inferior_ptid is being detached
1534 from, but there are other viable forks to debug. Detach from
1535 the current fork, and context-switch to the first
1536 available. */
1537 linux_fork_detach (args, from_tty);
1538 }
1539 else
1540 {
1541 int signo;
1542
1543 target_announce_detach (from_tty);
1544
1545 /* Pass on any pending signal for the last LWP, unless the user
1546 requested detaching with a different signal (most likely 0,
1547 meaning, discard the signal). */
1548 if (args != NULL)
1549 signo = atoi (args);
1550 else
1551 signo = get_detach_signal (main_lwp);
1552
1553 detach_one_lwp (main_lwp, &signo);
1554
1555 inf_ptrace_detach_success (ops);
1556 }
1557 }
1558
1559 /* Resume execution of the inferior process. If STEP is nonzero,
1560 single-step it. If SIGNAL is nonzero, give it that signal. */
1561
1562 static void
1563 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1564 enum gdb_signal signo)
1565 {
1566 lp->step = step;
1567
1568 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1569 We only presently need that if the LWP is stepped though (to
1570 handle the case of stepping a breakpoint instruction). */
1571 if (step)
1572 {
1573 struct regcache *regcache = get_thread_regcache (lp->ptid);
1574
1575 lp->stop_pc = regcache_read_pc (regcache);
1576 }
1577 else
1578 lp->stop_pc = 0;
1579
1580 if (linux_nat_prepare_to_resume != NULL)
1581 linux_nat_prepare_to_resume (lp);
1582 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1583
1584 /* Successfully resumed. Clear state that no longer makes sense,
1585 and mark the LWP as running. Must not do this before resuming
1586 otherwise if that fails other code will be confused. E.g., we'd
1587 later try to stop the LWP and hang forever waiting for a stop
1588 status. Note that we must not throw after this is cleared,
1589 otherwise handle_zombie_lwp_error would get confused. */
1590 lp->stopped = 0;
1591 lp->core = -1;
1592 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1593 registers_changed_ptid (lp->ptid);
1594 }
1595
1596 /* Called when we try to resume a stopped LWP and that errors out. If
1597 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1598 or about to become), discard the error, clear any pending status
1599 the LWP may have, and return true (we'll collect the exit status
1600 soon enough). Otherwise, return false. */
1601
1602 static int
1603 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1604 {
1605 /* If we get an error after resuming the LWP successfully, we'd
1606 confuse !T state for the LWP being gone. */
1607 gdb_assert (lp->stopped);
1608
1609 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1610 because even if ptrace failed with ESRCH, the tracee may be "not
1611 yet fully dead", but already refusing ptrace requests. In that
1612 case the tracee has 'R (Running)' state for a little bit
1613 (observed in Linux 3.18). See also the note on ESRCH in the
1614 ptrace(2) man page. Instead, check whether the LWP has any state
1615 other than ptrace-stopped. */
1616
1617 /* Don't assume anything if /proc/PID/status can't be read. */
1618 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1619 {
1620 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1621 lp->status = 0;
1622 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1623 return 1;
1624 }
1625 return 0;
1626 }
1627
1628 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1629 disappears while we try to resume it. */
1630
1631 static void
1632 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1633 {
1634 TRY
1635 {
1636 linux_resume_one_lwp_throw (lp, step, signo);
1637 }
1638 CATCH (ex, RETURN_MASK_ERROR)
1639 {
1640 if (!check_ptrace_stopped_lwp_gone (lp))
1641 throw_exception (ex);
1642 }
1643 END_CATCH
1644 }
1645
1646 /* Resume LP. */
1647
1648 static void
1649 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1650 {
1651 if (lp->stopped)
1652 {
1653 struct inferior *inf = find_inferior_ptid (lp->ptid);
1654
1655 if (inf->vfork_child != NULL)
1656 {
1657 if (debug_linux_nat)
1658 fprintf_unfiltered (gdb_stdlog,
1659 "RC: Not resuming %s (vfork parent)\n",
1660 target_pid_to_str (lp->ptid));
1661 }
1662 else if (!lwp_status_pending_p (lp))
1663 {
1664 if (debug_linux_nat)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "RC: Resuming sibling %s, %s, %s\n",
1667 target_pid_to_str (lp->ptid),
1668 (signo != GDB_SIGNAL_0
1669 ? strsignal (gdb_signal_to_host (signo))
1670 : "0"),
1671 step ? "step" : "resume");
1672
1673 linux_resume_one_lwp (lp, step, signo);
1674 }
1675 else
1676 {
1677 if (debug_linux_nat)
1678 fprintf_unfiltered (gdb_stdlog,
1679 "RC: Not resuming sibling %s (has pending)\n",
1680 target_pid_to_str (lp->ptid));
1681 }
1682 }
1683 else
1684 {
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "RC: Not resuming sibling %s (not stopped)\n",
1688 target_pid_to_str (lp->ptid));
1689 }
1690 }
1691
1692 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1693 Resume LWP with the last stop signal, if it is in pass state. */
1694
1695 static int
1696 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1697 {
1698 enum gdb_signal signo = GDB_SIGNAL_0;
1699
1700 if (lp == except)
1701 return 0;
1702
1703 if (lp->stopped)
1704 {
1705 struct thread_info *thread;
1706
1707 thread = find_thread_ptid (lp->ptid);
1708 if (thread != NULL)
1709 {
1710 signo = thread->suspend.stop_signal;
1711 thread->suspend.stop_signal = GDB_SIGNAL_0;
1712 }
1713 }
1714
1715 resume_lwp (lp, 0, signo);
1716 return 0;
1717 }
1718
1719 static int
1720 resume_clear_callback (struct lwp_info *lp, void *data)
1721 {
1722 lp->resumed = 0;
1723 lp->last_resume_kind = resume_stop;
1724 return 0;
1725 }
1726
1727 static int
1728 resume_set_callback (struct lwp_info *lp, void *data)
1729 {
1730 lp->resumed = 1;
1731 lp->last_resume_kind = resume_continue;
1732 return 0;
1733 }
1734
1735 static void
1736 linux_nat_resume (struct target_ops *ops,
1737 ptid_t ptid, int step, enum gdb_signal signo)
1738 {
1739 struct lwp_info *lp;
1740 int resume_many;
1741
1742 if (debug_linux_nat)
1743 fprintf_unfiltered (gdb_stdlog,
1744 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1745 step ? "step" : "resume",
1746 target_pid_to_str (ptid),
1747 (signo != GDB_SIGNAL_0
1748 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1749 target_pid_to_str (inferior_ptid));
1750
1751 /* A specific PTID means `step only this process id'. */
1752 resume_many = (ptid_equal (minus_one_ptid, ptid)
1753 || ptid_is_pid (ptid));
1754
1755 /* Mark the lwps we're resuming as resumed. */
1756 iterate_over_lwps (ptid, resume_set_callback, NULL);
1757
1758 /* See if it's the current inferior that should be handled
1759 specially. */
1760 if (resume_many)
1761 lp = find_lwp_pid (inferior_ptid);
1762 else
1763 lp = find_lwp_pid (ptid);
1764 gdb_assert (lp != NULL);
1765
1766 /* Remember if we're stepping. */
1767 lp->last_resume_kind = step ? resume_step : resume_continue;
1768
1769 /* If we have a pending wait status for this thread, there is no
1770 point in resuming the process. But first make sure that
1771 linux_nat_wait won't preemptively handle the event - we
1772 should never take this short-circuit if we are going to
1773 leave LP running, since we have skipped resuming all the
1774 other threads. This bit of code needs to be synchronized
1775 with linux_nat_wait. */
1776
1777 if (lp->status && WIFSTOPPED (lp->status))
1778 {
1779 if (!lp->step
1780 && WSTOPSIG (lp->status)
1781 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1782 {
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "LLR: Not short circuiting for ignored "
1786 "status 0x%x\n", lp->status);
1787
1788 /* FIXME: What should we do if we are supposed to continue
1789 this thread with a signal? */
1790 gdb_assert (signo == GDB_SIGNAL_0);
1791 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1792 lp->status = 0;
1793 }
1794 }
1795
1796 if (lwp_status_pending_p (lp))
1797 {
1798 /* FIXME: What should we do if we are supposed to continue
1799 this thread with a signal? */
1800 gdb_assert (signo == GDB_SIGNAL_0);
1801
1802 if (debug_linux_nat)
1803 fprintf_unfiltered (gdb_stdlog,
1804 "LLR: Short circuiting for status 0x%x\n",
1805 lp->status);
1806
1807 if (target_can_async_p ())
1808 {
1809 target_async (1);
1810 /* Tell the event loop we have something to process. */
1811 async_file_mark ();
1812 }
1813 return;
1814 }
1815
1816 if (resume_many)
1817 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1818
1819 if (debug_linux_nat)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "LLR: %s %s, %s (resume event thread)\n",
1822 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1823 target_pid_to_str (lp->ptid),
1824 (signo != GDB_SIGNAL_0
1825 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1826
1827 linux_resume_one_lwp (lp, step, signo);
1828
1829 if (target_can_async_p ())
1830 target_async (1);
1831 }
1832
1833 /* Send a signal to an LWP. */
1834
1835 static int
1836 kill_lwp (int lwpid, int signo)
1837 {
1838 int ret;
1839
1840 errno = 0;
1841 ret = syscall (__NR_tkill, lwpid, signo);
1842 if (errno == ENOSYS)
1843 {
1844 /* If tkill fails, then we are not using nptl threads, a
1845 configuration we no longer support. */
1846 perror_with_name (("tkill"));
1847 }
1848 return ret;
1849 }
1850
1851 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1852 event, check if the core is interested in it: if not, ignore the
1853 event, and keep waiting; otherwise, we need to toggle the LWP's
1854 syscall entry/exit status, since the ptrace event itself doesn't
1855 indicate it, and report the trap to higher layers. */
1856
1857 static int
1858 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1859 {
1860 struct target_waitstatus *ourstatus = &lp->waitstatus;
1861 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1862 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1863
1864 if (stopping)
1865 {
1866 /* If we're stopping threads, there's a SIGSTOP pending, which
1867 makes it so that the LWP reports an immediate syscall return,
1868 followed by the SIGSTOP. Skip seeing that "return" using
1869 PTRACE_CONT directly, and let stop_wait_callback collect the
1870 SIGSTOP. Later when the thread is resumed, a new syscall
1871 entry event. If we didn't do this (and returned 0), we'd
1872 leave a syscall entry pending, and our caller, by using
1873 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1874 itself. Later, when the user re-resumes this LWP, we'd see
1875 another syscall entry event and we'd mistake it for a return.
1876
1877 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1878 (leaving immediately with LWP->signalled set, without issuing
1879 a PTRACE_CONT), it would still be problematic to leave this
1880 syscall enter pending, as later when the thread is resumed,
1881 it would then see the same syscall exit mentioned above,
1882 followed by the delayed SIGSTOP, while the syscall didn't
1883 actually get to execute. It seems it would be even more
1884 confusing to the user. */
1885
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LHST: ignoring syscall %d "
1889 "for LWP %ld (stopping threads), "
1890 "resuming with PTRACE_CONT for SIGSTOP\n",
1891 syscall_number,
1892 ptid_get_lwp (lp->ptid));
1893
1894 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1895 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1896 lp->stopped = 0;
1897 return 1;
1898 }
1899
1900 /* Always update the entry/return state, even if this particular
1901 syscall isn't interesting to the core now. In async mode,
1902 the user could install a new catchpoint for this syscall
1903 between syscall enter/return, and we'll need to know to
1904 report a syscall return if that happens. */
1905 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1906 ? TARGET_WAITKIND_SYSCALL_RETURN
1907 : TARGET_WAITKIND_SYSCALL_ENTRY);
1908
1909 if (catch_syscall_enabled ())
1910 {
1911 if (catching_syscall_number (syscall_number))
1912 {
1913 /* Alright, an event to report. */
1914 ourstatus->kind = lp->syscall_state;
1915 ourstatus->value.syscall_number = syscall_number;
1916
1917 if (debug_linux_nat)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "LHST: stopping for %s of syscall %d"
1920 " for LWP %ld\n",
1921 lp->syscall_state
1922 == TARGET_WAITKIND_SYSCALL_ENTRY
1923 ? "entry" : "return",
1924 syscall_number,
1925 ptid_get_lwp (lp->ptid));
1926 return 0;
1927 }
1928
1929 if (debug_linux_nat)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "LHST: ignoring %s of syscall %d "
1932 "for LWP %ld\n",
1933 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1934 ? "entry" : "return",
1935 syscall_number,
1936 ptid_get_lwp (lp->ptid));
1937 }
1938 else
1939 {
1940 /* If we had been syscall tracing, and hence used PT_SYSCALL
1941 before on this LWP, it could happen that the user removes all
1942 syscall catchpoints before we get to process this event.
1943 There are two noteworthy issues here:
1944
1945 - When stopped at a syscall entry event, resuming with
1946 PT_STEP still resumes executing the syscall and reports a
1947 syscall return.
1948
1949 - Only PT_SYSCALL catches syscall enters. If we last
1950 single-stepped this thread, then this event can't be a
1951 syscall enter. If we last single-stepped this thread, this
1952 has to be a syscall exit.
1953
1954 The points above mean that the next resume, be it PT_STEP or
1955 PT_CONTINUE, can not trigger a syscall trace event. */
1956 if (debug_linux_nat)
1957 fprintf_unfiltered (gdb_stdlog,
1958 "LHST: caught syscall event "
1959 "with no syscall catchpoints."
1960 " %d for LWP %ld, ignoring\n",
1961 syscall_number,
1962 ptid_get_lwp (lp->ptid));
1963 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1964 }
1965
1966 /* The core isn't interested in this event. For efficiency, avoid
1967 stopping all threads only to have the core resume them all again.
1968 Since we're not stopping threads, if we're still syscall tracing
1969 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1970 subsequent syscall. Simply resume using the inf-ptrace layer,
1971 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1972
1973 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1974 return 1;
1975 }
1976
1977 /* Handle a GNU/Linux extended wait response. If we see a clone
1978 event, we need to add the new LWP to our list (and not report the
1979 trap to higher layers). This function returns non-zero if the
1980 event should be ignored and we should wait again. If STOPPING is
1981 true, the new LWP remains stopped, otherwise it is continued. */
1982
1983 static int
1984 linux_handle_extended_wait (struct lwp_info *lp, int status)
1985 {
1986 int pid = ptid_get_lwp (lp->ptid);
1987 struct target_waitstatus *ourstatus = &lp->waitstatus;
1988 int event = linux_ptrace_get_extended_event (status);
1989
1990 /* All extended events we currently use are mid-syscall. Only
1991 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1992 you have to be using PTRACE_SEIZE to get that. */
1993 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1994
1995 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1996 || event == PTRACE_EVENT_CLONE)
1997 {
1998 unsigned long new_pid;
1999 int ret;
2000
2001 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2002
2003 /* If we haven't already seen the new PID stop, wait for it now. */
2004 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2005 {
2006 /* The new child has a pending SIGSTOP. We can't affect it until it
2007 hits the SIGSTOP, but we're already attached. */
2008 ret = my_waitpid (new_pid, &status, __WALL);
2009 if (ret == -1)
2010 perror_with_name (_("waiting for new child"));
2011 else if (ret != new_pid)
2012 internal_error (__FILE__, __LINE__,
2013 _("wait returned unexpected PID %d"), ret);
2014 else if (!WIFSTOPPED (status))
2015 internal_error (__FILE__, __LINE__,
2016 _("wait returned unexpected status 0x%x"), status);
2017 }
2018
2019 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2020
2021 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2022 {
2023 /* The arch-specific native code may need to know about new
2024 forks even if those end up never mapped to an
2025 inferior. */
2026 if (linux_nat_new_fork != NULL)
2027 linux_nat_new_fork (lp, new_pid);
2028 }
2029
2030 if (event == PTRACE_EVENT_FORK
2031 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2032 {
2033 /* Handle checkpointing by linux-fork.c here as a special
2034 case. We don't want the follow-fork-mode or 'catch fork'
2035 to interfere with this. */
2036
2037 /* This won't actually modify the breakpoint list, but will
2038 physically remove the breakpoints from the child. */
2039 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2040
2041 /* Retain child fork in ptrace (stopped) state. */
2042 if (!find_fork_pid (new_pid))
2043 add_fork (new_pid);
2044
2045 /* Report as spurious, so that infrun doesn't want to follow
2046 this fork. We're actually doing an infcall in
2047 linux-fork.c. */
2048 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2049
2050 /* Report the stop to the core. */
2051 return 0;
2052 }
2053
2054 if (event == PTRACE_EVENT_FORK)
2055 ourstatus->kind = TARGET_WAITKIND_FORKED;
2056 else if (event == PTRACE_EVENT_VFORK)
2057 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2058 else if (event == PTRACE_EVENT_CLONE)
2059 {
2060 struct lwp_info *new_lp;
2061
2062 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2063
2064 if (debug_linux_nat)
2065 fprintf_unfiltered (gdb_stdlog,
2066 "LHEW: Got clone event "
2067 "from LWP %d, new child is LWP %ld\n",
2068 pid, new_pid);
2069
2070 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2071 new_lp->stopped = 1;
2072 new_lp->resumed = 1;
2073
2074 /* If the thread_db layer is active, let it record the user
2075 level thread id and status, and add the thread to GDB's
2076 list. */
2077 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2078 {
2079 /* The process is not using thread_db. Add the LWP to
2080 GDB's list. */
2081 target_post_attach (ptid_get_lwp (new_lp->ptid));
2082 add_thread (new_lp->ptid);
2083 }
2084
2085 /* Even if we're stopping the thread for some reason
2086 internal to this module, from the perspective of infrun
2087 and the user/frontend, this new thread is running until
2088 it next reports a stop. */
2089 set_running (new_lp->ptid, 1);
2090 set_executing (new_lp->ptid, 1);
2091
2092 if (WSTOPSIG (status) != SIGSTOP)
2093 {
2094 /* This can happen if someone starts sending signals to
2095 the new thread before it gets a chance to run, which
2096 have a lower number than SIGSTOP (e.g. SIGUSR1).
2097 This is an unlikely case, and harder to handle for
2098 fork / vfork than for clone, so we do not try - but
2099 we handle it for clone events here. */
2100
2101 new_lp->signalled = 1;
2102
2103 /* We created NEW_LP so it cannot yet contain STATUS. */
2104 gdb_assert (new_lp->status == 0);
2105
2106 /* Save the wait status to report later. */
2107 if (debug_linux_nat)
2108 fprintf_unfiltered (gdb_stdlog,
2109 "LHEW: waitpid of new LWP %ld, "
2110 "saving status %s\n",
2111 (long) ptid_get_lwp (new_lp->ptid),
2112 status_to_str (status));
2113 new_lp->status = status;
2114 }
2115 else if (report_thread_events)
2116 {
2117 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2118 new_lp->status = status;
2119 }
2120
2121 return 1;
2122 }
2123
2124 return 0;
2125 }
2126
2127 if (event == PTRACE_EVENT_EXEC)
2128 {
2129 if (debug_linux_nat)
2130 fprintf_unfiltered (gdb_stdlog,
2131 "LHEW: Got exec event from LWP %ld\n",
2132 ptid_get_lwp (lp->ptid));
2133
2134 ourstatus->kind = TARGET_WAITKIND_EXECD;
2135 ourstatus->value.execd_pathname
2136 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2137
2138 /* The thread that execed must have been resumed, but, when a
2139 thread execs, it changes its tid to the tgid, and the old
2140 tgid thread might have not been resumed. */
2141 lp->resumed = 1;
2142 return 0;
2143 }
2144
2145 if (event == PTRACE_EVENT_VFORK_DONE)
2146 {
2147 if (current_inferior ()->waiting_for_vfork_done)
2148 {
2149 if (debug_linux_nat)
2150 fprintf_unfiltered (gdb_stdlog,
2151 "LHEW: Got expected PTRACE_EVENT_"
2152 "VFORK_DONE from LWP %ld: stopping\n",
2153 ptid_get_lwp (lp->ptid));
2154
2155 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2156 return 0;
2157 }
2158
2159 if (debug_linux_nat)
2160 fprintf_unfiltered (gdb_stdlog,
2161 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2162 "from LWP %ld: ignoring\n",
2163 ptid_get_lwp (lp->ptid));
2164 return 1;
2165 }
2166
2167 internal_error (__FILE__, __LINE__,
2168 _("unknown ptrace event %d"), event);
2169 }
2170
2171 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2172 exited. */
2173
2174 static int
2175 wait_lwp (struct lwp_info *lp)
2176 {
2177 pid_t pid;
2178 int status = 0;
2179 int thread_dead = 0;
2180 sigset_t prev_mask;
2181
2182 gdb_assert (!lp->stopped);
2183 gdb_assert (lp->status == 0);
2184
2185 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2186 block_child_signals (&prev_mask);
2187
2188 for (;;)
2189 {
2190 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2191 if (pid == -1 && errno == ECHILD)
2192 {
2193 /* The thread has previously exited. We need to delete it
2194 now because if this was a non-leader thread execing, we
2195 won't get an exit event. See comments on exec events at
2196 the top of the file. */
2197 thread_dead = 1;
2198 if (debug_linux_nat)
2199 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2200 target_pid_to_str (lp->ptid));
2201 }
2202 if (pid != 0)
2203 break;
2204
2205 /* Bugs 10970, 12702.
2206 Thread group leader may have exited in which case we'll lock up in
2207 waitpid if there are other threads, even if they are all zombies too.
2208 Basically, we're not supposed to use waitpid this way.
2209 tkill(pid,0) cannot be used here as it gets ESRCH for both
2210 for zombie and running processes.
2211
2212 As a workaround, check if we're waiting for the thread group leader and
2213 if it's a zombie, and avoid calling waitpid if it is.
2214
2215 This is racy, what if the tgl becomes a zombie right after we check?
2216 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2217 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2218
2219 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2220 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2221 {
2222 thread_dead = 1;
2223 if (debug_linux_nat)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "WL: Thread group leader %s vanished.\n",
2226 target_pid_to_str (lp->ptid));
2227 break;
2228 }
2229
2230 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2231 get invoked despite our caller had them intentionally blocked by
2232 block_child_signals. This is sensitive only to the loop of
2233 linux_nat_wait_1 and there if we get called my_waitpid gets called
2234 again before it gets to sigsuspend so we can safely let the handlers
2235 get executed here. */
2236
2237 if (debug_linux_nat)
2238 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2239 sigsuspend (&suspend_mask);
2240 }
2241
2242 restore_child_signals_mask (&prev_mask);
2243
2244 if (!thread_dead)
2245 {
2246 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2247
2248 if (debug_linux_nat)
2249 {
2250 fprintf_unfiltered (gdb_stdlog,
2251 "WL: waitpid %s received %s\n",
2252 target_pid_to_str (lp->ptid),
2253 status_to_str (status));
2254 }
2255
2256 /* Check if the thread has exited. */
2257 if (WIFEXITED (status) || WIFSIGNALED (status))
2258 {
2259 if (report_thread_events
2260 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2261 {
2262 if (debug_linux_nat)
2263 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2264 ptid_get_pid (lp->ptid));
2265
2266 /* If this is the leader exiting, it means the whole
2267 process is gone. Store the status to report to the
2268 core. Store it in lp->waitstatus, because lp->status
2269 would be ambiguous (W_EXITCODE(0,0) == 0). */
2270 store_waitstatus (&lp->waitstatus, status);
2271 return 0;
2272 }
2273
2274 thread_dead = 1;
2275 if (debug_linux_nat)
2276 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2277 target_pid_to_str (lp->ptid));
2278 }
2279 }
2280
2281 if (thread_dead)
2282 {
2283 exit_lwp (lp);
2284 return 0;
2285 }
2286
2287 gdb_assert (WIFSTOPPED (status));
2288 lp->stopped = 1;
2289
2290 if (lp->must_set_ptrace_flags)
2291 {
2292 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2293 int options = linux_nat_ptrace_options (inf->attach_flag);
2294
2295 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2296 lp->must_set_ptrace_flags = 0;
2297 }
2298
2299 /* Handle GNU/Linux's syscall SIGTRAPs. */
2300 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2301 {
2302 /* No longer need the sysgood bit. The ptrace event ends up
2303 recorded in lp->waitstatus if we care for it. We can carry
2304 on handling the event like a regular SIGTRAP from here
2305 on. */
2306 status = W_STOPCODE (SIGTRAP);
2307 if (linux_handle_syscall_trap (lp, 1))
2308 return wait_lwp (lp);
2309 }
2310 else
2311 {
2312 /* Almost all other ptrace-stops are known to be outside of system
2313 calls, with further exceptions in linux_handle_extended_wait. */
2314 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2315 }
2316
2317 /* Handle GNU/Linux's extended waitstatus for trace events. */
2318 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2319 && linux_is_extended_waitstatus (status))
2320 {
2321 if (debug_linux_nat)
2322 fprintf_unfiltered (gdb_stdlog,
2323 "WL: Handling extended status 0x%06x\n",
2324 status);
2325 linux_handle_extended_wait (lp, status);
2326 return 0;
2327 }
2328
2329 return status;
2330 }
2331
2332 /* Send a SIGSTOP to LP. */
2333
2334 static int
2335 stop_callback (struct lwp_info *lp, void *data)
2336 {
2337 if (!lp->stopped && !lp->signalled)
2338 {
2339 int ret;
2340
2341 if (debug_linux_nat)
2342 {
2343 fprintf_unfiltered (gdb_stdlog,
2344 "SC: kill %s **<SIGSTOP>**\n",
2345 target_pid_to_str (lp->ptid));
2346 }
2347 errno = 0;
2348 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2349 if (debug_linux_nat)
2350 {
2351 fprintf_unfiltered (gdb_stdlog,
2352 "SC: lwp kill %d %s\n",
2353 ret,
2354 errno ? safe_strerror (errno) : "ERRNO-OK");
2355 }
2356
2357 lp->signalled = 1;
2358 gdb_assert (lp->status == 0);
2359 }
2360
2361 return 0;
2362 }
2363
2364 /* Request a stop on LWP. */
2365
2366 void
2367 linux_stop_lwp (struct lwp_info *lwp)
2368 {
2369 stop_callback (lwp, NULL);
2370 }
2371
2372 /* See linux-nat.h */
2373
2374 void
2375 linux_stop_and_wait_all_lwps (void)
2376 {
2377 /* Stop all LWP's ... */
2378 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2379
2380 /* ... and wait until all of them have reported back that
2381 they're no longer running. */
2382 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2383 }
2384
2385 /* See linux-nat.h */
2386
2387 void
2388 linux_unstop_all_lwps (void)
2389 {
2390 iterate_over_lwps (minus_one_ptid,
2391 resume_stopped_resumed_lwps, &minus_one_ptid);
2392 }
2393
2394 /* Return non-zero if LWP PID has a pending SIGINT. */
2395
2396 static int
2397 linux_nat_has_pending_sigint (int pid)
2398 {
2399 sigset_t pending, blocked, ignored;
2400
2401 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2402
2403 if (sigismember (&pending, SIGINT)
2404 && !sigismember (&ignored, SIGINT))
2405 return 1;
2406
2407 return 0;
2408 }
2409
2410 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2411
2412 static int
2413 set_ignore_sigint (struct lwp_info *lp, void *data)
2414 {
2415 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2416 flag to consume the next one. */
2417 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2418 && WSTOPSIG (lp->status) == SIGINT)
2419 lp->status = 0;
2420 else
2421 lp->ignore_sigint = 1;
2422
2423 return 0;
2424 }
2425
2426 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2427 This function is called after we know the LWP has stopped; if the LWP
2428 stopped before the expected SIGINT was delivered, then it will never have
2429 arrived. Also, if the signal was delivered to a shared queue and consumed
2430 by a different thread, it will never be delivered to this LWP. */
2431
2432 static void
2433 maybe_clear_ignore_sigint (struct lwp_info *lp)
2434 {
2435 if (!lp->ignore_sigint)
2436 return;
2437
2438 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2439 {
2440 if (debug_linux_nat)
2441 fprintf_unfiltered (gdb_stdlog,
2442 "MCIS: Clearing bogus flag for %s\n",
2443 target_pid_to_str (lp->ptid));
2444 lp->ignore_sigint = 0;
2445 }
2446 }
2447
2448 /* Fetch the possible triggered data watchpoint info and store it in
2449 LP.
2450
2451 On some archs, like x86, that use debug registers to set
2452 watchpoints, it's possible that the way to know which watched
2453 address trapped, is to check the register that is used to select
2454 which address to watch. Problem is, between setting the watchpoint
2455 and reading back which data address trapped, the user may change
2456 the set of watchpoints, and, as a consequence, GDB changes the
2457 debug registers in the inferior. To avoid reading back a stale
2458 stopped-data-address when that happens, we cache in LP the fact
2459 that a watchpoint trapped, and the corresponding data address, as
2460 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2461 registers meanwhile, we have the cached data we can rely on. */
2462
2463 static int
2464 check_stopped_by_watchpoint (struct lwp_info *lp)
2465 {
2466 if (linux_ops->to_stopped_by_watchpoint == NULL)
2467 return 0;
2468
2469 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2470 inferior_ptid = lp->ptid;
2471
2472 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2473 {
2474 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2475
2476 if (linux_ops->to_stopped_data_address != NULL)
2477 lp->stopped_data_address_p =
2478 linux_ops->to_stopped_data_address (&current_target,
2479 &lp->stopped_data_address);
2480 else
2481 lp->stopped_data_address_p = 0;
2482 }
2483
2484 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2485 }
2486
2487 /* Returns true if the LWP had stopped for a watchpoint. */
2488
2489 static int
2490 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2491 {
2492 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2493
2494 gdb_assert (lp != NULL);
2495
2496 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2497 }
2498
2499 static int
2500 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2501 {
2502 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2503
2504 gdb_assert (lp != NULL);
2505
2506 *addr_p = lp->stopped_data_address;
2507
2508 return lp->stopped_data_address_p;
2509 }
2510
2511 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2512
2513 static int
2514 sigtrap_is_event (int status)
2515 {
2516 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2517 }
2518
2519 /* Set alternative SIGTRAP-like events recognizer. If
2520 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2521 applied. */
2522
2523 void
2524 linux_nat_set_status_is_event (struct target_ops *t,
2525 int (*status_is_event) (int status))
2526 {
2527 linux_nat_status_is_event = status_is_event;
2528 }
2529
2530 /* Wait until LP is stopped. */
2531
2532 static int
2533 stop_wait_callback (struct lwp_info *lp, void *data)
2534 {
2535 struct inferior *inf = find_inferior_ptid (lp->ptid);
2536
2537 /* If this is a vfork parent, bail out, it is not going to report
2538 any SIGSTOP until the vfork is done with. */
2539 if (inf->vfork_child != NULL)
2540 return 0;
2541
2542 if (!lp->stopped)
2543 {
2544 int status;
2545
2546 status = wait_lwp (lp);
2547 if (status == 0)
2548 return 0;
2549
2550 if (lp->ignore_sigint && WIFSTOPPED (status)
2551 && WSTOPSIG (status) == SIGINT)
2552 {
2553 lp->ignore_sigint = 0;
2554
2555 errno = 0;
2556 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2557 lp->stopped = 0;
2558 if (debug_linux_nat)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "PTRACE_CONT %s, 0, 0 (%s) "
2561 "(discarding SIGINT)\n",
2562 target_pid_to_str (lp->ptid),
2563 errno ? safe_strerror (errno) : "OK");
2564
2565 return stop_wait_callback (lp, NULL);
2566 }
2567
2568 maybe_clear_ignore_sigint (lp);
2569
2570 if (WSTOPSIG (status) != SIGSTOP)
2571 {
2572 /* The thread was stopped with a signal other than SIGSTOP. */
2573
2574 if (debug_linux_nat)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "SWC: Pending event %s in %s\n",
2577 status_to_str ((int) status),
2578 target_pid_to_str (lp->ptid));
2579
2580 /* Save the sigtrap event. */
2581 lp->status = status;
2582 gdb_assert (lp->signalled);
2583 save_stop_reason (lp);
2584 }
2585 else
2586 {
2587 /* We caught the SIGSTOP that we intended to catch, so
2588 there's no SIGSTOP pending. */
2589
2590 if (debug_linux_nat)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "SWC: Expected SIGSTOP caught for %s.\n",
2593 target_pid_to_str (lp->ptid));
2594
2595 /* Reset SIGNALLED only after the stop_wait_callback call
2596 above as it does gdb_assert on SIGNALLED. */
2597 lp->signalled = 0;
2598 }
2599 }
2600
2601 return 0;
2602 }
2603
2604 /* Return non-zero if LP has a wait status pending. Discard the
2605 pending event and resume the LWP if the event that originally
2606 caused the stop became uninteresting. */
2607
2608 static int
2609 status_callback (struct lwp_info *lp, void *data)
2610 {
2611 /* Only report a pending wait status if we pretend that this has
2612 indeed been resumed. */
2613 if (!lp->resumed)
2614 return 0;
2615
2616 if (!lwp_status_pending_p (lp))
2617 return 0;
2618
2619 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2620 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2621 {
2622 struct regcache *regcache = get_thread_regcache (lp->ptid);
2623 CORE_ADDR pc;
2624 int discard = 0;
2625
2626 pc = regcache_read_pc (regcache);
2627
2628 if (pc != lp->stop_pc)
2629 {
2630 if (debug_linux_nat)
2631 fprintf_unfiltered (gdb_stdlog,
2632 "SC: PC of %s changed. was=%s, now=%s\n",
2633 target_pid_to_str (lp->ptid),
2634 paddress (target_gdbarch (), lp->stop_pc),
2635 paddress (target_gdbarch (), pc));
2636 discard = 1;
2637 }
2638
2639 #if !USE_SIGTRAP_SIGINFO
2640 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2641 {
2642 if (debug_linux_nat)
2643 fprintf_unfiltered (gdb_stdlog,
2644 "SC: previous breakpoint of %s, at %s gone\n",
2645 target_pid_to_str (lp->ptid),
2646 paddress (target_gdbarch (), lp->stop_pc));
2647
2648 discard = 1;
2649 }
2650 #endif
2651
2652 if (discard)
2653 {
2654 if (debug_linux_nat)
2655 fprintf_unfiltered (gdb_stdlog,
2656 "SC: pending event of %s cancelled.\n",
2657 target_pid_to_str (lp->ptid));
2658
2659 lp->status = 0;
2660 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2661 return 0;
2662 }
2663 }
2664
2665 return 1;
2666 }
2667
2668 /* Count the LWP's that have had events. */
2669
2670 static int
2671 count_events_callback (struct lwp_info *lp, void *data)
2672 {
2673 int *count = (int *) data;
2674
2675 gdb_assert (count != NULL);
2676
2677 /* Select only resumed LWPs that have an event pending. */
2678 if (lp->resumed && lwp_status_pending_p (lp))
2679 (*count)++;
2680
2681 return 0;
2682 }
2683
2684 /* Select the LWP (if any) that is currently being single-stepped. */
2685
2686 static int
2687 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2688 {
2689 if (lp->last_resume_kind == resume_step
2690 && lp->status != 0)
2691 return 1;
2692 else
2693 return 0;
2694 }
2695
2696 /* Returns true if LP has a status pending. */
2697
2698 static int
2699 lwp_status_pending_p (struct lwp_info *lp)
2700 {
2701 /* We check for lp->waitstatus in addition to lp->status, because we
2702 can have pending process exits recorded in lp->status and
2703 W_EXITCODE(0,0) happens to be 0. */
2704 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2705 }
2706
2707 /* Select the Nth LWP that has had an event. */
2708
2709 static int
2710 select_event_lwp_callback (struct lwp_info *lp, void *data)
2711 {
2712 int *selector = (int *) data;
2713
2714 gdb_assert (selector != NULL);
2715
2716 /* Select only resumed LWPs that have an event pending. */
2717 if (lp->resumed && lwp_status_pending_p (lp))
2718 if ((*selector)-- == 0)
2719 return 1;
2720
2721 return 0;
2722 }
2723
2724 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2725 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2726 and save the result in the LWP's stop_reason field. If it stopped
2727 for a breakpoint, decrement the PC if necessary on the lwp's
2728 architecture. */
2729
2730 static void
2731 save_stop_reason (struct lwp_info *lp)
2732 {
2733 struct regcache *regcache;
2734 struct gdbarch *gdbarch;
2735 CORE_ADDR pc;
2736 CORE_ADDR sw_bp_pc;
2737 #if USE_SIGTRAP_SIGINFO
2738 siginfo_t siginfo;
2739 #endif
2740
2741 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2742 gdb_assert (lp->status != 0);
2743
2744 if (!linux_nat_status_is_event (lp->status))
2745 return;
2746
2747 regcache = get_thread_regcache (lp->ptid);
2748 gdbarch = regcache->arch ();
2749
2750 pc = regcache_read_pc (regcache);
2751 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2752
2753 #if USE_SIGTRAP_SIGINFO
2754 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2755 {
2756 if (siginfo.si_signo == SIGTRAP)
2757 {
2758 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2759 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2760 {
2761 /* The si_code is ambiguous on this arch -- check debug
2762 registers. */
2763 if (!check_stopped_by_watchpoint (lp))
2764 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2765 }
2766 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2767 {
2768 /* If we determine the LWP stopped for a SW breakpoint,
2769 trust it. Particularly don't check watchpoint
2770 registers, because at least on s390, we'd find
2771 stopped-by-watchpoint as long as there's a watchpoint
2772 set. */
2773 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2774 }
2775 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2776 {
2777 /* This can indicate either a hardware breakpoint or
2778 hardware watchpoint. Check debug registers. */
2779 if (!check_stopped_by_watchpoint (lp))
2780 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2781 }
2782 else if (siginfo.si_code == TRAP_TRACE)
2783 {
2784 if (debug_linux_nat)
2785 fprintf_unfiltered (gdb_stdlog,
2786 "CSBB: %s stopped by trace\n",
2787 target_pid_to_str (lp->ptid));
2788
2789 /* We may have single stepped an instruction that
2790 triggered a watchpoint. In that case, on some
2791 architectures (such as x86), instead of TRAP_HWBKPT,
2792 si_code indicates TRAP_TRACE, and we need to check
2793 the debug registers separately. */
2794 check_stopped_by_watchpoint (lp);
2795 }
2796 }
2797 }
2798 #else
2799 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2800 && software_breakpoint_inserted_here_p (regcache->aspace (),
2801 sw_bp_pc))
2802 {
2803 /* The LWP was either continued, or stepped a software
2804 breakpoint instruction. */
2805 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2806 }
2807
2808 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2809 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2810
2811 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2812 check_stopped_by_watchpoint (lp);
2813 #endif
2814
2815 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2816 {
2817 if (debug_linux_nat)
2818 fprintf_unfiltered (gdb_stdlog,
2819 "CSBB: %s stopped by software breakpoint\n",
2820 target_pid_to_str (lp->ptid));
2821
2822 /* Back up the PC if necessary. */
2823 if (pc != sw_bp_pc)
2824 regcache_write_pc (regcache, sw_bp_pc);
2825
2826 /* Update this so we record the correct stop PC below. */
2827 pc = sw_bp_pc;
2828 }
2829 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2830 {
2831 if (debug_linux_nat)
2832 fprintf_unfiltered (gdb_stdlog,
2833 "CSBB: %s stopped by hardware breakpoint\n",
2834 target_pid_to_str (lp->ptid));
2835 }
2836 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2837 {
2838 if (debug_linux_nat)
2839 fprintf_unfiltered (gdb_stdlog,
2840 "CSBB: %s stopped by hardware watchpoint\n",
2841 target_pid_to_str (lp->ptid));
2842 }
2843
2844 lp->stop_pc = pc;
2845 }
2846
2847
2848 /* Returns true if the LWP had stopped for a software breakpoint. */
2849
2850 static int
2851 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2852 {
2853 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2854
2855 gdb_assert (lp != NULL);
2856
2857 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2858 }
2859
2860 /* Implement the supports_stopped_by_sw_breakpoint method. */
2861
2862 static int
2863 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2864 {
2865 return USE_SIGTRAP_SIGINFO;
2866 }
2867
2868 /* Returns true if the LWP had stopped for a hardware
2869 breakpoint/watchpoint. */
2870
2871 static int
2872 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2873 {
2874 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2875
2876 gdb_assert (lp != NULL);
2877
2878 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2879 }
2880
2881 /* Implement the supports_stopped_by_hw_breakpoint method. */
2882
2883 static int
2884 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2885 {
2886 return USE_SIGTRAP_SIGINFO;
2887 }
2888
2889 /* Select one LWP out of those that have events pending. */
2890
2891 static void
2892 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2893 {
2894 int num_events = 0;
2895 int random_selector;
2896 struct lwp_info *event_lp = NULL;
2897
2898 /* Record the wait status for the original LWP. */
2899 (*orig_lp)->status = *status;
2900
2901 /* In all-stop, give preference to the LWP that is being
2902 single-stepped. There will be at most one, and it will be the
2903 LWP that the core is most interested in. If we didn't do this,
2904 then we'd have to handle pending step SIGTRAPs somehow in case
2905 the core later continues the previously-stepped thread, as
2906 otherwise we'd report the pending SIGTRAP then, and the core, not
2907 having stepped the thread, wouldn't understand what the trap was
2908 for, and therefore would report it to the user as a random
2909 signal. */
2910 if (!target_is_non_stop_p ())
2911 {
2912 event_lp = iterate_over_lwps (filter,
2913 select_singlestep_lwp_callback, NULL);
2914 if (event_lp != NULL)
2915 {
2916 if (debug_linux_nat)
2917 fprintf_unfiltered (gdb_stdlog,
2918 "SEL: Select single-step %s\n",
2919 target_pid_to_str (event_lp->ptid));
2920 }
2921 }
2922
2923 if (event_lp == NULL)
2924 {
2925 /* Pick one at random, out of those which have had events. */
2926
2927 /* First see how many events we have. */
2928 iterate_over_lwps (filter, count_events_callback, &num_events);
2929 gdb_assert (num_events > 0);
2930
2931 /* Now randomly pick a LWP out of those that have had
2932 events. */
2933 random_selector = (int)
2934 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2935
2936 if (debug_linux_nat && num_events > 1)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "SEL: Found %d events, selecting #%d\n",
2939 num_events, random_selector);
2940
2941 event_lp = iterate_over_lwps (filter,
2942 select_event_lwp_callback,
2943 &random_selector);
2944 }
2945
2946 if (event_lp != NULL)
2947 {
2948 /* Switch the event LWP. */
2949 *orig_lp = event_lp;
2950 *status = event_lp->status;
2951 }
2952
2953 /* Flush the wait status for the event LWP. */
2954 (*orig_lp)->status = 0;
2955 }
2956
2957 /* Return non-zero if LP has been resumed. */
2958
2959 static int
2960 resumed_callback (struct lwp_info *lp, void *data)
2961 {
2962 return lp->resumed;
2963 }
2964
2965 /* Check if we should go on and pass this event to common code.
2966 Return the affected lwp if we are, or NULL otherwise. */
2967
2968 static struct lwp_info *
2969 linux_nat_filter_event (int lwpid, int status)
2970 {
2971 struct lwp_info *lp;
2972 int event = linux_ptrace_get_extended_event (status);
2973
2974 lp = find_lwp_pid (pid_to_ptid (lwpid));
2975
2976 /* Check for stop events reported by a process we didn't already
2977 know about - anything not already in our LWP list.
2978
2979 If we're expecting to receive stopped processes after
2980 fork, vfork, and clone events, then we'll just add the
2981 new one to our list and go back to waiting for the event
2982 to be reported - the stopped process might be returned
2983 from waitpid before or after the event is.
2984
2985 But note the case of a non-leader thread exec'ing after the
2986 leader having exited, and gone from our lists. The non-leader
2987 thread changes its tid to the tgid. */
2988
2989 if (WIFSTOPPED (status) && lp == NULL
2990 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2991 {
2992 /* A multi-thread exec after we had seen the leader exiting. */
2993 if (debug_linux_nat)
2994 fprintf_unfiltered (gdb_stdlog,
2995 "LLW: Re-adding thread group leader LWP %d.\n",
2996 lwpid);
2997
2998 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2999 lp->stopped = 1;
3000 lp->resumed = 1;
3001 add_thread (lp->ptid);
3002 }
3003
3004 if (WIFSTOPPED (status) && !lp)
3005 {
3006 if (debug_linux_nat)
3007 fprintf_unfiltered (gdb_stdlog,
3008 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3009 (long) lwpid, status_to_str (status));
3010 add_to_pid_list (&stopped_pids, lwpid, status);
3011 return NULL;
3012 }
3013
3014 /* Make sure we don't report an event for the exit of an LWP not in
3015 our list, i.e. not part of the current process. This can happen
3016 if we detach from a program we originally forked and then it
3017 exits. */
3018 if (!WIFSTOPPED (status) && !lp)
3019 return NULL;
3020
3021 /* This LWP is stopped now. (And if dead, this prevents it from
3022 ever being continued.) */
3023 lp->stopped = 1;
3024
3025 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3026 {
3027 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3028 int options = linux_nat_ptrace_options (inf->attach_flag);
3029
3030 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3031 lp->must_set_ptrace_flags = 0;
3032 }
3033
3034 /* Handle GNU/Linux's syscall SIGTRAPs. */
3035 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3036 {
3037 /* No longer need the sysgood bit. The ptrace event ends up
3038 recorded in lp->waitstatus if we care for it. We can carry
3039 on handling the event like a regular SIGTRAP from here
3040 on. */
3041 status = W_STOPCODE (SIGTRAP);
3042 if (linux_handle_syscall_trap (lp, 0))
3043 return NULL;
3044 }
3045 else
3046 {
3047 /* Almost all other ptrace-stops are known to be outside of system
3048 calls, with further exceptions in linux_handle_extended_wait. */
3049 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3050 }
3051
3052 /* Handle GNU/Linux's extended waitstatus for trace events. */
3053 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3054 && linux_is_extended_waitstatus (status))
3055 {
3056 if (debug_linux_nat)
3057 fprintf_unfiltered (gdb_stdlog,
3058 "LLW: Handling extended status 0x%06x\n",
3059 status);
3060 if (linux_handle_extended_wait (lp, status))
3061 return NULL;
3062 }
3063
3064 /* Check if the thread has exited. */
3065 if (WIFEXITED (status) || WIFSIGNALED (status))
3066 {
3067 if (!report_thread_events
3068 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3069 {
3070 if (debug_linux_nat)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "LLW: %s exited.\n",
3073 target_pid_to_str (lp->ptid));
3074
3075 /* If there is at least one more LWP, then the exit signal
3076 was not the end of the debugged application and should be
3077 ignored. */
3078 exit_lwp (lp);
3079 return NULL;
3080 }
3081
3082 /* Note that even if the leader was ptrace-stopped, it can still
3083 exit, if e.g., some other thread brings down the whole
3084 process (calls `exit'). So don't assert that the lwp is
3085 resumed. */
3086 if (debug_linux_nat)
3087 fprintf_unfiltered (gdb_stdlog,
3088 "LWP %ld exited (resumed=%d)\n",
3089 ptid_get_lwp (lp->ptid), lp->resumed);
3090
3091 /* Dead LWP's aren't expected to reported a pending sigstop. */
3092 lp->signalled = 0;
3093
3094 /* Store the pending event in the waitstatus, because
3095 W_EXITCODE(0,0) == 0. */
3096 store_waitstatus (&lp->waitstatus, status);
3097 return lp;
3098 }
3099
3100 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3101 an attempt to stop an LWP. */
3102 if (lp->signalled
3103 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3104 {
3105 lp->signalled = 0;
3106
3107 if (lp->last_resume_kind == resume_stop)
3108 {
3109 if (debug_linux_nat)
3110 fprintf_unfiltered (gdb_stdlog,
3111 "LLW: resume_stop SIGSTOP caught for %s.\n",
3112 target_pid_to_str (lp->ptid));
3113 }
3114 else
3115 {
3116 /* This is a delayed SIGSTOP. Filter out the event. */
3117
3118 if (debug_linux_nat)
3119 fprintf_unfiltered (gdb_stdlog,
3120 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3121 lp->step ?
3122 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3123 target_pid_to_str (lp->ptid));
3124
3125 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3126 gdb_assert (lp->resumed);
3127 return NULL;
3128 }
3129 }
3130
3131 /* Make sure we don't report a SIGINT that we have already displayed
3132 for another thread. */
3133 if (lp->ignore_sigint
3134 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3135 {
3136 if (debug_linux_nat)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "LLW: Delayed SIGINT caught for %s.\n",
3139 target_pid_to_str (lp->ptid));
3140
3141 /* This is a delayed SIGINT. */
3142 lp->ignore_sigint = 0;
3143
3144 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3145 if (debug_linux_nat)
3146 fprintf_unfiltered (gdb_stdlog,
3147 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3148 lp->step ?
3149 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3150 target_pid_to_str (lp->ptid));
3151 gdb_assert (lp->resumed);
3152
3153 /* Discard the event. */
3154 return NULL;
3155 }
3156
3157 /* Don't report signals that GDB isn't interested in, such as
3158 signals that are neither printed nor stopped upon. Stopping all
3159 threads can be a bit time-consuming so if we want decent
3160 performance with heavily multi-threaded programs, especially when
3161 they're using a high frequency timer, we'd better avoid it if we
3162 can. */
3163 if (WIFSTOPPED (status))
3164 {
3165 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3166
3167 if (!target_is_non_stop_p ())
3168 {
3169 /* Only do the below in all-stop, as we currently use SIGSTOP
3170 to implement target_stop (see linux_nat_stop) in
3171 non-stop. */
3172 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3173 {
3174 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3175 forwarded to the entire process group, that is, all LWPs
3176 will receive it - unless they're using CLONE_THREAD to
3177 share signals. Since we only want to report it once, we
3178 mark it as ignored for all LWPs except this one. */
3179 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3180 set_ignore_sigint, NULL);
3181 lp->ignore_sigint = 0;
3182 }
3183 else
3184 maybe_clear_ignore_sigint (lp);
3185 }
3186
3187 /* When using hardware single-step, we need to report every signal.
3188 Otherwise, signals in pass_mask may be short-circuited
3189 except signals that might be caused by a breakpoint. */
3190 if (!lp->step
3191 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3192 && !linux_wstatus_maybe_breakpoint (status))
3193 {
3194 linux_resume_one_lwp (lp, lp->step, signo);
3195 if (debug_linux_nat)
3196 fprintf_unfiltered (gdb_stdlog,
3197 "LLW: %s %s, %s (preempt 'handle')\n",
3198 lp->step ?
3199 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3200 target_pid_to_str (lp->ptid),
3201 (signo != GDB_SIGNAL_0
3202 ? strsignal (gdb_signal_to_host (signo))
3203 : "0"));
3204 return NULL;
3205 }
3206 }
3207
3208 /* An interesting event. */
3209 gdb_assert (lp);
3210 lp->status = status;
3211 save_stop_reason (lp);
3212 return lp;
3213 }
3214
3215 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3216 their exits until all other threads in the group have exited. */
3217
3218 static void
3219 check_zombie_leaders (void)
3220 {
3221 struct inferior *inf;
3222
3223 ALL_INFERIORS (inf)
3224 {
3225 struct lwp_info *leader_lp;
3226
3227 if (inf->pid == 0)
3228 continue;
3229
3230 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3231 if (leader_lp != NULL
3232 /* Check if there are other threads in the group, as we may
3233 have raced with the inferior simply exiting. */
3234 && num_lwps (inf->pid) > 1
3235 && linux_proc_pid_is_zombie (inf->pid))
3236 {
3237 if (debug_linux_nat)
3238 fprintf_unfiltered (gdb_stdlog,
3239 "CZL: Thread group leader %d zombie "
3240 "(it exited, or another thread execd).\n",
3241 inf->pid);
3242
3243 /* A leader zombie can mean one of two things:
3244
3245 - It exited, and there's an exit status pending
3246 available, or only the leader exited (not the whole
3247 program). In the latter case, we can't waitpid the
3248 leader's exit status until all other threads are gone.
3249
3250 - There are 3 or more threads in the group, and a thread
3251 other than the leader exec'd. See comments on exec
3252 events at the top of the file. We could try
3253 distinguishing the exit and exec cases, by waiting once
3254 more, and seeing if something comes out, but it doesn't
3255 sound useful. The previous leader _does_ go away, and
3256 we'll re-add the new one once we see the exec event
3257 (which is just the same as what would happen if the
3258 previous leader did exit voluntarily before some other
3259 thread execs). */
3260
3261 if (debug_linux_nat)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "CZL: Thread group leader %d vanished.\n",
3264 inf->pid);
3265 exit_lwp (leader_lp);
3266 }
3267 }
3268 }
3269
3270 /* Convenience function that is called when the kernel reports an exit
3271 event. This decides whether to report the event to GDB as a
3272 process exit event, a thread exit event, or to suppress the
3273 event. */
3274
3275 static ptid_t
3276 filter_exit_event (struct lwp_info *event_child,
3277 struct target_waitstatus *ourstatus)
3278 {
3279 ptid_t ptid = event_child->ptid;
3280
3281 if (num_lwps (ptid_get_pid (ptid)) > 1)
3282 {
3283 if (report_thread_events)
3284 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3285 else
3286 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3287
3288 exit_lwp (event_child);
3289 }
3290
3291 return ptid;
3292 }
3293
3294 static ptid_t
3295 linux_nat_wait_1 (struct target_ops *ops,
3296 ptid_t ptid, struct target_waitstatus *ourstatus,
3297 int target_options)
3298 {
3299 sigset_t prev_mask;
3300 enum resume_kind last_resume_kind;
3301 struct lwp_info *lp;
3302 int status;
3303
3304 if (debug_linux_nat)
3305 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3306
3307 /* The first time we get here after starting a new inferior, we may
3308 not have added it to the LWP list yet - this is the earliest
3309 moment at which we know its PID. */
3310 if (ptid_is_pid (inferior_ptid))
3311 {
3312 /* Upgrade the main thread's ptid. */
3313 thread_change_ptid (inferior_ptid,
3314 ptid_build (ptid_get_pid (inferior_ptid),
3315 ptid_get_pid (inferior_ptid), 0));
3316
3317 lp = add_initial_lwp (inferior_ptid);
3318 lp->resumed = 1;
3319 }
3320
3321 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3322 block_child_signals (&prev_mask);
3323
3324 /* First check if there is a LWP with a wait status pending. */
3325 lp = iterate_over_lwps (ptid, status_callback, NULL);
3326 if (lp != NULL)
3327 {
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LLW: Using pending wait status %s for %s.\n",
3331 status_to_str (lp->status),
3332 target_pid_to_str (lp->ptid));
3333 }
3334
3335 /* But if we don't find a pending event, we'll have to wait. Always
3336 pull all events out of the kernel. We'll randomly select an
3337 event LWP out of all that have events, to prevent starvation. */
3338
3339 while (lp == NULL)
3340 {
3341 pid_t lwpid;
3342
3343 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3344 quirks:
3345
3346 - If the thread group leader exits while other threads in the
3347 thread group still exist, waitpid(TGID, ...) hangs. That
3348 waitpid won't return an exit status until the other threads
3349 in the group are reapped.
3350
3351 - When a non-leader thread execs, that thread just vanishes
3352 without reporting an exit (so we'd hang if we waited for it
3353 explicitly in that case). The exec event is reported to
3354 the TGID pid. */
3355
3356 errno = 0;
3357 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3358
3359 if (debug_linux_nat)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "LNW: waitpid(-1, ...) returned %d, %s\n",
3362 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3363
3364 if (lwpid > 0)
3365 {
3366 if (debug_linux_nat)
3367 {
3368 fprintf_unfiltered (gdb_stdlog,
3369 "LLW: waitpid %ld received %s\n",
3370 (long) lwpid, status_to_str (status));
3371 }
3372
3373 linux_nat_filter_event (lwpid, status);
3374 /* Retry until nothing comes out of waitpid. A single
3375 SIGCHLD can indicate more than one child stopped. */
3376 continue;
3377 }
3378
3379 /* Now that we've pulled all events out of the kernel, resume
3380 LWPs that don't have an interesting event to report. */
3381 iterate_over_lwps (minus_one_ptid,
3382 resume_stopped_resumed_lwps, &minus_one_ptid);
3383
3384 /* ... and find an LWP with a status to report to the core, if
3385 any. */
3386 lp = iterate_over_lwps (ptid, status_callback, NULL);
3387 if (lp != NULL)
3388 break;
3389
3390 /* Check for zombie thread group leaders. Those can't be reaped
3391 until all other threads in the thread group are. */
3392 check_zombie_leaders ();
3393
3394 /* If there are no resumed children left, bail. We'd be stuck
3395 forever in the sigsuspend call below otherwise. */
3396 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3397 {
3398 if (debug_linux_nat)
3399 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3400
3401 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3402
3403 restore_child_signals_mask (&prev_mask);
3404 return minus_one_ptid;
3405 }
3406
3407 /* No interesting event to report to the core. */
3408
3409 if (target_options & TARGET_WNOHANG)
3410 {
3411 if (debug_linux_nat)
3412 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3413
3414 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3415 restore_child_signals_mask (&prev_mask);
3416 return minus_one_ptid;
3417 }
3418
3419 /* We shouldn't end up here unless we want to try again. */
3420 gdb_assert (lp == NULL);
3421
3422 /* Block until we get an event reported with SIGCHLD. */
3423 if (debug_linux_nat)
3424 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3425 sigsuspend (&suspend_mask);
3426 }
3427
3428 gdb_assert (lp);
3429
3430 status = lp->status;
3431 lp->status = 0;
3432
3433 if (!target_is_non_stop_p ())
3434 {
3435 /* Now stop all other LWP's ... */
3436 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3437
3438 /* ... and wait until all of them have reported back that
3439 they're no longer running. */
3440 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3441 }
3442
3443 /* If we're not waiting for a specific LWP, choose an event LWP from
3444 among those that have had events. Giving equal priority to all
3445 LWPs that have had events helps prevent starvation. */
3446 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3447 select_event_lwp (ptid, &lp, &status);
3448
3449 gdb_assert (lp != NULL);
3450
3451 /* Now that we've selected our final event LWP, un-adjust its PC if
3452 it was a software breakpoint, and we can't reliably support the
3453 "stopped by software breakpoint" stop reason. */
3454 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3455 && !USE_SIGTRAP_SIGINFO)
3456 {
3457 struct regcache *regcache = get_thread_regcache (lp->ptid);
3458 struct gdbarch *gdbarch = regcache->arch ();
3459 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3460
3461 if (decr_pc != 0)
3462 {
3463 CORE_ADDR pc;
3464
3465 pc = regcache_read_pc (regcache);
3466 regcache_write_pc (regcache, pc + decr_pc);
3467 }
3468 }
3469
3470 /* We'll need this to determine whether to report a SIGSTOP as
3471 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3472 clears it. */
3473 last_resume_kind = lp->last_resume_kind;
3474
3475 if (!target_is_non_stop_p ())
3476 {
3477 /* In all-stop, from the core's perspective, all LWPs are now
3478 stopped until a new resume action is sent over. */
3479 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3480 }
3481 else
3482 {
3483 resume_clear_callback (lp, NULL);
3484 }
3485
3486 if (linux_nat_status_is_event (status))
3487 {
3488 if (debug_linux_nat)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "LLW: trap ptid is %s.\n",
3491 target_pid_to_str (lp->ptid));
3492 }
3493
3494 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3495 {
3496 *ourstatus = lp->waitstatus;
3497 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3498 }
3499 else
3500 store_waitstatus (ourstatus, status);
3501
3502 if (debug_linux_nat)
3503 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3504
3505 restore_child_signals_mask (&prev_mask);
3506
3507 if (last_resume_kind == resume_stop
3508 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3509 && WSTOPSIG (status) == SIGSTOP)
3510 {
3511 /* A thread that has been requested to stop by GDB with
3512 target_stop, and it stopped cleanly, so report as SIG0. The
3513 use of SIGSTOP is an implementation detail. */
3514 ourstatus->value.sig = GDB_SIGNAL_0;
3515 }
3516
3517 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3518 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3519 lp->core = -1;
3520 else
3521 lp->core = linux_common_core_of_thread (lp->ptid);
3522
3523 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3524 return filter_exit_event (lp, ourstatus);
3525
3526 return lp->ptid;
3527 }
3528
3529 /* Resume LWPs that are currently stopped without any pending status
3530 to report, but are resumed from the core's perspective. */
3531
3532 static int
3533 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3534 {
3535 ptid_t *wait_ptid_p = (ptid_t *) data;
3536
3537 if (!lp->stopped)
3538 {
3539 if (debug_linux_nat)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "RSRL: NOT resuming LWP %s, not stopped\n",
3542 target_pid_to_str (lp->ptid));
3543 }
3544 else if (!lp->resumed)
3545 {
3546 if (debug_linux_nat)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "RSRL: NOT resuming LWP %s, not resumed\n",
3549 target_pid_to_str (lp->ptid));
3550 }
3551 else if (lwp_status_pending_p (lp))
3552 {
3553 if (debug_linux_nat)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "RSRL: NOT resuming LWP %s, has pending status\n",
3556 target_pid_to_str (lp->ptid));
3557 }
3558 else
3559 {
3560 struct regcache *regcache = get_thread_regcache (lp->ptid);
3561 struct gdbarch *gdbarch = regcache->arch ();
3562
3563 TRY
3564 {
3565 CORE_ADDR pc = regcache_read_pc (regcache);
3566 int leave_stopped = 0;
3567
3568 /* Don't bother if there's a breakpoint at PC that we'd hit
3569 immediately, and we're not waiting for this LWP. */
3570 if (!ptid_match (lp->ptid, *wait_ptid_p))
3571 {
3572 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3573 leave_stopped = 1;
3574 }
3575
3576 if (!leave_stopped)
3577 {
3578 if (debug_linux_nat)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "RSRL: resuming stopped-resumed LWP %s at "
3581 "%s: step=%d\n",
3582 target_pid_to_str (lp->ptid),
3583 paddress (gdbarch, pc),
3584 lp->step);
3585
3586 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3587 }
3588 }
3589 CATCH (ex, RETURN_MASK_ERROR)
3590 {
3591 if (!check_ptrace_stopped_lwp_gone (lp))
3592 throw_exception (ex);
3593 }
3594 END_CATCH
3595 }
3596
3597 return 0;
3598 }
3599
3600 static ptid_t
3601 linux_nat_wait (struct target_ops *ops,
3602 ptid_t ptid, struct target_waitstatus *ourstatus,
3603 int target_options)
3604 {
3605 ptid_t event_ptid;
3606
3607 if (debug_linux_nat)
3608 {
3609 char *options_string;
3610
3611 options_string = target_options_to_string (target_options);
3612 fprintf_unfiltered (gdb_stdlog,
3613 "linux_nat_wait: [%s], [%s]\n",
3614 target_pid_to_str (ptid),
3615 options_string);
3616 xfree (options_string);
3617 }
3618
3619 /* Flush the async file first. */
3620 if (target_is_async_p ())
3621 async_file_flush ();
3622
3623 /* Resume LWPs that are currently stopped without any pending status
3624 to report, but are resumed from the core's perspective. LWPs get
3625 in this state if we find them stopping at a time we're not
3626 interested in reporting the event (target_wait on a
3627 specific_process, for example, see linux_nat_wait_1), and
3628 meanwhile the event became uninteresting. Don't bother resuming
3629 LWPs we're not going to wait for if they'd stop immediately. */
3630 if (target_is_non_stop_p ())
3631 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3632
3633 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3634
3635 /* If we requested any event, and something came out, assume there
3636 may be more. If we requested a specific lwp or process, also
3637 assume there may be more. */
3638 if (target_is_async_p ()
3639 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3640 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3641 || !ptid_equal (ptid, minus_one_ptid)))
3642 async_file_mark ();
3643
3644 return event_ptid;
3645 }
3646
3647 /* Kill one LWP. */
3648
3649 static void
3650 kill_one_lwp (pid_t pid)
3651 {
3652 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3653
3654 errno = 0;
3655 kill_lwp (pid, SIGKILL);
3656 if (debug_linux_nat)
3657 {
3658 int save_errno = errno;
3659
3660 fprintf_unfiltered (gdb_stdlog,
3661 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3662 save_errno ? safe_strerror (save_errno) : "OK");
3663 }
3664
3665 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3666
3667 errno = 0;
3668 ptrace (PTRACE_KILL, pid, 0, 0);
3669 if (debug_linux_nat)
3670 {
3671 int save_errno = errno;
3672
3673 fprintf_unfiltered (gdb_stdlog,
3674 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3675 save_errno ? safe_strerror (save_errno) : "OK");
3676 }
3677 }
3678
3679 /* Wait for an LWP to die. */
3680
3681 static void
3682 kill_wait_one_lwp (pid_t pid)
3683 {
3684 pid_t res;
3685
3686 /* We must make sure that there are no pending events (delayed
3687 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3688 program doesn't interfere with any following debugging session. */
3689
3690 do
3691 {
3692 res = my_waitpid (pid, NULL, __WALL);
3693 if (res != (pid_t) -1)
3694 {
3695 if (debug_linux_nat)
3696 fprintf_unfiltered (gdb_stdlog,
3697 "KWC: wait %ld received unknown.\n",
3698 (long) pid);
3699 /* The Linux kernel sometimes fails to kill a thread
3700 completely after PTRACE_KILL; that goes from the stop
3701 point in do_fork out to the one in get_signal_to_deliver
3702 and waits again. So kill it again. */
3703 kill_one_lwp (pid);
3704 }
3705 }
3706 while (res == pid);
3707
3708 gdb_assert (res == -1 && errno == ECHILD);
3709 }
3710
3711 /* Callback for iterate_over_lwps. */
3712
3713 static int
3714 kill_callback (struct lwp_info *lp, void *data)
3715 {
3716 kill_one_lwp (ptid_get_lwp (lp->ptid));
3717 return 0;
3718 }
3719
3720 /* Callback for iterate_over_lwps. */
3721
3722 static int
3723 kill_wait_callback (struct lwp_info *lp, void *data)
3724 {
3725 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3726 return 0;
3727 }
3728
3729 /* Kill the fork children of any threads of inferior INF that are
3730 stopped at a fork event. */
3731
3732 static void
3733 kill_unfollowed_fork_children (struct inferior *inf)
3734 {
3735 struct thread_info *thread;
3736
3737 ALL_NON_EXITED_THREADS (thread)
3738 if (thread->inf == inf)
3739 {
3740 struct target_waitstatus *ws = &thread->pending_follow;
3741
3742 if (ws->kind == TARGET_WAITKIND_FORKED
3743 || ws->kind == TARGET_WAITKIND_VFORKED)
3744 {
3745 ptid_t child_ptid = ws->value.related_pid;
3746 int child_pid = ptid_get_pid (child_ptid);
3747 int child_lwp = ptid_get_lwp (child_ptid);
3748
3749 kill_one_lwp (child_lwp);
3750 kill_wait_one_lwp (child_lwp);
3751
3752 /* Let the arch-specific native code know this process is
3753 gone. */
3754 linux_nat_forget_process (child_pid);
3755 }
3756 }
3757 }
3758
3759 static void
3760 linux_nat_kill (struct target_ops *ops)
3761 {
3762 /* If we're stopped while forking and we haven't followed yet,
3763 kill the other task. We need to do this first because the
3764 parent will be sleeping if this is a vfork. */
3765 kill_unfollowed_fork_children (current_inferior ());
3766
3767 if (forks_exist_p ())
3768 linux_fork_killall ();
3769 else
3770 {
3771 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3772
3773 /* Stop all threads before killing them, since ptrace requires
3774 that the thread is stopped to sucessfully PTRACE_KILL. */
3775 iterate_over_lwps (ptid, stop_callback, NULL);
3776 /* ... and wait until all of them have reported back that
3777 they're no longer running. */
3778 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3779
3780 /* Kill all LWP's ... */
3781 iterate_over_lwps (ptid, kill_callback, NULL);
3782
3783 /* ... and wait until we've flushed all events. */
3784 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3785 }
3786
3787 target_mourn_inferior (inferior_ptid);
3788 }
3789
3790 static void
3791 linux_nat_mourn_inferior (struct target_ops *ops)
3792 {
3793 int pid = ptid_get_pid (inferior_ptid);
3794
3795 purge_lwp_list (pid);
3796
3797 if (! forks_exist_p ())
3798 /* Normal case, no other forks available. */
3799 linux_ops->to_mourn_inferior (ops);
3800 else
3801 /* Multi-fork case. The current inferior_ptid has exited, but
3802 there are other viable forks to debug. Delete the exiting
3803 one and context-switch to the first available. */
3804 linux_fork_mourn_inferior ();
3805
3806 /* Let the arch-specific native code know this process is gone. */
3807 linux_nat_forget_process (pid);
3808 }
3809
3810 /* Convert a native/host siginfo object, into/from the siginfo in the
3811 layout of the inferiors' architecture. */
3812
3813 static void
3814 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3815 {
3816 int done = 0;
3817
3818 if (linux_nat_siginfo_fixup != NULL)
3819 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3820
3821 /* If there was no callback, or the callback didn't do anything,
3822 then just do a straight memcpy. */
3823 if (!done)
3824 {
3825 if (direction == 1)
3826 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3827 else
3828 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3829 }
3830 }
3831
3832 static enum target_xfer_status
3833 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3834 const char *annex, gdb_byte *readbuf,
3835 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3836 ULONGEST *xfered_len)
3837 {
3838 int pid;
3839 siginfo_t siginfo;
3840 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3841
3842 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3843 gdb_assert (readbuf || writebuf);
3844
3845 pid = ptid_get_lwp (inferior_ptid);
3846 if (pid == 0)
3847 pid = ptid_get_pid (inferior_ptid);
3848
3849 if (offset > sizeof (siginfo))
3850 return TARGET_XFER_E_IO;
3851
3852 errno = 0;
3853 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3854 if (errno != 0)
3855 return TARGET_XFER_E_IO;
3856
3857 /* When GDB is built as a 64-bit application, ptrace writes into
3858 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3859 inferior with a 64-bit GDB should look the same as debugging it
3860 with a 32-bit GDB, we need to convert it. GDB core always sees
3861 the converted layout, so any read/write will have to be done
3862 post-conversion. */
3863 siginfo_fixup (&siginfo, inf_siginfo, 0);
3864
3865 if (offset + len > sizeof (siginfo))
3866 len = sizeof (siginfo) - offset;
3867
3868 if (readbuf != NULL)
3869 memcpy (readbuf, inf_siginfo + offset, len);
3870 else
3871 {
3872 memcpy (inf_siginfo + offset, writebuf, len);
3873
3874 /* Convert back to ptrace layout before flushing it out. */
3875 siginfo_fixup (&siginfo, inf_siginfo, 1);
3876
3877 errno = 0;
3878 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3879 if (errno != 0)
3880 return TARGET_XFER_E_IO;
3881 }
3882
3883 *xfered_len = len;
3884 return TARGET_XFER_OK;
3885 }
3886
3887 static enum target_xfer_status
3888 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3889 const char *annex, gdb_byte *readbuf,
3890 const gdb_byte *writebuf,
3891 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3892 {
3893 enum target_xfer_status xfer;
3894
3895 if (object == TARGET_OBJECT_SIGNAL_INFO)
3896 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3897 offset, len, xfered_len);
3898
3899 /* The target is connected but no live inferior is selected. Pass
3900 this request down to a lower stratum (e.g., the executable
3901 file). */
3902 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3903 return TARGET_XFER_EOF;
3904
3905 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3906 offset, len, xfered_len);
3907
3908 return xfer;
3909 }
3910
3911 static int
3912 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3913 {
3914 /* As long as a PTID is in lwp list, consider it alive. */
3915 return find_lwp_pid (ptid) != NULL;
3916 }
3917
3918 /* Implement the to_update_thread_list target method for this
3919 target. */
3920
3921 static void
3922 linux_nat_update_thread_list (struct target_ops *ops)
3923 {
3924 struct lwp_info *lwp;
3925
3926 /* We add/delete threads from the list as clone/exit events are
3927 processed, so just try deleting exited threads still in the
3928 thread list. */
3929 delete_exited_threads ();
3930
3931 /* Update the processor core that each lwp/thread was last seen
3932 running on. */
3933 ALL_LWPS (lwp)
3934 {
3935 /* Avoid accessing /proc if the thread hasn't run since we last
3936 time we fetched the thread's core. Accessing /proc becomes
3937 noticeably expensive when we have thousands of LWPs. */
3938 if (lwp->core == -1)
3939 lwp->core = linux_common_core_of_thread (lwp->ptid);
3940 }
3941 }
3942
3943 static const char *
3944 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3945 {
3946 static char buf[64];
3947
3948 if (ptid_lwp_p (ptid)
3949 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3950 || num_lwps (ptid_get_pid (ptid)) > 1))
3951 {
3952 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3953 return buf;
3954 }
3955
3956 return normal_pid_to_str (ptid);
3957 }
3958
3959 static const char *
3960 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3961 {
3962 return linux_proc_tid_get_name (thr->ptid);
3963 }
3964
3965 /* Accepts an integer PID; Returns a string representing a file that
3966 can be opened to get the symbols for the child process. */
3967
3968 static char *
3969 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3970 {
3971 return linux_proc_pid_to_exec_file (pid);
3972 }
3973
3974 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3975 Because we can use a single read/write call, this can be much more
3976 efficient than banging away at PTRACE_PEEKTEXT. */
3977
3978 static enum target_xfer_status
3979 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3980 const char *annex, gdb_byte *readbuf,
3981 const gdb_byte *writebuf,
3982 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3983 {
3984 LONGEST ret;
3985 int fd;
3986 char filename[64];
3987
3988 if (object != TARGET_OBJECT_MEMORY)
3989 return TARGET_XFER_EOF;
3990
3991 /* Don't bother for one word. */
3992 if (len < 3 * sizeof (long))
3993 return TARGET_XFER_EOF;
3994
3995 /* We could keep this file open and cache it - possibly one per
3996 thread. That requires some juggling, but is even faster. */
3997 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3998 ptid_get_lwp (inferior_ptid));
3999 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
4000 | O_LARGEFILE), 0);
4001 if (fd == -1)
4002 return TARGET_XFER_EOF;
4003
4004 /* Use pread64/pwrite64 if available, since they save a syscall and can
4005 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4006 debugging a SPARC64 application). */
4007 #ifdef HAVE_PREAD64
4008 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4009 : pwrite64 (fd, writebuf, len, offset));
4010 #else
4011 ret = lseek (fd, offset, SEEK_SET);
4012 if (ret != -1)
4013 ret = (readbuf ? read (fd, readbuf, len)
4014 : write (fd, writebuf, len));
4015 #endif
4016
4017 close (fd);
4018
4019 if (ret == -1 || ret == 0)
4020 return TARGET_XFER_EOF;
4021 else
4022 {
4023 *xfered_len = ret;
4024 return TARGET_XFER_OK;
4025 }
4026 }
4027
4028
4029 /* Enumerate spufs IDs for process PID. */
4030 static LONGEST
4031 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4032 {
4033 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4034 LONGEST pos = 0;
4035 LONGEST written = 0;
4036 char path[128];
4037 DIR *dir;
4038 struct dirent *entry;
4039
4040 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4041 dir = opendir (path);
4042 if (!dir)
4043 return -1;
4044
4045 rewinddir (dir);
4046 while ((entry = readdir (dir)) != NULL)
4047 {
4048 struct stat st;
4049 struct statfs stfs;
4050 int fd;
4051
4052 fd = atoi (entry->d_name);
4053 if (!fd)
4054 continue;
4055
4056 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4057 if (stat (path, &st) != 0)
4058 continue;
4059 if (!S_ISDIR (st.st_mode))
4060 continue;
4061
4062 if (statfs (path, &stfs) != 0)
4063 continue;
4064 if (stfs.f_type != SPUFS_MAGIC)
4065 continue;
4066
4067 if (pos >= offset && pos + 4 <= offset + len)
4068 {
4069 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4070 written += 4;
4071 }
4072 pos += 4;
4073 }
4074
4075 closedir (dir);
4076 return written;
4077 }
4078
4079 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4080 object type, using the /proc file system. */
4081
4082 static enum target_xfer_status
4083 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4084 const char *annex, gdb_byte *readbuf,
4085 const gdb_byte *writebuf,
4086 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4087 {
4088 char buf[128];
4089 int fd = 0;
4090 int ret = -1;
4091 int pid = ptid_get_lwp (inferior_ptid);
4092
4093 if (!annex)
4094 {
4095 if (!readbuf)
4096 return TARGET_XFER_E_IO;
4097 else
4098 {
4099 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4100
4101 if (l < 0)
4102 return TARGET_XFER_E_IO;
4103 else if (l == 0)
4104 return TARGET_XFER_EOF;
4105 else
4106 {
4107 *xfered_len = (ULONGEST) l;
4108 return TARGET_XFER_OK;
4109 }
4110 }
4111 }
4112
4113 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4114 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4115 if (fd <= 0)
4116 return TARGET_XFER_E_IO;
4117
4118 if (offset != 0
4119 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4120 {
4121 close (fd);
4122 return TARGET_XFER_EOF;
4123 }
4124
4125 if (writebuf)
4126 ret = write (fd, writebuf, (size_t) len);
4127 else if (readbuf)
4128 ret = read (fd, readbuf, (size_t) len);
4129
4130 close (fd);
4131
4132 if (ret < 0)
4133 return TARGET_XFER_E_IO;
4134 else if (ret == 0)
4135 return TARGET_XFER_EOF;
4136 else
4137 {
4138 *xfered_len = (ULONGEST) ret;
4139 return TARGET_XFER_OK;
4140 }
4141 }
4142
4143
4144 /* Parse LINE as a signal set and add its set bits to SIGS. */
4145
4146 static void
4147 add_line_to_sigset (const char *line, sigset_t *sigs)
4148 {
4149 int len = strlen (line) - 1;
4150 const char *p;
4151 int signum;
4152
4153 if (line[len] != '\n')
4154 error (_("Could not parse signal set: %s"), line);
4155
4156 p = line;
4157 signum = len * 4;
4158 while (len-- > 0)
4159 {
4160 int digit;
4161
4162 if (*p >= '0' && *p <= '9')
4163 digit = *p - '0';
4164 else if (*p >= 'a' && *p <= 'f')
4165 digit = *p - 'a' + 10;
4166 else
4167 error (_("Could not parse signal set: %s"), line);
4168
4169 signum -= 4;
4170
4171 if (digit & 1)
4172 sigaddset (sigs, signum + 1);
4173 if (digit & 2)
4174 sigaddset (sigs, signum + 2);
4175 if (digit & 4)
4176 sigaddset (sigs, signum + 3);
4177 if (digit & 8)
4178 sigaddset (sigs, signum + 4);
4179
4180 p++;
4181 }
4182 }
4183
4184 /* Find process PID's pending signals from /proc/pid/status and set
4185 SIGS to match. */
4186
4187 void
4188 linux_proc_pending_signals (int pid, sigset_t *pending,
4189 sigset_t *blocked, sigset_t *ignored)
4190 {
4191 char buffer[PATH_MAX], fname[PATH_MAX];
4192
4193 sigemptyset (pending);
4194 sigemptyset (blocked);
4195 sigemptyset (ignored);
4196 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4197 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4198 if (procfile == NULL)
4199 error (_("Could not open %s"), fname);
4200
4201 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4202 {
4203 /* Normal queued signals are on the SigPnd line in the status
4204 file. However, 2.6 kernels also have a "shared" pending
4205 queue for delivering signals to a thread group, so check for
4206 a ShdPnd line also.
4207
4208 Unfortunately some Red Hat kernels include the shared pending
4209 queue but not the ShdPnd status field. */
4210
4211 if (startswith (buffer, "SigPnd:\t"))
4212 add_line_to_sigset (buffer + 8, pending);
4213 else if (startswith (buffer, "ShdPnd:\t"))
4214 add_line_to_sigset (buffer + 8, pending);
4215 else if (startswith (buffer, "SigBlk:\t"))
4216 add_line_to_sigset (buffer + 8, blocked);
4217 else if (startswith (buffer, "SigIgn:\t"))
4218 add_line_to_sigset (buffer + 8, ignored);
4219 }
4220 }
4221
4222 static enum target_xfer_status
4223 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4224 const char *annex, gdb_byte *readbuf,
4225 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4226 ULONGEST *xfered_len)
4227 {
4228 gdb_assert (object == TARGET_OBJECT_OSDATA);
4229
4230 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4231 if (*xfered_len == 0)
4232 return TARGET_XFER_EOF;
4233 else
4234 return TARGET_XFER_OK;
4235 }
4236
4237 static enum target_xfer_status
4238 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4239 const char *annex, gdb_byte *readbuf,
4240 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4241 ULONGEST *xfered_len)
4242 {
4243 enum target_xfer_status xfer;
4244
4245 if (object == TARGET_OBJECT_AUXV)
4246 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4247 offset, len, xfered_len);
4248
4249 if (object == TARGET_OBJECT_OSDATA)
4250 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4251 offset, len, xfered_len);
4252
4253 if (object == TARGET_OBJECT_SPU)
4254 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4255 offset, len, xfered_len);
4256
4257 /* GDB calculates all the addresses in possibly larget width of the address.
4258 Address width needs to be masked before its final use - either by
4259 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4260
4261 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4262
4263 if (object == TARGET_OBJECT_MEMORY)
4264 {
4265 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4266
4267 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4268 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4269 }
4270
4271 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4272 offset, len, xfered_len);
4273 if (xfer != TARGET_XFER_EOF)
4274 return xfer;
4275
4276 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4277 offset, len, xfered_len);
4278 }
4279
4280 static void
4281 cleanup_target_stop (void *arg)
4282 {
4283 ptid_t *ptid = (ptid_t *) arg;
4284
4285 gdb_assert (arg != NULL);
4286
4287 /* Unpause all */
4288 target_continue_no_signal (*ptid);
4289 }
4290
4291 static VEC(static_tracepoint_marker_p) *
4292 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4293 const char *strid)
4294 {
4295 char s[IPA_CMD_BUF_SIZE];
4296 struct cleanup *old_chain;
4297 int pid = ptid_get_pid (inferior_ptid);
4298 VEC(static_tracepoint_marker_p) *markers = NULL;
4299 struct static_tracepoint_marker *marker = NULL;
4300 const char *p = s;
4301 ptid_t ptid = ptid_build (pid, 0, 0);
4302
4303 /* Pause all */
4304 target_stop (ptid);
4305
4306 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4307 s[sizeof ("qTfSTM")] = 0;
4308
4309 agent_run_command (pid, s, strlen (s) + 1);
4310
4311 old_chain = make_cleanup (free_current_marker, &marker);
4312 make_cleanup (cleanup_target_stop, &ptid);
4313
4314 while (*p++ == 'm')
4315 {
4316 if (marker == NULL)
4317 marker = XCNEW (struct static_tracepoint_marker);
4318
4319 do
4320 {
4321 parse_static_tracepoint_marker_definition (p, &p, marker);
4322
4323 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4324 {
4325 VEC_safe_push (static_tracepoint_marker_p,
4326 markers, marker);
4327 marker = NULL;
4328 }
4329 else
4330 {
4331 release_static_tracepoint_marker (marker);
4332 memset (marker, 0, sizeof (*marker));
4333 }
4334 }
4335 while (*p++ == ','); /* comma-separated list */
4336
4337 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4338 s[sizeof ("qTsSTM")] = 0;
4339 agent_run_command (pid, s, strlen (s) + 1);
4340 p = s;
4341 }
4342
4343 do_cleanups (old_chain);
4344
4345 return markers;
4346 }
4347
4348 /* Create a prototype generic GNU/Linux target. The client can override
4349 it with local methods. */
4350
4351 static void
4352 linux_target_install_ops (struct target_ops *t)
4353 {
4354 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4355 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4356 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4357 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4358 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4359 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4360 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4361 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4362 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4363 t->to_post_attach = linux_child_post_attach;
4364 t->to_follow_fork = linux_child_follow_fork;
4365
4366 super_xfer_partial = t->to_xfer_partial;
4367 t->to_xfer_partial = linux_xfer_partial;
4368
4369 t->to_static_tracepoint_markers_by_strid
4370 = linux_child_static_tracepoint_markers_by_strid;
4371 }
4372
4373 struct target_ops *
4374 linux_target (void)
4375 {
4376 struct target_ops *t;
4377
4378 t = inf_ptrace_target ();
4379 linux_target_install_ops (t);
4380
4381 return t;
4382 }
4383
4384 struct target_ops *
4385 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4386 {
4387 struct target_ops *t;
4388
4389 t = inf_ptrace_trad_target (register_u_offset);
4390 linux_target_install_ops (t);
4391
4392 return t;
4393 }
4394
4395 /* target_is_async_p implementation. */
4396
4397 static int
4398 linux_nat_is_async_p (struct target_ops *ops)
4399 {
4400 return linux_is_async_p ();
4401 }
4402
4403 /* target_can_async_p implementation. */
4404
4405 static int
4406 linux_nat_can_async_p (struct target_ops *ops)
4407 {
4408 /* We're always async, unless the user explicitly prevented it with the
4409 "maint set target-async" command. */
4410 return target_async_permitted;
4411 }
4412
4413 static int
4414 linux_nat_supports_non_stop (struct target_ops *self)
4415 {
4416 return 1;
4417 }
4418
4419 /* to_always_non_stop_p implementation. */
4420
4421 static int
4422 linux_nat_always_non_stop_p (struct target_ops *self)
4423 {
4424 return 1;
4425 }
4426
4427 /* True if we want to support multi-process. To be removed when GDB
4428 supports multi-exec. */
4429
4430 int linux_multi_process = 1;
4431
4432 static int
4433 linux_nat_supports_multi_process (struct target_ops *self)
4434 {
4435 return linux_multi_process;
4436 }
4437
4438 static int
4439 linux_nat_supports_disable_randomization (struct target_ops *self)
4440 {
4441 #ifdef HAVE_PERSONALITY
4442 return 1;
4443 #else
4444 return 0;
4445 #endif
4446 }
4447
4448 static int async_terminal_is_ours = 1;
4449
4450 /* target_terminal_inferior implementation.
4451
4452 This is a wrapper around child_terminal_inferior to add async support. */
4453
4454 static void
4455 linux_nat_terminal_inferior (struct target_ops *self)
4456 {
4457 child_terminal_inferior (self);
4458
4459 /* Calls to target_terminal_*() are meant to be idempotent. */
4460 if (!async_terminal_is_ours)
4461 return;
4462
4463 async_terminal_is_ours = 0;
4464 set_sigint_trap ();
4465 }
4466
4467 /* target_terminal::ours implementation.
4468
4469 This is a wrapper around child_terminal_ours to add async support (and
4470 implement the target_terminal::ours vs target_terminal::ours_for_output
4471 distinction). child_terminal_ours is currently no different than
4472 child_terminal_ours_for_output.
4473 We leave target_terminal::ours_for_output alone, leaving it to
4474 child_terminal_ours_for_output. */
4475
4476 static void
4477 linux_nat_terminal_ours (struct target_ops *self)
4478 {
4479 /* GDB should never give the terminal to the inferior if the
4480 inferior is running in the background (run&, continue&, etc.),
4481 but claiming it sure should. */
4482 child_terminal_ours (self);
4483
4484 if (async_terminal_is_ours)
4485 return;
4486
4487 clear_sigint_trap ();
4488 async_terminal_is_ours = 1;
4489 }
4490
4491 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4492 so we notice when any child changes state, and notify the
4493 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4494 above to wait for the arrival of a SIGCHLD. */
4495
4496 static void
4497 sigchld_handler (int signo)
4498 {
4499 int old_errno = errno;
4500
4501 if (debug_linux_nat)
4502 ui_file_write_async_safe (gdb_stdlog,
4503 "sigchld\n", sizeof ("sigchld\n") - 1);
4504
4505 if (signo == SIGCHLD
4506 && linux_nat_event_pipe[0] != -1)
4507 async_file_mark (); /* Let the event loop know that there are
4508 events to handle. */
4509
4510 errno = old_errno;
4511 }
4512
4513 /* Callback registered with the target events file descriptor. */
4514
4515 static void
4516 handle_target_event (int error, gdb_client_data client_data)
4517 {
4518 inferior_event_handler (INF_REG_EVENT, NULL);
4519 }
4520
4521 /* Create/destroy the target events pipe. Returns previous state. */
4522
4523 static int
4524 linux_async_pipe (int enable)
4525 {
4526 int previous = linux_is_async_p ();
4527
4528 if (previous != enable)
4529 {
4530 sigset_t prev_mask;
4531
4532 /* Block child signals while we create/destroy the pipe, as
4533 their handler writes to it. */
4534 block_child_signals (&prev_mask);
4535
4536 if (enable)
4537 {
4538 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4539 internal_error (__FILE__, __LINE__,
4540 "creating event pipe failed.");
4541
4542 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4543 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4544 }
4545 else
4546 {
4547 close (linux_nat_event_pipe[0]);
4548 close (linux_nat_event_pipe[1]);
4549 linux_nat_event_pipe[0] = -1;
4550 linux_nat_event_pipe[1] = -1;
4551 }
4552
4553 restore_child_signals_mask (&prev_mask);
4554 }
4555
4556 return previous;
4557 }
4558
4559 /* target_async implementation. */
4560
4561 static void
4562 linux_nat_async (struct target_ops *ops, int enable)
4563 {
4564 if (enable)
4565 {
4566 if (!linux_async_pipe (1))
4567 {
4568 add_file_handler (linux_nat_event_pipe[0],
4569 handle_target_event, NULL);
4570 /* There may be pending events to handle. Tell the event loop
4571 to poll them. */
4572 async_file_mark ();
4573 }
4574 }
4575 else
4576 {
4577 delete_file_handler (linux_nat_event_pipe[0]);
4578 linux_async_pipe (0);
4579 }
4580 return;
4581 }
4582
4583 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4584 event came out. */
4585
4586 static int
4587 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4588 {
4589 if (!lwp->stopped)
4590 {
4591 if (debug_linux_nat)
4592 fprintf_unfiltered (gdb_stdlog,
4593 "LNSL: running -> suspending %s\n",
4594 target_pid_to_str (lwp->ptid));
4595
4596
4597 if (lwp->last_resume_kind == resume_stop)
4598 {
4599 if (debug_linux_nat)
4600 fprintf_unfiltered (gdb_stdlog,
4601 "linux-nat: already stopping LWP %ld at "
4602 "GDB's request\n",
4603 ptid_get_lwp (lwp->ptid));
4604 return 0;
4605 }
4606
4607 stop_callback (lwp, NULL);
4608 lwp->last_resume_kind = resume_stop;
4609 }
4610 else
4611 {
4612 /* Already known to be stopped; do nothing. */
4613
4614 if (debug_linux_nat)
4615 {
4616 if (find_thread_ptid (lwp->ptid)->stop_requested)
4617 fprintf_unfiltered (gdb_stdlog,
4618 "LNSL: already stopped/stop_requested %s\n",
4619 target_pid_to_str (lwp->ptid));
4620 else
4621 fprintf_unfiltered (gdb_stdlog,
4622 "LNSL: already stopped/no "
4623 "stop_requested yet %s\n",
4624 target_pid_to_str (lwp->ptid));
4625 }
4626 }
4627 return 0;
4628 }
4629
4630 static void
4631 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4632 {
4633 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4634 }
4635
4636 static void
4637 linux_nat_close (struct target_ops *self)
4638 {
4639 /* Unregister from the event loop. */
4640 if (linux_nat_is_async_p (self))
4641 linux_nat_async (self, 0);
4642
4643 if (linux_ops->to_close)
4644 linux_ops->to_close (linux_ops);
4645
4646 super_close (self);
4647 }
4648
4649 /* When requests are passed down from the linux-nat layer to the
4650 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4651 used. The address space pointer is stored in the inferior object,
4652 but the common code that is passed such ptid can't tell whether
4653 lwpid is a "main" process id or not (it assumes so). We reverse
4654 look up the "main" process id from the lwp here. */
4655
4656 static struct address_space *
4657 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4658 {
4659 struct lwp_info *lwp;
4660 struct inferior *inf;
4661 int pid;
4662
4663 if (ptid_get_lwp (ptid) == 0)
4664 {
4665 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4666 tgid. */
4667 lwp = find_lwp_pid (ptid);
4668 pid = ptid_get_pid (lwp->ptid);
4669 }
4670 else
4671 {
4672 /* A (pid,lwpid,0) ptid. */
4673 pid = ptid_get_pid (ptid);
4674 }
4675
4676 inf = find_inferior_pid (pid);
4677 gdb_assert (inf != NULL);
4678 return inf->aspace;
4679 }
4680
4681 /* Return the cached value of the processor core for thread PTID. */
4682
4683 static int
4684 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4685 {
4686 struct lwp_info *info = find_lwp_pid (ptid);
4687
4688 if (info)
4689 return info->core;
4690 return -1;
4691 }
4692
4693 /* Implementation of to_filesystem_is_local. */
4694
4695 static int
4696 linux_nat_filesystem_is_local (struct target_ops *ops)
4697 {
4698 struct inferior *inf = current_inferior ();
4699
4700 if (inf->fake_pid_p || inf->pid == 0)
4701 return 1;
4702
4703 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4704 }
4705
4706 /* Convert the INF argument passed to a to_fileio_* method
4707 to a process ID suitable for passing to its corresponding
4708 linux_mntns_* function. If INF is non-NULL then the
4709 caller is requesting the filesystem seen by INF. If INF
4710 is NULL then the caller is requesting the filesystem seen
4711 by the GDB. We fall back to GDB's filesystem in the case
4712 that INF is non-NULL but its PID is unknown. */
4713
4714 static pid_t
4715 linux_nat_fileio_pid_of (struct inferior *inf)
4716 {
4717 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4718 return getpid ();
4719 else
4720 return inf->pid;
4721 }
4722
4723 /* Implementation of to_fileio_open. */
4724
4725 static int
4726 linux_nat_fileio_open (struct target_ops *self,
4727 struct inferior *inf, const char *filename,
4728 int flags, int mode, int warn_if_slow,
4729 int *target_errno)
4730 {
4731 int nat_flags;
4732 mode_t nat_mode;
4733 int fd;
4734
4735 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4736 || fileio_to_host_mode (mode, &nat_mode) == -1)
4737 {
4738 *target_errno = FILEIO_EINVAL;
4739 return -1;
4740 }
4741
4742 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4743 filename, nat_flags, nat_mode);
4744 if (fd == -1)
4745 *target_errno = host_to_fileio_error (errno);
4746
4747 return fd;
4748 }
4749
4750 /* Implementation of to_fileio_readlink. */
4751
4752 static char *
4753 linux_nat_fileio_readlink (struct target_ops *self,
4754 struct inferior *inf, const char *filename,
4755 int *target_errno)
4756 {
4757 char buf[PATH_MAX];
4758 int len;
4759 char *ret;
4760
4761 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4762 filename, buf, sizeof (buf));
4763 if (len < 0)
4764 {
4765 *target_errno = host_to_fileio_error (errno);
4766 return NULL;
4767 }
4768
4769 ret = (char *) xmalloc (len + 1);
4770 memcpy (ret, buf, len);
4771 ret[len] = '\0';
4772 return ret;
4773 }
4774
4775 /* Implementation of to_fileio_unlink. */
4776
4777 static int
4778 linux_nat_fileio_unlink (struct target_ops *self,
4779 struct inferior *inf, const char *filename,
4780 int *target_errno)
4781 {
4782 int ret;
4783
4784 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4785 filename);
4786 if (ret == -1)
4787 *target_errno = host_to_fileio_error (errno);
4788
4789 return ret;
4790 }
4791
4792 /* Implementation of the to_thread_events method. */
4793
4794 static void
4795 linux_nat_thread_events (struct target_ops *ops, int enable)
4796 {
4797 report_thread_events = enable;
4798 }
4799
4800 void
4801 linux_nat_add_target (struct target_ops *t)
4802 {
4803 /* Save the provided single-threaded target. We save this in a separate
4804 variable because another target we've inherited from (e.g. inf-ptrace)
4805 may have saved a pointer to T; we want to use it for the final
4806 process stratum target. */
4807 linux_ops_saved = *t;
4808 linux_ops = &linux_ops_saved;
4809
4810 /* Override some methods for multithreading. */
4811 t->to_create_inferior = linux_nat_create_inferior;
4812 t->to_attach = linux_nat_attach;
4813 t->to_detach = linux_nat_detach;
4814 t->to_resume = linux_nat_resume;
4815 t->to_wait = linux_nat_wait;
4816 t->to_pass_signals = linux_nat_pass_signals;
4817 t->to_xfer_partial = linux_nat_xfer_partial;
4818 t->to_kill = linux_nat_kill;
4819 t->to_mourn_inferior = linux_nat_mourn_inferior;
4820 t->to_thread_alive = linux_nat_thread_alive;
4821 t->to_update_thread_list = linux_nat_update_thread_list;
4822 t->to_pid_to_str = linux_nat_pid_to_str;
4823 t->to_thread_name = linux_nat_thread_name;
4824 t->to_has_thread_control = tc_schedlock;
4825 t->to_thread_address_space = linux_nat_thread_address_space;
4826 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4827 t->to_stopped_data_address = linux_nat_stopped_data_address;
4828 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4829 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4830 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4831 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4832 t->to_thread_events = linux_nat_thread_events;
4833
4834 t->to_can_async_p = linux_nat_can_async_p;
4835 t->to_is_async_p = linux_nat_is_async_p;
4836 t->to_supports_non_stop = linux_nat_supports_non_stop;
4837 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4838 t->to_async = linux_nat_async;
4839 t->to_terminal_inferior = linux_nat_terminal_inferior;
4840 t->to_terminal_ours = linux_nat_terminal_ours;
4841
4842 super_close = t->to_close;
4843 t->to_close = linux_nat_close;
4844
4845 t->to_stop = linux_nat_stop;
4846
4847 t->to_supports_multi_process = linux_nat_supports_multi_process;
4848
4849 t->to_supports_disable_randomization
4850 = linux_nat_supports_disable_randomization;
4851
4852 t->to_core_of_thread = linux_nat_core_of_thread;
4853
4854 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4855 t->to_fileio_open = linux_nat_fileio_open;
4856 t->to_fileio_readlink = linux_nat_fileio_readlink;
4857 t->to_fileio_unlink = linux_nat_fileio_unlink;
4858
4859 /* We don't change the stratum; this target will sit at
4860 process_stratum and thread_db will set at thread_stratum. This
4861 is a little strange, since this is a multi-threaded-capable
4862 target, but we want to be on the stack below thread_db, and we
4863 also want to be used for single-threaded processes. */
4864
4865 add_target (t);
4866 }
4867
4868 /* Register a method to call whenever a new thread is attached. */
4869 void
4870 linux_nat_set_new_thread (struct target_ops *t,
4871 void (*new_thread) (struct lwp_info *))
4872 {
4873 /* Save the pointer. We only support a single registered instance
4874 of the GNU/Linux native target, so we do not need to map this to
4875 T. */
4876 linux_nat_new_thread = new_thread;
4877 }
4878
4879 /* Register a method to call whenever a new thread is attached. */
4880 void
4881 linux_nat_set_delete_thread (struct target_ops *t,
4882 void (*delete_thread) (struct arch_lwp_info *))
4883 {
4884 /* Save the pointer. We only support a single registered instance
4885 of the GNU/Linux native target, so we do not need to map this to
4886 T. */
4887 linux_nat_delete_thread = delete_thread;
4888 }
4889
4890 /* See declaration in linux-nat.h. */
4891
4892 void
4893 linux_nat_set_new_fork (struct target_ops *t,
4894 linux_nat_new_fork_ftype *new_fork)
4895 {
4896 /* Save the pointer. */
4897 linux_nat_new_fork = new_fork;
4898 }
4899
4900 /* See declaration in linux-nat.h. */
4901
4902 void
4903 linux_nat_set_forget_process (struct target_ops *t,
4904 linux_nat_forget_process_ftype *fn)
4905 {
4906 /* Save the pointer. */
4907 linux_nat_forget_process_hook = fn;
4908 }
4909
4910 /* See declaration in linux-nat.h. */
4911
4912 void
4913 linux_nat_forget_process (pid_t pid)
4914 {
4915 if (linux_nat_forget_process_hook != NULL)
4916 linux_nat_forget_process_hook (pid);
4917 }
4918
4919 /* Register a method that converts a siginfo object between the layout
4920 that ptrace returns, and the layout in the architecture of the
4921 inferior. */
4922 void
4923 linux_nat_set_siginfo_fixup (struct target_ops *t,
4924 int (*siginfo_fixup) (siginfo_t *,
4925 gdb_byte *,
4926 int))
4927 {
4928 /* Save the pointer. */
4929 linux_nat_siginfo_fixup = siginfo_fixup;
4930 }
4931
4932 /* Register a method to call prior to resuming a thread. */
4933
4934 void
4935 linux_nat_set_prepare_to_resume (struct target_ops *t,
4936 void (*prepare_to_resume) (struct lwp_info *))
4937 {
4938 /* Save the pointer. */
4939 linux_nat_prepare_to_resume = prepare_to_resume;
4940 }
4941
4942 /* See linux-nat.h. */
4943
4944 int
4945 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4946 {
4947 int pid;
4948
4949 pid = ptid_get_lwp (ptid);
4950 if (pid == 0)
4951 pid = ptid_get_pid (ptid);
4952
4953 errno = 0;
4954 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4955 if (errno != 0)
4956 {
4957 memset (siginfo, 0, sizeof (*siginfo));
4958 return 0;
4959 }
4960 return 1;
4961 }
4962
4963 /* See nat/linux-nat.h. */
4964
4965 ptid_t
4966 current_lwp_ptid (void)
4967 {
4968 gdb_assert (ptid_lwp_p (inferior_ptid));
4969 return inferior_ptid;
4970 }
4971
4972 void
4973 _initialize_linux_nat (void)
4974 {
4975 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4976 &debug_linux_nat, _("\
4977 Set debugging of GNU/Linux lwp module."), _("\
4978 Show debugging of GNU/Linux lwp module."), _("\
4979 Enables printf debugging output."),
4980 NULL,
4981 show_debug_linux_nat,
4982 &setdebuglist, &showdebuglist);
4983
4984 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4985 &debug_linux_namespaces, _("\
4986 Set debugging of GNU/Linux namespaces module."), _("\
4987 Show debugging of GNU/Linux namespaces module."), _("\
4988 Enables printf debugging output."),
4989 NULL,
4990 NULL,
4991 &setdebuglist, &showdebuglist);
4992
4993 /* Save this mask as the default. */
4994 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4995
4996 /* Install a SIGCHLD handler. */
4997 sigchld_action.sa_handler = sigchld_handler;
4998 sigemptyset (&sigchld_action.sa_mask);
4999 sigchld_action.sa_flags = SA_RESTART;
5000
5001 /* Make it the default. */
5002 sigaction (SIGCHLD, &sigchld_action, NULL);
5003
5004 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5005 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5006 sigdelset (&suspend_mask, SIGCHLD);
5007
5008 sigemptyset (&blocked_mask);
5009
5010 lwp_lwpid_htab_create ();
5011 }
5012 \f
5013
5014 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5015 the GNU/Linux Threads library and therefore doesn't really belong
5016 here. */
5017
5018 /* Return the set of signals used by the threads library in *SET. */
5019
5020 void
5021 lin_thread_get_thread_signals (sigset_t *set)
5022 {
5023 sigemptyset (set);
5024
5025 /* NPTL reserves the first two RT signals, but does not provide any
5026 way for the debugger to query the signal numbers - fortunately
5027 they don't change. */
5028 sigaddset (set, __SIGRTMIN);
5029 sigaddset (set, __SIGRTMIN + 1);
5030 }
This page took 0.139125 seconds and 5 git commands to generate.